NASA Astrophysics Data System (ADS)
Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao
2018-03-01
The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.
Timing of the Acadian Orogeny in Northern New Hampshire.
Eusden Jr; Guzofski; Robinson; Tucker
2000-03-01
New U-Pb geochronology constrains the timing of the Acadian orogeny in the Central Maine Terrane of northern New Hampshire. Sixteen fractions of one to six grains each of zircon or monazite have been analyzed from six samples: (1) an early syntectonic diorite that records the onset of the Acadian; (2) a schist, a migmatite, and two granites that together record the peak of the Acadian; and (3) a postkinematic pluton that records the end of the Acadian. Zircon from the syntectonic Wamsutta Diorite gives a 207Pb/206Pb age of circa 408 Ma, the time at which the boundary between the deforming orogenic wedge and the foreland basin was in the vicinity of the Presidential Range. This age agrees well with the Emsian position of the northwest migrating Acadian orogenic front and records the beginning of the Acadian in this part of the Central Maine Terrane. We propose a possible Acadian tectonic model that incorporates the geochronologic, structural, and stratigraphic data. Monazite from the schist, migmatite, Bigelow Lawn Granite, and Slide Peak Granite gives 207Pb/206U ages, suggesting the peak of Acadian metamorphism and intrusion of two-mica granites occurred at circa 402-405 Ma, the main pulse of Acadian orogenesis. Previously reported monazite ages from schists that likely record the peak metamorphism in the Central Maine Terrane of New Hampshire and western Maine range from circa 406-384 Ma, with younger ages in southeastern New Hampshire and progressively older ages to the west, north, and northeast. Acadian orogenesis in the Presidential Range had ended by circa 355 Ma, the 207Pb/235U age of monazite from the Peabody River Granite. From 408 to perhaps at least 394 Ma, Acadian orogenesis in the Presidential Range was typical of the tectonic style, dominated by synkinematic metamorphism, seen in central and southern New Hampshire, Massachusetts, and Connecticut. From no earlier than 394 Ma to as late as 355 Ma, the orogenesis was typical of the style in parts of Maine dominated by postkinematic metamorphism.
Timing of the Acadian Orogeny in northern New Hampshire
Eusden, J.D.; Guzofski, C.A.; Robinson, A.C.; Tucker, R.D.
2000-01-01
New U-Pb geochronology constrains the timing of the Acadian orogeny in the Central Maine Terrane of northern New Hampshire. Sixteen fractions of one to six grains each of zircon or monazite have been analyzed from six samples: (1) an early syntectonic diorite that records the onset of the Acadian, (2) a schist, a migmatite, and two granites that together record the peak of the Acadian; and (3) a postkinematic pluton that records the end of the Acadian. Zircon from the syntectonic Wamsutta Diorite gives a 207Pb/206Pb age of circa 408 Ma, the time at which the boundary between the deforming orogenic wedge and the foreland basin was in the vicinity of the Presidential Range. This age agrees well with the Emsian position of the northwest migrating Acadian orogenic front and records the beginning of the Acadian in this part of the Central Maine Terrane. We propose a possible Acadian tectonic model that incorporates the geochronologic, structural, and stratigraphic data. Monazite from the schist, migmatite, Bigelow Lawn Granite, and Slide Peak Granite gives 207Pb/206U ages, suggesting the peak of Acadian metamorphism and intrusion of two-mica granites occurred at circa 402-405 Ma, the main pulse of Acadian orogenesis. Previously reported monazite ages from schists that likely record the peak metamorphism in the Central Maine Terrane of New Hampshire and western Maine range from circa 406-384 Ma, with younger ages in southeastern New Hampshire and progressively older ages to the west, north, and northeast. Acadian orogenesis in the Presidential Range had ended by circa 355 Ma, the 207Pb/235U age of monazite from the Peabody River Granite. From 408 to perhaps at least 394 Ma, Acadian orogenesis in the Presidential Range was typical of the tectonic style, dominated by synkinematic metamorphism, seen in central and southern New Hampshire, Massachusetts, and Connecticut. From no earlier than 394 Ma to as late as 355 Ma, the orogenesis was typical of the style in parts of Maine dominated by postkinematic metamorphism.
Episodic behavior of Gondwanide deformation in eastern Australia: Insights from the Gympie Terrane
NASA Astrophysics Data System (ADS)
Hoy, Derek; Rosenbaum, Gideon
2017-08-01
The mechanisms that drove Permian-Triassic orogenesis in Australia and throughout the Cordilleran-type Gondwanan margin is a subject of debate. Here we present field-based results on the structural evolution of the Gympie Terrane (eastern Australia), with the aim of evaluating its possible role in triggering widespread orogenesis. We document several deformation events (D1-D3) in the Gympie Terrane and show that the earliest deformation, D1, occurred only during the final pulse of orogenesis (235-230 Ma) within the broader Gondwanide Orogeny. In addition, we found no evidence for a crustal suture, suggesting that terrane accretion was not the main mechanism behind deformation. Rather, the similar spatiotemporal evolution of Permian-Triassic orogenic belts in Australia, Antarctica, South Africa, and South America suggest that the Gondwanide Orogeny was more likely linked to large-scale tectonic processes such as plate reorganization. In the context of previous work, our results highlight a number of spatial and temporal variations in pulses of deformation in eastern Australia, suggesting that shorter cycles of deformation occurred at a regional scale within the broader episode of the Gondwanide Orogeny. Similarly to the Cenozoic evolution of the central and southern Andes, we suggest that plate coupling and orogenic cycles in the Late Paleozoic to Early Mesozoic Gondwanide Orogeny have resulted from the superposition of mechanisms acting at a range of scales, perhaps contributing to the observed variations in the intensity, timing, and duration of deformation phases within the orogenic belt.
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
Goldfarb, R.J.; Snee, L.W.; Pickthorn, W.J.
1993-01-01
Mesothermal, gold-bearing quartz veins are widespread within allochthonous terranes of Alaska that are composed dominantly of greenschist-facies metasedimentary rocks. The most productive lode deposits are concentrated in south-central and southeastern Alaska; small and generally nonproductive gold-bearing veins occur upstream from major placer deposits in interior and northern Alaska. Ore-forming fluids in all areas are consistent with derivation from metamorphic devolatilisation reactions, and a close temporal relationship exists between high-T tectonic deformation, igneous activity, and gold mineralization. Ore fluids were of consistently low salinity, CO2-rich, and had ??18O values of 7 ???-12??? and ??D values between -15??? and -35???. Upper-crustal temperatures within the metamorphosed terranes reached at least 450-500??C before onset of significant gold-forming hydrothermal activity. In southern Alaska, gold deposits formed during latter stages of Tertiary, subduction-related, collisional orogenesis and were often temporally coeval with calc-alkaline magmatism. -from Authors
Earthquake-induced gravitational potential energy change in the active Taiwan orogenic belt
NASA Astrophysics Data System (ADS)
Lo, Chung-Liang; Hsu, Shu-Kun
2005-07-01
The Philippine Sea Plate is converging against the Eurasian Plate near Taiwan at a velocity of 7-8 cm yr-1 this has caused the Taiwan orogenesis and induced abundant earthquakes. In this study we examine the corresponding change of gravitational potential energy (ΔGPE) using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from 1995 July to 2003 December. Our results show that the variation of the crustal ΔGPE strongly correlates with the different stages of the orogenesis. Except for the western Okinawa Trough and southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal ΔGPE. In contrast, the lithospheric ΔGPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal ΔGPE and the lithospheric ΔGPE during the observation period are 1.03 × 1017 J and -1.15 × 1017 J, respectively. The average rate of the whole ΔGPE in the Taiwan region is very intense and equal to -2.07 × 1010 W, corresponding to about 1 per cent of the global GPE loss induced by earthquakes.
Identifying mantle lithosphere inheritance in controlling intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-09-01
Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.
Tectonic Evolution of Ishtar Terra: Processes of Crustal Shortening and Thickening on Venus.
NASA Astrophysics Data System (ADS)
Vorder Bruegge, Richard Walsh
Evidence for the horizontal movement of large areas of crust, mountain building, and the possible removal of crust through processes similar to those observed on Earth is found in the Ishtar Terra highland region of Venus. Ishtar Terra is 5000 x 1500 km in size, an area comparable to Australia. It is characterized by a 2-5 km high, flat plain, Lakshmi Planum, which is flanked by mountain belts that reach elevations of up to 11 km. Outboard of these mountain belts are complexly deformed 'tessera' regions at elevations of 1 to 6 km. Evidence for the creation of crust through a mechanism comparable to terrestrial seafloor spreading is found in the elevated Trough and Ridge Terrain of Eastern Fortuna Tessera. In addition, the region around the Trough and Ridge Terrain is characterized by an elevated and deformed surface which exhibits a morphology compatible with an origin through crustal shortening through the collision of thick blocks of crust, such as through continental or oceanic plateau collision on Earth. Folds, thrusts, and strike-slip faults, all indicative of crustal shortening, are identified in these regions, and indicate a variety of convergence directions. The collision of very thick crustal blocks also produces high orogenic belts through processes comparable to terrestrial orogenesis. However, some fundamental differences may also exist in orogenesis on the two planets. These differences are primarily related to the driving mechanisms and thermal effects of orogenesis. The surficial geological characteristics of the northern edge of Ishtar Terra have been combined with geophysical modelling and provide evidence that this region is characterized by the wholescale underthrusting of low-lying plains crust beneath the thicker crust of Ishtar Terra. This underthrusting process adds upper crustal material to Ishtar Terra through a suturing process analogous to that of sedimentary accretionary wedges on Earth. The primary conclusion of this work is that crustal shortening and thickening through processes comparable to those observed on Earth have played a dominant role in the formation and evolution of Ishtar Terra.
NASA Astrophysics Data System (ADS)
Long, M. D.; Benoit, M. H.; Evans, R. L.; King, S. D.; Kirby, E.; Aragon, J. C.; Miller, S. R.; Liu, S.; Elsenbeck, J.
2017-12-01
The eastern margin of North America has undergone multiple episodes of orogenesis and rifting, yielding the surface geology and topography visible today. It is poorly known, however, how the crust and mantle lithosphere have responded to these tectonic forces, and how geologic units preserved at the surface relate to deeper structures. Furthermore, the evolution of Appalachian topography through time, which reflects a complex interplay among erosion, lithology, and mantle flow, remains a major outstanding problem. The MAGIC project involves a multidisciplinary, collaborative effort to understand the structure and evolution of the central Appalachians, from the mantle to the surface. New images of the lithosphere derived from a passive broadband seismic array and a magnetotelluric deployment demonstrate significant along-strike lateral variability across the MAGIC transect. We observe a sharp change in crustal thickness across the eastern edge of the Appalachians, with a deeper Moho beneath the mountains than suggested by simple isostatic models. We find evidence for a relatively shallow lithosphere-asthenosphere boundary (LAB) beneath the Appalachians, with the thinnest LAB coinciding with the location of Eocene volcanism in and around Harrisonburg, VA. This observation is consistent with lithospheric loss as a mechanism for Eocene volcanic activity. Observations of seismic anisotropy suggest deformation of the mantle lithosphere associated with both Appalachian orogenesis and later Mesozoic rifting, with an observable component of anisotropy due to present-day mantle flow. Geodynamic models of mantle flow using a variety of tomographic models and density scaling relationships are being used to generate predictions of dynamic topography and plate motions for comparison with observations, and are currently being refined to incorporate realistic lithospheric morphology based on imaging results. Models of present-day erosion rates throughout the Appalachians from stream profile analysis show particularly fast erosion rates just to the west of Harrisonburg. Integration of results from the MAGIC project is yielding new insight into the structure and evolution of the central Appalachians and into the processes associated with orogenesis, rifting, and post-rift evolution of the passive margin.
NASA Astrophysics Data System (ADS)
Bernard, Thomas; Sinclair, Hugh; Ford, Mary; Naylor, Mark
2017-04-01
Mountain topography, including surrounding foreland basins, results from the long-term competition between tectonic and surface processes linked to climate. Numerous studies on young active mountain ranges such as the Southern Alps, New Zealand and Taiwan, have investigated the interaction between tectonics, climate and erosion on the topographic landscape. However most of the mountain ranges in the world are in various stages of post-orogenic decay, such as the European Alps, Urals, Caledonides, Appalachians and Pyrenees. The landscape evolution of these decaying mountains, which involve relatively inactive tectonics, should appear simple with progressive and relatively uniform erosion resulting in a general lowering of both elevation and topographic relief. However, in a number of examples, post-orogenic systems suggest a complex dynamism and interactions with their associated foreland basins in term of spatio-temporal variations in erosion and sedimentary flux. The complexity and transition to post-orogenesis is a function of multiple processes. Underpinning the transition to a post-orogenic state is the competition between erosion and crustal thickening; the balance of these processes determines the timing and magnitude of isostatic rebound and hence subsidence versus uplift of the foreland basin. It is expected that any change in the parameters controlling the balance of erosion versus crustal thickening will impact the topographic evolution and sediment flux from the mountain range and foreland basin to the surrounding continental margin. This study will focus on the causes and origins of the processes that define post-orogenesis. This will involve analyses of low-temperature thermochronological and topographic data, geodynamical modelling and sedimentological analyses (grainsize distribution). The Pyrenees and its associated northern retro-foreland basin, the Aquitaine basin, will form the natural laboratory for the project as it is one of the best documented mountain range/foreland basin systems in the world. Initial results of a review of the low-temperature thermochronological data using inverse modelling, illustrates the asymmetric exhumation of the mountain range, and the diachronous timing of decelerated exhumation linked to the transition to post-orogenesis. This study is part of the Orogen project, an academic-industrial collaboration (CNRS-BRGM-TOTAL).
The Geology of Liberia: A Selected Bibliography of Liberian Geology, Geography and Earth Science
2006-05-01
acerca do Sistema do Oendolongo e da Serie do Sansicua ( Sistema do Congo Ocidental).” Translated title: “The marked orogenesis in the Cariango region...Nitrogen ratio; Chemistry, organic compounds; Chemistry, sediment; Components, terrigeneous; d13C Corg; delta 13C, organic carbon; Dinost/ TOC ...for Geosciences, Christian Albrechts University, Kiel; Isotopes, stable, general; Ketone/ TOC ; M6/5; M65; Mass spectrometer Finnigan MAT 251; Meteor
Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2015-04-01
The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.
NASA Astrophysics Data System (ADS)
Butaeye, Damien; Laville, Edgard; Le Gall, Jean
2001-02-01
Variscan structures of the northeastern Armorican massif consist of folds induced by south-verging thrust faults. This thin-skinned process is controlled by a major décollement that would be expected at the base of the Brioverian flysch. So, the northeastern Armorican domain can be integrated to the tectonic model admitted at the Variscan Orogenesis scale.
Tectonic mode switches and the nature of orogenesis
NASA Astrophysics Data System (ADS)
Lister, Gordon; Forster, Marnie
2009-12-01
The birth and death of many mountain belts occurs in lithosphere that over-rides major subduction zones. Here the tectonic mode (shortening versus extension) can abruptly switch, even during continuous and otherwise smooth convergence. If the hinge line of the foundering slab rapidly retreats (i.e. rolls back), the foundering slab creates a gravitational potential well into which the orogen collapses. This motion, coupled with stress guides, can "pull" the orogen apart. A slowing of roll-back (or of hinge retreat) means that the subduction flexure may subsequently begin to be "pushed back" or be "pushed over" by the advancing orogen. The consequence of such changes in relative motion is that orogenic belts are affected by abrupt tectonic mode switches. The change from "push" to "pull" leads to a sudden change from horizontal extension to horizontal shortening, potentially throughout the entire mass of the orogenic lithosphere that over-rides the subducting slab. The sequencing of these tectonic mode switches affects the thermal evolution of the orogen, and thus fundamentally determines the nature of orogenesis. This insight led to us to our quite different views as to how orogens work. It is evident that orogens affected by abrupt "push-pull" mode switches are characterized by high-pressure metamorphism, whereas orogens affected by abrupt "pull-push" mode switches are characterized by high-temperature metamorphism, magmatism and anatexis.
Lateral Variations in SKS Splitting Across the MAGIC Array, Central Appalachians
NASA Astrophysics Data System (ADS)
Aragon, John C.; Long, Maureen D.; Benoit, Margaret H.
2017-11-01
The eastern margin of North America has been shaped by several cycles of supercontinent assembly. These past episodes of orogenesis and continental rifting have likely deformed the lithosphere, but the extent, style, and geometry of this deformation remain poorly known. Measurements of seismic anisotropy in the upper mantle can shed light on past lithospheric deformation, but may also reveal contributions from present-day mantle flow in the asthenosphere. Here we examine SKS waveforms and measure splitting of SKS phases recorded by the MAGIC experiment, a dense transect of seismic stations across the central Appalachians. Our measurements constrain small-scale lateral variations in azimuthal anisotropy and reveal distinct regions of upper mantle anisotropy. Stations within the present-day Appalachian Mountains exhibit fast splitting directions roughly parallel to the strike of the mountains and delay times of about 1.0 s. To the west, transverse component waveforms for individual events reveal lateral variability in anisotropic structure. Stations immediately to the east of the mountains exhibit complicated splitting patterns, more null SKS arrivals, and a distinct clockwise rotation of fast directions. The observed variability in splitting behavior argues for contributions from both the lithosphere and the asthenospheric mantle. We infer that the sharp lateral transition in splitting behavior at the eastern edge of the Appalachians is controlled by a change in anisotropy in the lithospheric mantle. We hypothesize that beneath the Appalachians, SKS splitting reflects lithospheric deformation associated with Appalachian orogenesis, while just to the east this anisotropic signature was modified by Mesozoic rifting.
Instability of the southern Canadian Shield during the late Proterozoic
NASA Astrophysics Data System (ADS)
McDannell, Kalin T.; Zeitler, Peter K.; Schneider, David A.
2018-05-01
Cratons are generally considered to comprise lithosphere that has remained tectonically quiescent for billions of years. Direct evidence for stability is mainly founded in the Phanerozoic sedimentary record and low-temperature thermochronology, but for extensive parts of Canada, earlier stability has been inferred due to the lack of an extensive rock record in both time and space. We used 40Ar/39Ar multi-diffusion domain (MDD) analysis of K-feldspar to constrain cratonic thermal histories across an intermediate (∼150-350 °C) temperature range in an attempt to link published high-temperature geochronology that resolves the timing of orogenesis and metamorphism with lower-temperature data suited for upper-crustal burial and unroofing histories. This work is focused on understanding the transition from Archean-Paleoproterozoic crustal growth to later intervals of stability, and how uninterrupted that record is throughout Earth's Proterozoic "Middle Age." Intermediate-temperature thermal histories of cratonic rocks at well-constrained localities within the southern Canadian Shield of North America challenge the stability worldview because our data indicate that these rocks were at elevated temperatures in the Proterozoic. Feldspars from granitic rocks collected at the surface cooled at rates of <0.5 °C/Ma subsequent to orogenesis, seemingly characteristic of cratonic lithosphere, but modeled thermal histories suggest that at ca. 1.1-1.0 Ga these rocks were still near ∼200 °C - signaling either reheating, or prolonged residence at mid-crustal depths assuming a normal cratonic geothermal gradient. After 1.0 Ga, the regions we sampled then underwent further cooling such that they were at or near the surface (≪60 °C) in the early Paleozoic. Explaining mid-crustal residence at 1.0 Ga is challenging. A widespread, prolonged reheating history via burial is not supported by stratigraphic information, however assuming a purely monotonic cooling history requires at the very least 5 km of exhumation beginning at ca. 1.0 Ga. A possible explanation may be found in evidence of magmatic underplating that thickened the crust, driving uplift and erosion. The timing of this underplating coincides with Mid-Continent extension, Grenville orogenesis, and assembly of the supercontinent Rodinia. 40Ar/39Ar MDD data demonstrate that this technique can be successfully applied to older rocks and fill in a large observational gap. These data also raise questions about the evolution of cratons during the Proterozoic and the nature of cratonic stability across deep time.
Walsh, Gregory J.; Aleinikoff, John N.; Harrison, Richard W.; Burton, William C.; Quick, James E.; Benziane, Foudad; Yazidi, Abdelaziz; Saadane, Abderrahim
2012-01-01
New mapping, geochemistry, and 17 U–Pb SHRIMP zircon ages from rocks of the Sirwa, Bou Azzer–El Graara, and Jebel Saghro inliers constrain the Neoproterozoic evolution of the eastern Anti-Atlas during Pan-African orogenesis. In the Sirwa inlier, Tonian quartzite from the pre Pan-African passive margin deposits of the Mimount Formation contains detrital zircon derived entirely from the West African Craton (WAC), with most grains yielding Eburnean Paleoproterozoic ages of about 2050 Ma. Cryogenian Pan-African orogenic activity (PA1) from about 760 to 660 Ma included northward-dipping subduction to produce a volcanic arc, followed by ophiolite obduction onto the WAC. In the Bou Azzer–El Graara inlier, calc-alkaline granodiorite and quartz diorite, dated at 650–646 Ma, are syn- to post-tectonic with respect to the second period of Pan-African orogenesis (PA2), arc-continent accretion, and related greenschist facies metamorphism. Slab break-off and lithospheric delimination may have provided the source for the supra-subduction calc-alkaline plutons. At about 646 Ma, quartz diorite intruded the Tiddiline formation placing an upper limit on molassic deposition. Widespread Ediacaran high-K calc-alkaline to shoshonitic plutonism and volcanism during the final stage of Pan-African orogenesis (PA3) occurred in a setting related to either modification of the margin of the WAC or formation of a continental volcanic arc above a short-lived southward-dipping subduction zone. In the Saghro inlier, eight plutonic rocks yield ages ranging from about 588 to 556 Ma. Sampled plutonic rocks previously considered to be Cryogenian yielded Ediacaran ages. Peraluminous rhyolitic volcanic rocks in the lower part of the Ouarzazate Supergroup, including ash-flow tuffs of the Oued Dar’a caldera, yield ages between about 574 and 571 Ma. The Oued Dar’a caldera developed in a pull-apart graben produced by a left-step in a northeast-trending, left-lateral strike-slip fault zone, and much of the lower Ouarzazate Supergroup volcanic rocks in the area are probably related to caldera out-flow facies and collapse. Late stage PA3 intrusive rocks include the Bouskour–Sidi Flah and Timijt rhyolitic dike swarms at about 563 Ma, the voluminous pink Isk-n-Alla granite (559 ± 5 Ma), and volumetrically minor gabbro of Tagmout (556 ± 5 Ma). Rhyolite flows from the upper part of the Ouarzazate Supergroup, above a regional angular unconformity, yielded ages of 558 ± 4 and 556 ± 4 Ma. The youngest ages place an upper limit on block faulting and weak folding during latest Pan-African tectonic activity (PA3), coincident with the departure of the Cadomian crustal fragment from the northern margin of the WAC.
A Laurentian margin back-arc: the Ordovician Wedowee-Emuckfaw-Dahlonega basin
Barineau, Clinton I.; Tull, James F.; Holm-Denoma, Christopher S.
2015-01-01
Independent researchers working in the Talladega belt, Ashland-Wedowee-Emuckfaw belt, and Opelika Complex of Alabama, as well as the Dahlonega gold belt and western Inner Piedmont of Alabama, Georgia, and the Carolinas, have mapped stratigraphic sequences unique to each region. Although historically considered distinct terranes of disparate origin, a synthesis of data suggests that each includes lithologic units that formed in an Ordovician back-arc basin (Wedowee-Emuckfaw-Dahlonega basin—WEDB). Rocks in these terranes include varying proportions of metamorphosed mafic and bimodal volcanic rock suites interlayered with deep-water metasedimentary rock sequences. Metavolcanic rocks yield ages that are Early–Middle Ordovician (480–460 Ma) and interlayered metasedimentary units are populated with both Grenville and Early–Middle Ordovician detrital zircons. Metamafic rocks display geochemical trends ranging from mid-oceanic-ridge basalt to arc affinity, similar to modern back-arc basalts. The collective data set limits formation of the WEDB to a suprasubduction system built on and adjacent to upper Neoproterozoic–lower Paleozoic rocks of the passive Laurentian margin at the trailing edge of Iapetus, specifically in a continental margin back-arc setting. Overwhelmingly, the geologic history of the southern Appalachians, including rocks of the WEDB described here, indicates that the Ordovician Taconic orogeny in the southern Appalachians developed in an accretionary orogenic setting instead of the traditional collisional orogenic setting attributed to subduction of the Laurentian margin beneath an exotic or peri-Laurentian arc. Well-studied Cenozoic accretionary orogens provide excellent analogs for Taconic orogenesis, and an accretionary orogenic model for the southern Appalachian Taconic orogeny can account for aspects of Ordovician tectonics not easily explained through collisional orogenesis.
NASA Astrophysics Data System (ADS)
Harding, M. R.; Rowan, C. J.
2013-12-01
The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Gulick, S. P. S.; Montelli, A.; Jaeger, J. M.; Zellers, S.; Walczak, M. H.; Mix, A. C.
2015-12-01
Ongoing collision of the Yakutat (YAK) microplate with North America (NA) in southern Alaska has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), much of which is younger than 0.3 Ma. Age models within the trough indicated that initiation of active deformation away from the Bering Trough depocenter likely occurred since 0.3 Ma, suggesting that possible tectonic reorganization due to mass redistribution by glacial processes can occur at time scales on the order of 100kyr-1Myr.
NASA Astrophysics Data System (ADS)
Amos, Dee
2013-04-01
The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.
An exhumed Late Paleozoic canyon in the rocky mountains
Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.
2007-01-01
Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.
Foundering and Exhumation of UHP Terranes: Race Car or School Bus?
NASA Astrophysics Data System (ADS)
Kylander-Clark, A. R.; Hacker, B. R.
2008-12-01
Recent geochronologic data from the giant ultrahigh-pressure (UHP) terrane, in the Western Gneiss Region of Norway, indicate that subduction and exhumation were relatively slow (a few mm/yr), and that the terrane was exhumed to the surface as a relatively thick, coherent body. These conclusions are in stark contrast to those reached in previous studies of some of the best-studied, smaller UHP terranes and suggest that the processes that form and/or exhume small UHP terranes are fundamentally different from the processes that affect large UHP terranes. These differences may be the result of variations in the buoyancy forces of different proportions of subducted felsic crust, mafic crust, and mantle lithosphere. Initial collision occurs via the subduction of smaller portions of continental material, such as microcontinents or ribbon continents. Because the proportion of continental crust is small, the processes involved in early UHP terrane formation are dominated by the oceanic slab; subduction rates are fast because average plate densities are high, and, as a result, subduction angles are steep. Because these smaller, thinner portions of crust are weak, they deform easily and mix readily with the mantle. As the collision matures, thicker and larger portions of continental material-such as a continental margin-are subducted, and the subduction regime changes from one that was ocean dominated to one that is continent dominated. The increased buoyancy of the larger volume of continental crust resists the pull of the leading oceanic lithosphere; subduction shallows and plate rates slow. Because the downgoing continent is thick, it is strong, remains cohesive and has limited interaction with the mantle. Although the subduction regime during early orogenesis is distinct from that during late orogenesis, the degree of mountain building and crustal thickening may be similar in both stages as small volumes and fast flow rates of buoyant material give way to large volumes and slow flow rates.
Paleomagnetism of the Red Dog Zn-Pb massive sulfide deposit in northern Alaska
Lewchuk, Michael T.; Leach, D.L.; Kelley, K.D.; Symons, David T. A.
2004-01-01
Paleomagnetic methods have isolated two ancient magnetizations in and around the Paleozoic shale-hosted Red Dog ore deposit in northern Alaska. A high-latitude, westerly magnetization carried by magnetite, termed characteristic remanent magnetization A, was found in rocks that have barite and/or substantial quartz replacement of barite. An intermediate- to low-latitude, southerly magnetization (characteristic remanent magnetization B) is carried by pyrrhotite and was found in rocks dominated by galena and sphalerite. The ages the two components are constrained by their relationship with geochemistry, radiometric age dating, and hypotheses for the Mesozoic tectonic history of the Brooks Range. Characteristic remanent magnetization A fails the fold test so it must postdate the end of Brookian orogenesis (??? 150 Ma). It is always found with replacement quartz that has a radiometric date (white mica from a vug, 39Ar/40Ar) of 126 Ma. The paleolatitude for characteristic remanent magnetization B is too shallow to be Mesozoic or younger, regardless of the model for the tectonic origin of northern Alaska, and must predate Brookian orogenesis. Geologic mapping suggests that most of the ore is syngenetic, formed at 330 to 340 Ma, and a radiometric date (Re-Os on pyrite) yields an age of 338 Ma. Since characteristic remanent magnetization B predates deformation, is found in mineralized rocks and is carried by pyrrhotite, it was probably acquired during the mineralizing process as well. The combined radiometric ages and paleomagnetic data sets can be best interpreted by assuming that northern Alaska was part of an accreted terrane that was translated northward by about 30?? into its current location relative to the rest of North America and then rotated counterclockwise by 50?? to 70??. This tectonic interpretation yields plausible magnetization ages for both characteristic remanent magnetization A and B. Geologic evidence, isotopic ages, and paleomagnetic data indicate formation of the deposit at a paleolatitude that is much lower than today. ?? 2004 by Economic Geology.
NASA Astrophysics Data System (ADS)
Bethune, K. M.
2015-12-01
Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.
Zhao, Zhe; Li, Shuqiang
2017-11-01
Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Daniel, Christopher G.; Jones, James V.; Andronicos, Christopher L.; Gray, Mary Beth; Abbott, Lon D.; Hancock, Gregory S.
2013-01-01
The early Mesoproterozoic (ca. 1400 Ma) is an enigmatic time in the tectonic evolution of southern Laurentia. Circa 1400 Ma granites within Laurentia and multiple other continents have distinctive geochemistry consistent with crustal extension or mantle upwelling. In the southwestern United States, these granites are commonly foliated and are often spatially associated with km-scale ductile shear zones. Deformation is attributed to intracontinental tectonism driven by active convergence along the distal southern margin of Laurentia. The recent discovery of deformed and metamorphosed, ca. 1450 Ma sedimentary rocks in northern New Mexico has strengthened the case for regional deformation and orogenesis. However, important questions remain about the tectonic significance of these events and how to reconcile tectonic models with granite petrology at the regional to global scale. This trip focuses on the protolith age of Proterozoic metasedimentary rocks and the kinematics, timing, and tectonic significance of deformation, magmatism, and metamorphism for the Mesoproterozoic across different crustal levels in the southern Rocky Mountains to highlight the ongoing questions and controversies regarding the Mesoproterozoic tectonic setting of Laurentia.This field trip will examine some of the diverse and most recently discovered evidence for ca. 1400 Ma orogenesis in the southern Rocky Mountains. We hope this trip will promote new interest and discussion about the Mesoproterozoic tectonic evolution of Laurentia. We will visit multiple outcrops in the Wet Mountains of southern Colorado and the Picuris Mountains of northern New Mexico. Stops in the Wet Mountains are arranged from north to south to examine contrasting styles of ca. 1400 Ma deformation with increasing paleodepth across the tilted Proterozoic crustal section. In the Picuris Mountains, we focus on detrital zircon geochronology and revisions to the lithostratigraphy of Paleoproterozoic and recently documented Mesoproterozoic metasedimentary rocks, the nature of regional metamorphism, and the style of deformation, ca. 1450–1400 Ma.
Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.
Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L
2010-07-16
Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.
NASA Astrophysics Data System (ADS)
Grobe, Arne; Virgo, Simon; von Hagke, Christoph; Ralf, Littke; Urai, Janos L.
2017-04-01
Ophiolite obduction is an integral part of mountain building in many orogens. However, because the obduction stage is usually overprinted by later tectonic events, obduction geodynamics and its influence on orogenesis are often elusive. The best-preserved ophiolite on Earth is the Semail Ophiolite, Oman Mountains. 350 km of ophiolite and the entire overthrusted margin sequence are exposed perpendicular to the direction of obduction along the northeastern coast of the Sultanate of Oman. Despite excellent exposure, it has been debated whether early stages of obduction included formation of a micro-plate, or if the Oman Mountains result from collision of two macro-plates (e.g. Breton et al., 2004). Furthermore, different tectonic models for the Oman Mountains exist, and it is unclear how structural and tectonic phases relate to geodynamic context. Here we present a multidisciplinary approach to constrain orogenesis of the Oman Mountains. To this end, we first restore the structural evolution of the carbonate platform in the footwall of the Semail ophiolite. Relative ages of nine structural generations can be distinguished, based on more than 1,500 vein and fault overprintings. Top-to-S overthrusting of the Semail ophiolite is witnessed by three different generations of bedding confined veins in an anticlockwise rotating stress field. Rapid burial induced the formation of overpressure cells, and generation and migration of hydrocarbons (Fink et al., 2015; Grobe et al., 2016). Subsequent tectonic thinning of the ophiolite took place above a top-to-NNE crustal scale, ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers. Ongoing extension formed normal- to oblique-slip faults and horst-graben structures. This was followed by NE-SW oriented ductile shortening, the formation of the Jebel Akhdar anticline, potentially controlled by the positions of the horst-graben structures. Exhumation in the Cenozoic was associated with low angle normal faults on the northern flank of the anticline. We link these results with the geodynamic framework of the area, constrained by plate tectonic reconstructions. Furthermore, we constrain the exhumation history of the mountain belt using zircon (U-Th-Sm)/He dating. Geodynamic and exhumation events can be linked to structural generations. This results in a new tectonic model of the Oman Mountains. We find a remarkable along-strike consistency of mountain building phases and argue involvement of a micro-plate is not required. Breton, J.P., Béchennec, F., Le Métour, J., Moen-Maurel, L., Razin, P., 2004. Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: Insights from a structural field study in Jabal Akhdar (Oman Mountains). GeoArabia 9, 41-58. Fink, R., Virgo, S., Arndt, M., Visser, W., Littke, R., Urai, J.L.L., 2015. Solid bitumen in calcite veins from the Natih Formation in the Oman Mountains: Multiple phases of petroleum migration in a changing stress field. Int. J. Coal Geol. 157, 39-51. doi:10.1016/j.coal.2015.07.012 Grobe, A., Urai, J.L.L., Littke, R., Lünsdorf, N.K.K., 2016. Hydrocarbon generation and migration under a large overthrust: The carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman. Int. J. Coal Geol. 1-17. doi:10.1016/j.coal.2016.02.007
NASA Astrophysics Data System (ADS)
Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui
2015-05-01
The western Qinling, belonging to the western part of the Qinling-Dabie-Sulu orogen between the North China Block and South China Block, is one of the most important gold regions in China. Isotopic dates suggest that the Mesozoic granitoids in the western Qinling region emplaced during the Middle-Late Triassic, and the deposits formed during the Late Triassic. Almost all gold deposits in the western Qinling region are classified as orogenic, Carlin-type, and Carlin-like gold deposits, and they are the products of Qinling Orogenesis caused by the final collision between the North China Block and the South China Block. The early subduction of the Mian-Lue oceanic crust and the latter collision between South Qinling Terrane and the South China Block along the Mian-Lue suture generated lithosphere-scale thermal anomalies to drive orogen-scale hydrothermal systems. The collision-related magmatism also provided heat source for regional ore-forming fluids in the Carlin-like gold deposits. Orogenic gold deposits such as Huachanggou, Liziyuan, and Baguamiao lie between the Shang-Dan and Mian-Lue sutures and are confined to WNW-trending brittle-ductile shear zones in Devonian and Carboniferous greenschist-facies metasedimentary rocks that were highly-deformed and regionally-metamorphosed. These deposits are typical orogenic gold deposits and formed within a Late Triassic age. The deposits show a close relationship between Au and Ag. Ores contain mainly microscopic gold, and minor electrum and visible gold, along with pyrite. The ore-forming fluids were main metamorphic fluids. Intensive tectonic movements caused by orogenesis created fluid-migrating channels for precipitation locations. Although some orogenic gold deposits occur adjacent to granitoids, mineralization is not synchronous with magmatism; that is, the granitoids have no genetic relations to orogenic gold deposits. As ore-forming fluids converged into dilated fractures during the extension stage of orogenesis, changes of physico-chemical conditions resulted in fluid immiscibility that played a key role in gold and sulfide deposition. The geochemical and mineralogical characteristics of the Carlin-type deposits in the western Qinling region are similar to those in the Carlin trend, Nevada, USA. Gold deposits such as La'erma and Jinlongshan occur mostly in the southeastern margin of the western Qinling regionic region whereas some deposits occur in its eastern part. These deposits are hosted in slightly metamorphosed Cambrian to Triassic sedimentary rocks, showing structurally- and stratigraphically-controlled features. The deposits mainly contain submicroscopic and microscopic gold in arsenian pyrite and arsenopyrite, with characteristic ore-forming elements of Au-As-Sb-Ba. The ore-forming fluids are early-stocked formation water and later-recharged meteoric water. Meteoric water apparently evolved in ore-forming fluids by circulation, indicating the extensional setting, and led to the deposition of Au and other elements in cool reactive permeable rocks at shallow levels, forming the disseminated ores. Carlin-like gold deposits occur between the Shang-Dan suture and the Fengxian-Zhen'an fault. The host rocks are mainly sedimentary rocks that underwent reconstruction through reworking by structural metamorphism. These deposits are structurally controlled by brittle-ductile shear zone and occur adjacent to granitoid plutons. The most important characteristic that differ to the orogenic and Carlin-type gold deposits is the genetic relationship with the synchronous magmatism. Gold occurs mainly as microscopic gold. Pyrite and arsenian pyrite can be recognized as gold-bearing minerals. The ore-forming fluids are main magmatic water mixed with metamorphic and/or formation water. Similar to orogenic gold deposits, fluid immiscibility caused the deposition of gold Carlin-like gold deposits.
NASA Astrophysics Data System (ADS)
Gutierrez, E. G.; Horton, B. K.; Vallejo, C.
2017-12-01
The tectonic history of the Oriente foreland basin and adjacent Subandean Zone of Ecuador during contractional mountain building in the northern Andes can be revealed through integrated stratigraphic, geochronological, structural, and provenance analyses of clastic sediments deposited during orogenesis. We present new maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units deposited in the western (proximal) Oriente Basin. Detrital zircon U-Pb ages were obtained from Upper Cretaceous and Cenozoic clastic formations from exposures in the Subandean Zone. The sampled stratigraphic intervals span critical timeframes during orogenesis in the Ecuadorian Andes. Cenozoic formations have poorly defined chronostratigraphic relationships and are therefore a primary target of this study. In addition, the newly acquired U-Pb age spectra allow clear identification of the various sediment source regions that fed the system during distinct depositional phases. Maximum depositional ages (MDA) were obtained for five samples from three formations: the Tena (MDA=69.6 Ma), Chalcana (MDA=29.3 Ma), and Arajuno (MDA= 17.1, 14.2, 12.8 Ma) Formations, placing them in the Maastrichtian, early Oligocene, and early-middle Miocene, respectively. Detrital zircon U-Pb ages identify clear signatures of at least four different sources: craton (1600-1300 Ma, 1250-900 Ma), Eastern Cordillera fold-thrust belt (600-450 Ma, 250-145 Ma), Western Cordillera magmatic arc (<88 Ma), and recycling of cratonic material from the Eastern Cordillera. The U-Pb age spectra of the Upper Cretaceous-Paleogene type sections allow us to recognize variations in the contribution of each recognized source over time. We identify recycled material with two dominant peak ages (1250-900 Ma and 600-450 Ma), material derived from the adjacent uplifted orogen or recycled from foredeep sediments incorporated into the deforming wedge. Finally, an apparent unroofing event is inferred from a 250-145 Ma age peak in the Plio-Pleistocene Mesa-Mera Formation revealing the persistent shortening deformation influencing the structural configuration and sediment dispersal patterns of the Oriente Basin and Subandean Zone.
NASA Astrophysics Data System (ADS)
Maxelon, Michael; Mancktelow, Neil S.
2005-08-01
Continental collision during Alpine orogenesis entailed a polyphase deformation history (D 1-D 5) in the Pennine zone of the Central Alps. The regional tectonostratigraphy was basically developed during D 1 and D 2, characterised by isoclinal, typically north-closing recumbent anticlines, separated by pinched-in synclines, on the scale of tens of kilometres. Later deformation phases (D 3 and D 4) warped the stack into wavy to open folds. Exhumation of this zone resulted locally in later vertical shortening and folding of already steep fabrics (D 5). Three-dimensional models of the nappe pile were constructed, based on geostatistical assessment of the regional foliation field and considering the abundant structural field data. These models indicate the existence of five principal tectonostratigraphic levels developed during D 1 and thus equivalent to nappe units s. str.: the Gotthard, the Leventina-Antigorio, the Maggia-Simano (and probably the Monte Leone as well as the Composite Lepontine Series), Lebendun-Soja and Adula-Cima Lunga levels. All these tectonic units formed part of the passive continental margin of Europe prior to the onset of the Alpine orogenesis. Individual isoclinal post-nappe folds reflect relative displacements on the order of 40 km or more. The most prominent D 2 post-nappe structure is the Wandfluhhorn Fold, structurally equivalent to the northern closure of the Leventina-Lucomagno Antiform. The Lebendun and Monte Leone folds are of similar magnitudes and also affect the whole nappe pile, whereas the smaller Mogno and Molare synforms only refold the Maggia-Simano nappe internally. Principal D 3 and D 4 structures are the tight Mergoscia Synform directly north of the Insubric Fault between Bellinzona and Locarno (Southern Steep Belt), the Maggia Steep Zone, forming the steep western limb of the Campo Tencia Synform and subdividing the Lepontine dome into the Simplon and Ticino subdomes, the Chiéra Synform steepening the dominant foliation in the north (Northern Steep Belt) and the Vanzone and Claro Antiforms steepening the dominant foliation in the south (Southern Steep Belt). The current geometry of the Northern and Southern Steep Belts reflects an interplay between D 4 and D 3, involving both fold interference and reactivation/tightening.
Jones, James V.; Dainel, Christohper G; Doe, Michael F
2015-01-01
Mesoproterozoic sedimentary basins in western North America provide key constraints on pre-Rodinia craton positions and interactions along the western rifted margin of Laurentia. One such basin, the Belt-Purcell basin, extends from southern Idaho into southern British Columbia and contains a >18-km-thick succession of siliciclastic sediment deposited ca. 1.47–1.40 Ga. The ca. 1.47–1.45 Ga lower part of the succession contains abundant distinctive non-Laurentian 1.61–1.50 Ga detrital zircon populations derived from exotic cratonic sources. Contemporaneous metasedimentary successions in the southwestern United States–the Trampas and Yankee Joe basins in Arizona and New Mexico–also contain abundant 1.61–1.50 Ga detrital zircons. Similarities in depositional age and distinctive non-Laurentian detrital zircon populations suggest that both the Belt-Purcell and southwestern successions record sedimentary and tectonic linkages between western Laurentia and one or more cratons including North Australia, South Australia, and (or) East Antarctica. At ca. 1.45 Ga, both the Belt-Purcell and southwest successions underwent major sedimentological changes, with a pronounced shift to Laurentian provenance and the disappearance of the 1.61–1.50 Ga detrital zircon. Upper Belt-Purcell strata contain strongly unimodal ca. 1.73 Ga detrital zircon age populations that match the detrital zircon signature of Paleoproterozoic metasedimentary rocks of the Yavapai province to the south and southeast. We propose that the shift at ca. 1.45 Ga records the onset of orogenesis in southern Laurentia coeval with rifting along its northwestern margin. Bedrock uplift associated with orogenesis and widespread, coeval magmatism caused extensive exhumation and erosion of the Yavapai province ca. 1.45–1.36 Ga, providing a voluminous and areally extensive sediment source–with suitable zircon ages–during upper Belt deposition. This model provides a comprehensive and integrated view of the Mesoproterozoic tectonic evolution of western Laurentia and its position within the supercontinent Columbia as it evolved into Rodinia.
Late Vendian postcollisional leucogranites of Yenisei Ridge
NASA Astrophysics Data System (ADS)
Nozhkin, A. D.; Likhanov, I. I.; Reverdatto, V. V.; Bayanova, T. B.; Zinoviev, S. V.; Kozlov, P. S.; Popov, N. V.; Dmitrieva, N. V.
2017-06-01
The Late Vendian (540-550 Ma) U-Pb zircon age of postcollisional granitoids in the Osinovka Massif was obtained for the first time. The Osinovka Massif is located in rocks of the island-arc complex of the Isakovka Terrane, in the northwestern part of the Sayany-Yenisei accretion belt. These events stand for the final stage of the Neoproterozoic history of the Yenisei Ridge, related to the completing accretion of the oceanic crust fragments and the beginning of the Caledonian orogenesis. The petrogeochemical composition and the Sm-Nd isotopic characteristics support the fact that the granitoid melt originated from a highly differentiated continental crust of the southwestern margin of the Siberian Craton. Hence, the granite-bearing Late Riphean island-arc complexes were thrust over the craton margin at a distance considerably exceeding the dimensions of the Osinovka Massif.
A new species of Limnephilidae (Insecta: Trichoptera) from the Western Alps (Insecta: Trichoptera)
GRAF, WOLFRAM; VITECEK, SIMON
2016-01-01
A new species of the alpine caddisfly genus Consorophylax (Trichoptera, Limnephilidae, Stenophylacini) and the female of the recently described C. vinconi Graf & Malicky 2015 are described. The new species C. lepontiorum sp. nov. is a microendemic of the South-Western Alps and differs from its congeners in the shape of the superior and inferior appendages and the unique setation of the aedeagus, absent in all other Consorophylax species. The female of C. vinconi is characterized by the unique formation of the anal tube. Potential effects of alpine orogenesis, phenology and climatic oscillation on speciation of aquatic insects inhabiting high-altitude habitats are discussed. The description of C. lepontiorum sp. nov. accentuates the significance of the Western Alps as harbours of aquatic insect biodiversity, and demonstrates the necessity of faunal and taxonomic studies in Europe – a supposedly well-explored region. PMID:27069351
Isostatic and dynamic support of high topography on a North Atlantic passive margin
NASA Astrophysics Data System (ADS)
Pedersen, Vivi K.; Huismans, Ritske S.; Moucha, Robert
2016-07-01
Substantial controversy surrounds the origin of high topography along passive continental margins. Here we focus on the well-documented elevated passive margin in southwestern Scandinavia, and quantify the relative contributions of crustal isostasy and dynamic topography in controlling the present topography. We find that majority of the topography is compensated by the crustal structure, suggesting a topographic age that is in accord with the 400 Myr old Caledonian orogenesis. In addition, we propose that dynamic uplift of ∼300 m has rejuvenated existing topography locally in the coastal region over the last 10 Myr. Such uplift, combined with a general sea level fall, can help explain a variety of observations that have traditionally been interpreted in favor of a peneplain uplift model. We conclude that high topography along the Scandinavian margin cannot represent remnants of a peneplain uplifted within the last 20 Myr. The topography must have been high since the Caledonian orogeny.
Moroccan crustal response to continental drift.
Kanes, W H; Saadi, M; Ehrlich, E; Alem, A
1973-06-01
The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.
Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield
NASA Astrophysics Data System (ADS)
Hoffman, P. F.
2014-12-01
Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to major orogenic events. He did not ascribe any hairpin to collisional orogenesis within IL, outward facing margins excluded, nor any track to true polar wander. After 1980, however, he argued that existing poles were too poorly dated to rule out interior plate motions. Irving was a strict empiricist who fearlessly went where his data led him, and no farther.
Orogenic gold and geologic time: A global synthesis
Goldfarb, R.J.; Groves, D.I.; Gardoll, S.
2001-01-01
Orogenic gold deposits have formed over more than 3 billion years of Earth's history, episodically during the Middle Archean to younger Precambrian, and continuously throughout the Phanerozoic. This class of gold deposit is characteristically associated with deformed and metamorphosed mid-crustal blocks, particularly in spatial association with major crustal structures. A consistent spatial and temporal association with granitoids of a variety of compositions indicates that melts and fluids were both inherent products of thermal events during orogenesis. Including placer accumulations, which are commonly intimately associated with this mineral deposit type, recognized production and resources from economic Phanerozoic orogenic-gold deposits are estimated at just over one billion ounces gold. Exclusive of the still-controversial Witwatersrand ores, known Precambrian gold concentrations are about half this amount. The recent increased applicability of global paleo-reconstructions, coupled with improved geochronology from most of the world's major gold camps, allows for an improved understanding of the distribution pattern of orogenic gold in space and time.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Gulick, S. P.; Ridgway, K. R.; Jaeger, J. M.; Cowan, E. A.; Slagle, A. L.; Forwick, M.
2013-12-01
The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Ongoing collision of the Yakutat (YAK) microplate with North America (NA) has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. The sub-seafloor architecture of the Bering Trough region is defined by a regional unconformity that marks the first glacial advance to the shelf edge. Below the unconformity, the shelf is constructed by multiple aggradational packages that are likely a series of pro-glacial outer shelf/slope fans. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), all of which is younger than 0.781 Ma. Preliminary age models for the Bering Trough region indicate that the entire outer shelf and shelf edge environment have been built since the Mid-Pleistocene Transition (MPT), and is possibly even younger. In stark contrast to previous interpretations, the shelf environment, in addition to the proximal deep-sea fan system, appears to be a primary glacial depocenter since the MPT, with an average accumulation rate >1.3 mm/yr. Additionally, initiation of active deformation away from the Bering Trough depocenter likely occurred since ~1 Ma. These observations suggest that possible tectonic reorganization due to mass redistribution by glacial processes occurs at time scales on the order of 100kyr-1Myr. It follows that the St. Elias orogenic system may be more sensitive to glacial-interglacial cycles than previously recognized.
NASA Astrophysics Data System (ADS)
Feng, Jianyun; Xiao, Wenjiao; Windley, Brian; Han, Chunming; Wan, Bo; Zhang, Ji'en; Ao, Songjian; Zhang, Zhiyong; Lin, Lina
2013-12-01
The time of termination of orogenesis for the southern Altaids has been controversial. Systematic investigations of field geology, geochronology and geochemistry on newly discriminated mafic-ultramafic rocks from northern Alxa in the southern Altaids were conducted to address the termination problem. The mafic-ultramafic rocks are located in the Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km. All rocks occur high-grade gneisses as tectonic lenses that are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have undergone pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by uniform compositional trends, i.e., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O + K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enrichments in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have been strongly altered and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%) values, they may have been subjected to considerable alteration by either seawater or metamorphic fluids. The REE and trace element patterns show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc origin. The ultramafic rocks are relics derived from the magma after a large degree of partial melting of oceanic lithospheric mantle with superposed island arc processes under the influence of mid-ocean-ridge magmatism. LA-ICP MS U-Pb zircon ages of gabbros from three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering other previously published data, we suggest that the mafic-ultramafic rocks were products of south-dipping subduction, most probably with a slab window caused by ridge subduction, of the Paleo-Asian Ocean plate beneath the Alxa block in the Late Carboniferous to Late Permian before the Ocean completely closed. This sheds light on the controversial tectonic history of the southern Altaids and supports the concept that the termination of orogenesis was in the end-Permian to Triassic.
NASA Astrophysics Data System (ADS)
Jianyun, Feng; Wenjiao, Xiao
2013-04-01
The termination of orogenesis for the southern Altaids has been controversial. Systematical investigations of field geology, geochronology and geochemistry on mafic-ultramafic rocks from the northern Alxa of the southern Altaids were conducted to address the termination controversy. The newly discriminated mafic-ultramafic rocks belt is located at Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km in length. All of the three rock associations contact tectonically with the adjacent metamorphic and deformed Precambrian rocks as tectonic blocks or lenses, and are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have subjected to pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by a uniform trend of compositional distribution, e.g., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O+K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enriched in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have had strong alteration and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%), the rocks may be subjected to considerable alteration by either sea-water or metamorphic fluid. The REE and trace element patterns for the rocks show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc subsequently. The ultramafic rocks are relics derived from the magma after large degree of partial melting of the oceanic lithospheric mantle with overprinted by island-arc processes under the influence of mid-ocean-ridge magmatism. LA - ICP MS U - Pb zircon ages of gabbros from the three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering the other data published previously, we suggest that the mafic-ultramafic rocks are products of a south-dipping subduction, most probably a ridge subduction for the Paleo-Asian Ocean beneath the Alxa block in the Late Carboniferous to Late Permian before the Paleo-Asian Ocean completely closed. This shed light on the controversial tectonic history of the southern Altaids and support that the termination of the orogenesis was in the end Permian to Triassic.
Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.
2007-01-01
Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.
Brezinski, David K.; Taylor, John F.; Repetski, John E.; Loch, James D.
2015-01-01
deposited within the Pennsylvania and Maryland portion of the Great American Carbonate Bank. From the Early Cambrian (Dyeran) through Late Ordovician (Turinan), the Laurentian paleocontinent was rimmed by an extensive carbonate platform. During this protracted period of time, a succession of carbonate rock, more than two miles thick, was deposited in Maryland and Pennsylvania. These strata are now exposed in the Nittany arch of central Pennsylvania; the Great Valley of Pennsylvania, Maryland, and Virginia; and the Conestoga and Frederick Valleys of eastern Pennsylvania and Maryland. This fi eld trip will visit key outcrops that illustrate the varied depositional styles and environmental settings that prevailed at different times within the Pennsylvania reentrant portion of the Great American Carbonate Bank. In particular, we will contrast the timing and pattern of sedimentation in off-shelf (Frederick Valley), outer-shelf (Great Valley), and inner-shelf (Nittany arch) deposits. The deposition was controlled primarily by eustasy through the Cambrian and Early Ordovician (within the Sauk megasequence), but was strongly infl uenced later by the onset of Taconic orogenesis during deposition of the Tippecanoe megasequence.
Cenozoic mountain building on the northeastern Tibetan Plateau
Lease, Richard O.
2014-01-01
Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Berra, F.; Lanfranchi, A.; Jadoul, F.
2017-02-01
Arragoni et al. (2016) suggest in their paper published on tectonics that the carbonate succession of Eastern Sardinia represents a Cenozoic fold-and-thrust belt, related to the Alpine orogenesis. According to these authors, this supposed fold-and-thrust belt represents the southward continuation of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani domain. Field evidence and the published literature document instead that all the surfaces that Arragoni et al. interpret as thrust are actually stratigraphic contacts. The balanced geological section of Arragoni represents thus a geometric exercise missing the basic data needed to nurse the proposed model, and it does not reflect the geology of Eastern Sardinia. The data provided by Arragoni et al. (2016) do not support the presence of an Alpine thrust-and-fold belt in Eastern Sardinia, and this paper may suggest to the geological community a misleading interpretation of the geodynamic evolution of the Alpine and Mediterranean area.
Early Paleozoic development of the Maine-Quebec boundary Mountains region
Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.
2006-01-01
Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.
NASA Astrophysics Data System (ADS)
Kapp, P. A.; Decelles, P. G.; Ding, L.; van Hinsbergen, D. J.
2010-12-01
The India-Asia collision, although profound, is only the most recent in a series of orogenic events that has modified the architecture of the Asian lithosphere. For instance, large parts of central Tibet (Lhasa and Qiangtang terranes) underwent >50% upper-crustal shortening, and likely substantial elevation gain, between Cretaceous and Eocene time in response to Lhasa - Qiangtang continental collision and Andean-style orogenesis along the southern margin of Asia. Findings by independent groups of Gangdese-arc-age detrital zircons in 52-50 Ma Tethyan Himalaya (TH) strata indicate that TH-Asia collision was ongoing by this time. This collision timing is consistent with multiple other, albeit less direct lines of evidence and suggests that a magmatic flare-up within the Gangdese arc (culminated at 52-51 Ma) occurred during subduction of TH lithosphere. Low-temperature thermochronologic data indicate that very low erosion rates, and likely plateau-like conditions considering the shortening history, were established in large parts of central Tibet at or by 50-45 Ma. The temporal-spatial distribution of subsequent shortening and exhumation is consistent with plateau growth northward and southward from central Tibet since the Eocene. The Cenozoic magmatic record of Tibet shows intriguing temporal-spatial patterns. Between 45 Ma and 30 Ma, volcanism swept >600 km northward from the Indus-Yarlung suture (IYS) and then back southward between 30 Ma and 25 Ma. These magmatic sweeps may have been produced by underthrusting and subsequent rollback of subducting TH lithosphere. Recent stratigraphic and structural studies suggest localized extension and elevation loss along the IYS at ~25 Ma, which is explainable in a slab rollback scenario, followed within a few million years by uplift back to near-modern elevations, perhaps in response to breakoff of TH lithosphere and northward underthrusting of Indian lithosphere. This hypothesis of TH - Indian lithosphere subduction can explain how ~2000 km of India-Asia convergence was accommodated south of the IYS since ~50 Ma (with the remaining ~1000 km accommodated by shortening of Asian lithosphere). Outstanding questions include: (1) What are the explanations for major, coeval geological changes in the Lhasa terrane, Gangdese forearc, IYS, and TH at 65-63 Ma, which have led some workers to argue for initiation of India-Asia collision at this time? (2) What was the nature of the subducted TH lithosphere and its former paleogeographic and tectonic relationships to Indian cratonic lithosphere? (3) Why has only <50% of the estimated 2000 km of post-50 Ma convergence south of the Indus-Yarlung suture been documented as shortening within the Tethyan-Himalayan thrust belts? (4) Why did Asian lithosphere in Pamir and Tibet behave so differently in response to collisional orogenesis?
Did mantle plume magmatism help trigger the Great Oxidation Event?
NASA Astrophysics Data System (ADS)
Ciborowski, T. Jake. R.; Kerr, Andrew C.
2016-03-01
The Great Oxidation Event (GOE) represents the first sustained appearance of free oxygen in Earth's atmosphere. This fundamental event in Earth's history has been dated to approximately 2450 million years ago (Ma), that is, hundreds of millions of years after the appearance of photosynthetic cyanobacteria in the fossil record. A variety of mechanisms have been suggested to explain this time lag between the onset of photosynthesis and atmospheric oxygenation, including orogenesis, changes in the areal extent and distribution of continental shelves, the secular release of hydrogen to space, and methanogenic bacterial stress. Recently, it has been proposed that subaerial volcanism during the early Proterozoic could have provided a large pulse of sulphate to the ancient oceans, the reduction of which liberated the oxygen to drive the GOE. Here we show that the Matachewan Large Igneous Province (LIP), which is partially preserved in Scandinavia and North America, is both exactly coincident with the onset of the GOE, and of sufficient magnitude to be the source of this sulphate release. We therefore propose that the volcanism associated with the emplacement of the Matachewan LIP was a principal driver of the oxygenation of our planet.
NASA Astrophysics Data System (ADS)
Chen, Ming; Sun, Min
2017-04-01
The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of intermediate-felsic igneous rocks, highlighting both crustal growth and recycling. Importantly, a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sedimentary sequence of the GA. These detrital zircons possibly have the same source as their counterpart from the AM. This implies that the two terranes with countrary evolutionary history, i.e. the GA and AM, amalgamated before the early Devonian. To summary, the AM and GA represented two separated subduction-accretion systems in the early Paleozoic and subsequently amalgamated prior to the early Devonian, documenting complicated accretionary orogenesis and significant lateral crustal growth in the CAOB. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705313P and HKU17303415), National Science Foundation of China (41273048) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132731).
