622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
NASA Astrophysics Data System (ADS)
Wang, Jie; Liang, Xingdong; Chen, Longyong; Ding, Chibiao
2015-01-01
Orthogonal frequency division multiplexing (OFDM) chirp waveform, which is composed of two successive identical linear frequency modulated subpulses, is a newly proposed orthogonal waveform scheme for multiinput multioutput synthetic aperture radar (SAR) systems. However, according to the waveform model, radar systematic error, which introduces phase or amplitude difference between the subpulses of the OFDM waveform, significantly degrades the orthogonality. The impact of radar systematic error on the waveform orthogonality is mainly caused by the systematic nonlinearity rather than the thermal noise or the frequency-dependent systematic error. Due to the influence of the causal filters, the first subpulse leaks into the second one. The leaked signal interacts with the second subpulse in the nonlinear components of the transmitter. This interaction renders a dramatic phase distortion in the beginning of the second subpulse. The resultant distortion, which leads to a phase difference between the subpulses, seriously damages the waveform's orthogonality. The impact of radar systematic error on the waveform orthogonality is addressed. Moreover, the impact of the systematic nonlinearity on the waveform is avoided by adding a standby between the subpulses. Theoretical analysis is validated by practical experiments based on a C-band SAR system.
NASA Astrophysics Data System (ADS)
Guan, Rui; Huang, Nuo; Wang, Jin-Yuan; Wang, Houyu; Chen, Ming
2016-05-01
This paper presents an enhanced hybrid asymmetrically clipped optical orthogonal frequency division multiplexing (EHACO-OFDM) scheme, which benefits from the simultaneous transmission of ACO-OFDM, pulse-amplitude-modulated discrete multitone modulation, and direct-current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). Since the entire available bandwidth is utilized for data modulation, this scheme can achieve higher spectral efficiency than HACO-OFDM and ACO-OFDM. Moreover, as a smaller DC bias is introduced in our scheme, it is more power efficient than asymmetrically clipped DC-biased optical OFDM (ADO-OFDM) and DCO-OFDM. A modified receiver is also designed for this system, taking advantage of an iterative algorithm and a pairwise averaging. It has been shown by simulation that our three-path simultaneous transmission scheme can surpass the existing mixed OFDM-based schemes at high data rates. In addition, compared with the noniterative receiver, the modified receiver exhibits significant gains.
Improved orthogonal frequency division multiplexing communications through advanced coding
NASA Astrophysics Data System (ADS)
Westra, Jeffrey; Patti, John
2005-08-01
Orthogonal Frequency Division Multiplexing (OFDM) is a communications technique that transmits a signal over multiple, evenly spaced, discrete frequency bands. OFDM offers some advantages over traditional, single-carrier modulation techniques, such as increased immunity to inter-symbol interference. For this reason OFDM is an attractive candidate for sensor network application; it has already been included in several standards, including Digital Audio Broadcast (DAB); digital television standards in Europe, Japan and Australia; asymmetric digital subscriber line (ASDL); and wireless local area networks (WLAN), specifically IEEE 802.11a. Many of these applications currently make use of a standard convolutional code with Viterbi decoding to perform forward error correction (FEC). Replacing such convolutional codes with advanced coding techniques using iterative decoding, such as Turbo codes, can substantially improve the performance of the OFDM communications link. This paper demonstrates such improvements using the 802.11a wireless LAN standard.
622-Mbps Orthogonal Frequency Division Multiplexing Modulator Developed
NASA Technical Reports Server (NTRS)
Nguyen, Na T.
1999-01-01
The Communications Technology Division at the NASA Lewis Research Center is developing advanced electronic technologies for the space communications and remote sensing systems of tomorrow. As part of the continuing effort to advance the state-of-the art in satellite communications and remote sensing systems, Lewis is developing a programmable Orthogonal Frequency Division Multiplexing (OFDM) modulator card for high-data-rate communication links. The OFDM modulator is particularly suited to high data-rate downlinks to ground terminals or direct data downlinks from near-Earth science platforms. It can support data rates up to 622 megabits per second (Mbps) and high-order modulation schemes such as 16-ary quadrature amplitude modulation (16-ary QAM) or 8- phase shift keying (8PSK). High order modulations can obtain the bandwidth efficiency over the traditional binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulator schemes. The OFDM modulator architecture can also be precompensated for channel disturbances and alleviate amplitude degradations caused by nonlinear transponder characteristics.
Zhang, Fan; Yang, Chuanchuan; Fang, Xi; Zhang, Tingting; Chen, Zhangyuan
2013-03-11
Orthogonal transmission with frequency division multiplexing technique is investigated for next generation optical communication systems. Coherent optical orthogonal frequency division multiplexing (OFDM) and single-carrier frequency division multiplexing (SCFDM) schemes are compared in combination with polarization-division multiplexing quadrature phase shift keying (QPSK) or 16-QAM (quadrature amplitude modulation) formats. Multi-granularity transmission with flexible bandwidth can be realized through ultra-dense wavelength division multiplexing (UDWDM) based on the orthogonal technique. The system performance is numerically studied with special emphasis on transmission degradations due to fiber Kerr nonlinearity. The maximum reach and fiber capacity for different spectral efficiencies are investigated for systems with nonlinear propagation over uncompensated standard single-mode fiber (SSMF) links with lumped amplification. PMID:23482180
Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications.
Zhang, J G
1996-12-10
Strict optical orthogonal codes are presented for purely asynchronous optical code-division multiple-access (CDMA) applications. The proposed code can strictly guarantee the peaks of its cross-correlation functions and the sidelobes of any of its autocorrelation functions to have a value of 1 in purely asynchronous data communications. The basic theory of the proposed codes is given. An experiment on optical CDMA systems is also demonstrated to verify the characteristics of the proposed code. PMID:21151299
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Yi, Xingwen; Chen, Lei; Zhang, Jing; Deng, Mingliang; Qiu, Kun
2012-10-01
As an alternate to fast Fourier transform-based orthogonal frequency-division multiplexing (OFDM), wavelet packet transform (WPT)-based OFDM (WPT-OFDM) does not require cyclic prefix to avoid inter-symbol-interference. The wavelet has many varieties and therefore, it can provide more freedom for system design to suit different applications. We propose a real-valued WPT-OFDM that uses intensity modulation/direct detection. We also conduct an experiment to verify its performance through a 75-km standard single-mode fiber.
Unified direct and coherent orthogonal frequency division multiplexing optical transmission scheme.
Johnson, Stanley; Cvijetic, Milorad
2015-12-20
We experimentally demonstrate a novel unified direct and coherent orthogonal frequency division multiplexing (OFDM) scheme. This self-coherent OFDM scheme simplifies receiver architecture and provides interchangeability between direct and coherent receivers using the same unified transmitter. We have experimentally verified the resilience of this scheme to fiber nonlinearities and achieved receiver sensitivity improvement of up to 1.73 dB as compared to the conventional intensity modulation and direct detection OFDM scheme. We have also verified the effectiveness of a dual-analyzer-based balanced detection scheme. PMID:26837024
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Li, Yiwei; Zhang, Shihao; Tang, Xuan
2015-10-01
Weighted interframe averaging (WIFA)-based channel estimation (CE) is presented for orthogonal frequency division multiplexing passive optical network (OFDM-PON), in which the CE results of the adjacent frames are directly averaged to increase the estimation accuracy. The effectiveness of WIFA combined with conventional least square, intrasymbol frequency-domain averaging, and minimum mean square error, respectively, is demonstrated through 26.7-km standard single-mode fiber transmission. The experimental results show that the WIFA method with low complexity can significantly enhance transmission performance of OFDM-PON.
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.
2015-10-01
We study molecular photoelectron momentum distributions (MPMDs) of aligned H2+ by intense orthogonally polarized attosecond ultraviolet laser pulses. Photoionization is simulated by numerically solving corresponding three-dimensional time dependent Schrödinger equations with static nuclei. It is found that altering pulse phases ϕ varies the structure of MPMDs, which is attributed to the interference effect between orthogonal polarization ionizations. The phase ϕ dependent MPMDs are also a function of molecular alignment and pulse wavelengths. Altering the symmetry of initial electronic states offers the possibility of imaging molecular orbitals by orthogonal polarization attosecond MPMDs.
NASA Astrophysics Data System (ADS)
Sung, Jiun-Yu; Yeh, Chien-Hung; Chow, Chi-Wai; Lin, Wan-Feng; Liu, Yang
2015-11-01
An orthogonal frequency-division multiplexing access (OFDMA) based visible light communication (VLC) system is proposed in this paper. The architecture of the proposed system is divided into several VLC cells, which is defined in this paper. The deployment and upgrade of the system involve only simple combination of the VLC cells. Hence it is economically advantageous. To guarantee smooth communication, nearly equal data rate is provided at every location within the system with no concern on the system scale. The user location monitor strategy is also discussed to solve the region division issues. The characteristics of the proposed system are analyzed in detail in this paper. A one-dimensional experiment was demonstrated with 13.6 Mb/s data rate.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Li, Minghui; Wang, Ruyan; Liu, Yuanni; Song, Daiping
2014-09-01
Due to the spare multipath property of the channel, a channel estimation method, which is based on partial superimposed training sequence and compressed sensing theory, is proposed for line of sight optical orthogonal frequency division multiplexing communication systems. First, a continuous training sequence is added at variable power ratio to the cyclic prefix of orthogonal frequency division multiplexing symbols at the transmitter prior to transmission. Then the observation matrix of compressed sensing theory is structured by the use of the training symbols at receiver. Finally, channel state information is estimated using sparse signal reconstruction algorithm. Compared to traditional training sequences, the proposed partial superimposed training sequence not only improves the spectral efficiency, but also reduces the influence to information symbols. In addition, compared with classical least squares and linear minimum mean square error methods, the proposed compressed sensing theory based channel estimation method can improve both the estimation accuracy and the system performance. Simulation results are given to demonstrate the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Aminikashani, Mohammadreza; Gu, Wenjun; Kavehrad, Mohsen
2016-05-01
Visible light communication (VLC) using light-emitting diodes has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing the data rate. An OFDM VLC system is proposed, which can be utilized for both communications and indoor positioning. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those using single-carrier modulation schemes, i.e., on-off keying modulation. We demonstrate that our proposed OFDM positioning system outperforms by 74% its conventional counterpart. Finally, we investigate the impact of different system parameters on the positioning accuracy of the proposed OFDM VLC system.
Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo
2015-01-01
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed. PMID:25585405
Communication: SHG-detected circular dichroism imaging using orthogonal phase-locked laser pulses
NASA Astrophysics Data System (ADS)
Jarrett, Jeremy W.; Liu, Xiaoying; Nealey, Paul F.; Vaia, Richard A.; Cerullo, Giulio; Knappenberger, Kenneth L.
2015-04-01
We demonstrate a novel method for second harmonic generation-detected circular dichroism (CD) imaging based on the use of phase-locked, temporally delayed femtosecond laser pulses. The polarization state of the fundamental wave was controllably changed over 2π rad by using a birefringent delay line, which provided attosecond inter-pulse delays for orthogonal phase-locked replicas; the achievable phase stability was 14 as. By introducing either a positive or negative delay of ˜667 as, we induced a ±π/2 phase shift between the orthogonally polarized pulses, resulting in left circularly polarized or right circularly polarized light. CD imaging performance using the pulse sequence was compared to results obtained for plasmonic nanoantennas using a rotating quarter-wave plate. The pulse sequence is expected to simplify polarization-resolved optical imaging by reducing experimental artifacts and decreasing image acquisition times. This method can be easily extended to other CD spectroscopy measurements.
Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications
NASA Astrophysics Data System (ADS)
de Abreu, Giuseppe Thadeu Freitas; Mitchell, Craig John; Kohno, Ryuji
2005-12-01
The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR) communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf), the decomposition yields an equivalent distribution of [InlineEquation not available: see fulltext.]-by-[InlineEquation not available: see fulltext.] matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM-) UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN).
NASA Astrophysics Data System (ADS)
Wang, Ruyan; Wang, Xiaobing; Zhao, Hui
2015-10-01
This paper investigates the timing synchronization problem of a space optical orthogonal frequency division multiplexing (OOFDM) communication system. First, based on the good autocorrelation property of generalized chirp-like sequence, a training sequence is constructed to fit the non-negative light intensity signal requirement of the OOFDM system, of which the front and rear portions are cyclical and the whole is mirror-symmetric. No longer a periodic-repetition structure, the mirror-symmetric structure can effectively avoid the side lobe of objective function and reduce the complexity of correlation calculation, and thereby can improve the synchronization performance. Then, the constructed training sequence is superimposed on a complete data symbol for transmission to efficiently utilize transmitting power and spectrum resources of the communication system. At the receiver, the position of timing synchronization is estimated using maximum-likelihood algorithm and the correlation between the local sequence and the received signal. Simulation results show that, compared with several existing methods, the proposed timing synchronization method achieves better synchronization performances under both strong and weak atmospheric turbulence channels.
NASA Astrophysics Data System (ADS)
Ebihara, Tadashi; Ogasawara, Hanako; Mizutani, Koichi
2016-03-01
In this paper, an underwater acoustic (UWA) communication scheme for mobile platforms is proposed. The proposed scheme is based on the orthogonal signal division multiplexing (OSDM) scheme, which offers highly reliable UWA communication. However, OSDM is not suitable for mobile platforms as it is — it requires a receiver array and a large calculation cost for equalization. To establish a reliable link with small communication platforms, we design OSDM that can perform reliable communication without the need for an array and can reduce receiver complexity using the time-diversity technique (TD), and evaluate its performance in experiments. The experimental results suggest that OSDM-TD can simultaneously achieve power-efficient communications and receiver complexity reduction, and can realize small-scale communication platforms. In detail, OSDM-TD achieved almost the same communication quality as conventional OSDM, in exchange for an effective data rate. Moreover, the power efficiency of OSDM-TD was almost the same as that of conventional OSDM with two receiver array elements, although the calculation cost of OSDM-TD was far below that of conventional OSDM. As a result, it was found that OSDM-TD is suitable for UWA communication for mobile nodes whose capacity and computational resources are severely limited.
High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality.
Harako, Koudai; Otuya, David Odeke; Kasai, Keisuke; Hirooka, Toshihiko; Nakazawa, Masataka
2014-12-01
We propose a simple and high-performance scheme for demultiplexing coherent Nyquist TDM signals by photo-mixing on a photo-detector with Nyquist LO pulses. This scheme takes advantage of the time-domain orthogonality of Nyquist pulses, which enables high-SNR demultiplexing and homodyne detection simultaneously in spite of a strong overlap with adjacent pulses in the time domain. The feasibility of this scheme is demonstrated through a demultiplexing experiment employing 80 Gbaud, 64 QAM Nyquist pulse OTDM signals. This scheme exhibits excellent demultiplexing performance with a much simpler configuration than a conventional ultrafast all-optical sampling scheme. PMID:25606880
Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents
Yu, Young-Sang; Lee, Ki-Suk; Jung, Hyunsung; Choi, Youn-Seok; Yoo, Myoung-Woo; Han, Dong-Soo; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog
2011-05-01
We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency ωD for a given vortex-state disk of polarization p, such that σ=1/ωD and Δt=π/2p/ωD. The estimated optimal pulse parameters are in good agreement with the experimental results. Finally, this work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.
Chudnovsky, D V; Chudnovsky, G V
1999-10-26
The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent "accurately" harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in "accurate" reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Pade approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations. PMID:10535909
Chang, Ching-Hung; Liu, Wei-Chen; Peng, Peng-Chun; Lu, Hai-Han; Wu, Po-Yi; Wang, Jyun-Bo
2011-05-01
A hybrid community antenna television (CATV) and orthogonal-frequency-division-multiplexing (OFDM) transport system is proposed and experimentally demonstrated to transmit multiple CATV channels and bi-directional radio frequency signals on a single optical carrier. By polarization remodulating an optical CATV signal with downstream OFDM signals and then amplitude remodulating upstream OFDM signals with the hybrid CATV/OFDM signals, this architecture can efficiently utilize only one optical carrier to support optical analog/digital CATV transmission and bi-directional wireless broadband services for each client. Good experimental results prove that this architecture provides a proper wavelength utilization scheme for future multiwavelength optical transport systems. PMID:21540979
NASA Astrophysics Data System (ADS)
Jin, Wei; Zhang, Chongfu; Yuan, Weicheng
2016-02-01
We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.
Orthogonal on-off control of radar pulses for the suppression of mutual interference
NASA Astrophysics Data System (ADS)
Kim, Yong Cheol
1998-10-01
Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.
Djordjevic, Ivan B; Saleh, Alaa H; Küppers, Franko
2014-05-01
The future information infrastructure will be affected by limited bandwidth of optical networks, high energy consumption, heterogeneity of network segments, and security issues. As a solution to all problems, we advocate the use of both electrical basis functions (orthogonal prolate spheroidal basis functions) and optical basis functions, implemented as FBGs with orthogonal impulse response in addition to spatial modes. We design the Bragg gratings with orthogonal impulse responses by means of discrete layer peeling algorithm. The target impulse responses belong to the class of discrete prolate spheroidal sequences, which are mutually orthogonal regardless of the sequence order, while occupying the fixed bandwidth. We then design the corresponding encoders and decoders suitable for all-optical encryption, optical CDMA, optical steganography, and orthogonal-division multiplexing (ODM). Finally, we propose the spectral multiplexing-ODM-spatial multiplexing scheme enabling beyond 10 Pb/s serial optical transport networks. PMID:24921787
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Seo, Dong-Sun; Yoon, Sang Min
2016-04-01
We propose a technique that improves the channel capacity of an optical wireless orthogonal frequency division multiplexing (OFDM) transmission, which employs a visible light-emitting diode. An OFDM waveform encoded by quadrature phase shift keying (QPSK) or 16-quadrature amplitude modulation is compressed and then transformed into a sparse waveform using a proposed advanced systematic sampling. At the optical wireless receiver, the original waveform is recovered by L1-minimization based on a Bayesian compressive sensing. Our experimental results show the significant increase in the channel capacity from 31.12 to 51.87 Mbit/s at forward error correction limit (i.e., error vector magnitude of 32%) in case of QPSK symbols.
NASA Astrophysics Data System (ADS)
Pandey, Gaurav; Goel, Aditya
2016-07-01
A colorless wavelength division multiplexed-orthogonal frequency division multiplexing-passive optical network (WDM-OFDM-PON) is presented, which is capable of supporting symmetric 10 Gbps downlink direct detection (DD) OFDM unicast signal, broadcast signal, and uplink on-off keying (OOK) signal up to 60 km that includes both single mode and dispersion compensation fiber. At each optical network unit (ONU), DD has been used to receive downlink unicast and broadcast OFDM data. A delay interferometer (DI) has been used at a central office to achieve 10 Gbps uplink signal transmission over 60 km distance utilizing a reflective semiconductor optical amplifier (bandwidth=1.5 GHz) at the ONU because DI works as a vestigial sideband filter and an optical equalizer. Broadcast channel does not affect the system performance because it generates a limited interference of the order of 0.1 to 0.28 dB to downlink and uplink channels, and this interference is distributed to every ONU. For bit error rate of 10-9, the receiver sensitivity of -24, -23.1, and -20.14 dBm is achieved by simulating downlink OFDM unicast channels, OFDM broadcast channel, and uplink OOK unicast channels, respectively, for a symmetric data rate of 10 Gbps over 60 km.
NASA Astrophysics Data System (ADS)
Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen
2014-08-01
We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.
NASA Astrophysics Data System (ADS)
Safi, A.; Bahreini, M.; Tavassoli, S. H.
2016-03-01
Double-pulse laser induced breakdown spectroscopy (DP-LIBS) of aluminum sample is studied experimentally in orthogonal configuration in air. In this configuration, two schemes of reheating and pre-ablation are examined and the results are compared with single pulse one. The effect of delay time between two laser pulses on emission line intensities of plasma is investigated. Some of the parameters that have been involved in different mechanism of signal enhancement such as plasma temperature, sample heating effects, atmospheric effects, and modification of the ablation dynamics are more discussed. Investigation of the effect of laser pulse energy on emission line intensities in single pulse LIBS experiment demonstrate that because of saturation effects the intensities will not increase necessarily by increasing the laser pulse energy. Moreover, the results show that the electron temperature and rate of mass removal in orthogonal configuration of DP-LIBS is higher than that of single pulse with the same total energy. It is suggested that for correct comparison between single and double pulse results, the optimum pulse energy in single pulse should be considered. Overall, our results demonstrate that under optimized conditions the signal enhancement is much more in pre-ablation configuration than re-heating configuration.
NASA Astrophysics Data System (ADS)
Ghosh, Shila; Chatterji, B. N.
2007-09-01
A theoretical investigation to evaluate the performance of optical code division multiple access (OCDMA) for compressed video transmission is shown. OCDMA has many advantages than a typical synchronous protocol time division multiple access (TDMA). A pulsed laser transmission of multi channel digital video can be done using various techniques depending on whether the multi channel data are to be synchronous or asynchronous. A typical form of asynchronous digital operation is wavelength division multiplexing (WDM) in which the digital data of each video source are assigned a specific and separate wavelength. A sophisticated hardware such as accurate wavelength control of all lasers and tunable narrow band optical filters at the receivers is required in this case. A major disadvantage with CDMA is the reduction in per channel data rate (relative to the speeds available in the laser itself) that occurs in the insertion of code addressing. Hence optical CDMA for the video transmission application is meaningful when individual channel video bit rates can be significantly reduced and that can be done by compression of video data. In our work for compression of video image standard JPEG is implemented where a compression ratio of about 60 % is obtained without noticeable image degradation. Compared to the other existing techniques JPEG standard achieves higher compression ration with high S/N ratio. Here we demonstrated the auto and cross correlation properties of the codes. We have shown the implementation of bipolar Walsh coding in OCDMA system and their use in transmission of image/video.
NASA Astrophysics Data System (ADS)
Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem
2002-09-01
Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.
NASA Astrophysics Data System (ADS)
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2016-04-01
The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.
NASA Astrophysics Data System (ADS)
Hassan, Emad S.; Zhu, Xu; El-Khamy, Said E.; Dessouky, Moawad I.; El-Dolil, Sami A.; Abd El-Samie, Fathi E.
2013-01-01
In this article, we propose a chaotic interleaving scheme for continuous-phase modulation-based orthogonal frequency-division multiplexing (CPM-OFDM) systems. The idea of chaotic maps randomisation (CMR) is exploited in this scheme. CMR generates permuted sequences from the sequences to be transmitted with lower correlation among their samples, and hence a better Bit Error Rate (BER) performance can be achieved. The proposed CMR-CPM-OFDM system combines the advantages of frequency diversity and power efficiency from CPM-OFDM and performance improvement from chaotic interleaving. The BER performance of the CPM-OFDM system with and without chaotic interleaving is evaluated by computer simulations. Also, a comparison between chaotic interleaving and block interleaving is performed. Simulation results show that, the proposed chaotic interleaving scheme can greatly improve the performance of CPM-OFDM systems. Furthermore, the results show that the proposed chaotic interleaving scheme outperforms the traditional block interleaving scheme for CPM-OFDM systems. The results show also that, the proposed CMR-CPM-OFDM system provides a good trade-off between system performance and bandwidth efficiency.