Sink to survive: The persistence of ancient mountain belts through crustal density changes
NASA Astrophysics Data System (ADS)
Blackburn, T. J.; Ferrier, K.; Perron, J.
2012-12-01
Mountain belts form when collisions between continents thicken the Earth's crust, which buoyantly rises to remain in isostatic equilibrium with the underlying asthenosphere. Just as isostasy leads to the birth of mountain belts, it contributes to their destruction by responding to erosion with rock uplift, which in turn promotes further erosion. If the continental crust consisted of a single layer of constant density, erosion and isostatic rebound would continue thinning the crust until it was completely eroded. Such total destruction evidently does not happen, however, as the roots of Earth's oldest mountains have persisted for billions of years. One explanation for this preservation is that an orogen's isostatic response to erosion decreases over time as the crust increases in density as the lower crust undergoes metamorphic phase changes that accompany lithosphere cooling. The implication of this hypothesis is that erosion rates in mountain belts are linked to the thermal and density evolution of the lithosphere. We test this hypothesis with a global compilation of exhumation rates and erosion rates determined from published apatite fission track and cosmogenic 10Be measurements in collisional orogens ranging in formation age from 0 to 2 billion years. We compare these data to a numerical model of the thermal, density and erosional evolution of a decaying mountain belt. Measured and modeled data indicate that erosion is fastest in young, hot, low-density, and topographically high mountain belts, and that erosion rates decrease dramatically after 200-300 million years (My). This 200-300 My timescale is consistent with titanite U-Pb thermochronologic data from lower crustal xenoliths, which record cooling to temperatures consistent with garnet growth and crustal densification (~650 °C) within 200-300 My after orogenesis. For the same orogens, Sm-Nd and/or Lu-Hf garnet-whole rock isochron dates constrains lower crustal garnet growth and a corresponding crustal density increase to 200-450 My following orogenesis. Thus, geochronologic data at various timescales, from ancient thermal histories to geologically recent erosion rates, are consistent with an isostatic model that links the erosional decay of a collisional orogens to its thermal and density evolution. Given the geologic and climatic diversity of mountain ranges around the world, it is striking that their erosional histories are generally consistent with a single simple model. The scenario described here, in which young, hot, low-density orogens erode quickly for a few hundred My while older, colder, denser orogens erode much more slowly for billions of years provides an explanation for the persistence of some of Earth's oldest mountain belts. The importance of this erosional succession is underscored by the fact that continental landmasses are constructed through mountain building processes: like jigsaw puzzles with many pieces, continents are amalgamations of ancient mountain belts assembled over geologic time. Temperature-dependent densities appear to play a global role in the long-term evolution of mountain belts and continents, influencing the preservation of continental lithosphere over billions of years.
NASA Astrophysics Data System (ADS)
Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert
2014-05-01
Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to 100 kyr glacial-interglacial cycles. Examination of the sink for both of these systems, which includes the Surveyor Fan and Aleutian Trench wedge, demonstrates a clear climatic driver for sediment flux to the deep sea. The first appearance of ice-rafted debris at our distal drill site closely approximates the start of the Pleistocene and a doubling of sediment accumulation accompanies the MPT. Converting sediment volumes just within the deep-sea sinks back to erosion rates in the orogen and correlating with changes in exhumation rates from thermochronology demonstrates a lack of accelerated tectonic response to the intensification of Northern Hemisphere glaciations at the start of the Pleistocene but increased shortening and exhumation of sediments at the MPT. The form of tectonic response differs between out-of-sequence thrusting or antiformal stacking within the fold and thrust belt to the west and a near vertical advection of material in a tectonic aneurysm in the core of the orogen to the east.
Finn, Carol A.; Goodge, John W.
2010-01-01
Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.
NASA Astrophysics Data System (ADS)
Chen, Yunfeng; Gu, Yu Jeffrey; Hung, Shu-Huei
2017-02-01
The lithosphere beneath the Western Canada Sedimentary Basin has potentially undergone Precambrian subduction and collisional orogenesis, resulting in a complex network of crustal domains. To improve the understanding of its evolutionary history, we combine data from the USArray and three regional networks to invert for P-wave velocities of the upper mantle using finite-frequency tomography. Our model reveals distinct, vertically continuous high (> 1%) velocity perturbations at depths above 200 km beneath the Precambrian Buffalo Head Terrane, Hearne craton and Medicine Hat Block, which sharply contrasts with those beneath the Canadian Rockies (<- 1%) at comparable depths. The P velocity increases from - 0.5% above 70 km depth to 1.5% at 330 km depth beneath southern Alberta, which provides compelling evidence for a deep, structurally complex Hearne craton. In comparison, the lithosphere is substantially thinner beneath the adjacent Buffalo Head Terrane (160 km) and Medicine Hat Block (200 km). These findings are consistent with earlier theories of tectonic assembly in this region, which featured distinct Archean and Proterozoic plate convergences between the Hearne craton and its neighboring domains. The highly variable, bimodally distributed craton thicknesses may also reflect different lithospheric destruction processes beneath the western margin of Laurentia.
Guo, Peng; Liu, Qin; Zhu, Fei; Zhong, Guang H; Chen, Xin; Myers, Edward A; Che, Jing; Zhang, Liang; Ziegler, Thomas; Nguyen, Truong Q; Burbrink, Frank T
2016-06-01
Viridovipera stejnegeri is one of the most common pit vipers in Asia, with a wide distribution in southern China and Vietnam. We investigated historical demography and explored how the environment and climatic factors have shaped genetic diversity and the evolutionary history of this venomous snake. A total of 171 samples from 47 localities were sequenced and analysed for two mitochondrial gene fragments and three nuclear genes. Gene trees reveal the existence of two well-supported clades (Southwest China and Southeast China) with seven distinct and strongly supported, geographically structured subclades within V. stejnegeri. Estimation of divergence time and ancestral area suggests that V. stejnegeri originated at ~6.0 Ma in the late Miocene on the Yunnan-Guizhou Plateau. The estimated date of origin and divergence of the island populations of Taiwan and Hainan closely matches the geological origin of the both islands. The mtDNA gene tree reveals the presence of west-east diversification in V. stejnegeri populations. Complex orogenesis and heterogeneous habitats, as well as climate-mediated habitat differentiation including glacial cycles, all have influenced population structure and the distribution of this taxon. The validity of V. stejnegeri chenbihuii is questionable, and this subspecies most probably represents an invalid taxon. © 2016 John Wiley & Sons Ltd.
Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.
2011-01-01
Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.
Feng, Bang; Zhao, Qi; Xu, Jianping; Qin, Jiao; Yang, Zhu L
2016-02-24
The orogenesis of the Qinghai-Tibetan Plateau and the Quaternary climate changes have played key roles in driving the evolution of flora and fauna in Southwest China, but their effects on higher fungi are poorly addressed. In this study, we investigated the phylogeographic pattern of the Tuber indicum species complex, an economically important fungal group distributed in the Hengduan Mountains region. Our data confirmed the existence of two distinct lineages, T. indicum and T. himalayense, within this species complex. Three geographic groups (Groups W, N and C) were revealed within T. indicum, with Group W found in the paleo-Lancang River region, while Groups N and C corresponded to the two banks along the contemporary Jinsha River, suggesting that rivers have acted as barriers for gene flow among populations from different drainages. Historical range expansion resulted from climate changes was inferred in Group C, contributing to the observed gene flow among geographic populations within this group. Although no significant geographic structure was identified in T. himalayense, evidence of drainage isolation for this species was also detected. Our findings demonstrate that both topographic changes and Quaternary climate oscillations have played important roles in driving the genetic structures of the T. indicum species complex.
Mountain building on Io driven by deep faulting
Bland, Michael T.; McKinnon, William B
2016-01-01
Jupiter’s volcanic moon Io possesses some of the highest relief in the Solar System: massive, isolated mountain blocks that tower up to 17 km above the surrounding plains. These mountains are likely to result from pervasive compressive stresses induced by subsidence of the surface beneath the near-continual emplacement of volcanic material. The stress state that results from subsidence and warming of Io’s lithosphere has been investigated in detail1, 2, 3, 4; however, the mechanism of orogenesis itself and its effect on regional tectonism and volcanism has not been firmly established. Here we present viscoelastic–plastic finite element simulations demonstrating that Io’s mountains form along deep-seated thrust faults that initiate at the base of the lithosphere and propagate upward. We show that faulting fundamentally alters the stress state of Io’s lithosphere by relieving the large volcanism-induced subsidence stresses. Notably, in the upper portion of the lithosphere, stresses become tensile (near-zero differential stress). A number of processes are therefore altered post-faulting, including magma transport through the lithosphere, interactions with tidal stresses and potentially the localization of mountain formation by thermoelastic stresses. We conclude that Io’s mountains form by a unique orogenic mechanism, compared with tectonic processes operating elsewhere in the Solar System.
Linking magmatism with collision in an accretionary orogen
Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian
2016-01-01
A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207
On the tectonics and metallogenesis of West Africa: a model incorporating new geophysical data
Hastings, David A.
1982-01-01
The gold, diamond and manganese deposits of Ghana have attracted commercial interest, but appropriate geophysical data to delineate the tectonic setting of these and other deposits have been lacking until recently. Recent gravity surveys, however, now cover about 75% of the country. When used in a synthesis of the sometimes contradictory existing theories about the geology and metallogenesis of West Africa, the available gravity, magnetic, and seismic data lead to a preliminary tectonic model that postulates rifting at the time of the (1800-2000 m.y. old) Eburnean orogeny and is consistent with the occurrences of mineral deposits in the region. In this model, diamond-bearing kimberlites formed during the commencement of rifting during the Eburnean orogenesis. Later emplacement of kimberlites was associated with the initiation of Mesozoic rifting of Gondwanaland. Primary gold vein deposits were probably formed by the migration of hydrothermal fluids (associated with the formation of granitoids) into dilatant zones, such as rift-related faults and anticlinal axial areas, toward the end of the Eburnean orogeny. At this time, the major concordant granitoids were formed, with smaller plutonic granitoids forming on the fringes of the concordant masses as partial melting fractions of the latter. Sedimentary manganese deposits were formed along the margins of rift lakes toward the end of the orogeny.
Suárez-Villota, Elkin Y; González-Wevar, Claudio A; Gallardo, Milton H; Vásquez, Rodrigo A; Poulin, Elie
2016-12-01
Endemic to South America, octodontid rodents are remarkable by being the only mammal taxa where allotetraploidy has been documented. The taxon's extensive morpho-physiological radiation associated to niche shifts has allowed testing phylogeographic hypotheses. Using maximum likelihood and Bayesian inference analyses, applied to all nominal species of octodontids, phylogenetic reconstructions based on sequences of 12S rRNA and growth hormone receptor gene are presented. Species boundaries were determined by coalescent analyses and divergence times among taxa were estimated based on mutation rates. Two main clades associated to the Andean orogenesis were recognized. The essentially western clade comprises genera Aconaemys, Octodon, Spalacopus, and Octodontomys whereas the eastern one included genera Octomys, Pipanacoctomys, Salinoctomys, and Tympanoctomys. Genetic relationships, coalescent analyses, and genetic distance supported the specific status given to Octodon pacificus and that given to Pipanacoctomys aureus as a species of Tympanoctomys. However, these analyses failed to recognize Salinoctomys loschalchalerosorum as a valid taxon considering its position within the diversity of Tympanoctomys barrerae. Although the origin of genome duplication remains contentious, the coincidence of the basal clade split with distinctive modes of karyotypic evolution across the Andes emphasizes the role of physiographic barriers and westerlies in shaping different edaphological conditions, selective grounds, and concomitantly distinct adaptations within the octodontids. Copyright © 2016 Elsevier Inc. All rights reserved.
Henry, B.; Rouvier, H.; Goff, M.L.; Leach, D.; Macquar, J.-C.; Thibieroz, J.; Lewchuk, Michael T.
2001-01-01
Palaeomagnetic dating techniques have been applied to determine the age of fluid migration that produced the Mississippi Valley-type (MVT) Pb-Zn-Ba-F deposits in the Ce??vennes region of southern France. 15 sampling sites in two gently deformed areas around the Largentie??re and Croix-de-Pallie??res mines on the Ce??vennes border were selected for palaeomagnetic study. They yielded a very well-defined direction of remagnetization corresponding to an Early-Middle Eocene age. This remagnetization cannot be related to the formation of magnetic as a result of the transformation of smectite to illite because the latter has been well dated as a Mesozoic event. The magnetic overprint in this area is related to a chemical phenomenon during fluid migration. The age of remagnetization corresponds to a major uplift in the Pyre??ne??es mountains, located to the south of the Ce??vennes. This implies that fluid migration occurred from the south to the north as a result of hydraulic head established in the Pyre??ne??es orogenic belt during orogenesis and suggests that the MVT deposits in the Ce??vennes region formed from a gravity-driven fluid system as described by Garven & Freeze (1984a,b).
Cenozoic basin thermal history reconstruction and petroleum systems in the eastern Colombian Andes
NASA Astrophysics Data System (ADS)
Parra, Mauricio; Mora, Andres; Ketcham, Richard A.; Stockli, Daniel F.; Almendral, Ariel
2017-04-01
Late Mesozoic-Cenozoic retro-arc foreland basins along the eastern margin of the Andes in South America host the world's best detrital record for the study of subduction orogenesis. There, the world's most prolific petroleum system occur in the northernmost of these foreland basin systems, in Ecuador, Colombia and Venezuela, yet over 90% of the discovered hydrocarbons there occur in one single province in norteastern Venezuela. A successful industry-academy collaboration applied a multidisciplinary approach to the study of the north Andes with the aim of investigating both, the driving mechanisms of orogenesis, and its impact on hydrocarbon accumulation in eastern Colombia. The Eastern Cordillera is an inversion orogen located at the leading edge of the northern Andes. Syn-rift subsidence favored the accumulation of km-thick organic matter rich shales in a back-arc basin in the early Cretaceous. Subsequent late Cretaceous thermal subsidence prompted the accumulation of shallow marine sandstones and shales, the latter including the Turonian-Cenomanian main hydrocarbon source-rock. Early Andean uplift since the Paleocene led to development of a flexural basin, filled with mainly non-marine strata. We have studied the Meso-Cenozoic thermal evolution of these basins through modeling of a large thermochronometric database including hundreds of apatite and zircon fission-track and (U-Th)/He data, as well as paleothermometric information based on vitrinite reflectance and present-day temperatures measured in boreholes. The detrital record of Andean construction was also investigated through detrital zircon U-Pb geochronometry in outcrop and borehole samples. A comprehensive burial/exhumation history has been accomplished through three main modeling strategies. First, one-dimensional subsidence was used to invert the pre-extensional lithospheric thicknesses, the magnitude of stretching, and the resulting heat flow associated to extension. The amount of eroded section and the maximum temperatures for various stratigraphic units at each locality were calibrated with thermochronometry. Subsequently, two-dimensional thermal models were constructed using thermokinematic modeling of sequentially restored structural cross-sections, for which abundant thermochronometric data was inverse modeled using FETKIN, a software developed within this collaborative project. Finally, the spatial and temporal distribution of source rock exhumation was documented with quantitative modeling of U-Pb data. The results reveal that early Cretaceous back-arc development occurred along a pre-stretched, 90 km thick lithosphere with stretching factors of up to 1.8. Such conditions led to an early Cretaceous high heat flux which, along with rapid syn-rift subsidence, resulted in an early maturation of the potential early Cretaceous source rocks, limiting their ability to expulse hydrocarbons later on, during the petroleum system's critical moment. Our results reveal the competing roles of tectonic inheritance and climate-tectonic feedbacks in the construction of the North Andes and, importantly, illustrate that the Oligocene main inversion of the Eastern Cordillera was a key element for assessing the size of active hydrocarbon kitchens and is a decisive element to consider for volumetric calculations of yet-to-find resources. Our work in the northern Andes demonstrated that thermal and structural kinematic modeling in thrust-belts is greatly improved by a careful usage of geochronological data, which involves robust modeling strategies.
Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W
2015-03-01
Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.
Late Miocene remagnetization within the internal sector of the Northern Apennines, Italy
Aiello, I.W.; Hagstrum, J.T.; Principi, G.
2004-01-01
Paleomagnetic and geologic evidence indicates that Upper Jurassic radiolarian cherts of both the Tuscan Cherts Formation (continental margin, Tuscan Units) and the Monte Alpe Cherts Formation (oceanic crust, Ligurian Units) were remagnetized during Miocene orogenesis of the Northern Apennines of Italy. Characteristic overprint magnetizations with reversed polarities have been found over a large area within the internal sector of the Northern Apennines, including eastern Liguria, Elba Island and the Thyrrenian margin, and west of the Middle Tuscan Ridge. The reversed-polarity overprint (average direction: D=177??, I=-52??, ??95=15??) was most likely acquired during Late Miocene uplift and denudation of the orogenic chain, and thermochemical remagnetization was a probable consequence of increased circulation of orogenic fluids. Similarly, mostly reversed-polarity directions of magnetization have been found by other workers in overlying post-orogenic Messinian sediments (D=177??, I=-57??, ??95=3??), which show little counterclockwise (CCW) vertical-axis rotation with respect to stable Europe (-8??5??). The Monte Alpe Cherts sampled at sites in the external sector of the Northern Apennines, close to major tectonic features, have normal- polarity overprint directions with in situ W-SW declinations. Since the overlying post-orogenic Messinian sediments have not been substantially rotated about vertical axes, the evidence points to an earlier,pre-Late Miocene remagnetization in the external parts of the orogenic chain. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.
2018-03-01
Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from 450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine "orogenic lid") and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous "overthrust" between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine "lid" and the European cratonic margin, with the Helvetic system (European margin) acting as the "floor" of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.
Oligocene tectonics and sedimentation, California
Nilsen, T.H.
1984-01-01
During the Oligocene epoch, California was marked by extensive nonmarine sedimentation, in contrast to its pre-Oligocene and post-Oligocene depositional history. The Oligocene continental deposits are especially widespread in southern California and fill a number of small and generally partly restricted basins. Fluvial facies in many basins prograded over previously deposited lower Tertiary turbidites. Volcanism, from widespread centers, was associated with the nonmarine sedimentation. However, some basins remained marine and a few contain Oligocene turbidites and pelagic sediments deposited at bathyal depths. The Oligocene redbeds of California do not form a post-orogenic molasse sequence comparable to the Old Red Sandstone or Alpine molasse. They are synorogenic and record local uplift of basins and surrounding source areas. Late Cretaceous to contemporary orogenesis in California has been generally characterized by the formation of small restricted basins of variable depth adjacent to small upland areas in response to strike-slip faulting. Deposition of Oligocene redbeds was associated with climatic change from warm and humid to cold and semiarid, and a global lowering of sea level. Oligocene tectonism occurred during the transition from subduction of the Farallon Plate to initiation of the modern San Andreas transform system. However, the major influence that caused uplift, formation of fault-bounded basins, and extensive redbed deposition, especially in southern California, was the approach of the Pacific-Farallon spreading ridge to the western margin of California. ?? 1984.
Calcite-graphite thermometry of the Franklin Marble, New Jersey Highlands
Peck, W.H.; Volkert, R.A.; Meredith, M.T.; Rader, E.L.
2006-01-01
We present new stable-isotope data for the Mesoproterozoic Franklin Marble from outcrops along an 80-km traverse parallel to and across strike of the structural grain of the western New Jersey Highlands. Calcite and dolomite from marble have an average ??13C of 0.35??? ?? 0.73??? PDB (n = 46) and a more limited range than other Mesoproterozoic marbles from the Adirondacks and the Canadian Grenville Province. The small range of ??13C values from the New Jersey samples is consistent with the preservation of a primary marine isotopic signature and limited postdepositional isotopic modification, except proximal to Zn or Fe ore deposits and fault zones. Fractionations between calcite and well-formed graphite (??13C[Cal-Gr]) for analyzed Franklin Marble samples average 3.31???. ?? 0.25??? (n = 34), and dolomite-graphite fractionations average 3.07??? ?? 0.30??? (n = 6). Taken together, these indicate an average temperature of 769?? ?? 43??C during metamorphism associated with the Ottawan Orogeny in the New Jersey Highlands. Thus, carbon isotope fractionations demonstrate that the Franklin Marble was metamorphosed at granulite facies conditions. Metamorphic temperatures are relatively constant for the area sampled and overprint the metamorphosed carbonatehosted Zn-Fe-Mn ore deposits. The results of this study support recent work proposing that pressure and temperature conditions during Ottawan orogenesis did not vary greatly across faults that partition the Highlands into structural blocks. ?? 2006 by The University of Chicago. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.P.; Ferrao, C.N.
1959-10-31
The occurrence of uranium ores in concentrations of economical interest in the pre-ordovician schists was noted by the first time, in the region of Pinhel, in November 1958. The occurrence is situated in a zone of graphitic brown-greyish schists which are enclosed in a formation of gneiss with tourmaline near the contact of the latter with the hercinian granite, which constitutes the Beiras' Massif. The uraniferous mineralization is constituted by autunite down to the depth which has been reached by the explorntion work. The radiometric study and the sampling taken nt the depth of about ten meters suggest the continuitymore » of the structure and the persistence of the mineralization associated with it. The structural type and the distribution of the mineralization in the joints and the brecciated zone of the schists suggest that the deposition of uranium ore is not syngenetic, but, rather, that it is attribated to the circulation of mineralized solutions through the breakage produced along the hypothermal veilns, in a posterior reopening connected to the last movements of the alpidic orogenesis. The content obtained in the sampling reveals the existence of an enlarged ore deposit following the directions of the schistosity, wfth an extension of 140 meters and with the medium content of 0.27% U/sub 3/O/ sub 8/. (auth)« less
Petroleum exploration contribution to the structural history of Golfe du Lin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curnelle, R.
1988-08-01
Petroleum exploration has strongly contributed to the knowledge of the post-Hercynian structural history of the Golfe du Lion. It shows three stages: (1) Pyrenean orogenesis which started in the Late Cretaceous and culminated during the Eocene (40-75 Ma), (2) Oligocene rifting associated with the oceanic accretion of the Provencal basin, and (3) post-Messinian deformations due to salt tectonics. Pyrenean deformation of the area seems to have been controlled by its Hercynian inheritance: the major transcurrent faults of the Cevenole belt, Nimes, and the Durance. They favored displacement of the deformation in a northeasterly direction along the fault corridors, inside whichmore » the overthrust units were put into place. These east-west-oriented structures show northward vergence. The Pyrenean axial zone in this downthrown part of the belt consist of progressively more northerly units offset by transverse faults. The Oligocene rifting is represented by a series of horsts and deeply subsiding grabens linked to preexisting major faults. The horst are deeply eroded and the Mesozoic carbonates are karstified. The extension of the Messinian evaporitic deposits known throughout the Mediterranean basin is located north of the shallower deep-water well. The gravitational deformation of the salt is expressed by a large number of listric faults which originate in the salt bodies. The sedimentary sequence ends with a thick discordant, erosional, undeformed Pliocene-Quaternary series.« less
Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.
2018-01-01
Fifty‐one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top‐north thrust fault, is in fact primarily an Oligocene‐Miocene normal fault that has a minimum of 60 km of displacement with top‐south or top‐southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.
Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens
Sokoutis, D.; Willingshofer, E.; Brun, J.‐P.; Gueydan, F.; Cloetingh, S.
2017-01-01
Abstract We use lithospheric‐scale analog models to study the reactivation of pre‐existing heterogeneities under oblique shortening and its relation to the origin of arcuate orogens. Reactivation of inherited rheological heterogeneities is an important mechanism for localization of deformation in compressional settings and consequent initiation of contractional structures during orogenesis. However, the presence of an inherited heterogeneity in the lithosphere is in itself not sufficient for its reactivation once the continental lithosphere is shortened. The heterogeneity orientation is important in determining if reactivation occurs and to which extent. This study aims at giving insights on this process by means of analog experiments in which a linear lithospheric heterogeneity trends with various angles to the shortening direction. In particular, the key parameter investigated is the orientation (angle α) of a strong domain (SD) with respect to the shortening direction. Experimental results show that angles α ≥ 75° (high obliquity) allow for reactivation along the entire SD and the development of a linear orogen. For α ≤ 60° (low obliquity) the models are characterized by the development of an arcuate orogen, with the SD remaining partially non‐reactivated. These results provide a new mechanism for the origin of some arcuate orogens, in which orocline formation was not driven by indentation or subduction processes, but by oblique shortening of inherited heterogeneities, as exemplified by the Ouachita orogen of the southern U.S. PMID:28670046
Tectonic evolution of west Antarctica and its relation to east Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalziel, I.W.D.
1987-05-01
West Antarctica consists of five major blocks of continental crust separated by deep sub-ice basins. Marie Byrd Land appears to have been rifted off the adjacent margin of the East Antarctic craton along the line of the Transantarctic Mountains during the Mesozoic. Ellsworth-Whitmore mountains and Haag Nunataks blocks were also rifted from the margin of the craton. They appear to have moved together with the Antarctic Peninsula and Thurston Island blocks, segments of a Pacific margin Mesozoic-Cenozoic magmatic arc, during the Mesozoic opening of the Weddell Sea basin. Paleomagnetic data suggest that all four of these blocks remained attached tomore » western Gondwanaland (South America-Africa) until approximately 125 m.y. ago, and that the present geographic configuration of the Antarctic continent was essentially complete by the mid-Cretaceous, although important Cenozoic rifting has also occurred. Fragmentation of the Gondwanaland supercontinent was preceded in the Middle to Late Jurassic by an important and widespread thermal event of uncertain origin that resulted in the emplacement of an extensive bimodal igneous suite in South America, Africa, Antarctica, and Australia. This was associated with the development of the composite back-arc basin along the western margin of South America. Inversion of this basin in the mid-Cretaceous initiated Andean orogenesis. The presentation will include new data from the joint US-UK West Antarctic Tectonics Project.« less
Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.
2000-01-01
This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.
Detrital dating of Asian orogenesis: insights and caveats
NASA Astrophysics Data System (ADS)
Burbank, D. W.
2007-12-01
Technological advances over the past two decades have facilitated increasingly routine application of single- crystal dating and cosmogenic nuclide dating to studies of orogenic erosion. Both approaches commonly utilize grab samples of detrital sediment, either modern or ancient. Whereas detrital cosmogenic data are typically used to define mean erosion rates for upstream catchments, single-crystal ages are used both to discern provenance and to define lag times: interval between isotopic closure and deposition. Recent results from dating modern fluvial sediments illuminate key concepts that underpin interpretations of results from older strata: the fidelity of the detrital signal, its evolution through an orogen, its relationship to discrete source areas, and its temporal evolution. Despite the increasing availability of dates and rates for detrial grains, relatively few studies have addressed the sources of uncertainty that modulate the precision and accuracy with which detrital results should be interpreted. Such uncertainties derive not only from sampling statistics and measurement uncertainties, but also from both geomorphic sources (seasonal variation in sediment supply and source, changes in glacial cover, the impact of stochastic geomorphic events, such as landslides), as well as tectonic ones (time-dependent deformation and thermal models, particle paths through the orogen). A better understanding of the impact of these uncertainties will underpin more reliable and less speculative interpretations of future dating results from both ancient and modern detrital fluvial sediments.
The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen
NASA Astrophysics Data System (ADS)
Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen
2018-04-01
The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
NASA Astrophysics Data System (ADS)
Basei, Miguel A. S.; Peel, Elena; Sánchez Bettucci, Leda; Preciozzi, Fernando; Nutman, Allen P.
2011-04-01
The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino-Sierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U-Pb ages of ca. 1,000 Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U-Pb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000 Ma inheritance formed at ca. 750 Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640 Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570 Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535 Ma of post-tectonic granitoids (Santa Teresa and José Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Río de La Plata Craton were in their present positions by ca. 535 Ma.
NASA Astrophysics Data System (ADS)
Bateman, Roger; Hagemann, Steffen
2004-10-01
The Golden Mile deposit was discovered in 1893 and represents today the largest Archaean orogenic lode gold system in the world (50 M oz produced gold). The Golden Mile deposit comprises three major styles of gold mineralisation: Fimiston, Oroya and Charlotte styles. Fimiston-style lodes formed at 250 to 350 °C and 100 to 200 MPa and are controlled by brittle ductile fault zones, their subsidiary fault zone and vein networks including breccias and open-cavity-infill textures and hydrothermally altered wall rock. Fimiston lodes were formed late D1, prior to D2 regional upright folding. Hydrothermal alteration haloes comprise a progression toward the lode of diminishing chlorite, an increase in sericite and in Fe content of carbonates. Lodes contain siderite, pyrite, native gold, 17 different telluride minerals (Au Ag tellurides contain ~25% of total gold), tourmaline, haematite, sericite and V-rich muscovite. Oroya-style lodes formed at similar P T conditions as the Fimiston lodes and are controlled by brittle ductile shear zones, associated dilational jogs that are particularly well developed at the contact between Paringa Basalt and black shale interflow sedimentary rocks and altered wall rock. The orebodies are characterised by micro-breccias and zones of intense shear zone foliation, very high gold grades (up to 100,000 g/t Au) and the common association of tellurides and vanadian mica (green leader). Oroya lodes crosscut Fimiston lodes and are interpreted to have formed slightly later than Fimiston lodes as part of one evolving hydrothermal system spanning D1 and D2 deformation (ca. 2,675 2,660 Ma). Charlotte-style lodes, exemplified by the Mt Charlotte deposit, are controlled by a sheeted vein (stockwork) complex of north-dipping quartz veins and hydrothermally altered wall rock. The Mt Charlotte orebody formed at 120 to 440 °C and 150 to 250 MPa during movement along closely spaced D4 (2,625 Ma) and reactivated D2 faults with the quartz granophyre in the Golden Mile Dolerite exerting a strong lithological control on gold mineralisation. Veins consist of quartz carbonate minor scheelite, and wall-rock alteration comprises chlorite destruction and growth of ferroan carbonate sericite pyrite native gold. Pyrite pyrrhotite is zoned on the scale of vein haloes and of the entire mine, giving a vertical temperature gradient of 50 100 °C over 1,000 vertical metres. The structural hydrothermal model proposed consists of four major stages: (1) D1 thrusting and formation of Fimiston-style lodes, (2) D2 reverse faulting and formation of Oroya-style lodes, (3) D3 faulting and dissecting of Fimiston- and Oroya-style lodes, and (4) D4 faulting and formation of Mt Charlotte-style sheeted quartz vein system. The giant accumulation of gold in the Golden Mile deposit was formed due to protracted gold mineralisation throughout episodes of an Archaean orogeny that spanned about 45 Ma. Fluid conduits formed early in the tectonic history and persisted throughout orogenesis with the plumbing system showing a rare high degree of focussing, efficiency and duration. In addition to the long-lasting fluid plumbing system, the wide variety of transient structural and geochemical traps, multiple fluid sources and precipitation mechanism contributed towards the richest golden mile in the world.
NASA Astrophysics Data System (ADS)
Larson, Kyle P.
2018-02-01
New quartz texture and c-axis fabric data from across the Paleoproterozoic Ulleri-Phaplu-Melung orthogneiss in the Khimti Khola region of east central Nepal provide new constraints on the internal structural framework of the Himalaya that help shed light on the convergence accommodation processes active in the upper portion of the crust during orogenesis. These data outline a strain history that varies across the unit. Deformation near the base of the unit occurred at ∼605 (±50) °C with evidence of significant static recrystallization and recovery preserved in quartz, whereas deformation near the top of the unit occurred at ∼540 (±50) ˚C with quartz characterized by dynamic recrystallization mechanisms. The strength of the quartz c-axis fabrics follows a similar spatial pattern, with those from near the top of the unit recording stronger fabrics than those measured from lower in the unit. Together, these data are interpreted to indicate strain localization, possibly at progressively lower temperature, near the top of the Ulleri-Phaplu-Melung orthogneiss. This interpretation is consistent with cooling ages that indicate the upper boundary of the unit coincides with an out-of-sequence shear zone. This study not only provides a structural characterization of the shear zone, helping to refine the kinematic framework of this portion of the Himalaya, but also confirms the utility of fabric strength analysis in deciphering strain localization within pervasively deformed rocks.
Earthquake-induced gravitational potential energy change at convergent plate boundary near Taiwan
NASA Astrophysics Data System (ADS)
Lo, C.; Hsu, S.
2004-12-01
The coseismic displacement induced by earthquakes will change the gravitational potential energy (GPE). Okamoto and Tanimoto (2002) have shown that the gain of {Δ GPE} corresponds to the compressional stress regime while the loss of {Δ GPE} corresponds to the extensional stress regime. Here we show an example at a convergent plate boundary near Taiwan. The Philippine Sea Plate is converging against the Eurasian Plate with a velocity of 7-8 cm/yr near Taiwan, which has caused the active Taiwan orogeny and induced abundant earthquakes. We have examined the corresponding change of gravitational potential energy by using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from July 1995 to December 2003. The results show that the variation of the crustal Δ GPE strongly correlates with the different stage of the orogenesis. Except for the western Okinawa Trough and the southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal Δ GPE. In contrast, the lithospheric Δ GPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal Δ GPE and the lithospheric Δ GPE during the observation period are 1.03×1017 joules and -1.15×1017 joules, respectively. The average rate of the whole Δ GPE in the Taiwan region is very intense and equal to -2.07×1010 watts, corresponding to about one percent of the global Δ GPE loss induced by earthquakes.
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
NASA Astrophysics Data System (ADS)
Soták, Ján
2010-10-01
The sedimentary sequence of the Central-Carpathian Paleogene Basin provides proxy records of climatic changes related to cooling events at the Eocene/Oligocene boundary (TEE). In this basin, climatic deterioration is inferred from the demise of the carbonate platform and oligotrophic benthic biota in the SBZ19 and from the last species of warm-water planktonic foraminifers in the E14 Zone. Upper Eocene formations already indicate warm-temperate to cool-temperate productivity and nutrient-enriched conditions (Bryozoan Marls, Globigerina Marls). Rapid cooling during the earliest Oligocene (Oi-1 event) led to a temperature drop (~11 °C), humidity, fresh water influx and continental runoff, water mass stratification, bottom water anoxia, eutrofication, estuarine circulation and upwelling, carbonate depletion, sapropelitic and biosiliceous deposition, H2S intoxication and mass faunal mortality, and also other characteristics of Black Sea-type basins. Tectonoeustatic events with the interference of TA 4.4 sea-level fall and the Pyrenean phase caused basin isolation at the beginning of the Paratethys. The Early Oligocene stage of Paratethyan isolation is indicated by a stagnant regime, low tide influence, endemic fauna development, widespread anoxia and precipitation of manganese deposits. The episodic rise in the sea-level, less humid conditions and renewed circulation is marked by calcareous productivity, nannoplankton blooms and the appearance of planktic pteropods and re-oxygenation. Paleogeographic differentiation of the Carpatho-Pannonian Paleogene basins resulted from plate-tectonic reorganization during the Alpine orogenesis.
NASA Astrophysics Data System (ADS)
Jóźwiak, Waldemar
2013-10-01
The marginal zone of the East European Platform, an area of key importance for our understanding of the geotectonic history of Europe, has been a challenge for geophysicists for many years. The basic research method is seismic survey, but many important data on physical properties and structure of the lithosphere may also be provided by the electromagnetic methods. In this paper, results of deep basement study by electromagnetic methods performed in Poland since the mid-1960s are presented. Over this time, several hundred long-period soundings have been executed providing an assessment of the electric conductivity distribution in the crust and upper mantle. Numerous 1D, 2D, and pseudo-3D electric conductivity models were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian Platform, transitional zone (TESZ), and the Paleozoic Platform. The wide-spread conducting complexes in the crust with integral conductivity values reaching 10 000 S at 20-30 km depths are most spectacular. They are most likely consequences of geological processes related to Caledonian and Variscan orogenesis. The upper mantle conductivity is also variable, the thickness of high-resistive lithospheric plates ranging from 120-140 km under the Paleozoic Platform to 220-240 km under the East European Platform.
Cyclicity in Silurian island-arc carbonates, Alexander terrane, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kittredge, L.E.; Soja, C.M.
1993-03-01
Silurian carbonates from Alaska (Alexander terrane) record the evolution of a submarine platform during waning volcanism in an island arc. A detailed stratigraphic analysis of a 47 meter-thick sequence revealed the existence of cyclically repeated limestones: coral-stromatoporoid wackestones alternate with oncoid packstones and bioturbated, silty lime mudstones. The coral-stromatoporoid deposits are characterized by a low-diversity assemblage of dendroid corals, massive stromatoporoids, Atrypoidea brachiopods, and rare occurrences of biostromes associated with Solenopora, high-spired gastropods, and crinoids. Oncoids typically are 2-6 mm in diameter and form massive, meter-thick units. Coated grains are symmetrically developed, have a shell or algal nucleus, and aremore » also a minor component of coral-stromatoporoid beds. These lithologic units form seven, shallowing-upwards cycles (parasequences) that range in thickness from 3-9 meters. Coral-stomatoporoid wackestones form the base of each cycle and grade upwards into oncoid packstones with silty, lime mudstones at the top. This succession of lithofacies within each cycle reflects an increase in energy levels from relatively deeper water environments to relatively shallower ones. The lack of abrasion in the corals and stromatoporoids suggests predominantly quiet-water conditions in shallow subtidal areas affected by periodic turbulence. Comparison with correlative sections in Alaska and lack of correspondence with global sea level curves suggest that the primary cause of cyclicity was tectonic perturbations with secondary eustatic effects. Cyclic deposition in peri/subtidal sites was terminated by rapid drowning of the carbonate platform during late Silurian orogenesis.« less
Towards a global historical biogeography of Palms
NASA Astrophysics Data System (ADS)
Couvreur, Thomas; Baker, William J.; Frigerio, Jean-Marc; Sepulchre, Pierre; Franc, Alain
2017-04-01
Four mechanisms are at work for deciphering historical biogeography of plants : speciation, extinction, migration, and drift (a sort of neutral speciation). The first three mechanisms are under selection pressure of the environment, mainly the climate and connectivity of land masses. Hence, an accurate history of climate and connectivity or non connectivity between landmasses, as well as orogenesis processes, can shed new light on the most likely speciation events and migration routes driven by paleogeography and paleoclimatology. Currently, some models exist (like DIVA) to infer the most parsimonious history (in the number of migration events) knowing the speciation history given by phylogenies (extinction are mostly unknown), in a given setting of climate and landmass connectivity. In a previous project, we have built in collaboration with LSCE a series of paleogeographic and paleoclimatic maps since the Early Cretaceous. We have developed a program, called Aran, which enables to extend DIVA to a time series of varying paleoclimatic and paleogeogarphic conditions. We apply these new methods and data to unravel the biogeographic history of palms (Arecaceae), a pantropical family of 182 genera and >2600 species whose divergence is dated in Late Cretaceous (100 My). Based on a robust dated molecular phylogeny, novel paleoclimatic and paleogeographic maps, we will generate an updated biogeographic history of Arecaceae inferred from the most parsimonious history using Aran. We will discuss the results, and put them in context with what is known and needed to provide a global biogeographic history of tropical palms.
The timing of strike-slip shear along the Ranong and Khlong Marui faults, Thailand
NASA Astrophysics Data System (ADS)
Watkinson, Ian; Elders, Chris; Batt, Geoff; Jourdan, Fred; Hall, Robert; McNaughton, Neal J.
2011-09-01
The timing of shear along many important strike-slip faults in Southeast Asia, such as the Ailao Shan-Red River, Mae Ping and Three Pagodas faults, is poorly understood. We present 40Ar/39Ar, U-Pb SHRIMP and microstructural data from the Ranong and Khlong Marui faults of Thailand to show that they experienced a major period of ductile dextral shear during the middle Eocene (48-40 Ma, centered on 44 Ma) which followed two phases of dextral shear along the Ranong Fault, before the Late Cretaceous (>81 Ma) and between the late Paleocene and early Eocene (59-49 Ma). Many of the sheared rocks were part of a pre-kinematic crystalline basement complex, which partially melted and was intruded by Late Cretaceous (81-71 Ma) and early Eocene (48 Ma) tin-bearing granites. Middle Eocene dextral shear at temperatures of ˜300-500°C formed extensive mylonite belts through these rocks and was synchronous with granitoid vein emplacement. Dextral shear along the Ranong and Khlong Marui faults occurred at the same time as sinistral shear along the Mae Ping and Three Pagodas faults of northern Thailand, a result of India-Burma coupling in advance of India-Asia collision. In the late Eocene (<37 Ma) the Ranong and Khlong Marui faults were reactivated as curved sinistral branches of the Mae Ping and Three Pagodas faults, which were accommodating lateral extrusion during India-Asia collision and Himalayan orogenesis.
Kapli, Paschalia; Botoni, Dimitra; Ilgaz, Cetin; Kumlutaş, Yusuf; Avcı, Aziz; Rastegar-Pouyani, Nasrullah; Fathinia, Behzad; Lymberakis, Petros; Ahmadzadeh, Faraham; Poulakakis, Nikos
2013-03-01
Apathya is a lacertid genus occurring mainly in south-east Turkey and its adjacent regions (part of Iran and Iraq). So far two morphological species have been attributed to the genus; A. cappadocica (with five subspecies, A. c.cappadocica, A. c.muhtari, A. c.schmidtlerorum, A. c. urmiana and A. c.wolteri) and A.yassujica. The first species occupies most of the genus' distribution range, while A. yassujica is endemic of the Zagros Mountains. Here, we explored Apathya's taxonomy and investigated the evolutionary history of the species by employing phylogenetic and phylogeographic approaches and using both mitochondrial (mtDNA) and nuclear markers. The phylogenetic relationships and the genetic distances retrieved, revealed that Apathya is a highly variable genus, which parallels its high morphological variation. Such levels of morphological and genetic differentiation often exceed those between species of other Lacertini genera that are already treated as full species, suggesting the necessity for a taxonomic revision of Apathya. The phylogeographical scenario emerging from the genetic data suggests that the present distribution of the genus was determined by a combination of dispersal and vicariance events between Anatolia and Southwest Asia dating back to the Miocene and continuing up to the Pleistocene. Key geological events for the understanding of the phylogeography of the genus are the movement of the Arabian plate that led to the configuration of Middle East (orogenesis of the mountain ranges of Turkey and Iran) and the formation of Anatolian Diagonal. Copyright © 2012 Elsevier Inc. All rights reserved.
Matos-Maraví, Pável; Clouse, Ronald M; Sarnat, Eli M; Economo, Evan P; LaPolla, John S; Borovanska, Michaela; Rabeling, Christian; Czekanski-Moir, Jesse; Latumahina, Fransina; Wilson, Edward O; Janda, Milan
2018-06-01
The Malay Archipelago and the tropical South Pacific (hereafter the Indo-Pacific region) are considered biodiversity hotspots, yet a general understanding of the origins and diversification of species-rich groups in the region remains elusive. We aimed to test hypotheses for the evolutionary processes driving insect species diversity in the Indo-Pacific using a higher-level and comprehensive phylogenetic hypothesis for an ant clade consisting of seven genera. We estimated divergence times and reconstructed the biogeographical history of ant species in the Prenolepis genus-group (Formicidae: Formicinae: Lasiini). We used a fossil-calibrated phylogeny to infer ancestral geographical ranges utilizing a biogeographic model that includes founder-event speciation. Ancestral state reconstructions of the ants' ecological preferences, and diversification rates were estimated for selected Indo-Pacific clades. Overall, we report that faunal interchange between Asia and Australia has occurred since at least 20-25 Ma, and early dispersal to the Fijian Basin happened during the early and mid-Miocene (ca. 10-20 Ma). Differences in diversification rates across Indo-Pacific clades may be related to ecological preference breadth, which in turn may have facilitated geographical range expansions. Ancient dispersal routes suggested by our results agree with the palaeogeography of the region. For this particular group of ants, the rapid orogenesis in New Guinea and possibly subsequent ecological shifts may have promoted their rapid diversification and widespread distribution across the Indo-Pacific. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Yanbin; Tong, Laixi; Liu, Dunyi
2007-01-01
SHRIMP U-Pb dating of zircon from an ultra-high temperature (UHT, ~1000 °C) granulite-facies metapelite from the Rauer Group, Mather Peninsula, east Antarctica, has yielded evidence for two episodes of metamorphic zircon growth, at ~1.00 Ga and ~530 Ma, and two episodes of magmatism in the source region for the protolith sediment, at ~2.53 and ~2.65 Ga, were identified from the zircon cores. Successive zircon growth at ~1.00 Ga and ~530 Ma records a sequence of distinct, widely spaced high-temperature metamorphic and/or anatectic events related to Grenvillian and Pan-African orogenesis. This study presents the first robust geochronological evidence for the timing of UHT metamorphism of the Rauer Group, supporting arguments that the peak UHT metamorphic event occurred at ~1.00 Ga and was overprinted by a separate high-grade event at ~530 Ma. The new age data indicate that the UHT granulites of the Rauer Group experienced a complex, multi-stage tectonothermal history, which cannot simply be explained via a single Pan-African (~500 Ma) high-grade tectonic event. This is critical in understanding the role of the eastern Prydz Bay region during the assembly of the east Gondwana supercontinent, and the newly recognized inherited Archaean ages (~2.53 and ~2.65 Ga) suggest a close tectonic relationship between the Rauer Group and the adjacent Archaean of the Vestfold Hills
Volkert, R.A.
2000-01-01
Graphite deposits of Mesoproterozoic age are locally abundant in the eastern New Jersey Highlands, where they are hosted by sulphidic biotite-quartz-feldspar gneiss, metaquartzite, and anatectic pegmatite. Gneiss and metaquartzite represent a shallow marine shelf sequence of locally organic-rich sand and mud. Graphite from massive deposits within metaquartzite yielded ??13C values of -26 ?? 2??? (1??), and graphite from massive deposits within biotite-quartz-feldspar gneiss yielded ??13C values of -23 ??4???. Disseminated graphite from biotite-quartz-feldspar gneiss country rock was -22 ??3???, indistinguishable from the massive deposits hosted by the same lithology. Anatectic pegmatite is graphitic only where generated from graphite-bearing host rocks; one sample gave a ??13C value of -15???. The ??34S values of trace pyrrhotite are uniform within individual deposits, but vary from 0 to 9??? from one deposit to another. Apart from pegmatitic occurrences, evidence is lacking for long-range mobilization of carbon during Grenvillian orogenesis or post-Grenvillian tectonism. The field, petrographic, and isotope data suggest that massive graphite was formed by granulite-facies metamorphism of Proterozoic accumulations of sedimentary organic matter, possibly algal mats. Preservation of these accumulations in the sedimentary environment requires anoxic basin waters or rapid burial. Anoxia would also favour the accumulation of dissolved ferrous iron in basin waters, which may explain some of the metasediment-hosted massive magnetite deposits in the New Jersey Highlands. ?? 2000 NRC.
Diachronous demise of the Neotethys Ocean as driver for non-cylindrical orogenesis in Anatolia
NASA Astrophysics Data System (ADS)
Van Hinsbergen, D. J. J.; Gurer, D.
2017-12-01
Continent-continent collision drives crustal deformation, topographic rise, and geodynamic change. Africa-Eurasia convergence accommodated in the Eastern Mediterranean involved subduction of the Neotethyan oceanic lithosphere in Anatolia. Subduction was followed by collision of Greater Adria continental crust with Eurasia forming the Izmir-Ankara-Erzincan suture zone. Discerning the effects of this collision from pre-collisional ophiolite obduction-related orogeny of Greater Adria is notoriously difficult, and estimates from Central Anatolia based on a forearc-to-foreland basin transition along the Eurasian margin suggest a 60 Ma initial collision. Here we assess whether this age is also representative for collision in eastern Anatolia across the Cenozoic Sivas basin that straddles the Greater Adria-Europe suture by retro-deforming regional block rotations in the Pontides, Kırşehir and Taurides, building a first-order regional `block circuit' around the Sivas basin. We show that up to 700 km of convergence must have been accommodated after central Anatolian Kırşehir-Pontide collision at 65-60 Ma across the Sivas Basin - an order of magnitude more than estimated crustal shortening. We consequently infer that oceanic subduction continued much longer in eastern Anatolia, perhaps into the Oligocene or beyond, demonstrating the a recently postulated greater paleogeographic width of the Neotethys in eastern Anatolia. Prolonged oceanic subduction likely resulted from a paleogeography with a sharp kink in the former Kırşehir-Tauride passive margin. The strong non-cylindricity of the Anatolian collisional orogen is explained continued slab pull during ongoing oceanic subduction in eastern Anatolia following central Anatolian collision.
A Historical, Cultural and Geoscientific approach of the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Varouta, Panagiota
2017-04-01
Students' knowledge about geosciences is often limited to their country's geographical elements. The way geosciences are connected to their everyday lives, their history and their culture is something that they do not easily grasp. Thus, the development of a Project-Based Learning activity where 11 year-olds are asked to explore the Mediterranean Sea came as a result. The title of the activity is "An enclosed sea, an open mind, an amazing journey in STEAM". The main purpose of choosing the module of "The Mediterranean" is for the students to become aware of the special natural and cultural features of the Mediterranean region and to be able to connect the Mediterranean's geographical position and characteristics with its historical and social value. The activity aims to develop scientific skills and attitudes, to practice the students' scientific and critical thought, to foster the co-operative spirit among them and to make them aware of how the geography of the Mediterranean affects the relationships that form around it. In this activity, students study geological features (e.g. Orogenesis, Corinthian Rift, Islands, earthquakes, volcanoes), they experiment about the water flow and they examine the Mediterranean field and climate. In Odysseus' footsteps, they navigate using GPS, they research about the culture and the history of the people around the Mediterranean Sea and they present their findings. They focus on the historical, geological, geographical, cultural and environmental aspects of the Mediterranean Sea. On this poster, there will be a presentation of the goals, the methodology, the series of activities and the evaluation of the program. Key Words Mediterranean, Project-Based Learning, Geosciences, Culture
NASA Astrophysics Data System (ADS)
Mottram, C. M.
2016-12-01
Mountains form where the Earth's plates collide; during this upheaval rocks are deformed by massive forces. The rates and timescales over which these deformational processes occur are determined from tiny accessory minerals that record geological time through radioactive decay. However, there remain major unresolved challenges in using chemical and microstructural markers to link the dates yielded from these accessory phases to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Here, the chemical signatures and deformation textures from micron-scale accessory phases are used to decode the record of mountain belt-scale deformational processes encrypted in the rocks. The Himalayan orogen is used as an ideal natural laboratory to understand the chemical processes that have modified the Earth's crust during orogenesis. Combined laser ablation split-stream U-Th-Pb and REE analysis of deformed monazite and titanite, along with Electron BackScatter Diffraction (EBSD) imaging and Pressure-Temperature (P-T) phase equilibria modelling are used to: (1) link accessory phase `age' to `metamorphic stage'; (2) to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains; and (3) understand how deformation is accommodated through different chemical and structural processes that operate at varying scales through time. This study highlights the importance of fully integrating the pressure-temperature-time-deformation history of multiple accessory phases to better interpret the deformational history of the cores of evolving mountain belts.
Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S
NASA Astrophysics Data System (ADS)
Lossada, Ana C.; Giambiagi, Laura; Hoke, Gregory D.; Fitzgerald, Paul G.; Creixell, Christian; Murillo, Ismael; Mardonez, Diego; Velásquez, Ricardo; Suriano, Julieta
2017-11-01
The Andes between 28° and 30°S represent a transition between the Puna-Altiplano Plateau and the Frontal/Principal Cordillera fold-and-thrust belts to the south. While significant early Cenozoic deformation documented in the Andean Plateau, deciphering the early episodes of deformation during Andean mountain building in the transition area is largely unstudied. Apatite fission track (AFT) and (U-Th-Sm)/He (AHe) thermochronology from a vertical and a horizontal transect reveal the exhumation history of the High Andes at 30°S, an area at the heart of this major transition. Interpretation of the age-elevation profile, combined with inverse thermal modeling, indicates that the onset of rapid cooling was underway by 35 Ma, followed by a significant decrease in cooling rate at 30-25 Ma. AFT thermal models also reveal a second episode of rapid cooling in the early Miocene ( 18 Ma) related to rock exhumation to its present position. Low exhumation between the rapid cooling events allowed for the development of a partial annealing zone. We interpret the observed Eocene rapid exhumation as the product of a previously unrecognized compressive event in this part of the Andes that reflects a southern extension of Eocene orogenesis recognized in the Puna/Altiplano. Renewed early-Miocene exhumation indicates that the late Cenozoic compressional stresses responsible for the main phase of uplift of the South Central Andes also impacted the core of the range in this transitional sector. The major episode of Eocene exhumation suggests the creation of significant topographic relief in the High Andes earlier than previously thought.
Benowitz, Jeff A.; Haeussler, Peter J.; Layer, Paul W.; O'Sullivan, Paul B.; Wallace, Wes K.; Gillis, Robert J.
2012-01-01
Topographic development inboard of the continental margin is a predicted response to ridge subduction. New thermochronology results from the western Alaska Range document ridge subduction related orogenesis. K-feldspar thermochronology (KFAT) of bedrock samples from the Tordrillo Mountains in the western Alaska Range complement existing U-Pb, 40Ar/39Ar and AFT (apatite fission track) data to provide constraints on Paleocene pluton emplacement, and cooling as well as Late Eocene to Miocene vertical movements and exhumation along fault-bounded blocks. Based on the KFAT analysis we infer rapid exhumation-related cooling during the Eocene in the Tordrillo Mountains. Our KFAT cooling ages are coeval with deposition of clastic sediments in the Cook Inlet, Matanuska Valley and Tanana basins, which reflect high-energy depositional environments. The Tordrillo Mountains KFAT cooling ages are also the same as cooling ages in the Iliamna Lake region, the Kichatna Mountains of the western Alaska Range, and Mt. Logan in the Wrangell-St. Elias Mountains, thus rapid cooling at this time encompasses a broad region inboard of, and parallel to, the continental margin extending for several hundred kilometers. We infer these cooling events and deposition of clastic rocks are related to thermal effects that track the eastward passage of a slab window in Paleocene-Eocene time related to the subduction of the proposed Resurrection-Kula spreading ridge. In addition, we conclude that the reconstructed KFATmax negative age-elevation relationship is likely related to a long period of decreasing relief in the Tordrillo Mountains.
Liao, Pei-Chun
2012-01-01
The ragged topography created by orogenesis generates diversified habitats for plants in Taiwan. In addition to colonization from nearby mainland China, high species diversity and endemism of plants is also present in Taiwan. Five of the seven Scutellaria species (Lamiaceae) in Taiwan, for example, are endemic to the island. Hypotheses of multiple sources or in situ radiation have arisen to explain the high endemism of Taiwanese species. In this study, phylogenetic analyses using both nuclear and chloroplast markers revealed the multiple sources of Taiwanese Scutellaria species and confirmed the rapid and recent speciation of endemic species, especially those of the “indica group” composed of S. indica, S. austrotaiwanensis, S. tashiroi, and S. playfairii. The common ancestors of the indica group colonized first in northern Taiwan and dispersed regionally southward and eastward. Climate changes during glacial/interglacial cycles led to gradual colonization and variance events in the ancestors of these species, resulting in the present distribution and genetic differentiation of extant populations. Population decline was also detected in S. indica, which might reflect a bottleneck effect from the glacials. In contrast, the recently speciated endemic members of the indica group have not had enough time to accumulate much genetic variation and are thus genetically insensitive to demographic fluctuations, but the extant lineages were spatially expanded in the coalescent process. This study integrated phylogenetic and population genetic analyses to illustrate the evolutionary history of Taiwanese Scutellaria of high endemism and may be indicative of the diversification mechanism of plants on continental islands. PMID:23226402
North America as an exotic terrane'' and the origin of the Appalachian--Andean Mountain system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalziel, I.W.D; Gahagan, L.M.; Dalla Salda, L.H.
1992-01-01
North America was sutured to Gondwana in the terminal Alleghanian event of Appalachian orogenesis, thus completing the late Paleozoic assembly of Pangea. The suggestion that the Pacific margins of East Antarctica-Australia and Laurentia may have been juxtaposed during the Neoproterozoic prompts reevaluation of the widely held assumptions that the ancestral Appalachian margin rifted from northwestern Africa during the earliest Paleozoic opening of Iapetus, and remained juxtaposed to that margin, even though widely separated from it at times, until the assembly of Pangea. The lower Paleozoic carbonate platform of northwestern Argentina has been known for a long time to contain Olenellidmore » trilobites of the Pacific or Columbian realm. Although normally regarded as some kind of far-travelled terrane that originated along the Appalachian margin of Laurentia, it has recently been interpreted as a fragment detached from the Ouachita embayment of Laurentia following Taconic-Famatinian collision with Gondwana during the Ordovician. The Oaxaca terrane of Mexico, on the other hand, contains a Tremadocian trilobite fauna of Argentine-Bolivian affinities, and appears to have been detached from Gondwana following the same collision. The Wilson cycle'' of Iapetus ocean basin opening and closing along the Appalachian and Andean orogens may have involved more than one such continental collision during clockwise drift of Laurentia around South America following late Neoproterozoic to earliest Cambrian separation. Together with the collisions of baltic and smaller terranes with Laurentia, this could explain the protracted Paleozoic orogenic history of both the Appalachian and proto-Andean orogens.« less
NASA Astrophysics Data System (ADS)
Duncan Keppie, J.; Gregory Shellnutt, J.; Dostal, Jaroslav; Fraser Keppie, D.
2018-04-01
The Ediacaran-Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370 Ma, S-type granitic batholiths. This has led to two main hypotheses regarding the original location of the Meguma terrane, a continental rise prism bordering either NW Africa or Avalonia. On the other hand, the pre-Acadian, ca. 440 Ma Brenton pluton has yielded the following U/Pb LA-ICP-MS zircon data: (1) 448 ± 3 Ma population peak inferred to be the intrusive age and (2) ca. 550 and 700 Ma inherited ages common to both Avalonia and NW Africa. In contrast, Hf isotopic analyses of zircon yielded model ages ranging from 814 to 1127 Ma with most between 940 and 1040 Ma: such ages are typical of Avalonia and not NW Africa. The ages of the inherited zircons found within the Brenton pluton suggest that it was probably derived by partial melting of sub-Meguma, mid-crustal Avalonian rocks, upon which the Meguma Supergroup was deposited. Although Avalonia is commonly included in the peri-Gondwanan terranes off NW Africa or Amazonia, paleomagnetic data, faunal provinciality, and Hf data suggest that, during the Ediacaran-Early Cambrian, it was an island chain lying near the tropics (ca. 20-30 °S) and was possibly a continuation of the Bolshezemel volcanic arc accreted to northern Baltica during the Ediacaran Timanide orogenesis. This is consistent with the similar derital zircon population in the Ediacaran-Cambrian Meguma Supergroup and the Dividal Group in northeastern Baltica.
The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus
NASA Astrophysics Data System (ADS)
Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.
2017-12-01
The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.
Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto
2013-01-01
Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a unique peraluminous composition. It has the lowest εNd and εHf values of the suite. Its isotopic compositions indicate that it is significantly older than the other granulites. Broken zircon cores encased by younger overgrowths suggest that this granulite includes a large component of pre-existing sedimentary rocks. Two distinct populations of zircons from S69-5 were dated by sensitive high-resolution ion microprobe. Abundant rounded zircons yield ages of 1104 ± 42 (2σ) Ma, which coincide with the Mid-Continent Rift flood basalt eruptions. Their morphology is similar to those found in lower-crustal rocks that have undergone granulite-facies metamorphism and thus they are considered to represent the age of Group 2 granulites. Also present are less abundant elongate zircon grains that yield a mean age of 1387 ± 32 (2σ) Ma. Their elongate shapes indicate growth from a melt or fluid, possibly associated with 1·3–1·5 Ga anorogenic granite magmatism exposed in the shallow crust to the south in Wisconsin, or related to an initial encroachment of the Keweenawan plume upon the lower crust. Older ages recognized in zircon cores are less well constrained but may be related to tectono-magmatic events in the southern Superior craton. Within the studied suite only S69-5 was recognized as a remnant of the Late Archean lower crust into which the Group 1 and 2 mafic granulite precursor basalts were intruded. Collectively, the data show that the lower crust beneath northern Michigan formed in Archean times and underwent a variety of tectono-magmatic processes throughout the Proterozoic, including orogenesis, partial melting and mafic magmatic underplating in response to upwelling mantle plumes.
Compressional intracontinental orogens: Ancient and modern perspectives
NASA Astrophysics Data System (ADS)
Raimondo, Tom; Hand, Martin; Collins, William J.
2014-03-01
Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary histories strongly reminiscent of typical collisional belts, suggesting that the deformational response of continental crust is remarkably similar in different tectonic settings.
Yu, Dan; Chen, Ming; Tang, Qiongying; Li, Xiaojuan; Liu, Huanzhang
2014-10-25
Rhynchocypris oxycephalus is a cold water fish with a wide geographic distribution including the relatively warm temperate regions of southern China. It also occurs in second- and third-step geomorphic areas in China. Previous studies have postulated that high-altitude populations of R. oxycephalus in southern China are Quaternary glacial relics. In this study, we used the mitochondrial gene Cytb and the nuclear gene RAG2 to investigate the species phylogeographical patterns and to test two biogeographic hypotheses: (1) that divergence between lineages supports the three-step model and (2) climatic fluctuations during the Quaternary resulted in the present distribution in southern China. Phylogenetic analysis detected three major matrilines (A, B, and C); with matrilines B and C being further subdivided into two submatrilines. Based on genetic distances and morphological differences, matriline A potentially represents a cryptic subspecies. The geographic division between matrilines B and C coincided with the division of the second and third geomorphic steps in China, suggesting a historical vicariance event. Pliocene climatic fluctuations might have facilitated the southwards dispersal of R. oxycephalus in matriline C, with the subsequent warming resulting in its split into submatrilines C1 and C2, leaving submatriline C2 as a relic in southern China. Our study demonstrates that geological events (three steps orogenesis) and climate fluctuations during the Pliocene were important factors in shaping phylogeographical patterns in R. oxycephalus. Notably, no genetic diversity was detected in several populations, all of which possessed unique genotypes. This indicates the uniqueness of local populations and calls for a special conservation plan for the whole species at the population level.
Nd Isotopic Provenance of Sedimentary Rocks Along Margins of North America: ten Years of Study
NASA Astrophysics Data System (ADS)
Patchett, J.; Ross, G. M.
2001-12-01
Ten years of effort, principally employing Nd isotopes, have resulted in substantial advances in understanding of the movements of sedimentary material around North America from Cambrian to Cretaceous time. This synthesis has depended upon work of current and former students S. Samson, J. Gleason, N. Boghossian, C. Garzione, M. Roth, B. Canale and E. Rosenberg, as well as collaborators W. Dickinson and A. Embry, among others. Nd isotopes are particularly good at documenting movements of sedimentary material on the largest (continental) scale and over extended times. What has emerged is a picture of a largely exposed North America-Greenland craton from Neoproterozoic to Ordovician time, a partial to complete burial by detritus from Caledonian-Appalachian mountains starting in the Ordovician, a gradual exhumation during Late Paleozoic and Mesozoic time, followed by a partial burial with Cordilleran detritus during Late Jurassic to Tertiary time. One current question is the nature of the Mesozoic and Tertiary sedimentary material eroded from the North American Cordillera, and its relevance for Cordilleran orogenesis. Another current question is the extent to which Caledonian-Appalachian detritus covered the craton in Devonian-Carboniferous time, and the timing and manner of its removal during Mesozoic time. At first glance, available Nd isotopic data appear to suggest that the Canada-Greenland Shield was largely covered during most of Mesozoic time, a conclusion that would have profound effects on models of dynamic topography. However, this conclusion is also very dependent on the relationship between topography and erosion, because in certain situations a geographically-restricted cover sequence could dominate over low-relief cratonic terrain as a sediment source.
Shear Wave Velocity Structure Beneath Eastern North America from Rayleigh Wave Tomography
NASA Astrophysics Data System (ADS)
Tao, Z.; Li, A.; Yao, Y.
2017-12-01
The Geology of eastern North America is characterized by distinctive tectonic terranes, including the Grenville Province, the Appalachian Orogen, and the passive Atlantic margin. To investigate how the lithosphere has evolved through the orogenesis and rifting process, we construct shear wave velocity models from Rayleigh wave tomography using a two-plane wave inversion method. The fundamental mode Rayleigh wave data from 113 earthquakes recorded at 220 USArray Transportable Array stations are analyzed and inverted for phase velocities at 18 periods from 20 to 167 s. The average phase velocity of the region varies from 3.60 km/s at 20 s to 4.11 km/s at 67 s to 4.42 km/s at 167 s, all of which are faster than the predictions from the global AK135 model. At short periods from 20 to 33 s, low velocity anomalies mainly appear in the Appalachians in northern Pennsylvania and northwestern Virginia while high velocity anomalies are imaged at the Grenville Province, the North America craton, and along the Atlantic coast. These phase velocity variations reflect crustal velocity and thickness change across the area, which could be distinguished in 3-D velocity models after the inversion of phase velocities. High phase velocities continuously appear beneath the stable craton and the Grenville Province at longer periods. However, a significant low velocity anomaly is present in the Appalachians in northern New England beyond period 50 s, which is consistent with previous models in this region. This anomaly has been interpreted as the result of past heating from the Great Meteor hotspot or current asthenospheric upwelling. The 3-D azimuthally anisotropic shear velocity model that we are developing may help to resolve this ambiguity.
Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago
2011-01-01
Background Gastropod mollusks are one of the most successful animals that have diversified in the fully terrestrial habitat. They have evolved terrestrial taxa in more than nine lineages, most of which originated during the Paleozoic or Mesozoic. The rissooidean gastropod family Pomatiopsidae is one of the few groups that have evolved fully terrestrial taxa during the late Cenozoic. The pomatiopsine diversity is particularly high in the Japanese Archipelago and the terrestrial taxa occur only in this region. In this study, we conducted thorough samplings of Japanese pomatiopsid species and performed molecular phylogenetic analyses to explore the patterns of diversification and terrestrial invasion. Results Molecular phylogenetic analyses revealed that Japanese Pomatiopsinae derived from multiple colonization of the Eurasian Continent and that subsequent habitat shifts from aquatic to terrestrial life occurred at least twice within two Japanese endemic lineages. Each lineage comprises amphibious and terrestrial species, both of which are confined to the mountains in heavy-snow regions facing the Japan Sea. The estimated divergence time suggested that diversification of these terrestrial lineages started in the Late Miocene, when active orogenesis of the Japanese landmass and establishment of snowy conditions began. Conclusions The terrestrial invasion of Japanese Pomatiopsinae occurred at least twice beside the mountain streamlets of heavy-snow regions, which is considered the first case of this event in the area. Because snow coverage maintains stable temperatures and high humidity on the ground surface, heavy-snow conditions may have paved the way for these organisms from freshwater to land via mountain streamlets by preventing winter desiccation in mountain valleys. The fact that the terrestrialization of Pomatiopsidae occurred only in year-round wet environments, but not in seasonally dried regions, provides new insight into ancient molluscan terrestrialization. PMID:21545707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodge, J.W.; Hansen, V.L.; Walker, N.W.
1993-02-01
High-grade metamorphic rocks of the Precambrian Nimrod Group (NG) constitute one of few cratonal basement exposures in the Transantarctic Mountains. These rocks represent an outlier of the East Antarctic craton, evolved as part of Gondwana and pre-Gondwana (Rodinia) supercontinents. Despite pervasive, high-strain ductile deformation at T [>=] 650 C, they preserve petrologic and geochronologic evidence of an earlier history. Sm-Nd model ages from several NG lithologies, including that of a [approximately]1.7 Ga orthogneiss, range from about 2.7--2.9 Ga; these ages reflect both sedimentary and magmatic derivation from Archean crust. Individual detrital zircon U-Pb ages (about 1.7--2.6 Ga) from NG quartzitesmore » indicate clastic input from Archean to Paleoproterozoic source terrains. The Sm-Nd and U-Pb ages are reminiscent of both the Yavapai-Mazatzal (1.6--1.8 Ga) and Wyoming (> 2.5 Ga) provinces in western North America. U-Pb ages from syn-tectonic metaigneous and pelitic NG tectonites indicate that this basement complex was re-worked by the major ductile deformation in latest neoproterozoic to Early Cambrian time. Supracrustal assemblages that lie outboard of the Nimrod craton include Neoproterozoic graywacke, impure carbonate, and minor mafic volcanics (Beardmore Group), and Cambrian to Lower Ordovician carbonate and siliciclastic rocks (Byrd Group). Neoproterozoic ([approximately]750 Ma) rifting along the proto-Pacific margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism. Latest Neoproterozoic to early Paleozoic orogenesis occurred along a left-oblique convergent plate margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism.« less
NASA Astrophysics Data System (ADS)
Witt, Walter K.; Cassidy, Kevin F.; Lu, Yong-Jun; Hagemann, Steffen G.
2018-01-01
The Yilgarn Craton results from three major mantle input events (at ca 3.0-2.9, 2.8 and 2.7 Ga) that have interacted with > 3.0 Ga continental crust. Zircon geochronology and Sm-Nd isotopic data subdivide the craton into an older Yilgarn proto-craton and the younger, more primitive Eastern Goldfields Superterrane (EGST). Formation of the Kalgoorlie-Kurnalpi Rift (KKR) within the EGST was associated with the 2.7 Ga event, which exploited weakened crust at the eastern margin of the Yilgarn proto-craton where thick sequences of komatiite and basalt were erupted between ca 2710 and 2690 Ma in the Kalgoorlie Terrane. Calc-alkaline volcanism in the Kurnalpi Terrane began at ca 2730 Ma and continued to ca 2690 Ma, overlapping rifting and plume-related volcanism in the Kalgoorlie Terrane. Deposition of siliciclastic sedimentary rocks within basins at ca 2660 resulted from an intra-orogenic extensional event and coincided with the transition from High-Ca to Low-Ca granite magmatism and peak emplacement of intrusions with a metasomatised mantle source component. Most aspects of the KKR are satisfied by broadly coincident plume-related magmatism in the Kalgoorlie Terrane and westward subduction to the east of the Burtville Terrane. Geochemical characteristics of 2730-2700 Ma calc-alkaline volcanism and 2685-2630 Ma low-SiO2 and alkali-rich intrusions support models for a continental margin subduction zone setting. World-class gold deposits formed in reactivated margins of the KKR, which became flux zones for mantle-derived magmas, hydrothermal fluids and heat during 2675-2620 Ma orogenesis. The orogenic gold mineralisation can be subdivided into proximal intrusion-related and distal-source deposits.
Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data
NASA Astrophysics Data System (ADS)
Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.
2017-12-01
Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).
De-Nova, José Arturo; Sánchez-Reyes, Luna L; Eguiarte, Luis E; Magallón, Susana
2018-09-01
Arid biomes are particularly prominent in the Neotropics providing some of its most emblematic landscapes and a substantial part of its species diversity. To understand some of the evolutionary processes underlying the speciation of lineages in the Mexican Deserts, the diversification of Fouquieria is investigated, which includes eleven species, all endemic to the warm deserts and dry subtropical regions of North America. Using a phylogeny from plastid DNA sequences with samples of individuals from populations of all the species recognized in Fouquieria, we estimate divergence times, test for temporal diversification heterogeneity, test for geographical structure, and conduct ancestral area reconstruction. Fouquieria is an ancient lineage that diverged from Polemoniaceae ca. 75.54 Ma. A Mio-Pliocene diversification of Fouquieria with vicariance, associated with Neogene orogenesis underlying the early development of regional deserts is strongly supported. Test for temporal diversification heterogeneity indicates that during its evolutionary history, Fouquieria had a drastic diversification rate shift at ca.12.72 Ma, agreeing with hypotheses that some of the lineages in North American deserts diversified as early as the late Miocene to Pliocene, and not during the Pleistocene. Long-term diversification dynamics analyses suggest that extinction also played a significant role in Fouquieria's evolution, with a very high rate at the onset of the process. From the late Miocene onwards, Fouquieria underwent substantial diversification change, involving high speciation decreasing to the present and negligible extinction, which is congruent with its scant fossil record during this period. Geographic phylogenetic structure and the pattern of most sister species inhabiting different desert nucleus support that isolation by distance could be the main driver of speciation. Copyright © 2018 Elsevier Inc. All rights reserved.
Ren, Guangpeng; Conti, Elena; Salamin, Nicolas
2015-08-16
The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.
Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains
NASA Astrophysics Data System (ADS)
Gallen, Sean F.
2018-07-01
Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.
Relief Evolution in Tectonically Active Mountain Ranges
NASA Technical Reports Server (NTRS)
Whipple, Kelin X.
2004-01-01
The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.
NASA Astrophysics Data System (ADS)
Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang
2017-09-01
Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.
Timing of isoclinal folds in multiply deformed high metamorphic grade region using FIA succession
NASA Astrophysics Data System (ADS)
Cao, Hui; Cai, Zhihui
2013-04-01
Multiply deformed and isoclinally folded interlayered high metamorphic grade gneisses and schists can be very difficult rocks for resolving early formed stratigraphic and structural relationships. When such rocks contain porphyroblasts a new approach is possible because of the way in which porphyroblast growth is affected by crenulation versus reactivation of compositional layering. The asymmetries of the overprinting foliations preserved as inclusion trails that define the FIAs can be used to investigate whether an enigmatic isoclinal fold is an antiform or synform. This approach also reveals when the fold first formed during the tectonic history of the region. Isoclinally folded rocks in the Arkansas River region of Central Colorado contain relics of fold hinges that have been very difficult to ascertain whether they are antiforms or synforms because of younger refolding effects and the locally truncated nature of coarse compositional layering. With the realization that rocks with a schistosity parallel to bedding (S0 parallel S1) have undergone lengthy histories of deformation that predate the obvious first deformation came recognition that large scale regional folds can form early during this process and be preserved throughout orogenesis. This extensive history is lost within the matrix because of reactivational shear on the compositional layering. However, it can be extracted by measuring FIAs. Recent work using this approach has revealed that the trends of axial planes of all map scale folds, when plotted on a rose diagram, strikingly reflect the FIA trends. That is, although it was demonstrated that the largest scale regional folds commonly form early in the total history, other folds can form and be preserved from subsequent destruction in the strain shadows of plutons or through the partitioning of deformation due to heterogeneities at depth.
NASA Astrophysics Data System (ADS)
Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Massonne, Hans-Joachim; Langone, Antonio; Visonà, Dario
2015-08-01
Kyanite-bearing migmatitic paragneiss of the lower Greater Himalayan Sequence (GHS) in the Kali Gandaki transect (Central Himalaya) was investigated. In spite of the intense shearing, it was still possible to obtain many fundamental information for understanding the processes active during orogenesis. Using a multidisciplinary approach, including careful meso- and microstructural observations, pseudosection modelling (with PERPLE_X), trace element thermobarometry and in situ monazite U-Th-Pb geochronology, we constrained the pressure-temperature-time-deformation path of the studied rock, located in a structural key position. The migmatitic gneiss has experienced protracted prograde metamorphism after the India-Asia collision (50-55 Ma) from ~ 43 Ma to 28 Ma. During the late phase (36-28 Ma) of this metamorphism, the gneiss underwent high-pressure melting at "near peak" conditions (710-720 °C/1.0-1.1 GPa) leading to kyanite-bearing leucosome formation. In the time span of 25-18 Ma, the rock experienced decompression and cooling associated with pervasive shearing reaching P-T conditions of 650-670 °C and 0.7-0.8 GPa, near the sillimanite-kyanite transition. This time span is somewhat older than previously reported for this event in the study area. During this stage, additional, but very little melt was produced. Taking the migmatitic gneiss as representative of the GHS, these data demonstrate that this unit underwent crustal melting at about 1 GPa in the Eocene-Early Oligocene, well before the widely accepted Miocene decompressional melting related to its extrusion. In general, kyanite-bearing migmatite, as reported here, could be linked to the production of the high-Ca granitic melts found along the Himalayan belt.
NASA Astrophysics Data System (ADS)
Phillips, G.; Offler, R.; Rubatto, D.; Phillips, D.
2015-09-01
New geochemical, metamorphic, and isotopic data are presented from high-pressure metamorphic rocks in the southern New England Orogen (eastern Australia). Conventional and optimal thermobarometry are augmented by U-Pb zircon and 40Ar/39Ar phengite dating to define pressure-temperature-time (P-T-t) histories for the rocks. The P-T-t histories are compared with competing geodynamic models for the Tasmanides, which can be summarized as (i) a retreating orogen model, the Tasmanides formed above a continuous, west dipping, and eastward retreating subduction zone, and (ii) a punctuated orogen model, the Tasmanides formed by several arc accretion, subduction flip, and/or transference events. Whereas both scenarios are potentially supported by the new data, an overlap between the timing of metamorphic recrystallization and key stages of Tasmanides evolution favors a relationship between a single, long-lived subduction zone and the formation, exhumation, and exposure of the high-pressure rocks. By comparison with the retreating orogen model, the following links with the P-T-t histories emerge: (i) exhumation and underplating of oceanic eclogite during the Delamerian Orogeny, (ii) recrystallization of underplated and exhuming high-pressure rocks at amphibolite facies conditions coeval with a period of rollback, and (iii) selective recrystallization of high-pressure rocks at blueschist facies conditions, reflecting metamorphism in a cooled subduction zone. The retreating orogen model can also account for the anomalous location of the Cambrian-Ordovician high-pressure rocks in the Devonian-Carboniferous New England Orogen, where sequential rollback cycles detached and translated parts of the leading edge of the overriding plate to the next, younger orogenic cycle.
Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology
NASA Astrophysics Data System (ADS)
Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.
2004-12-01
Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.
NASA Astrophysics Data System (ADS)
Folguera, A.; Alasonati Tašárová, Z.; Götze, H.-J.; Rojas Vera, E.; Giménez, M.; Ramos, V. A.
2012-12-01
The Andean retroarc between 35° and 40°S is the locus of debate regarding its Pliocene to Quaternary tectonic setting. Retroarc volcanic eruptions since 6 Ma to the Present are, based on some hypotheses, associated with widespread extension. In these works, geological data point to the existence of normal faults affecting previous (Late Cretaceous to Miocene) contractional structures. In order to evaluate such interpretations we have collected data from various geological and geophysical studies and scales. Based on these data, an existing large-scale 3-D gravity model could be improved and used to investigate the lithospheric structure of this region. Moreover, using the gravity model, an attenuated crust could be localized and quantified throughout the retroarc area. Deep seismic data available from this region are limited to the forearc - arc area, while in general the retroarc zone lacks deep seismic constraints. The only deep seismic profile extending to the retroarc is a receiver function profile at 39°S, showing crustal attenuation. This observation correlates with the extensional activity recognized at the surface. When analysing the gravity field, positive residual anomalies are observed. They correlate with crustal attenuation at the areas of extension. Also, computed elastic thickness in the retroarc shows good correlation between the areas of crustal stretching and low flexural rigidity, explained by thermal processes. The present extensional deformation reflected in positive residual gravity anomalies points to the influence of reactivated Triassic rifting inherited from early phases of Pangea break-up. Finally, the present local uplift and consequent fluvial incision at the retroarc zone are explained by crustal stretching and not by crustal shortening, the common mechanism in Andean orogenesis.
Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars
2017-01-01
Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya–Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle’s elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya–Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide. PMID:28339461
The Galicia-Ossa-Morena Zone: Proposal for a new zone of the Iberian Massif. Variscan implications
NASA Astrophysics Data System (ADS)
Arenas, Ricardo; Díez Fernández, Rubén; Rubio Pascual, Francisco J.; Sánchez Martínez, Sonia; Martín Parra, Luis Miguel; Matas, Jerónimo; González del Tánago, José; Jiménez-Díaz, Alberto; Fuenlabrada, Jose M.; Andonaegui, Pilar; Garcia-Casco, Antonio
2016-06-01
Correlation of a group of allochthonous terranes (referred to as basal, ophiolitic and upper units) exposed in the NW and SW of the Iberian Massif, is used to propose a new geotectonic zone in the southern branch of the Variscan Orogen: the Galicia-Ossa-Morena Zone. Recent advances in SW Iberia identify most of the former Ossa-Morena Zone as another allochthonous complex of the Iberian Massif, the Ossa-Morena Complex, equivalent to the Cabo Ortegal, Órdenes, Malpica-Tui, Bragança and Morais complexes described in NW Iberia. The new geotectonic zone and its counterparts along the rest of the Variscan Orogen constitute an Internal Variscan Zone with ophiolites and units affected by high-P metamorphism. The Galicia-Ossa-Morena Zone includes a Variscan suture and pieces of continental crust bearing the imprint of Ediacaran-Cambrian events related to the activity of peri-Gondwanan magmatic arcs (Cadomian orogenesis). In the Iberian Massif, the general structure of this geotectonic zone represents a duplication of the Gondwanan platform, the outboard sections being juxtaposed on top of domains located closer to the mainland before amalgamation. This interpretation offers an explanation that overcomes some issues regarding the differences between the stratigraphic and paleontological record of the central and southern sections of the Iberian Massif. Also, equivalent structural relationships between other major geotectonic domains of the rest of the Variscan Orogen are consistent with our interpretation and allow suspecting similar configurations along strike of the orogen. A number of issues may be put forward in this respect that potentially open new lines of thinking about the architecture of the Variscan Orogen.
Tull, James; Holm-Denoma, Christopher S.; Barineau, Clinton I.
2014-01-01
Fault-dismembered segments of a distinctive, extensive, highly allochthonous, and tectonically significant Ordovician (ca. 480–460 Ma) basin, which contains suites of bimodal metavolcanic rocks, associated base metal deposits, and thick immature deep-water (turbiditic) metasediments, occur in parts of the southern Appalachian Talladega belt, eastern Blue Ridge, and Inner Piedmont of Alabama, Georgia, and North and South Carolina. The basin's predominantly metasedimentary strata display geochemical and isotopic evidence of a mixed provenance, including an adjacent active volcanic arc and a provenance of mica (clay)-rich sedimentary and felsic plutonic rocks consistent with Laurentian (Grenvillian) upper-crustal continental rocks and their passive-margin cover sequences. Geochemical characteristics of the subordinate intercalated bimodal metavolcanic rocks indicate formation in a suprasubduction environment, most likely a back-arc basin, whereas characteristics of metasedimentary units suggest deposition above Neoproterozoic rift and outer-margin lower Paleozoic slope and rise sediments within a marginal basin along Ordovician Laurentia's Iapetus margin. This tectonic setting indicates that southernmost Appalachian Ordovician orogenesis (Taconic orogeny) began as an extensional accretionary orogen along the outer margin of Laurentia, rather than in an exotic (non-Laurentian) arc collisional setting. B-type subduction polarity requires that the associated arc-trench system formed southeast of the palinspastic position of the back-arc basin. This scenario can explain several unique features of the southern Appalachian Taconic orogen, including: the palinspastic geographic ordering of key tectonic elements (i.e., back-arc, arc, etc.), and a lack of (1) an obducted arc sensu stricto on the Laurentian margin, (2) widespread Ordovician regional metamorphism, and (3) Taconic klippen to supply detritus to the Taconic foreland basin.
Vera-Escalona, Iván; D'Elía, Guillermo; Gouin, Nicolás; Fontanella, Frank M.; Muñoz-Mendoza, Carla; Sites, Jack W.; Victoriano, Pedro F.
2012-01-01
Historical climate changes and orogenesis are two important factors that have shaped intraspecific biodiversity patterns worldwide. Although southern South America has experienced such complex events, there is a paucity of studies examining the effects on intraspecific diversification in this part of the world. Liolaemus pictus is the southernmost distributed lizard in the Chilean temperate forest, whose genetic structure has likely been influenced by Pleistocene glaciations. We conducted a phylogeographic study of L. pictus in Chile and Argentina based on one mitochondrial and two nuclear genes recovering two strongly divergent groups, Northern and Southern clades. The first group is distributed from the northernmost limit of the species to the Araucanía region while the second group is distributed throughout the Andes and the Chiloé archipelago in Southern Chile. Our results suggest that L. pictus originated 751 Kya, with divergence between the two clades occurring in the late Pleistocene. Demographic reconstructions for the Northern and Southern clades indicate a decrease in effective population sizes likely associated with Pleistocene glaciations. Surprisingly, patterns of genetic variation, clades age and historical gene flow in populations distributed within the limits of the Last Glacial Maximum (LGM) are not explained by recent colonization. We propose an “intra-Andean multiple refuge” hypothesis, along with the classical refuge hypothesis previously proposed for the biota of the Chilean Coastal range and Eastern Andean Cordillera. Our hypothesis is supported by niche modelling analysis suggesting the persistence of fragments of suitable habitat for the species within the limits of the LGM ice shield. This type of refuge hypothesis is proposed for the first time for an ectothermic species. PMID:23209552
NASA Astrophysics Data System (ADS)
Ustaömer, P. Ayda; Ustaömer, Timur; Collins, Alan S.; Reischpeitsch, Jörg
2009-07-01
The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6 ± 2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the İzmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.
NASA Astrophysics Data System (ADS)
Powerman, V.; Shatsillo, A.; Chumakov, N.; Kapitonov, I.; Hourigan, J. K.
2015-12-01
The goal of this study is to pinpoint the beginning of interaction of two gigantic crustal structures: the Siberian Craton and the Central Asian Orogenic Belt (CAOB). We hypothesize that the beginning of convergence should be recorded in the Neoproterozoic passive margin strata of Siberian Craton by the first appearance of extraregional Neoproterozoic zircons. In order to test this hypothesis, we have acquired U-Pb zircon age distributions from twelve Neoproterozoic clastic rocks from the Baikal-Patom margin of Siberia and one sample from the volcaniclastic Padrinsky Group that was deposited atop accreted CAOB crust. Stratigraphically lower strata from the Siberian margin yield Archean - Paleoproterozoic detrital zircon ages, which are similar to, and probably derived from the Siberian Precambrian craton. A few extra-regional Mesoproterozoic grains are also present. The provenance shift happens in the upper portion of the section and is marked by a strong influx of extra-regional Neoproterozoic sediments. The youngest grains of 610 Ma constrain the sedimentation age and confine the timing of interaction between CAOB and Siberia in this region. Neoproterozoic zircons also dominate the overlying sedimentary unit, suggesting the continuance of the convergence. The coeval volcanoclastic unit on the CAOB side has a similar U-Pb detrital age distribution, strengthening the provenance link. Analysis of the local tectonics suggests that the beginning of accretion might have started even before the first appearance of Neoproterozoic zircon: during the development of a regional unconformity, capped by 635 Ma (?) "Snowball Earth" tillites of Dzhemkukan Fm. The absence of Neoproterozoic zircons in Dzhemkukan Fm. is probably explained by a thin-skinned tectonics that did not result in massive orogenesis . Our data are in good correlation with other Neoproterozoic sedimentary basins of southern Siberian Craton, including Cisbaikalia and Bodaibo Synclinorium.
NASA Astrophysics Data System (ADS)
Martin, S.; Tumiati, S.
2003-04-01
The structural and petrographic studies of the basement units in the Alpine region, independently from their present tectonic setting in the nappe pile, suggest that at the end of the Variscan orogenesis they were in such a position that they suffered relevant up-doming and cooling since Late Carboniferous (Thöni, 1981; Mottana et al., 1985; Martin et al., 1996; Bertotti et al., 1999). This up-doming has been interpreted as due to an isostatic rebound related to the detachment of the slab after the cessation of the subduction at the end of the Variscan orogenesis (Neubauer and Handler, 2000; Ranalli, 2003). The metamorphic setting of the Southalpine basement between the Tonale pass and Lake Maggiore in the Southern Alps, is due to processes which, by extension denudation and erosion, locally took to the surface portions of middle-to-high grade basement, within a horst-graben environment (Cassinis et al., 1997). The basements of the Orobic, Lake Como and Lake Maggiore areas are composed of kyanite-garnet or sillimanite-bearing schists (e.g., Gneiss di Morbegno, Scisti di Edolo, Scisti dei Laghi; Boriani et al., 1990; Siletto et al., 1993), or of low grade schists (e.g., Filladi di Ambria) intruded by Early Permian plutons, covered by continental and volcanic deposits of Late Carboniferous to Permian age, after a marked unconformity (Cadel et al., 1996). The thickness of this clastic cover ranges between a few hundreds to thousands of meters; the clast compositions suggest a low-grade basement as a dominant source; the structures indicate alternance of uplift and collapse and continue deformation during sedimentation (Cassinis et al., 1974). Most of the Upper Austroalpine units of the central and eastern Alps (e.g., Tonale nappe, Languard, Ortles and Campo units) have structural and lithological similarities with the Orobic, Lake Como and Lake Maggiore basement units confirming their appartenance to the same pre-Alpine paleogeographic environment which suffered up-doming and collapse (Martin et al., 1996). The Austroalpine units have a sedimentary cover including basal clastic sediments younger (Late Permian, Verrucano; Furrer, 1985), than the Orobic ones (Late Carboniferous-Permian) indicating erosion and sedimentation diachronous in respect to the Orobic and Lake Como areas. Most of the lower Austroalpine basement units are composed of middle-to-high grade rocks (e.g., Margna) and are covered by very thin Permian sediments, or directly by carbonatic sequences (Campo and Bernina units) typical of a rapid drowning of the passive margin after erosion (Froitzheim and Manatschal, 1996). In this picture, the Variscan basement of the central and eastern Alps suffered a relevant, even if diachronous, up-doming during Late Carboniferous-Permian time. This involved the basement which at present corresponds to the Lower Austroalpine (e.g., Err, Bernina and Margna) and to the Upper Austroalpine units (e.g.; Ortles, Languard and Campo). The up-doming is mostly evidenced by structural and petrographic observations rather than the geochronology because these basements have been thermally re-setted by intrusion of several Early Permian plutons which altered their cooling history. In some places the magmatic activity continued up to Trias with hydrothermal veins and pegmatites, which slowed the cooling evolution down to the Jurassic time. Rb-Sr cooling ages from high grade Austroalpine and Southalpine basements cumulate around Late Jurassic confirming this time as the end of the pre-alpine thermal evolution of the Variscan basement in the Alps (Sanders et al., 1996). References: BERTOTTI G., SEWARD D., WIJBRANS J., VOORDE M.TER, HURFORD A.J. (1999) - Crustal thermal regime prior to, during, and after rifting: A geochronological and modeling study of the Mesozoic South Alpine rifted margin. Tectonics, 18-2: 185-200 BORIANI A., GIOBBI ORIGONI E., BORGHI A., CAIRONI V. (1990) - The evolution of the "Serie dei Laghi" (Strona-Ceneri and Scisti dei Laghi): upper component of the Ivrea-Verbano crustal section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics, 182: 103-118 CADEL G., COSI M., PENNACCHIONI G., SPALLA M.I. (1996) - A new map of the Permo-Carboniferous cover and Variscan metamorphic basement in the central Orobic Alps, Southern Alps, Italy: Structural and stratigraphical data. Mem. Sci. Geol., Padova, 48:1-53 CASSINIS G., MONTRASIO A., POTENZA R., VON RAUMER J.F., SACCHI R., ZANFERRARI A. (1974) - Tettonica ercinica nelle Alpi. Mem. Soc. Geol. Ital., Vol. XIII, suppl. 1, 289-318 CASSINIS G., PEROTTI C.R., VENTURINI C. (1997) - Examples of late Hercynian transtensional tectonics in the Southern Alps (Italy). In: Late Paleozoic and Early Mesozoic Circum Pacific Events and Their Global Correlation (Ed. Dickins J.M., Yang Z., Yin H., Lucas S.G., Acharyya S.K.), Cambridge University Press. DEL MORO A., NOTARPIETRO A. (1987) - Rb-Sr Geochemistry of some Hercynian granitoids overprinted by eo-Alpine metamorphism in the Upper Valtellina, Central Alps. Schweiz. Mineral. Petrogr. Mitt., 67: 295-306 FROITZHEIM N., MANATSCHAL G. (1996) - Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). GSA Bull., 108-9: 1120-1133 FURRER H. ed. (1985) - Field workshop on Triassic and Jurassic sediments in the Eastern Alps of Switzerland. Mitt. Geol. Inst. ETH u. Univ. Zürich, N.F., v. 248, 82 p. MARTIN S., ZATTIN M., DEL MORO A., MACERA P. (1996) - Chronologic constraints for the evolution of the Giudicarie belt (Eastern Alps, NE Italy). Annales Tectonicae, Vol. X, N. 1-2, 60-79 MOTTANA A., NICOLETTI M., PETRUCCIANI C., LIBORIO G., DE CAPITANI L., BOCCHIO R. (1985) - Pre-alpine and alpine eolution of the South-alpine basement of the Orobic Alps. Geol. Rundsch., 74-2: 353-366 NEUBAUER F., HANDLER R. (2000) - Variscan orogeny in the Eastern Alps and Bohemian Massif: How do these units correlate?. Mitt. Österr. Geol. Ges., 92:35-39 RANALLI G. (2003) - A model of Palaeozoic subduction and exhumation of continental crust: Ulten unit, Tonale Nappe, Eastern Austroalpine. Transalp workshop, Trieste 10-12 February. SANDERS C.A.E., BERTOTTI G., TOMMASINI S., DAVIES G.R., WIJBRANS J.R. (1996) - Triassic pegmatites in the Mesozoic middle crust of the Southern Alps (Italy): Fluid inclusions, radiometric dating and tectonic implications. Eclogae Geol. Helv., 89-1: 505-525 SILETTO G.B., SPALLA M.I., TUNESI A., LARDEAUX J.M., COLOMBO A. (1993) - Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy. In: Pre-Mesozoic geology in the Alps (Ed. By von Raumer J.F. &Neubauer F.), 585-598 THÖNI M. (1981) - Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas. Jahrb. Geol. B.-A., 124-1: 111-174
NASA Astrophysics Data System (ADS)
Santimano, T. N.; Adiban, P.; Pysklywec, R.
2017-12-01
The primary controls of deformation in the lithosphere are related to its rheological properties. In addition, recent work reveals that inherited zones of weakness in the deep lithosphere are prevalent and can also define tectonic activity. To understand how deformation is genetically related to rheology and/or pre-existing structures, we compare a set of physical analogue models with the presence and absence of a fault in the deep lithosphere. The layered lithosphere scaled models of a brittle upper crust, viscous lower crust and viscous mantle lithosphere are deformed in a convergent setting. Deformation of the model is recorded using high spatial and temporal stereoscopic cameras. We use Particle Image Velocimetry (PIV) to acquire a time-series dataset and study the velocity field and subsequently strain in the model. The finished model is also cut into cross-section revealing the finite internal structures that are then compared to the topography of the model. Preliminary results show that deformation in models with an inherited fault in the mantle lithosphere is accommodated by displacement along the fault plane that propagates into the overlying viscous lower crust and brittle upper crust. Here, the majority of the deformation is localized along the fault in a brittle manner. This is in contrast to the model absent of a fault that also displays significant amounts of deformation. In this setting, ductile deformation is accommodated by folding and thickening of the viscous layers and flexural shearing of the brittle upper crust. In these preliminary experiments, the difference in the strength profile between the mantle lithosphere and the lower crust is within the same order of magnitude. Future experiments will include models where the strength difference is an order of magnitude. This systematic study aids in understanding the role of rheology and deep structures particularly in transferring stress over time to the surface and is therefore fundamental in understanding intraplate tectonics and orogenesis.
NASA Astrophysics Data System (ADS)
Petts, Duane C.; Moser, Desmond E.; Longstaffe, Frederick J.; Davis, William J.; Stern, Richard A.
2014-04-01
The western Churchill Province of the Canadian Shield experienced a prolonged and complex formation history (ca. 4.04 to 1.70 Ga), with evidence for multiple episodes of orogenesis and regional magmatic activity. Here we report on the oxygen isotopic compositions of garnet and zircon recovered from lower crustal xenoliths, which have U-Pb ages between ca. 3.5 and 1.7 Ga. Overall, zircon from four metabasite xenoliths from the Rankin Inlet sample suite have δ18O values ranging from + 5.5 to + 8.6‰. Zircon from three metatonalite/anorthosite xenoliths and five metabasite xenoliths from the Repulse Bay sample suite have δ18O values of + 5.6 to + 8.3‰. High δ18O values (> + 6.0‰) for the oldest igneous zircon cores (ca. 3.5 Ga and 3.0-2.6 Ga) indicate that their metatonalite/anorthosite protolith magmas were generated from, or had assimilated, supracrustal rocks that interacted previously with surface-derived fluids. Igneous zircon cores (ca. 2.9-2.6 Ga) from one metabasite xenolith have δ18O values of + 5.6 to + 6.4‰, which suggests a formation from a mantle-derived basaltic/gabbroic magma. Metamorphic zircon cores (ca. 2.0-1.9 Ga) from one metabasite xenolith commonly have δ18O values between + 6.0 and + 6.3‰, which is indicative of a basalt/gabbro protolith and localized reworking of the lower crust caused by regional-scale plate convergence. The wide range of δ18O values (+ 5.5 to + 8.3‰) for ca. 1.75-1.70 Ga metamorphic zircon rims (identified in all xenoliths) indicates regional transient heating and reworking of mantle- and supracrustal-derived crust, induced by magmatic underplating along the crust-mantle boundary.
Charles Lyell and scientific thinking in geology
NASA Astrophysics Data System (ADS)
Virgili, Carmina
2007-07-01
Charles Lyell (1797-1875) was born at Kinnordy, Scotland. His father, an amateur botanist, and his grandfather, a navigator, gave him very soon a taste for the observation of the Nature. He went to the Oxford University to study classical literature, but he also followed the geological course of William Buckland. After having been employed as jurist for some years, in 1827 he decided on a career of geologist and held the chair of geology of the King's College of London, from 1831 on. He was a contemporary of Cuvier, Darwin, von Humboldt, Hutton, Lavoisier, and was elected 'membre correspondant' of the 'Académie des sciences, France', in January 1862. Charles Lyell is one of the eminent geologists who initiated the scientific thinking in geology, in which his famous volumes of the Principles of Geology were taken as the authority. These reference volumes are based on multiple observations and field works collected during numerous fieldtrips in western Europe (principally Spain, France, and Italy) and North America. To his name are attached, among others: ( i) the concept of uniformitarism (or actualism), which was opposed to the famous catastrophism, in vogue at that time, and which may be summarized by the expression "The present is the key to the past"; ( ii) the division of the Tertiary in three series denominated Eocene, Miocene, and Pliocene, due to the study of the age of strata by fossil faunas; ( iii) the theory according to which the orogenesis of a mountain chain, as the Pyrenees, results from different pulsations on very long time scales and was not induced by a unique pulsation during a short and intense period. The uniformity of the laws of Nature is undeniably a principle Charles Lyell was the first to state clearly and to apply to the study of the whole Earth's crust, which opened a new era in geology.
Present-day Kinematics of Papua New Guinea from GPS campaign measurements
NASA Astrophysics Data System (ADS)
Koulali Idrissi, A.; McClusky, S.; Tregoning, P.
2013-12-01
Papua New Guinea (PNG) is a complex tectonic region located in the convergence zone between the Australian and Pacific Plate. It occupies arguably one of the most tectonically complicated regions of the world, and its geodynamic evolution involves micro-plate rotation, lithospheric rupture forming ocean basins, arc-continent collision, subduction polarity reversal, collisional orogenesis, ophiolite obduction, and exhumation of high-pressure metamorphic (ultramafic) rocks. In this study we present a GPS derived velocity field based on 1993-2008 survey mode observations at 30 GPS sites. We combine our results with previously published GPS velocities to investigate the deformation in northern and northwestern Papua New Guinea. We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for poles of rotation of several micro-plates. The micro-plate block boundary fault geometry is based on geological mapping and regional seismicity. The results show that fault system north of the Highlands fold and thrust belt is the major boundary between the rigid Australian Plate and the north Highlands block, with convergence occurring at rates of between ~ 6 and 11.5 mm/yr. The relative motion across the northern Highlands block increases to the north to ~ 21-24 mm/yr, meaning that the New Guinea trench is likely accumulating elastic strain and confirming that the new Guinea Trench is an active inter-plate boundary. Our results also show, that the north New Guinea Highlands and the Papuan peninsula are best modelled as two blocks separated by a boundary through the Aure Fold belt Belt complex. This block boundary today is accommodating an estimated 4-5 mm/yr dextral motion. Our model also confirms previous results showing that the Ramu-Markham fault accommodates the deformation associated with the Finisterre arc-continent collision. This new GPS velocity field provides fresh insights into the details of the kinematics of the PNG present-day deformation.
Skourtanioti, Eirini; Kapli, Paschalia; Ilgaz, Çetin; Kumlutaş, Yusuf; Avcı, Aziz; Ahmadzadeh, Faraham; Crnobrnja-Isailović, Jelka; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos
2016-10-01
Morphological and DNA data support that the East Mediterranean snake-eyed skink Ablepharus kitaibelii represents a species complex that includes four species A. kitaibelii, A. budaki, A. chernovi, and A. rueppellii, highlighting the need of its taxonomic reevaluation. Here, we used Bayesian and Maximum Likelihood methods to estimate the phylogenetic relationships of all members of the complex based on two mitochondrial (cyt b, 16S rRNA) and two nuclear markers (MC1R, and NKTR) and using Chalcides, Eumeces, and Eutropis as outgroups. The biogeographic history of the complex was also investigated through the application of several phylogeographic (BEAST) and biogeographic (BBM) analyses. Paleogeographic and paleoclimatic data were used to support the inferred phylogeographic patterns. The A. kitaibelli species complex exhibits high genetic diversity, revealing cases of hidden diversity and cases of non-monophyletic species such as A. kitaibelii and A. budaki. Our results indicate that A. pannonicus branches off first and a group that comprises specimens of A. kitaibelli and A. budaki from Kastelorizo Island group (southeast Greece) and southwest Turkey, respectively is differentiated from the rest A. kitaibelli and A. budaki populations and may represent a new species. The estimated divergence times place the origin of the complex in the Middle Miocene (∼16Mya) and the divergence of most currently recognized species in the Late Miocene. The inferred ancestral distribution suggests that the complex originated in Anatolia, supposing that several vicariance and dispersal events that are related with the formation of the Mid-Aegean Trench, the Anatolian Diagonal and the orogenesis of the mountain chains in southern and eastern Anatolia have led to current distribution pattern of A. kitaibelii species complex in the Balkans and Middle East. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta
2017-02-01
Mantle xenoliths in Neogene-Quaternary basaltic rocks related to the European Cenozoic Rift System serve to assess the evolution of the subcontinental lithospheric mantle beneath the Catalan Volcanic Zone in NE Spain. Crystallographic preferred orientations, major element composition of minerals, and temperature and pressure estimates have been used to this end. The mantle consists of spinel lherzolites, harzburgites and subordinate websterites. Protogranular microstructures are found in all peridotites and websterites, but lherzolites also display finer-grained porphyroclastic and equigranular microstructures. The dominant olivine deformation fabric is [010] fiber, but subordinate orthorhombic and [100]-fiber types are also present, especially in porphyroclastic and equigranular lherzolites. The fabric strength (J index = 10.12-1.91), equilibrium temperature and pressure are higher in xenoliths with [010]-fiber fabric and decrease in those with orthorhombic and [100]-fiber type. Incoherence between olivine and pyroxene deformation fabric is mostly found in porphyroclastic and equigranular lherzolites. Seismic anisotropy, estimated from the crystal preferred orientations, also decreases (AVp = 10.2-2.60%; AVs max = 7.95-2.19%) in porphyroclastic and equigranular lherzolites. The olivine [010]-fiber fabric points to deformation by simple shear or transpression which is likely to have occured during the development of late-Hercynian strike-slip shear zones, and to subsequent annealing during late Hercynian decompression, Permian and Cretaceous rifting. Also, it cannot be excluded that the percolation of mafic magmas during these extensional events provoked the refertilization of the lithospheric mantle. However, no clear relationship has been observed between fabric strength and mineral mode and composition. Later transtensional deformation during late Alpine orogenesis, at higher stress and decreasing temperature and pressure, transformed the earlier fabric into orthorhombic and [100]-fiber type. Comparison of seismic anisotropy estimates with the available SKS-wave splitting data suggests that most of the measured seismic anisotropy would be explained by the lithospheric contribution, if the lithospheric mantle fabrics record mainly transpression and transtensional deformation.
Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2016-12-01
Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.
Imaging Ancient Sutures with EarthScope Transportable Array Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Egbert, G. D.
2014-12-01
Magnetotellurics (MT) provides a powerful geophysical tool for imaging of ancient suture zones, which are frequently marked by elongated zones of very low resistivity. These conductive anomalies, which can extend to great depths and have apparently persisted for several billion years, most likely result from graphite and sulfides deeply emplaced and remobilized, through subduction, accretion and orogenesis. The Earthscope MT transportable array provides a unique broad-scale view of sutures in the continental US. In the northwestern US subvertical conductive features bound all of the major cratonic blocks. These can be identified with the Cheyenne Belt between the Wyoming Craton (WC) and Yavapai Terranes (YT), the Great Falls Tectonic Zone between WC and the Medicine Hat Block (MHB), and the Vulcan Structure of southern Alberta between MHB and the Hearne Craton. In all cases the conductive anomalies extend well into the mantle lithosphere. The more recent MT TA footprint in the north-central US (surrounding the Mid-Continent Rift (MCR)) also reveals conductive signatures of ancient sutures. The most prominent lies south of Lake Superior, just north of the Niagara Fault (NF), and can be associated with the Penokean Orogeny (~1.85 Ga). A second, further south beneath Iowa and western Wisconsin, just south of the Spirit Lake tectonic zone (SLtz), can be identified with YT accretion (~1.75 Ga). Both of these sutures are cleanly cut by the MCR. The break in the anomalies is narrow (comparable to the surface expression of the MCR) indicating that rifting impacts on the entire crustal section were highly localized. The south-dipping NF conductive anomaly extends from surface outcrop to at least the Moho. The SLtz anomaly is north-dipping, extending from mid-crust through the Moho. In both cases there is some evidence for a modestly conductive layer (likely carbon) thrust to mid-lithospheric depths within the overriding terrane.
NASA Astrophysics Data System (ADS)
Palin, R. M.; Reuber, G. S.; White, R. W.; Kaus, B. J. P.; Weller, O. M.
2017-12-01
The Tso Morari massif, northwest India, is one of only two regions in the Himalayan Range that exposes subduction-related ultrahigh-pressure (UHP) metamorphic rocks. The tectonic evolution of the massif is strongly debated, however, as reported pressure estimates for peak metamorphism range between 2.4 GPa and 4.8 GPa. Such ambiguity hinders effective lithospheric-scale modeling of the early stages of the orogen's evolution. We present the results of integrated petrological and geodynamic modeling (Palin et al., 2017, EPSL) that provide new quantitative constraints on the prograde-to-peak pressure-temperature-time (P-T-t) path, and predict the parageneses that felsic and mafic components of the massif crust should have formed under equilibrium conditions. Our model shows that peak P-T conditions of 2.6-2.8 GPa and 600-620 °C, representative of subduction to 90-100 km depth (assuming lithostatic pressure), were reached just 3 Myr after the onset of collision. These P-T-t constraints correlate well with those reported for similar UHP eclogite in the along-strike Kaghan Valley, Pakistan, suggesting that the northwest Himalaya contains dismembered remnants of a 400-km long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. The extremely high pressures (up to 4.8 GPa) for peak metamorphism reported by some workers are likely to be unreliable due to thermobarometry having been performed on minerals that did not represent equilibrium assemblages. Furthermore, key high-P minerals predicted to form in subducted Tso Morari continental crust (e.g. jadeite, Mg-rich garnet) are absent from natural samples in the region, reflecting the widespread metastable preservation of lower-pressure protolith assemblages during subduction and exhumation. This result questions the reliability of geodynamic simulations of orogenesis that are commonly predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.
NASA Astrophysics Data System (ADS)
Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.
2016-12-01
North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.
NASA Astrophysics Data System (ADS)
Clary, W. A.; Worthington, L. L.; Daigle, H.; Slagle, A. L.; Gulick, S. P. S.
2016-12-01
Sediments offshore Southern Alaska offer a natural laboratory to study glacial erosion, sediment deposition, and orogenesis. A major goal of Integrated Ocean Drilling Program (IODP) Expedition 341 was investigation of interrelationships among tectonic processes, paleoclimate, and glacial activity. Here, we focus on core-log-seismic integration of IODP Sites U1420 and U1421 on the shallow shelf and slope near the Bering Trough, a glacially derived shelf-crossing landform. These sites sample glacial and marine sediments that record a history of sedimentation following the onset of glacial intensification near the mid-Pleistocene transition (1.2 Ma) and Yakutat microplate convergence with North America. Ocean drilling provides important stratigraphic, physical properties, and age data in depth which support development of a stratigraphic model that can be extended across the shelf if carefully calibrated to local and regional seismic surveys. We use high resolution multichannel seismic, core, and logging data to develop a time-depth relationship (TDR) and update the developing chronostratigraphic model based on correlation of seismic sequence boundaries and drilling-related data, including biostratigraphic and paleomagnetic age controls. We calibrate, combine, and interpolate core and logging data at each site to minimize gaps in physical property information and generate synthetic seismic traces. At Site U1421, vertical seismic profiling further constrains the TDR, and provides input for the initial velocity model during the tie. Finally, we match reflectors in the synthetic trace with events in nearby seismic reflection data to establish a TDR at each site. We can use this relationship to better interpret the development of the Bering Trough, a recurring and favored path for ice streams and glacial advance. Initial results suggest late Pleistocene sedimentation rates of at least 1 km/m.y. on average, and variable sedimentation rates which are possibly correlated with paleoenvironmental indicators such as sea ice related species of diatoms.
NASA Astrophysics Data System (ADS)
Vennemann, Alan
My research investigates the structure of the Indio Mountains in southwest Texas, 34 kilometers southwest of Van Horn, at the UTEP (University of Texas at El Paso) Field Station using newly acquired active-source seismic data. The area is underlain by deformed Cretaceous sedimentary rocks that represent a transgressive sequence nearly 2 km in total stratigraphic thickness. The rocks were deposited in mid Cretaceous extensional basins and later contracted into fold-thrust structures during Laramide orogenesis. The stratigraphic sequence is an analog for similar areas that are ideal for pre-salt petroleum reservoirs, such as reservoirs off the coasts of Brazil and Angola (Li, 2014; Fox, 2016; Kattah, 2017). The 1-km-long 2-D shallow seismic reflection survey that I planned and led during May 2016 was the first at the UTEP Field Station, providing critical subsurface information that was previously lacking. The data were processed with Landmark ProMAX seismic processing software to create a seismic reflection image of the Bennett Thrust Fault and additional imbricate faulting not expressed at the surface. Along the 1-km line, reflection data were recorded with 200 4.5 Hz geophones, using 100 150-gram explosive charges and 490 sledge-hammer blows for sources. A seismic reflection profile was produced using the lower frequency explosive dataset, which was used in the identification of the Bennett Thrust Fault and additional faulting and folding in the subsurface. This dataset provides three possible interpretations for the subsurface geometries of the faulting and folding present. However, producing a seismic reflection image with the higher frequency sledge-hammer sourced dataset for interpretation proved more challenging. While there are no petroleum plays in the Indio Mountains region, imaging and understanding subsurface structural and lithological geometries and how that geometry directs potential fluid flow has implications for other regions with petroleum plays.
Continent-arc collision in the Banda Arc imaged by ambient noise tomography
NASA Astrophysics Data System (ADS)
Porritt, Robert W.; Miller, Meghan S.; O'Driscoll, Leland J.; Harris, Cooper W.; Roosmawati, Nova; Teofilo da Costa, Luis
2016-09-01
The tectonic configuration of the Banda region in southeast Asia captures the spatial transition from subduction of Indian Ocean lithosphere to subduction and collision of the Australian continental lithosphere beneath the Banda Arc. An ongoing broadband seismic deployment funded by NSF is aimed at better understanding the mantle and lithospheric structure in the region and the relationship of the arc-continent collision to orogenesis. Here, we present results from ambient noise tomography in the region utilizing this temporary deployment of 30 broadband instruments and 39 permanent stations in Indonesia, Timor Leste, and Australia. We measure dispersion curves for over 21,000 inter-station paths resulting in good recovery of the velocity structure of the crust and upper mantle beneath the Savu Sea, Timor Leste, and the Nusa Tenggara Timur (NTT) region of Indonesia. The resulting three dimensional model indicates up to ∼25% variation in shear velocity throughout the plate boundary region; first-order velocity anomalies are associated with the subducting oceanic lithosphere, subducted Australian continental lithosphere, obducted oceanic sediments forming the core of the island of Timor, and high velocity anomalies in the Savu Sea and Sumba. The structure in Sumba and the Savu Sea is consistent with an uplifting forearc sliver. Beneath the island of Timor, we confirm earlier inferences of pervasive crustal duplexing from surface mapping, and establish a link to underlying structural features in the lowermost crust and uppermost mantle that drive upper crustal shortening. Finally, our images of the volcanic arc under Flores, Wetar, and Alor show high velocity structures of the Banda Terrane, but also a clear low velocity anomaly at the transition between subduction of oceanic and continental lithosphere. Given that the footprint of the Banda Terrane has previously been poorly defined, this model provides important constraints on tectonic reconstructions that formerly have lacked information on the lower crust and uppermost mantle.
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.
2017-12-01
The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.
NASA Astrophysics Data System (ADS)
Henriquez, S.; Carrapa, B.; DeCelles, P. G.
2017-12-01
In Cordilleran-type orogens, exhumation of the thrust belt records the kinematic history of the orogenic system. In the Central Andes, the widest and thickest part of this orogen, several authors have documented the exhumation of the thrust belt in the modern forearc (Chile) and retroarc region (Bolivia and Argentina) showing an overall eastward propagation of deformation since the late Eocene. However, the exhumation of earlier Andean retroarc tectonic events remains poorly documented. In the forearc, the Cordillera de Domeyko and Salar de Atacama basin exhibit multiple pieces of evidence for earlier Andean orogenesis. The goal of this study is to document the thermal record of Late Cretaceous to Eocene retroarc deformation. To this end, this study investigates the cooling history of the easternmost basement uplift of the Cordillera de Domeyko. We couple this record with detrital thermochronology from cobbles in the Late Cretaceous to Miocene sedimentary units from the Salar de Atacama basin which records the unroofing history of this uplift. We employed a multi-dating approach combining apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronology to constrain the timing and amount of exhumation in the early Andean retroarc region. Our results show episodic cooling ca. 90-80, 65-60 and 45-40 Ma. This new data provides a thermochronologic record of Late Cretaceous and Paleocene deformation in the retroarc region as well as of the widely recognized Eocene deformation event. The cooling signal is interpreted to reflect exhumation controlled by uplift and erosion in the retroarc region. These exhumation events reflect episodes of internal deformation, crustal thickening, and roughly similar amounts of local erosion. Exhumation in this region decreased by the late Oligocene; by this time the orogenic front was established to the east, in the Eastern Cordillera.
NASA Astrophysics Data System (ADS)
Braza, M.; Haproff, P. J.
2016-12-01
The easternmost extension of the Indus-Ysangpo suture (IYS) and Xigaze forearc complex, the Tidding Formation of northeastern India, remains the least-studied sequence representing closure of the Neotethys ocean and syn-tectonic sedimentation. In this study, we present P-T determinations coupled with detrital zircon U-Pb geochronology and detailed geologic mapping to uncover the depositional and metamorphic history of Tidding suture and forearc rocks during Himalayan orogenesis. Four mica schists were sampled from successive NW-SE-striking thrust sheets within the Dibang Valley of Arunachal Pradesh (N.E. India), southwest of the easternmost L. Cretaceous Gangdese batholith. Use of the garnet-muscovite-biotite-plagioclase (GMBP) thermobarometer and Ti-in-biotite thermometer on schist sample PH-1-8-13-26 yield peak conditions of 627 ± 28°C and 10.4 ± 1.1 kbar. Similarly, use of the garnet-biotite Fe-Mg exchange thermometer and garnet-aluminosilicate-silica-plagioclase (GASP) barometer yield 644 ± 50°C and 12 ± 1 kbar for schist sample PH-11-14-15-24 within the same thrust sheet. Both samples contain recrystallized quartz along grain boundaries and garnets contain no significant compositional zoning. At structurally lower levels, garnet chlorite schist (PH-1-8-13-8) sampled from the Mayodia klippe records peak temperatures below 650°C. Garnets display growth zoning, with increasing Mn and decreasing Fe and Mg from rim to core. Application of the Ti-in-biotite thermometer to a mafic schist (PH-1-3-13-1B) within the Mayodia klippe near a southwestward-directed thrust yields a peak temperature of 679 ± 24°C. Our study reveals metamorphism of IYS rocks occurred at deep crustal levels (>30 km) during northward Neotethys subduction. Suture rocks were subsequently exhumed by orogen-scale N-dipping thrusts during growth of the easternmost Himalayan orogen.
Lithospheric buckling and far-foreland deformation during the Laramide and Appalachian orogenies
NASA Astrophysics Data System (ADS)
Tikoff, B.; Siddoway, C. S.
2017-12-01
Major intraplate tectonics within North America (Laurentia) occurs during times of major orogenesis along the plate margins. During mountain building, typical structures of the hinterland are an orogenic plateau and fold-and-thrust belts, while in the far foreland (intraplate) areas long-wavelength ( 200 km or longer) folds and fault-reactivation features form. Long-wavelength folds are evident in both the Appalachian and Laramide orogenic forelands, with the stratigraphy recording the timing of the uplift. This contribution examines the model of lithospheric buckling - periodic folding associated with a horizontal endload on the edge of the plate - based on scaled, physical experiments and corroborated by numerical models. The Laramide (75-55 Ma) intraplate orogen in the classical location in Wyoming contains basement-cored arches spaced 200 km apart, for which the mechanism of uplift is questioned. Seismic evidence obtained for the Bighorn uplift, Wyoming, obtained by the EarthScope Bighorn project, shows an upwarp of the Moho beneath, but oblique to the trend of the surface exposure of the basement arch. Both the surface and Moho exhibit approximately the same structural relief. The seismic data exhibit no evidence for a regionally continuous decollement, nor is there evidence of rotation of structural markers within these features, of the type that is observed in the detached fold-and-thrust belt. The intraplate region affected by long-wavelength folding includes western Wyoming, with continuation of some features across the E-W-oriented Cheyenne belt (e.g., Rock Springs-Douglas Creek arch), Colorado Plateau, and High Plains east of the Rocky Mountains, where surface and subsurface structures display a series of anticlinal arches ("plains-type" folds). Appalachian mountain building also caused long-wavelength folding, with a spacing consistent with lithospheric buckling, mostly associated with the Devonian Acadian orogeny. The Laramide arches in the High Plains seem to occur on arches inherited from the Appalachian orogeny, suggesting the permanence of these lithospheric buckles once they have formed.
Using titanite petrochronology to monitor CO2-degassing episodes from the Himalayas
NASA Astrophysics Data System (ADS)
Rapa, Giulia; Groppo, Chiara; Rolfo, Franco; Petrelli, Maurizio; Mosca, Pietro
2017-04-01
Metamorphic degassing from active collisional orogens supplies a significant fraction of CO2 to the atmosphere, playing a fundamental role in the long-term (> 1 Ma) global carbon cycle (Gaillardet & Galy, 2008). The petro-chronologic study of the CO2-source rocks (e.g. calc-silicate rocks) in collisional settings is therefore fundamental to understand the nature, timing, duration and magnitude of the orogenic carbon cycle. So far, the incomplete knowledge of these systems hindered a reliable quantitative modelling of metamorphic CO2 fluxes. A detailed petrological modelling of a clinopyroxene + scapolite + K-feldspar + plagioclase + biotite + zoisite ± calcite calc-silicate rock from central Nepal Himalaya allowed us to identify and fully characterize - for the first time - different metamorphic reactions that led to the simultaneous growth of titanite and production of CO2. These reactions involve biotite (rather than rutile) as the Ti-bearing reactant counterpart of titanite. The results of petrological modelling combined with Zr-in-Ttn thermometry and U-Pb geochronology suggest that in the studied sample, most titanite grains grew during two nearly continuous episodes of titanite formation: a near-peak event at 730-740°C, 10 kbar, 25.5±1.5 Ma, and a peak event at 740-765°C, 10.5 kbar, 22±3 Ma. Both episodes of titanite growth are correlated to specific CO2-producing reactions, thus allowing to constrain the timing, duration and P-T conditions of the main CO2-producing events, as well as the amounts of CO2 produced. Assuming that fluids released at a depth of ca. 30 km are able to reach the Earth's surface 10 Ma after their production, it is therefore possible to speculate on the role exerted by the Himalayan orogenesis on the climate in the past. Gaillardet J. & Galy A. (2008): Himalaya-carbon sink or source? Science, 320, 1727-1728.
The 16th International Geological Congress, Washington, 1933
Nelson, C.M.
2009-01-01
In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).
NASA Astrophysics Data System (ADS)
Kalnins, L. M.; Watts, A. B.
2009-08-01
We have used free-air gravity anomaly and bathymetric data, together with a moving window admittance technique, to determine the spatial variation in oceanic elastic thickness, Te, in the Western Pacific ocean. Synthetic tests using representative seamounts show that Te can be recovered to an accuracy of ± 5 km for plates up to 30 km thick, with increased accuracy of ± 3 km for Te ≤ 20 km. The Western Pacific has a T e range of 0-50 km, with a mean of 9.4 km and a standard deviation of 6.8 km. The T e structure of the region is dominated by relatively high Te over the Hawaiian-Emperor Seamount Chain, intermediate values over the Marshall Islands, Gilbert Ridge, and Marcus-Wake Guyots, and low values over the Line Islands, Mid-Pacific Mountains, Caroline Islands, Shatsky Rise, Hess Rise, and Musician Seamounts. Plots of Te at sites with radiometric ages suggest that Te is to first order controlled by the age of the lithosphere at the time of loading. In areas that backtrack into the South Pacific Isotopic and Thermal Anomaly (SOPITA), Te may be as low as the depth to the 180 ± 120 °C isotherm at least locally. In the northern part of the study area including the Hawaiian-Emperor Seamount Chain, Te correlates with the depth to 310 ± 120 °C. These best-fitting isotherms imply peak rates of volcanism during 100-120 Ma (Early Cretaceous) and 140-150 Ma (Late Jurassic). The corresponding addition of 8 × 10 6 km 3 and 4 × 10 6 km 3 of volcanic material to the surface of the oceanic crust would result in long-term sea-level rises of 20 m and 10 m respectively. The Late Jurassic volcanic event, like the later Early Cretaceous event, appears to have influenced the tectonic evolution of the Pacific plate convergent boundaries, resulting in increased volcanism and orogenesis.
The Limits of Extrusion in the Western Himalaya
NASA Astrophysics Data System (ADS)
Zhang, K.; Webb, A. G.; Donaldson, D.; Johnson, S.; Elorriaga, T.
2014-12-01
Himalayan orogenesis is commonly explained by 1) extrusion models, involving expulsion of high-grade rocks southwards from beneath Tibet and up towards the High Himalayan orographic front, and/or 2) duplexing models, involving accretion of thrust horses from the downgoing Indian plate to the over-riding orogenic wedge. Most extrusion models predict exhumation and erosion of upper-amphibolite facies metamorphic rocks between the Main Central thrust (MCT) and a structurally higher normal fault, and therefore can be tested by determining if such high grade rocks occur between the MCT and the Indus-Yalu suture to the north. Prior qualitative studies suggest that such rocks are missing across the east Ladakh / Chamba and Kashmir regions of the western Himalaya. Here we present new quantitative and semi-quantitative results that document low peak metamorphic temperatures along a northeast-trending transect across the east Ladakh / Chamba Himalaya. We performed illite crystallinity (IC) and quartz grain boundary analyses to determine metamorphic and deformation temperatures, respectively. Calibrated IC values of structurally high samples range from 0.25 to 0.54, indicating temperatures of ~100 ˚C to ~300 ˚C. In structurally lower, muscovite +/- biotite-bearing meta-pelitic and meta-psammitic rocks, quartz grain boundaries show bulging recrystallization fabrics, corresponding to deformation temperatures of <~450 ˚C. Local exceptions occur along the southeast margin of the study region near a dome, where quartz sub-grain rotation fabrics indicate deformation temperatures between ~450 ˚C and ~550 ˚C. Our results, combined with similar IC values to the north from Girard et al. [2001, Clay Minerals v. 36, p. 237-247], demonstrate that a continuous strip of <~450 ˚C rocks extends from the MCT to the Indus-Yalu suture here. Therefore the predictions of extrusion models are not met in this portion of the Himalaya; we present alternative duplexing models.
Fisher, C.M.; Loewy, S.L.; Miller, C.F.; Berquist, P.; Van Schmus, W. R.; Hatcher, R.D.; Wooden, J.L.; Fullagar, P.D.
2010-01-01
The conventional view that the basement of the southern and central Appalachians represents juvenile Mesoproterozoic crust, the final stage of growth of Laurentia prior to Grenville collision, has recently been challenged. New whole-rock Pb and Sm-Nd isotopic data are presented from Meso protero zoic basement in the southern and central Appalachians and the Granite-Rhyolite province, as well as one new U-Pb zircon age from the Granite-Rhyolite province. These data, combined with existing data from Mesoproterozoic terranes throughout southeastern Laurentia, further substantiate recent suggestions that the southern and central Appalachian basement is exotic with respect to Laurentia. Sm-Nd isotopic compositions of most rocks from the southern and central Appalachian basement are consistent with progressive growth through reworking of the adjacent Granite-Rhyolite province. However, Pb isotopic data, including new analyses from important regions not sampled in previous studies, do not correspond with Pb isotopic compositions of any adjacent crust. The most distinct ages and isotopic compositions in the southern and central Appalachian basement come from the Roan Mountain area, eastern Tennessee-western North Carolina. The data set indicates U-Pb zircon ages up to 1.8 Ga for igneous rocks, inherited and detrital zircon ages >2.0 Ga, Sm-Nd depleted mantle model (TDM) ages >2.0 Ga, and the most elevated 207Pb/204Pb observed in southeastern Laurentia. The combined U-Pb geochronologic and Sm-Nd and Pb isotopic data preclude derivation of southern and central Appalachian basement from any nearby crustal material and demonstrate that Grenville age crust in southeastern Laurentia is exotic and probably was transferred during collision and assembly of Rodinia. These new data better define the boundary between the exotic southern and central Appalachian basement and adjacent Laurentian Granite-Rhyolite province. ?? 2010 Geological Society of America.
NASA Astrophysics Data System (ADS)
Reinhold, C.
1998-10-01
The Upper Jurassic of the eastern Swabian Alb is composed of oolitic platform sands with associated microbe-siliceous sponge mounds at the platform margins. They are surrounded by argillaceous or calcareous mudstones and marl-limestone alternations, deposited in adjacent marl basins. Partial to complete dolomitization is predominantly confined to the mound facies. Six types of dolomite, as well as one type of ankerite, document a complex diagenetic history during shallow burial with multiple episodes of dolomite formation and recrystallization. The earliest massive matrix dolomitization is Ca-rich, has slightly depleted oxygen isotope values relative to Late Jurassic seawater, and carbon isotopic values in equilibrium with Late Jurassic seawater. This initial massive matrix dolomitization occurred during latest Jurassic to earliest Cretaceous and is related to pressure dissolution during very shallow burial at temperatures of at least 50°C. Hydrologic conditions and mass-balance calculations indicate that burial compaction provided sufficient fluids for dolomitization. Mg is derived from negligibly modified seawater, that was expelled from the adjacent off-reef strata into the mound facies. Position of the mounds along the platform margins controlled the distribution of the shallow-burial dolomite. Covariant trends between textural modification, increasing stoichiometry, partial changes in trace element content (Mn, Fe, Sr) and depletion in stable isotopes as well as distinctive CL pattern illustrate two recrystallization phases of the precursor matrix dolomite during further burial at elevated temperatures. Strong Sr enrichment of the second phase of recrystallized dolomite is ascribed to Sr-rich meteoric waters descending from overlying aragonite-bearing reef limestones or evaporite-bearing peritidal carbonates. Late-stage coarsely crystalline dolomite cements occur as vug and fracture fillings and formed during burial. Ankerite, associated with sulphide and sulphate minerals, and saddle dolomite are assumed to have formed from hydrothermal waters that moved to higher stratigraphic levels along fracture conduit systems that developed during Late Cretaceous to Tertiary Alpine orogenesis.
NASA Astrophysics Data System (ADS)
Ferrero, Silvio; Wunder, Bernd; Ziemann, Martin A.; Wälle, Markus; O'Brien, Patrick J.
2016-11-01
Carbonatites are peculiar magmatic rocks with mantle-related genesis, commonly interpreted as the products of melting of CO2-bearing peridotites, or resulting from the chemical evolution of mantle-derived magmas, either through extreme differentiation or secondary immiscibility. Here we report the first finding of anatectic carbonatites of crustal origin, preserved as calcite-rich polycrystalline inclusions in garnet from low-to-medium pressure migmatites of the Oberpfalz area, SW Bohemian Massif (Central Europe). These inclusions originally trapped a melt of calciocarbonatitic composition with a characteristic enrichment in Ba, Sr and LREE. This interpretation is supported by the results of a detailed microstructural and microchemical investigation, as well as re-melting experiments using a piston cylinder apparatus. Carbonatitic inclusions coexist in the same cluster with crystallized silicate melt inclusions (nanogranites) and COH fluid inclusions, suggesting conditions of primary immiscibility between two melts and a fluid during anatexis. The production of both carbonatitic and granitic melts during the same anatectic event requires a suitable heterogeneous protolith. This may be represented by a sedimentary sequence containing marble lenses of limited extension, similar to the one still visible in the adjacent central Moldanubian Zone. The presence of CO2-rich fluid inclusions suggests furthermore that high CO2 activity during anatexis may be required to stabilize a carbonate-rich melt in a silica-dominated system. This natural occurrence displays a remarkable similarity with experiments on carbonate-silicate melt immiscibility, where CO2 saturation is a condition commonly imposed. In conclusion, this study shows how the investigation of partial melting through melt inclusion studies may unveil unexpected processes whose evidence, while preserved in stiff minerals such as garnet, is completely obliterated in the rest of the rock due to metamorphic re-equilibration. Our results thus provide invaluable new insights into the processes which shape the geochemical evolution of our planet, such as the redistribution of carbon and strategic metals during orogenesis.
NASA Astrophysics Data System (ADS)
Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio
2017-04-01
The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it seems that faulting originated in other sectors of the fault zone, and then propagated through the studied section.
NASA Astrophysics Data System (ADS)
Guest, B.; Matthews, W.; Coutts, D. S.; Bain, H.; Hubbard, S. M.
2015-12-01
The Baja-BC hypothesis is at the center of a great earth sciences controversy. It stems from paleomagnetic observations that require large-scale displacements of continental crust from low latitudes (Baja, California) to moderate latitudes (British Columbia). Many geologists dispute the scale of the displacements due to a lack of corroborating geological evidence. We provide a robust, geological dataset that confirms the paleomagnetic observations. Detrital zircons from Cretaceous to Paleocene sandstone of the Nanaimo Group, which crops out in western Vancouver Island and the Gulf Islands of southwest British Columbia, are analyzed. The data show a clear transition from local <300 Ma western Coast Plutonic Complex sources in the Campanian, to sources that include a significant component of >300 Ma grains in the Maastrichtian-Paleogene. An identical pattern is observed in detrital zircon datasets from southern California forearc basin deposits, and schists interpreted as the subducted remnants of forearc deposits. With a high-n dataset (n=3041) we are able to rule out possible >300 Ma source regions in Canada and the northern United States, and uniquely tie Nanaimo Group rocks to the Mojave-Sonora region of SW United States. This implies that at the end of the Cretaceous, Vancouver Island and western mainland BC were adjacent to southern California and northwestern Mexico, requiring 1900 km of displacement during the latest Cretaceous and Paleocene, consistent with paleomagnetic results. An implication of this result is that the western Coast Batholith of southwest BC was positioned between the northern Peninsular Ranges and southern Sierra Nevada batholiths in the late Cretaceous, and likely represents a displaced segment of a once continuous Cordilleran arc batholith. These results have broad implications for our understanding of episodic arc magmatism in the Cordillera, the tectonic evolution of western North America, Laramide orogenesis, the development and extent of the Nevadaplano, and the onset of Basin and Range extension.
NASA Astrophysics Data System (ADS)
Furlanetto, F.; Thorkelson, D. J.; Rainbird, R.; Davis, B.; Gibson, D.; Marshall, D. D.
2015-12-01
The Wernecke Supergroup was deposited when the northwestern margin of Laurentia was undergoing major adjustments related to the assembly of the supercontinent Columbia (Nuna) in the late Paleoproterozoic. The succession was deposited between ca. 1663 and ca. 1620 Ma in two clastic to carbonate grand cycles. The detrital zircon population is bimodal, reflecting derivation from cratonic Laurentia. Basin shallowing at the end of the second grand cycle corresponds to a significant younging of detrital zircon populations. Specifically, the late Paleoproterozoic peak of zircon ages shifted from ca. 1900 Ma to ca. 1825 Ma, and the proportion of Archaean and early Paleoproterozoic zircon decreased. These shifts were caused by a change in drainage pattern in northern Laurentia during an early phase of the Forward orogeny, farther inland. The orogeny also led to inversion of the broadly correlative Hornby Bay Group. Zircon younger than 1.75 Ga is present throughout the sedimentary succession and may have originated from small igneous suites in northern Laurentia or larger magmatic arc terranes of the Yavapai and early Mazatzal orogenies in southern Laurentia. Eastern and southern Australia and the intervening Bonnetian arc may have contributed. The Wernecke Supergroup shares similar detrital zircon age and Nd isotope signatures with the Hornby Bay, Muskwa, Athabasca and Thelon successions of Canada; the Tarcoola Formation, Willyama Supergroup, and Isan Supergroup of Australia; and of the Dongchuan-Dahongshan-Hondo successions of South China. These similarities are compelling evidence for a shared depositional system in the late Paleoproterozoic. Western Columbia may have had a dynamic SWEAT-like configuration with Australia, East Antarctica and South China moving in a complex manner near the margin of western Laurentia. All of the continents except for South China underwent post-Wernecke tectonism during the Racklan, Forward, Olarian, Isan, Mazatzal and related orogenies, ca. 1.6-1.5 Ga.
NASA Astrophysics Data System (ADS)
Berger, Aaron L.; Spotila, James A.; Chapman, James B.; Pavlis, Terry L.; Enkelmann, Eva; Ruppert, Natalia A.; Buscher, Jamie T.
2008-06-01
The kinematics and architecture of orogenic systems along the leading edges of accreting terranes may be heavily influenced by climate, but little research has been devoted to the long-term effects of glacial erosion on orogenesis. Here we use low-temperature apatite and zircon (U-Th)/He and fission-track thermochronometry, along with subsidiary structural relationships and seismicity, to develop a new architectural model of the St. Elias orogen in southern Alaska, which is one of the best examples of a glaciated orogenic wedge worldwide. These data illustrate that the orogen consists of a deformational backstop on the leeward flank and a rapidly deforming and eroding, thin-skinned fold and thrust belt on the windward flank. A structure beneath the Bagley ice field separates these distinct deformational domains, which we propose is a backthrust that makes the orogen doubly-vergent. Thermochronometry within the orogenic wedge suggests that denudation and deformation are strongly influenced by glacial erosion. Long-term exhumation, at rates of up to 4 mm/yr, is concentrated within a narrow zone along the windward flank, where glacier equilibrium lines intersect the orogenic wedge. The onset of enhanced glaciation also coincided with a marked acceleration in exhumation across the orogenic wedge, accelerated backthrust motion, and a major shift in deformation away from the North American-Yakutat terrane suture (Chugach St. Elias fault). We propose that accelerated glacial erosion forced the redistribution of strain along the backthrust and an en echelon array of forethrusts that lie beneath the zone of heaviest glaciation, which in turn are systematically truncated by the backthrust. This focusing of deformation matches predictions from analytical models of orogenic wedges and implies a high degree of coupling between climate and tectonics in this glacially-dominated orogen.
NASA Astrophysics Data System (ADS)
Cao, K.; Wang, G.; Zeng, Z.; Replumaz, A.
2016-12-01
In this study, we report newly-discovered potassic plutons emplaced at 11 Ma in the SE Pamir. Together with recently-reported volcanism at 12 Ma in the West Kunlun Mts. (Cao et al., 2015), it can be inferred that Late Miocene magmas extend from the north-central Tibet to the central Pamir. Furthermore, our new apatite fission-track analysis in the SE Pamir-West Kunlun Mountains present uniform ages clustering at 11-6 Ma. Forward and inverse modeling indicate Late Miocene ( 11-6 Ma) rapid exhumation of the SE Pamir-West Kunlun Mountains, concurrent with accelerated exhumation of the Shakhdara dome (Stübner et al., 2013), initial doming of the Muztagata massif (Robinson et al., 2007; Sobel et al., 2011; Cao et al., 2013), and thrusting of the front faults along Pamir-West Kunlun Mts. (Bershaw et al., 2012; Cao et al., 2013, 2015). The simultaneous doming and potassic magmatism could attributed to stress relaxation of the upper crust at that time, possibly driven by the thinning of lower lithosphere beneath Pamir-West Kunlun Mts.. Such plausible mechanisms could be responsible for Neogene magmatism, rock exhumation and plateau growth in northwestern Tibet. At the continental scale, our results support that the Tibetan Plateau underwent a Late Miocene phase of deformation and developed outward and upward since then (Molnar et al., 2012). Three representative models are proposed to account for Late Miocene magmatism and crustal deformation in northern Tibet, including 1) southward subduction of the Tarim lithosphere mantle (Matte et al., 1996; Wittlinger et al., 2004), 2) convective removal of lower lithosphere (Molnar et al., 1993; Turner et al., 1993, 1996), and 3) penetration of molten crust into Kunlun terrane (Le Pape et al., 2012; Wang et al., 2012). Our results allow to discuss these competing models in the western Tibet, to better understand the intracontinent orogenesis in central Asia, in which the lithospheric processes have led to upper crust deformation.
Hackley, P.C.; Peper, J.D.; Burton, W.C.; Horton, J. Wright
2007-01-01
Geologic mapping in south-central Virginia demonstrates that the stratigraphy and structure of the Carolina slate belt extend northward across a steep thermal gradient into upper amphibolite-facies correlative gneiss and schist. The Neoproterozoic greenschist-facies Hyco, Aaron, and Virgilina Formations were traced northward from their type localities near Virgilina, Virginia, along a simple, upright, northeast-trending isoclinal syncline. This syncline is called the Dryburg syncline and is a northern extension of the more complex Virgilina synclinorium. Progressively higher-grade equivalents of the Hyco and Aaron Formations were mapped northward along the axial trace of the refolded and westwardly-overturned Dryburg syncline through the Keysville and Green Bay 7.5-minute quadrangles, and across the northern end of the Carolina slate belt as interpreted on previous geologic maps. Hyco rocks, including felsic metatuff, metawacke, and amphibolite, become gneisses upgrade with areas of local anatexis and the segregation of granitic melt into leucosomes with biotite selvages. Phyllite of the Aaron Formation becomes garnet-bearing mica schist. Aaron Formation rocks disconformably overlie the primarily felsic volcanic and volcaniclastic rocks of the Hyco Formation as evidenced by repeated truncation of internal contacts within the Hyco on both limbs of the Dryburg syncline at the Aaron-Hyco contact. East-northeast-trending isograds, defined successively by the first appearance of garnet, then kyanite ?? staurolite in sufficiently aluminous rocks, are superposed on the stratigraphic units and synclinal structure at moderate to high angles to strike. The textural distinction between gneisses and identifiable sedimentary structures occurs near the kyanite ?? staurolite-in isograd. Development of the steep thermal gradient and regional penetrative fabric is interpreted to result from emplacement of the Goochland terrane adjacent to the northern end of the slate belt during Alleghanian orogenesis. This mapping study indicates that the Carolina slate belt does not terminate on the north against through-going faults or rest on higher-grade basement as previously suggested.
NASA Astrophysics Data System (ADS)
Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena
2016-04-01
Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong
2015-12-01
The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by widespread intracontinental orogeny and continental reconstruction, are commonly termed the Yanshan Revolution (Movement) in the Chinese literature.
NASA Astrophysics Data System (ADS)
Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.
2016-04-01
The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is likely ubiquitous, indicating continental crust growth by both lateral accumulation and vertical basaltic injection.
NASA Astrophysics Data System (ADS)
Anderson, Mark; Hames, Willis; Stokes, Alison
2010-05-01
Within the stack of Caledonian crystalline thrust sheets of northern Scandinavia, a single amphibolite facies lithotectonic unit, the Småtinden nappe, is identified as a major, basement-coupled ("stretching") shear zone. This dominantly pelitic unit achieved peak metamorphic conditions of 535-550°C and 8-9kbars, and the stretching geometry suggests that this most likely occurred in response to overthrusting of a hot, pre-assembled Caledonian thrust stack. Along-strike variations in microstructural geometries and patterns of mineral zoning in widely developed porphyroblast phases suggest, however, subsequent strain partitioning within the zone during late-stage decoupling of the thrust stack from the basement along major out-of-sequence thrusts. Large parts of the nappe are characterised by relatively late, static growth preserving concordant Si-Se relationships, and typically symmetrical external fabrics consistent with formation under dominantly pure shear conditions. In the Salangen area, however, the nappe is characterised by early garnet growth, with discordant Si-Se relationships and asymmetric external fabric geometries consistent with formation during ESE-directed simple shear. Remarkably consistent thermometric estimates from chlorites in both regimes (post- and syn-shearing) suggest that out-of-sequence ramping occurred at temperatures in the range 370-400 ̊C, within the typical range of blocking temperatures for argon retention in muscovite. 40Ar-39Ar dating of muscovites from S-C fabrics in the out-of-sequence shear zone suggest that late-stage thrusting occurred during the middle-late Devonian (ca. 395-375 Ma). Hanging-wall and footwall geometries coupled with these radiometric dates indicate that the development of these late thrusts closely relates to reactivation of pre-Caledonian Baltic basement during the Devonian (400-370 Ma). East-west contraction during the upper end of this time frame is peculiar considering that this was the period of large magnitude and rapid extension in western Norway.
NASA Astrophysics Data System (ADS)
Liu, Bo; Han, Bao-Fu; Ren, Rong; Chen, Jia-Fu; Wang, Zeng-Zhen; Zheng, Bo
2017-02-01
The Paleozoic accretionary orogenesis and continental crustal growth in Central Asia are thought to have close relationship with the evolution of the Paleo-Asian Ocean (PAO). The well-exposed plutons in the northern Barleik Mountains of the West Junggar region, NW China, may provide essential insights into the evolution of the Junggar Ocean, a branch of the PAO, and mechanism of continental crustal growth. Our work on the Barleik plutons indicates an early suite of 324-320 Ma diorite and a late suite of 314-259 Ma quartz syenite and granitic porphyry. All the plutons are characterized by high-K calc-alkaline to shoshonitic signatures, varying depletion in Nb, Ta, Sr, P, Eu, and Ti, low initial 87Sr/86Sr ratios (0.70241-0.70585), strongly positive εNd(t) values (+ 5.7-+7.7), and young one-stage Nd model ages (390-761 Ma), suggesting that they resulted from different batches of magma that were produced by fractional crystallization of a metasomatized mantle source with minor crustal contamination. The diorite is coeval with the youngest arc magmatic rocks, indicating a subduction-related origin. By contrast, the quartz syenite and granitic porphyry are geochemically similar to A2-type granites, with high Zr, Ga, and FeOT/[FeOT + MgO], and are coeval with the widespread plutons in the West Junggar. This, together with the occurrence of Late Carboniferous fluvial deposits and the lack of < 320 Ma ophiolitic and subduction-related metamorphic lithologies, definitively indicates a post-collisional setting after the closure of the Junggar Ocean. Slab breakoff accompanied by asthenospheric upwelling and basaltic underplating is a possible geodynamic process that is responsible for the post-collisional magmatism and vertical crustal growth in the region. Thus a tectonic switch from subduction to post-collision started at the end of the Early Carboniferous ( 320 Ma), probably as a result of the final closure of the Junggar Ocean.
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; Sun, Daoyuan; O'Driscoll, Leland; Becker, Thorsten W.; Holt, Adam; Diaz, Jordi; Thomas, Christine
2015-04-01
Detailed mantle and lithospheric structure from the Canary Islands to Iberia have been imaged with data from recent temporary deployments and select permanent stations from over 300 broadband seismometers. The stations extended across Morocco and Spain as part of the PICASSO, IberArray, and Morocco-Münster experiments. We present results from S receiver functions (SRF), shear wave splitting, waveform modeling, and geodynamic models that help constrain the tectonic evolution of the westernmost Mediterranean, including orogenesis of the Atlas Mountains and occurrence of localized alkaline volcanism. Our receiver function images, in agreement with previous geophysical modeling, show that the lithosphere is thin (~65 km) beneath the Atlas, but thickens (~100 km) over a very short length scale at the flanks of the mountains. We find that these dramatic changes in lithospheric thickness also correspond to dramatic decreases in delay times inferred from S and SKS splitting observations of seismic anisotropy. Pockets and conduits of low seismic velocity material below the lithosphere extend along much of the Atlas to Southern Spain and correlate with the locations of Pliocene-Quaternary magmatism. Waveform analysis from the USC linear seismic array across the Atlas Mountains constrains the position, shape, and physical characteristics of one localized, low velocity conduit that extends from the uppermost mantle (~200 km depth) up to the volcanoes in the Middle Atlas. The shape, position and temperature of these seismically imaged low velocity anomalies, topography of the base of the lithosphere, morphology of the subducted slab beneath the Alboran Sea, position of the West African Craton and correlation with mantle flow inferred from shear wave splitting suggest that the unusually high topography of the Atlas Mountains and isolated recent volcanics are due to active mantle support that may be from material channeled from the Canary Island plume.
NASA Astrophysics Data System (ADS)
Elisha, B.; Katzir, Y.; Kylander-Clark, A. R.
2017-12-01
Collision-related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from meta-sedimentary sources. However, in the late Neoproterozoic calc-alkaline batholiths of the Arabian Nubian Shield (ANS), which constitutes the northern half of the East African orogen, sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here we use paired in-situ measurements of U-Th-Pb isotope ratios and REE contents of monazite and xenotime by LASS to demonstrate direct linkage between granites and migmatites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth, 640-600 Ma, in metapelites, migmatites and peraluminous granites of the Abu-Barqa (SW Jordan), Roded (S Israel) and Taba-Nuweiba (Sinai, Egypt) metamorphic suites. Distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions and partial melting prevailed for 10 Myr, from 620 to 610 Ma. REE patterns of monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates (n=40) cluster at 600-580 Ma recording retrogression to greenschist-facies conditions as garnet continues to destabilize. Phase equilibrium modelling and mineral thermobarometry illustrate that melting occurred either by dehydration of muscovite or by water-fluxed melting at 650-680° and 5-7 kbar. The expected melt production is 8-14%, allowing melt connectivity network to form and eventually melt extraction and segregation. The crystallization time of peritectic melt retained in dia- and metataxites overlaps the emplacement time of a vast calc-alkaline granitic flux throughout the northern ANS, which was previously considered post-collisional. Similar monazite ages ( 620 Ma) of the amphilolite-facies non-anatectic Elat schist indicate that migmatites are the result of widespread regional, rather than local contact metamorphism, representing the climax of East African orogenesis.
Christiansen, Peter B.; Snee, Lawrence W.
1994-01-01
The boundary of the internal zones of the Brooks Range orogenic belt (the schist belt) is a fault contact that dips toward the hinterland (the Yukon-Koyukuk province). This fault, here referred to as the Cosmos Hills fault zone, juxtaposes oceanic rocks and unmetamorphosed sedimentary rocks structurally above blueschist-to-greenschist facies metamorphic rocks of the schist belt. Near the fault contact, schist belt rocks are increasingly affected by a prominent, subhorizontal transposition foliation that is locally mylonitic in the fault zone. Structural and petrologic observations combined with 40Ar/39Ar incremental-release geochronology give evidence for a polyphase metamorphic and deformational history beginning in the Middle Jurassic and continuing until the Late Cretaceous. Our 40Ar/39Ar cooling age for Jurassic metamorphism is consistent with stratigraphic and other evidence for the onset of Brooks Range orogenesis. Jurassic metamorphism is nearly everywhere overprinted by a regional greenschist-facies event dated at 130–125 Ma. Near the contact with the Cosmos Hills fault zone, the schist belt is increasingly affected by a younger greenschist metamorphism that is texturally related to a prominent foliation that folds and transposes an older fabric. The 40Ar/39Ar results on phengite and fuchsite that define this younger fabric give recrystallization ages ranging from 103 to less than 90 Ma. We conclude that metamorphism that formed the transposition fabric peaked around 100 Ma and may have continued until well after 90 Ma. This age for greenschist metamorphism is broadly synchronous with the depositional age of locally derived, shallow-marine clastic sedimentary strata in the hanging wall of the fault zone and thus substantiates the interpretation that the fault zone accommodated extension in the Late Cretaceous. This extension unroofed and exhumed the schist belt during relative subsidence of the Yukon-Koyukuk province.
Blair, Christopher; Sánchez-Ramírez, Santiago
2016-04-01
Rattlesnakes (Crotalus and Sistrurus) represent a radiation of approximately 42 species distributed throughout the New World from southern Canada to Argentina. Interest in this enigmatic group of snakes continues to accrue due, in part, to their ecomorphological diversity, contributions to global envenomations, and potential medicinal importance. Although the group has garnered substantial attention from systematists and evolutionary biologists for decades, little is still known regarding patterns of lineage diversification. In addition, few studies have statistically quantified broad-scale biogeographic patterns in rattlesnakes to ascertain how dispersal occurred throughout the New World, particularly among the different major biomes of the Americas. To examine diversification and biogeographic patterns in this group of snakes we assemble a multilocus data set consisting of over 6700bp encompassing three nuclear loci (NT-3, RAG-1, C-mos) and seven mitochondrial genes (12S, 16S, ATPase6, ATPase8, ND4, ND5, cytb). Fossil-calibrated phylogenetic and subsequent diversification rate analyses are implemented using maximum likelihood and Bayesian inference, to examine their evolutionary history and temporal dynamics of diversity. Based on ancestral area reconstructions we explore dispersal patterns throughout the New World. Cladogenesis occurred predominantly during the Miocene and Pliocene with only two divergences during the Pleistocene. Two different diversification rate models, advocating diversity-dependence, are strongly supported. These models indicate an early rapid radiation followed by a recent speciation rate decline. Biogeographic analyses suggest that the high elevation pine-oak forests of western Mexico served as a major speciation pump for the majority of lineages, with the desert biome of western North America colonized independently at least twice. All together, these results provide evidence for rapid diversification of rattlesnakes throughout the Mexican highlands during the Neogene, likely in response to continual orogenesis of Mexico's major mountain systems, followed by more recent dispersal into desert and tropical biomes. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rutherford, B. S.; Speece, M. A.; Constenius, K. N.
2015-12-01
The geometry of the Precambrian Belt-Purcell basin and subsequent allochthon, that dominates the geology of northwestern Montana, played a critical role in the development of compressional structures during orogenesis and their ensuing reactivation during the later phase of extensional collapse. Five reprocessed seismic reflection profiles provide images in the Swan Range and adjacent valleys that we have correlated to published seismic data north into Canada. Reflections from syndepositional sills encased within Lower Belt rocks offer clues to the configuration of the basin prior to its tectonic inversion. Thick basinal facies of the Lewis salient are contrasted by thin shelfal facies found in hanging wall rocks of frontal Belt carrying thrusts south of the salient. The along strike change in hanging wall rocks reflects the original configuration of the Belt basin margin. Rocks of the Lewis salient were deposited in an embayment on the northeastern margin of the Belt basin. Shelfal accumlations of the embayment comprise an autochthonous wedge that has remained in the footwall of the Lewis thrust system. South of the embayment and related salient, nearly the entire Belt basin was detached from pre-Belt crystalline rocks and inverted at the latitude of the Sawtooth Range. Deeply exhumed Phanerozoic rocks of the Sawtooth Range are a direct consequence of the thin wedge geometry of the detached basin south of the Lewis salient that required growth of a substantial orogenic wedge to obtain critical taper values. We offer an alternate interpretation of a >10 km high, west facing décollement ramp that coincides with the Belt-Purcell basin margin. Previous interpretations in Montana have inferred the location of the basin margin ramp to approximate the trace of the Purcell Anticlinorium. Seismic data and cross-section balancing suggest the Rocky Mountain Trench as a more accurate location. Based on our proposed position of the basin margin the Belt-Purcell allocthon requires insignificant rotation during thrust emplacement which is in agreement with published interpretations of paleomagnetic data. We suggest small (<5°) clockwise rotation is due to an increase in extensional slip from the international border south to the Flathead Valley as opposed to an increase in compressional shortening to the north.The geometry of the Precambrian Belt-Purcell basin and subsequent allochthon, that dominates the geology of northwestern Montana, played a critical role in the development of compressional structures during orogenesis and their ensuing reactivation during the later phase of extensional collapse. Five reprocessed seismic reflection profiles provide images in the Swan Range and adjacent valleys that we have correlated to published seismic data north into Canada. Reflections from syndepositional sills encased within Lower Belt rocks offer clues to the configuration of the basin prior to its tectonic inversion. Thick basinal facies of the Lewis salient are contrasted by thin shelfal facies found in hanging wall rocks of frontal Belt carrying thrusts south of the salient. The along strike change in hanging wall rocks reflects the original configuration of the Belt basin margin. Rocks of the Lewis salient were deposited in an embayment on the northeastern margin of the Belt basin. Shelfal accumlations of the embayment comprise an autochthonous wedge that has remained in the footwall of the Lewis thrust system. South of the embayment and related salient, nearly the entire Belt basin was detached from pre-Belt crystalline rocks and inverted at the latitude of the Sawtooth Range. Deeply exhumed Phanerozoic rocks of the Sawtooth Range are a direct consequence of the thin wedge geometry of the detached basin south of the Lewis salient that required growth of a substantial orogenic wedge to obtain critical taper values. We offer an alternate interpretation of a >10 km high, west facing décollement ramp that coincides with the Belt-Purcell basin margin. Previous interpretations in Montana have inferred the location of the basin margin ramp to approximate the trace of the Purcell Anticlinorium. Seismic data and cross-section balancing suggest the Rocky Mountain Trench as a more accurate location. Based on our proposed position of the basin margin the Belt-Purcell allocthon requires insignificant rotation during thrust emplacement which is in agreement with published interpretations of paleomagnetic data. We suggest small (<5°) clockwise rotation is due to an increase in extensional slip from the international border south to the Flathead Valley as opposed to an increase in compressional shortening to the north.
NASA Astrophysics Data System (ADS)
Cui, Z.; Meltzer, A.; Fischer, K. M.; Stachnik, J. C.; Munkhuu, U.; Tsagaan, B.; Russo, R. M.
2017-12-01
The origin and preservation of high-elevation low-relief surfaces in continental interiors remains an open questions. Central Mongolia constitutes a major portion of the Mongolian Plateau and is an excellent place to link deep earth and surface processes. The lithosphere of Mongolia was constructed through accretionary orogenesis associated with the Central Asian Orogenic Belt (CAOB) from the late Paleozoic to the early Triassic. Alkaline volcanic basalt derived from sublithospheric sources has erupted sporadically in Mongolia since 30 Ma. Constraining the depth variation of lithospheric and upper mantle discontinuities is crucial for understanding the interaction between upper mantle structure and surface topography. We conducted receiver functions (RF) analyses suitable data recorded at112 seismic broadband stations in central Mongolia to image the LAB and mantle transition zone beneath Central Mongolia. A modified H-κ stacking was performed to determine crustal average thickness (H) and Vp/Vs ratio (κ). Central Mongolia is characterized by thick crust (43-57 km) enabling use of both P wave RF and to S wave RF to image the LAB. The PRF traces in the depth domain are stacked based on piercing point locations for the 410 and 660 discontinuities using 0.6 ° × 0.6 ° bins in a grid. From south to north, the average lithospheric thickness is 85km in Gobi Altai gradually thinning northeastward to 78km in the southern Hangay Dome, 72 km in the northern Hangay Dome then increases to 75km in Hovsgol area. While there is overall thinning of the lithosphere from SW to NE, beneath the Hangay, there is a slight increase beneath the highest topography. The thickness of the mantle transition zone (MTZ) beneath central Mongolia is similar to global averages. This evidence argues against the hypothesis that a mantle plume exists beneath Central Mongolia causing low velocity anomalies in the upper mantle. To the east of the Hovsgol area in northern Mongolia, the MTZ thickens 10-15 km mainly due to depression in the 660-km discontinuity, perhaps representing a relict of subducted plate during CAOB.
NASA Astrophysics Data System (ADS)
Lima, R. D.; Hayman, N. W.; Prior, M. G.; Stockli, D. F.; Kelly, E. D.
2016-12-01
Deformation and temperature evolution during orogenic stages may influence later fabric development, thus controlling large-scale extensional processes that can occur millions of years later. Here, we describe pressure-temperature and fabric evolution from the Death Valley (DV) region and show how inherited fabrics, formed in late orogenic stages during Late Cretaceous time, influenced later Neogene age Basin and Range (BR) extension. The DV region is one of the most extended and thinned regions in the western US BR province, and the two of the ranges that bound the eastern valley expose basement rocks exhumed during the Neogene extension. In the Funeral range, it has been established that older (Precambrian) basement underwent Mesozoic age syn-deformational metamorphism during the Sevier-Laramide orogeny. In contrast, the Black Mountains record widespread tectonic stretching and magmatism of Miocene age on Precambrian basement, and have, overall, been lacking previous evidence of Mesozoic metamorphism and fabric development. In the Funeral Range Late Cretaceous migmatitic fabrics were overprinted by zones of high-strain fabrics formed due to melt-consuming reaction that define an overall P-T cooling path likely during late- to post-orogenesis. These fabrics form interconnected layers of quartz + biotite aggregates, in which individual quartz grains lack evidence of intracrystalline plastic deformation and show consistently random [c]-axis microfabrics. This suggests coupled reaction-diffusion processes that favored diffusion-assisted creep. New geochronometric results of melt products in the Black Mountains show evidence of partial melting of Late Cretaceous age. Contrasting with the neighboring Funeral Range, overprinting by extensional fabrics of Miocene age is widespread, and consists of high-strain, anastomosing foliation composed of retrograde products from preexisting, higher-temperature fabrics. These include interconnected fine-grained chlorite + quartz and sericite aggregates showing [c]-axis quartz microfabrics consistent with diffusion-assisted creep. In both ranges, the formation of new-over-old fabric due to the extensional deformation is favored by local heterogeneities in bulk composition due previous melt segregation during late- to post-orogenic stages.
Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece
NASA Astrophysics Data System (ADS)
Gallen, S. F.; Wegmann, K. W.; Bohnenstiehl, D. R.; Pazzaglia, F. J.; Brandon, M. T.; Fassoulas, C.
2014-07-01
The island of Crete occupies a forearc high in the central Hellenic subduction zone and is characterized by sustained exhumation, surface uplift and extension. The processes governing orogenesis and topographic development here remain poorly understood. Dramatic topographic relief (2-6 km) astride the southern coastline of Crete is associated with large margin-parallel faults responsible for deep bathymetric depressions known as the Hellenic troughs. These structures have been interpreted as both active and inactive with either contractional, strike-slip, or extensional movement histories. Distinguishing between these different structural styles and kinematic histories here allows us to explore more general models for improving our global understanding of the tectonic and geodynamic processes of syn-convergent extension. We present new observations from the south-central coastline of Crete that clarifies the role of these faults in the late Cenozoic evolution of the central Hellenic margin and the processes controlling Quaternary surface uplift. Pleistocene marine terraces are used in conjunction with optically stimulated luminesce dating and correlation to the Quaternary eustatic curve to document coastal uplift and identify active faults. Two south-dipping normal faults are observed, which extend offshore, offset these marine terrace deposits and indicate active N-S (margin-normal) extension. Further, marine terraces preserved in the footwall and hanging wall of both faults demonstrate that regional net uplift of Crete is occurring despite active extension. Field mapping and geometric reconstructions of an active onshore normal fault reveal that the subaqueous range-front fault of south-central Crete is synthetic to the south-dipping normal faults on shore. These findings are inconsistent with models of active horizontal shortening in the upper crust of the Hellenic forearc. Rather, they are consistent with topographic growth of the forearc in a viscous orogenic wedge, where crustal thickening and uplift are a result of basal underplating of material that is accompanied by extension in the upper portions of the wedge. Within this framework a new conceptual model is presented for the late Cenozoic vertical tectonics of the Hellenic forearc.
Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.
2010-12-01
Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.
NASA Astrophysics Data System (ADS)
Baughman, J. S.; Flowers, R. M.
2017-12-01
Cratons are the most stable portions of continents, but the degree to which they are affected by post-cratonization tectonic and magmatic processes is unclear. Complete time-temperature (t-T) histories are necessary to understand the timing, extent, and characteristics of post-cratonization events that disrupted these regions. However, deciphering extended cratonic t-T records is difficult owing to the incomplete stratigraphic records of continental interior settings, and the challenge of accessing the appropriate thermal history range with conventional thermochronometers. The Kaapvaal craton in South Africa is an archetypal craton that initially stabilized in the Archean and was subsequently affected by magmatic and marginal accretionary events. Here we exploit titanite and zircon (U-Th)/He (THe, ZHe) thermochronology to better decipher the somewhat cryptic Proterozoic through early Paleozoic history of the craton. Radiation damage effects on the He diffusivity of these two minerals provides the potential to access a wide temperature window from 200°C to near surface conditions. Existing low-temperature apatite (U-Th)/He and fission-track results constrain Late Paleozoic to Mesozoic burial of the Karoo basin and subsequent Cretaceous unroofing, while 40Ar/39Ar and Rb-Sr data document cooling through temperatures of 300°C by 2 Ga. We obtained THe and ZHe dates from across the northern Kaapvaal craton to fill in the thermal history gap between these constraints. THe and ZHe dates range from 1200 to 200 Ma, and 1000 to 30 Ma, respectively. Both sets of dates are negatively correlated with effective uranium concentration (eU), manifesting the effect of radiation damage on the He retentivity, and therefore closure temperature, of these minerals. The results allow us to assess the Mesoproterozoic through present day thermal history of the northern Kaapvaal craton. The THe data suggest that Mesoproterozoic exhumation and large-scale reheating associated with Namaqua-Natal orogenesis affected the region. While, the ZHe data constrain maximum burial temperatures during Mesozoic Karoo burial. Together the results show the power of exploiting thermochronologic advances to access new information about long-term continental evolution.
Luserna Stone: A nomination for "Global Heritage Stone Resource"
NASA Astrophysics Data System (ADS)
Primavori, Piero
2015-04-01
Luserna Stone (Pietra di Luserna) is the commercial name of a grey-greenish leucogranitic orthogneiss, probably from the Lower Permian Age, that outcrops in the Luserna-Infernotto basin (Cottian Alps, Piedmont, NW Italy) on the border between the Turin and Cuneo provinces. Geologically speaking, it pertains to the Dora-Maira Massif that represents a part of the ancient European margin annexed to the Cottian Alps during the Alpine orogenesis; from a petrographic point of view, it is the metamorphic result of a late-Ercinian leucogranitic rock transformation. Lithological features and building applications allow the recognition of two main varieties: 1) a micro-augen gneiss with very regular schistosity planes with centimetric spacing and easy split workability, known as Splittable facies; 2) a micro-Augen gneiss characterized by lower schistosity and poor split, suitable for blocks cutting machines (diamond wires, gang-saws, traditional saws), known as Massive facies. A third, rare, white variety also exists, called "Bianchetta". Luserna stone extends over an area of approximately 50 km2, where more than fifty quarries are in operation, together with a relevant number of processing plants and artisanal laboratories. The stone is quarried and processed since almost the Middle Age, and currently represents one of the three most important siliceous production cluster in Italy (together with the Ossola and Sardegna Island granites). Some characteristics of this stone - such as the relevant physical-mechanical properties, an intrinsic versatility and its peculiar splittability - have made it one of the most widely used stone materials in Italy and in the countries surrounding the North Western border of Italy. Apart from its intrinsic geological, petrographic, commercial and technical properties, several issues related to the Luserna Stone are considered to be of relevant importance for its designation as a Global Heritage Stone Resource, such as the distinctive mark on the architecture and urban landscape of many areas in NW Italy, some quite peculiar applications (for ex.: the "so-called "loze" or "lose", for the traditional roofing in alpine buildings) and the related constructive culture, the presence of an Eco-Museum, the occurrence of a local Fair (Pietra & Meccanizzazione), and many other important aspects.
Evidence from xenoliths for a dynamic lower crust, eastern Mojave Desert, California
Hanchar, John M.; Miller, Calvin F.; Wooden, Joseph L.; Bennett, Victoria C.; Staude, John-Mark G.
1994-01-01
Garnet-rich xenoliths in a Tertiary dike in the eastern Mojave Desert, California, preserve information about the nature and history of the lower crust. These xenoliths record pressures of ∼ 10–12 kbar and temperatures of ∼ 750–800°C. Approximately 25% have mafic compositions and bear hornblende + plagioclase + clinopyroxene + quartz in addition to garnet. The remainder, all of which contain quartz, include quartzose, quartzofeldspathic, and aluminous (kyanite±sillimanite-bearing) varieties. Most xenoliths have identifiable protoliths—mafic from intermediate or mafic igneous rocks, quartzose from quartz-rich sedimentary rocks, aluminous from Al-rich graywackes or pelites, and quartzofeldspathic from feldspathic sediments and/or intermediate to felsic igneous rocks. However, many have unusual chemical compositions characterized by high FeO(t), FeO(t)/MgO, Al2O3, and Al2O3/CaO, which correspond to high garnet abundance. The mineralogy and major-and trace-element compositions are consistent with the interpretation that the xenoliths are the garnet-rich residues of high-pressure crustal melting, from which granitic melt was extracted. High 87Sr/86Sr and low 143Nd/144Nd, together with highly discordant zircons from a single sample with Pb/Pb ages of ∼ 1.7 Ga, demonstrate that the crustal material represented by the xenoliths is at least as old as Early Proterozoic. This supracrustal-bearing lithologic assemblage may have been emplaced in the lower crust during either Proterozoic or Mesozoic orogenesis, but Sr and Nd model ages> 4 Ga require late Phanerozoic modification of parent/daughter ratios, presumably during the anatectic event. Pressures of equilibration indicate that peak metamorphism and melting occurred before the Mojave crust had thinned to its current thickness of <30 km. The compositions of the xenoliths suggest that the lower crust here is grossly similar to estimated world-wide lower-crustal compositions in terms of silica and mafic content; however, it is considerably more peraluminous, has a lower mg-number, and is distinctive in some trace element concentrations, reflecting its strong metasedimentary and restitic heritage.
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen
1999-09-01
Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.
A preliminary study on the feedback of heat transfer on groundwater flow in a Karst geothermal field
NASA Astrophysics Data System (ADS)
Kong, Y.; Pang, Z.; Hu, S.; Pang, J.; Shao, H.; Kolditz, O.
2014-12-01
In deep sedimentary basins, groundwater movement can significantly alter the heat flow pattern. At the same time, heat flux induced temperature change can reversely determine the flow regime through density dependent convection process. In Karst aquifers, the heterogeneity in the carbonate rocks makes the identification of this feedback much more complex. In this work, a preliminary study has been made on this feedback in Xiongxian geothermal field. The Karst aquifer in our site has an average thickness of about 1000 m, and is overlaid by over 400 m of quaternary clay, and subsequently 600 m of Neogene sandstone. Geothermal energy has been exploited in the site for space heating. During the heating period from Nov 15th to Mar 15th every year, hot water was extracted from the aquifer and re-injected after the heat extraction. A detailed temperature logging has been carried out in the field, both before and after the heating period, with the consideration that temperature distribution will be affected by the re-injection of cold water. The vertical distribution of temperature in the cap rock shows a constant positive gradient over depth. The heat flux at different locations has been calculated respectively. It is found to decline from southwest to northeast, with the highest value of 113.9 mW/m2 to the lowest of 80.6 mW/m2. This pattern can be well explained by the tectonic features. More interestingly, two inflection points appear on the temperature profile of the Karst layer, revealing strong influence from the cold re-injection water. Also, a 3℃ temperature difference was observed in the June and October measurement, which is related to the reservoir recovery. Currently, a 3D numerical model is being constructed, using the open-source software OpenGeoSys. Heat transport process is coupled with density dependent flow in a monolithic approach, to simulate both heat conduction and groundwater convection. This model will help to quantify the feedback from heat transfer on the groundwater circulation, which will be further applied to geological processes associated with orogenesis, ore mineralization and oil/heat accumulation.
NASA Astrophysics Data System (ADS)
Soreghan, M. J.; Soreghan, G. S.
2017-12-01
The Permo-Pennsylvanian was characterized by intense orogenesis associated with Pangaean assembly, and profound climate shifts as earth transitioned from full icehouse conditions in the Pennsylvanian-early Permian to collapse into greenhouse conditions by latest Permian time. The modern U.S. Midcontinent was part of equatorial western Pangaea (North America) sandwiched between a continental-scale orogenic zone to the east and south (Appalachian-Ouachita-Marathon orogenic belt) and a series of basement-cored, intra-plate uplifts along western Pangaea (Ancestral Rocky Mountains). Here, we present a compilation of detrital zircon geochronology data from the Permo-Pennsylvanian of the Midcontinent as well as coeval strata of the east and west to explore sediment dispersal and potential tectonic and climatic influences on these provenance signatures. Zircon provenance data come from mostly eolian and fluvial silt- and sandstones of Early Pennsylvanian through Mid Permian age, although some data include marine sandstones. Our new data were acquired by LA-ICPMS at the University of Arizona Laserchron, and predominant age groups include >2500 Ma (Archean), 1600-1800 Ma (Yavapai-Matzatzal), 1300-900 Ma (Grenville), 790-570 Ma (Neoproterozoic), and 480-360 (E-M Paleozoic). However, the relative distributions of these populations exhibit distinctive temporal differences, especially across the Pennsylvanian-Permian boundary, but also spatially in comparison to published data from the Appalachian-Ouachita-Marathon basin, Ancestral Rocky Mountain basins, and the western Pangaean margin. Although the Central Pangaean Mountains, and in particular the Grenville-age basement rocks, were a dominant source of sediment to the Midcontinent, the data suggest an abrupt introduction of Neoproterozoic zircons in the early Permian. This signature also appears within the Ancestral Rocky Mountains region, but is rare along the western margin and the Appalachian basin in the early Permian. This suggests that dispersal remained segmented in the early Permian and not dominated by a simple east-west integrated paleodisperal system. Temporal change in paleoclimatic conditions across the boundary also likely complicated these provenance signatures through the Permian.
NASA Astrophysics Data System (ADS)
Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping
2018-02-01
Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O isotopes and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-magmatic zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic magmatic rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-magmatic zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic magmatism in the Triassic.
Basins in ARC-continental collisions
Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio
2012-01-01
Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.
Interpreting whether isoclinal folds are antiforms or synforms using FIA succession
NASA Astrophysics Data System (ADS)
Cao, H.
2012-12-01
Using the asymmetries of the overprinting foliations preserved as inclusion trails that define the FIAs to investigate whether an enigmatic isoclinal fold in the region is an antiform or synform. This approach also reveals when the fold first formed during the tectonic history of the region. Multiply deformed and isoclinally folded interlayered high metamorphic grade gneisses and schists can be very difficult rocks for resolving early formed stratigraphic and structural relationships. When such rocks contain porphyroblasts a new approach is possible because of the way in which porphyroblast growth is affected by crenulation versus reactivation of compositional layering (Bell et al., 2003). Isoclinally folded rocks in the Arkansas River region of South Central Colorado contain relics of fold hinges that have been very difficult to ascertain whether they are antiforms or synforms because of younger refolding effects and the locally truncated nature of coarse compositional layering. With the realization that rocks with a schistosity parallel to bedding (S0 parallel S1) have undergone lengthy histories of deformation that predate the obvious first deformation (e.g. Bell et al., 2003; Sayab, 2006; Yeh, 2007) came recognition that large scale regional folds can form early during this process and be preserved throughout orogenesis (e.g., Ham and Bell, 2004; Bell and Newman, 2006. This extensive history is lost within the matrix because of reactivational shear on the compositional layering (Bell et al., 1998, 2003, 2004, 2005; Ham and Bell, 2004). However, it can be extracted by measuring FIAs. Recent work using this approach has revealed that the trends of axial planes of all map scale folds, when plotted on a rose diagram, strikingly reflect the FIA trends (e.g., Sanislav, 2009; Shah, 2009). That is, although it was demonstrated by Bell et al. (2003) that the largest scale regional folds commonly form early in the total history, other folds can form and be preserved from subsequent destruction in the strain shadows of plutons or through the partitioning of deformation due to heterogeneities at depth.
Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin
Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.
2012-01-01
Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming inboard of the east Asian margin. ?? 2011 The Authors. Basin Research ?? 2011 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.
NASA Astrophysics Data System (ADS)
Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.
2002-10-01
The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental reconstructions for the final assembly of Pangea. D 3, which produced broadly north-south, upright folds, is also attributed to this collision and likely followed D 2 closely in the latest Paleozoic.
NASA Astrophysics Data System (ADS)
Sobolev, S. V.; Brown, M.
2017-12-01
Plate tectonics (PT) is the most important geological process operating on Earth, making it unique among the rocky planets in the Solar System. The question of how PT was initiated and which factors controlled its evolution over Earth's history are widely discussed, but remain controversial. It is broadly accepted that a necessary condition for initiation and stable operation of PT is maintaining low strength along plate boundaries, particularly along the subduction zone interfaces in the subduction channels. Examples from the South American Andes and other convergent margins show that unconsolidated continental sediments in trenches serve as an efficient lubricant for subduction; if these are lacking, friction in the subduction channel and strength of the plate boundary are significantly increased. We suggest that lubrication of subduction by accumulation of continental sediments in trenches played a crucial role during the evolution of PT on Earth since the mid-Mesoarchean. We posit that continental emergence and enhanced surface erosion caused an increasing flux of sediments into the oceans, which in turn lubricated subduction channels and intensified PT. Thus, peaks in orogenesis, as confirmed by several proxies, during periods of supercraton/supercontinent assembly represent periods of vigorous subduction and continental sedimentation in trenches prior to terminal collision. Conversely, a decrease in plate boundary length and a reduction in continental sediment accumulation in trenches during periods of stability after supercraton/supercontinent assembly is the likely reason for periods of lower PT vigor, including the so called `boring billion' between 1.8 and 0.8 Ga. The largest surface erosion and subduction-lubrication event occurred at the end of the `snowball' Earth epoch in the Neoproterozoic and likely accelerated the most recent episode of vigorous PT. Based on analysis of various geological observations, we suggest that the cyclic behavior of PT on Earth since the mid-Mesoarchean (the so-called `supercontinent cycle') can be interpreted in terms of the balance of power between PT, driven by slab pull and controlled by the temperature of the upper mantle, and the efficiency of lubrication in the subduction zones, controlled by accumulation of continental sediment in the trenches.
Lateral variations in lithospheric and landscape evolution at both ends of the Himalaya-Tibet orogen
NASA Astrophysics Data System (ADS)
Zeitler, P. K.; Schmidt, J. L.; Meltzer, A.
2015-12-01
At the broadest scale, like many orogens the Himalaya encompass a range of orogenic features that are remarkably similar along much of the length of the mountain belt and its neighboring terranes. At one scale of consideration, these similarities appear to be a signal that fundamental processes associated with lithospheric collision have been active. However, the vast size of the Himalaya and Tibet, the different climate regimes experienced by the orogen across time and space, and the along-strike variations in the continental and arc margins that faced one another before collision, make it at once remarkable that any similarities exist, and important to more critically evaluate their nature. The eastern and western Himalayan syntaxes confound any attempt to generalize too much about the Himalaya-Tibet orogen. By area these features occupy at least 25% of the orogenic belt, and compared to the "main" portions of the arc they show clear differences in their lithospheric structures, landscapes, and evolution. The boundary and initial conditions that shaped the eastern and western indentor corners were and are different, as is the nature and timing of erosional exhumation. Some of the most active geologic processes on Earth have recently been in play within the syntaxes, and the evolution of landscapes and fluvial systems, important in developing the sedimentary record of the Himalaya-Tibet system, has been complex and variable in space and time. Southeasternmost Tibet and the Lhasa Block in particular exemplify this complexity both in its complex topographic evolution linked to surface processes and climate, and in lateral variability in lithospheric structure. Taking a system viewpoint, an important question to debate is the degree to which there are features in the Himalaya-Tibet system that are robustly emergent, given the broad boundary conditions of the continental collision plus the suite of local and regional geodynamical processes that have operated during orogenesis. A related question is the degree to which the variability seen within the orogen represents important information about process that is exportable to other orogens, or is in effect tectonic noise contingent on local geologic details and secular changes.