Orthogonal resonators for pulse in vivo electron paramagnetic imaging at 250 MHz
Sundramoorthy, Subramanian V.; Epel, Boris; Halpern, Howard J.
2014-01-01
A 250 MHz bimodal resonator with a 19 mm internal diameter for in vivo pulse electron paramagnetic resonance (EPR) imaging is presented. Two separate coaxial cylindrical resonators inserted one into another were used for excitation and detection. The Alderman-Grant excitation resonator (AGR) showed the highest efficiency among all the excitation resonators tested. The magnetic field of AGR is confined to the volume of the detection resonator, which results in highly efficient use of the radio frequency power. A slotted inner single loop single gap resonator (SLSG LGR), coaxial to the AGR, was used for signal detection. The resulting bimodal resonator (AG/LGR) has two mutually orthogonal magnetic field modes; one of them has the magnetic field in the axial direction. The resonator built in our laboratory achieved 40dB isolation over 20 MHz bandwidth with quality factors of detection and excitation resonators of 36 and 11 respectively. Considerable improvement of the B1 homogeneity and EPR image quality in comparison with reflection loop-gap resonator of similar size and volume was observed. PMID:24530507
NASA Astrophysics Data System (ADS)
Johnson, Stanley
An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I
NASA Astrophysics Data System (ADS)
Chimfwembe, Patrick C.; Krasinski, Jerzy S.
1999-06-01
The reductive perturbation method was applied to the propagation of two orthogonal polarized sub-100 fs soliton pulses, in a singlemode fiber, to give an analytical propagation model. The analytical propagation model was transformed into a numerical propagation model via the symmetrized split-step Fourier method. The numerical propagation model was then used to analyze the switching efficiency of an inverter soliton-trapping gate (STG) and an inverter soliton-dragging gate (SDG), with a clock time window of about four pulse widths. For the STG and the SDG, with the control on the slow axis, the switching maximum clock time windows are reduced by 32 percent and 62 percent respectively, due to the self and cross Raman effects. However, for the STG and SDG, operated with the control on the fast axis, it was found that the switching maximum clock time windows are increased by 30 percent and 28 percent respectively, due to the self and cross Raman effects.
Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen
2010-04-15
We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.
Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang
2012-10-01
We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment. PMID:23027243
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun
2016-02-01
We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.
NASA Astrophysics Data System (ADS)
Li, Jun; He, Hao; Bi, Meihua; Hu, Weisheng
2014-05-01
We propose a physical-layer energy-efficient receiving method based on selective sampling in an orthogonal frequency division multiplexing access passive optical network (OFDMA-PON). By using the special designed frame head, the receiver within an optical network unit (ONU) can identify the destination of the incoming frame. The receiver only samples at the time when the destination is in agreement with the ONU, while it stays in standby during the rest of the time. We clarify its feasibility through an experiment and analyze the downstream traffic delay by simulation. The results indicate that under limited delay conditions, ˜60% energy can be saved compared with the traditional receiving method in the OFDMA-PON system with 512 ONUs.
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook
2014-08-01
A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.
NASA Astrophysics Data System (ADS)
Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos
2014-12-01
The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).
3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.
Kim, Nammoon; Kim, Youngok
2011-01-01
In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme. PMID:21970578
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON). PMID:26368705
NASA Astrophysics Data System (ADS)
Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Sun, Zhongyuan; Zhang, Lin
2016-06-01
We report on the generation of orthogonally polarized bright-dark pulse pair in a passively mode-locked fiber laser with a large-angle tilted fiber grating (LA-TFG). The unique polarization properties of the LA-TFG, i.e., polarization-dependent loss and polarization-mode splitting, enable dual-wavelength mode-locking operation. Besides dual-wavelength bright pulses with uniform polarization at two different wavelengths, the bright-dark pulse pair has also been achieved. It is found that the bright-dark pulse pair is formed due to the nonlinear couplings between lights with two orthogonal polarizations and two different wavelengths. Furthermore, harmonic mode-locking of bright-dark pulse pair has been observed. The obtained bright-dark pulse pair could find potential use in secure communication system. It also paves the way to manipulate the generation of dark pulse in terms of wavelength and polarization, using specially designed fiber grating for mode-locking.
NASA Astrophysics Data System (ADS)
Chen, Ming; He, Jing; Tang, Jin; Chen, Lin
2014-09-01
A real-time base-band orthogonal frequency division multiplexing (OFDM) transceiver with symbol synchronization, channel equalization, sampling clock frequency synchronization, and adaptive modulation technique is successfully implemented by field programmable gate arrays and a 2.5-GSps digital-to-analog converter and analog-to-digital converter. The real-time optical OFDM signal at a raw bit rate of 5.156 Gbps within about 1.1-GHz bandwidth transmission over 100-km standard single-mode fiber (SSMF) is experimentally investigated in a simple intensity-modulation and direct-detection system. The experimental results show that the real-time system has a good bit error rate (BER) performance by using an adaptive modulation technique according to the conditions on the subchannels. After 100-km SSMF transmission, at a BER of 1×10-3, the power penalty is <1 dB. Moreover, there is a negligible penalty between the off-line and real-time digital signal processing results.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Chen, Chen; Qiu, Kun
2015-09-01
A hybrid bidirectional orthogonal frequency division multiple access-passive optical network (OFDMA-PON) based on offset quadrate phase shift keying (OQPSK) to support 60- and 120-GHz radio-over-fiber system is proposed. The system can support wired/wireless applications and enable the dynamic bandwidth allocation according to a subscriber's application. It is successfully achieved by using the millimeter waves (MMWs) generation and the carrier-reuse technique. In the proposed scheme, the MMW bands used for downlink (DL) and uplink transmissions are generated at the optical line terminal by the dual-arm Mach-Zehnder modulators. Both 60- and 120-GHz MMWs are obtained for the transmission of the high bit-rate services in source-free optical network units (ONUs), only using a single 15-GHz sinusoidal wave source. The Rayleigh backscattering effect is considered in the proposed OQPSK-based OFDMA-PON. For DL transmission over a 30-km single-mode fiber, the power penalties are less than 0.8 and 1 dB for the OQPSK-OFDM wired data at 10 Gb/s and the OQPSK-OFDM wireless data at 5 Gb/s, respectively.
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Chen, Shoufa
2016-07-01
A physical encryption scheme for discrete Hartley transform (DHT) precoded orthogonal frequency division multiplexing (OFDM) visible-light communication (VLC) systems using frequency domain chaos scrambling is proposed. In the scheme, the chaos scrambling, which is generated by a modified logistic mapping, is utilized to enhance the physical layer of security, and the DHT precoding is employed to reduce of OFDM signal for OFDM-based VLC. The influence of chaos scrambling on peak-to-average power ratio (PAPR) and bit error rate (BER) of systems is studied. The experimental simulation results prove the efficiency of the proposed encryption method for DHT-precoded, OFDM-based VLC systems. Furthermore, the influence of the proposed encryption to the PAPR and BER of systems is evaluated. The experimental results show that the proposed security scheme can protect the DHT-precoded, OFDM-based VLC from eavesdroppers, while keeping the good BER performance of DHT-precoded systems. The BER performance of the encrypted and DHT-precoded system is almost the same as that of the conventional DHT-precoded system without encryption.
Yin, Xiaofeng; Tsukaya, Hirokazu
2016-09-01
Measurement of the direction of cell division is an important, yet difficult, task to analyse how a plant organ acquires its final shape from an initially small group of cells. We introduce a method that rapidly and easily quantifies cell division direction and is applicable to all plant species. A pulse-chase strategy for 5-ethynyl-2'-deoxyuridine (EdU) labelling assay was established and was shown to be successful for leaves of Arabidopsis thaliana (Arabidopsis) and Juncus prismatocarpus. By optimization of the pulse and chase periods, most of the signals obtained were sets of daughter nuclei. For Arabidopsis, the optimal time was a 45-min pulse and a 7-h chase. For J. prismatocarpus, the optimal time was a 2-h pulse and a 13.5-h chase. The positions of the daughter nuclei were used to quantify cell division direction in the Arabidopsis leaf primordia. Overall, cell division along the proximal-distal axis was more frequent than along the medial-lateral axis. In petiole, major vein, minor vein and margin areas, the major cell division direction seemed to be coincident with the direction of auxin flow. The advantages of our method over the few methods used previously are discussed. We anticipate that it will provide opportunities to study plant development in the near future. PMID:27121010
NASA Astrophysics Data System (ADS)
Noske, Matthias; Stoll, Hermann; Fähnle, Manfred; Gangwar, Ajay; Woltersdorf, Georg; Slavin, Andrei; Weigand, Markus; Dieterle, Georg; Förster, Johannes; Back, Christian H.; Schütz, Gisela
2016-05-01
Scanning transmission x-ray microscopy is employed to investigate experimentally the reversal of the magnetic vortex core polarity in cylindrical Ni81Fe19 nanodisks triggered by two orthogonal monopolar magnetic field pulses with peak amplitude B0, pulse length τ = 60 ps , and delay time Δ t in the range from - 400 ps to + 400 ps between the two pulses. The two pulses are oriented in-plane in the x- and y-directions. We have experimentally studied vortex core reversal as a function of B0 and Δ t . The resulting phase diagram shows large regions of unidirectional vortex core switching where the switching threshold is modulated due to resonant amplification of azimuthal spin waves. The switching behavior changes dramatically depending on whether the first pulse is applied in the x- or the y-direction. This asymmetry can be reproduced by three-dimensional micromagnetic simulations but not by two-dimensional simulations. This behavior demonstrates that in contrast to the previous experiments on vortex core reversal, the three-dimensionality in the dynamics is essential here.
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F.; Dress, William B.
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xu, Yemian; Shan, Yuanyuan; Sun, Zhenhong; Zhu, Fan; Zhang, Xuping
2016-07-01
Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been widely used in various applications for its distributed measurement capability of dynamic disturbance along the entire sensing fiber. Commonly, the sensing system is considered to be only sensitive to the phase change and capable of detecting multiple vibration events. In application, once any of the vibration events leads to a local birefringence change, the polarization evolution of the signal will be disturbed along the following fiber, which will result in the generation of polarization-related noise and the failure of identification for multipoint vibration events. We will reveal the polarization-dependence of Φ-OTDR both theoretically and experimentally. To suppress the polarization-dependence of Φ-OTDR, an orthogonal-state of polarization pulse pair method has been proposed, making the sensing system purely phase-sensitive. The experiment result has shown that maximum noise suppression ratio of 11.2 dB and mean noise suppression ratio of 4.9 dB could be achieved, which confirmed the validity of the proposed method.
Orthogonal polynomials and tolerancing
NASA Astrophysics Data System (ADS)
Rogers, John R.
2011-10-01
Previous papers have established the inadvisability of applying tolerances directly to power-series aspheric coefficients. The basic reason is that the individual terms are far from orthogonal. Zernike surfaces and the new Forbes surface types have certain orthogonality properties over the circle described by the "normalization radius." However, at surfaces away from the stop, the optical beam is smaller than the surface, and the polynomials are not orthogonal over the area sampled by the beam. In this paper, we investigate the breakdown of orthogonality as the surface moves away from the aperture stop, and the implications of this to tolerancing.
Analysis of orthogonal waveform for spaceborne MIMO-GMTI radar
NASA Astrophysics Data System (ADS)
Zou, Bo; Dong, Zhen; Du, Xiang-yu
2011-10-01
The application of MIMO (Multiple input multiple output) techniques to spaceborne multichannel radar offers a number of advantages, including target detection, parameter estimation, and so on. Based on two kinds of waveforms presented in MIMO radar, a concise definition of synthetical ISLR is proposed. Through analysis of synthetical ISLR for two kinds of waveforms, it concludes that compared with orthogonal frequency division waveform, the crosscorrelation of orthogonal code waveform badly weakens the performance of spaceborne MIMO radar in GMTI (Ground moving target indication). Thus, by adopting orthogonal frequency division waveform, the basic principle of space-time-frequency adaptive processing is studied. Simulation results demonstrate the superiority of frequency division orthogonal MIMO radar in improving clutter suppression and GMTI performance.
Orthogonal Regression and Equivariance.
ERIC Educational Resources Information Center
Blankmeyer, Eric
Ordinary least-squares regression treats the variables asymmetrically, designating a dependent variable and one or more independent variables. When it is not obvious how to make this distinction, a researcher may prefer to use orthogonal regression, which treats the variables symmetrically. However, the usual procedure for orthogonal regression is…
NASA Astrophysics Data System (ADS)
Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
NASA Astrophysics Data System (ADS)
Melo, A. M.; Lima, J. L. S.; de Oliveira, R. S.; Sombra, A. S. B.
2002-05-01
The performance of a terahertz optical asymmetric demultiplexer (TOAD) operating with an ordinary fiber and with a DDF and DIF (dispersion decreasing and increasing fiber) configurations, for three lengths of fiber ( ξ=π/2,2π and 5π) and using soliton and quasi-soliton laser profiles for the control pulse, was studied. The numerical simulations show that the increase of the fiber length leads to the decrease of the power for the first and second demultiplexed pulses and leads to a broadening of these pulses, with the exception of the TOAD operating with the DDF fiber. For the TOAD operating with a basic telecommunication fiber one see that the increase of the power of the control power lead to a strong compression of the demultiplexed pulse. Operating the TOAD using a DDF fiber one can say that the control power necessary to demultiplex the signal pulse is always lower compared with the TOAD with the normal telecommunication fiber. This is a strong suggestion that the use of the DDF fiber will allow the use of less control power. Our simulations considering the TOAD operating with a DDF and DIF with a linear profile conclude that it is possible to operate the TOAD with lower control power using a DDF fiber setup. For this device the demultiplexed pulses will present a compression on time duration and will be insensitive to the time profile of the control pulse. We also did simulations with the TOAD operating with DDF in four different profiles: hyperbolic, exponential, linear and Gaussian. For all the profiles the increase of the length of the fiber also decreases the pump power of the three first peaks for the soliton and quasi-soliton regimes. The first critical power is always lower for the quasi-soliton regime compared to the soliton regime for all profiles under consideration and all lengths of the TOAD under consideration. It was also observed that for all the profiles and lengths of fiber one has pulse compression for the switched pulse. For the ξ=2
Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...
Orthogonal tensor decompositions
Tamara G. Kolda
2000-03-01
The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].
Coherent orthogonal polynomials
Celeghini, E.; Olmo, M.A. del
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Wu, Yu-Fu
2012-01-01
We use a commercially available 1.2 GHz bandwidth reflective semiconductor optical amplifier (RSOA)--based optical network unit (ONU) to achieve 10-gbits/s upstream traffic for an optical orthogonal frequency division multiplexing (OFDM) long-reach passive optical network (LR-PON). This is the first time the 64--quadrature amplitude modulation (QAM) OFDM format has been applied to RSOA-ONU to achieve a 75 km fiber transmission length. In the proposed LR-PON, the upstream power penalty of 5.2 dB at the bit error rate of 3.8×10-3 is measured by using a 64-QAM OFDM modulation after the 75 km fiber transmission without dispersion compensation.
... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.
Orthogonal-band-multiplexed offset-QAM optical superchannel generation and coherent detection
Zheng, Zhennan; Wang, Dan; Zhu, Xiaoqi; Lv, Xin; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Chen, Zhangyuan
2015-01-01
Nowadays the Internet not only has fast growing data traffic, but also has a fast growing number of on-line devices. This leads to high demand of capacity and flexibility of the future networks. The conventional Orthogonal Frequency Division Multiplexing (OFDM) and Nyquist pulse shaping signals have the advantage of high spectral efficiency when consisting of superchannels in the Wavelength-Division-Multiplexing (WDM) way. However, they face a cost issue when the spectral granularity of the superchannel is decreased to support more users. This paper proposes for the first time the scheme of Orthogonal-band-multiplexed offset-Quadrature Amplitude Modulation (OBM-OQAM) superchannel. OBM-OQAM superchannel provides large capacity and high spectral efficiency. Furthermore, it has the advantage of offering subbands of variable symbol rate without changing the system configuration. We provide a proof-of-principle demonstration of OBM-OQAM superchannel transmission. In our experiment, 400 Gbps 16 Quadrature Amplitude Modulation (QAM) OBM-OQAM superchannel transmission over 400 km Standard Single Mode Fiber (SSMF) is conducted. The experimental results show that the OBM-OQAM signal has low penalty in multi-band aggregation. PMID:26644162
Orthogonal-band-multiplexed offset-QAM optical superchannel generation and coherent detection
NASA Astrophysics Data System (ADS)
Zheng, Zhennan; Wang, Dan; Zhu, Xiaoqi; Lv, Xin; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Chen, Zhangyuan
2015-12-01
Nowadays the Internet not only has fast growing data traffic, but also has a fast growing number of on-line devices. This leads to high demand of capacity and flexibility of the future networks. The conventional Orthogonal Frequency Division Multiplexing (OFDM) and Nyquist pulse shaping signals have the advantage of high spectral efficiency when consisting of superchannels in the Wavelength-Division-Multiplexing (WDM) way. However, they face a cost issue when the spectral granularity of the superchannel is decreased to support more users. This paper proposes for the first time the scheme of Orthogonal-band-multiplexed offset-Quadrature Amplitude Modulation (OBM-OQAM) superchannel. OBM-OQAM superchannel provides large capacity and high spectral efficiency. Furthermore, it has the advantage of offering subbands of variable symbol rate without changing the system configuration. We provide a proof-of-principle demonstration of OBM-OQAM superchannel transmission. In our experiment, 400 Gbps 16 Quadrature Amplitude Modulation (QAM) OBM-OQAM superchannel transmission over 400 km Standard Single Mode Fiber (SSMF) is conducted. The experimental results show that the OBM-OQAM signal has low penalty in multi-band aggregation.
Orthogonal-band-multiplexed offset-QAM optical superchannel generation and coherent detection.
Zheng, Zhennan; Wang, Dan; Zhu, Xiaoqi; Lv, Xin; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Chen, Zhangyuan
2015-01-01
Nowadays the Internet not only has fast growing data traffic, but also has a fast growing number of on-line devices. This leads to high demand of capacity and flexibility of the future networks. The conventional Orthogonal Frequency Division Multiplexing (OFDM) and Nyquist pulse shaping signals have the advantage of high spectral efficiency when consisting of superchannels in the Wavelength-Division-Multiplexing (WDM) way. However, they face a cost issue when the spectral granularity of the superchannel is decreased to support more users. This paper proposes for the first time the scheme of Orthogonal-band-multiplexed offset-Quadrature Amplitude Modulation (OBM-OQAM) superchannel. OBM-OQAM superchannel provides large capacity and high spectral efficiency. Furthermore, it has the advantage of offering subbands of variable symbol rate without changing the system configuration. We provide a proof-of-principle demonstration of OBM-OQAM superchannel transmission. In our experiment, 400 Gbps 16 Quadrature Amplitude Modulation (QAM) OBM-OQAM superchannel transmission over 400 km Standard Single Mode Fiber (SSMF) is conducted. The experimental results show that the OBM-OQAM signal has low penalty in multi-band aggregation. PMID:26644162
Caswell, Andrew W; Roy, Sukesh; An, Xinliang; Sanders, Scott T; Schauer, Frederick R; Gord, James R
2013-04-20
Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties. PMID:23669701
Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V
2006-12-29
M-ary pulse position modulation (M-ary PPM) is an alternative to on-off-keying (OOK) that transmits multiple bits as a single symbol occupying a frame of M slots. PPM does not require thresholding as in OOK signaling, instead performing a comparison test among all slots in a frame to make the slot decision. Combining PPM with optical code division multiple access (PPM/O-CDMA) adds the benefit of supporting multiple concurrent, asynchronous bursty PPM users. While the advantages of PPM/O-CDMA are well known, implementing a receiver that performs comparison test can be difficult. This paper describes the design of a novel array receiver for M-ary PPM/O-CDMA (M = 4) where the received signal is mapped onto an xy-plane whose quadrants define the PPM slot decision by means of an associated control law. The receiver does not require buffering or nonlinear operations. In this paper we describe a planar lightwave circuit (PLCs) implementation of the receiver. We give detailed numerical simulations that test the concept and investigate the effects of multi-access interference (MAI) and optical beat interference (OBI) on the slot decisions. These simulations provide guidelines for subsequent experimental measurements that will be described.
Reengineering orthogonally selective riboswitches.
Dixon, Neil; Duncan, John N; Geerlings, Torsten; Dunstan, Mark S; McCarthy, John E G; Leys, David; Micklefield, Jason
2010-02-16
The ability to independently control the expression of multiple genes by addition of distinct small-molecule modulators has many applications from synthetic biology, functional genomics, pharmaceutical target validation, through to gene therapy. Riboswitches are relatively simple, small-molecule-dependent, protein-free, mRNA genetic switches that are attractive targets for reengineering in this context. Using a combination of chemical genetics and genetic selection, we have developed riboswitches that are selective for synthetic "nonnatural" small molecules and no longer respond to the natural intracellular ligands. The orthogonal selectivity of the riboswitches is also demonstrated in vitro using isothermal titration calorimetry and x-ray crystallography. The riboswitches allow highly responsive, dose-dependent, orthogonally selective, and dynamic control of gene expression in vivo. It is possible that this approach may be further developed to reengineer other natural riboswitches for application as small-molecule responsive genetic switches in both prokaryotes and eukaryotes. PMID:20133756
NASA Astrophysics Data System (ADS)
Wang, Dong; Huo, Li; Wang, Qiang; Lou, Caiyun
2016-04-01
A robust, cost-effective external-modulated ultra-short pulse generator based on chirp compression and Mamyshev reshaper is simulated numerically and demonstrated experimentally. We investigated the quality of the pulse with numerical calculation, demonstrating that the pulsewidth and pulse pedestal can be significantly improved after optimization. The role of out-of-band suppression ratio of the optical filter in reducing the pulse pedestal is explained. Using the numerical analysis as a guideline, 25-GHz 1.9-ps pedestal-free nearly transform-limited optical pulse with an extinction ratio of 29 dB and a root-mean square timing jitter of 120 fs (100 Hz to 10 MHz) is experimentally generated. The pulse source is then successfully applied in 100-Gb/s and 200-Gb/s optical time-division multiplexing (OTDM) system with 100-km transmission, which is a strong proof that such pulse generator is a simple, practical, low-cost, power efficient solution for OTDM applications.
Some discrete multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Arvesú, J.; Coussement, J.; van Assche, W.
2003-04-01
In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.
Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih
2016-04-21
Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings. PMID:27021807
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
Pulse Interval Modulation for Ultra-High Speed IR-UWB Communications Systems
NASA Astrophysics Data System (ADS)
Herceg, Marijan; Švedek, Tomislav; Matić, Tomislav
2010-12-01
This paper analyzes performances of the Pulse Interval Modulation (PIM) scheme for impulse radio ultra-wideband (IR-UWB) communication systems. Due to the PIM anisochronous nature, a tap delay line (TDL) coded division multiple access (CDMA) scheme based on strict optical orthogonal codes (SOOC) is proposed. This scheme is suitable for multiuser high-speed data asynchronous transmission applications because the average symbol length is shorter than in Pulse Position Modulation (PPM) schemes and it needs only chip synchronization. The error probability over the additive white Gaussian noise (AWGN) channel is derived in the single- and multi-user environment and compared with other modulation schemes.
NASA Astrophysics Data System (ADS)
Tonry, J.; Burke, Barry E.; Schechter, Paul L.
1997-10-01
We have designed and built a new type of CCD that we call an orthogonal transfer CCD (OTCCD), which permits parallel clocking horizontally as well as vertically. The device has been used successfully to remove image motion caused by atmospheric turbulence at rates up to 100 Hz, and promises to be a better, cheaper way to carry out image motion correction for imaging than by using fast tip/tilt mirrors. We report on the device characteristics, and find that the large number of transfers needed to track image motion does not significantly degrade the image either because of charge transfer inefficiency or because of charge traps. For example, after 100 sec of tracking at 100 Hz approximately 3% of the charge would diffuse into a skirt around the point spread function. Four nights of data at the Michigan-Dartmouth-MIT (MDM) 2.4-m telescope also indicate that the atmosphere is surprisingly benign, in terms of both the speed and coherence angle of image motion. Image motion compensation improved image sharpness by about 0.5'' in quadrature with no degradation over a field of at least 3 arcminutes. (SECTION: Astronomical Instrumentation)
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J
2010-01-01
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations. PMID:20975691
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W.
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
Orthogonal polynomials and deformed oscillators
NASA Astrophysics Data System (ADS)
Borzov, V. V.; Damaskinsky, E. V.
2015-10-01
In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.
"Orthogonality" in Learning and Assessment
ERIC Educational Resources Information Center
Leslie, David
2014-01-01
This chapter proposes a simple framework, "orthogonality," to help clarify what stakeholders think about learning in college, how we assess outcomes, and how clear assessment methods might help increase confidence in returns on investment.
NASA Astrophysics Data System (ADS)
Mooradian, A.
1984-09-01
An all-optical technique is described which can substantially increase the pulse repetition rate of the output from any mode-locked laser. Multiplication of the repetition rate by a factor of 16 has been demonstrated. A mode-locked laser pulse train multiplied up to a 2-GHz repetition rate has been used to generate microwave radiation by means of a GaAs avalanche photodiode as well as an Fe:InP optoelectronic switch.
Barschall, H.H.
1983-07-01
This report describes some of the activities in E (Experimental Physics) Division during the past year. E-division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in materials science. In addition, this report describes development work on accelerators and on instrumentation for plasma diagnostics, nitrogen exchange rates in tissue, and breakdown in gases by microwave pulses.
Nonlocality of orthogonal product states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Qin, Su-Juan; Yang, Ying-Hui; Wen, Qiao-Yan
2015-07-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal product basis quantum states in d ⊗d . In 3 ⊗3 , Bennett et al. [ Phys. Rev. A 59, 1070 (1999), 10.1103/PhysRevA.59.1070] presented nine orthogonal product basis quantum states which cannot be distinguished by local operations and classical communication (LOCC). In the work by Zhang et al. [Z.-C. Zhang et al., Phys. Rev. A 90, 022313 (2014), 10.1103/PhysRevA.90.022313], this result was generalized in d ⊗d , where d is odd. In this paper, we aim to construct locally indistinguishable orthogonal product basis quantum states in d ⊗d . For the general d ⊗d (d >2 ) quantum system, we first construct 4 d -4 orthogonal product states, and prove these states are locally indistinguishable using a very simple but quite effective method. Then, based on these states, we construct some classes of locally indistinguishable orthogonal product basis quantum states (OPBS) in d ⊗d (d >2 ) . Finally, we construct some LOCC indistinguishable OPBS in multipartite quantum systems. All of the above results demonstrate the phenomenon of nonlocality without entanglement.
Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
ERIC Educational Resources Information Center
FOLEY, JACK L.
THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE SUCH CONCEPTS AS (1) DIVISIBILITY TESTS, (2) CHECKING THE FUNDAMENTAL…
Gravity and the orientation of cell division
NASA Technical Reports Server (NTRS)
Helmstetter, C. E.
1997-01-01
A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.
Orthogonality preserving infinite dimensional quadratic stochastic operators
Akın, Hasan; Mukhamedov, Farrukh
2015-09-18
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.
PAPR reduction based on improved Nyquist pulse shaping technology in OFDM-RoF systems
NASA Astrophysics Data System (ADS)
Liu, Jian-fei; Li, Ning; Lu, Jia; Zeng, Xiang-ye; Li, Jie; Wang, Meng-jun
2013-01-01
High peak-to-average power ratio (PAPR) is the main disadvantage in orthogonal frequency-division multiplexing (OFDM) communication systems, which also exists in OFDM-radio over fiber (RoF) systems. In this paper, we firstly analyze the impact of high PAPR on a 40 GHz OFDM-RoF system, and then describe the theory of Nyquist pulse shaping technology for reducing PAPR. To suppress PAPR further, an improved Nyquist pulse shaping technology is proposed, in which the distribution of original-data amplitude is changed by properly selecting the time-limited waveforms of the different subcarriers. We firstly apply the improved Nyquist pulse shaping technology to an OFDM-RoF system. The simulation results show that PAPR is effectively reduced by more than 2 dB with the bit error rate (BER) declining by about 0.125%.
Generalized orthogonal wavelet phase reconstruction.
Axtell, Travis W; Cristi, Roberto
2013-05-01
Phase reconstruction is used for feedback control in adaptive optics systems. To achieve performance metrics for high actuator density or with limited processing capabilities on spacecraft, a wavelet signal processing technique is advantageous. Previous derivations of this technique have been limited to the Haar wavelet. This paper derives the relationship and algorithms to reconstruct phase with O(n) computational complexity for wavelets with the orthogonal property. This has additional benefits for performance with noise in the measurements. We also provide details on how to handle the boundary condition for telescope apertures. PMID:23695316
Orthogonality catastrophe in quantum sticking.
Clougherty, Dennis P; Zhang, Yanting
2012-09-21
We show that the orthogonality catastrophe can dramatically affect the probability with which an ultralow energy atom or ion will stick to a surface. We predict new energy-dependent scaling laws for the sticking probability in this low-energy regime. We provide numerical results of this theory for the case of ultracold electrons sticking to the surface of highly porous silicon and show that the sticking probability can differ substantially from that calculated with perturbation theory. We then generalize our results for finite surface temperatures and find surprisingly that the sticking probability can change sharply, vanishing below a critical incident energy that varies with the surface temperature. We describe in detail this superreflective surface phase for ultralow energy matter waves where the reflection coefficient is strictly equal to one. PMID:23005925
Orthogonality Catastrophe in Quantum Sticking
NASA Astrophysics Data System (ADS)
Clougherty, Dennis P.; Zhang, Yanting
2012-09-01
We show that the orthogonality catastrophe can dramatically affect the probability with which an ultralow energy atom or ion will stick to a surface. We predict new energy-dependent scaling laws for the sticking probability in this low-energy regime. We provide numerical results of this theory for the case of ultracold electrons sticking to the surface of highly porous silicon and show that the sticking probability can differ substantially from that calculated with perturbation theory. We then generalize our results for finite surface temperatures and find surprisingly that the sticking probability can change sharply, vanishing below a critical incident energy that varies with the surface temperature. We describe in detail this superreflective surface phase for ultralow energy matter waves where the reflection coefficient is strictly equal to one.
Orthogonal separations: Comparison of orthogonality metrics by statistical analysis.
Schure, Mark R; Davis, Joe M
2015-10-01
Twenty orthogonality metrics (OMs) derived from convex hull, information theory, fractal dimension, correlation coefficients, nearest neighbor distances and bin-density techniques were calculated from a diverse group of 47 experimental two-dimensional (2D) chromatograms. These chromatograms comprise two datasets; one dataset is a collection of 2D chromatograms from Peter Carr's laboratory at the University of Minnesota, and the other dataset is based on pairs of one-dimensional chromatograms previously published by Martin Gilar and coworkers (Waters Corp.). The chromatograms were pooled to make a third or combined dataset. Cross-correlation results suggest that specific OMs are correlated within families of nearest neighbor methods, correlation coefficients and the information theory methods. Principal component analysis of the OMs show that none of the OMs stands out as clearly better at explaining the data variance than any another OM. Principal component analysis of individual chromatograms shows that different OMs favor certain chromatograms. The chromatograms exhibit a range of quality, as subjectively graded by nine experts experienced in 2D chromatography. The subjective (grading) evaluations were taken at two intervals per expert and demonstrated excellent consistency for each expert. Excellent agreement for both very good and very bad chromatograms was seen across the range of experts. However, evaluation uncertainty increased for chromatograms that were judged as average to mediocre. The grades were converted to numbers (percentages) for numerical computations. The percentages were correlated with OMs to establish good OMs for evaluating the quality of 2D chromatograms. Certain metrics correlate better than others. However, these results are not consistent across all chromatograms examined. Most of the nearest neighbor methods were observed to correlate poorly with the percentages. However, one method, devised by Clark and Evans, appeared to work
Performance Analysis of Optical Code Division Multiplex System
NASA Astrophysics Data System (ADS)
Kaur, Sandeep; Bhatia, Kamaljit Singh
2013-12-01
This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method. PMID:26964231
On orthogonality preserving quadratic stochastic operators
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Orthogonal frequency coded filters for use in ultra-wideband communication systems.
Gallagher, Daniel R; Malocha, Donald C; Puccio, Derek; Saldanha, Nancy
2008-03-01
The use of ultra-short pulses, producing very wide bandwidths and low spectral power density, are the widely accepted approach for ultra-wideband (UWB) communication systems. This approach is simple and can be implemented with current digital signal processing technologies. However, surface acoustic wave (SAW) devices have the capability of producing complex signals with wide bandwidths and relatively high frequency operation. This approach, using SAW based correlators, eliminates many of the costly components that are needed in the IF block in the transmitter and receiver, and reduces many of the signal processing requirements. This work presents the development of SAW correlators using orthogonal frequency coding (OFC) for use in UWB spread spectrum communication systems. OFC and pseudonoise (PN) coding provide a means for UWB spreading of data. The use of OFC spectrally spreads a PN sequence beyond that of code division multiple access (CDMA) because of the increased bandwidth providing an improvement in processing gain. The transceiver approach is still very similar to that of a CDMA but provides greater code diversity. Experimental results of a SAW filter designed with OFC transducers are presented. The SAW correlation filter was designed using seven contiguous chip frequencies within the transducer. SAW correlators with a 29% fractional bandwidth were fabricated on lithium niobate (LiNbO3) having a center frequency of 250 MHz. A coupling-of-modes (COM) model is used to predict the SAW filter response experimentally and is compared to the measured data. Good correlation between the predicted COM responses and the measured device data is obtained. Discussion of the design, analysis, and measurements are presented. The experimental matched filter results are shown for the OFC device and are compared to the ideal correlation. The results demonstrate the OFC SAW device concept for UWB communication transceivers. PMID:18407859
Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films
NASA Astrophysics Data System (ADS)
Murphy, Ryan D.; Abere, Michael J.; Zhang, Huanan; Sun, Haiping; Torralva, Ben; Mansfield, John F.; Kotov, Nicholas A.; Yalisove, Steven M.
2012-11-01
Dual orthogonal alignment of carbon nanotubes (CNTs) within the plane and perpendicular to a substrate is essential for many applications but difficult to obtain. Here, we demonstrate that it is possible using a combination of layer-by-layer deposition and ultrafast laser irradiation. Single-wall CNT-polymer composites preferentially aligned within the plane are irradiated with ultrafast laser pulses. After irradiation with distinct fluences at ambient conditions, morphology is seen where CNTs are formed into bundled CNTs with some orthogonal alignment. A model is presented to account for thermal expansion of the polymer and the formation of CNT bundles.
Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures
Ye, L. Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D.; Ohki, T.; Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A.
2014-05-07
We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12 K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6 ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.
Chen Pingxing; Li Chengzu
2003-12-01
We consider the relation between the orthogonality and the distinguishability of a set of arbitrary states (including multipartite states). It is shown that if a set of arbitrary states can be distinguished by local operations and classical communication (LOCC), each of the states can be written as a linear combination of product vectors such that all product vectors of one of the states are orthogonal to the other states. With this result we then prove a simple necessary condition for LOCC distinguishability of a class of orthogonal states. These conclusions may be useful in discussing the distinguishability of orthogonal quantum states further, understanding the essence of nonlocality and discussing the distillation of entanglement.
ERIC Educational Resources Information Center
Gardella, Francis J.
1984-01-01
Given is an alternative to individual divisibility rules by generating a general process that can be applied to establish divisibility by any number. The process relies on modular arithmetic and the concept of congruence. (MNS)
Integrated mode converter for mode division multiplexing
NASA Astrophysics Data System (ADS)
Perez-Galacho, Diego; Alonso-Ramos, Carlos Alberto; Marris-Morini, Delphine; Vakarin, Vladyslav; Le Roux, Xavier; Ortega-Moñux, Alejandro; Wangüemert-Perez, Juan Gonzalo; Vivien, Laurent
2016-05-01
The ever growing demands of bandwidth in optical communication systems are making traditional Wavelength Division Multiplexing (WDM) based systems to reach its limit. In order to cope with future bandwidth demand is necessary to use new levels of orthogonality, such as the waveguide mode or the polarization state. Mode Division Multiplexing (MDM) has recently attracted attention as a possible solution to increase aggregate bandwidth. In this work we discuss the proposition a of mode converter that can cover the whole C-Band of optical communications. The Mode Converter is based on two Multimode Interference (MMI) couplers and a phase shifter. Insertion loss (IL) below 0.2 dB and Extinction ratio (ER) higher than 20 dB in a broad bandwidth range of 1.5 μm to 1.6 μm have been estimated. The total length of the device is less than 30 μm.
Face hallucination using orthogonal canonical correlation analysis
NASA Astrophysics Data System (ADS)
Zhou, Huiling; Lam, Kin-Man
2016-05-01
A two-step face-hallucination framework is proposed to reconstruct a high-resolution (HR) version of a face from an input low-resolution (LR) face, based on learning from LR-HR example face pairs using orthogonal canonical correlation analysis (orthogonal CCA) and linear mapping. In the proposed algorithm, face images are first represented using principal component analysis (PCA). Canonical correlation analysis (CCA) with the orthogonality property is then employed, to maximize the correlation between the PCA coefficients of the LR and the HR face pairs to improve the hallucination performance. The original CCA does not own the orthogonality property, which is crucial for information reconstruction. We propose using orthogonal CCA, which is proven by experiments to achieve a better performance in terms of global face reconstruction. In addition, in the residual-compensation process, a linear-mapping method is proposed to include both the inter- and intrainformation about manifolds of different resolutions. Compared with other state-of-the-art approaches, the proposed framework can achieve a comparable, or even better, performance in terms of global face reconstruction and the visual quality of face hallucination. Experiments on images with various parameter settings and blurring distortions show that the proposed approach is robust and has great potential for real-world applications.
Nonlocality of orthogonal product basis quantum states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Wen, Qiao-Yan
2014-08-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum systems. In the Hilbert space of 3⊗3, Walgate and Hardy [Phys. Rev. Lett. 89, 147901 (2002), 10.1103/PhysRevLett.89.147901] presented a very simple proof for nonlocality of nine orthogonal product basis quantum states which are given by Bennett et al. [Phys. Rev. A 59, 1070 (1999), 10.1103/PhysRevA.59.1070]. In the quantum system of d⊗d, where d is odd, we construct d2 orthogonal product basis quantum states and prove these states are locally indistinguishable. Then we are able to construct some locally indistinguishable product basis quantum states in the multipartite systems. All these results reveal the phenomenon of "nonlocality without entanglement."
Orthogonal rational functions and tridiagonal matrices
NASA Astrophysics Data System (ADS)
Bultheel, A.; González-Vera, P.; Hendriksen, E.; Njåstad, O.
2003-04-01
We study the recurrence relation for rational functions whose poles are in a prescribed sequence of numbers that are real or infinite and that are orthogonal with respect to an Hermitian positive linear functional. We especially discuss the interplay between finite and infinite poles. The recurrence relation will also be described in terms of a tridiagonal matrix which is a generalization of the Jacobi. matrix of the polynomial situation which corresponds to placing all the poles at infinity. This matrix not only describes the recurrence relation, but it can be used to give a determinant expression for the orthogonal rational functions and it also allows for the formulation of a generalized eigenvalue problem whose eigenvalues are the zeros of an orthogonal rational function. These nodes can be used in rational Gauss-type quadrature formulas and the corresponding weights can be obtained from the first components of the corresponding eigenvectors.
Improved piecewise orthogonal signal correction algorithm.
Feudale, Robert N; Tan, Huwei; Brown, Steven D
2003-10-01
Piecewise orthogonal signal correction (POSC), an algorithm that performs local orthogonal filtering, was recently developed to process spectral signals. POSC was shown to improve partial leastsquares regression models over models built with conventional OSC. However, rank deficiencies within the POSC algorithm lead to artifacts in the filtered spectra when removing two or more POSC components. Thus, an updated OSC algorithm for use with the piecewise procedure is reported. It will be demonstrated how the mathematics of this updated OSC algorithm were derived from the previous version and why some OSC versions may not be as appropriate to use with the piecewise modeling procedure as the algorithm reported here. PMID:14639746
Time division multiplexed orbital angular momentum access system
NASA Astrophysics Data System (ADS)
Shi, Jianyang; Fang, Yuan; Chi, Nan
2016-03-01
We propose and experimentally demonstrate time division multiplexed orbital angular momentum (OAM) access system to increase transmission capacity and spectral efficiency. In this system, data carried on different time tributaries share the same OAM mode. Multiple time division multiplexed OAM modes are multiplexed to realize two-dimensional (time dimension and OAM dimension) multiplexing. Therefore, the capacity and spectral efficiency of the access system will increase. The orthogonality between optical time division multiplexing (OTDM) and OAM techniques is also verified in our experiment. In a proof-of-concept experiment, 2×5-Gbps return-to-zero signal over OAM mode +4 is transmitted and investigated. The bit error ratio performance after transmission in this system can be smaller than 1×10-9. Results show that the proposed time division multiplexed OAM access system is suitable for future broadband access network.
Wavelength-Division Multiplexing Of Bipolar Digital Signals
NASA Technical Reports Server (NTRS)
Gibbons, Ronnie D.; Ubele, John L., II
1994-01-01
In system, bipolar digital data transmitted by use of wavelength-division multiplexing on single optical fiber. Two different wavelengths used to transmit pulses signifying "positive" or "negative" bipolar digital data. Simultaneous absence of pulses at both wavelengths signifies digital "zero."
Nonlinear Submodels Of Orthogonal Linear Models
ERIC Educational Resources Information Center
Bechtel, Gordon G.
1973-01-01
It is the purpose of this paper to suggest the orthogonal analysis of variance as a device for simplifying either the analytic or iterative problem of finding LS (least squares) estimates for the parameters of particular nonlinear models. (Author/RK)
Multipartite invariant states. II. Orthogonal symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
The Rigid Orthogonal Procrustes Rotation Problem
ERIC Educational Resources Information Center
ten Berge, Jos M. F.
2006-01-01
The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has…
Border separation for adjacent orthogonal fields
Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )
1991-06-01
Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.
Three-Dimensional Orthogonal Co-ordinates
ERIC Educational Resources Information Center
Astin, J.
1974-01-01
A systematic approach to general orthogonal co-ordinates, suitable for use near the end of a beginning vector analysis course, is presented. It introduces students to tensor quantities and shows how equations and quantities needed in classical problems can be determined. (Author/LS)
A class of orthogonal nonrecursive binomial filters.
NASA Technical Reports Server (NTRS)
Haddad, R. A.
1971-01-01
The time- and frequency-domain properties of the orthogonal binomial sequences are presented. It is shown that these sequences, or digital filters based on them, can be generated using adders and delay elements only. The frequency-domain behavior of these nonrecursive binomial filters suggests a number of applications as low-pass Gaussian filters or as inexpensive bandpass filters.
Gram-Schmidt Orthogonalization by Gauss Elimination.
ERIC Educational Resources Information Center
Pursell, Lyle; Trimble, S. Y.
1991-01-01
Described is the hand-calculation method for the orthogonalization of a given set of vectors through the integration of Gaussian elimination with existing algorithms. Although not numerically preferable, this method adds increased precision as well as organization to the solution process. (JJK)
Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.
Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J
2015-12-01
Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics. PMID:26676997
Orthogonal Thin Film Photovoltaics on Vertical Nanostructures
NASA Astrophysics Data System (ADS)
Ahnood, Arman; Zhou, H.; Suzuki, Y.; Sliz, R.; Fabritius, T.; Nathan, Arokia; Amaratunga, G. A. J.
2015-12-01
Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.
SS{sub p}G: A strongly orthogonal geminal method with relaxed strong orthogonality
Cagg, Brett A. Rassolov, Vitaly A.
2014-10-28
Strong orthogonality is an important constraint placed on geminal wavefunctions in order to make variational minimization tractable. However, strong orthogonality prevents certain, possibly important, excited configurations from contributing to the ground state description of chemical systems. The presented method lifts strong orthogonality constraint from geminal wavefunction by computing a perturbative-like correction to each geminal independently from the corrections to all other geminals. The method is applied to the Singlet-type Strongly orthogonal Geminals variant of the geminal wavefunction. Comparisons of this new SS{sub p}G method are made to the non-orthogonal AP1roG and the unconstrained Geminal Mean-Field Configuration Interaction method using small atomic and molecular systems. The correction is also compared to Density Matrix Renormalization Group calculations performed on long polyene chains in order to assess its scalability and applicability to large strongly correlated systems. The results of these comparisons demonstrate that although the perturbative correction is small, it may be a necessary first step in the systematic improvement of any strongly orthogonal geminal method.
ERIC Educational Resources Information Center
Watson, Anne
2012-01-01
Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…
McDonald, H.C. Jr.
1962-12-18
A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)
Orthogonal photoswitching in a multifunctional molecular system
Lerch, Michael M.; Hansen, Mickel J.; Velema, Willem A.; Szymanski, Wiktor; Feringa, Ben L.