NASA Astrophysics Data System (ADS)
Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.
2017-12-01
The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The westward propagation of topographic growth and erosion is supported by subsidence analysis and low-temperature thermochronology data. These results have implications for surface processes and foreland basin development of the Pyrenean Orogen, inheritance of Hercynian crustal properties, and the geodynamic evolution of western Europe.
NASA Astrophysics Data System (ADS)
Meert, Joseph G.; Pandit, Manoj K.; Kamenov, George D.
2013-11-01
At 750 Ma India was part of a larger fragment of eastern Gondwana blocks that included the Seychelles-Mauritia, Madagascar, Sri Lanka and the Enderby Land-Prydz Bay region of East Antarctica. Subduction of the Mozambique Ocean beneath Seychelles-Mauritia, northern Madagascar and northwestern India formed a lengthy continental arc that remained active during the formation of Gondwana. Paleomagnetic data from the Malani rhyolites and associated dykes provide a robust paleomagnetic pole constraining India's position at this time. The rhyolitic and granitic rocks associated with the Malani Igneous Suite (MIS) have robust age constraints; however, the ages of the mafic dykes were inferred solely on the basis of similarity in paleomagnetic directions to the rhyolitic units. Here we present new geochronological data from the Malani mafic dykes that yield a minimum age of 704 Ma. The 207Pb/206Pb ages obtained for the dykes are less-likely to be affected by Pb-loss and yield a more reliable estimate for the age of the mafic dykes of ~ 750 Ma. We argue that intrusion of these mafic (and minor felsic) dykes represents the final pulse of MIS magmatism. Many of the granitic rocks in the region are reported as ‘unclassified’ due to limited geochemical data and/or geochronological ages. Some of these ‘unclassified’ granites are intruded by the mafic dykes sampled in this study near the town of Bilara. The granites yielded zircon core ages of ~ 1100 Ma with younger rims averaging ~ 1020 Ma. We argue that this provides further evidence for a significant orogenic event ~ 1000 Ma that may relate to the collision of the Marwar block with the Banded Gneiss Complex/Bundelkhand craton in north-central India. Other ~ 1000 Ma orogenesis is also known along the Central Indian Tectonic Zone (CITZ) and the Eastern Ghats Mobile Belt. Globally, this same time interval is thought to represent the amalgamation of the supercontinent Rodinia and may also have resulted in the closure of the major “Purana” basins in India.
NASA Astrophysics Data System (ADS)
Qu, P.; Chen, Y. J.; Yu, Y.
2017-12-01
South China Continent is major formed from the Paleo-South China plate. The continent has experienced complicated tectonic history after Neoproterozoic. Previous studies suggested some possible model for the collision between South China Continent and North China Continent. Body wave tomography and surface wave tomography are widely used to inverse upper mantle velocity structure. In our study, finite frequency tomography were carried on to get explanation more correctly. We gathered nearly 60000 pieces of teleseismic event records by 166 broad band seismic stations with Mw > 5.5. Here sensitive kernel of ak135 velocity structure was calculated, which is based on Born approximation, and then we applied multi-channel cross-correlation to pick arrival time difference under 3 frequency band. Combining with crust thickness correct from receiver function, we solve the inversion matrix by LSQR method, and get accurate upper mantle structure of P, S velocity. For more accurate results, we apply a method to calculate Vp/Vs ratio, to help to verify the velocity anomaly. The result in this research shows: 1. A strong velocity anomaly exists in the northern of South China Continent, in an area 31°N between 112°-118°E. The anomaly is about . We suggest that, this anomaly is related to the collision from North China Continent. It implies the collision underthrusted to southward. 2. A clearly slow velocity anomaly exists in the northern of Cathaysia block. This low velocity anomaly exist on the boundary of Yangtz block and Cathysian block, it is related to the left over of block collision in early phanerozoic. 3. We recognized some little velocity anomaly exit in the research area. Comparing these velocity anomaly with U-Pb zircon ages, we suggest complicated orogenesis in Phanerozoic is the cause of the formation of these little anomaly. The result in our study support the collision model, which shows the underthrust direction is southward, on the south of Qinling-Dabie Orogen. The anomaly mass is larger than the composite orogenic in Yangtze block.
NASA Astrophysics Data System (ADS)
Pryadunenko, A.; Nilsson, L. P.; Larsen, R. B.
2016-12-01
The border area between Norway and Sweden is known for exposures of dismembered ophiolitic fragments that presumably were formed during Cambrian and emplaced during the Caledonian orogenesis on a passive margin of Baltica. Mid-ocean ridge tectonic settings were inferred for these ophiolites in contrast to Caledonian subduction related ophiolites outcropping along the coast of Norway. At the Feragen - Raudhammeren area to the east-southeast of the historic mining town of Røros mantle tectonites consist of peridotite (cpx-bearing harzburgite to cpx-poor lherzolite) with an equal amount of dunite. Within the northwestern quarter of the 16 km2 Feragen body, resembling the mantle - crust boundary, the amount of dunite exceeds that of mantle peridotite. Dunites occur as layers as well as bodies discordant to banding in the harzburgite. Dunites have contacts to harzburgites from sharp in dyke-like bodies, to transitional with oPx fading out on a scale of 1 cm to several meters. Layers of Cr-spinel are common. Peridotites, dunites and dunite-peridotite transition zones were sampled at Feragen-Raudhammeren area. Gradual increase in MgO content of the rocks is observed from 39,5 wt % in peridotites to > 41 wt % within the transition zones. Dunites show > 43 wt % of MgO. Similar trends occur for nickel, with peridotites and transition zones always showing Ni < 2000 ppm and dunites containing > 2000 ppm of Ni. SiO2 contents shows inverse correlation with MgO content of the rocks being as low as 34,5 wt % in dunites and increasing gradually through the transition zones up to > 38 wt % in peridotites. Pt is the only element of the PGE group showing relative enrichment up to 36 ppb. Other PGE group elements are depleted in the rock with contents often being below detection limits. Patches of harzburgite are observed within the dunite pods. These patches preserve the same banding as the host harzburgite suggesting that these relicts have not been rotated from their original position and that the formation of dunites took place as a volume replacement of the harzburgite. Dunite bodies within the mantle section of ophiolite complexes are considered to represent sites of melt extraction and migration and essentially controls the composition, physical properties and ore-forming potential of melts emplaced up section in the ophiolite stratigraphy.
Late Carboniferous remagnetisation of Palaeozoic rocks in the NE Rhenish Massif, Germany
NASA Astrophysics Data System (ADS)
Zwing, A.; Bachtadse, V.; Soffel, H. C.
During stepwise thermal and alternating field demagnetisation experiments on Devonian and Lower Carboniferous carbonate and clastic rocks from the north-eastern part of the Rhenish Massif, Germany, three components of magnetisation (A, B, C) are identified. Component A is a recent viscous overprint that parallels the local present day geomagnetic field. Component B is mainly observed from 260 up to 550 °C during thermal demagnetisation and is carried by magnetite. In two localities, where red siltstones and red carbonate rocks were sampled, component B is stable up to 670 °C, indicating the presence of hematite. Three clusters of in situ B directions can be identified, which are controlled by the tectonic position of the sampling areas. These are from NW to SE: the Remscheid anticline (RA), the Lüdenscheid syncline (LS) and the Attendorn and Wittgenstein synclines (AS/WS). Standard and inclination-only fold tests, using parametric resampling, yield optimal statistical parameters at increasing amounts of untilting ranging from 0% in the South up to 57% in the North of the NE Rhenish Massif. Despite the variations in optimal untilting, the resulting site mean directions of component B do not differ significantly in inclination. These results are interpreted to reflect the acquisition of magnetisation during progressive northward migration of the deformation front in Late Carboniferous times. The resulting palaeolatitudes (RA: 1°S +2°-3°; LS: 2°S +3°-2°; AS/WS: 1°S +3°-4°) are in good agreement with the predicted position of the sampling area in the Late Carboniferous, as derived from a published Apparent Polar Wander Path for Baltica and Laurentia. The unblocking temperature spectra and the synfolding nature of B yield strong evidence that chemical processes, possibly driven by fluid migration during orogenesis, caused this remagnetisation. A third component C was observed in zones of tight folding with steeply dipping to overturned bedding planes and is dominantly carried by hematite. The resulting palaeolatitude (27°N +10°-8°) suggest a Late Triassic to Early Jurassic age of component C, which is interpreted to be caused by either hematite-bearing post-Variscan mineralisation or oxidising fluids percolating from the weathering surface and penetrating zones of enhanced permeability in the Mesozoic.
NASA Astrophysics Data System (ADS)
Rolland, Y.; Rossi, M.
2016-11-01
The Mont-Blanc Massif was intensely deformed during the Alpine orogenesis: in a first stage of prograde underthrusting at c. 30 Ma and in a second stage of uplift and exhumation at 22-11 Ma. Mid-crustal shear zones of 1 mm-50 m size, neighbouring episyenites (quartz-dissolved altered granite) and alpine veins, have localised intense fluid flow, which produced substantial changes in mineralogy and whole-rock geochemistry. Four main metamorphic zones are oriented parallel to the strike of the massif: (i) epidote, (ii) chlorite, (iii) actinolite-muscovite ± biotite and (iv) muscovite ± biotite. In addition, phlogopite-bearing shear zones occur in the chlorite zone, and calcite-bearing shear zones are locally found in the muscovite zone. The initial chemical composition of the granitic protolith is relatively constant at massif scale, which allows investigating compositional changes related to shear zone activity, and subsequent volume change and elements mobility. The variations of whole-rock composition and mineral chemistry in shear zones reflect variations in fluid/rock ratios and fluid's chemistry, which have produced specific mineral reactions. Estimated time-integrated fluid fluxes are of the order of 106 m3/m2. The mineral assemblages that crystallised upon these fluid-P-T conditions are responsible for specific major and trace element enrichments. The XFe (Fe/Fe + Mg) pattern of shear zone phyllosilicates and the δ13C pattern of vein calcite both show a bell-type pattern across the massif with high values on the massif rims and low values in the centre of the massif. These low XFe and δ13C values are explained by down temperature up-flow of a Fe-Mg-CO2-rich and silica-depleted fluid during stage 1, while the massif was underthrusting. These produced phlogopite, chlorite and actinolite precipitation and quartz hydrolysis, resulting in strong volume losses. In contrast, during stage 2 (uplift), substantial volume gains occurred on the massif rims due to the precipitation of quartz, epidote and muscovite from a local fluid hosted in the Helvetic cover. These two fluids advocate for the presence of an upper-crustal scaled fluid convection cell, with up-going fluids through the lower crust and likely down-going fluids in the 15 km upper crust.
NASA Astrophysics Data System (ADS)
Tien, C. Y.; Lin, Y. C.; Chu, M. F.; Chung, S. L.; Bi˙ngöl, A. F.
2017-12-01
The Caucasus-Iran-Anatolia (CIA) orogenic belt formed by "Turkic-type orogeny" consists mainly of subduction-accretion complexes following the collision between Eurasia and Arabia and the closure of Neotethy. This study reports U-Pb and Hf isotopic data of detrital zircon separates from five Eocene to mid-Miocene sandstone samples from Divrigi and Duranlar in the west to the Mus basin in the east, all locating in the northern part of the Bitlis-Zagros suture zone. The U-Pb age data suggest four main magmatic episodes: (1) 100-70 Ma, (2) 60-40 Ma, (3) 30 Ma, and (4) 15 Ma. The Late Cretaceous zircons recovered mainly from the Mus basin are marked by a significant Hf isotopic variation over time, with ɛHf(T) values dropping from +15 to -10. Zircons from the second and third episodes show spatial variations in isotopic compositions, with positive ɛHf(T) values (+10 to +5) in the Mus basin and heterogeneous ɛHf(T) values (+10 to -10) in the west. The fourth and youngest episode of zircons, mainly from Duranlar area, shows uniform ɛHf(T) values around +5. We attribute the Late Cretaceous episode of zircons to the broadly coeval Elazig arc magmatism that, according to our counterpart study, occurred as a short-lived, intra-oceanic arc system by subduction initiation after the formation of Neotethyan ophiolites in the region. Moreover, we argue that this Late Cretaceous arc system may have existed more widely within the southern branch of Neothethys than that suggested by present-day outcrops. The dramatic change in Hf isotopic composition from 100 to 70 Ma, also observed in the rock record by our counterpart study, may be interpreted as a result of subduction to accretion processes. The remaining three episodes of zircons are related to younger stages of magmatism within or around the suture zone that remains poorly studied. Our results indicate that detrital zircon is a useful tool to uncover "hidden" magmatic records in the CIA and other "Turkic-type" orogenic belts where complex interaction of multiple micro-terrains may have taken place during accretionary and collisional orogenesis.
NASA Astrophysics Data System (ADS)
Condit, Cailey Brown
Deep crustal processes during collisional orogenesis exert first-order controls on the development, scale and behavior of an orogenic belt. The presence or absence of fluids play important roles in these processes by enhancing deformation, catalyzing chemical reactions, and facilitating wholesale alteration of lithologic properties. However, the scales over which these fluid-related interactions occur and the specific feedbacks among them remain poorly constrained. The late Paleoproterozoic Big Sky orogen, expressed as high-grade deep crust exposed in the Laramide basement-cored uplifts of SW Montana, USA, offers an exceptional natural laboratory to address some of these questions. New data are presented from field and structural analysis, petrology, geochemistry, and geochronology in the Northern Madison Range, a key locality for constraining the hinterland-foreland transition of the orogen. Combined with other regional data, the age of high-grade metamorphism youngs by 80-40 Myr across an 100 km transect suggesting propagation of the orogenic core towards its foreland over time. In the southeastern part of the Northern Madison Range, two domains separated by a km-scale ductile shear zone, were transformed by hydrous fluids at significantly different spatial scales. The Gallatin Peak terrane was widely metamorphosed, metasomatized, and penetratively deformed in the presence of fluids at upper amphibolite facies during the Big Sky orogeny. Together, these data suggest that this area was pervasively hydrated and deformed over scales of several kilometers during thermotectonism at 30-25 km paleodepths. In the Moon Lake block, fluid flow at similar crustal depths and temperatures played a more localized but equally important role. Discrete flow along brittle fractures in metagabbronorite dikes led to nucleation of cm-scale ductile shear zones and metasomatic alteration. A model for shear zone evolution is presented that requires feedbacks between mechanical and chemical processes for strain localization. Seismic anisotropy was calculated for one of these shear zones. Deformation-induced crystallographic preferred orientation (CPO) of anisotropic minerals typically produces seismic anisotropy in the deep crust. However, this shear zone deformed by mechanisms that yielded no significant CPO, in part due to the fluid-rich environment, and very low seismic anisotropy, suggesting that high anisotropy does not always correlate with high strain.
U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA
NASA Astrophysics Data System (ADS)
Rasbury, T.; Luczaj, J.
2017-12-01
Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the basins and displaces brines with important ore metals out of the basin. More work on the calcites will help to establish the geographic extent of the various fluid pulses in the region, which will lead to an improved understanding of the sources and paths of these fluids.
NASA Astrophysics Data System (ADS)
Berger, A. L.; Spotila, J. A.; Chapman, J. B.; Pavlis, T. L.; Enkelmann, E.; Buscher, J. T.
2007-12-01
The kinematics and architecture of orogenic systems may be heavily influenced by climate, but little research has focused on the long term effects of glacial erosion on orogenesis. Apatite and zircon (U-Th)/He thermochronometry on >75 bedrock samples across the St. Elias orogen, one of the best examples of a glaciated orogenic wedge, is the basis for a new kinematic model and demonstrates an association between glacial denudation and orogenic architecture. The spatial pattern of low temperature cooling indicates that exhumation and deformation are focused within a thin-skinned fold and thrust belt on the windward flank, whereas the leeward flank of the orogen functions as a deformational backstop. A previously unrecognized structure beneath the Bagley ice field must separate these domains with south-side-up motion. We propose this structure is a backthrust making the orogen doubly-vergent. Suggestive of accelerated backthrust motion in response to climate change, cooling rates within the hanging wall block and across the entire windward flank of the orogen accelerated ten-fold coeval with enhanced glaciation. As backthrust motion increased, glacial unroofing also coincided with a regional shift in deformation away from prominent forethrusts including the North American-Yakutat terrane suture (Chugach St. Elias fault) and the seaward deformation front (Pamplona zone). Across the windward flank of the orogen, exhumation, at rates of up to 5 mm/yr, is focused within a narrow zone, where the glacial equilibrium line altitude (ELA) intersects the orogenic wedge. This zone of rapid exhumation, not present prior to the onset of enhanced glaciation, cuts across the structural trend of the orogen and is more narrowly focused than orographic precipitation. Accelerated denudation at the ELA thus appears to have redistributed strain along a series of forethrusts that lie at the zone of heaviest glacial flux, while the backthrust progressively truncates the southward-vergent forethrusts. In a cause and effect response, the expansion of glaciers therefore appears to have resulted in a narrowing of the orogenic wedge due to increased backthrust motion and a landward propagation of deformation in order to preserve topographic slope. This focusing of long- term glacial erosion and deformation at the ELA matches predictions from analytical models of orogenic wedges (i.e. Tomkin and Braun, 2002) and implies a high degree of coupling between climate and tectonics in this glacially-dominated orogen.
Huebner, Matthew T.; Hatcher, Robert D.; Merschat, Arthur J.
2017-01-01
Detailed geologic mapping, U-Pb zircon geochronology and whole-rock geochemical analyses were conducted to test the hypothesis that the southwestern extent of the Cat Square terrane continues from the northern Inner Piedmont (western Carolinas) into central Georgia. Geologic mapping revealed the Jackson Lake fault, a ∼15 m-thick, steeply dipping sillimanite-grade fault zone that truncates lithologically distinct granitoids and metasedimentary units, and roughly corresponds with a prominent aeromagnetic lineament hypothesized to represent the southern continuation of the terrane-bounding Brindle Creek fault. Results of U-Pb SHRIMP geochronology indicate Late Ordovician to Silurian granitoids (444–439 Ma) occur exclusively northwest of the fault, whereas Devonian (404–371 Ma) granitoids only occur southeast of the fault. The relatively undeformed Indian Springs granodiorite (three individual bodies dated 317–298 Ma) crosscuts the fault and occurs on both sides, which indicates the Jackson Lake fault is a pre-Alleghanian structure. However, detrital zircon signatures from samples southeast of the Jackson Lake fault reveal dominant Grenville provenance, in contrast to Cat Square terrane detrital zircon samples from the northern Inner Piedmont, which include peri-Gondwanan (600–500 Ma) and a prominent Ordovician-Silurian (∼430 Ma) signature. We interpret the rocks southeast of the Jackson Lake fault to represent the southwestern extension of the Cat Square terrane primarily based on the partitioning of granitoid ages and lithologic distinctions similar to the northern Inner Piedmont.Data suggest Cat Square terrane metasedimentary rocks were initially deposited in a remnant ocean basin setting and developed into an accretionary prism in front of the approaching Carolina superterrane, ultimately overridden by it in Late Devonian to Early Mississippian time. Burial to >20 km resulted in migmatization of lower plate rocks, forming an infrastructure beneath the Carolina superterrane suprastructure. Provenance patterns support ∼250 km of Devonian dextral translation of the composite Inner Piedmont, which places the northern portion of the Inner Piedmont adjacent to a suite of ∼430 Ma plutons in the Virginia Blue Ridge during deposition. The megascopic thrust-nappe structural style of the northern Inner Piedmont, combined with southwest-directed lateral extrusion at mid-crustal depths, may reconcile differences in timing of metamorphism between the Carolina and central Georgia Inner Piedmont and structural contrasts between the Brindle Creek and Jackson Lake faults.
NASA Astrophysics Data System (ADS)
Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu
2017-08-01
The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu-Mo or Cu-Au mineralization and associated epithermal Au deposits.
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.
2017-12-01
The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show that it is part of the Grenville orogenic belt, characterized by 1230 Ma magmatism, and that it experienced Cryogenian-Eocambrian intraplate magmatism as well. Significant correlations between DRU and the Cuyania terrane imply that both participated in Rodinia rifting and creation of the southern Laurentian margin.
NASA Astrophysics Data System (ADS)
Fillon, Charlotte; Calassou, Sylvain; Mouthereau, Frédéric; Pik, Raphaël; Bellahsen, Nicolas; Gautheron, Cécile
2017-04-01
Within their sedimentary record, foreland basins document vertical movements of the lithosphere, climatic changes, paleogeograhic evolution but also history of exhumation of the adjacent mountain belt. Comparing vertical movements in a range and in its foreland is key to identify processes involved in growth and destruction of mountain belts. The Aquitaine basin, geomorphologically stable since the early Pyrenean orogenesis has the potential to help understanding the driving mechanisms during the late to post-orogenic phases, but the lack of outcrops makes the studies particularly difficult to achieve. To bring a new point of vue on the processes involved in the Cenozoic exhumation of this range, we present new low-Temperature thermochronology data from boreholes of the Aquitaine basin. With the objectives to study rift-related to post-orogenic processes, numerous low-T thermochronological ages ( 300 across the range) have been published, documenting pre-, syn- , and post-orogenic exhumation in the Pyrenees. Using thermal modeling of a new low-T database in the western Axial Zone, we show that a late Miocene (around 10 Ma) uplift occured in the western Pyrenees, which generalizes the post-orogenic signal already detected in the south central Pyrenees. In previous studies, we linked the post-orogenic exhumation in the Southern Pyrenees to the excavation of the foreland valleys caused by the opening of the endorheic Ebro basin towards the Mediterranean Sea. To the West, the tectonic out-of sequence reactivation of the Gavarnie thrust has been invoked to explain the late Miocene AHe ages in the Bielsa massif. These new data might lead us to re-think the causes for such an exhumation signal during "post-orogenic" times. We thus summarize all evidences for the post-orogenic phase and attempt to provide explanation for it: is exhumation driven by Aquitaine foreland basin evolution? Does it reflect a tectonic reactivation of the Pyrenees? or is the signature of a regional/global climate change conditions ? To answer these questions, we present a new dataset of ZHe and AFT ages from borehole samples in three localities of the Aquitaine basin. We use these new data to link the late Miocene exhumation history with the vertical movements in the Aquitaine basin. This study is part of the Orogen projet, an academic-industrial collaboration (CNRS-Total-BRGM)
Structure of the Upper Mantle and Mantle Transition Zone in Central Mongolia
NASA Astrophysics Data System (ADS)
Cui, Z.; Meltzer, A.; Stachnik, J.; Fischer, K. M.; Russo, R. M.; Munkhuu, U.; Baasanbat, T.
2016-12-01
Located between two major Archean cratons, the Siberian Craton to the north and the Tarim and Sino-Korean Cratons to the south, the lithosphere of Central Mongolia was constructed over an extended period of orogenesis associated with the Central Asian Orogenic Belt. Archean to Early Proterozoic basement was modified by accreted subduction complexes during the Paleozoic and early Mesozoic and basalt magmatism in the Cenozoic. Central and western Mongolia constitute a significant portion of the greater Mongolian plateau, an approximately 2.6 million km2area of Central Asia with an average elevation of 1500 meters. The high topography of the Mongolian Plateau has been attributed to far-field effects of India-Asia convergence, Pacific plate subduction, mantle plume activity, convective mantle flow, and magmatic underplating. The origin and persistence of continental plateaus through time provides insight into the evolution of continents and interactions between mantle dynamics and surface processes. As part of a larger interdisciplinary project to understand the origin of high topography in continental interiors we deployed 112 seismic broadband stations in central Mongolia as three separate subarrays in two separate mobilizations over a four year period (2012-2016). The stations extend from the Hovsgol rift in northern Mongolia, through the Hangay Dome, and into the Gobi Altai in southern Mongolia. We use S wave Receiver functions (SRF) to examine the lithosphere asthenosphere boundary and P wave Receiver functions (PRF) to investigate the mantle transition zone (MTZ). Preliminary SRF results from the subarray in the Hangay show lithospheric thinning and E-W variation. The LAB beneath the Hangay is 100km. It gradually thins to 90 km at the western end of the central Hangay and thins more abruptly to 80km at the eastern end of the central Hangay. These results are in agreement with results from joint inversion of receiver functions and surface waves and teleseismic tomography. PRF exhibit a clear Ps arrival from the 410-km discontinuity but a weak Ps phase converted from 660-km discontinuity in both station and CCP stacks. The 410-km Ps arrival is gradually delayed from south to north corresponding to a depth change of 20km. Several stations with visible 660-km Ps suggest a 10-30 km thinning within the MTZ.
History of India-Asia Suturing in Tibet: Constraints and Questions
NASA Astrophysics Data System (ADS)
Kapp, P. A.; Ding, L.
2011-12-01
The India-Asia collision zone is widely pointed to as the type Cenozoic example of continental suturing and collision, yet there remains considerable controversy about its geological and geodynamical evolution. This in part may reflect the richness and complexity of the geological records exposed across the collision zone and how much remains to be extracted from them. Separating the formerly Andean-style continental margin of southern Asia (Gangdese arc and forearc of the Lhasa terrane) in the north, from Indian-affinity strata deformed in the Tethyan Himalayan thrust belt to the south, is the Indus-Yarlung suture zone (IYSZ). In Tibet, ophiolitic rocks along the IYSZ crystallized and were obducted in a suprasubduction zone setting during Early Cretaceous time. The ophiolitic rocks are of the appropriate age to have formed the basement upon which Gangdese forearc strata accumulated. Alternatively, they may represent remnants of an intra-oceanic subduction system that persisted in the Tethys, far from Asia, until Greater India collided with it during the latest Cretaceous to Paleocene. There has been no documentation, however, of ophiolitic or arc fragments younger than Early Cretaceous within the IYSZ. Distinguishing between these two end-member scenarios is important for interpreting detrital records of orogenesis and seismic tomographic images of the mantle. A preponderance of evidence suggests that collision between the Tethyan Himalaya and Asia initiated by 52 Ma. Initial collision led abruptly to profound and far-field changes in paleogeography and tectonism such that by 45 Ma, major shortening and potassic volcanism was ongoing in northern Tibet, plateau-like conditions were established in central Tibet, Tethyan Himalayan crust was undergoing anatexis, and Eo-Himalayan prograde metamorphism was underway. Additional constraints on the shortening history of the Tethyan Himalayan thrust belt will be key to assessing when and how much Greater Indian lithosphere was subducted northward beneath Asia during the Paleogene. Large-scale northward underthrusting of Greater Indian lithosphere (>600 km between 45 and 30 Ma), its subsequent rapid rollback to the south of the IYSZ (30 - 20 Ma), and renewed northward underthrusting (15 Ma to Recent), is inferred from north-south temporal sweeps in Cenozoic magmatism in Tibet. This history of Greater Indian lithosphere subduction may help explain major transitions in the kinematic evolution of the Himalayan-Tibetan orogen and can account for more than half of the total convergence between India and Asia since 50 Ma.
Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?
NASA Astrophysics Data System (ADS)
Kenkmann, T.; Kiebach, F.; Rosenau, M.; Raschke, U.; Pigowske, A.; Mittelhaus, K.; Eue, D.
Our current understanding of marine-impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre-impact, impact, and post-impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast-southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved.The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3-D-analogue experiments suggest that a circular high-friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non-plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90° from each other and rotated by up to 45° with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.
NASA Astrophysics Data System (ADS)
Ma, Xiaomei; Cai, Keda; Zhao, Taiping; Bao, Zihe; Wang, Xiangsong; Chen, Ming; Buslov, M. M.
2018-07-01
Ridge-trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate "slab-window" magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3-58.3 wt%), low K2O (0.02-0.07 wt%) and total alkaline contents (2.16-5.41 wt%), as well as Fe2O3T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90-2.57) and (Ga/Yb)N = 0.97-1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26-3.69), Dy/Yb (1.51-1.77) and Sm/Yb (0.83-1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin.
NASA Astrophysics Data System (ADS)
Weislogel, A. L.; Schwartz, R.; Rothfuss, J. L.; Schwartz, T.
2010-12-01
Inherited topography and basement crustal infrastructure associated with Sevier-Laramide orogenesis played a major role in the fluvial sculpting of intermontane-scale paleovalleys that served as precursors to the modern intermontane basins and existing drainage network. Paleocurrent, facies and detrital zircon and petrologic provenance data indicate that Upper Eocene-Lower Miocene units in the Renova Fm. mark the transition from fluvial incision to sediment backfilling of long-lived, paleovalley systems. Paleo-alluvial systems carried Renova detritus shed from high-relief (>2 km) early Paleogene highlands that originated as Sevier-Laramide uplifts and persist today as modern highlands. Detrital zircon and clast composition data indicate the Boulder and Tobacco Roots batholiths were widely unroofed, and plutons in the Anaconda range and Idaho batholith were at least partially unroofed. Renova sediment was routed by a recurved trellis-like fluvial trunk system that generally paralleled the track of river systems occupying the modern intermontaine basins. In most areas, geometry of these pathways are demonstrably linked to structural grain of the underlying Sevier-Laramide orogen and may have been modified by later extensional reactivation. Renova paleodrainage configuration bears resemblance to sediment pathways identified in the Cretaceous Kootenai, Blackleaf, and Frontier formations and Beaverhead Group. Detrital remnants of the substantial volume of Elkhorn Mountain volcanic rock and Paleozoic-Mesozoic sedimentary rock overburden are rare within Renova deposits indicating that batholith overburden was exported out of the system in the >20 m.y. duration between the end of the Cretaceous and beginning of widespread Renova deposition. Thus, significant mass was transferred from a segment the Sevier-Laramide orogenic highlands and routed via an ancestral drainage network to a sink that lies several hundreds of kilometers away and along strike of the prevailing structural grain. The ultimate sink for this excavated material remains in question, though paleocurrent data for much of the study area documents eventual escape from the orogenic wedge into the northward-flowing paleo-Missouri headwater system. Once in the paleo-Missouri fluvial system, detritus was carried longitudinally along the remnant foreland basin axis before turning cratonward (i.e., eastward) toward the retreating Western Interior Seaway. Overall, this work suggests drainage configuration of the upper Missouri watershed has persisted for at least 40 m.y., and perhaps had initiated several tens of millions of years earlier.
NASA Astrophysics Data System (ADS)
Menzies, Catriona D.; Wright, Sarah L.; Craw, Dave; James, Rachael H.; Alt, Jeffrey C.; Cox, Simon C.; Pitcairn, Iain K.; Teagle, Damon A. H.
2018-01-01
Collisional mountain building influences the global carbon cycle through release of CO2 liberated by metamorphic reactions and promoting mechanical erosion that in turn increases chemical weathering and drawdown of atmospheric CO2. The Southern Alps is a carbonate-poor, siliciclastic mountain belt associated with the active Australian Pacific plate boundary. On-going, rapid tectonic uplift, metamorphism and hydrothermal activity are mobilising carbon. Here we use carbon isotope measurements of hot spring fluids and gases, metamorphic host rocks, and carbonate veins to establish a metamorphic carbon budget. We identify three major sources for CO2 within the Southern Alps: (1) the oxidation of graphite; (2) consumption of calcite by metamorphic reactions at the greenschist-amphibolite facies boundary, and (3) the dissolution of groundmass and vein-hosted calcite. There is only a minor component of mantle CO2 arising on the Alpine Fault. Hot springs have molar HCO3-/Ca2+ ∼9, which is substantially higher than produced by the dissolution of calcite indicating that deeper metamorphic processes must dominate. The total CO2 flux to the near surface environment in the high uplift region of the Southern Alps is estimated to be ∼6.4 × 108 mol/yr. Approximately 87% of this CO2 is sourced from coupled graphite oxidation (25%) and disseminated calcite decarbonation (62%) reactions during prograde metamorphism. Dissolution of calcite and mantle-derived CO2 contribute ∼10% and ∼3% respectively. In carbonate-rich orogens CO2 production is dominated by metamorphic decarbonation of limestones. The CO2 flux to the atmosphere from degassing of hot springs in the Southern Alps is 1.9 to 3.2 × 108 mol/yr, which is 30-50% of the flux to the near surface environment. By contrast, the drawdown of CO2 through surficial chemical weathering ranges between 2.7 and 20 × 109 mol/yr, at least an order of magnitude greater than the CO2 flux to the atmosphere from this orogenic belt. Thus, siliciclastic mountain belts like the Southern Alps are net sinks for atmospheric CO2, in contrast to orogens involving abundant carbonate rocks, such as the Himalaya, that are net CO2 sources.
Chemical evolution of Himalayan leucogranites based on an O, U-Pb and Hf study of zircon
NASA Astrophysics Data System (ADS)
Hopkinson, Thomas N.; Warren, Clare J.; Harris, Nigel B. W.; Hammond, Samantha J.; Parrish, Randall R.
2015-04-01
Crustal melting is a characteristic process at convergent plate margins, where crustal rocks are heated and deformed. Miocene leucogranite sheets and plutons are found intruded into the high-grade metasedimentary core (the Greater Himalayan Sequence, GHS) across the Himalayan orogen. Previously-published Himalayan whole-rock data suggest that these leucogranites formed from a purely meta-sedimentary source, isotopically similar to those into which they now intrude. Bulk rock analyses carry inherent uncertainties, however: they may hide contributions from different contributing sources, and post-crystallization processes such as fluid interaction may significantly alter the original chemistry. In contrast, zircon is more able to retain precise information of the contributing sources of the melt from which it crystallises whilst its resistant nature is impervious to post-magmatic processes. This multi-isotope study of Oligocene-Miocene leucogranite zircons from the Bhutan Himalaya, seeks to differentiate between various geochemical processes that contribute to granite formation. Hf and O isotopes are used to detect discrete changes in melt source while U-Pb isotopes provide the timing of zircon crystallisation. Our data show that zircon rims of Himalayan age yield Hf-O signatures that lie within the previously reported whole-rock GHS field, confirming the absence of a discernible mantle contribution to the leucogranite source. Importantly, we document a decrease in the minimum ɛHf values during Himalayan orogenesis through time, correlating to a change in Hf model age from 1.4 Ga to 2.4 Ga. Nd model ages for the older Lesser Himalayan metasediments (LHS) that underthrust the GHS are significantly older than those for the GHS (2.4-2.9 Ga compared with 1.4-2.2 Ga), and as such even minor contributions of LHS material incorporated into a melt would significantly increase the resulting Hf model age. Hence our leucogranite data suggest either a change of source within the GHS over time, or an increasing contribution from older Lesser Himalayan (LHS) material in the melt. This is the first time that an evolutionary trend in the chemistry of Himalayan crustal melts has been recognized. Thus these new data show that, at least in the Himalaya, accessory phase geochemistry can provide more detailed insight into tectonic processes than bulk rock geochemistry.
NASA Astrophysics Data System (ADS)
Palin, Richard M.; Reuber, Georg S.; White, Richard W.; Kaus, Boris J. P.; Weller, Owen M.
2017-06-01
The Tso Morari massif is one of only two regions where ultrahigh-pressure (UHP) metamorphism of subducted crust has been documented in the Himalayan Range. The tectonic evolution of the massif is enigmatic, as reported pressure estimates for peak metamorphism vary from ∼2.4 GPa to ∼4.8 GPa. This uncertainty is problematic for constructing large-scale numerical models of the early stages of India-Asia collision. To address this, we provide new constraints on the tectonothermal evolution of the massif via a combined geodynamic and petrological forward-modelling approach. A prograde-to-peak pressure-temperature-time (P-T-t) path has been derived from thermomechanical simulations tailored for Eocene subduction in the northwestern Himalaya. Phase equilibrium modelling performed along this P-T path has described the petrological evolution of felsic and mafic components of the massif crust, and shows that differences in their fluid contents would have controlled the degree of metamorphic phase transformation in each during subduction. Our model predicts that peak P-T conditions of ∼2.6-2.8 GPa and ∼600-620 ∘C, representative of 90-100 km depth (assuming lithostatic pressure), could have been reached just ∼3 Myr after the onset of subduction of continental crust. This P-T path and subduction duration correlate well with constraints reported for similar UHP eclogite in the Kaghan Valley, Pakistan Himalaya, suggesting that the northwest Himalaya contains dismembered remnants of what may have been a ∼400-km-long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. A maximum overpressure of ∼0.5 GPa was calculated in our simulations for a homogeneous crust, although small-scale mechanical heterogeneities may produce overpressures that are larger in magnitude. Nonetheless, the extremely high pressures for peak metamorphism reported by some workers (up to 4.8 GPa) are unreliable owing to conventional thermobarometry having been performed on minerals that were likely not in equilibrium. Furthermore, diagnostic high-P mineral assemblages predicted to form in Tso Morari orthogneiss at peak metamorphism are absent from natural samples, which may reflect the widespread metastable preservation of lower-pressure assemblages in the felsic component of the crust during subduction. If common in such subducted continental terranes, this metastability calls into question the reliability of geodynamic simulations of orogenesis that are predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.
Sand fairway mapping as a tool for tectonic restoration in orogenic belts
NASA Astrophysics Data System (ADS)
Butler, Rob
2016-04-01
The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.
NASA Astrophysics Data System (ADS)
Carter, A.
2017-12-01
Marine turbidites from an axially fed submarine fan are intermittently exposed across the entire chain of the Andaman-Nicobar Islands. Known as the Andaman Flysch (AF) and loosely assigned to the Paleogene, it has been proposed that these rocks are sourced from the Himalaya and thus provide a unique window into early stages of orogenesis. Where the turbidites came from has been subject to debate; they are either Bengal Fan or forearc deposits cut off from the Bengal Fan and possibly sourced from the Irrawaddy delta. Following recent IODP drilling in the eastern Indian Ocean (Expeditions 354 and 362) it is now possible resolve this by comparing the provenance of AF turbidites with the Bengal and Nicobar Fans. The Andaman Flysch can be traced as detached outcrops all along the western side of the main islands of Andaman over a strike length of more than 200 km. Exposures along the east coast are confined to South Andaman Island. Petrographic and geochemical data show a common continental crust signal with minor contributions from arc material. But, there are also differences whereby west coast sandstones show significantly higher quartz content and less feldspars and rock fragments. Staurolite is also present in all samples from the western side, but is absent from east coast samples. Both detrital zircon U-Pb and Bulk rock Nd data record the presence of arc material likely from Myanmar. Detrital zircon data from the Nicobar Fan match the Andaman turbidites and indicate sources from the Greater and Tethyan Himalaya mixed with sediment from the Burmese arc. Transfer of Irrawaddy derived sediment to the Nicobar Fan is ruled out as sediment transfer across the fore-arc to the west was restricted by the then exposed Yadana and M8 highs in the north and the Sewell and Alcock Rises to the south. Sediment isopachs of the Martaban back arc basin, the main north-south-oriented depocentre in the Andaman Sea related to the development of the Thanlwin -Irrawaddy delta system also show no significant transfer of sediment to the west. The provenance of the western Andaman Flysch matches the Nicobar Fan and is similar to the provenance of Neogene sands deposited in the eastern Bengal and Surma basins linked to the westward migration of the Indo-Burmese wedge that reduced accommodation and diverted sediments south to the shelf and Nicobar Fan.
Volkert, R.A.; Zartman, R.E.; Moore, P.B.
2005-01-01
Postorogenic rocks are widespread in Grenville terranes of the north-central Appalachians where they form small, discordant, largely pegmatitic felsic intrusive bodies, veins, and dikes, and also metasomatic calcic skarns that are unfoliated and postdate the regional 1090 to 1030 Ma upper amphibolite- to granulite-facies metamorphism related to the Grenville (Ottawan) Orogeny. Zircons from magmatic and nonmagmatic rocks from northern New Jersey and southern New York were dated to provide information on the regional tectonomagmatic and metallogenic history following Ottawan orogenesis. We obtained U-Th-Pb zircon ages of 1004 ?? 3 Ma for pegmatite associated with the 1020 ?? 4 Ma Mount Eve Granite near Big Island, New York, 986 ?? 4 Ma for unfoliated, discordant pegmatite that intrudes supracrustal marble at the Buckwheat open cut, Franklin, New Jersey, ???990 Ma for a silicate-borate skarn layer in the Franklin Marble at Rudeville, New Jersey, and 940 ?? 2 Ma for a calc-silicate skarn layer at Lower Twin Lake, New York. This new data, together with previously published ages of 1020 ?? 4 to 965 ?? 10 Ma for postorogenic rocks from New Jersey and southern New York, provide evidence of magmatic activity that lasted for up to 60 Ma past the peak of high-grade metamorphism. Postorogenic magmatism was almost exclusively felsic and involved relatively small volumes of metaluminous to mildly peraluminous melt that fractionated from an A-type granite parent source. Field relationships suggest the melts were emplaced along lithosphere-scale fault zones in the Highlands that were undergoing extension and that emplacement followed orogenic collapse by least 30 Ma. Postorogenic felsic intrusions correspond to the niobium-yttrium-fluorine (NYF) class of pegmatites of C??erny?? (1992a). Geochronologic data provide a temporal constraint on late-stage hydrothermal activity and a metallogenic event in New Jersey at ???990 to 940 Ma that mineralized pegmatites with subeconomic to economic deposits of magnetite ?? U ?? Th ?? rare earth element (REE) and formed metasomatic calcic skarn bodies in marble and reactive carbonate rocks. Mineralization associated with this event overlaps the timing of pegmatite emplacement, suggesting a petrogenetic relationship. Coeval metallogeny at 975 to 950 Ma in the New York Hudson Highlands and 980 to 937 Ma in the Canadian Grenville Province implies that this event was widespread following the Ottawan phase of the Grenville Orogeny. ?? 2005 Elsevier B.V. All rights reserved.
Rayleigh wave tomography in South China from ambient seismic noise cross-correlation
NASA Astrophysics Data System (ADS)
Xu, S.; Song, X.; Wang, L.; Xu, M.
2012-12-01
South China is a composite of continental blocks with relics of Proterozoic and late-Paleozoic sutures, and underwent complex transformations in geological history. The connection of Yangtze Block (YZB) and Cathaysian Block (CTB) around 1 Ga led to Neoproterozoic rift systems in the central South China. Subsequently, strong folding and thrusting with intracontinental shortening occurred in the central South China during Mesozoic as a response to the collision of China-Indochina with Philippine Plate. Post orogenesis during Jurassic and Cretaceous, accompanied by extension and delamination, led to the thinning of lithosphere and granite intrusion, which becomes the main mineralization process in South China. The mechanism of the intracontinental collision and boundary of YZB with CTB have been debated for a long time. Detailed lithospheric structures are important for us to understand characteristics of the continental blocks, their boundaries, and the evolution processes. We use ambient noise cross-correlation method to obtain high resolution 3-D velocity images of South China. Continuous records of 298 stations from January 2010 to June 2011 are used to retrieve Rayleigh wave Green functions between possible station pairs. Waveform and dispersion curve comparisons with earthquake-emitted Rayleigh wave indicate that the ambient noise method is efficient and reliable. Both group and phase velocity images of 0.5°×0.5° grid from 8 to 40 s are estimated. Then, shear velocities are inversed in each grid, using a recent regional S-velocity model as a constraint for deeper structures. The surface wave maps in short periods clearly delineate basins and mountains. Deeper Moho in west of South China is observed, which can be interpreted as a result of strata folding and shortening in Mesozoic or long-range effects from Indian-Asian collision in Cenozoic. The collision mode between YZB and CTB is different for Lower-YZB (L-YZB) and Upper-YZB (U-YZB): the L-YZB is a simple attachment while the CTB overthrusts over U-YZB. Strong extension and delamination in the eastern part of South China result in thinner and weaker lithosphere than in the west. Remnant materials of partial melting induced by Paleo-Pacific plate subduction form the origin of Late-Mesozoic Volcanic Belt in the Southeast China. Low velocity along the fault implies that Tanlu is a lithosphere-scale structure. We also observe a vertical low velocity zone under the previously-claimed "Hainan Island mantle plume".
NASA Astrophysics Data System (ADS)
Moreno, Christopher J.; Horton, Brian K.; Caballero, Victor; Mora, Andrés; Parra, Mauricio; Sierra, Jair
2011-10-01
The Central Cordillera and Eastern Cordillera of the northern Andes form the topographic flanks of the north-trending Magdalena Valley Basin. Constraining the growth of these ranges and intervening basin has implications for Andean shortening and the transformation from a foreland to hinterland basin configuration. We present sedimentological, paleocurrent, and sandstone petrographic results from Cenozoic type localities to provide insights into the tectonic history of the northern Middle Magdalena Valley Basin of Colombia. In the Nuevo Mundo Syncline, the mid-Paleocene transition from marine to nonmarine deposystems of the Lisama Formation corresponds with a paleocurrent shift from northward to eastward transport. These changes match detrital geochronological evidence for a contemporaneous shift from cratonic (Amazonian) to orogenic (Andean) provenance, suggesting initial shortening-related uplift of the Central Cordillera and foreland basin generation in the Magdalena Valley by mid-Paleocene time. Subsequent establishment of a meandering fluvial system is recorded in lower-middle Eocene strata of the lower La Paz Formation. Eastward paleocurrents in mid-Paleocene through uppermost Eocene fluvial deposits indicate a continuous influence of western sediment source areas. However, at the upper middle Eocene (˜40 Ma) boundary between the lower and upper La Paz Formation, sandstone compositions show a drastic decrease in lithic content, particularly lithic volcanic fragments. This change is accompanied by a facies shift from mixed channel and overbank facies to thick, amalgamated braided fluvial deposits of possible fluvial megafans, reflecting changes in both the composition and proximity of western sediment sources. We attribute these modifications to the growing influence of exhumed La Cira-Infantas paleohighs in the axial Magdalena Valley, features presently buried beneath upper Eocene-Quaternary basin fill along the western flank of the Nuevo Mundo Syncline. In uppermost Eocene strata of the lower Esmeraldas Formation, paleocurrents show a sharp reversal from eastward to dominantly westward transport that persisted into the Neogene. The Esmeraldas also records a change to more-distal, floodplain-dominated deposition of finer sediments. These adjustments are interpreted to reflect burial of the La Cira-Infantas highs and onset of Eastern Cordillera exhumation, resulting in a transition from foreland to hinterland basin conditions in the Magdalena Valley. The lack of significant variation in sandstone compositions suggests a bulk-rock compositional similarity between the La Cira-Infantas paleohighs (subsurface Magdalena Valley) and the Eastern Cordillera. Collectively, the data presented here refine previous thermochronologic and provenance studies and suggest that major uplift-induced exhumation in the Central Cordillera and Eastern Cordillera commenced by the mid-Paleocene and latest Eocene, respectively.
NASA Astrophysics Data System (ADS)
Hu, Yan; Niu, Yaoling; Li, Jiyong; Ye, Lei; Kong, Juanjuan; Chen, Shuo; Zhang, Yu; Zhang, Guorui
2016-02-01
We present zircon U-Pb ages and geochemical data on the late Triassic mafic dikes (diabase) and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in the East Kunlun Orogenic Belt (EKOB). These rocks give a small age window of 228-218 Ma. The mafic dikes represent evolved alkaline basaltic melts intruding ~ 8-9 Myrs older and volumetrically more abundant A-type granite batholith. Their rare earth element (REE) and multi-element patterns are similar to those of the present-day ocean island basalts (OIBs) except for a weak continental crustal signature (i.e., enrichment of Rb and Pb and weak depletion of Nb, Ta and Ti). Their trace element characteristics together with the high 87Sr/86Sr (0.7076-0.7104), low εNd(t) (- 2.18 to - 3.46), low εHf(t) (- 2.85 to - 4.59) and variable Pb isotopic ratios are consistent with melts derived from metasomatized subcontinental lithospheric mantle with crustal contamination. The felsic volcanic rocks are characterized by high LREE/HREE (e.g., [La/Yb]N of 5.71-17.00) with a negative Eu anomaly and strong depletion in Sr and P, resembling the model upper continental crust (UCC). Given the high 87Sr/86Sr (0.7213-0.7550) and less negative εNd(t) (- 3.83 to - 5.09) and εHf(t) (- 3.06 to - 3.83) than the UCC plus the overlapping isotopes with the mafic dikes and high Nb-Ta rhyolites, the felsic volcanic rocks are best interpreted as resulting from melting-induced mixing with 45-50% crustal materials and 50-55% mantle-derived mafic melts probably parental to the mafic dikes. Such mantle-derived melts underplated and intruded the deep crust as juvenile crustal materials. Partial melting of such juvenile crust produced felsic melts parental to the felsic volcanic rocks in the EKOB. We hypothesize that the late Triassic mafic dikes and felsic volcanic rocks are associated with post-collisional extension and related orogenic collapse. Such processes are probably significant in causing asthenospheric upwelling, decompression melting, induced melting of the prior metasomatized mantle lithosphere and the existing crust. This work represents our ongoing effort in understanding the origin of the juvenile crust and continental crustal accretion through magmatism in the broad context of orogenesis from seafloor subduction to continental collision and to post-collisional processes.
Significance of the Nestos Shearzone in the southern Rhodopes (Northern Greece/Southern Bulgaria)
NASA Astrophysics Data System (ADS)
Nagel, T. J.; Schmidt, S.; Froitzheim, N.; Jahn-Awe, S.; Georgiev, N.
2009-04-01
The Nestos Shearzone can be traced over 100 kilometers and separates the two main units of the Rhodopes, the Upper Complex in the hangingwall from the Pangaion-Pirin Unit in the footwall. The Upper Complex consists of mingled continental and oceanic basement rocks, intruded by granitic bodies of Cretaceous and Tertiary age. It underwent at least amphibolite facies conditions during the Alpine orogenic cycle and several localities with preserved high-pressure and/or ultrahigh-pressure rocks have been found. The age of orogenesis and metamorphism is ambiguous and several Mesozoic and Tertiary cycles may be recorded in that unit. The lowermost level immediately on top of the Nestos Shearzone (Sidironero subunit) mainly consists of rocks derived from a Jurassic arc and appears to show the youngest reported (i.e. Eocene) high-grade metamorphism (including ultra-high-pressure conditions and a subsequent migmatic stage). The underlying Pangaion-Pirin Unit beneath the Nestos Shearzone is build of marbles and Variscan gneisses of disputed Mesozoic paleogeographic position. It is intruded by Oligocene granitoids, which also crosscut the Nestos shearzone. The Pangaion-Pirin Unit experienced only blueschist facies and subsequent upper greenschist facies conditions during the Alpine cycle. The Nestos Shearzone is defined by top-to-the-southwest-directed mylonites formed under upper greenschist facies conditions. So far, it has been viewed as a thrust. We present structural and petrological data suggesting that the Nestos Shearzone is instead a major mid-crustal detachment related to late Eo-Oligocene backarc extension. Mylonitisation along the shear zone occurred under greenschist facies conditions and postdates the blueschist facies stage. The shear zone formed between about 40 Ma and 34 Ma as indicated by the age of high temperature conditions in the hangingwall and the age of Oligocene granitoids crosscutting the mylonites. During this time, pronounced extension and basin formation took place in the hangingwall of the Nestos Shearzone. We propose that the brittle Mesta detachment, which bounds the Mesta Graben to the East, roots into the Nestos Shearzone. The metamorphic history of the Pangaion-Pirin Unit as well as the proposed young age of the Nestos Shearzone is in conflict with studies proposing that this unit represents an independent microcontinent (Drama) accreted to the future Rhodopes in late Jurassic or early Cretaceous times. Instead, we hypothesize that the Pangaion-Pirin Unit could be derived from the Apulian plate, which would have far reaching consequences for the structural architecture of the Aegean Sea area.
Significance of the Nestos Shearzone in the southern Rhodopes (Northern Greece/Southern Bulgaria)
NASA Astrophysics Data System (ADS)
Nagel, Thorsten; Schmidt, Silke; Janak, Marian; Jahn-Awe, Silke; Froitzheim, Niko; Georgiev, Neven
2010-05-01
The Nestos Shearzone can be traced over 100 kilometers and separates the two main units of the Rhodopes, the Rhodope Terrane in the hangingwall from the Pangaion-Pirin Unit in the footwall. The Rhodope Terrane consists of mingled continental and oceanic basement rocks, intruded by granitic bodies of Cenozoic age. It underwent at least amphibolite facies conditions during the Alpine orogenic cycle and several localities with preserved highpressure and/or ultrahigh-pressure rocks have been found. The age of orogenesis and metamorphism is ambiguous and several Mesozoic and Tertiary cycles may be recorded in that unit. The lowermost level immediately on top of the Nestos Shearzone (Sidironero subunit) mainly consists of rocks derived from a Jurassic arc and appears to show the youngest reported (i.e. Eocene) high-grade metamorphism (including ultra-high-pressure conditions and a subsequent migmatic stage). The underlying Pangaion-Pirin Unit beneath the Nestos Shearzone is build of marbles and Variscan gneisses of disputed Mesozoic paleogeographic position. It is intruded by Oligocene granitoids, which also crosscut the Nestos Shearzone. The Pangaion-Pirin Unit experienced a clockwise PT-path culminating at upper greenschist facies conditions during the Alpine cycle. The Nestos Shearzone is defined by top-to-the-southwest-directed mylonites formed under upper greenschist facies conditions. So far, it has been viewed as a thrust. We present structural and petrological data suggesting that the Nestos Shearzone instead represents a major detachment horizon related to late Eo-Oligocene normal faults in the overlying units. Mylonitisation along the shear zone occurred under conditions postdating peak pressures. The shear zone formed between about 40 Ma and 34 Ma as indicated by the age of high temperature conditions in the hangingwall and the age of Oligocene granitoids crosscutting the mylonites. During this time, pronounced extension and basin formation took place in the hangingwall of the Nestos Shearzone. We propose that the brittle Mesta detachment, which bounds the Mesta Graben to the East, roots into the Nestos Shearzone. Themetamorphic history of the Pangaion-Pirin Unit as well as the proposed young age of the Nestos Shearzone is in conflict with studies proposing that this unit represents an independent microcontinent (Drama) accreted to the future Rhodopes in late Jurassic or early Cretaceous times. Instead, we propose that the Pangaion-Pirin Unit could be derived from the Apulian plate, which would have far reaching consequences for the structural architecture of the Hellenic orogen.
NASA Astrophysics Data System (ADS)
Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.
2013-04-01
Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and juxtaposition of hot asthenosphere and lower crust. This is a plausible explanation for the UTH event, in contrast to simple crustal thickening and radiogenic self-heating that are generally considered unable to produce such PT conditions. 3) long-lived (990-920 Ma) ferroan magmatism, temporally associated with high-grade metamorphism and large-scale deformation, probably reflecting formation inboard of an alternating compressional/extensional continental margin. We have no known record of events after ca. 920 Ma, but it is conceivable that the active margin persisted well into the Neoproterozoic, possibly indicated by metamorphic and magmatic activity recorded in Grenville/Sveconorwegian orogen-derived sedimentary rocks.
Uplifting model of the Longmenshan mountain in the eastern margin of Tibetan plateau
NASA Astrophysics Data System (ADS)
Zhang, S.; Ding, R.; Mao, C.
2010-12-01
Longmenshan mountain is a vivid manifestation of the Cenozoic orogenesis in the eastern margin of the Tibetan plateau, and a key to understand the geodynamics of eastward extending of the plateau. Thus the uplift mechanism of Longmenshan mountain became a hot spot issue of geosciences about the Tibetan plateau. Two entirely different hypotheses, i.e., crustal shortening and lower crustal channel flow, were put forward, but the solution is open. Further discussion need our deeper understanding about the uplifting features of the Longmenshan mountain. Fortunately, the uplifting processes were recorded objectively by peneplains and river landforms. We first analysed the peneplains and pediplanes of Longmenshan mountain and its surrounding areas, and surveyed the terraces of Dadu river running across the mountain. Then we studied the uplifting features of the study areas in late Cenozoic time on the basis of landform geometries. Finaly we discussed the possible mechanisms for the uplifting. There are two levels of peneplains whose peneplanations may begin in early Cenozoic time and end at late Miocene when the final fluctuations of elevations were possibly less than one kilometers. The valley of Dadu river is incised into the peneplains and has a staircase of no less than ten levels of terraces. The highest terrace is a strath which was contemporary with the pediplane in the piedmont formed in late Pliocene or in early Pleistocene. Due to their originally flat features, the peneplains and the strath terraces were used as datum planes for judging neotectonic deformations. Since late Miocene, the southeastern side of Longmenshan mountain has been dominated by thrust-faulting with a total vertical displacement of about 4500 m against the Sichuan basin, meantime the northwest side has been maintained flexural uplift with syncline hinge approximately following the Longriba fault. As a landform barrier between Tibetan plateau and Sichuan basin, the crest lines of the mountain are about 500 to 1000 m higher than the hinterland surface on the west side. In a word, Longmenshan mountain has been formed by the combination of eastern-wing thrusting and west-wing flexing which are attested by the deformation of the Tertiary peneplains and the longitudinal profiles of Quaternary strath terraces of Dadu river. The possible mechanisms for the uplifting of the mountain are the fault-bend folding of the upper crust, the upwelling of plastic lower crust , and crustal isostasy induced by surface erosion. In the light of the existence of longitudinal thrust faults or reversely strike-slip fault along the eastern and western wings of Longmenshan mountain, and no finding of longitudinal extensional faults there, fault-bend folding is proposed to be the leading factor.
NASA Astrophysics Data System (ADS)
Bracciali, Laura; Najman, Yani; Parrish, Randy; Millar, Ian; Akhter, Syed
2014-05-01
It has been proposed that the rapid exhumation and anomalously young metamorphism of the Namche Barwa eastern Himalayan syntaxis in the Plio-Pleistocene resulted from river capture of the Yarlung Tsangpo by the Brahmaputra (the "tectonic aneurysm" model; e.g. Zeitler et al.GSA Today 2001) . In order to test this hypothesis, the occurrence of river capture, and its timing, must be ascertained. Today, the Yarlung Tsangpo flows east along the Indus-Yarlung suture before taking a 180º turn at the eastern Himalayan syntaxis to flow south across the Himalaya as the Brahmaputra. Whether this river pattern results from river capture, or whether the river is antecedent to orogenesis, is much debated, yet robust constraints on the occurrence of the proposed river capture and an independent time-frame for such an event are lacking. The Yarlung Tsangpo drains the Jurassic-Paleogene Trans-Himalayan arc of the Asian plate north of the suture and the Tethyan Himalaya of the Indian plate to the south of the suture, while the Brahmaputra prior to any capture would have drained the southern Himalayan slopes composed only of Precambrian-Palaeozoic Indian crust, much of which metamorphosed to high grade during the Oligo-Miocene. Hence, the first occurrence of Trans-Himalayan arc detritus which is distinctive of the Yarlung Tsangpo, in the Neogene palaeo-Brahmaputra deposits in the Bengal Basin, Bangladesh, is key to date the river capture. We have applied a multi-disciplinary provenance study to these sediments and identify the earliest occurrence of detritus from the arc in the Early Miocene. Dating the time of river capture has implications both for the timing of uplift of Tibet and models of tectonic-erosion interactions: - Whilst some workers propose an early uplift of the plateau, others propose a later independent uplift event, at least for the east of the plateau, caused by an additional mechanism. This late uplift event has been invoked by previous workers as the cause of the river capture of the Yarlung Tsangpo by the Brahmaputra due to effective lowering of base level. If this cause and effect correlation is correct, this uplift event must have occurred prior to the Early Miocene. - These data allow us to explore the proposed interaction between the Namche Barwa snytaxial evolution and the timing of river capture. Given we have now dated the time of this river capture at ~18 Ma, the modelled coupling between capture and onset of rapid exhumation (dated at Plio-Pleistocene) would need to accommodate a lag time of ~8 Ma for this hypothesis to hold true.
Solovyeva, Evgeniya N; Lebedev, Vladimir S; Dunayev, Evgeniy A; Nazarov, Roman A; Bannikova, Anna A; Che, Jing; Murphy, Robert W; Poyarkov, Nikolay A
2018-01-01
We hypothesize the phylogenetic relationships of the agamid genus Phrynocephalus to assess how past environmental changes shaped the evolutionary and biogeographic history of these lizards and especially the impact of paleogeography and climatic factors. Phrynocephalus is one of the most diverse and taxonomically confusing lizard genera. As a key element of Palearctic deserts, it serves as a promising model for studies of historical biogeography and formation of arid habitats in Eurasia. We used 51 samples representing 33 of 40 recognized species of Phrynocephalus covering all major areas of the genus. Molecular data included four mtDNA ( COI , ND2 , ND4 , Cytb ; 2,703 bp) and four nuDNA protein-coding genes ( RAG1 , BDNF , AKAP9 , NKTR ; 4,188 bp). AU-tests were implemented to test for significant differences between mtDNA- and nuDNA-based topologies. A time-calibrated phylogeny was estimated using a Bayesian relaxed molecular clock with nine fossil calibrations. We reconstructed the ancestral area of origin, biogeographic scenarios, body size, and the evolution of habitat preference. Phylogenetic analyses of nuDNA genes recovered a well-resolved and supported topology. Analyses detected significant discordance with the less-supported mtDNA genealogy. The position of Phrynocephalus mystaceus conflicted greatly between the two datasets. MtDNA introgression due to ancient hybridization best explained this result. Monophyletic Phrynocephalus contained three main clades: (I) oviparous species from south-western and Middle Asia; (II) viviparous species of Qinghai-Tibetan Plateau (QTP); and (III) oviparous species of the Caspian Basin, Middle and Central Asia. Phrynocephalus originated in late Oligocene (26.9 Ma) and modern species diversified during the middle Miocene (14.8-13.5 Ma). The reconstruction of ancestral areas indicated that Phrynocephalus originated in Middle East-southern Middle Asia. Body size miniaturization likely occurred early in the history of Phrynocephalus . The common ancestor of Phrynocephalus probably preferred sandy substrates with the inclusion of clay or gravel. The time of Agaminae radiation and origin of Phrynocephalus in the late Oligocene significantly precedes the landbridge between Afro-Arabia and Eurasia in the Early Miocene. Diversification of Phrynocephalus coincides well with the mid-Miocene climatic transition when a rapid cooling of climate drove progressing aridification and the Paratethys salinity crisis. These factors likely triggered the spreading of desert habitats in Central Eurasia, which Phrynocephalus occupied. The origin of the viviparous Tibetan clade has been associated traditionally with uplifting of the QTP; however, further studies are needed to confirm this. Progressing late Miocene aridification, the decrease of the Paratethys Basin, orogenesis, and Plio-Pleistocene climate oscillations likely promoted further diversification within Phrynocephalus . We discuss Phrynocephalus taxonomy in scope of the new analyses.
Lebedev, Vladimir S.; Dunayev, Evgeniy A.; Nazarov, Roman A.; Bannikova, Anna A.; Che, Jing; Murphy, Robert W.
2018-01-01
We hypothesize the phylogenetic relationships of the agamid genus Phrynocephalus to assess how past environmental changes shaped the evolutionary and biogeographic history of these lizards and especially the impact of paleogeography and climatic factors. Phrynocephalus is one of the most diverse and taxonomically confusing lizard genera. As a key element of Palearctic deserts, it serves as a promising model for studies of historical biogeography and formation of arid habitats in Eurasia. We used 51 samples representing 33 of 40 recognized species of Phrynocephalus covering all major areas of the genus. Molecular data included four mtDNA (COI, ND2, ND4, Cytb; 2,703 bp) and four nuDNA protein-coding genes (RAG1, BDNF, AKAP9, NKTR; 4,188 bp). AU-tests were implemented to test for significant differences between mtDNA- and nuDNA-based topologies. A time-calibrated phylogeny was estimated using a Bayesian relaxed molecular clock with nine fossil calibrations. We reconstructed the ancestral area of origin, biogeographic scenarios, body size, and the evolution of habitat preference. Phylogenetic analyses of nuDNA genes recovered a well-resolved and supported topology. Analyses detected significant discordance with the less-supported mtDNA genealogy. The position of Phrynocephalus mystaceus conflicted greatly between the two datasets. MtDNA introgression due to ancient hybridization best explained this result. Monophyletic Phrynocephalus contained three main clades: (I) oviparous species from south-western and Middle Asia; (II) viviparous species of Qinghai–Tibetan Plateau (QTP); and (III) oviparous species of the Caspian Basin, Middle and Central Asia. Phrynocephalus originated in late Oligocene (26.9 Ma) and modern species diversified during the middle Miocene (14.8–13.5 Ma). The reconstruction of ancestral areas indicated that Phrynocephalus originated in Middle East–southern Middle Asia. Body size miniaturization likely occurred early in the history of Phrynocephalus. The common ancestor of Phrynocephalus probably preferred sandy substrates with the inclusion of clay or gravel. The time of Agaminae radiation and origin of Phrynocephalus in the late Oligocene significantly precedes the landbridge between Afro-Arabia and Eurasia in the Early Miocene. Diversification of Phrynocephalus coincides well with the mid-Miocene climatic transition when a rapid cooling of climate drove progressing aridification and the Paratethys salinity crisis. These factors likely triggered the spreading of desert habitats in Central Eurasia, which Phrynocephalus occupied. The origin of the viviparous Tibetan clade has been associated traditionally with uplifting of the QTP; however, further studies are needed to confirm this. Progressing late Miocene aridification, the decrease of the Paratethys Basin, orogenesis, and Plio–Pleistocene climate oscillations likely promoted further diversification within Phrynocephalus. We discuss Phrynocephalus taxonomy in scope of the new analyses. PMID:29576991
NASA Astrophysics Data System (ADS)
Ternois, Sébastien; Vacherat, Arnaud; Pik, Raphaël; Ford, Mary; Tibari, Bouchaïb
2017-04-01
Orogens and their associated foreland basins are considered as part of a single dynamic system evolving from an early, non equilibrated, growth stage to a late, mature, steady-state stage. Most of our understanding in foreland basins, in particular early convergence-stage deposition, comes from the subducting plate, so that the classic paradigm for foreland basins is the pro-wedge. Models that clearly depict the relationship between erosion of the orogenic wedge and sedimentation into its associated foreland basin only focus on the late post-orogenic phase. Relatively little is known and understood about the very long phase of initiation of orogenesis. In the doubly wedged Pyrenean orogen, where we know and understand relatively little about how the early retro-wedge developed, the record of the onset of orogenic denudation from massifs is quite limited, not only in time but also in space. As part of the OROGEN project funded by TOTAL and the BRGM, this study presents first single-grain zircon (U-Th)/He data from two Palaeozoic massifs of the external Northern Pyrenean Zone, the Agly and Salvezines massifs. It aims at constraining the exhumation history of eastern Pyrenean massifs and understanding what is their significance for early orogenic wedge growth. The Pyrenean orogeny was generated from end Santonian (84 Ma) to Oligocene-Miocene due to convergence of the Iberian and European plates. Aquitaine foreland basin history (Ariège region) indicates that convergence took place in two phases, Campanian to Maastrichian and Eocene, separated by a quiet Paleocene phase. Yet, only Eocene cooling events are recorded by low-temperature thermochronometers in the central Pyrenean massifs (Arize and Trois-Seigneurs). Nine bedrock samples were collected along a WNW-ESE traverse (Salvezines and Saint-Arnac granites, Belesta-Caramany gneisses) and analysed for ZHe dating. Zircon (U-Th)/He data for the Agly and Salvezines massifs, together with forward modelling of data for two end-members, Late Cretaceous (Campanian, 75 Ma) and Eocene (50 Ma), show that the easternmost external basement massifs record a first phase of cooling from ˜200°C, between ca. 75 Ma and ca. 60 Ma, which we correlate with the early Pyrenean orogenic phase. Our data provide important new constraints on the timing of early Pyrenean exhumation and temperatures associated with pre-orogenic HT-LP metamorphism but have limited resolution in quantifying the amount of exhumation and shortening at the onset of the convergence in this region. These results are integrated into a tectonic reconstruction of the eastern Pyrenees from an early Cretaceous extensional template to present day
NASA Astrophysics Data System (ADS)
Horton, Brian K.; Fuentes, Facundo; Boll, Andrés; Starck, Daniel; Ramirez, Sebastian G.; Stockli, Daniel F.
2016-11-01
The temporal transition from backarc extension to retroarc shortening is a fundamental process in the evolution of many Andean-type convergent margins. This switch in tectonic regime is preserved in the 5-7 km thick Mesozoic-Cenozoic stratigraphic record of west-central Argentina at 34-36°S, where the northern Neuquén Basin and succeeding Cenozoic foreland succession chronicle a long history of fluctuating depositional systems and diverse sediment source regions during Andean orogenesis. New findings from sediment provenance and facies analyses are integrated with detrital zircon U-Pb geochronological results from 16 samples of Jurassic through Miocene clastic deposits to delineate the progressive exhumation of the evolving Andean magmatic arc, retroarc fold-thrust belt, and foreland province. Abrupt changes in provenance and depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, postextensional thermal subsidence, punctuated tectonic inversion, thick- and thin-skinned shortening, overlapping igneous activity, and alternating phases of basin accumulation, sediment bypass, and erosion. U-Pb age distributions constrain the depositional ages of Cenozoic units and reveal a prolonged late middle Eocene to earliest Miocene (roughly 40-20 Ma) hiatus in the retroarc foreland basin. This stratigraphic gap is expressed as a regional disconformity that marks a pronounced shift in depositional conditions and sediment sources, from (i) slow Paleocene-middle Eocene accumulation of distal fluviolacustrine sediments (Pircala and Coihueco Formations) contributed from far western magmatic arc sources (Cretaceous-Paleogene volcanic rocks) and subordinate eastern basement rocks (Permian-Triassic Choiyoi igneous complex) to (ii) rapid Miocene-Quaternary accumulation of proximal fluvial to megafan sediments (Agua de la Piedra, Loma Fiera, and Tristeza Formations) recycled from emerging western thrust-belt sources of Mesozoic basin fill originally derived from basement and magmatic arc sources. The mid-Cenozoic stratigraphic gap signified ∼20 Myr of nondeposition, potentially during passage of a flexural forebulge or during neutral to extensional conditions driven by mechanical decoupling and a possible retreating-slab configuration along the Nazca-South America plate boundary. Neogene eastward propagation of the Malargüe fold-thrust belt involved basement inversion with geometrically and kinematically linked thin-skinned shortening at shallow foreland levels, including late Miocene deposition of accurately dated 10.5-7.5 Ma growth strata and ensuing displacement along the frontal emergent and blind thrust structures. Subsequent partitioning and exhumation of Cenozoic clastic fill of the Malargüe foreland basin has been driven by inboard advance of arc magmatism and Pliocene-Quaternary uplift of the San Rafael basement block farther east.
Walsh, G.J.; Aleinikoff, J.N.; Wintsch, R.P.
2007-01-01
Geologic mapping, structural analysis, and geochronology in the area of the Lyme dome, southern Connecticut provides constraints on the origin of the rocks in the core of the dome, the absolute timing of the principal deformational and thermal events attributed to Alleghanian orogenesis, and the processes that generated the dome. Detrital zircon geochronology in combination with ages on intrusive rocks brackets the deposition of quartzite in the core of the dome sometime between ca. 925 and 620 Ma. Granite and granodiorite intruded the Neoproteorozic metasedimentary rocks in the core of the dome at ca. 620 to 610 Ma. Four major early Permian events associated with the Alleghanian orogeny affected the rocks in the Lyme dome area. Syn-tectonic migmatization and widespread penetrative deformation (D1, ca. 300 - 290 Ma) included emplacement of alaskite at 290 ?? 4 Ma during regional foliation development and aluminosilicate-orthoclase metamorphic conditions. Rocks of the Avalon terrane may have wedged between Gander cover rocks and Gander basement in the core of the Lyme during D1. Limited structural evidence for diapiric uplift of the Lyme dome indicates that diapirism started late in D1 and was completed by D2 (ca. 290 - 280 Ma) when horizontal WNW contractional stresses dominated over vertical stresses. Second sillimanite metamorphism continued and syn-tectonic D2 granite pegmatite (288 ?? 4 Ma) and the Joshua Rock Granite Gniess (284 ?? 3 Ma) intruded at this time. North-northwest extension during D3 (ca. 280 - 275 Ma) led to granitic pegmatite intrusion along S3 cleavage planes and in extensional zones in boudin necks during hydraulic failure and decompression melting. Intrusion of a Westerly Granite dike at 275 ?? 4 Ma suggests that D3 extension was active, and perhaps concluding, by ca. 275 Ma. Late randomly oriented but gently dipping pegmatite dikes record a final stage of intrusion during D4 (ca. 275 - 260 Ma), and a switch from NNW extension to vertical unloading and exhumation. Monazite and metamorphic zircon rim ages record this event at ca. 259 Ma. The evolution of the Lyme dome involved D1 mylonitization, intrusion, and migmatization during north-directed contraction, limited late D1 diapirism, D2 migmatization during WNW contraction with associated flexural flow and fold interference, D3 NNW horizontal extension and decompression melting, and final D4 vertical extension and rapid exhumation. Late regional uplift, extension, and normal faulting at higher crustal levels may have been caused by diapiric rise of the lower crust, below the structural level of the Lyme dome. The rocks record no evidence of Acadian metamorphism or deformation, suggesting that the Gander zone here was not tectonically juxtaposed with Avalon until the Alleghanian orogeny.
NASA Astrophysics Data System (ADS)
Hall, S. R.; Farber, D. L.; Audin, L.; Saillard, M.; Finkel, R. C.
2008-12-01
After more than 40 years of study, the timing and nature of Andean uplift remains an area of great scientific debate. The forearc of the Andean margin is of particular neotectonic interest, as previous models of Andean orogenesis attributed little-no Neogene deformation to the western margin of Altiplano. However, using the combination of remote sensing with high-resolution data, in situ cosmogenic isotope concentrations and thermochronology, in recent years the community has made important advances in addressing the rates, timings, styles, and locations of active deformation within the forearc of the Andean margin. To first order, we find that - both in terms of tectonics and climate - since 10Ma, the Andean forearc has been quite a dynamic region. Neotectonic studies in this region have been facilitated by the high degree of geomorphic surface preservation that the hyperarid (for at least the last 3My) coastal Atacama Desert has provided. Specifically, in southern Peru (14°-18°S), vast pediment surfaces have been abandoned through incision along the major river drainages that carve the deep canyons into the Precordillera and Western Cordillera. While the exact timing of the periods of more intense incision plausibly correspond with climate events, the total amount of incision integrated over many climate cycles is a useful indicator of tectonic activity. In this region, we find a number of geomorphic and structural features that provide strong evidence for distributed crustal deformation along range-sub-parallel contractile and strike-slip structures. Specifically, we see 1) ancient surfaces reflecting erosion rates as low as <0.1m/Ma, 2) the existence of young (30ka-1Ma) low- relief pediment surfaces due to recent landscape modifications, 3) active structures accommodating compressional, extensional, and shearing stresses 4) a consistent rate of river incision of ~0.3mm/yr along exoreic rivers, 5) spatially and temporally variable uplift rates based on marine terrace chronologies, and 6) Pleistocene mass-wasting events accommodating the redistribution of ~109-1010 m3 of material per event. Furthermore, the observation that Pleistocene incision rates are comparable with Late Miocene and Pliocene rates, suggests to us, that the rates and style of surface uplift within the forearc of southern Peru has been occurring somewhat consistently since at least 10Ma. We suggest, that in this region of southern Peru, the steep western wedge of the Andean margin accommodates the high topography of the Altiplano through a combination of uplift along steeply dipping contractile structures and isostatic responses to the focused removal of large amounts of crustal material in the massive canyons of the Precordillera and Western Cordillera through mass-wasting events and valley incision.
Tectono-metamorphic evolution of the Chinese Altai, central Asia: new insights from microstructures
NASA Astrophysics Data System (ADS)
Jiang, Yingde; Zhang, Jian; Schulmann, Karel; Sun, Min; Zhao, Guochun
2013-04-01
The Altai Orogen, extending from Russia, through northeast Kazakhstan and northwest China, to western and southern Mongolia, occupies a pivotal position in understanding the accretionary process of the Central Asian Orogenic Belt and has drawn much attention in recent years. However, its orogenic evolution remains poorly constrained, because previous studies were mainly focused on the geochronological and geochemical signatures and much less work has been done on metamorphic and structural studies. Metamorphic rocks widely occur in the southern Altai Range and have previously been separated into high-T/low-P and medium-P types. Recent studies demonstrated that these two kinds of rocks may have similar protoliths, i.e. early Paleozoic arc-related assemblages, but experienced different metamorphic histories. The development of biotite, garnet, staurolite and kyanite metamorphic zonal sequences in the low- to medium- grade rocks, demonstrate typical medium-pressure metamorphism that has been suggested as a major consequence of the orogenesis. The high-T/low-P metamorphism, represented by the growth of garnet+cordierite+sillimanite+k-feldspar and was accompanied by extensive anatexis, remains its tectonic significance poorly constrained. Field structural investigation in the Chinese Altai reveals that the high-T/low-P metamorphic rocks have major S-L fabrics (defined by the strongly aligned biotite and sillimanite) exactly in the same orientations as those developed in the associated medium-P grade rocks. Geochronological studies constrain the major fabrics in both kinds of rocks developed during mid-Devonian, coeval with the strong magmatism in the region. Micro-structural investigation on both kinds of rocks show similar prograde metamorphic history featured by clockwise P-T path evolution. Phase equilibrium modeling in the MnNCKFMASH system indicates that the development of major fabrics in the medium-P metamorphic rocks mainly recorded the notable increase of pressure and that in the high-T rocks was featured by the significant increase of temperature. The pressure increase could attribute to the progressive crustal thickening that may be correlated to the accretionary regime of the southern Altai in the mid-Devonian and the high temperature conditions most likely imply a significant heat input from the deep depth, consistent with the syn-chronologically emplacement of juvenile magmas on a large scale. Our study indicates the development of high-T metamorphism was genetically linked with that of the medium-P metamorphism and suggests that the crustal thickening during the orogenic process of the Altai region was accompanied by large heat input. This study is supported by Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048), IGCP #592 Project "Continental construction in Central Asia" and Research grant of State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLIG-KF-12-06) .
NASA Astrophysics Data System (ADS)
Elisha, Bar; Katzir, Yaron; Kylander-Clark, Andrew
2017-04-01
Ediacaran times witnessed a hemisphere-scale orogenesis forming the extensive Pan-African mountain ranges and resulting in the final assembly of Gondwana supercontinent. The Elat metamorphic basement (S Israel) located at the northernmost tip of a major Pan-African orogenic suture, the Arabian Nubian Shield (ANS), comprises amphibolite facies schists and gneisses and was most likely shaped by this major continental collision. However the timing, number and duration of metamorphic events in Elat and elsewhere in the ANS are non-conclusive and a major emphasis was given to pre-Ediacaran island-arc related tectonics. This is mostly because U-Pb dating of zircon, widely used in Elat and elsewhere, is very successful in constraining the ages of the igneous and sedimentary protoliths, but is 'blind' to metamorphism at grades lower than granulite. Here U/Th-Pb dating of monazite, a precise chronometer of metamorphic mineral growth, is systematically applied to the Elat schist and unveils the tectono-metamorphic evolution of the Elat basement. Previous U-Pb dating of detrital zircon has shown that the sedimentary protoliths of the Elat schist are the oldest basement components (≥800 Ma), and detailed structural observations of the schists portrayed a complex deformation history including four successive phases (Shimron, 1972). The earliest three phases were defined as ductile and penetrative, but some of the available geochronological data apparently contradict field relations. In-situ analysis of metamorphic monazites by LASS (Laser Ablation Split Stream) involves simultaneous measurement of U/Th-Pb isotope ratios and REE contents in a single 10 μm sized grain or domain, thus allowing determining the age of specific texture and metamorphic assemblage. Monazite dating of the Elat schist yielded two concordant age clusters at 712±6 and 613±5 Ma. The corresponding REE patterns of the dated monazite grains indicate that porphyroblast growth, either garnet or staurolite, took place only during the younger event (M2). Likewise the regional south dipping penetrative foliation, common to the Elat schist and to all of the rocks of the Elat association, formed during the Ediacaran event (M2). This profound event started at 630 Ma and reached peak conditions of mid amphibolite facies at 620 Ma. Retrogression and stress relaxation shortly followed, involving overprint of staurolite schists by a cordierite-bearing assemblage at 613 Ma (M3), and was contemporaneous with the intrusion of andesitic dykes that were immediately metamorphosed to low-amphibolite. This metamorphic P-T-t path corresponds to the collision of East- and West-Gondwana as constrained by large goechronological database of post collision batholiths from all around the Arabian-Nubian Shield.
Developments in Laser-Ablation Split-Stream Petrochronology
NASA Astrophysics Data System (ADS)
Kylander-Clark, Andrew R.
2017-04-01
One of the biggest challenges in assessing the timing and rates of petrogenesis and deformation is having the ability to match the age of a dated mineral to the conditions at which that mineral grew. This is especially challenging for high-temperature chonometers that can grow and remain stable over a wide range of pressures and temperatures. The development of the laser-ablation split-stream method has afforded the ability to rapidly aquire chemical and chronologic data that are directly linked; as such, timing and rates of processes are better constrained than before. Several examples are given within: 1) Zircon and monazite from a single, coesite-bearing sample from the Western Gneiss Region in western Norway record the entire 30+ Myr history of metamorphism during Caledonian orogenesis, from intial burial, through ultrahigh-pressure (UHP) conditions, and back to crustal levels. Early monazite ( 425 Ma) contains low concentrations of Sr and HREE, consistent with plagioclase and garnet stability during prograde metamorphism. 420-400 Ma ages from monazite (high Sr, increased Eu/Eu*, low HREE) and zircon (increased Eu/Eu*, low HREE) indicate the timing of HP conditions, and monazite with low Sr and high HREE indicates the breakdown of omphacite and garnet at 390 Ma. 2) Titanite is becoming more widely used as chronometer, primarly because laser ablation has made analysis more feasible. Nevertheless, dates produced from titanite can be difficult to interpret because titanite may alter more easily than zircon and monazite. LASS analyses of titanite, combined with X-ray maps and backscattered electron images provide insight into processes involved in growth, recrystallization and dissolution/reprecipitation, and allow us to better interpret ages and the geologic process that they represent. This study presents recrystallized titanite from metamorphic terranes as well as ocillatory-zoned titanite from igneous rocks, and suggests some possible processes that explain the TE/age trends. 3) Detrital zircons have long been used to investigate the location and geology of landforms in the past. By adding chemical information to the age data, a clearer history can be produced. Recent LASS data from Mesozoic sedimentary rocks indicate changes in chemistry of the Sierra Nevada-Peninsular Ranges batholith, as well and the exposure and erosion of distinct units (e.g., ophiolites) over discrete time periods. 4) Isotopic data retrieved in combination with age data across an orogeny or batholith can aid in the understanding of the areal and temporal evolution of both deformation and source rocks over time. This can be done with a number of petrochronometers: Hf in zircon, Nd in titanite and monazite, This study presents examples that show how significant advances can be made in understanding lithosphere evolution using this quick and efficient analytical technique.
NASA Astrophysics Data System (ADS)
Piper, J. D. A.; Thomas, D. N.; Share, S.; Rui, Zhang Qi
1999-03-01
The Eriksfjord Group comprises ~3000 m of lavas and sediments rapidly deposited in a rift which developed within an Andean-type batholith in juxtaposition to the southern margin of the Laurentian Shield in South Greenland at ca. 1300 Ma. The lavas have been shown to preserve a detailed record of the geomagnetic field at the time of eruption, incorporating normal, reversed and transitional directions. This study has examined the magnetic properties of the intervening red sediments. They are found to possess a diagenetic remanence imparted by mediating fluids at later times. The impact of diagenesis is stratigraphically controlled: the base of the rift infill has magnetizations partially resident in magnetite which are either unstable to thermal cleaning or record a single polarity `B' magnetization (D/I = 284/67°, 31 samples, α95 = 5.5°, palaeopole at 244.1°E, 47.5°N, dp/dm = 7.5/9.1° ). This corresponds in polarity, and closely in direction, to remanence observed in mid-Gardar gabbro giant dykes and dyke swarms emplaced along the axis of the rift system at ca. 1160 Ma the causative diagenetic magnetite appears to have grown from hydrothermal systems motivated by this magmatism in a sealed reservoir setting within the lower part of the rift infill. The Ilímaussaq alkaline igneous complex was emplaced into the southern extension of the rift at ca. 1130 Ma and possesses a dual polarity magnetization (D/I = 327/81°, α95 = 6.4°, 10 sites). Eriksfjord lavas within the thermal aureole are overprinted to varying degrees by comparable magnetizations with steep inclinations. The mean pole position (283°E, 71°N, dp/dm = 12/12° ) lies near the apex of an apparent polar wander loop incorporating the Gardar Track (ca. 1300-1140 Ma) and the Keweenawan Track (ca. 1115-1050 Ma). Magnetizations in the Eriksfjord sedimentary succession have not been significantly reset by emplacement of the Ilímaussaq complex, but higher levels of the rift infill are dominated by an `A' magnetization (D/I = 305/34°, α95 = 4.3°, 57 samples, palaeopole at 202.1°E, 32.4°N, dp/dm = 2.8/4.9° ) resident in haematite. The pole position does not correspond with any part of the Gardar Track, but does correlate with the return Keweenawan Track at ca. 1090 Ma, close to the time of Grenville orogenesis along the bordering southeastern margin of the Laurentian Shield. This remanence is attributed to diagenesis during extensional tectonism linked to the collapse of the Grenville Orogen formerly sited 100-200 km to the south.
NASA Astrophysics Data System (ADS)
Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.
2016-04-01
Garnet is used in a wide range of geologic studies due to its important physical and chemical characteristics. While the mineral is useful for thermobarometry and geochronology constraints and can often be correlated to deformation and fabric development, difficulties remain in making meaningful interpretations of such data. In this study, we characterize garnet grain sizes and crystal morphologies from 141 garnet-bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup in the Scottish Caledonides. Larger, euhedral crystals are indicative of prograde metamorphic growth and are typically associated with the most recent phase of orogenesis (Scandian, ˜430 Ma). Small, rounded ("pin-head") garnets are interpreted as detrital in origin. A subhedral classification is more subjective and is used when garnets contains portions of straight boundaries but have rounded edges or rims that have been altered through retrograde metamorphic reactions. From our collection, 88 samples contain anhedral garnets (maximum measured grain size d = 0.46 ± 0.21 mm), 34 bear subhedral garnets (d = 2.0 ± 1.0 mm), and the remaining 19 samples contain garnets with euhedral grains (d = 4.4 ± 2.6 mm). Plotting the distribution of garnets relative to the mapped thrust contacts reveals an abrupt change in morphology and grain size when traced from the Moine thrust sheet across the Ben Hope and Sgurr Beag thrusts into the higher-grade, more hinterland-positioned thrust sheets. The dominance of anhedral garnets in the Moine thrust sheet suggests that these grains should not be used for peak P - T estimation associated with relatively low temperature (<500 ° C) Scandian metamorphism, as they are likely detrital in origin and contain protolith chemical signatures that would not have been reset due to sluggish diffusivities at greenschist facies temperatures. However, chemical and isotopic data from these grains may provide information into the provenance of these metasediments. A thermal/chemical break must occur at the Ben Hope thrust, because hanging wall garnets contain euhedral (Scandian?) rims that are distinct from the garnet grains observed in the underlying Moine thrust sheet. In addition to morphology, the propensity of garnet to include minerals during growth makes it a useful phase for obtaining a historical perspective on growth conditions. The distribution and chemistries of minerals included/encapsulated by garnet was studied for various samples to gain insight into metamorphic evolution and to distinguish garnets that likely contain multiple generations of growth. Although our results are specific to the Caledonides of northern Scotland, this work highlights the general necessity of a comprehensive petrographic assessment of garnet grains in advance of interpreting large suits of garnet-derived thermodynamic and geochronologic data.
NASA Astrophysics Data System (ADS)
Sang, Miao; Xiao, Wenjiao; Bakirov, Apas
2017-04-01
The exhumation and tectonic emplacement of eclogites and blueschists takes place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan. The Atbashi Eclogite-Blueschist Complex (AEBC) is a conventional, formal name for the Atbashi Formation that contains pelitic to siliceous schists alternating with HP/UHP eclogites and blueschists. The main belt of the AEBC strikes SW-NE mostly parallel to the Atbashi-Inylchek Fault. Our field mapping and structural analysis demonstrate that the Atbashi Eclogite-Blueschist Complex is situated in a complicated duplex formed by a northerly dextral transpression system and a southerly sinistral transtension system, both of which contain a series of strike-slip duplexese at several scales. The two shear systems suggest that the Atbashi Complex underwent a unique oblique south- westward extrusion with a general plunge to the NE, the horizontal projection of which is sub-parallel to the strike of the major structures. This indicates that the Atbashi Complex was extruded obliquely southwestwards during eastward penetration of the southern tip of the Yili- Central Tianshan Arc of the Kazakhstan Orocline during the Late Triassic. Also, to constrain the extrusion of the AEBC and to place it in its temporal framework during docking of the Tarim Craton to the southern margin of the Ili-Tianshan Arc, we report new zircon U-Pb isotopic data for four eclogites and one garnet-bearing quartz-schist, in order to document the timing event during extrusion. The youngest ages of the eclogites and the garnet-bearing quartz-schist may be Late Triassic of 217-221 Ma and 223.9 Ma, respectively, suggesting that the main extrusion was later than previously proposed and that the final orogenesis was not completed until the Late Triassic. The HP/UHP rocks have an oblique plunge to the NE and extrusion took place south-westwards during escape tectonics along the South Tianshan accretionary wedge in the Late Triassic. Our work shows that the movement of HP/UHP rocks had a 3D style with an arc-parallel structure, and sheds light on earlier 2D models with either forearc- or backarc-directed extrusions, which indicates that more systematic structural and geochronological work is needed to characterize the accretionary tectonics of many orogens around the world. Our data on the timing of extrusion and emplacement of the Atbashi Eclogite-Blueschist Complex also help to resolve the long-standing controversy about the time of terminal orogeny of the Central Asian Orogenic Belt.
NASA Astrophysics Data System (ADS)
Massey, M. A.; Moecher, D. P.
2006-12-01
One widely cited model for Appalachian orogenesis in New England invokes the tripartite Alpine sequence of nappe folding/thrusting, back-folding, and doming to explain regional and outcrop-scale structural relationships. Recent work suggests lateral extrusion driven by oblique convergence as an important mechanism responsible for structures, fabrics, and mineral assemblages in the Bronson Hill terrane (BHT) of Connecticut and Massachusetts. Just as the Alpine model has evolved to incorporate elements of lateral extrusion, and syn- to post-orogenic collapse, we propose similar revisions for southern New England. Detailed mapping and structural analysis of the W- to WNW-dipping BHT in south-central MA reveals: (1) a sub-vertical, transpressional dextral thrust high strain zone (Bonemill/Conant Brook shear zone) bounding the eastern margin of the Monson granitic gneiss dome (MG) with two modes of Sil+Qtz+Fs lineations plunging WNW and SSW; (2) a moderate to steeply-dipping sinistral high strain zone bounding the western margin of the MG with WNW- and SSW-plunging Ms+Qtz+Grt lineations; (3) an apparently random arrangement of gneiss, s and s-l tectonites, protomylonites, and mylonites composing the body of the MG, also containing WNW and SSW Qtz+Fs lineations. Extrapolation to a regional scale from central CT to northern MA indicates: (1) a gradual increase in s-l and l-s tectonites to the north from predominantly s-tectonites in central CT; (2) transition of lineation plunge from NW in central CT to bimodal WNW and SSW distribution to the north; (3) amphibolite facies metamorphism was pre- to synkinematic with respect to deformation. We propose that these observations may be accounted for by transpression and extrusion, rather than discreet phases of deformation invoked by the traditional three-stage model. Synchronous operation of high strain zones bounding the MG accommodated northward orogen-parallel extrusion in addition to a component of orogen-normal shortening and sub-vertical extrusion, thus constituting bulk heterogeneous flow. Existing geochronology/thermochronology constrains deformation to the late Paleozoic Alleghanian orogeny. The consistency in timing and similarity in style with deformation associated with the Pelham dome demonstrate the significance of orogen-parallel flow in the BHT. We go further by presenting a working late Paleozoic tectonic model incorporating data from this study with existing contributions from other workers in southern New England. This model involves oblique convergence and underthrusting of Avalon in the late Mississippian/early Pennsylvanian continuing into and throughout most of the Permian. Synorogenic compressional and extensional structures from upper amphibolite to greenschist facies are explained by progressive deformation, including extrusion, orogenic collapse, and wedging, throughout an evolving metamorphic gradient.
Metamorphism, Plate Tectonics, and the Supercontinent Cycle
NASA Astrophysics Data System (ADS)
Brown, Michael
Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).
Landslide inventory map as a tool for landscape planning and management in Buzau Land Geopark
NASA Astrophysics Data System (ADS)
Tatu, Mihai; Niculae, Lucica; Popa, Răzvan-Gabriel
2015-04-01
Buzău Land is an aspiring Geopark in Romania, located in the mountainous region of the southern part of the Carpathian Bend Area. From a geologic point of view, the East Carpathians represent a segment of the Alpine - Carpathian orogene, and they are composed of numerous tectonic units put up throughout the Mesozoic and Cenozoic orogenesis. They represent a result of two compressional phases, (1) during Late Cretaceous and (2) during Early and Middle Miocene that were responsible for thrusting of internal units onto external units. The latter cover tectonically the Foredeep folded deposits. Landslides are one of the most widespread and dangerous natural hazards in this region, disrupting access routes and damaging property and habitats at least twice per year, in the rainy seasons. This hazard induces deep changes in the landscape and has serious economic consequences related to the damaging of infrastructure and isolation of localities. The proximity to the Vrancea seismogenic zone increases the risk of landslide triggering. A first step in observing the space and time tendency and amplitude of landslides, in order to distinguish the main vulnerabilities and estimate the risk, is to produce an inventory map. We shall present a landslide inventory map for the Buzău Land territory (~1036 km2), which is the primary base of information for further discussions regarding this phenomenon and an essential tool in observing the development of mass-wasting processes and in landscape planning. The inventory map is in accordance with the recommendations of the IAEG Commission on Landslides and other Mass-Movement, applied across the EU. Based on this work, we can already draw some remarks: - The Geopark territory mostly covers two major tectonic units of the East Carpathians: the external nappes and the folded foredeep; areas with landslide potential are common, but by far the highest landslide frequency is observed in the foredeep. This is related to the soft, argillaceous and sandy rock compositions. The magnitude of the phenomenon progressively diminishes towards the NW, where older and more coherent rocks are found. Here, mixed aspects (landslides with blocks) and rockslides are well expressed. - The spatial distribution of landslides is controlled by active tectonics, most of them being observed along faults. - Landslides are common in the vicinity of salt diapirs and especially on their flanks. - Deforestation in the area is mostly related to small scale, superficial mass movements (soil creeps especially). - The dynamics of the area brings continuous damage to the infrastructure. Our inventory map is the first step in characterizing and forecasting landslide activity in the Geopark and future research will offer tools for the sustainable development of the region. The research leading to these results has received funding from EEA Financial Mecanism 2009 - 2014 under the GeoSust project contract no 22 SEE/30.06.2014.
Development of an Integrated Suspended Sediment Sampling System - Prototype Results
NASA Astrophysics Data System (ADS)
Nerantzaki, Sofia; Moirogiorgou, Konstantia; Efstathiou, Dionissis; Giannakis, George; Voutsadaki, Stella; Zervakis, Michalis; Sibetheros, Ioannis A.; Zacharias, Ierotheos; Karatzas, George P.; Nikolaidis, Nikolaos P.
2015-04-01
The Mediterranean region is characterized by a unique micro-climate and a complex geologic and geomorphologic environment caused by its position in the Alpine orogenesis belt. Unique features of the region are the temporary rivers that are dry streams or streams with very low flow for most of the time over decadal time scales. One of their key characteristics is that they present flashy hydrographs with response times ranging from minutes to hours. It is crucial to monitor flash-flood events and observe their behavior since they can cause environmental degradation of the river's wider location area. The majority of sediment load is transferred during these flash events. Quantification of these fluxes through the development of new measuring devices is of outmost importance as it is the first step for a comprehensive understanding of the water quality, the soil erosion and erosion sources, and the sediment and nutrient transport routes. This work proposes an integrated suspended sediment sampling system which is implemented in a complex semi-arid Mediterranean watershed (i.e. the Koiliaris River Basin of Crete) with temporary flow tributaries and karstic springs. The system consists of sensors monitoring water stage and turbidity, an automated suspended sediment sampler, and an online camera recording video sequence of the river flow. Water stage and turbidity are continuously monitored and stage is converted to flow with the use of a rating curve; when either of these variables exceeds certain thresholds, the pump of the sediment sampler initiates sampling with a rotation proportional to the stage (flow weighted sampling). The water passes through a filter that captures the sediment, the solids are weighted after each storm and the data are converted to a total sediment flux. At the same time, the online camera derives optical measurements for the determination of the two-dimensional river flow velocity and the spatial sediment distribution by analyzing the Hue, Saturation and Intensity (HSI color model) components of the image. Suspended sediment concentration is correlated to both turbidity and image color analysis output data, while the suspended sediment sampler offers the possibility of laboratory analysis for the retained sediment. Each component cooperates with the others in an integrated manner, aiming for the quantification of the suspended sediment and the determination of its spatial distribution throughout a flood event. The innovative system, which has been made compact and portable, is currently tested at the Koiliaris River Basin and the results of the first trials will be presented. This work is elaborated through an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Social Fund - ESF and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social fund.
NASA Astrophysics Data System (ADS)
Najman, Y.; Boudagher-Fadel, M.; Godin, L.; Parrish, R.; Bown, P.; Garzanti, E.; Horstwood, M.; Jenks, D.
2009-12-01
The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between 65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). We studied the youngest Tethyan succession in the east (Tingri, Tibet) and west (Ladakh, India) of the orogen and used two approaches to date collision: 1) timing of closure of Tethys, by dating the youngest marine strata and 2) first evidence of Asian detritus deposited on the Indian plate, using U-Pb ages of detrital zircon to assess provenance. Both these approaches provide a minimum age to collision. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of detrital zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that India-Asia collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.
NASA Astrophysics Data System (ADS)
Ganwa, Alembert Alexandre; Klötzli, Urs Stephan; Hauzenberger, Christoph
2016-08-01
The main geological feature of Central Cameroon is the wide spread occurrence of granitoids emplaced in close association with transcurrent regional shear zones. The basement of this vast domain is a Paleoproterozoic ortho-and para-derivative formation, which has been intensely reworked, together with subsequent intrusions and sediments, during the Panafrican orogenesis in the Neoproterozoic. As consequence, the area underwent pervasive metamorphism and intense deformation. This makes it difficult to distinguish between Panafrican metasediments or syntectonic plutonites and their respective basement. Our study presents zircon features (CL-BSE-SE) and in-situ U-Th-Pb LA-MC-ICP-MS geochronology of a meta-sedimentary pyroxene-amphibole-bearing gneiss of the Méiganga area in Central Cameroon. Based on the Internal structures of the zircon four characteristic zonation patterns can be deciphered: 1) cores with magmatic oscillatory zonation 2) zircons with oscillatory or sector zonation, 3) zircons with sector zoning or blurred zoning, and 4) narrow bright un-zoned rims. These groups suggest that the rock experienced a number of geological events. Considering this zircon characteristic, the U-Th-Pb data allow to distinguish four ages: 2116 ± 57 Ma, consistent with ages from the Paleoproterozoic West Central African Belt; 2551 ± 33 Ma which marks a late Neoarchean magmatic event; 2721 ± 27 Ma related to a Neoarchean magmatic even in Central Cameroon, similar to one found in the Congo Craton. A zircon core gives ages around 2925 Ma which provides some evidence of the presence of the Mesoarchean basement prior to the Neoarchean magmatism. A weighted average of lower intercepts ages gives a value of 821 ± 50 Ma, representing the age of later metamorphism event. The various characteristic group and related ages reflect not only the complexity of the history of the pyroxene amphibole gneiss, but also show that the meta-sediment has at least three zircon contributing sources. It is likely that erosion, transport and deposition took place between 2116 and 821 Ma. Geochemical data show that the REE, Y, Yb, Sr/Y of some samples are similar to the known Archean craton formations (depletion in REE, Y ≤ 10 ppm, Yb ≤ 1 ppm, Sr/Y ≥ 30). These characteristics are known as specific for the Archean TTG (Tonalite-Trondhjemite-Granodiorite). It means that: i) Archean TTG contribute significantly to the detritus of the sedimentary basin, ii) The depositional basin and the source rock were close and the detritus was immature. Our results show that the Pre-Panafrican history of central Cameroon includes Meso- to Neo-Archean crustal accretion and associated magmatism prior to the Paleoproterozoic event of the West Central African Belt. In respect to this new insight, any evolutionary reconstruction of the area should integrate the presence of Archean crust.
Detachment-limited erosion, alluvial transport, and relief in decaying landscapes
NASA Astrophysics Data System (ADS)
Johnstone, S. A.; Hilley, G. E.
2013-12-01
The correspondence between relief and erosion rates in tectonically active orogens suggests that erosion rates and relief adjust relatively rapidly to changes in the rates of tectonic processes. This rapid landscape response is at odds with the preservation of ancient orogens for 10s to 100s of millions of years after orogenesis has ceased. We hypothesize that this hysteresis in response times to the acceleration versus deceleration of tectonic rates results from a geomorphic process transition in fluvial networks. In steep landscapes found in tectonically active environments erosion is largely controlled by detachment-limited incision, whereas the increasing importance of alluvial transport in decaying landscapes controls relief and response time-scales in these situations. We present results from one-dimensional (profile) numerical modeling of channels undergoing topographic decay from an initial steady state following a cessation in uplift to understand process transitions that may reconcile the large differences in response times implied by active versus ancient mountain-belts. We performed dimensional analysis on the governing equations such that relief in the channels, process transitions between alluvial transport and detachment-limited erosion, and response times could be viewed in terms of dimensionless numbers that capture the relative strength of sediment transport, bedrock incision, and the initial uplift rate. We found that the form of the decaying profile is dictated by the relative ability of a system to incise vs. transport sediment. When sediment transport is inefficient relative to bedrock incision, models suggest that relief decays in a manner that preserves the overall channel profile geometry as channel slopes decline. In contrast, when the ability of a system to transport sediment greatly exceeds its ability to incise bedrock, decay will be dominated by the consumption of topography by slope retreat. We find that the declivity of the surface along which slopes retreat is set by the sediment transport slope of the fluvial network. As slope retreat progresses, the fraction of area undergoing rapid erosion (and therefore the sediment flux) decreases, which causes a perpetual decline in the sediment transport slope itself. This is manifest as a headward migrating transition from areas dominated by slope retreat to slope decline. While this behavior occurs to some degree in all simulations undergoing slope retreat, it is only clearly observed when steady state alluvial transport slopes are comparable to, but smaller than, bedrock incision slopes. For a given length scale we find that the evolution of relief through time, measured as the fraction of initial relief preserved, is independent of dimensionless fluvial erosion and transport coefficients. High sediment transport slopes can act to limit the rate of decay of relief in landscapes evolving by slope retreat. However, because slope decline occupies only the downstream portion of drainage networks in these cases, the majority of the relief reduction is typically accomplished by slope retreat. These results highlight the importance of erosional process transitions in shaping the relief of decaying landscapes.
Fleck, Robert J.; Greenwood, W.R.; Hadley, D.G.; Anderson, R.E.; Schmidt, D.L.
1980-01-01
Rubidium-strontium studies of Precambrian volcanic and plutonic rocks of the Arabian Shield document an early development of the Arabian craton between 900 and 680 m.y. (million years) ago. Geologic studies indicate an island-arc environment characterized by andesitic (dioritic) magmas, volcaniclastic sedimentation, rapid deposition, and contemporaneous deformation along north or northwest-trending axes. Magmatic trends show consistent variation in both composition and geographic location as a function of age. The oldest units belong to an assemblage of basaltic strata exposed in western Saudi Arabia that yield an age of 1165:!:110 m.y. The oldest andesitic strata studied yield an age of 912:!:76 m.y. The earliest plutonic units are diorite to trondhjemite batholiths that range from 800 to 9,00 m.y. in age and ,occur along the western and southern parts of Saudi Arabia. Younger plutonic units, 680 to 750 m.y. in age, range from quartz diorite to granodiodte and become more abundant in the central and northeastern parts of the Arabian Shield. Initial 'Sr/ 86 Sr ratios for both dioritic groups range from 0.7023 to 0.7030 and average 0.7027. The absence of sialic detritus in sedimentary units and the evidence for an island-arc environment suggest the early development of the Arabian craton at a convergent plate margin between plates of oceanic lithosphere. Active subduction apparently extended from at least 900 m.y. to about 680 m.y. Subsequent to this subduction-related magmatism and tectonism, called the Hijaz tectonic cycle, the Arabian craton was sutured to the late Precambrian African plate in a collisional event. This period of orogeny, represented in Arabia and eastern Africa by the Mozambiquian or Pan-African event, extended from some time before 650 m.y. to at least 540 m.y. and perhaps 520 m.y. B.P. Although the tectonic processes of subduction and continental collision during the 900+ to 500-m.y. period require similar directions of plate convergence, the differences in magmatic and tectonic. styles of Hijaz orogenesis from those of the Pan-African and the temporal break between them in much of the southern part of the Arabian Shield support division into at least two events. As defined by the ages of major plutonic units, the axis of magmatic and tectonic activity migrated eastward or northeastward during the Hijaz cycle, the predominantly dioritic plutonic rocks becoming younger and more siliceous to the east. Granodiorite to granite pl}.1tonism of the Pan-African event, however, shows no geographic bias, being distributed throughout the Arabian Shield. Although the Hijaz diorites and Pan-African granitic rocks exhibit strong contrasts in composition and age differences as great as 250 m.y. in the westernmost parts of the area, the two groups are less distinct compositionally and nearly the same age in the eastern part.
Detrital geochronology of unroofing magmatic complexes
NASA Astrophysics Data System (ADS)
Malusà, Marco Giovanni; Villa, Igor Maria; Vezzoli, Giovanni; Garzanti, Eduardo
2010-05-01
Tectonic reconstructions performed in recent years are increasingly based on petrographic (Dickinson & Suczek, 1979; Garzanti et al., 2007) and geochronological (Brandon et al., 1998; DeCelles et al., 2004) analyses of detrital systems. Detrital age patterns are traditionally interpreted as a result of cooling induced by exhumation (Jäger, 1967; Dodson, 1973). Such an approach can lead to infer extremely high erosion rates (Giger & Hurford 1989) that conflict with compelling geological evidence (Garzanti & Malusà, 2008). This indicates that interpretations solely based on exhumational cooling may not have general validity (Villa, 2006). Here we propose a new detrital geochronology model that takes into account the effects of both crystallization and exhumational cooling on geochronometers, from U-Pb on zircon to fission tracks on apatite. This model, specifically designed for unroofing magmatic complexes, predicts both stationary and moving mineral-age peaks. Because its base is the ordinary interaction between endogenic and exogenic processes, it is applicable to any geological setting. It was tested on the extremely well-studied Bregaglia-Bergell pluton in the Alps, and on the sedimentary succession derived from its erosion. The consistency between predicted and observed age patterns validates the model. Our results demonstrate that volcanoes were active on top of the growing Oligocene Alps, and resolve a long-standing paradox in quantitative erosion-sedimentation modelling, the scarcity of sediment during apparently fast erosion. Dickinson, W. R. & Suczek, C. A. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 63, 2164-2172 (1979). Garzanti, E., Doglioni, C., Vezzoli. G. & Andò, S. Orogenic belts and orogenic sediment provenance. J. Geol. 115, 315-334 (2007). Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull. 110, 985-1009 (1998). DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., Garzanti, E. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313-330 (2004). Jäger, E. in Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen, Beitr. Geol. Karte Schweiz NF 134 (eds. Jäger, E., Niggli, E. & Wenk, E.) 28-31 (Bern, Kümmerly & Frey, 1967). Dodson, M. H. Closure temperature in cooling geochronological and petrological systems. Contr. Miner. Petrol. 40, 259-274 (1973). Giger, M. & Hurford, A. J. Tertiary intrusives of the Central Alps: their Tertiary uplift, erosion, redeposition and burial in the south-alpine foreland. Eclogae geol. Helv. 82, 857-866 (1989). Garzanti, E. & Malusà, M. G. The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth Planet. Sci. Lett. 268, 487-500 (2008). Villa, I. M. From nanometer to megameter: Isotopes, atomic-scale processes, and continent-scale tectonic models. Lithos 87, 155-173 (2006).
NASA Astrophysics Data System (ADS)
Wang, Xiangsong; Cai, Keda; Sun, Min; Xiao, Wenjiao; Xia, Xiaoping; Wan, Bo; Bao, Zihe; Wang, Yannan
2018-03-01
Late Carboniferous to Early Permian is a critical period for the final amalgamation of the Central Asian Orogenic Belt (CAOB). However, as most of the accreted terranes of the CAOB are unclear in tectonic nature and origin, the timing and processes of their mutual amalgamation have been poorly constrained. To understand assembly of the West Junggar Terrane with the Yili Block, a suite of the late Paleozoic magmatic rocks, including ignimbrite, rhyolite and granite, in northwestern Chinese Tianshan Belt were studied for their petrogenesis and tectonic implications. Our new results of secondary ion mass spectrometry (SIMS) zircon U-Pb dating reveal two separate magmatic episodes, ca. 300 Ma volcanism (ignimbrite and rhyolite) and ca. 288 Ma plutonsim (biotite granite). Geochemically, for the ca. 300 Ma volcanism, the ignimbrites have low SiO2 (65.8-71.5 wt.%) and Mg# (6-13) values, and exhibit arc affinity with significantly enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE) such as Nb, Ta and Ti. The whole-rock εNd(t) and zircon εHf(t) values range from +6.9 to +7.0 and +9.9 to +14.1 respectively, indicating a juvenile basaltic lower crustal origin. Rhyolites have slightly high SiO2 (72.7-74.0 wt.%) and K2O (3.86-4.53 wt.%) contents, high zircon δ18O (11.67-13.23‰) values, and low whole-rock εNd(t) (+2.9 to +3.8) and zircon εHf(t) (+2.8 to +10.0) values, which may suggest sediment involvements during magma generation. In contrast, for the ca. 288 Ma plutonism, the biotite granites have obviously higher SiO2 (74.7-75.5 wt.%) contents and whole-rock εNd(t) (+7.7 to +8.8), zircon εHf(t) (+9.8 to +12.7), and lower zircon δ18O (5.99-6.84‰) values, than those of the ca. 300 Ma volcanic rocks, which are consistent with signatures of juvenile magma source. According to our estimates of zircon saturation temperatures, together with their contrasting genesis, we attribute the formation of ca. 300 Ma high temperature (815-938 °C) volcanism to oceanic slab break-off during assembly of the West Junggar Terrane with the Yili Block, and relate the generation of ca. 288 Ma low temperature (723-735 °C) plutonism to subsequent strike-slipping of North Tianshan Fault that facilitated introduction of water-fluxes triggering hydrous partial melting of juvenile lower crust. The sequential magmatic episodes in the northwestern Chinese Tianshan Belt may provide a crucial clue to a tectonic transition from plate convergence to intra-plate adjustment during the formation of the Kazakhstan Orocline in the late Paleozoic.
NASA Astrophysics Data System (ADS)
Bergamin, Luisa; Capello, Marco; Carbone, Cristina; Magno, Maria Celia; Consani, Sirio; Cutroneo, Laura; Ferraro, Luciana; Pierfranceschi, Giancarlo; Romano, Elena
2016-04-01
Benthic foraminiferal assemblages react in short time to natural and anthropogenic environmental changes and, for this, they are considered as reliable indicators of environmental quality. An interesting application of these indicators is the study of their response to environmental changes in coastal marine areas, affected by dismissed mines and dump areas. The Libiola Fe-Cu sulphide mine was intensively exploited in 19th and 20th centuries, and the activity ended in 1962. The sulphide mineral assemblages consist of pyrite and chalcopyrite, with minor sphalerite and pyrrhotite, in a gangue of quartz and chlorite. The sulphide ore occurs within the Jurassic ophiolites of the Northern Apennines which were subjected to metamorphic and tectonic processes during the subsequent Apennine orogenesis. Waters circulating in the Libiola mine area, and discharging in the adjacent streams and creeks, are strongly polluted due to the diffuse occurrence of Acid Mine Drainage processes. The Gromolo torrent collects these acidic waters enriched of heavy metals which flow into Ligurian Sea. The study area is characterised by a shelf with a gentle slope, mainly constituted by sediment supplied by Entella torrent. The general circulation has trend from East to West and the coastal drift is generally eastwards. A total of 15 marine sediment samples (upper 2 cm) were collected by means of Van Veen grab in the coastal zone close to the Gromolo mouth and analyzed for living (rose Bengal stained) and dead benthic foraminifera, together with grain size, metals and trace elements, and metal fractioning. Quantitative foraminiferal parameters, like as abundance, species diversity, heterogeneity and assemblage composition, were determined and evaluated for environmental purpose. Additionally, possible increase above the natural background level of deformed specimens was considered as indicative of metal contamination. The grain-size analyses highlighted mainly sandy sediments, characterized by a small pelitic fraction, ranging from 0.5% to 28%. Sediments are greyish, usually very fine-grained, with infrequent organogenic fraction. The mineralogical composition is based on dark green grains of serpentine nature, sometimes fibrous, with spread inclusions of magnetite, associated with lithic sandstone, dark gray shales, gabbros, fragments of quartz, feldspar, serpentine and chlorite. Metal concentration shows, in the whole study area, high concentrations of As, Cr, and Ni while, in the samples close to the Gromolo mouth, high values also for Cu, Co, Zn, Pb, Hg, and Cd were recorded. The foraminiferal study highlighted several samples with very low abundance, especially in the coastal belt between Gromolo and Entella torrents. Slightly higher abundance was recorded close to the Gromolo mouth, where sediments are strongly characterized by Ammonia. Both living and dead assemblages displayed low diversity and high dominance with Ammonia beccarii which accounts up to 66% of total abundance. Moreover, percentage of deformed specimens generally exceeded the natural background reaching 5%. All these aspects are clear evidence of an environmental stress.
A transect through the base of the Bronson Hill Terrane in western New Hampshire
Walsh, Gregory J.; Valley, Peter M.; Sicard, Karri R.; Thompson, Thelma Barton; Thompson, Peter J.
2012-01-01
This trip will present the preliminary results of ongoing bedrock mapping in the North Hartland and Claremont North 7.5-minute quadrangles in western New Hampshire. The trip will travel from the Lebanon pluton to just north of the Sugar River pluton (Fig. 1) with the aim of examining the lower structural levels of the Bronson Hill anticlinorium (BHA), and the nature of the boundary with the rocks of the Connecticut Valley trough (CVT). Spear and others (2002, 2003, 2008) proposed that western New Hampshire was characterized by five major faults bounding five structural levels including, from lowest to highest, the “chicken yard line”, Western New Hampshire Boundary Thrust, Skitchewaug nappe, Fall Mountain nappe, and Chesham Pond nappe. Lyons and others (1996, 1997) showed the lowest level cored by the Cornish nappe and floored by the Monroe fault. Thompson and others (1968) explained the geometry of units by folding without major thrust faults, and described the second level as the Skitchewaug nappe. This trip will focus on the two lowest levels which we have revised to call the Monroe and Skitchewaug Mountain thrust sheets. Despite decades of geologic mapping in the northeastern United States at various scales, little 1:24,000-scale (or larger scale) modern bedrock mapping has been published for the state of New Hampshire. In fact, of the New England states, New Hampshire contains the fewest published, modern bedrock geologic maps. Conversely, adjacent Vermont has a relatively high percentage of modern bedrock maps due to focused efforts to create a new state-wide bedrock geologic map over the last few decades. The new Vermont map (Ratcliffe and others, 2011) has identified considerable gaps in our knowledge of the bedrock geology in adjacent New Hampshire where published maps are, in places, more than 50 years old and at scales ranging from 1:62,500 to 1:250,000. Fundamental questions remain concerning the geology across the Connecticut River, especially in regards to the stratigraphy of the BHA and CVT, and the distribution, or even existence, of faults ranging in age from Devonian to Mesozoic (e.g., Spear and others, 2008; McWilliams and others, 2010; Walsh and others, 2010). Questions to ponder on this trip include, but are not limited to: 1) Is the Bronson Hill anticlinorium allochthonous? 2) What is the crust beneath the Bronson Hill anticlinorium? 3) Is there a “Big Staurolite nappe” as proposed by Spear and others (2002, 2003, 2008)? 4) What is the role of Taconic, Acadian, and Alleghanian orogenesis in the tectonic development of the region? Modern 1:24,000-scale mapping is the first step towards answering these questions. Mapping will be supplemented by modern geochronology and geochemistry as this project develops. We plan to share some of our provisional results during this field trip.
Foreland sedimentary record of Andean mountain building during advancing and retreating subduction
NASA Astrophysics Data System (ADS)
Horton, Brian K.