2016-01-01
The wavelength-selective, reversible photocontrol over various molecular processes in parallel remains an unsolved challenge. Overlapping ultraviolet-visible spectra of frequently employed photoswitches have prevented the development of orthogonally responsive systems, analogous to those that rely on wavelength-selective cleavage of photo-removable protecting groups. Here we report the orthogonal and reversible control of two distinct types of photoswitches in one solution, that is, a donor–acceptor Stenhouse adduct (DASA) and an azobenzene. The control is achieved by using three different wavelengths of irradiation and a thermal relaxation process. The reported combination tolerates a broad variety of differently substituted photoswitches. The presented system is also extended to an intramolecular combination of photoresponsive units. A model application for an intramolecular combination of switches is presented, in which the DASA component acts as a phase-transfer tag, while the azobenzene moiety independently controls the binding to α-cyclodextrin. PMID:27401266
Describing freeform surfaces with orthogonal functions
NASA Astrophysics Data System (ADS)
Ochse, D.; Uhlendorf, K.; Reichmann, L.
2015-09-01
In optical design with freeform surfaces descriptions of the surfaces are needed that use only few parameters and are suitable for optimisation. Depending on the merit function - spot size or wavefront error - and the position of the surface in the system, different surface types can yield different optimisation performance. It has been demonstrated by G. Forbes that slope orthogonal polynomials are an advantageous freeform description. From literature on Gaussian moments it is known that this can be achieved using differences of Zernike polynomials, which are easy to compute and implement with recent algorithms. We will demonstrate the benefits of Zernike polynomials with optimisation examples. Furthermore we present an orthogonal surface representation on a rectangular aperture based on Chebyshev polynomials. This description is very convenient when the aperture has a very high aspect ratio, or when designing a system with a rectangular pupil.
HOLA: Human-like Orthogonal Network Layout.
Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael
2016-01-01
Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand. PMID:26390483
Orthogonal gradient networks via post polymerization reaction
NASA Astrophysics Data System (ADS)
Chinnayan Kannan, Pandiyarajan; Genzer, Jan
2015-03-01
We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.
Orthogonalized operators for the f shell
Judd, B.R.; Crosswhite, H.
1984-04-01
Orthogonalized operators are introduced in the atomic configurations f/sup N/ in order to yield parameters that are more precisely defined and more stable than the conventional ones. Of the four Racah operators e/sub 0/, e/sub 1/, e/sub 2/, only e/sub 1/ needs adjusting. The set of two-electron scalars is made complete by the generalized Trees operators e/sub ..cap alpha../', e/sub ..beta../', and e/sub ..gamma../'. Of the three-electron scalars t/sub i/, only t/sub 2/ requires alteration. The theory is illustrated for f/sup 3/ by adding the orthogonalized operators in successive steps and comparing the fits with those obtained if the conventional operators are used.
Orthogonal nilpotent superfields from linear models
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Karlsson, Anna; Mosk, Benjamin; Murli, Divyanshu
2016-05-01
We derive supersymmetry/supergravity models with constrained orthogonal nilpotent superfields from the linear models in the formal limit where the masses of the sgoldstino, inflatino and sinflaton tend to infinity. The case where the sinflaton mass remains finite leads to a model with a `relaxed' constraint, where the sinflaton remains an independent field. Our procedure is equivalent to a requirement that some of the components of the curvature of the moduli space tend to infinity.
Stochastic processes with orthogonal polynomial eigenfunctions
NASA Astrophysics Data System (ADS)
Griffiths, Bob
2009-12-01
Markov processes which are reversible with either Gamma, Normal, Poisson or Negative Binomial stationary distributions in the Meixner class and have orthogonal polynomial eigenfunctions are characterized as being processes subordinated to well-known diffusion processes for the Gamma and Normal, and birth and death processes for the Poisson and Negative Binomial. A characterization of Markov processes with Beta stationary distributions and Jacobi polynomial eigenvalues is also discussed.
Orthogonal rational functions and quadrature on an interval
NASA Astrophysics Data System (ADS)
van Deun, J.; Bultheel, A.
2003-04-01
Rational functions with real poles and poles in the complex lower half-plane, orthogonal on the real line, are well known. Quadrature formulas similar to the Gauss formulas for orthogonal polynomials have been studied. We generalize to the case of arbitrary complex poles and study orthogonality on a finite interval. The zeros of the orthogonal rational functions are shown to satisfy a quadratic eigenvalue problem. In the case of real poles, these zeros are used as nodes in the quadrature formulas.
Nested Krylov methods and preserving the orthogonality
NASA Technical Reports Server (NTRS)
Desturler, Eric; Fokkema, Diederik R.
1993-01-01
Recently the GMRESR inner-outer iteraction scheme for the solution of linear systems of equations was proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski and Saad (FGMRES). The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction vector by approximately solving the residual equation. However, the optimality of the approximation over the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal corrections to the solution in the outer iteration, as components of the outer iteration directions may reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular, non-symmetric operator. We will discuss some important properties, and we will show by experiments that, in terms of matrix vector products, this modification (almost) always leads to better convergence. However, because we do more orthogonalizations, it does not always give an improved performance in CPU-time. Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer GCR process. The experimental results indicate that for such methods it is advantageous to preserve the orthogonality in the inner iteration. Of course we can also use iteration schemes other than GMRES as the inner method; methods with short recurrences like GICGSTAB are of interest.
Functional systems with orthogonal dynamic covalent bonds.
Wilson, Adam; Gasparini, Giulio; Matile, Stefan
2014-03-21
This review summarizes the use of orthogonal dynamic covalent bonds to build functional systems. Dynamic covalent bonds are unique because of their dual nature. They can be as labile as non-covalent interactions or as permanent as covalent bonds, depending on conditions. Examples from nature, reaching from the role of disulfides in protein folding to thioester exchange in polyketide biosynthesis, indicate how dynamic covalent bonds are best used in functional systems. Several synthetic functional systems that employ a single type of dynamic covalent bonds have been reported. Considering that most functional systems make simultaneous use of several types of non-covalent interactions together, one would expect the literature to contain many examples in which different types of dynamic covalent bonds are similarly used in tandem. However, the incorporation of orthogonal dynamic covalent bonds into functional systems is a surprisingly rare and recent development. This review summarizes the available material comprehensively, covering a remarkably diverse collection of functions. However, probably more revealing than the specific functions addressed is that the questions asked are consistently quite unusual, very demanding and highly original, focusing on molecular systems that can self-sort, self-heal, adapt, exchange, replicate, transcribe, or even walk and "think" (logic gates). This focus on adventurous chemistry off the beaten track supports the promise that with orthogonal dynamic covalent bonds we can ask questions that otherwise cannot be asked. The broad range of functions and concepts covered should appeal to the supramolecular organic chemist but also to the broader community. PMID:24287608
Orthogonal ion injection apparatus and process
Kurulugama, Ruwan T; Belov, Mikhail E
2014-04-15
An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.
Orthogonal NGS for High Throughput Clinical Diagnostics
Chennagiri, Niru; White, Eric J.; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S.; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J.; Mauceli, Evan; Margulies, David; Milos, Patrice M.; Napolitano, Nichole; Nizzari, Marcia M.; Yu, Timothy; Thompson, John F.
2016-01-01
Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly. PMID:27090146
Constrained predictive control using orthogonal expansions
Finn, C.K. ); Wahlberg, B. . Dept. of Automatic Control); Ydstie, B.E. . Dept. of Chemical Engineering)
1993-11-01
Orthogonal expansion is routinely used for multivariable predictive control and optimization in the chemical and petrochemical manufacturing industries. In this article, the authors approximate bounded operators by orthogonal expansion. The rate of convergence depends on the choice of basis functions. Markov-Laguerre functions give rapid convergence for open-loop stable systems with long delay. The Markov-Kautz model can be used for lightly damped systems, and a more general orthogonal expansion is developed for modeling multivariable systems with widely scattered poles. The finite impulse response model is a special case of these models. A-priori knowledge about dominant time constants, time delay and oscillatory modes is used to reduce the model complexity and to improve conditioning of the parameter estimation algorithm. Algorithms for predictive control are developed, as well as conditions for constraint compatibility, closed-loop stability and constraint satisfaction for the ideal case. An H[infinity]--like design technique proposed guarantees robust stability in the presence of input constraints; output constraints may give chatter. A chatter-free algorithm is proposed.
Chemical Engineering Division Activities
ERIC Educational Resources Information Center
Chemical Engineering Education, 1978
1978-01-01
The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)
ERIC Educational Resources Information Center
Thornton, Chich
1985-01-01
Some benefits of helping learners think in prime numbers are detailed. Reasons for the decay of this ability are described, with short division presented as one activity which should be reintroduced in schools. (MNS)
Structures and Acoustics Division
NASA Technical Reports Server (NTRS)
Acquaviva, Cynthia S.
1999-01-01
The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.
Structures and Acoustics Division
NASA Technical Reports Server (NTRS)
Acquaviva, Cynthia S.
2001-01-01
The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.
Momentum space orthogonal polynomial projection quantization
NASA Astrophysics Data System (ADS)
Handy, C. R.; Vrinceanu, D.; Marth, C. B.; Gupta, R.
2016-04-01
The orthogonal polynomial projection quantization (OPPQ) is an algebraic method for solving Schrödinger’s equation by representing the wave function as an expansion {{\\Psi }}(x)={\\displaystyle \\sum }n{{{Ω }}}n{P}n(x)R(x) in terms of polynomials {P}n(x) orthogonal with respect to a suitable reference function R(x), which decays asymptotically not faster than the bound state wave function. The expansion coefficients {{{Ω }}}n are obtained as linear combinations of power moments {μ }{{p}}=\\int {x}p{{\\Psi }}(x) {{d}}x. In turn, the {μ }{{p}}'s are generated by a linear recursion relation derived from Schrödinger’s equation from an initial set of low order moments. It can be readily argued that for square integrable wave functions representing physical states {{lim}}n\\to ∞ {{{Ω }}}n=0. Rapidly converging discrete energies are obtained by setting Ω coefficients to zero at arbitrarily high order. This paper introduces an extention of OPPQ in momentum space by using the representation {{Φ }}(k)={\\displaystyle \\sum }n{{{\\Xi }}}n{Q}n(k)T(k), where Q n (k) are polynomials orthogonal with respect to a suitable reference function T(k). The advantage of this new representation is that it can help solving problems for which there is no coordinate space moment equation. This is because the power moments in momentum space are the Taylor expansion coefficients, which are recursively calculated via Schrödinger’s equation. We show the convergence of this new method for the sextic anharmonic oscillator and an algebraic treatment of Gross-Pitaevskii nonlinear equation.
Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband
Nekoogar, Faranak; Dowla, Farid U.
2012-01-24
The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.
Heisenberg algebra, umbral calculus and orthogonal polynomials
Dattoli, G.; Levi, D.; Winternitz, P.
2008-05-15
Umbral calculus can be viewed as an abstract theory of the Heisenberg commutation relation [P,M]=1. In ordinary quantum mechanics, P is the derivative and M the coordinate operator. Here, we shall realize P as a second order differential operator and M as a first order integral one. We show that this makes it possible to solve large classes of differential and integrodifferential equations and to introduce new classes of orthogonal polynomials, related to Laguerre polynomials. These polynomials are particularly well suited for describing the so-called flatenned beams in laser theory.
Observations on the Proper Orthogonal Decomposition
NASA Technical Reports Server (NTRS)
Berkooz, Gal
1992-01-01
The Proper Orthogonal Decomposition (P.O.D.), also known as the Karhunen-Loeve expansion, is a procedure for decomposing a stochastic field in an L(2) optimal sense. It is used in diverse disciplines from image processing to turbulence. Recently the P.O.D. is receiving much attention as a tool for studying dynamics of systems in infinite dimensional space. This paper reviews the mathematical fundamentals of this theory. Also included are results on the span of the eigenfunction basis, a geometric corollary due to Chebyshev's inequality and a relation between the P.O.D. symmetry and ergodicity.
Analysis of chromatograph systems using orthogonal collocation
NASA Technical Reports Server (NTRS)
Woodrow, P. T.
1974-01-01
Research is generating fundamental engineering design techniques and concepts for the chromatographic separator of a chemical analysis system for an unmanned, Martian roving vehicle. A chromatograph model is developed which incorporates previously neglected transport mechanisms. The numerical technique of orthogonal collocation is studied. To establish the utility of the method, three models of increasing complexity are considered, the latter two being limiting cases of the derived model: (1) a simple, diffusion-convection model; (2) a rate of adsorption limited, inter-intraparticle model; and (3) an inter-intraparticle model with negligible mass transfer resistance.
Noncommutative Pfaffians associated with the orthogonal algebra
Artamonov, Dmitrii V; Golubeva, Valentina A
2012-12-31
Commutators of Pfaffians associated with the orthogonal algebra are found in skew-symmetric and root realizations of o{sub N}. A generating function of Pfaffians is proved to satisfy the reflection equation. A relation between Pfaffians in skew-symmetric and root realizations of o{sub N} is established. Using these results we construct an integrable equation of Knizhnik-Zamolodchikov type using the Capelli central elements in U(o{sub N}), which are sums of squares of the considered Pfaffians. A classical limit of the obtained Knizhnik-Zamolodchikov type equation turns out to be a very specific system of equations of isomonodromic deformations. Bibliography: 18 titles.
Coherent spin-transfer precession switching in orthogonal spin-torque devices
NASA Astrophysics Data System (ADS)
Ryan, Colm; Rowlands, Graham; Pinna, Daniele; Ye, Li; Rehm, Laura; Sluka, Volker; Kent, Andy; Ohki, Thomas
We present experimental results in concert with macrospin simulations of the switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 3.4K between parallel and anti-parallel spin-valve states is investigated for current pulses with varying durations from 0.1 to 1.4ns to observe the averaged response of the time dependent dynamics of the spin-transfer induced precession of the magnetization. We demonstrate high speed switching at short pulse lengths, down to 100ps, and also observe ensemble decoherence effects with longer pulses. The results show that even at cryogenic temperatures finite temperature noise is still important in the dynamics of precessional switching.
Geometric reconstruction of biological orthogonal plywoods.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2016-01-28
In this paper we focus on the structural determination of biological orthogonal plywoods, fiber-like composite analogues of liquid crystalline phases, where the fibrils of the building blocks show sharp 90° orientation jumps between fibers in adjacent domains. We present an original geometric and computational modelling that allows us to determine the fibrillary orientation in biological plywoods from periodic herringbone patterns commonly observed in cross-sections. Although herringbone patterns were long reported, the specific and quantitative relationships between herringbones and the orthogonal plywoods were absent or at best incomplete. Here we provide an efficient and new procedure to perform an inverse problem that connects two specific features of the herringbone patterns (aperture angle and wavelength) with the 3D morphology of the structure, whose accuracy and validity were ascertained through in silico simulations and also with real specimens ("Eremosphaera viridis"). This contribution extends significantly the better known characterization methods of 2D cross sections, such as the arced patterns observed in biological helicoidal plywoods, and with the present proposed methodology it adds another characterization tool for a variety of biological fibrous composites that form cornea-like tissues. PMID:26583687
Rhythm analysis of orthogonal signals from human walking.
Ekimov, Alexander; Sabatier, James M
2011-03-01
In physical terms, periodic movements of a human body resulting from walking produce a pulse sequence with repetition time T(1) (instant cadence frequency, 1/T(1)) and duration time T(2). Footstep forces generate periodic T(1) broadband seismic and sound signals due to the dynamic forces between the foot and the ground/floor with duration time T(2), which is equal to the time interval for a single footstep from heel strike to toe slap and weight transfer. In a human gait study (for normal speeds of walking), T(1) was detected as 0.5-0.69 s and double limb support takes up about 12% of the gait cycle (2T(1)), so T(2) is greater than 0.12-0.17 s. Short range (of about 50 m) signatures for 30 humans were recorded simultaneously by four orthogonal sensor types at two locations. The sensor types were active Doppler sonar/radar and passive seismic/acoustics. Analysis of signals from these four sensors collected for walking humans showed temporal synchronization and stability of the cadence frequencies, and the cadence frequency from each sensor was equivalent. The time delay between signals from these sensors due to the differences in speeds of propagation for seismic, sound, and electromagnetic waves allows calculation of the distance from a walker to the sensor suite. PMID:21428494
Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool
NASA Astrophysics Data System (ADS)
Cai, Yu; Sha, Shuang
2016-09-01
This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.
How orthogonal are the OBO Foundry ontologies?
2011-01-01
Background Ontologies in biomedicine facilitate information integration, data exchange, search and query of biomedical data, and other critical knowledge-intensive tasks. The OBO Foundry is a collaborative effort to establish a set of principles for ontology development with the eventual goal of creating a set of interoperable reference ontologies in the domain of biomedicine. One of the key requirements to achieve this goal is to ensure that ontology developers reuse term definitions that others have already created rather than create their own definitions, thereby making the ontologies orthogonal. Methods We used a simple lexical algorithm to analyze the extent to which the set of OBO Foundry candidate ontologies identified from September 2009 to September 2010 conforms to this vision. Specifically, we analyzed (1) the level of explicit term reuse in this set of ontologies, (2) the level of overlap, where two ontologies define similar terms independently, and (3) how the levels of reuse and overlap changed during the course of this year. Results We found that 30% of the ontologies reuse terms from other Foundry candidates and 96% of the candidate ontologies contain terms that overlap with terms from the other ontologies. We found that while term reuse increased among the ontologies between September 2009 and September 2010, the level of overlap among the ontologies remained relatively constant. Additionally, we analyzed the six ontologies announced as OBO Foundry members on March 5, 2010, and identified that the level of overlap was extremely low, but, notably, so was the level of term reuse. Conclusions We have created a prototype web application that allows OBO Foundry ontology developers to see which classes from their ontologies overlap with classes from other ontologies in the OBO Foundry (http://obomap.bioontology.org). From our analysis, we conclude that while the OBO Foundry has made significant progress toward orthogonality during the period of this
Beta-integrals and finite orthogonal systems of Wilson polynomials
Neretin, Yu A
2002-08-31
The integral is calculated and the system of orthogonal polynomials with weight equal to the corresponding integrand is constructed. This weight decreases polynomially, therefore only finitely many of its moments converge. As a result the system of orthogonal polynomials is finite. Systems of orthogonal polynomials related to {sub 5}H{sub 5}-Dougall's formula and the Askey integral is also constructed. All the three systems consist of Wilson polynomials outside the domain of positiveness of the usual weight.
Orthogonal canonical forms for second-order systems
NASA Technical Reports Server (NTRS)
Williams, Trevor; Laub, Alan J.
1992-01-01
It is shown that a linear second-order system with arbitrary damping cannot be reduced to Hessenberg-triangular form by means of orthogonal transformations. However, it is also shown that such an orthogonal reduction is always possible for the modal damping commonly assumed for models of flexible structures. It is shown that modally damped models can be orthogonally reduced to a new triangular second-order Schur form.
Multifunctional Surface Manipulation Using Orthogonal Click Chemistry.
Brooks, Karson; Yatvin, Jeremy; McNitt, Christopher D; Reese, R Alexander; Jung, Calvin; Popik, Vladimir V; Locklin, Jason
2016-07-01
Polymer brushes are excellent substrates for the covalent immobilization of a wide variety of molecules due to their unique physicochemical properties and high functional group density. By using reactive microcapillary printing, poly(pentafluorophenyl acrylate) brushes with rapid kinetic rates toward aminolysis can be partially patterned with other click functionalities such as strained cyclooctyne derivatives and sulfonyl fluorides. This trireactive surface can then react locally and selectively in a one pot reaction via three orthogonal chemistries at room temperature: activated ester aminolysis, strain promoted azide-alkyne cycloaddition, and sulfur(VI) fluoride exchange, all of which are tolerant of ambient moisture and oxygen. Furthermore, we demonstrate that these reactions can also be used to create areas of morphologically distinct surface features on the nanoscale, by inducing buckling instabilities in the films and the grafting of nanoparticles. This approach is modular, and allows for the development of highly complex surface motifs patterned with different chemistry and morphology. PMID:27280689
Confocal imaging with orthogonally polarized illumination beams
NASA Astrophysics Data System (ADS)
Kalita, Ranjan; Boruah, Bosanta R.
2016-03-01
In confocal microscopy the polarization of the illumination beam plays an important role in determining the orientation of the fluorescent molecules being illuminated. The efficiency of the excitation depends on the angle between the excitation electric field and the direction of the molecular dipole. In order to determine the orientation of the fluorescent molecules in the focal plane the molecules are to be excited using two mutually orthogonal electric fields. In this paper we show how a computer generated holography technique can be implemented using a ferroelectric liquid crystal spatial light modulator to conveniently obtain two images of the same target once with an X polarized illumination beam and another with a Y polarized illumination beam.
Response Surface Modeling Using Multivariate Orthogonal Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2001-01-01
A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.
Description of sunspot cycles by orthogonal functions
NASA Astrophysics Data System (ADS)
Teuber, D. L.; Reichmann, E. J.; Wilson, R. M.
1984-10-01
Based on the principal component analysis technique and evidence for a 22-yr double-sunspot cycle periodicity. The time series of sunspot numbers is represented as a sum of mutually orthogonal eigenvectors in the time domain. It is shown that the first two eigenvectors account for about 90 percent of the cumulative 'signal power,' and that this is sufficient for reconstruction of the raw data curve. It is also noted that the second eigenvector behaves as the time derivative of the first, and that a phase-plane plot of these eigenvectors (i.e. a plot of a variable vs. its rate of change) suggests that the sun's sunspot cycle is driven by an oscillator; the implication is that, embedded within the sun, a chronometer is at work (e.g. Dicke, 1979).
Description of sunspot cycles by orthogonal functions
NASA Technical Reports Server (NTRS)
Teuber, D. L.; Reichmann, E. J.; Wilson, R. M.
1984-01-01
Based on the principal component analysis technique and evidence for a 22-yr double-sunspot cycle periodicity. The time series of sunspot numbers is represented as a sum of mutually orthogonal eigenvectors in the time domain. It is shown that the first two eigenvectors account for about 90 percent of the cumulative 'signal power,' and that this is sufficient for reconstruction of the raw data curve. It is also noted that the second eigenvector behaves as the time derivative of the first, and that a phase-plane plot of these eigenvectors (i.e. a plot of a variable vs. its rate of change) suggests that the sun's sunspot cycle is driven by an oscillator; the implication is that, embedded within the sun, a chronometer is at work (e.g. Dicke, 1979).
Orthogonal polynomials for refinable linear functionals
NASA Astrophysics Data System (ADS)
Laurie, Dirk; de Villiers, Johan
2006-12-01
A refinable linear functional is one that can be expressed as a convex combination and defined by a finite number of mask coefficients of certain stretched and shifted replicas of itself. The notion generalizes an integral weighted by a refinable function. The key to calculating a Gaussian quadrature formula for such a functional is to find the three-term recursion coefficients for the polynomials orthogonal with respect to that functional. We show how to obtain the recursion coefficients by using only the mask coefficients, and without the aid of modified moments. Our result implies the existence of the corresponding refinable functional whenever the mask coefficients are nonnegative, even when the same mask does not define a refinable function. The algorithm requires O(n^2) rational operations and, thus, can in principle deliver exact results. Numerical evidence suggests that it is also effective in floating-point arithmetic.
Inverse solutions for tilting orthogonal double prisms.
Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren
2014-06-10
An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields. PMID:24921137
Orthogonal patterns in binary neural networks
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
A binary neural network that stores only mutually orthogonal patterns is shown to converge, when probed by any pattern, to a pattern in the memory space, i.e., the space spanned by the stored patterns. The latter are shown to be the only members of the memory space under a certain coding condition, which allows maximum storage of M=(2N) sup 0.5 patterns, where N is the number of neurons. The stored patterns are shown to have basins of attraction of radius N/(2M), within which errors are corrected with probability 1 in a single update cycle. When the probe falls outside these regions, the error correction capability can still be increased to 1 by repeatedly running the network with the same probe.
Measuring the orthogonality error of coil systems
Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.
2012-01-01
Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.
LOCC indistinguishable orthogonal product quantum states
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-07-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.
LOCC indistinguishable orthogonal product quantum states
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-01-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310
LOCC indistinguishable orthogonal product quantum states.
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-01-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of (2k+i) ⊗ (2l+j) (i, j ∈ {0, 1} and i ≥ j ) and (3k+i) ⊗ (3l+j) (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of (3k+i) ⊗ (3l+j) is more generalized than the other construction such as Wang et al.'s construction and Zhang et al.'s construction, because it contains the quantum system of not only (2k) ⊗ (2l) and (2k+1) ⊗ (2l) but also (2k) ⊗ (2l+1) and (2k+1) ⊗ (2l+1). We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of (2k) ⊗ (2l) in Wang et al.'s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310
| Division of Cancer Prevention
The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.
Green, P.H.; Watson, D.M.
1989-08-01
This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)
ERIC Educational Resources Information Center
Pope, Sue
2012-01-01
Of the "big four", division is likely to regarded by many learners as "the odd one out", "the difficult one", "the one that is complicated", or "the scary one". It seems to have been that way "for ever", in the perception of many who have trodden the learning pathways through the world of number. But, does it have to be like this? Clearly the…
The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.
Anticrossproducts and cross divisions.
de Leva, Paolo
2008-01-01
This paper defines, in the context of conventional vector algebra, the concept of anticrossproduct and a family of simple operations called cross or vector divisions. It is impossible to solve for a or b the equation axb=c, where a and b are three-dimensional space vectors, and axb is their cross product. However, the problem becomes solvable if some "knowledge about the unknown" (a or b) is available, consisting of one of its components, or the angle it forms with the other operand of the cross product. Independently of the selected reference frame orientation, the known component of a may be parallel to b, or vice versa. The cross divisions provide a compact and insightful symbolic representation of a family of algorithms specifically designed to solve problems of such kind. A generalized algorithm was also defined, incorporating the rules for selecting the appropriate kind of cross division, based on the type of input data. Four examples of practical application were provided, including the computation of the point of application of a force and the angular velocity of a rigid body. The definition and geometrical interpretation of the cross divisions stemmed from the concept of anticrossproduct. The "anticrossproducts of axb" were defined as the infinitely many vectors x(i) such that x(i)xb=axb. PMID:18423647
Division XII Business Meetings
NASA Astrophysics Data System (ADS)
Smith, Malcolm G.; Genova, Francoise; Anderson, Johannes; Federman, Steven R.; Gilmore, Alan C.; Nha, Il-Seong; Norris, Raymond P.; Robson, Ian E.; Stavinschi, Magda G.; Trimble, Virginia L.; Wainscoat, Richard J.
2010-05-01
Brief meetings were held to confirm the elections of the incoming Division President, Francoise Genova and Vice President, Ray Norris along with the Organizing Committee which will consist of the incoming Presidents of the 7 Commissions (5,6,14,41,46,50 and 55) plus additional nominated members. The incoming Organizing Committee will thus consist of:
NASA Astrophysics Data System (ADS)
Park, Junbo; Ralph, D. C.; Buhrman, R. A.
2013-12-01
We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, CP = PIPP/POPP, results in deterministic switching of the free layer without over-rotation (360° rotation). By using spin torque asymmetry to realize an enhanced effective PIPP, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum CP required to attain deterministic switching, while retaining low critical switching current, Ip ˜ 500 μA.
Hofherr, Matthias; Wetzstein, Olaf; Engert, Sonja; Ortlepp, Thomas; Berg, Benjamin; Ilin, Konstantin; Henrich, Dagmar; Stolz, Ronny; Toepfer, Hannes; Meyer, Hans-Georg; Siegel, Michael
2012-12-17
We propose an efficient multiplexing technique for superconducting nanowire single-photon detectors based on an orthogonal detector bias switching method enabling the extraction of the average count rate of a set of detectors by one readout line. We implemented a system prototype where the SNSPDs are connected to an integrated cryogenic readout and a pulse merger system based on rapid single flux quantum (RSFQ) electronics. We discuss the general scalability of this concept, analyze the environmental requirements which define the resolvability and the accuracy and demonstrate the feasibility of this approach with experimental results for a SNSPD array with four pixels. PMID:23263106
Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse
NASA Technical Reports Server (NTRS)
Yeh, C.; Bergman, L.
1997-01-01
A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.
Wu, Beilei; Zhu, Ming; Zhang, Junwen; Wang, Jing; Xu, Mu; Yan, Fengping; Jian, Shuisheng; Chang, Gee-Kung
2015-07-13
We propose and experimentally demonstrate a full-duplex radio-over-fiber (RoF) system with colorless upstream transmission based on orthogonal phase-correlated modulation (OPM). This new OPM scheme, which realized by a polarization rotator (PR) and a single-driver Mach-Zahnder modulator (MZM) at the central office (CO), achieves polarization-orthogonality between the optical carrier (OC) and subcarriers generated by radio frequency (RF) signals. By adjusting a polarization controller (PC) in the remote access units (RAU), different modulation schemes can be flexibly implemented, e.g. double-sideband (DSB) modulation for low RF service and optical carrier suppression (OCS) modulation for millimeter-wave (mm-wave) service. In the meantime, the OC can be reused for the upstream transmission without any filtering and additional PC. A proof-of-concept experiment is conducted to demonstrate the feasibility of proposed scheme, where downstream 800-Mb/s orthogonal frequency division multiplexing (OFDM) signal at 58 GHz as an mm-wave service and 800-Mb/s OFDM signal at 0.3 GHz as a low frequency wireless service, as well as an upstream 1-Gb/s on-off keying (OOK) are simultaneously delivered in a shared architecture. By providing heterogeneous services and colorless upstream transmission, the proposed architecture can be seamlessly integrated in wavelength division multiplexing passive optical network (WDM-PON). PMID:26191889
Optical code division multiplexed fiber Bragg grating sensing networks
NASA Astrophysics Data System (ADS)
Triana, Cristian; Varón, Margarita; Pastor, Daniel
2015-09-01
We present the application of Optical Code Division Multiplexing (OCDM) techniques in order to enhance the spectral operation and detection capability of fiber Bragg grating (FBG) sensors networks even under overlapping conditions. In this paper, Optical Orthogonal Codes (OOC) are used to design FBG sensors composed of more than one reflection band. Simulation of the interaction between the encoded Gaussian-shaped sensors is presented. Signal decoding is performed in the electrical domain without requiring additional optical components by means of the autocorrelation product between the reflected spectrum and each sensor-codeword. Results illustrate the accuracy and distinction capability of the method.
The Gibbs Phenomenon for Series of Orthogonal Polynomials
ERIC Educational Resources Information Center
Fay, T. H.; Kloppers, P. Hendrik
2006-01-01
This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…
A new method testing the orthogonality of different protecting groups.
Ágoston, Károly; Ágoston, Ágnes; Dorgan, Colin R; Fügedi, Péter
2015-12-11
A new test was elaborated to identify a new set of orthogonal protecting groups. With the developed method eight different protecting groups were tested under various deprotection conditions and the complex reaction mixtures were analysed by HPLC. The developed method allows for quick identification of orthogonality using simple model structures. PMID:26580711
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
SUSTAINABLE TECHNOLOGY DIVISION - HOME PAGE
The mission of the Sustainable Technology Division is to advance the scientific understanding, development and application of technologies and methods for prevention, removal and control of environmental risks to human health and ecology. The Division is organized into four bra...
NASA Astrophysics Data System (ADS)
Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval
2010-05-01
The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: “Historic Radio Astronomy WG” by Wayne Orchiston, “Astrophysically Important Lines WG” by Masatoshi Ohishi, and “Global VLBI WG” by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of “Interference Mitigation WG” was located in the third session.
NASA Technical Reports Server (NTRS)
Applewhite, John
2011-01-01
This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.
Experimental quantum cryptography scheme based on orthogonal states: preliminary results
NASA Astrophysics Data System (ADS)
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo P.; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-04-01
Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75 (7), pp. 12391243, 1995] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets which travel along separate channels, i.e. two different paths inside a balanced Mach-Zehnder interferometer. Here we present an experiment realizing this scheme.
NASA Astrophysics Data System (ADS)
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.
Biorepositories | Division of Cancer Prevention
Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.
Division Quilts: A Measurement Model
ERIC Educational Resources Information Center
Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri
2015-01-01
As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…
USACE DIVISION AND DISTRICT BOUNDARIES
The USACE Division and District Boundary data contains the delination of Corps Division and District boundaries. District and Division Boundaries are based on the US political and watershed boundaries. In the mid 1990's, WES created the file by digitizing the 1984 Civil Wor...
Approximate Orthogonal Sparse Embedding for Dimensionality Reduction.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Yang, Jian; Zhang, David
2016-04-01
Locally linear embedding (LLE) is one of the most well-known manifold learning methods. As the representative linear extension of LLE, orthogonal neighborhood preserving projection (ONPP) has attracted widespread attention in the field of dimensionality reduction. In this paper, a unified sparse learning framework is proposed by introducing the sparsity or L1-norm learning, which further extends the LLE-based methods to sparse cases. Theoretical connections between the ONPP and the proposed sparse linear embedding are discovered. The optimal sparse embeddings derived from the proposed framework can be computed by iterating the modified elastic net and singular value decomposition. We also show that the proposed model can be viewed as a general model for sparse linear and nonlinear (kernel) subspace learning. Based on this general model, sparse kernel embedding is also proposed for nonlinear sparse feature extraction. Extensive experiments on five databases demonstrate that the proposed sparse learning framework performs better than the existing subspace learning algorithm, particularly in the cases of small sample sizes. PMID:25955995
Directional lapped orthogonal transform: theory and design.
Muramatsu, Shogo; Han, Dandan; Kobayashi, Tomoya; Kikuchi, Hisakazu
2012-05-01
This paper proposes a directional design method of 2-D nonseparable linear-phase paraunitary filter banks. The proposed method is based on a lattice structure consisting of the 2-D separable DCT block and nonseparable support extension processes. Because of the nonseparability, the bases are allowed to be directional with the critically fixed subsampling, overlapping, orthogonal, symmetric, real-valued, and compact support properties. First, a novel vanishing moment (VM) condition is introduced as a suitable directional constraint, where the moment is referred to as the trend VM. The condition forces wavelet filters, i.e., high-pass and bandpass filters, to annihilate trend-surface components. Second, some theoretical properties of TVMs are discussed for general 2-D paraunitary systems, and then, the properties are applied to the lattice parameters. In order to verify the significance, several design examples are shown, the trend-surface annihilation properties are numerically confirmed, and the denoising capability is evaluated for images through shrinkage. It is shown that our proposed transforms yield perceptually preferable results. PMID:22231175
Anatomy of lithosphere necking during orthogonal rifting
NASA Astrophysics Data System (ADS)
Nestola, Yago; Cavozzi, Cristian; Storti, Fabrizio
2013-04-01
The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal-state of rifted margin. The necking shape depends on several parameters, including the extensional strain-rate and thermal layering of the lithosphere. Despite a large number of analogue and numerical modelling studies on lithosphere extension, a quantitative description of the evolution of necking through time is still lacking. We used analogue modelling to simulate in three-dimension the progression of lithosphere thinning and necking during orthogonal rifting. In our models we simulated a typical "cold and young" 4-layer lithosphere stratigraphy: brittle upper crust (loose quartz sand), ductile lower crust (silicon-barite mixture), brittle upper mantle (loose quartz sand), and ductile lower mantle (silicon-barite mixture). The experimental lithosphere rested on a glucose syrup asthenosphere. We monitored model evolution by periodic and coeval laser scanning of both the surface topography and the lithosphere base. After model completion, each of the four layers was removed and the top of the underlying layer was scanned. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for both the whole lithosphere (βz) and the crust (γ). The area of incremental effective stretching (βy) parallel to the extensional direction was obtained from the βz maps.
The Representation and Parametrization of Orthogonal Matrices.
Shepard, Ron; Brozell, Scott R; Gidofalvi, Gergely
2015-07-16
Four representations and parametrizations of orthogonal matrices Q ∈ R(m×n) in terms of the minimal number of essential parameters {φ} are discussed: the exponential representation, the Householder reflector representation, the Givens rotation representation, and the rational Cayley transform representation. Both square n = m and rectangular n < m situations are considered. Two separate kinds of parametrizations are considered: one in which the individual columns of Q are distinct, the Stiefel manifold, and the other in which only span(Q) is significant, the Grassmann manifold. The practical issues of numerical stability, continuity, and uniqueness are discussed. The computation of Q in terms of the essential parameters {φ}, and also the extraction of {φ} for a given Q are considered for all of the parametrizations. The transformation of gradient arrays between the Q and {φ} variables is discussed for all representations. It is our hope that developers of new methods will benefit from this comparative presentation of an important but rarely analyzed subject. PMID:25946418
Genuinely multipartite entangled states and orthogonal arrays
NASA Astrophysics Data System (ADS)
Goyeneche, Dardo; Życzkowski, Karol
2014-08-01
A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, which we call a k-uniform state, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudit Greenberger-Horne-Zeilinger states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N >5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Furthermore, we establish links between the existence of k-uniform states and classical and quantum error correction codes and provide a graph representation for such states.
A reduced basis localized orthogonal decomposition
NASA Astrophysics Data System (ADS)
Abdulle, Assyr; Henning, Patrick
2015-08-01
In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite Element space into a low dimensional space with comparably good approximation properties and a remainder space with negligible information. The low dimensional space is spanned by locally supported basis functions associated with the node of a coarse mesh obtained by solving decoupled local problems. However, for parameter dependent multiscale problems, the local basis has to be computed repeatedly for each choice of the parameter. To overcome this issue, we propose an RB approach to compute in an "offline" stage LOD for suitable representative parameters. The online solution of the multiscale problems can then be obtained in a coarse space (thanks to the LOD decomposition) and for an arbitrary value of the parameters (thanks to a suitable "interpolation" of the selected RB). The online RB-LOD has a basis with local support and leads to sparse systems. Applications of the strategy to both linear and nonlinear problems are given.
Nonambipolarity, orthogonal conductivity, poloidal flow, and torque
Hulbert, G.W.; Perkins, F.W.
1989-02-01
Nonambipolar processes, such as neutral injection onto trapped orbits or ripple-diffusion loss of ..cap alpha..-particles, act to charge a plasma. A current j/sub r/ across magnetic surfaces must arise in the bulk plasma to maintain charge neutrality. An axisymmetric, neoclassical model of the bulk plasma shows that these currents are carried by the ions and exert a j/sub r/B/sub theta/R/c torque in the toroidal direction. A driven poloidal flow V/sub theta/ = E/sub r/'c/B must also develop. The average current density
Quantum nonlocality of multipartite orthogonal product states
NASA Astrophysics Data System (ADS)
Xu, Guang-Bao; Wen, Qiao-Yan; Qin, Su-Juan; Yang, Ying-Hui; Gao, Fei
2016-03-01
Local distinguishability of orthogonal quantum states is an area of active research in quantum information theory. However, most of the relevant results are about local distinguishability in bipartite Hilbert space and very little is known about the multipartite case. In this paper we present a generic method to construct a completable n -partite (n ≥3 ) product basis with only 2 n members, which exhibits nonlocality without entanglement with n parties, each holding a system of any finite dimension. We give an effective proof of the nonlocality of the completable multipartite product basis. In addition, we construct another incomplete multipartite product basis with a smaller number of members that cannot be distinguished by local operations and classical communication in a d1⊗d2⊗⋯⊗dn quantum system, where n ≥3 and di≥2 for i =1 ,2 ,...,n . The results can lead to a better understanding of the phenomenon of nonlocality without entanglement in any multipartite quantum system.
Lopez-Valladares, Gloria; Danielsson-Tham, Marie-Louise; Goering, Richard V; Tham, Wilhelm
2015-05-01
The 63 pulsed-field gel electrophoresis (PFGE) types identified among 427 clinical isolates of Listeria monocytogenes that were characterized in a previous study by serotyping and PFGE (AscI) could be further divided into 17 PFGE groups. While the 63 PFGE types, all part of lineage I, were established based on the number and distribution of all bands in each DNA profile, the 17 PFGE groups were based on the configuration of small bands with sizes <145.5 kb. The 30 PFGE types of L. monocytogenes serovar 4b isolates (n=334) were divided into 8 PFGE groups; the 32 PFGE types of serovar 1/2b isolates (n=90) and the serovar 3b isolates (n=3, 1 PFGE type) were divided into 9 PFGE groups. An association was observed between PFGE groups and serovars. L. monocytogenes isolates belonging to PFGE groups I, J, Q, R, X, Z, Ö-4, and Ö-5 all shared serovar 4b, whereas isolates from PFGE groups D, G, O, P, T, U, Ö-1, Ö-2, and Ö-3 shared serovar 1/2b. Small fragments <33.3 kb were nonvisible in all L. monocytogenes isolates. From the results of the present study, a procedure for accelerating the identification of PFGE types when analyzing new PFGE profiles can be suggested. Therefore, we propose a stepwise procedure to PFGE profiling by first identifying the PFGE group using the smaller band patterns <145.5 kb, and then determining PFGE types based on the band patterns >145.5 kb. PMID:25803595
Encoding and decoding of femtosecond pulses.
Weiner, A M; Heritage, J P; Salehi, J A
1988-04-01
We demonstrate the spreading of femtosecond optical pulses into picosecond-duration pseudonoise bursts. Spreading is accomplished by encoding pseudorandom binary phase codes onto the optical frequency spectrum. Subsequent decoding of the spectral phases restores the original pulse. We propose that frequency-domain encoding and decoding of coherent ultrashort pulses could form the basis for a rapidly reconfigurable, code-division multiple-access optical telecommunications network. PMID:19745879
Ultrashort pulse propagation in multiple-grating fiber structures.
Chen, L R; Benjamin, S D; Smith, P W; Sipe, J E; Juma, S
1997-03-15
We propose a multiple-grating fiber structure that decomposes an ultrashort broadband optical pulse simultaneously in both wavelength and time. As an initial demonstration, we used a transform-limited 1-ps Gaussian pulse centered at 1.55 mu;m as the ultrashort broadband input into a three-grating fiber structure and generated three output pulses separated in wavelength and time with good correlation between experimental results and simulations. This device structure can be used to generate a multiwavelength train of pulses for use in wavelength-division-multiplexed systems or to implement frequency-domain encoding of coherent pulses for optical code-division multiple access. PMID:18183215
Polar Plate Theory for Orthogonal Anisotropy
NASA Technical Reports Server (NTRS)
Bailey, Michelle D.; Bower, Mark V.
2000-01-01
Laminated fiber-reinforced (or filamentary) composites are used today for their high strength-to-weight and stiffness-to-weight ratios. However, because of the anisotropic behavior of composites, determining the response on a macroscopic scale is challenging. This is particularly evident in the evaluation of the governing differential equations of a circular disk with the fibers of the lamina oriented with rectilinear orthogonality. This includes any situation involving a composite plate of circular geometry in which out-of-plane displacements due to load are desired, such as fastener pull through loading of a composite plate. Current analysis techniques use numerical methods with rectilinear coordinate systems to solve problems with circular geometry. These analyses over predict plate stiffness by 20% and underpredict failure by 70%. Consequently, there is a need to transform classical composite plate theory to a polar coordinate system. In order to better analyze structures with circular geometries the classical composite plate equations are transformed into the plate equations for a rectilinearly anisotropic composite in polar coordinates. A composite plate is typically a laminate of fibers in rectilinear directions. Subsequent to the lay-tip the necessary geometry is cut out of a rectangular plate. In a similar manner, the derivation of the plate equation starts with the fundamental definitions of strain, displacement and curvature and incorporates the material property angular dependence into the equilibrium equations for a differential polar element. In the transformed state, the stiffness coefficients are no longer constant, adding to the complexity of the governing differential equations. This paper discusses the new derivation and evaluation of the plate equations for a circular composite disk with orthogonal rectilinear anisotropy. The resultant new three partial differential equations, which describe the circular anisotropic plate, can be used to
Ocean Models and Proper Orthogonal Decomposition
NASA Astrophysics Data System (ADS)
Salas-de-Leon, D. A.
2007-05-01
The increasing computational developments and the better understanding of mathematical and physical systems resulted in an increasing number of ocean models. Long time ago, modelers were like a secret organization and recognize each other by using secret codes and languages that only a select group of people was able to recognize and understand. The access to computational systems was reduced, on one hand equipment and the using time of computers were expensive and restricted, and on the other hand, they required an advance computational languages that not everybody wanted to learn. Now a days most college freshman own a personal computer (PC or laptop), and/or have access to more sophisticated computational systems than those available for research in the early 80's. The resource availability resulted in a mayor access to all kind models. Today computer speed and time and the algorithms does not seem to be a problem, even though some models take days to run in small computational systems. Almost every oceanographic institution has their own model, what is more, in the same institution from one office to the next there are different models for the same phenomena, developed by different research member, the results does not differ substantially since the equations are the same, and the solving algorithms are similar. The algorithms and the grids, constructed with algorithms, can be found in text books and/or over the internet. Every year more sophisticated models are constructed. The Proper Orthogonal Decomposition is a technique that allows the reduction of the number of variables to solve keeping the model properties, for which it can be a very useful tool in diminishing the processes that have to be solved using "small" computational systems, making sophisticated models available for a greater community.
Perturbations around the zeros of classical orthogonal polynomials
NASA Astrophysics Data System (ADS)
Sasaki, Ryu
2015-04-01
Starting from degree N solutions of a time dependent Schrödinger-like equation for classical orthogonal polynomials, a linear matrix equation describing perturbations around the N zeros of the polynomial is derived. The matrix has remarkable Diophantine properties. Its eigenvalues are independent of the zeros. The corresponding eigenvectors provide the representations of the lower degree ( 0 , 1 , … , N - 1 ) polynomials in terms of the zeros of the degree N polynomial. The results are valid universally for all the classical orthogonal polynomials, including the Askey scheme of hypergeometric orthogonal polynomials and its q-analogues.