2016-04-01
As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick-skinned basement inversion with geometrically and kinematically linked thin-skinned thrust structures at shallower levels in the eastern foreland, including well-dated late Miocene growth strata. The mid-Cenozoic hiatus potentially signifies nondeposition during passage of a flexural forebulge or nondeposition during neutral to extensional conditions possibly driven by a transient retreating-slab configuration along the western margin of South America. Similar long-lived stratigraphic gaps are commonly observed in other foreland records of continental convergent margins. It is proposed that Andean orogenesis along the South American convergent margin has long been sensitive to variations in subduction dynamics throughout Mesozoic-Cenozoic time, such that shifts in relative convergence and degree of mechanical coupling along the subduction interface (i.e., transitions between advancing versus retreating modes of subduction) have governed fluctuating contractional, extensional, and neutral conditions. Unclear is whether these various modes affected the entire convergent margin simultaneously due to continental-scale changes (e.g., temporal shifts in plate convergence, absolute motion of upper plate, or mantle wedge circulation) or whether parts of the margin behaved independently due to smaller-scale fluctuations (e.g., spatial variations in the age of the subducted plate, buoyant asperities in the downgoing slab, or asthenospheric anomalies).
NASA Astrophysics Data System (ADS)
Tumiati, Simone; Godard, Gaston; Martin, Silvana; Malaspina, Nadia; Poli, Stefano
2015-06-01
The manganese ore of Praborna (Italian Western Alps) is embedded within a metasedimentary sequence belonging to a subduction mélange equilibrated at high-pressure (HP) conditions (ca. 2 GPa) during the Alpine orogenesis. The pervasive veining of the ore and the growth of "pegmatoid" HP minerals suggest that these Mn-rich rocks strongly interacted with slab-derived fluids during HP metamorphism. These rocks are in textural and chemical equilibrium with the veins and in contact with sulphide- and magnetite-bearing metabasites at the bottom of the sequence. They contain braunite (Mn2+Mn3+6SiO12), quartz, pyroxmangite (Mn2+SiO3), and minor hematite, omphacite, piemontite and spessartine-rich garnet. Sulphides are absent in the Mn-rich rocks, whereas sulphates (barite, celestine) occur together with As- and Sb-oxides and silicates. This rock association provides an excellent natural laboratory to constrain the redox conditions in subducting oceanic slab mélanges at HP and fluid-present conditions. Similarly to Fe-bearing minerals, Mn oxides and silicates can be regarded as natural redox-sensors. A thermodynamic dataset for these Mn-bearing minerals is built, using literature data as well as new thermal expansion parameters for braunite aud pyrolusite, derived from experiments. Based on this dataset and the observed assemblages at Praborna, thermodynamic calculations show that these mélange rocks are characterised by ultra-oxidized conditions (∆FMQ up to + 12.7) if the chemical potential of oxygen (or the oxygen fugacity fO2) is accounted for. On the other hand, if the molar quantity of oxygen is used as the independent state variable to quantify the bulk oxidation state, the ore appears only moderately oxidized and comparable to typical subduction-slab mafic eclogites. Such an apparent contradiction may happen in rock systems whenever oxygen is improperly considered as a perfectly mobile component. In the Earth's mantle, redox reactions take place mainly between solid oxides and silicates, because O2 is a negligible species in the fluid phase. Therefore, the description of the redox conditions of most petrological systems requires the introduction of an extensive variable, namely the oxygen molar quantity (nO2). As a consequence, the oxygen chemical potential, and thus fO2, becomes a dependent state variable, not univocally indicative of the redox conditions of the entire rock column of a subduction zone, from the dehydrating oceanic crust to the overlying mantle wedge. On a more general basis, the comparison of fO2 retrieved from different bulk compositions and different phase assemblages is sometimes challenging and should be undertaken with care. From the study of mélange rocks at Praborna, the distribution of oxygen at subduction zones could be modelled as an oxidation gradient, grading from a maximum in the subducted altered oceanic crust to a minimum in the overlying peridotites of the mantle hanging-wall.
NASA Astrophysics Data System (ADS)
Ratigan, D.; Heller, P.; Trampush, S. M.; Chen, P.; Dueker, K.
2012-12-01
Basin subsidence patterns provide a record of the evolution of regional loading during orogenesis. As such, flexural analysis provides insight on the impact of topographic growth in adjacent ranges, as well as documenting lithospheric behavior and timing of deformation. Flexural analysis of a north-south transect across the Uinta Mountains and associated basins shows much of the topographic load of the Uinta Mts developed long after initiation of Uinta deformation in latest Cretaceous time, and that sharply contrasting rigidities are necessary to explain regional subsidence patterns. Two paleohorizontal datums, c. 48 Ma, exist in the Green River Formation. The Mahogany bed is found in the Uinta Basin of northeastern Utah, and the Laney Member is in the Green River Basin of southwestern Wyoming. Deflections of these beds result from regional loading since early middle Eocene time due to shortening and topographic development of the Uinta Mts. Downward deflection of the Mahogany bed is at least 2800 m over a distance of 90 km with respect to an inflection point at 2250 m above sea level, while the Laney Member is deflected only 600 m over a horizontal distance of 140 km with an inflection point at 1850 m above sea level. Two-dimensional flexural modeling along a transect at 110.66° W using the present topography of the Uinta Mts and densities for the mountain load, basin fill and mantle lid of 2800, 2400 and 3300 kg/m3, respectively, indicates strongly varying rigidity between the two basins. Best-fit rigidities are 1022 N●m to the south, and 1024 N●m to the north. The contrast in rigidities is coincident with the projected position of the Archean-Proterozoic suture of the Cheyenne Belt — the older crust to the north being more rigid than younger crust to the south. To achieve the best fit, all of the present topography of the Uinta Mts, as much as 1.7 km above the basin floor, must have developed after deposition of the 48 Ma datum. The estimated rigidity across southern Wyoming is an order of magnitude higher, and across Utah is an order of magnitude lower, than previous estimates based on analysis of Cretaceous deflections, suggesting possible changes in rigidity through time. In addition, assuming lakes in the Uinta and Green River basins were connected at the time of deposition of the paleodatum, the difference in present elevation of the inflection point of the subsidence profiles suggests that there has been a net isostatic offset between the two basins. The origins of this offset might be due to regional isostatic differences from lithospheric density contrasts. Future work will include 3-D flexural modeling across all of the basins surrounding the Uinta Mountains, including the Piceance Creek, Sand Wash, and Washakie Basins.
Plate collision and mounting building separated by long periods of time. Possible causes
NASA Astrophysics Data System (ADS)
Artyushkov, Eugene; Chekhovich, Peter; Massonne, Hans-Joachim
2017-04-01
According to a popular scheme of orogenesis, superposition of thick nappe on continental crust results in concomitant mountain building. In many cases plate collision was not accompanied by mountain building which actually occurred 10-100 Myr later. Thus in East Carpathians 12 Ma ago thick nappe was superimposed on the western margin of the East European Craton. The nappe remained near to sea level and mountain building began only 3 myr ago. In the Middle Urals collision developed in a number of phases during 70 Myr since the Late Devonian and until the earliest Permian; however, this produced no high topography. The formation of orogenic granitoids took place at the main stage of collision 306-300 Ma ago. High mountains were formed in the earliest Permian 10 Myr after the end of collision. In the Northern Tien Shan collision with intrusion of large granitic plutons occurred in the Late Ordovician-Middle Devonian. In the Southern Tien Shan these phenomena refer to the Late Carboniferous and Late Jurassic. In both regions collision was not accompanied by mountain building. High mountains were formed in the Tien Shan quite recently. Shortening of strong lithospheric layer becomes possible only at short epochs of its softening under infiltration of fluids from the mantle. The absence of large uplift during shortening and thickening of the crust indicates a concomitant density increase in this layer. As follows from the analysis of typical phase diagrams of crustal rocks this can be explained by metamorphic reactions taking place in a presence of fluids under the pressure increase due to the nappe emplacement. As follows from the absence of large crustal uplift in shortened regions mantle lithosphere remains preserved in them after plate collision. At the epochs of infiltration from the mantle of large volumes of fluids it becomes softened. This ensures a possibility of convective replacement by the asthenosphere of fertile and dense mantle lithosphere of the Phanerozoic age which should result in a strong isostatic crustal uplift. Pronounced asthenospheric upwelling is indeed observed under high mountains in many Phanerozoic fold belts. New temperature distribution arises in the thickened crust after its shortening. As a result retrograde metamorphism with expansion became possible in dense rocks which underwent deep metamorphism at the preceding epochs of collision. This is another mechanism of mountain building. Analysis of the data on the Tien Shan shows that both these mechanisms are responsible for its uplift by 2 km and more during the last 2 Myr. In the gravity field the force acting along the lithospheric layer that necessary to shorten the crust increases with the altitude of topography. Termination of shortening after reaching only a very low altitude indicates that the forces which ensure collision are not large. They can be estimated as 3 × 1012 N m which is comparable with the plate driving force of ridge push.
NASA Astrophysics Data System (ADS)
Keppie, J. Duncan; Nance, R. Damian; Murphy, J. Brendan; Dostal, J.
2003-04-01
Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) ˜1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or ˜2 Ga (Cadomia) basement; (2) 750-600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic-Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician-Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an "accordion" model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a "bulldozer" model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a "Baja" model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge-trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a "Baja" model to a "bulldozer" model. By analogy with the eastern Pacific, we name the oceanic plates off northern Gondwana: Merlin (≡Farallon), Morgana (≡Pacific), and Mordred (≡Kula). If Neoproterozoic subduction was towards Gondwana, application of this combined model requires a total rotation of East Avalonia and Carolina through 180° either during separation (using a western Transverse Ranges model), during accretion (using a Baja British Columbia "train wreck" model), or during dispersion (using an Australia "bulldozer" model). On the other hand, Siluro-Devonian orthogonal transfer ("accordion" model) from northern Africa to southern Laurussia followed by a Carboniferous "Baja" model appears to best fit the existing data for Cadomia. Finally, Oaxaquia, Chortis, Maya, and Suwannee appear to have been transported along the margin of Gondwana until it collided with southern Laurentia on whose margin they were stranded following the breakup of Pangea. Forward modeling of a closing Mediterranean followed by breakup on the African margin may provide a modern analogue. These actualistic models differ in their dictates on the initial distribution of the peri-Gondwanan terranes and can be tested by comparing features of the modern analogues with their ancient tectonic counterparts.
NASA Astrophysics Data System (ADS)
Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.
2004-10-01
Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the seaward propagation of thrust faults roughly parallel to sub-horizontal layering in the upper crystalline part of the OJP. Thrust fault offsets, spacing between thrusts, and the amplitude of related fault propagation folds progressively decrease to the west in the youngest zone of active MAP accretion (Choiseul structural domain). Surficial faulting and folding in the most recently deformed, northwestern domain show active accretion of greater than 1 km of sedimentary rock and 6 km, or about 20%, of the upper crystalline part of the OJP. The eastern MAP (Malaita and Ulawa domains) underwent an earlier, similar style of partial plateau accretion. A pre-late Pliocene age of accretion (˜3.4 Ma) is constrained by an onshore and offshore major angular unconformity separating Pliocene reefal limestone and conglomerate from folded and faulted pelagic limestone of Cretaceous to Miocene age. The lower 80% of the Ontong Java Plateau crust beneath the MAP thrust decollement appears unfaulted and unfolded and is continuous with a southwestward-dipping subducted slab of presumably denser plateau material beneath most of the MAP, and is traceable to depths >200 km in the mantle beneath the Solomon Islands.
NASA Astrophysics Data System (ADS)
Faber, C.; Rowe, C. D.; Miller, J. A.; Backeberg, N.; Sylvester, F.
2009-12-01
The apparently low frictional strength of faults during earthquake slip is not sufficiently well explained. Dynamic weakening has been observed in recent laboratory experiments at seismic slip rates, even if materials are strong at slow slip rates. Di Toro et al. (2004) performed experiments on crystalline rocks at slip rates of 1m/s and observed frictional strength drops to near zero. Examination of the slip surface revealed an amorophous silica had formed during fast slip and interpreted this as a solidified silica gel. If similar silica gel forms during earthquakes, and solidifies to amorphous silica, it would be expected to slowly crystallize over time. Ujiie et al (2007) reported a microcrystalline silica fault vein from the Shimanto Complex (Japan) which contains colloidal microspheres of silica, consistent with its origin as a silica gel. This vein may have been created during seismic slip, although other explanations are possible. No other natural examples of this potentially important coseismic weakening mechanism have been reported. To investigate whether silica gel actually forms during seismic slip, it will be necessary to discover and fully characterize additional natural examples. The Naukluft Nappe Complex in central Namibia is a foreland thrust stack at the distal southern margin of the Pan-African Damara Orogen (active at ~ 550Ma). A fault vein of microcrystalline silica has been found in an intra-nappe thrust fault . The vein occurs as a mostly continuous, planar, 0.1-1.0cm-thick fault vein within dolomite breccias of the Olive Fault. There are no other veins of silica associated with the fault. The hanging wall and footwall are dolomite and calcareous shales, respectively. The layer is petrographically similar to the microcrystalline silica described by Ujiie et al. (2007). The silica layer is purple-blue to white in color cathodoluminescence, in contrast to the bright turquoise typical of quartz. Although X-ray diffraction spectra show only silica and minor dolomite in the fault vein, SEM revealed the presence of small grains of Ti-oxides which have not been observed in the host rock. The cathodoluminescence has also revealed primary textures in the dolomite breccias which are overprinted by recrystallization and invisible in transmitted light . Transmission Electron Microscopy will be used to determine whether colloidal silica particles are present. The possible finding of the solidified silica gel in the Olive Fault is significant because it may represent a new way to identify fault surfaces which have slipped seismically in the past. In particular, the presence of this unusual silica vein in a carbonate-dominated environment is consistent with the experiments of Di Toro et al (2004) who suggested that quartz need not be present in the source rocks in order to form silica gel. Di Toro, G. et al. (2004) Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436-439 Ujie, K. et al. (2007) Fluidization of granular material in a subduction thrust at seismogenic depths. EPSL, 259, 307-318
Axial Belt Provenance: modern river sands from the core of collision orogens
NASA Astrophysics Data System (ADS)
Resentini, A.; Vezzoli, G.; Paparella, P.; Padoan, M.; Andò, S.; Malusà, M.; Garzanti, E.
2009-04-01
Collision orogens have a complex structure, including diverse rock units assembled in various ways by geodynamic processes. Consequently, orogenic detritus embraces a varied range of signatures, and unravelling provenance of clastic wedges accumulated in adjacent foreland basins, foredeeps, or remnant-ocean basins is an arduous task. Dickinson and Suczek (1979) and Dickinson (1985) recognized the intrinsically composite nature of orogenic detritus, but did not attempt to establish clear conceptual and operational distinctions within their broad "Recycled Orogenic Provenance". In the Alpine and Himalayan belts, the bulk of the detritus is produced by focused erosion of the central backbone of the orogen, characterized by high topography and exhumation rates (Garzanti et al., 2004; Najman, 2006). Detritus derived from such axial nappe pile, including slivers of thinned continental-margin lithosphere metamorphosed at depth during early collisional stages, has diagnostic general features, which allows us to define an "Axial Belt Provenance" (Garzanti et al., 2007). In detail, "Axial Belt" detrital signatures are influenced by metamorphic grade of source rocks and relative abundance of continental versus oceanic protoliths, typifying distinct subprovenances. Metasedimentary cover nappes shed lithic to quartzolithic detritus, including metapelite, metapsammite, and metacarbonate grains of various ranks; only amphibolite-facies metasediments supply abundant heavy minerals (e.g., almandine garnet, staurolite, kyanite, sillimanite, diopsidic clinopyroxene). Continental-basement nappes shed hornblende-rich quartzofeldspathic detritus. Largely retrogressed blueschist to eclogite-facies metaophiolites supply albite, metabasite and foliated antigorite-serpentinite grains, along with abundant heavy minerals (epidote, zoisite, clinozoisite, lawsonite, actinolitic to barroisitic amphiboles, glaucophane, omphacitic clinopyroxene). Increasing metamorphic grade and deeper tectonostratigraphic level of source rocks are reflected by: a) increasing rank of metamorphic rock fragments (as indicated by progressive development of schistosity and growth of micas and other index minerals; MI index of Garzanti and Vezzoli, 2003); b) increasing feldspars; c) increasing heavy-mineral concentration (HMC index); d) increasing hornblende, changing progressively in color from blue/green to green/brown (HCI index); e) successive appearance of chloritoid, staurolite, kyanite, fibrolitic and prismatic sillimanite (MMI index; Garzanti and Andò, 2007). Dickinson W.R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G.G. (ed.), Reidel, NATO ASI Series 148: 333-361. Dickinson W.R. and C.A. Suczek. 1979. Plate tectonics and sandstone composition. Am. Assoc. Pet. Geol. Bull. 63: 2164-2172. Garzanti E. and S. Andò. 2007, Plate tectonics and heavy-mineral suites of modern sands. In: Mange M. and D. Wright (eds.), Elsevier, Developments in Sedimentology Series 58: 741-763. Garzanti E. and G. Vezzoli. 2003. A classification of metamorphic grains in sands based on their composition and grade. J. Sedimentary Res. 73: 830-837. Garzanti E., C. Doglioni, G. Vezzoli and S. Andò. 2007. Orogenic Belts and Orogenic Sediment Provenances. J. Geology 115: 315-334. Garzanti E., G. Vezzoli, S. Andó, C. France-Lanord, S.K. Singh and G. Foster. 2004. Sediment composition and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett. 220: 157-174. Najman Y. 2006. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 74: 1-72.
NASA Astrophysics Data System (ADS)
Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.
2010-12-01
The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above this low Vs layer, we find some interesting features corresponding to: - a low Vs shallow and 2 km thick layer of Liguride and Plio-Pleistocene units (z = 0-2 km of depth) - a high Vs 4-5 km thick anisotropic layer of limestones (z = 2-7 km of depth) - a very high Vs (3.8 km/s) 4 km thick layer probably corresponding to the metamorphic basement. The analysis of the geometry of the velocity changes between these layers (from the surface to the bottom of metamorphic basement), also yield evidence of crustal block tilting, due to the development of the eastern continental passive margin of the Tyrrhenian sea. The general crustal setting observed between the TDC and the Argentario areas is also consistent with the simple shear models suggested for back-arc basins opening. Comparison of RF’s TDC models with MAON station data also led to important considerations confirming the initial evolutive phase of the Tyrrhenian sea opening, in association with the first occurrences of intrusive magmatism in these areas.
NASA Astrophysics Data System (ADS)
Dragovic, Besim; Guevara, Victor; Caddick, Mark; Couëslan, Chris; Baxter, Ethan
2017-04-01
Fundamental to every modern continent's early (Archean) history is the generation of high temperature conditions required to produce the dense, strong, relatively anhydrous rocks that comprise most of Earth's stable cratonic crust. While the thermal gradients supported in Archean terranes are better understood, the timescales over which these conditions occur are more enigmatic. Garnet petrochronology allows for the interrogation of a semi-continuous record of these tectonometamorphic conditions, by linking pressure-temperature-fluid conditions (using phase equilibria modeling, trace element thermometry, stable isotope geochemistry) to a precise chronologic/chronometric record (e.g. high-precision Sm-Nd geochronology, geospeedometry of major and trace element diffusion profiles). Here, we utilize techniques from this burgeoning field of study to elucidate the rates and conditions of high temperature/ultra-high temperature (HT/UHT) metamorphism in the 2.7 Ga Pikwitonei Granulite Domain (PGD). The PGD represents over 150,000 km2 of dominantly granulite-facies metamorphic rocks situated at the NW edge of the Superior Province. Peak temperatures in the region range from 760°C in the southernmost part of the PGD, to 900-960˚C in the central/western PGD ( 40-60 km apart). Previous studies have suggested that metamorphism was long-lived in the region, occurring over 100 Ma, from 2.71-2.60 Ga [1, 2, 3]. High-precision garnet geochronology on microsampled garnets provides a detailed growth history of several lithologies across the region. Where necessary, bulk garnet analysis (i.e. dating based upon multiple whole garnet crystals rather than portions thereof) was also performed. While cooling from HT/UHT will result in some degree of intra-mineral age resetting, a detailed isotopic study of a range of large garnet porphyroblasts from the PGD (those which would be variably reset depending on peak T, grain size, and initial cooling rate) can retain information about both prograde, peak, and initial cooling history of the region. For example, fifteen Sm-Nd garnet ages were determined from a 7cm garnet from the southern PGD (peak T of 760˚C). The initiation of garnet growth was calculated to be 2666 ± 3 Ma, with the termination of garnet growth at 2610 ± 2 Ma, providing a growth duration of 56 ± 3 Ma. Across the larger, hotter, central and western parts of the PGD (peak T of 900-960˚C), major element zoning is preserved in garnets from throughout these localities, implying ultrahigh-temperature conditions over significantly shorter timescales. This suggests that while HT metamorphic conditions can be maintained region-wide for tens of Myr, punctuated UHT conditions that last for Myr to sub-Myr timescales occur locally. By integrating these petrochronological techniques to decipher P-T conditions and timescales, on samples from across the PGD, we seek to provide insight into the mechanisms for diachronous crustal heating and the formation of stable cratonic lithosphere. [1] Smit et al., 2013. EPSL, 381, 222-233. [2] Heaman et al., 2011. Can. J. Earth. Sci., 48, 205-245. [3] Guevara et al., 2016. AGU abstracts with programs
NASA Astrophysics Data System (ADS)
López-Sánchez, M. A.; Llana-Fúnez, S.; Marcos, A.; Martínez, F. J.
2012-04-01
Metamorphic reactions, deformation mechanism and chemical changes during mylonitization and ultramylonitization of granite affected by a crustal-scale shear zone are investigated using microstructural observations and quantitative analysis. The Vivero Fault (VF) is a large extensional shear zone (>140Km) in NW of Iberia that follows the main Variscan trend dipping 60° toward the West. The movement accumulated during its tectonic history affects the major lithostratigraphic sequence of Palaeozoic and Neoproterozoic rocks and the metamorphic facies developed during Variscan orogenesis. Staurolite, and locally, andalucite plus biotite grew in the hangingwall during the development of VF, overprinted the previous regional Variscan greenschist facies metamorphism. Andalusite growth took place during the intrusion of syntectonic granitic bodies, such as the deformed granite studied here. The Penedo Gordo granite is coarse-grained two-mica biotite-rich granite intruding the VF and its hangingwall. This granite developed a localized deformation consisting of a set of narrow zones (mm to metric scales) heterogeneously distributed subsequently to its intrusion. Based on pseudosections for representative hangingwall pelites hosting the granite and the inferred metamorphic evolution, the shear zone that outcrops at present-day erosion surface was previously active at 14,7-17 km depth (390-450 MPa). Temperature estimates during deformation reach at least the range 500-600° C, implying a local gradient of 35±6°C/km. Microstructures in the mylonites are characterized by bulging (BLG) to subgrain rotation (SGR) recristallization in quartz with the increasing of deformation. Albitisation, flame-perthite and tartan twining are common in K-feldspar at the early stage of deformation. The inferred dominant deformation mechanisms are: i) intracrystalline plasticity in quartz, ii) cataclasis with syntectonic crystallisation of very fine albite-oligoclase and micas in K-feldspar, and iii) cataclasis with precipitation of K-feldspar in fractures and other dilatational sites in plagioclase. Ultramylonites consist of a matrix mainly containing feldspar, quartz and micas (mainly biotite) with an average grain size below 15 μm, usually featuring some quartz pods and small feldspar porphyroclast. Quartz pods disintegrate into polycrystalline aggregates, and the resultant grains are mixed into the surrounding matrix reaching its average grain size. In the matrix, grain size is uniform and the distribution of mineral phases tends to be homogeneous. Mass balance analysis based on major elements indicates that the deformation process was not isochemical for some elements. Preliminary XRF results show that the mylonitic/ultramylonitic samples are depleted in Na and Mn and enriched in K and Ca respect to the original protolith, while others remains stable (Si, Al or Fe). This data suggests a large-scale transport of some components, and therefore, that fluids were involved during deformation. Similar feldspar microstructures in mylonites, implying cataclasis and neocrystallisation, have been previously reported in natural rocks where the temperature was estimated between 250 to 450°C (see Fitz-Gerald and Stünitz 1993, Hippertt 1998 or Ree et al. 2005). In opposition to this, petrological and mineralogical thermometry data indicate that temperatures during deformation of FV reached at 500-600°C, extending the temperature range previously reported.
NASA Astrophysics Data System (ADS)
Levander, A.; Masy, J.; Niu, F.
2013-05-01
The Caribbean (CAR)-South American (SA) plate boundary in Venezuela is a broad zone of faulting and diffuse deformation. GPS measurements show the CAR moving approximately 2 cm/yr relative to SA, parallel to the strike slip fault system in the east, with more oblique convergence in the west (Weber et al., 2001) causing the southern edge of the Caribbean to subduct beneath northwestern South America. The west is further complicated by the motion of the triangular Maracaibo block, which is escaping northeastward relative to SA along the Bocono and Santa Marta Faults. In central and eastern Venezuela, plate motion is accommodated by transpression and transtension along the right lateral San Sebastian- El Pilar strike-slip fault system. The strike-slip system marks the northern edge of coastal thrust belts and their associated foreland basins. The Archean-Proterozoic Guayana Shield, part of the Amazonian Craton, underlies southeastern and south-central Venezuela. We used the 87 station Venezuela-U.S. BOLIVAR array (Levander et al., 2006) to investigate lithospheric structure in northern South America. We combined finite-frequency Rayleigh wave tomography with Ps and Sp receiver functions to determine lithosphere-asthenosphere boundary (LAB) depth. We measured Rayleigh phase velocities from 45 earthquakes in the period band 20-100s. The phase velocities were inverted for 1D shear velocity structure on a 0.5 by 0.5 degree grid. Crustal thickness for the starting model was determined from active seismic experiments and receiver function analysis. The resulting 3D shear velocity model was then used to determine the depth of the LAB, and to CCP stack Ps and Sp receiver functions from ~45 earthquakes. The receiver functions were calculated in several frequency bands using iterative deconvolution and inverse filtering. Lithospheric thickness varies by more a factor of 2.5 across Venezuela. We can divide the lithosphere into several distinct provinces, with LAB depth reflecting the signatures of the Precambrian craton in the south, Mesozoic rifting in central Venezuela, and Neogene subduction and orogenesis in both the northeast and northwest. Specifically, LAB depth varies from 110-130 km beneath the Guayana Shield, in agreement with finite-frequency body wave tomography (Bezada et al., 2010b). To the north beneath the Serrania del Interior and Maturin Basin the Rayleigh waves image two high velocity features to depths of 200 km. The northernmost, beneath the Serrania, corresponds to the top of the subducting Atlantic plate, in agreement with P-wave tomography that images the Atlantic plate to transition zone depths. Another localized high velocity feature extending to ~200 km depth lies to the south. We speculate that this is a lithospheric drip caused by destabilization of the SA lithospheric caused by Atlantic subduction. Immediately to the west beneath the Cariaco basin the LAB is at ~50 km, marking the top of a pronounced low velocity zone. The thin lithosphere extends southwestward from the Cariaco Basin beneath the Mesozoic Espino Graben to the craton. To the west the LAB deepens to ~80 km beneath the Barinas Apure Basin and then to ~90 km beneath the Neogene Merida Andes and Maracaibo block.
The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru
Lewis, Richard Wheatley
1964-01-01
The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by silicification and pyritization; 2) Depositional stage, characterized by the deposition of base-metal sulfides; and 3) Reworking stage, characterized by the formation of lead sulfantimonides from galena at Caudalosa, and the deposition of silver sulfide and sulfosalts at San Genaro. Maximum temperatures, indicated by the wurtzite-sphalerite, famatinite-energite and chalcopyrite-sphalerite assemblages, did not exceed 350? C. The low iron content of sphalerite suggests that most of the base-metal sulfides were deposited below 250? C. The colloidal habits of pyrite and quartz in the preparatory and reworking stages imply relatively low temperatures of deposition, probably between 50? C and 100? C. Mineralization was shallow and pressures ranged from 17 atmospheres in the silver deposits to over 45 atmospheres in the lead sulfantimonide deposits. Mineralization at Castrovirreyna represents an open chemical system in which mineralizing fluids constantly modified the depositional environment while they themselves underwent modification. The deposits formed under nonequilibrium conditions from fluids containing complex ions and colloids. Reworking and migration along persistent physico-chemical gradients in time and space, from a deep source to the west concentrated base-metal sulfides in the western half, lead-antimony minerals in the center, and silver-antimony minerals in the eastern part of the district. Silver, antimony, and bismuth were kept in solution as complex ions until low temperature and pressure prevailed. They document in situ reworking by reacting with existing minerals. Physico-chemical gradients controlled the type of minerals deposited, whereas vein structure controlled the quantity deposited. Vein fissures formed by the equivalent of from east-west compression during Andean orogenesis and mineralization probably came from the underlying Andean Batholith.
Tracing erosion patterns in Taiwan by quantitative provenance and geomorphological analysis
NASA Astrophysics Data System (ADS)
Resentini, Alberto; Goren, Liran; Castelltort, Sebastien; Garzanti, Eduardo
2016-04-01
Taiwan is one of the world's foremost natural laboratories for studies of orogenesis. After only a few Ma of ongoing collision between the Chinese continental margin and the Luzon Arc, the associated orogen has reached nearly 4 km in height and 100-150 km in width. High rates of convergence leading to rapid rock uplift combine with the wet stormy climate of the sub-tropical typhoon belt to deliver annually an average detrital mass of 9500 t/km2. The doubly-vergent thrust belt is composed of more than 85% of sedimentary rocks dominant in the pro-wedge, but metamorphic rocks as young as < 10 Ma are exposed in the retro-wedge, where zircon fission-track, apatite fission-track and (U-Th)/He ages are all reset and as young as 1 Ma or younger, indicating very recent fast exhumation. There is hardly another region where rock-uplift, unroofing and sediment production are of equal intensity. Quantitative analyses of tectonic and erosional processes around Taiwan have been carried out following diverse independent ways, including estimates of fluvial discharge of suspended solids, thermochronological techniques, cosmogenic measurements, and morphometry of river profiles (Dadson et al., 2003; Willett et al., 2003; Fox et al., 2014). Also the appearance and relative abundance of diagnostic rock fragments and other detrital minerals in Plio-Pleistocene sedimentary successions has been used to constrain unroofing rates, but a systematic description of compositional signatures of sediments shed by distinct tectonic domains has not been carried out so far. In this study we combine high-resolution petrographic and heavy-mineral analyses of modern sands carried by rivers all around Taiwan with their estimated sediment loads to calculate the detrital volumes generated from different lithologic assemblages within the orogen. River sediments are potent integrators of information that efficiently mediate provenance signals from different parts of the entire watershed, thus offering a great advantage relative to techniques analysing bedrock. This strategy allows us to calculate the sediment mass shed by each tectonic unit within each sub-catchment, and thus to trace erosion rates with continuity in space both along and across the orogenic belt. The results obtained were compared with the spatial pattern of estimated fluvial erosion rates calculated across the island by applying the stream power analysis relating river incision to basal shear stress (Finlayson and Montgomery, 2003). Initial investigation of sources of discrepancies between provenance analysis and morphometric analysis points toward the importance of lithological control on fluvial incision within the stream power model framework. CITED REFERENCES Dadson S.J., Hovius N., Chen H., Dade W.B., Hsieh M.L., Willett S.D., Hu J.C., Horng M.J., Chen, M.C., Stark, C.P., Lague D., Lin J.C. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426:648-651. Finlayson D.P., Montgomery D.R. 2003. Modeling large-scale fluvial erosion in geographic information systems. Geomorphology 53:147-164. Fox M., Goren L., May D.A., Willett S.D. 2014. Inversion of fluvial channels for paleorock uplift rates in Taiwan. Journal of Geophysical Research: Earth Surface 119:1853-1875. Willett S.D., Fisher D., Fuller C., Yeh E.C., Lu C.Y. 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945-948.
Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China
NASA Astrophysics Data System (ADS)
Zheng, Min; Wu, Xiaozhi
2014-05-01
The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.
NASA Astrophysics Data System (ADS)
Leslie, G.; Krabbendam, M.
2009-04-01
The Neoproterozoic Dalradian Supergroup of Scotland and Ireland is intensively deformed and metamorphosed by mid-Ordovician arc-accretion (c. 460 Ma) during the Caledonian Orogeny. Emplacement of an extensive suite of Siluro-Devonian Caledonian granitoids further complicates reading the sedimentary record. Nevertheless we can determine a history of stretching and break-up affecting the Neoproterozoic supercontinent of Rodinia and leading to creation of the Iapetus Ocean. Three key intervals of late-Neoproterozoic sediment accumulation are recognised - new geological mapping, isotopic datasets (Sr, O and C, U/Pb zircon, Sm/Nd WR), and sequence stratigraphical approaches are refining constraints on the lithostratigraphical architecture and basin evolution of the Dalradian Supergroup. Thick siliciclastic deposits accumulated (pre-800 Ma?) during an early stretching phase (distributed high angle faulting) that led to crustal thinning (low angle shearing). Three major limestone - pelite - quartzite depositional cycles succeeded these earlier siliciclastic deposits, recording episodic subsidence in an intracratonic but largely marine environment; the second cycle overlaps the late Precambrian (Cryogenian) glaciation and concludes with the distinctive Marinoan tillite succession (c. 635Ma). The last of the three cycles is terminated, in some parts of the Dalradian, by deposition of serpentinitic muds and conglomerates and volcaniclastic sediments; pods and lenses of both massive and serpentinised ultramafic rock also interrupt the sedimentary record at this level (thus possibly indicating mantle exhumation). In other areas, a major part of the ‘type' Dalradian succession is absent and we now recognise a major overstep unconformity at this level. From this level onwards across the Dalradian, rapid foundering of the margin, and the transition from rift- to drift-dominated processes, resulted in an overstepping accumulation of laterally and vertically variable, increasingly immature clastic sediments and volcanic rocks. Within 30-40 Ma of the end of Marinoan glaciation, an Iapetan oceanic rift was generating MORB rocks in a localised 600 my old (proto-) rift in the SW part of the Grampian Terrane. Rapid foundering thus pre-dated the first appearance of MORB basalts. Turbidite deposition then persisted after this first emergence of oceanic rocks until the early-Ordovician when convergence began to record arc-accretion and collision. During rift-drift transition, continental fragments apparently separated from the passive margin; the architecture of the Scotland-Greenland sector of Laurentia possibly resembled the present-day configuration of troughs and highs on the UK/Irish sector of the Atlantic continental shelf. Marginal plateaux analogous to the Rockall platform would have been separated from the intact continental margin by sub-basins analogous to the Rockall Trough. Such features would have channelled sediment outboard of, and along, the new passive margin in submarine fan systems. The extensional geometries of the various components of this architecture exerted control on the collisional geometry and acted as nuclei for deformation structures during Grampian orogenesis. Compound collisions in the mid-Ordovician stacked much of the original continental fragments into the complex pattern observed today. The challenge is thus to see through that later deformation and read the record of continental separation. There is much in the depositional architecture of the Dalradian Supergroup that suggests that a magma-poor passive margin is a viable model for this sector of the Laurentian margin.
Structure and deformation history of the northern range of Trinidad and adjacent areas
NASA Astrophysics Data System (ADS)
Algar, S. T.; Pindell, J. L.
1993-08-01
Conflicting models have been proposed for both the evolution of northern South America and the neotectonics of the south Caribbean plate boundary zone. The Trinidadian portion of the margin is particularly controversial, but surprisingly it has been little studied. We present a structural analysis of Trinidad's Northern Range, pertinent updates of the island's stratigraphy and sedimentology, and new zircon fission track age determinations, and use them to constrain Trinidad's geologic history, and to better understand the controlling tectonic processes. In our interpretation Trinidad's three E-ENE striking ranges, which are separated by late Neogene-Recent depocenters, expose (1) the Northern Range Group, generally greenschist-metamorphosed Upper Jurassic to Cretaceous north facing continental slope sediments of the Northern Range, deposited on the northern South American passive margin 200-400 km to the WNW, and (2) the Trinidad Group, Cretaceous-Paleogene shelf slope sediments of the central and southern Trinidad deposited less than 100 km WNW of their present location. A small allochthon composing the Sans Souci Group Cretaceous tholeiitic volcaniclastic, basaltic, and gabbroic rocks (Sans Souci Formation) and sediments (Toco Formation) now in the northeastern Northern Range, has been transported hundreds of kilometers from the west with the Caribbean Plate. Despite earlier references to Cretaceous orogenesis, all deformation in Trinidad is of Cenozoic age. The first deformation in the Northern Range (D1) formed north vergent nappes and induced greenschist metamorphism, probably in the Late Eocene or Oligocene. The nappes developed either by the underthrusting of the Proto-Caribbean crust beneath South America due to convergence between North and South America, or as gravity slides caused by oversteepening induced by this convergence and/or the passage of the Caribbean Plate's peripheral bulge and arrival of its foredeep. Northern Range D2 deformation is south vergent and represents the incorporation of Northern Range metasediments into the Caribbean accretionary prism. The transition to D3 brittle transpressive right-lateral strike-slip faulting is interpreted to be due to the uplift and east-southeastward transpressive emplacement of Northern Range/Caribbean prism rocks onto the South American stepped shelf. This emplacement formed the Miocene transpressive thrust belts and foreland basin in central and southern Trinidad. In the final phase of Northern Range deformation (D4) ˜E-W normal faults and shear zones and conjugate NNW-SSE and NE-SW normal faults developed, and displacement on preexisting ˜E-W right-lateral strike-slip faults continued. The 11 Ma Northern Range zircon fission track ages suggest rapid uplift from the Late Miocene to Recent. Late Miocene subsidence of the Tobago platform immediately to the north of the Northern Range, and greater than 3 km of normal, down to the north, displacement indicated for the North Coast Fault Zone separating the Northern Range and Tobago platform, leads us to postulate that the rapid uplift of the Northern Range was in response to the northward detachment of the Tobago platform from above the Northern Range, along the north-dipping transtensional North Coast Fault Zone. This Late Miocene change in deformation style can be explained by a change from Caribbean/South American right-lateral transpression to right-lateral strike-slip generally striking 080°. This has generally induced a component of extension on pre-existing faults striking at greater than 080°, and a component of compression on faults striking at less than 080°.
NASA Astrophysics Data System (ADS)
Dumond, G.; Gonclaves, P.; Williams, M. L.; Bowring, S. A.
2005-12-01
Predictions about the behavior and geometry of lower continental crust during orogenesis have included: it is rheologically weak; it flows under the influence of a tectonic or topographic load; and it is characterized by pervasive shallow fabrics produced by high-temperature deformation mechanisms. Arguably the world's largest exposure of lower continental crust that still preserves much of its deep crustal deformation history is the central portion of the Snowbird tectonic zone in the western Canadian Shield. Recent fieldwork along a ca. 100 km-long transect of this exposure is characterized by an early, penetrative shallow fabric. A 40 km-long segment of this transect, dominated by charnockite and granodiorite orthogneisses, is characterized by km-scale domains of shallow, granulite-grade gneissic foliation (S1) with a spectacular rodding lineation (L1) defined by: 1) discontinuous ribbons of recrystallized Pl + Qtz + Hb + Cpx + Opx, in addition to mm- to cm-scale core-and-mantle structure in Pl and Kfs, and 2) near-continuous, 10s of cm-long rods of compositional banding. Isoclinally-folded layering is locally preserved perpendicular to (L1). We interpret (L1) as a composite lineation with both intersection and extension components. Thermobarometric data, microstructural, and kinematic observations are compatible with high-grade (700-800°C) ductile, top-to-the-ESE flow during production of S1 at 1.0-1.1 GPa (30-40 km paleodepths in the Neoarchean. S1 is variably transposed into upright, open, shallowly-plunging F2 folds with sub-horizontal, NW-striking enveloping surfaces. The weakly folded S1 is locally overprinted by <10 m-wide penetrative high-strain zones in which S1 has been transposed into steeply-dipping, NE-striking foliation (S2). D2 high-strain zones contain shallow SW-plunging stretching lineations (locally L-tectonites) and dextral, oblique-slip kinematics. D2 low-strain zones preserve Type 2 (mushroom-crescent) fold interference patterns resulting from superposition of upright F2 folds with sub-vertical NE-striking axial planes onto isoclinal, recumbent F1 folds. Metamorphic reactions that led to Grt-production during development of S1 were intrinsically syn-kinematic, with garnet growing in the Na-rich recrystallized mantles of Pl-porphyroclasts. Relatively H2O-poor and/or CO2-rich conditions are required by the preservation of fine-grained microstructures and absence of grain-coarsening or recrystallization in the S1 tectonite. We speculate that the shallow S1 tectonite exposed in the central Snowbird tectonic zone transect represents an important and unique field-based analog for the nature of deep crustal reflectivity and lower crustal flow in collisional orogens. Furthermore, our results suggest that the strength of the lower continental crust is dynamic and evolving. In this particular case, flow of relatively weak lower crust during production of S1 was followed by a period of near-isobaric cooling and strengthening. Subsequent deformation events produced steep fabrics (e.g. S2), 10s of m- to 100s of km-scale moderately- to steeply-dipping shear zones, and local reactivation of S1, reflecting the dramatic effects of strain partitioning in a heterogeneous and anisotropic medium.
Geological fieldwork in the Libyan Sahara: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Meinhold, Guido; Whitham, Andrew; Howard, James P.; Morton, Andrew; Abutarruma, Yousef; Bergig, Khaled; Elgadry, Mohamed; Le Heron, Daniel P.; Paris, Florentin; Thusu, Bindra
2010-05-01
Libya is one of the most hydrocarbon-rich countries in the world. Its large oil and gas reserves make it attractive to international oil and gas companies, which provide the impetus for field-based research in the Libyan Sahara. North Africa is made up of several enormous intracratonic basins, two of which are found in southern Libya: the Murzuq Basin, in the southwest, and the Kufra Basin, in the southeast, separated by the Tibesti Massif. Both basins are filled with Palaeozoic and Mesozoic clastic sedimentary rocks reaching up to 5 km in thickness. These basins developed from the Cambrian onwards following an earlier period of orogenesis (the Panafrican Orogeny) in the Neoproterozoic. Precambrian metasediments and granitoids are unconformably overlain by Cambrian and Ordovician conglomerates and sandstones. They show a transitional environment from continental to shallow marine. Skolithos-bearing sandstone is common in Ordovician strata. By the Late Ordovician, ice masses had developed across West Gondwana. Upon melting of the ice sheets in the latest Hirnantian, large volumes of melt water and sediment were released that were transported to the periphery of Gondwana. In Libya, these sediments are predominantly highly mature sandstones, which, in many places, are excellent hydrocarbon reservoirs. Polished and striated surfaces in these sandstones clearly point to their glaciogenic origin. Following Late Ordovician deglaciation, black shale deposition occurred in the Silurian. Some of the shales are characterised by high values of total organic carbon (TOC). These shales are commonly referred to as ‘hot shales' due to their associated high uranium content, and are the major source rock for Early Palaeozoic-sourced hydrocarbons in North Africa. Late Ordovician glaciogenic sediments and the Early Silurian ‘hot shales' are therefore the main focus of geological research in the Libyan Sahara. Fluvial conglomerates and sandstones of Devonian age unconformably overlie these strata. Marine intervals occur in the Late Devonian, and the Carboniferous is characterised by shallow marine clastic sediments with carbonate horizons. Permian rocks are only known from subsurface drill cores and comprise continental and deltaic facies. The centre of the Murzuq Basin has been relatively well investigated by drilling and seismic profiles. The basin margins, however, lack detailed geological investigation. In comparison, the Kufra Basin is underexplored with few boreholes drilled. Our studies have focused on the eastern and northern margins of the Murzuq Basin and the northern, eastern and western margins of the Kufra Basin. The main objective of fieldwork has been to characterise the Infracambrian-Lower Palaeozoic stratigraphy, deduce the structural evolution of each study area, and to collect samples for follow-up analyses including provenance studies and biostratigraphy. In addition to outcrop-based fieldwork shallow boreholes up to 70 m depth were successfully drilled in the Early Silurian shales. The unweathered samples retrieved from two of the boreholes have been used for biostratigraphical and whole-rock geochemical investigations. The provenance study of the sandstone succession with conventional heavy mineral analysis together with U-Pb zircon dating provides, for the first time, an understanding of the ancient source areas. Because most of the Early Palaeozoic succession in southern Libya is barren of fossils, heavy mineral chemostratigraphy is moreover used as a correlation test on surface outcrops in the Kufra and Murzuq basins.
NASA Astrophysics Data System (ADS)
Bradley, D. C.
2013-12-01
Giant promontories are a seldom-noted feature of the present-day population of passive margins. A number of them formed during the breakup of Pangea: the South Tasman Rise and Naturaliste Plateau off Australia, the Grand Banks and Florida off North America, the Falkland Plateau off South America, and the Horn of Africa. Giant promontories protrude hundreds of kms seaward from a corner of the continent and are not to be confused with the low-amplitude irregularies that occur at intervals along most passive margins. Giant promontories that might have formed during the breakup of the earlier supercontinents, Rodinia and Nuna, have not been recognized. Properties of the modern examples suggest some identifying criteria. They are cored by continental crust that was created or last reworked during the previous collisional cycle. Judging from the examples listed, the early histories of the two flanks of a promontory will differ because separate continents or microcontinents drift away in different directions at different times. For example, the eastern flank of the >500-km-long South Tasman Rise formed when the Lord Howe Rise separated from Australia at ca. 85 Ma, whereas the western flank formed when Antarctica moved past at ca. 65-33 Ma. (Age spans of various passive margins quoted herein are from Bradley, 2008, Earth Sci. Rev. 91:1-26.) During ocean closure (typically, arc-passive margin collision), a promontory may be exposed to earlier and more intense tectonism than elsewhere along the margin. Unique events are also possible. For example, the tip of Florida experienced a glancing collision with Cuba during the Paleogene, an event that was not felt elsewhere along the Gulf or Atlantic margins of the southeastern U.S. Giant promontories are unlikely to have deep lithospheric keels and may be prone to being dislodged and rotated during collision. Thus, what starts as a promontory may end up as a microcontinent in an orogen. The case for giant promontories in the circum-Arctic has not been thoroughly assessed, but the shape of Laurentia and the ages of its Paleozoic margins suggest that promontories dating from breakup of Rodinia may have jutted from its NE and (or) NW corners. The NE corner lies at the junction of an eastern (Caledonian) passive margin that existed from ca. 815 to 444 Ma and a northern (Innuitian) passive margin that existed from ca. 620 to 444 Ma. The hypothetical NE promontory would have attached to northern East Greenland where early Paleozoic passive-margin deposits are notably lacking. Nearby remnants of the NE promontory might include the Yermak plateau off North Greenland, the Morris Jessup plateau off Svalbard, or parts of Svalbard itself. A hypothetical NW Laurentian promontory would have attached somewhere between Banks Island in the Canadian Arctic, where the 620-444 Ma Innuitian margin is truncated along the present-day rifted margin, and east-central Alaska, site of the most northerly rocks that can be confidently placed along the ca. 710-385 Ma Cordilleran passive margin. Remnants of this promontory might include older rocks of the Ruby terrane and (or) the northeastern Brooks Range, both in Alaska. Either hypothetical promontory would have been involved in orogenesis associated with the postulated extrusion of terranes through the gap between Laurentia and Siberia.
Tollo, Richard P.; Aleinikoff, John N.; Dickin, Alan P.; Radwany, Molly S.; Southworth, C. Scott; Fanning, C. Mark
2017-01-01
Results from new geologic mapping, SHRIMP U-Pb geochronology, and petrologic studies indicate that Mesoproterozoic basement in the northern French Broad massif near Mount Rogers consists of multiple, mostly granitic plutons, map- and outcrop-scale xenoliths of pre-existing crustal rocks, and remnants of formerly overlying meta-sedimentary lithologies. Zircon and titanite ages demonstrate that these rocks collectively record nearly 350 m.y. of tectonic evolution including periods of igneous intrusion at ca. 1190 to 1130 Ma (Early Magmatic Suite) and ca. 1075 to 1030 Ma (Late Magmatic Suite) and three episodes of regional metamorphism at ca. 1170 to 1140, 1070 to 1020, and 1000 to 970 Ma. The existence of ca. 1.3 Ga age crust is indicated by (1) orthogranofels of ca. 1.32 Ga age in a map-scale xenolith, (2) inherited zircons of ca. 1.33 to 1.29 Ga age in Early Magmatic Suite plutons, and (3) ca. 1.36 to 1.30 Ga age detrital zircons in meta-sedimentary lithologies. Mineral assemblages developed in amphibolites and granofelses indicate that metamorphism during both Mesoproterozoic episodes occurred at upper amphibolite- to lower granulite-facies conditions. Syn-orogenic Early Magmatic Suite plutons emplaced at ca. 1190 to 1145 Ma are characterized by high-K, variably magnesian, dominantly calc-alkalic compositions, and have trace-element characteristics indicative of continental-arc magmatic origin involving melting of thick continental crust. In contrast, ca. 1140 Ma age quartz syenite displays A-type features indicating derivation from depleted crustal sources with increased mantle input during waning stages of regional contraction. Plutons of the compositionally bimodal Late Magmatic Suite include (1) ca. 1060 Ma meta-granite with geochemical characteristics transitional between silicic rocks of arc systems and post-collisional granites of A-type lineage, and (2) ca. 1055 Ma monzodioritic rocks with A-type compositional characteristics that likely reflect derivation from fertile, mafic sources in the lower crust. Collectively, these data suggest that Mesoproterozoic rocks of the study area preserve evidence of multiple orogenic episodes that likely involved continental-arc development and deformation at ca. 1150 Ma followed by crustal thickening at ca. 1060 Ma. Field relations and geochronologic data indicate that regional uplift and sedimentation occurred at ca. 1100 Ma between the two episodes of overlapping magmatism and orogenesis. The nature and timing of Mesoproterozoic events recorded in basement rocks of the study area illustrate significant differences in the lithologic assemblages and geologic history preserved by Mesoproterozoic basement of the adjacent Shenandoah and French Broad massifs, suggesting that the Blue Ridge massifs occupied different locations within the regional Grenville-age orogen until about 1070 Ma when the effects of Ottawan-age tectonics began to affect both areas. The near ubiquity of Ottawan-age orogenic activity recorded in Mesoproterozoic rocks of the Blue Ridge, other Appalachian inliers such as the New Jersey Highlands, and the Grenville province of Canada, including the Adirondacks, suggests that these formerly disparate terranes were amalgamated to form a common, regional orogen by this time.
NASA Astrophysics Data System (ADS)
Zhuang, Guangsheng; Najman, Yani; Millar, Ian; Chauvel, Catherine; Guillot, Stephane; Carter, Andrew
2015-04-01
The time of collision between the Indian and Asian plates is key for understanding the convergence history and the impact on climatic systems and marine geochemistry. Despite much active research, the fundamental questions still remain elusive regarding when and where the Indian plate collided with the Asian plate. Especially in the west Himalaya, the questions become more complex due to disputes on the amalgamation history of interoceanic Kohistan-Ladakh arcs (KLA) with Karakoram of the Asian plate and the Indian plate. Here, we present a result of multiple-isotopic geochemistry and geochronology study in the Katawaz Basin in NW Pakistan, a remnant oceanic basin on the western Indian plate which was the repository for the sediments eroded from the west Himalaya ( Qayyum et al., 1996, 1997a, 1997b, 2001; Carter et al., 2010), to evaluate the time and character of collision in this region. In this study, we analyzed 22 bulk mudstone samples for Sr-Nd isotopes and 11 medium-grained sandstones for detrital zircon (U-Pb) geochronology and Hf isotopes. We constructed the Cenozoic chronology in the Katawaz Basin based on our newly collected detrital zircon U-Pb ages and fission track ages. We present the first record of Katawaz chronology that constrained the Khojak Formation to be < 40 Ma to < 22 Ma. The result is consistent with the previous nanofossil study that constrained the upper part of underlying Nisai Formation to be the Middle to Late Eocene. Our current study revealed that the Katawaz sedimentary sequence ranges in age from Eocene to the earliest Miocene. The samples from the Nisai Formation show the 87Sr/86Sr - ɛNd values overlapping those of the end member of the Karakoram of Asian origin, revealing the arrival of Asian detritus on the Indian plate prior to 50 Ma. There are two parallel lines of evidence supporting this conclusion: (1) young zircon grains (< 120 Ma), characterizing the KLA and Karakoram, persistently exist throughout the whole sedimentary section and (2) the detrital zircons from KLA and Karakoram which are distinctive in Hf isotopes also show the presence throughout the sequence. Collectively, we argue that 1) the major collision between the Indian and Asian plates occurred no later than 50 Ma in the NW Himalaya and 2) the amalgamation of KLA with the Asian plate occurred prior to the major Indo-Asia collision. Cited references Carter, A., Najman, Y., Bahroudi, A., Bown, P., Garzanti, E., Lawrence, R.D., 2010. Locating earliest records of orogenesis in western Himalaya: Evidence from Paleogene sediments in the Iranian Makran region and Pakistan Katawaz basin. Geology 38, 807-810. Qayyum, M., Lawrence, R.D., Niem, A.R., 1997a. Discovery of the palaeo-Indus delta-fan complex. Journal of the Geological Society 154, 753-756. Qayyum, M., Lawrence, R.D., Niem, A.R., 1997b. Molasse-Delta-flysch continuum of the Himalayan orogeny and closure of the Paleogene Katawaz Remnant Ocean, Pakistan. International geology review 39, 861-875. Qayyum, M., Niem, A.R., Lawrence, R.D., 1996. Newly discovered Paleogene deltaic sequence in Katawaz basin, Pakistan, and its tectonic implications. Geology 24, 835-838. Qayyum, M., Niem, A.R., Lawrence, R.D., 2001. Detrital modes and provenance of the Paleogene Khojak Formation in Pakistan: Implications for early Himalayan orogeny and unroofing. Geological Society of America Bulletin 113, 320-332.
NASA Astrophysics Data System (ADS)
Kemp, T. I.; Hawkesworth, C. J.; Hergt, J. M.; Woodhead, J.
2004-05-01
Isotope studies have proved of enormous benefit in fingerprinting the source rocks of silicic magmas and tracing open system petrogenetic processes, such as crustal assimilation or magma mixing. Quantification of these processes, especially the role of mantle-derived magmas, is essential to formulating realistic models for the thermal regime and compositional evolution of the continental crust. However, this remains problematic, since whole-rock isotopic data registers the final state of the magmatic system but gives no information on the pathways by which this state was attained. For example, the eNd - initial 87Sr/86Sr isotopic array defined by the classic I- and S-type granites of the Lachlan Fold Belt has been variously interpreted to reflect (1) mixing between two end-member magmas, one depleted mantle-like, the other evolved and continental crust-like, (2) mixing between a juvenile magma and a magma sourced from mafic lower crust, accompanied by sediment assimilation, (3) derivation of the granites from mixed source rocks and (4) derivation from a sequence of protoliths of various ages and sedimentary maturity. The implications of these possibilities for crustal architecture, and whether granitic magmatism was associated with the recycling or growth of new continental crust are drastically different. One way to now resolve such ambiguities is by unravelling the isotopic information encoded in the fine-scale growth zoning of minerals such as zircon, which potentially tracks the processes operative during crystallisation. To this end we report the first laser-ablation ICP-MS study into the Hf isotope stratigraphy of zircons hosted by LFB I-type granites and their mafic enclaves. This is integrated with a prior U-Pb isotope study and trace element concentrations measured on the same zircons. Two suites were investigated, the Cobargo and Why Worry Suites of the Bega Batholith. Although the bulk rock isotopic variation within these suites is restricted, this study reveals remarkable fluctuations in Hf isotopic ratios recorded within and between melt-precipitated zircons of granitic and enclave samples. This can only be reconciled by open-system behaviour, though contrasting patterns of Hf isotope variation within zoned zircons demonstrate that this differed significantly between the two suites. The Cobargo Suite was generated by mixing between two contrasting magmas, followed by crustal assimilation. Zircons from the Why Worry Suite have more evolved Hf isotope ratios, consistent with recycling of older crust during granitic generation, though increase in eHf towards zircon rims manifests interaction with primitive magmas. Globules of these are represented by mafic enclaves, the mantle heritage of which is preserved by high eHf values of zircon cores, even though whole-rock isotope contrasts with the host have been erased by equilibration. Analysis of inherited zircons contained by the Why Worry Suite establishes that the 450-600 Ma age population have evolved eHf values, and thus meta-igneous rocks of this age are appropriate protoliths for these granites. The primitive eHf values of the Cobargo Suite preclude derivation from similar sources, instead suggesting formation from mantle-derived materials. Incorporating the existing geochemical and isotope datasets, the Hf-in-zircon data will be coupled with recent thermal simulations to erect a general model for granite formation and the evolution of the continental crust during Lachlan orogenesis.
NASA Astrophysics Data System (ADS)
Brown, M.
2006-12-01
Essene's contributions began pre-plate tectonics more than 40 years ago; they range from mineralogy to tectonics, from experiments and thermobarometry to elements and isotopes, and from the Phanerozoic to the Precambrian. Eric is a true polymath! Assessing the P-T conditions and age distribution of crustal metamorphism is an important step in evaluating secular change in tectonic regimes and geodynamics. In general, Archean rocks exhibit moderate-P - moderate-to-high-T facies series metamorphism (greenstone belts and granulite terranes); neither blueschists nor any record of deep continental subduction and return are documented and only one example of granulite facies ultrahigh-temperature metamorphism is reported. Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian, although G-UHTM facies series rocks may be inferred at depth in younger orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the formation and breakup of supercontinents, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those around the modern Pacific rim. Medium-temperature eclogite - high-pressure granulite metamorphism (E-HPGM) also is first recognized in the Neoarchean rock record, and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E- HPGM belts are complementary to G-UHTM belts, and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; lawsonite blueschists and eclogites (high-pressure metamorphism, HPM), and ultrahigh pressure metamorphism (UHPM) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts - reflecting a duality of thermal regimes - appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G- UHTM and E-HPGM belts since the Neoarchean manifests the onset of a `Proterozoic plate tectonics regime', although the style of tectonics likely involved differences from modern Earth. Although the style of Proterozoic subduction remains cryptic, the change in tectonic regime whereby interactions between discrete lithospheric plates generated tectonic settings with contrasting thermal regimes was a landmark event in Earth history. The `Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the `modern plate tectonics regime' characterized by colder subduction, and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of blueschists and HPM-UHPM in the rock record.
NASA Astrophysics Data System (ADS)
Huyghe, D.; Castelltort, S.; Serra-Kiel, J.; Filleaudeau, P.-Y.; Emmanuel, L.; Mouthereau, F.; Renard, M.