Subjective ranking of concert halls substantiated through orthogonal objective parameters.
Cerdá, Salvador; Giménez, Alicia; Cibrián, Rosa; Girón, Sara; Zamarreño, Teófilo
2015-02-01
This paper studies the global subjective assessment, obtained from mean values of the results of surveys addressed to members of the audience of live concerts in Spanish auditoriums, through the mean values of the three orthogonal objective parameters (Tmid, IACCE3, and LEV), expressed in just noticeable differences (JNDs), regarding the best-valued hall. Results show that a linear combination of the relative variations of orthogonal parameters can largely explain the overall perceived quality of the sample. However, the mean values of certain orthogonal parameters are not representative, which shows that an alternative approach to the problem is necessary. Various possibilities are proposed. PMID:25697992
NASA Astrophysics Data System (ADS)
Li, Chuan-qi; Yang, Meng-jie; Zhang, Xiu-rong; Chen, Mei-juan; He, Dong-dong; Fan, Qing-bin
2014-07-01
A construction scheme of variable-weight optical orthogonal codes (VW-OOCs) for asynchronous optical code division multiple access (OCDMA) system is proposed. According to the actual situation, the code family can be obtained by programming in Matlab with the given code weight and corresponding capacity. The formula of bit error rate (BER) is derived by taking account of the effects of shot noise, avalanche photodiode (APD) bulk, thermal noise and surface leakage currents. The OCDMA system with the VW-OOCs is designed and improved. The study shows that the VW-OOCs have excellent performance of BER. Despite of coming from the same code family or not, the codes with larger weight have lower BER compared with the other codes in the same conditions. By taking simulation, the conclusion is consistent with the analysis of BER in theory. And the ideal eye diagrams are obtained by the optical hard limiter.
Coracoacromial ligament division.
Johansson, J E; Barrington, T W
1984-01-01
The object of this paper is to report on the findings of a retrospective study of 40 patients with 41 shoulders with persistent painful arc syndrome secondary to a chronic coracoacromial ligament inflammation who underwent simple coracoacromial ligament division at the Toronto East General and Orthopaedic Hospital between January 1973 and June 1979. Initial therapy was always nonoperative. Surgical intervention was reserved for patients who did not respond to conservative management and who had a painful arc with tenderness of the coracoacromial ligament. The aim of the coracoacromial ligament division was to relieve impingement by releasing the coracoacromial arch. Patients were carefully examined to rule out associated neck pathology, rotator cuff problems, and lesions of the acromioclavicular joint. Any patients with significantly large osteophytes under the anterior acromion were excluded. Forty patients (41 shoulders) were questioned and examined in followup. There were 29 males and 11 females. The ages ranged from 21 to 72 years (average 43.5 years). In 21 shoulders (51%), there was a history of trauma as the initiating factor. The follow-up ranged from 8 to 76 months (average 36.3 months). According to a described rating system, the results were satisfactory to excellent in 39 of 41 shoulders (95%) and unsatisfactory in two of 41 shoulders (5%). The back to work time ranged from 1 to 16 weeks (average 5.7 weeks).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6742288
Performance investigation of optical multicast overlay system using orthogonal modulation format
NASA Astrophysics Data System (ADS)
Singh, Simranjit; Singh, Sukhbir; Kaur, Ramandeep; Kaler, R. S.
2015-03-01
We proposed a bandwidth efficient wavelength division multiplexed-passive optical network (WDM-PON) to simultaneously transmit 60 Gb/s unicast and 10 Gb/s multicast services with 10 Gb/s upstream. The differential phase shift keying (DPSK) multicast signal is superimposed onto multiplexed non-return to zero/polarization shift keying (NRZ/PolSK) orthogonal modulated data signals. Upstream amplitude shift keying (ASK) signals formed without use of any additional light source and superimposed onto received unicast NRZ/PolSK signal before being transmitted back to optical line terminal (OLT). We also investigated the proposed WDM-PON system for variable optical input power, transmission distance of single mode fiber in multicast enable and disable mode. The measured Quality factor for all unicast and multicast signal is in acceptable range (>6). The original contribution of this paper is to propose a bandwidth efficient WDM-PON system that could be projected even in high speed scenario at reduced channel spacing and expected to be more technical viable due to use of optical orthogonal modulation formats.
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks.
Zhou, Jianping; Do, Minh N; Kovaĉević, Jelena
2006-02-01
We characterize and design multidimensional (MD) orthogonal filter banks using special paraunitary matrices and the Cayley transform. Orthogonal filter banks are represented by paraunitary matrices in the polyphase domain. We define special paraunitary matrices as paraunitary matrices with unit determinant. We show that every paraunitary matrix can be characterized by a special paraunitary matrix and a phase factor. Therefore, the design of paraunitary matrices (and thus of orthogonal filter banks) becomes the design of special paraunitary matrices, which requires a smaller set of nonlinear equations. Moreover, we provide a complete characterization of special paraunitary matrices in the Cayley domain, which converts nonlinear constraints into linear constraints. Our method greatly simplifies the design of MD orthogonal filter banks and leads to complete characterizations of such filter banks. PMID:16479821
Direct Orthogonal Distance to Quadratic Surfaces in 3D.
Lott, Gus K
2014-09-01
Discovering the orthogonal distance to a quadratic surface is a classic geometric task in vision, modeling, and robotics. I describe a simple, efficient, and stable direct solution for the orthogonal distance (foot-point) to an arbitrary quadratic surface from a general finite 3D point. The problem is expressed as the intersection of three quadratic surfaces, two of which are derived from the requirement of orthogonality of two non-coincident planes with the tangent plane to the quadric. A sixth order single-variable polynomial is directly generated in one coordinate of the surface point. The method detects intersection points at infinity and operates smoothly across all real quadratic surface classes. The method also geometrically detects continuums of orthogonal points (i.e., from the exact center of a sphere). I discuss algorithm performance, compare it to a state-of-the-art estimator, demonstrate the algorithm on synthetic data, and describe extension to arbitrary dimension. PMID:26352239
13. Credit JTL: Detail, orthogonal view of Egyptian Revivial decorative ...
13. Credit JTL: Detail, orthogonal view of Egyptian Revivial decorative motifs used typically at midpoints of diagonals - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA
A proof of van Aubel's theorem using orthogonal vectors
NASA Astrophysics Data System (ADS)
Glaister, P.
2016-04-01
We show how two linearly independent vectors can be used to construct two orthogonal vectors of equal magnitude in a simple way. The proof that the constructed vectors are orthogonal and of equal magnitude is a good exercise for students studying properties of scalar and vector triple products. We then show how this result can be used to prove van Aubel's theorem that relates the two line segments joining the centres of squares on opposite sides of a plane quadrilateral.
Expansion and orthogonalization of measured modes for structure identification
NASA Technical Reports Server (NTRS)
Smith, Suzanne Weaver
1989-01-01
The purpose was to investigate a new simultaneous expansion/orthogonalization method in comparison with two previously published expansion methods and a widely used orthogonalization technique. Each expansion method uses data from an analytical model of the structure to complete the estimate of the mode shape vectors. Berman and Nagy used Guyan expansion in their work with improving analytical models. In this method, modes are expanded one at a time, producing a set not orthogonal with respect to the mass matrix. Baruch and Bar Itzhack's optimal orthogonalization procedure was used to subsequently adjust the expanded modes. A second expansion technique was presented by O'Callahan, Avitabile, and Reimer and separately by Kammer. Again, modes are expanded individually and orthogonalized after expansion with the same optimal technique as above. Finally, a simultaneous expansion/orthogonalization method was developed from the orthogonal Procrustes problem of computational mathematics. In this method modes are optimally expanded as a set and orthogonal with respect to the mass matrix as a result. Two demonstation problems were selected for the comparison of the methods described. The first problem is an 8 degree of freedom spring-mass problem first presented by Kabe. Several conditions were examined for expansion method including the presence of errors in the measured data and in the analysis models. As a second demonstration problem, data from tests of laboratory scale model truss structures was expanded for system identification. Tests with a complete structure produced a correlated analysis model and the stiffness and mass matrices. Tests of various damaged configurations produced measured data for 6 modes at 14 dof locations.
Local unitary equivalence of quantum states and simultaneous orthogonal equivalence
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Yang, Min; Zhao, Hui
2016-06-01
The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂd1 ⊗ ℂd2 are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.
Orthogonal metals: The simplest non-Fermi liquids
NASA Astrophysics Data System (ADS)
Nandkishore, Rahul; Metlitski, Max A.; Senthil, T.
2012-07-01
We present a fractionalized metallic phase which is indistinguishable from the Fermi liquid in conductivity and thermodynamics, but is sharply distinct in one-electron properties, such as the electron spectral function. We dub this phase the “orthogonal metal.” The orthogonal metal and the transition to it from the Fermi liquid are naturally described using a slave-particle representation wherein the electron is expressed as a product of a fermion and a slave Ising spin. We emphasize that when the slave spins are disordered, the result is not a Mott insulator (as erroneously assumed in the prior literature), but rather the orthogonal metal. We construct prototypical ground-state wave functions for the orthogonal metal by modifying the Jastrow factor of Slater-Jastrow wave functions that describe ordinary Fermi liquids. We further demonstrate that the transition from the Fermi liquid to the orthogonal metal can, in some circumstances, provide a simple example of a continuous destruction of a Fermi surface with a critical Fermi surface appearing right at the critical point. We present exactly soluble models that realize an orthogonal metal phase, and the phase transition to the Fermi liquid. These models thus provide valuable solvable examples for phase transitions associated with the death of a Fermi surface.
Space-division multiplexing optical coherence tomography
Zhou, Chao; Alex, Aneesh; Rasakanthan, Janarthanan; Ma, Yutao
2013-01-01
High speed, high resolution and high sensitivity are desirable for optical coherence tomography (OCT). Here, we demonstrate a space-division multiplexing (SDM) technology that translates long coherence length of a commercially available wavelength tunable laser into high OCT imaging speed. We achieved an effective 800,000 A-scans/s imaging speed using a 100,000 Hz tunable vertical cavity surface-emitting laser (VCSEL). A sensitivity of 94.6 dB and a roll-off of < 2 dB over ~30 mm imaging depth were measured from a single channel in the prototype SDM-OCT system. An axial resolution of ~11 μm in air (or ~8.3 μm in tissue) was achieved throughout the entire depth range. An in vivo, 3D SDM-OCT volume of an entire Drosophila larva consisting of 400 x 605 A-scans was acquired in 0.37 seconds. Synchronized cross-sectional OCT imaging of three different segments of a beating Drosophila larva heart is demonstrated. The SDM technology provides a new orthogonal dimension for further speed improvement for OCT with favorable cost scaling. SDM-OCT also preserves image resolution and allows synchronized cross-sectional and three-dimensional (3D) imaging of biological samples, enabling new biomedical applications. PMID:23938839
Expeditious oligosaccharide synthesis via selective, semi-orthogonal, and orthogonal activation
Kaeothip, Sophon; Demchenko, Alexei V.
2011-01-01
Traditional strategies for oligosaccharide synthesis often require extensive protecting and/or leaving group manipulations between each glycosylation step, thereby increasing the total number of synthetic steps while decreasing the efficiency of the synthesis. In contrast, expeditious strategies allow for the rapid chemical synthesis of complex carbohydrates by minimizing extraneous chemical manipulations. Oligosaccharide synthesis by selective activation of one leaving group over another is one such expeditious strategy. Herein, the significant improvements that have recently emerged in the area of the selective activation are discussed. The development of orthogonal strategy further expands the scope of the selective activation methodology. Surveyed in this article, are representative examples wherein these excellent innovations have been applied to the synthesis of various oligosaccharide sequences. PMID:21663897
Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em
2014-08-01
The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also the stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.
... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...
NASA Astrophysics Data System (ADS)
Huang, Jen-Fa; Nieh, Ta-Chun; Chen, Kai-Sheng
2013-01-01
The cyclic period and free spectral range of arrayed-waveguide gratings (AWG) in a wavelength-division multiplexing/optical code division multiple access optical code division multiple access network are exploited. The total optical network unit (ONU) of network capacity is partitioned into groups of different wavelength in accordance with the geographical location of subscribers based on the radial distance of the ONU to the optical line terminal. Combining concentric circles round by round for ONU groups enables a fixed round-trip time in the data transmission and a significant increase in system performance. Using AWG router, the proposed topology of concentric circles retains signature orthogonality and minimizes wavelength collisions on the photo-detector. Furthermore, the adoption of extended M-sequence codes corresponding to the AWG codec provides a simpler, more efficient coding procedure and accommodates more users in a single group.
Generation of sub-100-fs Stokes pulses upon SRS in a barium nitrate crystal
Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu
2010-10-15
72-fs pulses are generated at the first Stokes component frequency upon stimulated Raman scattering in a barium nitrate crystal for the radiation of the Ti{sup 3+}:Al{sub 2}O{sub 3} laser with the pulse duration of 50 fs. The energy efficiency of conversion is 20%. The barium nitrate crystal was optically pumped by two consecutive orthogonally polarised chirped pulses with the following time compression of the Stokes radiation pulse. (nonlinear optical phenomena)
Activities: Understanding Division of Fractions.
ERIC Educational Resources Information Center
Bezuk, Nadine S.; Armstrong, Barbara E.
1993-01-01
Presents a series of five activities that introduce division of fractions through real-world situations. Discusses problems related to resurfacing a highway, painting dividing stripes on a highway, covering one area A with another area B, looking for patterns, and maximizing the result of a division problem. Includes reproducible worksheets. (MDH)
Lightning Talks 2015: Theoretical Division
Shlachter, Jack S.
2015-11-25
This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.
ERIC Educational Resources Information Center
Ericksen, Julia A.; And Others
1979-01-01
Analyzes the marital role division between couples, in the Philadelphia area, concentrating on the division of household tasks, child care, and paid employment. Data support a marital power model with husband's income negatively related and wife's education positively related to shared roles. Blacks are more likely to share roles. (Author)
NASA Astrophysics Data System (ADS)
Adachi, Koichi; Nakagawa, Masao
The bit error rate (BER) performance of multicode multi-carrier code division multiple access (MC-CDMA) severely degrades due to the inter-code interference (ICI) in a strong frequency-selective channel. Recently a spreading code group construction method was proposed for MC-CDMA. The Walsh-Hadmard (WH) codes are divided into a number of code groups such that the code orthogonality can be maintained within each group even in a strong frequency-selective channel; any code pair taken from different groups is not orthogonal. The number of spreading codes in each group is determined by the maximum time delay difference of the channel. In this paper, we point out that the number of codes in each group is determined by the distribution of time delay differences among the propagation paths of the channel, not the maximum time delay difference. Based on that observation, we show that more orthogonal spreading codes can exist in each code group. The conditional BER is derived taking into account the interference from other code groups and the achievable downlink BER performance using the proposed spreading code group construction is numerically evaluated in a frequency-selective Rayleigh fading channel.
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-01
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale. PMID:27505831
Auto-measurement system of aerial camera lens' resolution based on orthogonal linear CCD
NASA Astrophysics Data System (ADS)
Zhao, Yu-liang; Zhang, Yu-ye; Ding, Hong-yi
2010-10-01
The resolution of aerial camera lens is one of the most important camera's performance indexes. The measurement and calibration of resolution are important test items in in maintenance of camera. The traditional method that is observing resolution panel of collimator rely on human's eyes using microscope and doing some computing. The method is of low efficiency and susceptible to artificial factors. The measurement results are unstable, too. An auto-measurement system of aerial camera lens' resolution, which uses orthogonal linear CCD sensor as the detector to replace reading microscope, is introduced. The system can measure automatically and show result real-timely. In order to measure the smallest diameter of resolution panel which could be identified, two orthogonal linear CCD is laid on the imaging plane of measured lens and four intersection points are formed on the orthogonal linear CCD. A coordinate system is determined by origin point of the linear CCD. And a circle is determined by four intersection points. In order to obtain the circle's radius, firstly, the image of resolution panel is transformed to pulse width of electric signal which is send to computer through amplifying circuit and threshold comparator and counter. Secondly, the smallest circle would be extracted to do measurement. The circle extraction made using of wavelet transform which has character of localization in the domain of time and frequency and has capability of multi-scale analysis. Lastly, according to the solution formula of lens' resolution, we could obtain the resolution of measured lens. The measuring precision on practical measurement is analyzed, and the result indicated that the precision will be improved when using linear CCD instead of reading microscope. Moreover, the improvement of system error is determined by the pixel's size of CCD. With the technique of CCD developed, the pixel's size will smaller, the system error will be reduced greatly too. So the auto
Roeschke, C.W.
1957-09-24
An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.
Physics Division computer facilities
Cyborski, D.R.; Teh, K.M.
1995-08-01
The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.
Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2011-09-06
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen
2012-05-22
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen
2008-04-08
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2010-05-11
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Blue Light Regulation of Cell Division in Chlamydomonas reinhardtii 1
Münzner, Petra; Voigt, Jürgen
1992-01-01
A delay in cell division was observed when synchronized cultures of the unicellular green alga Chlamydomonas reinhardtii growing under heterotrophic conditions were exposed to white light during the second half of the growth period. This effect was also observed when photosynthesis was blocked by addition of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Light pulses of 10 minutes were sufficient to induce a delay in cell division in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. A delay in cell division was induced by blue light but not by illumination with red or far-red light. The equal intensity action spectrum revealed two peaks at 400 and 500 nm. PMID:16669046
A modular strategy for engineering orthogonal chimeric RNA transcription regulators
Takahashi, Melissa K.; Lucks, Julius B.
2013-01-01
Antisense RNA transcription attenuators are a key component of the synthetic biology toolbox, with their ability to serve as building blocks for both signal integration logic circuits and transcriptional cascades. However, a central challenge to building more sophisticated RNA genetic circuitry is creating larger families of orthogonal attenuators that function independently of each other. Here, we overcome this challenge by developing a modular strategy to create chimeric fusions between the engineered transcriptional attenuator from plasmid pT181 and natural antisense RNA translational regulators. Using in vivo gene expression assays in Escherichia coli, we demonstrate our ability to create chimeric attenuators by fusing sequences from five different translational regulators. Mutagenesis of these functional attenuators allowed us to create a total of 11 new chimeric attenutaors. A comprehensive orthogonality test of these culminated in a 7 × 7 matrix of mutually orthogonal regulators. A comparison between all chimeras tested led to design principles that will facilitate further engineering of orthogonal RNA transcription regulators, and may help elucidate general principles of non-coding RNA regulation. We anticipate that our strategy will accelerate the development of even larger families of orthogonal RNA transcription regulators, and thus create breakthroughs in our ability to construct increasingly sophisticated RNA genetic circuitry. PMID:23761434
The pulsar PSR B1931+24 as an orthogonal rotator
NASA Astrophysics Data System (ADS)
Malov, I. F.
2007-06-01
The angles of the magnetic moment µ and the line of sight L to the rotation axis Ω are estimated for the pulsar PSR B1921+24, which displays “on” and “off” periods in its radio emission. It is shown that this object is an orthogonal rotator, i.e., the angle β between µ and Ω is equal to 88°.2 and the angle between L and Ω is ζ = 98.7°, and that its rotation period should be twice the usually adopted value (P = 1.626 s). One possible reason for the peculiarities of this pulsar could be the precession of a relic disk in the equatorial region of the object. Further observations (in particular, in the infrared) are required to confirm the existence of such a disk. Polarization data for other pulsars whose radiation switches on and off (transients) are also required, to determine if they are likewise orthogonal rotators. Calculations for PSR B0656+14 show that β ˜ 20°, and the sharp increase of its pulse intensities is due to intrinsic reasons, and is not associated with a relic disk.
Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.
Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C
2013-03-01
This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers. PMID:23475929
NASA Astrophysics Data System (ADS)
Kim, Sung-Jin; Kwon, Do-Hoon; Yang, Se-Hoon; Han, Sang-Kook
2016-03-01
We propose an asymmetric 3×2 multi-input multi-output (MIMO) system for polarization division multiplexing (PDM) transmission in visible light communication (VLC). In PDM transmission, independent channels are constructed by polarization orthogonality, which is vulnerable to misalignment of polarization between the transmitter and the receiver. Although PDM-based VLC system may not maintain polarization orthogonality, the proposed asymmetric MIMO system can achieve the polarization diversity required for a multichannel system. We experimentally demonstrate the performance enhancement of PDM VLC transmission using the proposed asymmetric 3×2 MIMO technique.
Multiwavelength optical code-division-multiple-access communication systems
NASA Astrophysics Data System (ADS)
Lam, Cedric Fung
1999-10-01
There has been tremendous interest in applying spread spectrum and code division multiple access (CDMA) techniques to fiber optic communication systems. In this dissertation, we review the previous work on optical CDMA systems, and we propose and then demonstrate new optical CDMA system designs. The explosive growth in bandwidth demand during the recent years have compelled engineers to achieve one bit per hertz or more bandwidth utilization in optical fibers. We point out that in order to achieve efficient bandwidth utilization, full orthogonality is required in optical CDMA system. At the same time, one would like to avoid having an optical local oscillator, which significantly increases the system complexity. We have studied two spectrally encoded optical CDMA systems, both of which give us full orthogonality. A balanced optical detector, which `computes' the difference between two photodetectors signals, is used to obtain negative outputs from positive-only optical intensity signals, thus achieving full orthogonality in both systems. The first system, complementary spectral intensity encoding, is a fully non-coherent. A novel balanced transmitter has been invented for this system. Unfortunately, the performance of this system is limited by beat noise interference, sometimes called speckle noise. In the second system, spectral phase encoding, a multi-wavelength mode-locked laser source is employed. Spectral phase encoding is applied to various frequency components. By sending the unmodulated carrier along the optical fiber to the receiver, we can achieve the effect of coherent demodulation without using an optical local oscillator. While this system can avoid speckle noise, it is eventually limited by cumulative shot noise. We will show in this dissertation, that cumulative shot noise is unavoidable in all optical CDMA systems. Therefore the ultimate achievable performance of optical CDMA systems under shot noise limitation will be analyzed in this work. Lastly
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
NASA Astrophysics Data System (ADS)
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-08-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system.
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-01-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634
Investigation of formation mechanisms of chips in orthogonal cutting process
NASA Astrophysics Data System (ADS)
Ma, W.
2012-08-01
This work investigates the formation mechanisms of chips in orthogonal cutting of mild steel and the transformation conditions between various morphology chips. It is supposed that the modeling material follows the Johnson-Cook constitutive model. In orthogonal cutting process, both the plastic flow and the instability behaviors of chip materials are caused by the plane strain loadings. Therefore, the general instability behaviors of materials in plane strain state are first analyzed with linear perturbation method and a universal instability criterion is established. Based on the analytical results, the formation mechanisms of chips and the transformation conditions between continuous and serrated chips are further studied by instability phase diagram method. The results show that the chip formation strongly depends on the intensity ratios between shear and normal stresses. The ratios of dissipative rates of plastic work done by compression and shear stresses govern the transformation from continuous to serrated chips. These results are verified by the numerical simulations on the orthogonal cutting process.