2009-04-01
The Pyrenees results from the collision between Spain and Europe and developed between the upper Cretaceous (Santonian) and the Miocene. Its foreland basins are characterised by a thick fill of detrital and carbonate sediments. The diversity of Eocene deposits in the southern Pyrenean foreland basin is of particular use in facies sedimentology due to their exceptional outcropping quality and well established stratigraphic framework and has been taken as type examples of many different sedimentary environments. Most studies have concerned facies sedimentology of detrital series in turbiditic environments, meandering and braided rivers, alluvial fans, and deltas. In contrast, the Eocene carbonate series have attracted less attention. The marine Guara limestones are a formation of lower to middle Eocene age deposited on the southern border of the western Pyrenean foreland basin (Jaca basin). They were deposited as a retrogradational carbonate platform dominated by large benthic foraminifers near or at the flexural forebulge of the foreland basin as the Pyrenean orogen developed. This formation represents the last episode of carbonate platform in the Pyrenees and remains poorly studied. In the present work our aim is to provide a detailed facies analysis and physiographic reconstructions of the Guara carbonate platform. This is crucial to unravel the respective influences of tectonics, climate and rheology of the lithosphere on the foreland basin tectonic and stratigraphic development, and it brings new constraints on the paleoenvironments and paleogeography during the Lutetian, i.e. at the beginning of the major phase of activity of the Pyrenean orogenesis. Two outcrops were studied in the Sierras Marginales at the localities of Arguis and Lusera. The Lusera section once restored in its initial position is located to the North of the Arguis section in a basinward direction such that comparing time-equivalent facies between these two sections helps us reconstructing the paleobathymetric gradient on this side of the foreland basin. The sedimentological and paleontological content show that the Guara formation was deposited in shallow water environments (less than 80 m) and can be classified as a carbonate ramp. The evolution of paleobathymetries with time on these two sections allows us to identify three complete progradational - retrogradational cycles. Those cycles do not match global eustatic variations, perhaps indicating the dominating influence of tectonics in this area. The precise study of foraminifera allowed us to date our sections with respect to the SBZ time scale of Serra-Kiel et al. (1). The bottom of the Guara formation, in the Arguis section is dated from the lower Lutetian (SBZ 13) and the top corresponds to the upper Lutetian (SBZ 16). An important hiatus is recorded between the base of the carbonates and the lower Paleocene subjacent continental deposits. Moreover, the base of the formation is older at Lusera i.e. to the centre of the basin. This hiatus could thus represent the foreland flexural forebulge unconformity (2). By restoring the relative position of the two sections during the Lutetian, we have calculated the possible slope of the Guara ramp during this period for each MFS, with values always lower than 0.5°. Extrapolating this slope to the centre of the basin allows us to estimate the paleodepth of the coeval Eocene turbidites and address the important issue of the depth of deposition of submarine fan systems in foreland settings. Within the limits of our approach we propose that these clastic fan systems have been deposited under water depths of 400 to 200 metres. This is partly in agreement with the upper bound of other estimations based on foraminiferal assemblages and trace fossils, and thus favours a relatively "shallow" view of the Middle Eocene Ainsa-Jaca deep marine basin. 1. J. Serra-Kiel et al., Bulletin De La Societe Geologique De France 169, 281 (March 1, 1998, 1998). 2. S. L. Crampton, P. A. Allen, Aapg Bulletin 79, 1495 (October 1, 1995, 1995).
NASA Astrophysics Data System (ADS)
Chakhmouradian, A.
2009-04-01
There have been several attempts to systematize the geochemistry of carbonatites, most recently by Samoilov (1984), Nelson et al. (1988), Woolley and Kempe (1989), and Rass (1998). These studies revealed a number of important geochemical characteristics that can be used to track the evolutionary history of these rocks, distinguish them from modally similar metamorphic parageneses, and aid in mineral exploration for rare earths, niobium and other resources commonly associated with carbonatites. Important breakthroughs in the understanding of carbonatite petrogenesis and numerous reports of new carbonatite localities made in the past two decades lay the ground for a critical re-assessment of the geochemistry of these rocks. A new representative database of whole-rock carbonatite analyses was compiled from the post-1988 literature and various unpublished sources. The database contains 820 analyses encompassing calcio-, magnesio- and ferrocarbonatites from 174 localities (ca. one-third of the total number of carbonatites known worldwide) reduced to ca. 350 analyses following the approach of Woolley and Kempe (1989). Carbonatites emplaced in oceanic settings (e.g., Cape Verde), ophiolite belts (e.g., Oman), or those of uncertain tectonic affinity (e.g., El Picacho in Mexico) were not included. Two major types of continental carbonatites can be distinguished on the basis of their geological setting and trace-element geochemistry: (1) carbonatites emplaced in rifts and smaller-scale extensional structures developed in stable Archean cratons or paleo-orogenic belts, and (2) carbonatites emplaced in collisional settings following the orogenesis. In both settings, the most common and best-studied type of carbonatite is calcite carbonatite (predominantly intrusive with a small percentage of extrusive occurrences), which accounts for 62% of the analyses included in the database. Both types of carbonatite are typically associated with alkaline silicate lithologies (meleigites, nepheline syenites, etc.), but those associated with type-1 rocks are typically Na-rich and silica-undersaturated, whereas type-2 carbonatites are associated with K-rich silica-saturated to undersaturated syenites. Type-1 carbonatites are notably different from their type-2 counterparts in showing higher abundances of high-field-strength elements (HFSE = Ti, Zr, Hf, Nb, Ta), Rb, U and V, but lower levels of Sr, Ba, Pb, rare-earth elements, F and S. Key element ratios are also different in the two carbonatite types; in particular, Rb/K, Nb/Ta, Zr/Hf and Ga/Al values are consistently higher in type-1 samples. Notably, some element ratios (e.g., Co/Ni and Y/Ho) are very similar in both groups. Type-2 carbonatites commonly show a 13C-depleted signature relative to the "primary carbonatite" range (Deines, 1989). The observed differences in geological setting and geochemistry indicate the existence of two distinct carbonatite sources in the subcontinental lithosphere: amphibole-bearing lherzolite producing type-1 rocks (cf. Chakhmouradian, 2006), and subducted oceanic crust (rutile-bearing eclogite?) yielding type-2 melts depleted in HFSE, but enriched in light carbon, large-ion-incompatible elements, F and S. References: Chakhmouradian, A.R. (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol., 235, 138-160. Deines, P. (1989) Stable isotope variations in carbonatites. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 301-359. Nelson, D.R., Chivas, A.R., Chappell, B.V. and McCulloch, M.T. (1988) Geochemical and isotopic systematic in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta, 52, 1-17. Rass, I.T. (1998) Geochemical features of carbonatite indicative of the composition, evolution, and differentiation of their mantle magmas. Geochem. Int., 36, 107-116. Samoilov, V.S. (1984) Geochemistry of Carbonatites. Nauka, Moscow (in Russ.). Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 1-14.
NASA Astrophysics Data System (ADS)
Jalowitzki, Tiago; Gervasoni, Fernanda; Conceição, Rommulo V.; Orihashi, Yuji; Bertotto, Gustavo W.; Sumino, Hirochika; Schilling, Manuel E.; Nagao, Keisuke; Morata, Diego; Sylvester, Paul
2017-11-01
In subduction zones, ultramafic xenoliths hosted in alkaline basalts can yield significant information about the role of potential slab-derived components in the subcontinental lithospheric mantle (SCLM). Chemical and isotopic heterogeneities in such xenoliths are usually interpreted to reflect melt extraction followed by metasomatic re-enrichment. Here we report new whole-rock major, trace element and isotopic (Sr-Nd-Pb) data for a Proterozoic suite of 17 anhydrous spinel-lherzolites and Eocene (new K-Ar data) host alkaline basalt found near Coyhaique ( 46°S), Aysén Region, Chile. These Patagonian nodules are located in a current back-arc position, 100 km east of the present day volcanic arc and 320 km from the Chile Trench. The mantle xenoliths consist of coarse- to medium-grained spinel-lherzolites with trace element compositions characteristic of a subduction zone setting, such as pronounced negative Nb, Ta and Ti anomalies coupled with significant enrichment of LILEs (e.g., U) and chalcophile elements (W, Pb and Sn). Most of them are characterized by flat to depleted light-rare earth element (LREE) patterns (Ce/YbN = 0.6-1.1) coupled with less radiogenic Sr-Pb (87Sr/86Sr = 0.702422-0.703479; 206Pb/204Pb = 18.212-18.539) and more radiogenic Nd isotopic compositions (143Nd/144Nd = 0.512994-0.513242), similar to the depleted mantle component (DMM or PREMA). In contrast, samples with slight LREE enrichment (Ce/YbN = 1.3-1.8) show more radiogenic Sr-Pb (87Sr/86Sr = 0.703791-0.704239; 206Pb/204Pb = 18.572-18.703) and less radiogenic Nd isotopic compositions (143Nd/144Nd = 0.512859-0.512934), similar to the EM-2 reservoir. These new geochemical and isotope data suggest that the Coyhaique spinel-lherzolites are derived from a heterogeneous SCLM resulting from mixing between a depleted mantle component and up to 10% of slab-derived components. The enriched component added to the SCLM represents variable extents of melts of both subducted Chile Trench sediments and modified oceanic crust throughout the initial stages of the Farallón-Aluk ridge collision during Paleocene to Eocene time. However, based on the tectonic evolution of southern South America, we cannot exclude the influence of long-lived subduction events beneath south Patagonia. Although we believe that the studied samples were brought to the surface in this geodynamic context, there is no evidence that ocean island basalt (OIB)-like melts related to the Farallón-Aluk asthenospheric slab window affected the peridotite composition. The host alkaline basalt is a single unit with a HIMU-like OIB signature characterized by marked positive Nb-Ta anomalies coupled with negative anomalies in highly incompatible and fluid-mobile elements (Rb, K, Pb, and Sr). The compositional similarity between the HIMU-like OIB mantle source and the host basalt is also evident from trace element ratios [(Ba-Th-K-La-Zr)/Nb] as well as by the low 87Sr/86Sri (0.703039-0.703058) and relatively high 143Nd/144Ndi (0.512880-0.512874) and 206Pb/204Pb (19.333-19.389) isotopic ratios. The low 206Pb/204Pb ratios compared to end-member HIMU lavas (e.g., Sta. Helena and the Cook-Austral Islands) suggest that this region was modified by processes associated with a prolonged period of subduction related to the Andean orogenesis and the recycling of several oceanic plates beneath the continent, following the Mesozoic breakup of Gondwana or an even older subduction-related event with young recycling ages (< 2 Ga).
Field trip guidebook for the post-meeting field trip: The Central Appalachians
Taylor, John F.; Loch, James D.; Ganis, G. Robert; Repetski, John E.; Mitchell, Charles E.; Blackmer, Gale C.; Brezinski, David K.; Goldman, Daniel; Orndorff, Randall C.; Sell, Bryan K.
2015-01-01
The lower Paleozoic rocks to be examined on this trip through the central Appalachians represent an extreme range of depositional environments. The lithofacies we will examine range from pelagic radiolarian chert and interbedded mudstone that originated on the deep floor of the Iapetus Ocean, through mud cracked supratidal dolomitic laminites that formed during episodes of emergence of the long-lived Laurentian carbonate platform, to meandering fluvial conglomerate and interstratified overbank mudstone packages deposited in the latest stages of infilling of the Taconic foredeep. In many ways this field trip is about contrasts. The Upper Cambrian (Furongian) and Lower Ordovician deposits of the Sauk megasequence record deposition controlled primarily by eustatic sea level sea level fluctuations that influenced deposition along the passive, southern (Appalachian) margin of the paleocontinent of Laurentia. The only tectonic influence apparent in these passive margin deposits is the expected thickening of the carbonate stack toward the platform margin as compared to the thinner (and typically shallower) facies that formed farther in toward the paleoshoreline. Carbonates overwhelmingly dominate the passive margin succession. Clastic influx was minimal and consisted largely of eastward transport of clean cratonic sands across the platform from the adjacent inner detrital belt to the west during higher order (2nd and 3rd order) regressions.In contrast, Middle and Upper Ordovician deposits of the Tippecanoe megasequence record the strong influence of tectonics, specifically Iapetus closure. The first signal of this tectonic transformation was the arrival of arc-related ash beds that abound in the active margin carbonates. Subsequent intensification of Taconic orogenesis resulted in the foundering of the carbonate platform under the onslaught of fine siliciclastics arriving from offshore tectonic sources to the east, creating a deep marine flysch basin where graptolitic shale and sandstone turbidites accumulated. The foreland basin thus created would fill with progressively coarser and more shallow/proximal clastic facies through the Upper Ordovician, culminating in deposition of fluvial redbeds that cap the Taconic clastic wedge. Arguably the most controversial rocks within the Tippecanoe Sequence in this area are unusual, Lower Ordovician deep marine facies that are associated with the much younger flysch of the Martinsburg Formation in the Great Valley of eastern Pennsylvania. Long considered the erosional remnants of a Taconic-style thrust sheet, and referred to as the Hamburg Klippe, these deep marine deposits have recently been reinterpreted as olistostromal deposits that were introduced by gravity sliding into the flysch basin contemporaneous with Martinsburg deposition.Besides their constituent lithofacies, rocks of the Sauk and Tippecanoe megasequences also present a stark contrast in faunas. Cambrian and Lower Ordovician faunas predate the Great Ordovician Biodiversification Event (GOBE), a global event that saw unprecedented diversification within many major invertebrate groups (mollusks, corals, and bryozoans to name a few) that previously were only minor components of the marine fauna. Unfortunately, the much higher diversity of Middle and Upper Ordovician faunas wrought by the GOBE is somewhat muted in this region by the stresses introduced by conversion of the Appalachian shelf into a flysch basin. Another noteworthy difference between the Cambrian and Ordovician biota related to the paleogeographic setting of the rocks to be examined on this trip derives from their evolution in the shallow marine environments of Laurentia. Several shelf-wide extinctions decimated the shallow marine faunas of the Laurentian shelf through the late Cambrian producing stage-level biostratigraphic units known as biomeres. The biomere phenomenon is discussed in this guidebook and a few stops to examine Cambrian faunas and one biomere boundary extinction are included to provide contrast with stage boundary extinctions that occurred later, in the Ordovician, that lack the defining attributes of the biomere boundary extinctions. Again, it’s all about contrast.
Geology of the Stroudsburg quadrangle and Adjacent areas, Pennsylvania--New Jersey
Epstein, Jack Burton
1971-01-01
The Stroudsburg area is within the Valley and Ridge and Great Valley physiographic provinces, Northampton and Monroe Counties, Pennsylvania, and Warren County, New Jersey. The northeast-trending subparallel valleys and ridges resulted from erosion of folded heterogeneous sedimentary rocks. These are Middle Ordovician to Middle Devonian in age and are more than 17,000 feet thick. Deposition of a thick flysch sequence (Martinsburg Formation of Ordovician age) accompanied onset of Taconic orogenesis. It was followed by deposition of a thick molasse sequence of Silurian and Early Devonian age (continental and marginal-marine clastics--Shawangunk Formation and Bloomsburg Red Beds--overlain by predominantly marginal-marine and subtidal limestone, dolomite, shale, and sandstone--Poxono Island Formation through Oriskany Group). Basin deepening and gradual shallowing occurred during Esopus through Mahantango deposition, heralding the Acadian clastic wedge exposed north of the Stroudsburg area. Interpretation of sedimentary structures and regional stratigraphic relations suggest that the Silurian and Devonian rocks were deposited in the following environments: A1luviated coastal plain (meandering and braided streams), tidal flats (supratidal and intertidal), barrier zone, and neritic zone (upper and lower). The rock stratigraphic units have been grouped into four lithotectonic units, each having a different style of deformation. Folds produced in these rocks are disharmonic, and it is believed that each rock sequence is set off from units above and below by decollements, or zones of detachment. Movement was northwest into the Appalachian basin, primarily by gravitational sliding. The contact between the Shawangunk Formation of Silurian age and Martinsburg Formation of Ordovician age, is one zone of detachment as well as an angular unconformity. Deformational effects of the Middle to Late Ordovician Taconic orogeny are elusive, but it appears that the folds and most minor structures, including the prominent regional cleavage, were produced during the late Paleozoic Appalachian orogeny and are superimposed upon larger Taconic folds and faults. Field relations and microscopic study suggest that the regional cleavage in the Stroudsburg area is due to laminar flow of pelitic material along cleavage folia accompanied by mechanical reorientation of platy and elongate minerals and neocrystallization of mica, quartz, chlorite, and probably albite. Numerous lines of evidence point to the conclusion that cleavage developed after the rock was indurated and formed at, and Just below, conditions of low-grade metamorphism. Intensity of cleavage development increases to the southeast across the area. Second-generation slip cleavage, also believed to be Appalachian in age, formed by mechanical reorientation of minerals as well as by limited new mineral growth. The topography had a profound effect on the direction of movement of the Wisconsin glacier, as well as the manner of its retreat and the deposits that were formed. Till and stratified drift of Wisconsin age and till of Illinoian(?) age are common in the area. Wisconsin deglaciation occurred by northeastward retreat and by stagnation. A conspicuous terminal moraine marks the limit of Wisconsin ice movement. Lake Sciota was dammed between the retreating ice, the moraine, and the surrounding ridges north of Godfrey Ridge. Several deltas mark ice stand positions during the retreat of the ice. Lake-bottom and kame deposits are locally common in Cherry Valley. South of Kittatinny Mountain, on the other hand, melt water was freely discharged to the south. The wind and water gaps in the Stroudsburg area (including Delaware Water Gap and Wind Gap) are structurally controlled; specifically they are located where folds die out in short distances, where folding is locally more intense, or where resistant rocks dip steeply and have a narrow width of outcrop. This conclusion is contrary to
The sedimentary record of India-Asia collision: an evaluation of new and existing constraints
NASA Astrophysics Data System (ADS)
Najman, Yani; Henderson, Alex; Boudagher-Fadel, Marcelle; Godin, Laurent; Parrish, Randy; Bown, Paul; Garzanti, Eduardo; Horstwood, Matt; Jenks, Dan
2010-05-01
The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between ~65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). Such discrepancy is, to some extent, the result of the different definitions and methods used to define the collision. Here, we evaluate constraints from the sedimentary record preserved in the suture zone and Tethyan Himalaya where a minimum age to collision has been constrained by determining 1) the timing of cessation of marine facies, 2) first evidence of Asian detritus deposited on the Indian plate and 3) first evidence of mixed Indian-Asian detritus in the sedimentary record. Extensive previous work has been carried out on the Indus molasse of the Indus Suture zone in Ladakh, India. Here, cessation of marine facies is dated at 50.5 Ma (Green et al. 2008), with the underlying Chogdo Formation considered to show first evidence of mixed Indian and Asian provenance, and be the oldest Formation of Asian-derived provenance to lie in sedimentary contact with the underlying Indian plate (Clift et al 2001, 2002), thus constraining collision at >50.5 Ma. However, our new mapping and provenance analyses on these rocks show that there is no unequivocal evidence of Indian-derived material in the Chogdo Formation, nor that the Chogdo Formation lies in sedimentary contact with the underlying Indian plate (Henderson et al., in review). Thus we question the timing of Indian-Asian collision based on these evidences. South of the suture zone in India and Tibet, we carried out similar investigations of the youngest Tethyan strata. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that although the Indus Molasse does not provide constraint to the timing of India-Asia collision as previously thought, data from the Tethyan strata show that collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.
NASA Astrophysics Data System (ADS)
Tatu, M.
2009-04-01
Important segment of the Carpathian chain, the East Carpathians consists of several tectonic units build up during the Mesozoic and Cenozoic closure of the Tethyan Ocean. These tectonic units are composed by crystalline basements and sedimentary covers, or only by sedimentary piles and they represent a result of two compressional phases of Alpine orogenesis: one during Late Cretaceous that was responsible for thrusting of Central East Carpathian Nappes and Outher Dacian Nappes, and a second phase during Early and Middle Miocene interval that involved the Moldavian Nappes as the external nappes (Sandulescu, 1988). The Moldavian Nappes consist of cover nappes tectonically detached from the basement upon which it was deposited. From inside towards outside several units occur: Convolute Flysch Nappe, Macla Nappe, Audia Nappe, Tarcau Nappe, Marginal Folds Nappe and Subcarpathian Nappe (Sãndulescu et al., 1981). If the internal units (up to Audia Nappe) are represented by the Cretaceous sediment piles, in the external units, especially in the Tarcau Nappe and also in the Marginal Folds Nappe the lithology is dominated by the Paleogene deposits, especially by the Oligocene formations. The most particular for these units are the presence of heterogeneous composition induced by the wildflysch type sedimentation. Previous researchers have considered the piles of the both units as flyschoid deposits, and for a minor central part (Slon Facies) they accepted a wildflysch scenario. Based on our field studies between Prahova valley (Romania) and Tisa upper stream basin (Ukraine), the different sedimentary strata (the Oligocene Tarcau, Fusaru, Kliwa sandstones, dysodilic and menilitic rocks, polymictic conglomerates, marls and argillaceous deposits together with Upper Cretaceous polymictic conglomerates and green-reddish argillaceous deposits) are tectonically mixed during the late-Oligocene - Middle Miocene events. The mechanism of sedimentary mélange is supposed to be related to submarine landslide initiated by huge earthquake activity. In this way the velocity of landslide sedimentation was high and as result the spatial distribution of different rock types is inhomogeneous. On the other hand, high velocity of syn-sedimentary deformation generates synchronous shear zones. The stress field in this environment is influenced by the lithological amalgamation and local discontinuities. After sedimentary deposition and syn - deformation processes in all the area, suborizontal shear zones (SSZ) are formed along the borders of sandstone olistoliths embedded in fine-grained sand-argillaceous sediments; they are related to the Miocene tectogenesis. Taking into account that are not lithological differences in the Tarcau and the Marginal Folds units, the contact between them as all major SSZ represent the intra-formational thrusts (Sandulescu, 1984). An important characteristic of the Moldavian Nappes is the presence of the exotic rocks as clasts in conglomerates that are very different in nature (igneous, metamorphic and sedimentary), volume and size and generally green in colour. Many authors who studied this lithological aspect have suggested that a Cumanian ridge was their source. The ridge was active since Upper Creataceous till Miocene widespread from Central Dobrogea to Poland and mainly composed by "dobrogean green schist" rocks. This ridge was placed between Audia and Macla sedimentation areas, or between Audia and Tarcau sedimentation areas. According to our studies, the green clasts from various conglomerates with igneous (intrusive and extrusive aspects), metamorphic (medium to low grade) and sedimentary nature present a variable participation. The green clasts are apparently similar with the central dobrogean green schist rocks and are less than 10% in participation in all Moldavian units. For this reason we suggest that the Central Dobrogean domain wasn't the source area for the discussed clasts. After Oszczypko (2006), in the Polish Carpathians, between the Magura and Silesian basins during the Upper Cretaceous - Miocene interval the Silesian Ridge was active. Probably, the same structure was active from Polish Carpathians to the south-western end of Romanian East Carpathians also responsible for the presence of the exotic pebbles from external units of East Carpathians. Isotopic ages of exotic clasts from Polish Carpathian Flysch display the values characteristics for the late Neoproterozoic-Cambrian and the late Carboniferous - Permian intervals (Poprawa et al., 2004) which may suggests that the active ridge was a part of the Tornquist - Teisseyre Zone exhumation. Refernces Oszczypko N. 2006. Geol. Quart., 50 (1): 169-194. Poprawa P., Malata T., Pécskay Z., Bana? M., Skulich J., Paszkowski M., Kusiak M. 2004. Min. Soc. Pol. - Spec. Papers, 24: 329-332. Sandulescu M. 1984. Ed. Tehnica, Bucuresti, 336 Sandulescu, M. 1988. AAPG Memoir, vol. 45, pp. 17- 25.
Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East
NASA Astrophysics Data System (ADS)
Le Heron, Daniel Paul; Craig, Jonathan; Etienne, James L.
2009-04-01
At least six glaciations are purported to have affected North Africa and the Middle East region over the last one billion years, including two in the Cryogenian (Neoproterozoic), Hirnantian (Late Ordovician), Silurian, Carboniferous and Early Permian events. The sedimentary record associated with these glaciations, together with the intensity to which each has been investigated, is highly variable. As hydrocarbon exploration proceeds aggressively across the North Africa and Middle East regions, we review the relationship between glaciation and hydrocarbon accumulations. With the exception of Oman, and locally Egypt, which were tectonically active both during the Neoproterozoic and Early Palaeozoic all glaciations took place along an essentially stable passive continental margin. During the Neoproterozoic, two glaciations are recognised, referred to as older and younger Cryogenian glaciations respectively. Both of these Cryogenian events are preserved in Oman; only the younger Cryogenian has been reported in North Africa in Mauritania and Mali at the flanks of the Taoudenni Basin. The process of initial deglaciation in younger Cryogenian glaciations resulted in incision, at least locally producing large-bedrock palaeovalleys in Oman, and the deposition of glacial diamictites, gravels, sandstones and mudstones. As deglaciation progressed "cap carbonates" were deposited, passing vertically into shale with evidence for deposition in an anoxic environment. Hence, younger Cryogenian deglaciation may be associated with hydrocarbon source rock deposits. Hirnantian (Late Ordovician) glaciation was short lived (< 0.5 Myr) and affected intracratonic basins of Mauritania, Morocco, Algeria, Libya, Egypt and Saudi Arabia. The organisation of the glacial sedimentary record is considered to be controlled at the basin-scale by the location of fast-flowing ice streams active during glacial maxima, and by the processes of meltwater release during glacial recession. In these latter phases, subglacial tunnel valley networks were cut at or near the ice margin. These tunnel valleys were filled in two main phases. The initial phase was characterised by debris flow release, whereas during later phases of ice retreat a range of glaciofluvial, shallow glaciomarine to shelf deposits were laid down, depending on the water depth at the ice front. Production of linear accumulations of sediment, parallel to the ice front, also occurred between tunnel valleys at the grounding line. In Arabia, the geometry of these features may have been influenced by local tectonic uplift. As glaciogenic reservoirs, Hirnantian deposits are already of great economic significance across central North Africa. Therefore, an appreciation of the processes of ice sheet growth and decay provides significant insights into the controls on large-scale heterogeneities within these sediments, and in analogue deposits produced by glaciations of different ages. Deglacial, Early Silurian black shale represents the most important Palaeozoic source rock across the region. Existing models do not adequately explain the temporal and spatial development of anoxia, and hence of black shale/deglacial source rocks. The origins of a palaeotopography previously invoked as the primary driver for this anoxia is allied to a complex configuration of palaeo-ice stream pathways, "underfilled" tunnel valley incisions, glaciotectonic deformation structures and re-activation of older crustal structures during rebound. A putative link with the development of Silurian glaciation in northern Chad is suggested. Silurian glaciation appears to have been restricted to the southern Al Kufrah Basin in the eastern part of North Africa, and was associated with the deposition of boulder beds. Equivalent deposits are lacking in shallow marine deposits in neighbouring outcrop belts. Evidence for Carboniferous-Permian glaciation is tentative in the eastern Sahara (SW Egypt) but well established on the Arabian Peninsula in Oman and more recently in Saudi Arabia. Pennsylvanian-Sakmarian times saw repeated glaciation-deglaciation cycles affecting the region, over a timeframe of about 20 Myr. Repeated phases of deglaciation produced a complex stratigraphy consisting, in part, of structureless sandstone intervals up to 50 m thick. Some of these sandstone intervals are major hydrocarbon intervals in the Omani salt basins. Whilst studies of the Hirnantian glaciation can provide lessons on the causes of large-scale variability within Carboniferous-Permian glaciogenic reservoirs, additional factors also influenced their geometry. These include the effects of topography produced during Hercynian orogenesis and the mobilisation and dissolution of the Precambrian Ara Salt. Deglacial or interglacial lacustrine shale, with abundant palynomorphs, is also important. Whilst both Cryogenian intervals and the Hirnantian-Rhuddanian deglaciation resulted in the deposition of glaciomarine deposits, Carboniferous-Permian deglaciation likely occurred within a lacustrine setting. Hence, compared to shales of other glacial epochs, the source rock potential of Carboniferous-Permian deglacial deposits is minimal.
NASA Astrophysics Data System (ADS)
Lentini, F.; Carbone, S.; Barreca, G.
2009-04-01
In the Central Mediterranean region the foreland domains are represented by two continental blocks, the Apulian Block to the north and the Pelagian Block to the south, respectively belonging to the Adria and to the Africa plates. They are separated since Permo-Triassic times by the oceanic crust of the Ionian Sea. The Apenninic-Maghrebian orogen is located between two oceanic crusts: the old Ionian crust, at present time subducting beneath the Calabrian Arc, and the new crust of the opening Tyrrhenian Sea. The orogenic belt is represented by a multilayer allochthonous edifice, composed of the Calabride Chain (CC) tectonically overlying the Apenninic-Maghrebian Chain (AMC), which in turn overthrust onto the Upper Miocene and Pliocene top-levels of a deep seated thrust system, originating by the deformation of the innermost carbonates of the Pelagian/Apulian blocks (External Thrust System: ETS). The AMC tectonic units derive from the orogenic transport during Oligo-Miocene times of sedimentary sequences deposited in palaeogeographical domains located between the Europe and the Afro-Adriatic plates. These units are composed of Meso-Cenozoic shallow-water carbonate successions detached from a continental type crust sector, the Panormide/Apenninic Block, recognizable by means of seismic lines shot in the Tyrrhenian offshore of Southern Apennines and Northern Sicily. The Meso-Cenozoic basinal units, that compose the AMC, can be distinguished into two main groups of sequences, originally located on oceanic crusts separated by the Panormide/Apenninic Block: the external ones (Ionides) related to an original basin belonging to branches of the Ionian Palaeobasin involved in the orogenesis, and the internal ones ascribed to the Alpine Tethys (Sicilide Units). The terrigenous deposits of the basinal sequences belonging to the Ionides are represented by Tertiary foreland/foredeep deposits, whose relationships with the substratum are occasionally preserved, although large detachments occurred with further forward transport, which generated repeated slices with an apparent increase to the original thickness. . The Alpine Tethydes are composed of sedimentary sequences, which were deposited in the Alpine Tethys, and originally were located between the European and the Panormide/Apenninic Block. They are represented by allochthonous far travelled tectonic units, resting on both the Panormide/Apenninic Platforms and the Ionides. The Calabride Chain originated by the delamination of the European margin. This roof thrust system includes nappes of Hercynian basement with remains of the original Meso-Cenozoic covers deformed during the Paleogene and sutured by the Late Oligocene-Early Burdigalian Capo d'Orlando Flysch. The geological, geophysical data and the volcanological characters permit to restore the palaeogeography and the geodynamic evolution, and allow to recognize three orogenic stages: the Eo-Alpine, originated during Cretaceous-Eocene times, evident in the western Calabria, in the Tyrrhenian basin and the Alpine Corsica; the Balearic stage (Late Oligocene-Early Miocene), in which the Corsica-Sardinia block rotated and collided with the Adria-Africa margins with thrusting of the Alpine Tethydes over Panormide/Apenninic platforms; and the Tyrrhenian stage (Middle Miocene to Present), when the onset of the Tyrrhenian back-arc basin occurred and after the closure of the interposed Palaeoionian branches the Ionides were tectonically transported onto the foreland blocks. The CROP crustal sections allow to distinguish thickness and distribution of the crusts in this area of the Mediterranean Sea, and their clear influence on geodynamic evolution of the Tyrrhenian stage. They confirm that both the foreland blocks extend below the orogenic belt, reaching the Tyrrhenian margins, with a gradual thinning and a transition to a Palaeo-Ionian slab, probably not active at present time, from which the Ionides detached and overrode the ETS. The seismogeological data indicate the presence of the Panormide/Apenninic blocks, that took part in the closure of the branches of the Palaeo-Ionian Sea interposed between the Panormide/Apenninic crust and the Pelagian/Apulian Blocks. At the present time the Panormide/Apenninic blocks are colliding with the foreland blocks. Such a collisional stage along the Tyrrhenian coast of north-western Sicily and the contemporaneous active subduction processes below the Calabrian Arc produce the NW-SE oriented South Tyrrhenian System. This system drives the transfer of the orogenic front towards areas characterized by still subducting oceanic crust of the Ionian sector. In particular it consists of predominantly NW-SE oriented right lateral faults system with antithetical NE-SW and coeval associated N-S normal faults and south-verging thrusts. All these structures are compatible with an unique cinematic framework dominated by transcurrent tectonics. Geological mapping carried out in the on-shore areas of Sicily, integrated with stratigraphical and structural analysis, permit to recognize some main structures in connection with the geodynamic evolution of the Tyrrhenian stage and allow to propose an updated structural model of this area.
NASA Astrophysics Data System (ADS)
Rubert, Y.; Ramboz, C.; Le Nindre, Y. M.; Lerouge, C.; Lescanne, M.
2009-04-01
Studies of natural CO2 analogues bring key information on the factors governing the long term (>1My) stability/instability of future anthropogenic CO2 storages. The main objective of this work is to trace the deep-origin CO2 migrations in fractures in the Montmiral CO2 deep natural occurrence (Valence Basin, SE France). The final objective is to document the reservoir feeding and the possible leakages through overlying series. The CO2 reservoir is hosted within a horst controlled by a N-S fault network. From the Triassic to Eocene, the Montmiral area was part of the South-East Basin of France. This period is marked by the Tethysian extension phase (Triassic-Cretaceous) followed by the closure of the basin which culminated during the Pyrenean compressive phase (Eocene). Then, from the late Eocene, the Valence Basin was individualised in particular during the Oligocene E-W rifting affecting the West of Europe. Finally the eastern border of the Basin was overthrusted by Mesozoic formations during the Alpine orogenesis (Miocene). The Montmiral CO2 reservoir is intersected by the currently productive V.Mo.2 well, drilled through Miocene to Triassic sedimentary formations, and reaching the Palaeozoic substratum at a depth of 2771 meters. The CO2 is trapped below a depth of 2340 meters, at the base of sandy, evaporitic and calcareous formations (2340-2771m), Triassic to Sinemurian in age. These units are overlain by a 575 m-thick Domerian to Oxfordian marly sequence which seals the CO2 reservoir. Above these marls, calcareous strata (1792-1095 m), Oxfordian to Cretaceous in age, and sandy clayey formations (1095-0 m), Oligocene and Miocene in age, are deposited. The various stratigraphic levels from the Miocene to the basement were cored over a total length of ~100m. From bottom to top, three lithological units, which exhibit well characterised contrasted diagenetic evolution, record various stages and effects of the CO2 migration: - Lower unit: Palaeozoic metamorphic basement; - Middle unit: Triassic-Liassic reservoir; - Upper unit: late Jurassic to Cretaceous. The middle unit (reservoir) and the upper unit are separated by the thick, tight seal, Domerian to Oxfordian in age. The definition of these lithological units was made using combined petrographic techniques (cathodoluminescence CL, fluorescence, Raman spectroscopy, crushing tests), geochemical techniques (C and O isotopes) and microthermometry. Lower unit: Paleozoïc basement - In the metamorphic basement, aquo-carbonic and CO2-dominant fluids are trapped as primary fluid inclusions in hydrothermal barite and fluoroapatite, and as secondary fluid inclusions in extensionnal microcracks crosscutting metamorphic quartz. All these fluids, trapped in the two-phase stability field, indicate firstly a limited phase separation at 300°C and 400-500 bars evolving toward wider CO2-H2O unmixing at 200°C and 200 bars. Basinal saline brines (10 and 15-25 wt % eq. NaCl and 70
NASA Astrophysics Data System (ADS)
Bartoli, O.; Meli, S.; Sassi, R.; Magaraci, D.
2009-04-01
The magmatism of the Euganean Volcanic District (Veneto Volcanic Province, VVP) developed in the last phases of the Alpine orogenesis; the geochemical and geophysical data are consistent with an extensional geodynamic context (Milani et al., 1999). Cumulitic gabbroic enclaves occur within the Euganean trachytes, and Bartoli et al. (2008) pointed to their cogenetic origin with the Euganean host lavas. Sr isotopic data suggest that these cumulates derived from uncontaminated mantle-derived liquids. We analysed both cumulus and intercumulus amphiboles and clinopyroxenes by electron microprobe and LA-ICP-MS. The cumulus-intercumulus Cpx are diopsides and augites. The Mg#Cpx varies in a wide range (Mg#cumulus-Cpx= 0.74-0.84 and Mg#intercumulus-Cpx= 0.67-0.68). They show a MREE enrichment relative to LREE and HREE (LaN/SmN= 0.46-0.68 and TbN/YbN= 2.18-4.77). No significant Eu anomaly (Eu/Eu* = 0.78-1.23) was observed. On a chondrite-normalized spiderdiagram Cpx exhibits significant Pb and Co negative anomalies, and less evident negative anomalies for Sr and Zr. La, Sm and HREE increase, whereas Ba, Ti, Li and V decrease from core to rim. These Cpx exhibit high Cr contents (701-2958 ppm). Moreover, they display trace element differences when compared to Cpx from MORB gabbros. We analyzed also amphiboles: pargasites, edenites and kaersutites. In the cumulus Amph Mg# varies in the range 0.60-0.69, whereas in the intercumulus assemblage from 0.57 to 0.63. The high K2O and TiO2 contents are distinct from that of amphiboles in MORB gabbros. LREE are enriched relative to HREE (LaN/YbN = 5.07-7.56). Moreover, TbN/YbN = 2.50-4.02 indicates a HREE depletion relative to MREE. REE patterns lack a significant Eu anomaly (Eu/Eu* = 1.06-1.19). From core to rim Th and U decrease in cumulus crystals, but they increase in the intercumulus Amph. Ba (258-282 ppm) is enriched relative to other LILE and Nb-Ta are enriched relative to LREE. Cr varies in the range 423-594 ppm. The similar REE and HFSE content of intercumulus and cumulus Amph may suggest the existence of some post-cumulus processes. We calculated the chemistry of the liquids which should have been in equilibrium with cumulus phases, employing a set of Dsl. In the liquid in equilibrium with Cpx LREE and MREE are enriched up to 40 and 11 times respectively relative to HREE, which are at about N-MORB concentrations (LaN/YbN = 42.5 and SmN/YbN = 11). Some LILE (i.e., Rb and Ba), Th and U are enriched relative to HFSE and REE. The theoretical composition of the liquid in equilibrium with Amph differs from Cpx-liquid in the marked enrichment of U and Th over LILE and HFSE. A LREE and MREE enrichment is observed (LaN/YbN = 35.4 and SmN/YbN = 3.6). The discrepancies of calculated liquid compositions cannot be ascribed only to the uncertainty in the choice of Dsl. This may indicate trace element modifications in response to post-cumulus processes involving the amphiboles. The concentrations of HFSE in the calculated liquids (Zr/Hf = 60.2-72.7, Zr/Nb = 1.7-6.5 and Th/Hf = 3.8-6.9) and the incompatible element ratios, (e.g., La/Nb = 0.5-0.7, Pb/Ce = 0.01-0.05, La/Y = 2.3-2.8 and Ce/Nd = 1.9-2.8), are not comparable to those of N-MORB but to those of HIMU-OIB suggesting that typical MORB-type mantle couldn't be the source of these liquids. Nb and Ta are variable, possibly due to an heterogeneity in the lithospheric mantle. The existence of some peculiar trace element signatures of the recalculated liquids (LILE enrichment, high LREE/HREE ratio and abrupt enrichment in U and Th) has been attributed to slab-derived melts/fluids with an abundant sedimentary component. Our estimates are in agreement with the geodynamic scenario proposed by Macera et al. (2007), who explained the occurrence of both HIMU-OIB-type magmatism and subduction-related metasomatism in the VVP mantle lithosphere. According to their model, a mantle plume with HIMU-OIB geochemical signature rose from the deep mantle twice with subsequent partial melting episodes of the plume material: the first time during Paleocene, before the subducted European lithospheric slab (from which the LILE-, U- and Th-enriched fluids/melts derived) intercepted the mantle plume, and the second time during middle Eocene, after slab detachment and opening of a plate window. The liquids we have modeled can derive from partial melting of a subcontinental mantle source percolated by HIMU-OIB- and subduction-related fluids/melts with an abundant sedimentary component. Similarly, our recalculated liquids display some trace element signatures close to those shown by the liquids computed by Tiepolo & Tribuzio (2005) for cumulates of the Adamello batholith during alpine orogeny.
NASA Astrophysics Data System (ADS)
Serri, G.; Innocenti, F.; Manetti, P.
1993-07-01
Serri, G., Innocenti, F. and Manetti, P., 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near The Earth's Surface. Tectonophysics, 223: 117-147. The Neogene-Quaternary magmatism of the northern Apenninic arc took place in four phases separated in space and time which become progressively younger from west to east: Phase I, 14 Ma; Phase II, 7.3-6.0 Ma; Phase III, 5.1-2.2 Ma; Phase IV, 1.3-0.1 Ma. This magmatism is the result of the activation of three physically separate sources: (1) the Adriatic continental crust, extracted from the mantle in the late Proterozoic; (2) a strongly refractory, recently K-enriched harzburgitic mantle located in the mechanical boundary layer (MBL) of the lithosphere; and (3) a recently metasomatized, cpx-rich mantle, compositionally variable from Iherzolite to wehrlite-clinopyroxenite, interpreted as an ephemerally K-enriched asthenosphere. The Adriatic continental crust is the dominant source of the acid plutonic and volcanic rocks of the Tuscan region. The acid magmatism is mostly found inside an ellipsoidal area (about 150 × 300 km) centred on Giglio Island, here defined as the Tuscan Crustal Dome. Within this area, mantle-derived magmas unaffected by important crustal contamination processes and mixing with crustal anatectic melts have so far not been found. Pure crustal magmas are rare but are represented, for example by some of the San Vincenzo and Roccastrada rhyolites. Virtually all the Tuscan acid centres show evidence of mixing with potassic mantle-derived magmas. Major and trace elements, as well as {87Sr }/{86Sr } and {143Nd }/{144Nd } data, on primitive rocks (Mg# > 65) reveal two groups of mantle-derived magmas. These define two distinct mantle enrichment trends, both essentially due to the additions of K-rich components which metasomatized separate, compositionally diverse, upper mantle sectors. In both cases the most remarkable mineralogical effect of these enrichment processes is the production of variable amount of phlogopite through reaction between fluids and/or melts with the mantle. The rocks of group I (ol-hy and Q-normative, lamproites, ultrapotassic high-Mg latites, ultrapotassic shoshonites and shoshonites: saturated trend) are considered to be derived by partial melting at low pressure (< 50 km) of strongly (lamproites) to moderately depleted phlogopite harzburgitic sources produced by reaction of residual peridotites with a K-Si-rich, Ca-Sr-poor melt with high ratios of {87Sr }/{86Sr (> 0.717) }, Ce/Sr (> 0.3) and {K 2O }/{Na 2O (> 6-7) }, and low ratios of {143Nd }/{144Nd ( 0.5121-0.5120) } and Ba/La (< 20) ratios; it is proposed that this component was formed by partial melting of subducted carbonate-free material of the upper crustal reservoir (e.g., non-restitic felsic granulites). This material is very common in the central Mediterranean region either as granitoid plutons/terrigenous sediments or as metasedimentary, non-restitic lower crust. The primitive rocks of group II are critically undersaturated, mostly leucitites, tephritic leucitites, leucite basanites, melilitites (undersaturated trend). Experimental petrology suggests that these rocks were formed by partial melting of a variably enriched phlogopite, clinopyroxene-rich mantle at higher pressure than group I primitive magmas. Trace-element modelling indicates that three components were involved in the genesis of group II mantle source: (a) a typical MORB-OIB-like mantle; (b) a component with very high Sr, Ca and Sr/Ce values and very low silica and sodium content, probably carried by a carbonatite melt somehow related to subducted marine carbonates; and (c) a recently added K-rich, Ca-Sr-poor crustal component, relatively well constrained to high {87Sr }/{86Sr (> 0.712) } and {K 2O }/{Na 2O (> 8-9) } values, and low {143Nd }/{144Nd (< 0.51205) }, Ba/La (< 20) and Ce/Sr (> 0.10) ratios. These constraints do not allow to exclude a complete identity between the K-rich components which metasomatized the mantle sources of the saturated and undersaturated trend magmas. The geochemical and isotopic features of the components that metasomatized the mantle sources of the northern Apenninic arc magmatism can be explained by a geodynamic process which causes a large amount of crustal materials to be incorporated within the upper mantle. We propose that the delamination and subduction of the Adriatic continental lithosphere related to the still ongoing northern Apennine continental collision provide a viable mechanism to explain the genesis and eastward discontinuous migration of the magmatism in central Italy. The subduction of delaminated lithospheric mantle with lower crustal slivers would have exposed uppermost mantle (Adriatic MBL) and crustal units previously imbricated in the Apennine chain to the heating advected by the upwelling of a recently and ephemerally K-enriched asthenospheric mantle wedge and by the underplating of magmas derived from it. We consider that the diapiric uprising of a hot, crustally contaminated asthenosphere occurs in the wake left above the sinking of the Adriatic delaminated/subducting continental lithosphere. The delamination/subduction process of the Adriatic lithosphere has probably started in the Early-Middle Miocene, but earlier than 15-14 Ma ago, as indicated by the age and petrologic characteristics of the first magmatic episode (Sisco lamproite) of the northern Apennine orogenesis.
NASA Astrophysics Data System (ADS)
Jenks, D.; Najman, Y.; Godin, L.; Parrish, R.; Horstwood, M.; Green, O.; Bown, P.; Garzanti, E.; Willems, H.
2009-04-01
Closure of Tethys marks initiation of collision between India and Asia, and the start of Himalayan orogenesis. A clear understanding of when this occurred is paramount to understanding the tectonic and denudational processes that have occurred since collision. A number of methods and datasets have been used to constrain the initiation of collision, from faunal mixing at 65 Ma [1] to the timing at which Indian rocks reached UHP depths at 57 Ma [2], to a reduction in northward drift of the Indian plate at 55 Ma [3]. New interpretations have placed collision as late as 38 Ma [4]. The extent of diachroneity is also disputed, varying from slight [5] to substantial [6]. Two approaches are used here to determine collision, 1) the timing of closure of the Tethys Ocean [7], based on stratigraphic succession, 2) first evidence of Asian derived material deposited on the Indian plate [8], using U-Pb ages of detrital zircon to assess provenance. In Ladakh, Indian plate passive margin limestones of the Mid-Late Paleocene Dibling Formation [9] are overlain by the youngest marine facies of the region, the marine siltstones of the Kong Fm. and the fluvio-deltaic facies of the Chulung La Fm. [8]. The age of the Kong and Chulung La formations is disputed, ranging from P5/6 (56 Ma) [10] to P8 (50.5 Ma) [8]. The provenance is also debated, considered either to be eroded from ophiolitic material from the Indian plate [10] or containing detritus from the Trans-Himalayan arc of the Asian plate [8,11]. We applied biostratigraphy, and U-Pb dating on detrital zircon, to samples from the Kong and Chulung La Formations to define depositional age and provenance. Biostratigraphy identified Asselines A. placentula grande and A. pomeroli, from the SBZ 10 (50.5 to 52.5 Ma) and SBZ 9 (53 Ma) zones respectively, thereby defining a minimum age of collision at 50.5 Ma, based on cessation of marine facies. However, the possibility that these fossils are reworked will be discussed. U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Formations shows a primary provenance from the Asian plate (arc derived), with dominant grain populations between 55-70 Ma and 90-100 Ma, and a subordinate population of Precambrian grains suggesting an origin on either the Indian (High or Tethyan Himalaya) or Asian (Lhasa Block) plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate during SBZ9-10, 53-50.5 Ma. Our results and identification of first arrival of Asian material on the Indian plate at 53-50.5 Ma 1) conflicts with the recent view that the commonly quoted 50 Ma collision was between the Indian plate and a small intra-oceanic arc [4] rather than Asia and 2) correlates with data from analogous sediments along strike in Southern Tibet [12,13], eastern Himalaya, implying collision was synchronous along a large portion of the Himalayas. In addition, our new ages from the Trans-Himalayan arc contribute to the existing database which shows a very low proportion of grains dated between 80-90 Ma. This has been interpreted by previous workers as an expression of a reduction in magmatic activity around this time, due to a period of "flat subduction" of the Neo-Tethyan oceanic slab followed by slab roll back and a more vigorous period of magmatism [14]. [1] Jaeger, J. J., Courtillot, V., and Tapponnier, P., 1989, Geology, 17 (4), 316-319. [2] Leech, M. L., Singh, S., Jain, A. K., Klemperer, S. L., Manickavasagam, R. M., 2005, Earth and Planetary Science Letters, 234, 83-97. [3] Klootwijk, C. T., Gee, J. S., Peirce, J. W., Smith, G. M., and McFadden, P. L., 1992, Geology, 20 (5), 395-398. [4] Aitchison, J. C., Ali, J. R., and Davis, A. M., 2007,Journal of Geophysical Research, 112 B05423, doi:10.1029/2006JB004706,. [5] Searle, M., Corfield, R. I., Stephenson, B., and McCarron, J., 1997, Geological Magazine, 134 (3), 297-316. [6]Rowley, D.B., 1998. Journal of Geology 106, 229-235. [7] Hodges, K. V., 2000, Geological Society of America Bulletin, 112, (3), 324-350. [8] Garzanti, E., Baud, A., and Mascle, G., 1987, Geodinamica Acta, 1, (4-5), 297-312. [9] Nicora, A., Garzanti, E., Fois, E., 1987, Riv. It. Peleont. Strat., 92, 439-496. [10] Fuchs, G., Willems, H., 1990, Jahrbuche Geologische Bundenstalt, 133, 259-273. [11] Critelli, S., and Garzanti, E., 1994, Sedimentary Geology, 89, (3-4), 265-284. [12] Zhu, B., Kidd, W. S. F., Rowley, D., Currie, B., and Shafique, N., 2005, Journal of Geology, 113, 265-285. [13] Najman, Y., unpublished data. [14] Wen, D.-R., Liu, D., Chung, S-L., Chu, M-F., Ji, J., Zhang, Q., Song, B., Lee, T-Y., Yeh, M-W. and Lo, C-H., 2008, Chemical Geology, 252, 191-201.
NASA Astrophysics Data System (ADS)
Bertle, R. J.; Götzinger, M. A.; Koller, F.
2003-04-01
Fluid inclusions studies in metamorphic rocks allow to reconstruct not only the chemistry of the fluids enabling and/or supporting metamorphic reactions but also the late metamorphic evolution of orogenesis. Therefore late, discordant quarz-calcite veins were investigated using FI-techniques. The Engadine Window which is exposed at the Swiss-Austrian-border exposes the penninic units of the Western Alps as a tectonic window within the Austroalpine nappes of the Eastern Alps. The nappes of the Engadine window underwent metamorphism and deformation during Tertiary times (THÖNI 1981, BERTLE 2000). The highest unit (Fimber unit) and the core of the window (= Zone of Pfunds) suffered HP-LT-metamorphism. P-T-conditions for parts of the Zone of Pfunds at the region of Piz Mundin are at 13-15 kbar at 380^oC (BOUSQUET et al. 2002) indicated by the occurrence of carpholite and glaucophane. The late metamorphic history is not very well constrained. There exist only a few FI-data published in an abstract by STÖCKHERT et al. 1990 and some unpublished data in RING 1989. During the ongoing mapping campaign of the first author samples from the Fimber unit and the Zone of Pfunds were collected and investigated using a LINKHAM freezing-cooling-stage. The investigated veins are discordant in respect to the main-foliation of the rocks and show nice cristalls of quarz, calcite and sometimes feldspar (adularia). Structural data implie that the investigated veins correspond to a set of ac-joints that correlate to the late updoming of the large "Engadiner Gewölbe" (Engadin anticlinal structure, MATTMÜLLER 1996). All investigated veins (from all tectonic units) show the same relationship to the anticlinal structure. FI-investigations show, that a large amount of the primary FI are decrepitated, however it was possible to find enough to provide a serious statistical data set. FI from Piz Mundin in the core of the Engadine window exhibit at the base of the vein quarz at the contact to the host rock (blueschist) epidote-clinozoisite cristalls. Futheron amphibole is visible. It is common at the base of the vein quarz and decreases towards the middle of the vein. FI are H2O-rich and indicate high pressure of trapping. Quarzes from the upper most part of the Zone of Pfunds from S of Zeblasjoch (W of Samnaun Dorf) show two main groups of primary FI which could be differentiated at room temperature: homogenous FI and such with a bubble. All FI were frozen at max. temperatures of ca. -56 ^oC. Bigger FI show cracking due to cristallisation pressure (build up of "wings"), the cracks however closed again during heating, so that the FI remained closed. Initial melting started between -20 ^oC (first recristallisation signs) and -9 ^oC, final melting was observable at -1 ^oC to 0 ^oC. Then the FI was a.) homogenous or b.) showed a bubble. Homogenisation Temp. of the inclusions with bubble were in the range of 70 to 150 ^oC , most of them between 70 and 80 ^oC and 110 - 125 ^oC. The data indicate a more or less pure H_2O-system for the FI under high pressure. Assuming a cristallisation temperature of the cristalls of about 200 to 250 ^oC and a density of the FI between 0,97 and 1,0 g/cm^3 pressures of 2,5 to 4,5 Kbar are indicated. The same P-T-conditions (same chemistry and melting & homog. Temp.) could be derived from FI in quarz from the Salaaser Kopf (Idalpe) for the late metamorphic evolution of the Fimber unit, indicating that the late metamorphic history of both units is the same. It is concluded that opening of the veins and first cristallisation of vein quarz corresponds to the first signs of updoming of the Engadine anticlinal structure. Updoming of the anticline started when the whole nappe stack was covered by the Austroalpine nappes. Therefore FI show such high pressures for trapping of the fluid. Acknowledgements: Data partly result from FWF-project P. 15278 "Bündnerschieferakkretion in the westlichen Ostalpen". Financal support is greatly acknowledged. References: BERTLE, R. J. 2000: Zur Geologie und Geochronologie um Alp Trida (Samnaun/Schweiz) einschließlich ingenieurgeologischer Fragen der Gebirgsauflösung und des Permafrosts. - Unpubl. Msc-Thesis. Univ. Wien, 395 S. BOUSQUET, R., GOFFÉ, B., VIDAL, O., OBERHÄNSLI, R. & PATRIAT, M. 2002: The tectono-metamorphic history of the Valaisan domain from the Western to the Central Alps: new constraints on the evolution of the Alps. - Geol. Soc. America Bull., 114/2, S. 207-225. KÜSTER, M. &STÖCKHERT, B. 1997: Density changes of fluid inclusions in high-pressure low-temperature metamorphic rocks from Crete: A thermobarometric approach based on the creep strength of the host minerals. Lithos, 41, S. 151-167. MATTMÜLLER, C. R. 1996: Geometrische Untersuchung des Inntalgewölbes. - Jahrb. Geol. B.-A., 139/1, S. 45-69, Wien 1996. RING, U. 1989: Tectonogenesis of the Penninic/Austroalpine Boundary Zone: The Arosa Zone (Grisons Rätikon area, Swiss-Austrian Alps). - Unpubl. Phd.-Thesis., 177 p., Tübingen. STOECKHERT, B., RÖSSNER, G., KÜSTER, M., HEIDER, M., GUNDLACH, K. &RICHTER, D.K. 1990: High-Pressure Metamorphism of the Mesozoic Sediments in the Lower Engadine Window, Eastern Alps. - Terra Abstracts, 2, S. 34, 1990. THÖNI, M. 1981: Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas. - Jahrb. Geol. B.-A., 124/1, S. 111-174, Wien 1981.
Earth's glacial record and its tectonic setting
NASA Astrophysics Data System (ADS)
Eyles, N.
1993-09-01
Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along active, compressional plate margins recording a protracted and complex phase of supercontinent assembly between 800 and 550 Ma. Local cordilleran glaciations of volcanic peaks is indicated. Many deposits are preserved within mobile belts that record the subduction of interior oceans now preserved as "welds" between different cratons. Discrimination between glacially-influenced and non-glacial, volcaniclastic mass flow successions continues to be problematic. The second tectonostratigraphic category of Late Proterozoic glacial strata includes successions of glacially-influenced, mostly marine strata deposited along rifted, extensional plate margins. The oldest (Sturtian) glaciclastic sediments result from the break-out of Laurentia from the Late Proterozoic supercontinent starting around 750 Ma along its "palaeo-Pacific" margin with a later (Marinoan) phase of rifting at about 650 Ma. "Passive margin" uplifts and the generation of "adiabatic" ice covers on uplifted crustal blocks triggered widespread glaciation along the "palaeo-Pacific" margin of North America and in Australia. A major phase of rifting along the opposite ("palaeo-Atlantic") margin of Laurentia occurred after 650 Ma and is similarly recorded by glaciclastic strata in basins preserved around the margins of the present day North Atlantic Ocean. Glaciation of the west African platform after 650 Ma is closely related to collision of the West African and Guyanan cratons and uplift of the orogenic belt; the same process, involving uplift around the northern and western margins of the Afro-Arabian platform subsequently triggered Late Ordovician glaciation at about 440 Ma when the south polar region lay over North Africa. Early Silurian glaciation in Bolivia and Brazil was followed by a non-glacial episode and renewed Late Devonian glaciation of northern Brazil and Bolivia. The latter event may have resulted from rotation of Gondwana under the South Pole combined with active orogenesis along the western margin of the supercontinent. Hercynian uplift along the western margin of South America caused by the collision and docking of "Chilinia" at about 350 Ma (Late Tournasian—Early Visean) was the starting point of a long Late Palaeozoic glacial record that terminated at about 255 Ma (Kungurian-Kazanian) in western Australia. The arrival of large landmasses at high latitude may have been an important precondition for ice growth. Strong Namurian uplift around virtually the entire palaeo-Pacific rim of Gondwana culminated in glaciation of the interior of the supercontinent during the latest Westphalian (c. 300 Ma). There is a clear picture of plate margin compression and propagation of "far field" stresses to the plate interior allowing preservation of glacially-influenced strata in newly-rifted intracratonic basins. Many basins show a "steer's head" style of infill architecture recording successive phases of subsidence and overstepping of younger strata during basin subsidence and expansion. Exploration for oil and gas in Gondwanan glaciated basins is currently a major stimulus to understanding the relationship between tectonics and sedimentation. Warm Mesozoic palaeoclimates do not rule out the existence of restricted ice covers in the interiors of continental landmasses at high palaeolatitudes (e.g. Siberia, Antarctica) but there is as yet, no direct geological record of their existence. The most likely record of glaciers is contained in Late Jurassic and early Cretaceous strata. In any event, these ice masses are unlikely to have had any marked effect on global sea levels and alternative explanations should perhaps be sought for 4th order, so-called "glacio-eustatic" changes in sea level, inferred from Triassic, Jurassic and Cretaceous strata. The growth of extensive Northern Hemisphere ice sheets in Plio-Pleistocene time (c. 2.5 Ma) was the culmination of a long global climatic deterioration that began sometime after 60 Ma during the late Tertiary. Tectonic uplift of areas such as the Tibetan Plateau and plate tectonic reorganizations have been identified as first-order controls. Initiation of the East Antarctic ice sheet, at about 36 Ma, is the result of the progressive thermal isolation of the continent combined with uplift along the Transantarctic Mountains. In the Northern Hemisphere, the upwarping of extensive passive margin plateaux around the margins of the newly-rifted North Atlantic may have amplified global climatic changes and set the scene for the growth of continental ice sheets after 2.5 Ma. Ice sheet growth and decay was driven by complexly interrelated changes in ocean circulation, Milankovitch orbital forcing and global geochemical cycles. It is arguable whether continental glaciations of the Northern Hemisphere, and the evolution of hominids, would have occurred without the necessary precondition of tectonic uplift.