Bio-orthogonally Deciphered Binary Nanoemitters for Tumor Diagnostics.
An, Hong-Wei; Qiao, Sheng-Lin; Li, Li-Li; Yang, Chao; Lin, Yao-Xin; Wang, Yi; Qiao, Zeng-Ying; Wang, Lei; Wang, Hao
2016-08-01
Bioinspired design concept has been recognized as one of the most promising strategies for discovering new biomaterials. However, smart biomaterials that are of growing interests in biomedical field need biological processability to meet their emergent applications in vivo. Herein, a new bio-orthogonally deciphered approach has been demonstrated for modulating optical properties of nanomaterials in living systems. The self-assembled nanoemitters based on cyanine-pyrene molecule 1 with inert optical property are designed and prepared. The structure and optical feature of the nanoemitters 1 can be efficiently and reliably modulated by a unique bio-orthogonal mechanism with abundant glutathione (GSH) as an activator. As a result, the self-assembled nanoemitters 1 spontaneously exhibits binary emissions for high-performance tumor imaging in vivo. We believe that this bio-orthogonally deciphered strategy opens a new avenue for designing variable smart biomaterials or devices in biomedical applications. PMID:27434548
Orthogonal chemical functionalization of patterned gold on silica surfaces
Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane
2015-01-01
Summary Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519
Orthogonal chemical functionalization of patterned gold on silica surfaces.
Palazon, Francisco; Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane; Chevolot, Yann; Cloarec, Jean-Pierre
2015-01-01
Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519
Orthogonal test and experimental study on fire floating pump
NASA Astrophysics Data System (ADS)
Liu, J. R.; Zheng, J. F.; Fu, D. P.; Wang, P.
2013-12-01
In order to develop high efficiency fire floating pump, 250YYB-250 fire floating pump was taken as an example. The orthogonal experiment of L9 (34), which contains factors with three levels of blade numbers of impeller, outlet angle, impeller fold-angle, was performed to design nine types of impellers. Numerical simulation of whole flow field based on Fluent was adopted to perform an orthogonal test, the order of geometric parameters affects the performance of fire floating pump with complex impeller. The best design scheme for pump model was acquired. Meanwhile, the optimized design scheme was determined, and corresponding test was carried out. It demonstrated that the efficiency of the final optimal design model pump at rated flow point is of 85%. The efficiency is higher than the national standards, which verified the feasibility of the method of orthogonal design in pump design.
Scattering equations and Kawai-Lewellen-Tye orthogonality
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2014-09-01
Several recent developments point to the fact that rational maps from n-punctured spheres to the null cone of D-dimensional momentum space provide a natural language for describing the scattering of massless particles in D dimensions. In this paper we identify and study equations relating the kinematic invariants sab and the puncture locations σc, which we call the scattering equations. We provide an inductive algorithm in the number of particles for their solutions and prove a remarkable property which we call Kawai-Lewellen-Tye (KLT) orthogonality. In a nutshell, KLT orthogonality means that "Parke-Taylor" vectors constructed from the solutions to the scattering equations are mutually orthogonal with respect to the KLT bilinear form. We end with comments on possible connections to gauge theory and gravity amplitudes in any dimension and to the high-energy limit of string theory amplitudes.
Experimental quantum-cryptography scheme based on orthogonal states
NASA Astrophysics Data System (ADS)
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-12-01
Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.1239 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.
Calculation on flux-MMF relationship of orthogonal-core
Tajima, K.; Kaga, A.; Anazawa, Y. ); Ichinokura, O. )
1993-03-01
Orthogonal-cores have various potential applications, for instance in parametric transformers and dc-ac converters. The operating characteristics of the devices can be calculated on the basis of the measured relationship of flux to MMF of the orthogonal-core. To achieve optimal design of the applied device, the relationship of flux to MMF must be determined; however, this involves solving a three dimensional nonlinear problem. In this paper, the authors calculate the flux-MMF relationship based on a magnetic circuit model for the orthogonal-core. The computed results agree well with experiment. The method of this study is shown to be valid for calculation of characteristics and useful for optimal design of application devices.
Semi-orthogonal wavelets for elliptic variational problems
Hardin, D.P.; Roach, D.W.
1998-04-01
In this paper the authors give a construction of wavelets which are (a) semi-orthogonal with respect to an arbitrary elliptic bilinear form a({center_dot},{center_dot}) on the Sobolev space H{sub 0}{sup 1}((0, L)) and (b) continuous and piecewise linear on an arbitrary partition of [0, L]. They illustrate this construction using a model problem. They also construct alpha-orthogonal Battle-Lemarie type wavelets which fully diagonalize the Galerkin discretized matrix for the model problem with domain IR. Finally they describe a hybrid basis consisting of a combination of elements from the semi-orthogonal wavelet basis and the hierarchical Schauder basis. Numerical experiments indicate that this basis leads to robust scalable Galerkin discretizations of the model problem which remain well-conditioned independent of {epsilon}, L, and the refinement level K.
Experimental quantum-cryptography scheme based on orthogonal states
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-12-15
Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-01-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634
Measurement matrix optimization method based on matrix orthogonal similarity transformation
NASA Astrophysics Data System (ADS)
Pan, Jinfeng
2016-05-01
Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.
Hydrodynamics of laser-driven double-foil collisions studied by orthogonal x-ray imaging
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Schmitt, A. J.; Velikovich, A. L.; Gardner, J. H.; Weaver, J.; Oh, J.
2006-10-01
With this experiment we start the study of the physics of hydrodynamic instability seeding and growth during the deceleration and stagnation phases. Our first targets consisted of two separated parallel plastic foils -- flat and rippled. The flat foil was irradiated by the 4 ns Nike KrF laser pulses at 50 TW/cm^2 and accelerated towards the rippled one. Orthogonal imaging, i. e., a simultaneous side-on and face-on radiography of the targets has been used in these experiments. Side-on x-ray radiography and VISAR data yield shock and target velocities before and after the collision. Face-on streaks revealed well-pronounced oscillatory behavior of the single-mode mass perturbations. Both sets of synchronized data were compared with 1D and 2D simulations. Observed velocities, timing and the peak value of areal mass variation are in good agreement with the simulated ones.
Park, Junbo; Buhrman, R. A.; Ralph, D. C.
2013-12-16
We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, C{sub P} = P{sub IPP}/P{sub OPP}, results in deterministic switching of the free layer without over-rotation (360° rotation). By using spin torque asymmetry to realize an enhanced effective P{sub IPP}, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum C{sub P} required to attain deterministic switching, while retaining low critical switching current, I{sub p} ∼ 500 μA.
Time-division SQUID multiplexers
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Vale, L. R.; Bergren, N. E.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Nam, S. W.; Reintsema, C. D.; Rudman, D. A.; Huber, M. E.
2002-02-01
SQUID multiplexers make it possible to build arrays of thousands of low-temperature bolometers and microcalorimeters based on superconducting transition-edge sensors with a manageable number of readout channels. We discuss the technical tradeoffs between proposed time-division multiplexer and frequency-division multiplexer schemes and motivate our choice of time division. Our first-generation SQUID multiplexer is now in use in an astronomical instrument. We describe our second-generation SQUID multiplexer, which is based on a new architecture that significantly reduces the dissipation of power at the first stage, allowing thousands of SQUIDs to be operated at the base temperature of a cryostat. .
Physics division annual report 2006.
Glover, J.; Physics
2008-02-28
This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.
Connection preserving deformations and q-semi-classical orthogonal polynomials
NASA Astrophysics Data System (ADS)
Ormerod, Christopher M.; Witte, N. S.; Forrester, Peter J.
2011-09-01
We present a framework for the study of q-difference equations satisfied by q-semi-classical orthogonal systems. As an example, we identify the q-difference equation satisfied by a deformed version of the little q-Jacobi polynomials as a gauge transformation of a special case of the associated linear problem for q-PVI. We obtain a parametrization of the associated linear problem in terms of orthogonal polynomial variables and find the relation between this parametrization and that of Jimbo and Sakai.
Universal Continuous-Variable State Orthogonalizer and Qubit Generator
NASA Astrophysics Data System (ADS)
Coelho, Antonio S.; Costanzo, Luca S.; Zavatta, Alessandro; Hughes, Catherine; Kim, M. S.; Bellini, Marco
2016-03-01
We experimentally demonstrate a universal strategy for producing a quantum state that is orthogonal to an arbitrary, infinite-dimensional, pure input one, even if only a limited amount of information about the latter is available. Arbitrary coherent superpositions of the two mutually orthogonal states are then produced by a simple change in the experimental parameters. We use input coherent states of light to illustrate two variations of the method. However, we show that the scheme works equally well for arbitrary input fields and constitutes a universal procedure, which may thus prove a useful building block for quantum state engineering and quantum information processing with continuous-variable qubits.
Equipment and preliminary results for orthogonal pressurized planar electrochromatography.
Dzido, Tadeusz H; Lopaciuk, Eryk; Płocharz, Paweł W; Chomicki, Adam; Zembrzycka, Magdalena; Frank, Hartmut
2014-03-21
We report combination of overpressured layer chromatography (OPLC) and pressurized planar electrochromatography (PPEC) techniques into a single technique in which both OPLC and PPEC processes proceed simultaneously and orthogonally. The separation process with this new technique is performed in adsorbent layer of a chromatographic plate, which is equipped with special sealing margin on its whole periphery and closed under pressure in special chamber. We have named this separation technique as orthogonal pressurized planar electrochromatography (OPPEC). Examples of analytical and micropreparative (continuous) OPPEC separations are demonstrated. PMID:24572544
Horton, J.A.
1994-05-03
Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.
NASA Astrophysics Data System (ADS)
Stone, David H.
Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.
NASA Astrophysics Data System (ADS)
Stojek, Zbigniew
The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.
Division II: Sun and Heliosphere
NASA Astrophysics Data System (ADS)
Melrose, Donald B.; Martinez Pillet, Valentin; Webb, David F.; Bougeret, Jean-Louis; Klimchuk, James A.; Kosovichev, Alexander; van Driel-Gesztelyi, Lidia; von Steiger, Rudolf
2010-05-01
This report is on activities of the Division at the General Assembly in Rio de Janeiro. Summaries of scientific activities over the past triennium have been published in Transactions A, see Melrose et al. (2008), Klimchuk et al. (2008), Martinez Pillet et al. (2008) and Bougeret et al. (2008). The business meeting of the three Commissions were incorporated into the business meeting of the Division. This report is based in part on minutes of the business meeting, provided by the Secretary of the Division, Lidia van Driel-Gesztelyi, and it also includes reports provided by the Presidents of the Commissions (C10, C12, C49) and of the Working Groups (WGs) in the Division.
Division 1137 property control system
Pastor, D.J.
1982-01-01
An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.
Barschall, H.H.
1984-07-01
E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included.
NASA Astrophysics Data System (ADS)
Park, Junbo; Ralph, Daniel C.; Buhrman, Robert A.
2014-03-01
We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer (OPP) and an in-plane polarizer (IPP). Simulation results indicate that increasing the spin polarization ratio, CP =PIPP /POPP , results in deterministic switching of the free layer without over-rotation (360 degree rotation). By using spin torque asymmetry to realize an enhanced effective PIPP, we experimentally demonstrate this behavior in OST devices. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum CP required to attain deterministic bipolar switching, while retaining low critical switching current, Ip = 500 μA.
Mitochondrial division in Caenorhabditis elegans.
Gandre, Shilpa; van der Bliek, Alexander M
2007-01-01
The study of mitochondrial division proteins has largely focused on yeast and mammalian cells. We describe methods to use Caenorhabditis elegans as an alternative model for studying mitochondrial division, taking advantage of the many wonderful resources provided by the C. elegans community. Our methods are largely based on manipulation of gene expression using classic and molecular genetic techniques combined with fluorescence microscopy. Some biochemical methods are also included. As antibodies become available, these biochemical methods are likely to become more sophisticated. PMID:18314747
Barschall, H.H.
1981-07-01
This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue.
Controlled electron injection into laser wakefields with a perpendicular injection laser pulse
Wang, W.-M.; Sheng, Z.-M.; Zhang, J.
2008-11-17
Electron injection into laser wakefields for acceleration by two orthogonally directed laser pulses is investigated theoretically. It is found that efficient injection occurs provided the two pulses are collinearly polarized, even if the injection pulse is much weaker than the pump pulse driving wakefields. Compared with the head-on colliding injection geometry, this scheme allows for a shorter propagation distance less than a Rayleigh length for the injection pulse, before its overlapping with the pump pulse. Moreover, it can generate electron beams stably with comparable low energy spread and emittance, as demonstrated by particle-in-cell simulations. The optimization of laser parameters is also investigated.
Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags.
Saldanha, Nancy; Malocha, Donald C
2012-08-01
SAW sensors are ideal for various wireless, passive multi-sensor applications because they are small, rugged, radiation hard, and offer a wide range of material choices for operation over broad temperature ranges. The readable distance of a tag in a multi-sensor environment is dependent on the insertion loss of the device and the processing gain of the system. Single-frequency code division multiple access (CDMA) tags that are used in high-volume commercial applications must have universal coding schemes and large numbers of codes. The use of a large number of bits at the common center frequency to achieve sufficient code diversity in CDMA tags necessitates reflector banks with >30 dB loss. Orthogonal frequency coding is a spread-spectrum approach that employs frequency and time diversity to achieve enhanced tag properties. The use of orthogonal frequency coded (OFC) SAW tags reduces adjacent reflector interactions for low insertion loss, increased range, complex coding, and system processing gain. This work describes a SAW tag-sensor platform that reduces device loss by implementing long reflector banks with optimized spectral coding. This new pseudo-OFC (POFC) coding is defined and contrasted with the previously defined OFC coding scheme. Auto- and cross-correlation properties of the chips and their relation to reflectivity per strip and reflector length are discussed. Results at 250 MHz of 8-chip OFC and POFC SAW tags will be compared. The key parameters of insertion loss, cross-correlation, and autocorrelation of the two types of frequency-coded tags will be analyzed, contrasted, and discussed. It is shown that coded reflector banks can be achieved with near-zero loss and still maintain good coding properties. Experimental results and results predicted by the coupling of modes model are presented for varying reflector designs and codes. A prototype 915-MHz POFC sensor tag is used as a wireless temperature sensor and the results are shown. PMID:22899121
Digital orthogonal receiver for wideband radar based on compressed sensing
NASA Astrophysics Data System (ADS)
Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying
2014-10-01
Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.
Response Surface Model Building Using Orthogonal Arrays for Computer Experiments
NASA Technical Reports Server (NTRS)
Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.
1997-01-01
This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.
Crossover ensembles of random matrices and skew-orthogonal polynomials
Kumar, Santosh; Pandey, Akhilesh
2011-08-15
Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.
Orthogonal Projection in Teaching Regression and Financial Mathematics
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2010-01-01
Two improvements in teaching linear regression are suggested. The first is to include the population regression model at the beginning of the topic. The second is to use a geometric approach: to interpret the regression estimate as an orthogonal projection and the estimation error as the distance (which is minimized by the projection). Linear…
Trusted materials using orthogonal testing. 2015 Annual report
Van Benthem, Mark
2015-09-01
The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.
Distortion correction for the orthogonally-splitting-imaging pose sensor
NASA Astrophysics Data System (ADS)
Yang, Qian; Sun, Chang-ku; Wang, Peng; Li, Wen-qiang; Liu, Xin-tong
2015-06-01
The orthogonally-splitting-imaging pose sensor utilizes not only large field of view spherical lenses but also two sets of cylindrical ones to realize the high-speed, high-precision and wide-field pose measurement. Notable distortion, however, results from the wide-field lenses at the same time. Therefore, to obtain the best performance of the camera model, a distortion correction method is proposed in this paper, which combines the advantages of the high-stability of the Least Square fittings based on the orthogonal polynomials and the independence of the distortion correction based on the cross-ratio invariability. In this way, the ill-conditioned fitting matrix as well as the iteration and optimization procedures in solving extrinsic and intrinsic parameters can be avoided. Due to the wide fitness of the cross-ratio invariability and the orthogonal polynomials, this distortion correction technique is also suitable to other optical set up with different imaging structure. The experiment results that the corrected grids have superior precision and reliability with their original slopes demonstrate that the distortion model on the basis of orthogonal polynomial is validated and that the distortion correction is effective.
Complex Exceptional Orthogonal Polynomials and Quasi-invariance
NASA Astrophysics Data System (ADS)
Haese-Hill, William A.; Hallnäs, Martin A.; Veselov, Alexander P.
2016-05-01
Consider the Wronskians of the classical Hermite polynomials H_{λ, l}(x):=Wr(H_l(x),H_{k_1}(x),ldots,H_{k_n}(x)), quad l in Z_{≥0}{setminus} {k_1,ldots,k_n}, where {k_i=λ_i+n-i, i=1,ldots, n} and {λ=(λ_1, ldots, λ_n)} is a partition. Gómez-Ullate et al. showed that for a special class of partitions the corresponding polynomials are orthogonal and dense among all polynomials with respect to a certain inner product, but in contrast to the usual case have some degrees missing (so-called exceptional orthogonal polynomials). We generalise their results to all partitions by considering complex contours of integration and non-positive Hermitian products. The corresponding polynomials are orthogonal and dense in a finite-codimensional subspace of {C[x]} satisfying certain quasi-invariance conditions. A Laurent version of exceptional orthogonal polynomials, related to monodromy-free trigonometric Schrödinger operators, is also presented.
Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition
NASA Astrophysics Data System (ADS)
Zhong, Yin; Liu, Ke; Wang, Yong-Qiang; Luo, Hong-Gang
2012-09-01
In a recent paper of Nandkishore, Metlitski, and Senthil [Phys. Rev. B1098-012110.1103/PhysRevB.86.045128 86, 045128 (2012)], a concept of orthogonal metal has been introduced to reinterpret the disordered state of slave-spin representation in the Hubbard model as an exotic gapped metallic state. We extend this concept to study the corresponding quantum phase transition in the extended Anderson lattice model. It is found that the disordered state of slave spins in this model is an orbital-selective orthogonal metal, a generalization of the concept of the orthogonal metal in the Hubbard model. The quantum critical behaviors are multiscale and dominated by a z=3 and z=2 critical modes in the high- and low-temperature regime, respectively. Such behaviors are obviously in contrast to the naive expectation in the Hubbard model. The result provides alternative Kondo breakdown mechanism for heavy fermion compounds underlying the physics of the orbital-selective orthogonal metal in the disordered state, which is different from the conventional Kondo breakdown mechanism with the fractionalized Fermi-liquid picture. This work is expected to be useful in understanding the quantum criticality happening in some heavy fermion materials and other related strongly correlated systems.
A Monotonically Convergent Algorithm for Orthogonal Congruence Rotation.
ERIC Educational Resources Information Center
Kiers, Henk A. L.; Groenen, Patrick
1996-01-01
An iterative majorization algorithm is proposed for orthogonal congruence rotation that is guaranteed to converge from every starting point. In addition, the algorithm is easier to program than the algorithm proposed by F. B. Brokken, which is not guaranteed to converge. The derivation of the algorithm is traced in detail. (SLD)
Gigabit polarization division multiplexing in visible light communication.
Wang, Yuanquan; Yang, Chao; Wang, Yiguang; Chi, Nan
2014-04-01
In this Letter, polarization division multiplexing is proposed and experimentally demonstrated for the first time that we know of, in visible light communication systems based on incoherent light emitting diodes and two orthogonal groups of linear polarizers. Spectrally efficient 16-ary quadrature amplitude modulation Nyquist single carrier frequency domain equalization is employed to obtain a maximum spectral efficiency. We achieve an aggregate data rate of 1 Gb/s, with bit error rate results for two polarization directions both below the 7% pre-forward-error-correction threshold of 3.8×10(-3) after 80 cm free-space transmission. Moreover, the cross talk between x and y polarization is also discussed and analyzed. PMID:24686614
Johnstone, C.W.
1958-06-17
The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.
Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru
2016-08-01
A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10^{-3}, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10^{-3}, respectively, after 25-km SMF and 1.6-m free-space transmission. PMID:27505734
Chemical Bonding: The Orthogonal Valence-Bond View
Sax, Alexander F.
2015-01-01
Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476
Wang, Wen Ting; Liu, Jian Guo; Mei, Hai Kuo; Zhu, Ning Hua
2016-01-11
We propose and experimentally verify a novel approach to achieve phase-coherence orthogonally polarized optical single sideband (OSSB) modulation with a tunable optically carrier-to-sideband ratio (OCSR). In our scheme, the orthogonally polarized OSSB signal is achieved using a dual-polarization quadrature phase shift keying (DP-QPSK) modulator without an optical band-pass filter (OBPF). Therefore, the proposed method is wavelength independent. The DP-QPSK modulator includes two parallel QPSK modulators locating on its two arms. The upper QPSK modulator of the DP-QPSK modulator is driven by two quadrature sinusoidal microwave signals and works at the frequency shifting condition whose bias voltages are optimized to suppress the optical. The lower QPSK modulator of that works at the maximum transmission point and the optical carrier is not modulated. The OCSR is continuously tunable by simply adjusting the bias voltages of the lower modulator. The frequency shifting optical signal from the upper QPSK modulator and the optical carrier from the lower QPSK modulator are combined together at the output of the DP-QPSK modulator. The optical carrier and sideband are polarized orthogonally. The generated OSSB signals could be used to shift and code the phase of the microwave signal and generate ultra-wideband (UWB) microwave pulse. The proposed method is analyzed and experimental demonstrated. PMID:26832269
Beyond Cookies: Understanding Various Division Models
ERIC Educational Resources Information Center
Jong, Cindy; Magruder, Robin
2014-01-01
Having a deeper understanding of division derived from multiple models is of great importance for teachers and students. For example, students will benefit from a greater understanding of division contexts as they study long division, fractions, and division of fractions. The purpose of this article is to build on teachers' and students'…
Induced dark solitary pulse in an anomalous dispersion cavity fiber laser.
Shao, Guodong; Song, Yufeng; Guo, Jun; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan
2015-11-01
We report on the formation of induced dark solitary pulses in a net anomalous dispersion cavity fiber laser. In a weak birefringence cavity fiber laser simultaneous laser oscillation along the two orthogonal polarization directions of the cavity could be achieved. Under suitable conditions bright cavity solitons could be formed along one polarization direction while CW emission occurs along the orthogonal polarization direction. In a previous paper we have shown that under incoherent polarization coupling a bright soliton always induces a broad dark pulse on the CW beam. In the paper we further show that under coherent polarization coupling a bright soliton could further induce either a weak bright or a dark solitary pulse on the bottom of the broad dark pulse. Numerical simulations have also well reproduced the experimental observations, and further show whether a weak dark or bright solitary pulse is induced is determined by the presence or absence of a phase jump in the induced pulse. PMID:26561114
NASA Astrophysics Data System (ADS)
Hmood, Jassim K.; Noordin, Kamarul A.; Arof, Hamzah; Harun, Sulaiman W.
2015-10-01
In this paper, a new approach for reducing peak-to-average power ratio (PAPR) based on modulated half subcarriers in all-optical OFDM systems with rotated QAM constellation is presented. To reduce the PAPR, the odd subcarriers are modulated with rotated QAM constellation, while the even subcarriers are modulated with standard QAM constellation. The impact of the rotation angle on the PAPR is mathematically modeled. The effect of PAPR reduction on the system performance is investigated by simulating the all-optical OFDM system, which uses optical coupler-based inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT). The all-optical system is numerically demonstrated with 29 subcarriers. Each subcarrier is modulated by a QAM modulator at a symbol rate of 25 Gsymbol/s. The results reveal that PAPR is reduced with increasing the angle of rotation. The PAPR reduction can reach about 0.8 dB when the complementary cumulative distribution function (CCDF) is 1 × 10-3. Furthermore, both the nonlinear phase noise and the optical signal-to-noise ratio (OSNR) of the system are improved in comparison with the original all-optical OFDM without PAPR reduction.
Ghelfi, P; Serafino, G; Scotti, F; Laghezza, F; Bogoni, A
2012-09-15
A novel (to our knowledge) and flexible photonics-based downconversion scheme is proposed for wireless receivers in base stations. It allows simultaneous detection of multiple signals at carriers up to tens of gigahertz, enabling communications at millimeter waves. Experiments demonstrate the effective downconversion of Wi-Fi signals at 2.4 and 39.8 GHz with the error vector magniture <-43 dB. PMID:23041905
Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA; Santoro, Stephen [Cambridge, MA
2009-05-05
Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.
NASA Astrophysics Data System (ADS)
Lee, Jaiho; Sallam, Khaled
2008-11-01
An experimental investigation of three-dimensional random behavior of polymer micro jet generated by electrospinning is described. Two frequency doubled Nd:YAG lasers were used as the light source and a commercial grade CCD sensor (Nikon D-70) was used for holograms recording. The two lasers could be fired with a pulse separation as small as 100 ns, and the two laser beams were aligned with three polarized beam splitter cubes. Orthogonal double-view and double-pulses were recorded on the same camera frame. The camera frame was split into two, and both of the halves of the frame were used for each view. Two objective lenses (M 5x) and two spatial filters (Pinhole ˜ 5μm) were used to generate expanding laser beams in the digital microscopic holography (DMH) optical setup. As the electric field (˜20 kV) was intensified, the polymer solution formed a charged filament (or multiple filaments) from the tip of the Taylor cone. As the filament was accelerated toward the collector, its diameter was shrunk and axisymmetric disturbances grew further away from the exit. The polymer was randomly deposited on the collector as non woven microfiber.
Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave.
Hong, Xiaobin; Lin, Wenqiao; Yang, Zhisheng; Wang, Sheng; Wu, Jian
2016-09-01
The tolerance of the non-local effect in the BOTDA method using a dual-tone probe wave with fixed frequency separation is theoretically and experimentally investigated in this paper. The presented analysis points out that when the sensing fiber consists of two long fiber segments with large BFS difference (> 100 MHz), there will always be only one probe tone interacting with the pump pulse in the front fiber segment. Therefore, although the pulse distortion problem can still be overcome in this case, the conventional non-local effect would impose systematic error on the estimated BFS of the hotspot located at the end of the front fiber segment. For the purpose of avoiding the impact of non-local effect and eliminating the pump distortion problem simultaneously when using high probe power, a novel method based on a four-tone probe wave is proposed, in which the probe light consists of two pairs of orthogonally-polarized dual-tone probe waves with opposite frequency scanning direction. The experimental results demonstrate that the proposed method is capable of realizing 2 m spatial resolution over 104-km-long sensing fiber without the impact of non-local effect. PMID:27607708
Building an academic colorectal division.
Koltun, Walter A
2014-06-01
Colon and rectal surgery is fully justified as a valid subspecialty within academic university health centers, but such formal recognition at the organizational level is not the norm. Creating a colon and rectal division within a greater department of surgery requires an unfailing commitment to academic concepts while promulgating the improvements that come in patient care, research, and teaching from a specialty service perspective. The creation of divisional identity then opens the door for a strategic process that will grow the division even more as well as provide benefits to the institution within which it resides. The fundamentals of core values, academic commitment, and shared success reinforced by receptive leadership are critical. Attention to culture, commitment, collaboration, control, cost, and compensation leads to a successful academic division of colon and rectal surgery. PMID:25067922
Building an Academic Colorectal Division
Koltun, Walter A.
2014-01-01
Colon and rectal surgery is fully justified as a valid subspecialty within academic university health centers, but such formal recognition at the organizational level is not the norm. Creating a colon and rectal division within a greater department of surgery requires an unfailing commitment to academic concepts while promulgating the improvements that come in patient care, research, and teaching from a specialty service perspective. The creation of divisional identity then opens the door for a strategic process that will grow the division even more as well as provide benefits to the institution within which it resides. The fundamentals of core values, academic commitment, and shared success reinforced by receptive leadership are critical. Attention to culture, commitment, collaboration, control, cost, and compensation leads to a successful academic division of colon and rectal surgery. PMID:25067922
ERIC Educational Resources Information Center
Osteryoung, Janet
1983-01-01
Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)
49 CFR 177.841 - Division 6.1 and Division 2.3 materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Division 6.1 and Division 2.3 materials. 177.841... PUBLIC HIGHWAY Loading and Unloading § 177.841 Division 6.1 and Division 2.3 materials. (See also § 177... by other appropriate method, and the marking removed. (b) (c) Division 2.3 (poisonous gas)...
Horton, James A.
1994-01-01
Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).
CVS Decomposition of 3D Homogeneous Turbulence Using Orthogonal Wavelets
NASA Technical Reports Server (NTRS)
Farge, Marie; Schneider, Kai; Pellegrino, Giulio; Wray, A. A.; Rogallo, R. S.
2000-01-01
This paper compares the filtering used in Coherent Vortex Simulation (CVS) decomposition with an orthogonal wavelet basis, with the Proper Orthogonal Decomposition (POD) or Fourier filtering. Both methods are applied to a field of Direct Numerical Simulation (DNS) data of 3D forced homogeneous isotropic turbulence at microscale Reynolds number R(sub lambda) = 168. We show that, with only 3%N retained modes, CVS filtering separates the coherent vortex tubes from the incoherent background flow. The latter is structureless, has an equipartition energy spectrum, and has a Gaussian velocity probability distribution function (PDF) and an exponential vorticity PDF. On the other hand, the Fourier basis does not extract the coherent vortex tubes cleanly and leaves organized structures in the residual high wavenumber modes whose PDFs are stretched exponentials for both the velocity and the vorticity.
Orthogonally modulated molecular transport junctions for resettable electronic logic gates
Meng, Fanben; Hervault, Yves-Marie; Shao, Qi; Hu, Benhui; Norel, Lucie; Rigaut, Stéphane; Chen, Xiaodong
2014-01-01
Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design. PMID:24394717
Tracking Lung Tumors in Orthogonal X-Rays
2013-01-01
This paper presents a computationally very efficient, robust, automatic tracking method that does not require any implanted fiducials for low-contrast tumors. First, it generates a set of motion hypotheses and computes corresponding feature vectors in local windows within orthogonal-axis X-ray images. Then, it fits a regression model that maps features to 3D tumor motions by minimizing geodesic distances on motion manifold. These hypotheses can be jointly generated in 3D to learn a single 3D regression model or in 2D through back projection to learn two 2D models separately. Tumor is tracked by applying regression to the consecutive image pairs while selecting optimal window size at every time. Evaluations are performed on orthogonal X-ray videos of 10 patients. Comparative experimental results demonstrate superior accuracy (~1 pixel average error) and robustness to varying imaging artifacts and noise at the same time. PMID:23986789
Orthogonal canonical forms for second-order systems
NASA Technical Reports Server (NTRS)
Williams, Trevor; Laub, Alan
1989-01-01
The authors prove that a linear second-order system with arbitrary damping cannot be reduced to Hessenberg-triangular form by means of orthogonal transformations, while this reduction is always possible for the modal damping commonly assumed for models of flexible structures. The type of canonical form obtainable by means of orthogonal transformations acting on a second-order system is heavily dependent on the type of damping considered. If the damping matrix is merely positive semi-definite symmetric, it is generally not possible to obtain a reduction to Hessenberg-triangular form, while this reduction is trivial for zero or Rayleigh damping. If damping is modal, however, as is commonly assumed in structural models, the reduction exists and is nontrivial. Furthermore, reduction to triangular second-order Schur form is always possible for such damping: this canonical form appears likely to have applications to second-order system theory.
Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials.
Lombardo, Rosaria; Beh, Eric J; Kroonenberg, Pieter M
2016-06-01
The core of the paper consists of the treatment of two special decompositions for correspondence analysis of two-way ordered contingency tables: the bivariate moment decomposition and the hybrid decomposition, both using orthogonal polynomials rather than the commonly used singular vectors. To this end, we will detail and explain the basic characteristics of a particular set of orthogonal polynomials, called Emerson polynomials. It is shown that such polynomials, when used as bases for the row and/or column spaces, can enhance the interpretations via linear, quadratic and higher-order moments of the ordered categories. To aid such interpretations, we propose a new type of graphical display-the polynomial biplot. PMID:25791164
Orthogonal bone cutting: saw design and operating characteristics.
Krause, W R
1987-08-01
The cutting process of orthopaedic bone saws was considered as orthogonal (two-dimensional) cutting for determination of the horizontal and vertical force components of single edge cutting tools with rake angles of 0 to -30 degrees. The Merchant analysis for orthogonal cutting was used to determine the resultant force and other force and work relationships. The effect of an imposed lateral vibration on the cutting tool was also investigated. The results of the tests indicated a strong interaction between the measured and derived forces with the rake angle and feed velocity. It was concluded that to reduce the cutting forces and work expenditure, a negative rake angle between 0 and -10 degrees, high feed velocity, and an imposed lateral vibration provided the greatest reduction in force and energy expenditure. PMID:3657116
External orthogonality in subsystem time-dependent density functional theory.
Chulhai, Dhabih V; Jensen, Lasse
2016-08-01
Subsystem density functional theory (subsystem DFT) is a DFT partitioning method that is exact in principle, but depends on approximations to the kinetic energy density functional (KEDF). One may avoid the use of approximate KEDFs by ensuring that the inter-subsystem molecular orbitals are orthogonal, termed external orthogonality (EO). We present a method that extends a subsystem DFT method, that includes EO, into the time-dependent DFT (TDDFT) regime. This method therefore removes the need for approximations to the kinetic energy potential and kernel, and we show that it can accurately reproduce the supermolecular TDDFT results for weakly and strongly coupled subsystems, and for systems with strongly overlapping densities (where KEDF approximations traditionally fail). PMID:26932176
Orthogonal polarization Mirau interferometer using reflective-type waveplate.
Tapilouw, Abraham Mario; Chen, Liang-Chia; Jen, Yi-Jun; Lin, Shyh-Tsong; Yeh, Sheng-Lih
2013-07-15
This work proposes an orthogonal polarization Mirau interferometry using a reflective-type waveplate to generate different polarization orientations for broadband white light interferometry. The reflective-type half-waveplate is employed as the reference arm of the Mirau interferometer to convert polarization and it generates a reference light with an orientation orthogonal to the object light. An advantage of the proposed interferometer is its ability to control the ratio of light intensity between the object and reference arms to maximize the interferometric fringe contrast. Better, more accurate calibration of standard step height has been achieved by the developed interferometer, which also can measure solder bumps that traditional Mirau interferometers usually cannot measure. PMID:23939094
Entanglement as a resource to distinguish orthogonal product states
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
Orthogonally modulated molecular transport junctions for resettable electronic logic gates
NASA Astrophysics Data System (ADS)
Meng, Fanben; Hervault, Yves-Marie; Shao, Qi; Hu, Benhui; Norel, Lucie; Rigaut, Stéphane; Chen, Xiaodong
2014-01-01
Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design.
Orthogonal polynomial interpretation of Δ-Toda equations
NASA Astrophysics Data System (ADS)
Area, I.; Branquinho, A.; Foulquié Moreno, A.; Godoy, E.
2015-10-01
In this paper a discretization of Toda equations is analyzed. The correspondence between these Δ-Toda equations for the coefficients of the Jacobi operator and its resolvent function is established. It is shown that the spectral measure of these operators evolve in t like {(1+x)}1-t {{d}}μ (x) where {{d}}μ is a given positive Borel measure. The Lax pair for the Δ-Toda equations is derived and characterized in terms of linear functionals, where orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ appear in a natural way. In order to illustrate the results of the paper we work out two examples of Δ-Toda equations related with Jacobi and Laguerre orthogonal polynomials.
A general boundary capability embedded in an orthogonal mesh
Hewett, D.W.; Yu-Jiuan Chen
1995-07-01
The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.
Orthogonal mapping: A computer program for quantifying shape differences
Huffman, T.; Christopher, R.A.; Hazel, J.E.
1978-01-01
Quantitative differences in the shape of two or more objects can be obtained by Orthogonal Mapping provided coincidental or analogous points can be identified on each object. The least-squares difference between each set of analogous points is determined by use of a projective transformation of a set of measured points which involves the rotation, translocation, and scaling of these points relative to a set of fixed points. ?? 1978.
Star polymer synthesis viaλ-orthogonal photochemistry.
Hiltebrandt, Kai; Kaupp, Michael; Molle, Edgar; Menzel, Jan P; Blinco, James P; Barner-Kowollik, Christopher
2016-08-01
We introduce a light induced sequence enabling λ-orthogonal star polymer formation via an arms-first approach, based on an α,ω-functional polymer carrying tetrazole and o-methyl benzaldehyde moieties, which upon irradiation can readily undergo cycloaddition with a trifunctional maleimide core. Depending on the wavelength, the telechelic strand can be attached to the core at either photo-reactive end. PMID:27378494
Parsimonious extreme learning machine using recursive orthogonal least squares.
Wang, Ning; Er, Meng Joo; Han, Min
2014-10-01
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results. PMID:25291736
Time-resolved proper orthogonal decomposition of liquid jet dynamics
NASA Astrophysics Data System (ADS)
Arienti, Marco; Soteriou, Marios C.
2009-11-01
New insight into the mechanism of liquid jet in crossflow atomization is provided by an analysis technique based on proper orthogonal decomposition and spectral analysis. Data are provided in the form of high-speed videos of the jet near field from experiments over a broad range of injection conditions. For each condition, proper orthogonal modes (POMs) are generated and ordered by intensity variation relative to the time average. The feasibility of jet dynamics reduction by truncation of the POM series to the first few modes is then examined as a function of crossflow velocity for laminar and turbulent liquid injection. At conditions where the jet breaks up into large chunks of liquid, the superposition of specific orthogonal modes is observed to track long waves traveling along the liquid column. The temporal coefficients of these modes can be described as a bandpass spectrum that shifts toward higher frequencies as the crossflow velocity is increased. The dynamic correlation of these modes is quantified by their cross-power spectrum density. Based on the frequency and wavelength extracted from the videos, the observed traveling waves are linked to the linearly fastest growing wave of Kelvin-Helmholtz instability. The gas boundary layer thickness at the gas-liquid shear layer emerges at the end of this study as the dominant length scale of jet dynamics at moderate Weber numbers.
Multilayer block copolymer meshes by orthogonal self-assembly
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
Animation of orthogonal texture patterns for vector field visualization.
Bachthaler, Sven; Weiskopf, Daniel
2008-01-01
This paper introduces orthogonal vector field visualization on 2D manifolds: a representation by lines that are perpendicular to the input vector field. Line patterns are generated by line integral convolution (LIC). This visualization is combined with animation based on motion along the vector field. This decoupling of the line direction from the direction of animation allows us to choose the spatial frequencies along the direction of motion independently from the length scales along the LIC line patterns. Vision research indicates that local motion detectors are tuned to certain spatial frequencies of textures, and the above decoupling enables us to generate spatial frequencies optimized for motion perception. Furthermore, we introduce a combined visualization that employs orthogonal LIC patterns together with conventional, tangential streamline LIC patterns in order to benefit from the advantages of these two visualization approaches. In addition, a filtering process is described to achieve a consistent and temporally coherent animation of orthogonal vector field visualization. Different filter kernels and filter methods are compared and discussed in terms of visualization quality and speed. We present respective visualization algorithms for 2D planar vector fields and tangential vector fields on curved surfaces, and demonstrate that those algorithms lend themselves to efficient and interactive GPU implementations. PMID:18467751
Orthogonality breaking through few-mode optical fiber.
Parnet, Francois; Fade, Julien; Alouini, Mehdi
2016-04-01
Polarization sensing and imaging through optical fibers is a technological challenge motivated by promising applications for in vivo, in situ polarimetric endoscopy for biomedical diagnosis. Among the recent approaches proposed to solve this issue, the depolarization/dichroism sensing by polarization orthogonality breaking (DSOB) technique was shown to perform remotely through single-mode optical fibers for depolarization/diattenuation measurements. In this article, we investigate the applicability of such a technique in slightly multimode waveguides. Through theoretical modeling and numerical simulations, we evidence the conditions required for the polarization orthogonality to be preserved after propagation in a few-mode fiber, notably in terms of detection geometry of the spatial modes. Original experiments realized in few-mode fibers both in transmission and reflection configurations are also reported and validate the theoretical predictions. These results allow us to analyze the influence of the experimental parameters, such as detection geometry, sample tilt, or fiber length, on orthogonality preservation and on the measurement dynamics of the DSOB technique in slightly multimode waveguides. PMID:27139651
Multilayer block copolymer meshes by orthogonal self-assembly
NASA Astrophysics Data System (ADS)
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders.
Orthogonal reference pattern multiplexing for collinear holographic data storage.
Cao, Liangcai; Liu, Jinqiu; Li, Jianhua; He, Qingsheng; Jin, Guofan
2014-01-01
An orthogonal reference pattern multiplexing (ORPM) method for collinear holographic data storage (CHDS) is investigated to increase the data storage density and realize parallel optical image superimposition. Holograms are multiplexed in the same volume of the recording medium with multiple orthogonal reference patterns (RPs). The physical principle of this method is analyzed based on scalar diffraction theory. The orthogonal condition of the RPs is derived in order to suppress the interpage cross talk. The parameters of the radial-line RP have significant influence on the signal-to-noise ratio (SNR) of the reconstructed data page. They are optimized to reduce the intrapage cross talk. With a random binary phase mask (RBPM) located closely before the spatial light modulator, SNR of the reconstructed data page is seven times the SNR without the RBPM. Three data pages are multiplexed in the same volume of the medium using the ORPM method. The reconstructed data pages for the CHDS system show the effectiveness of the RBPM in suppressing the intrapage and interpage cross talk. PMID:24513981
Parallel and orthogonal stimulus in ultradiluted neural networks
NASA Astrophysics Data System (ADS)
Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.
2006-10-01
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .
Limited-memory adaptive snapshot selection for proper orthogonal decomposition
Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill; Chand, Kyle
2015-04-02
Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory bounding the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Baritzhack, Itzhack Y.; Markley, F. Landis
1988-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1990-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
NASA Astrophysics Data System (ADS)
Chen, Yijun; Zhang, Qun; Ma, Changzheng; Luo, Ying; Yeo, Tat Soon
2014-01-01
In multifunction phased array radar systems, different activities (e.g., tracking, searching, imaging, feature extraction, recognition, etc.) would need to be performed simultaneously. To relieve the conflict of the radar resource distribution, a micromotion feature extraction method using tracking pulses with adaptive pulse repetition frequencies (PRFs) is proposed in this paper. In this method, the idea of a varying PRF is utilized to solve the frequency-domain aliasing problem of the micro-Doppler signal. With appropriate atom set construction, the micromotion feature can be extracted and the image of the target can be obtained based on the Orthogonal Matching Pursuit algorithm. In our algorithm, the micromotion feature of a radar target is extracted from the tracking pulses and the quality of the constructed image is fed back into the radar system to adaptively adjust the PRF of the tracking pulses. Finally, simulation results illustrate the effectiveness of the proposed method.
Pulse Shepherding in Nonlinear Fiber Optics
NASA Technical Reports Server (NTRS)
Yeh, C.; Bergman, L.
1996-01-01
In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.
Pulse shortening of an ultrafast VECSEL
NASA Astrophysics Data System (ADS)
Waldburger, D.; Alfieri, C. G. E.; Link, S. M.; Gini, E.; Golling, M.; Mangold, M.; Tilma, B. W.; Keller, U.
2016-03-01
Ultrafast, optically pumped, passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) are excellent sources for industrial and scientific applications that benefit from compact semiconductor based high-power ultrafast lasers with gigahertz repetition rates and excellent beam quality. Applications such as self-referenced frequency combs and multi-photon imaging require sub-200-fs pulse duration combined with high pulse peak power. Here, we present a semiconductor saturable absorber mirror (SESAM) modelocked VECSEL with a pulse duration of 147 fs and 328 W of pulse peak power. The average output power was 100 mW with a repetition rate of 1.82 GHz at a center wavelength of 1034 nm. The laser has optimal beam quality operating in a fundamental transverse mode with a M2 value of <1.05 in both orthogonal directions. The VECSEL was grown by metal-organic vapor phase epitaxy (MOVPE) with five pairs of strain-compensated InGaAs quantum wells (QWs). The QWs are placed symmetrical around the antinodes of the standing electric field at a reduced average field enhancement in the QWs of ≈ 0.5 (normalized to 4 outside the structure). These results overcome the trade-off between pulse duration and peak power of the state-of-the-art threshold values of 4.35 kW peak power for a pulse duration of 400 fs and 3.3 W peak power for a pulse duration of 107 fs.
Home | Division of Cancer Prevention
Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |
Environmental Transport Division: 1979 report
Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.
1980-03-01
During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.
Synthetic Division and Matrix Factorization
ERIC Educational Resources Information Center
Barabe, Samuel; Dubeau, Franc
2007-01-01
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.
Psychological Sciences Division: 1985 Programs.
ERIC Educational Resources Information Center
Office of Naval Research, Washington, DC. Psychological Sciences Div.
This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…
Manpower Division Looks at CETA
ERIC Educational Resources Information Center
American Vocational Journal, 1977
1977-01-01
The Manpower Division at the American Vocational Association (AVA) convention in Houston was concerned about youth unemployment and about the Comprehensive Employment and Training Act (CETA)--its problems and possibilities. The panel discussion reported here reveals some differing perspectives and a general consensus--that to improve their role in…
78 FR 17431 - Antitrust Division
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
...) of the Act on July 30, 2001 (66 FR 39336). The last notification was filed with the Department on... January 2, 2013 (78 FR 117). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. BILLING...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on February 22, 2013,...
Preschool Children's Informal Division Concepts.
ERIC Educational Resources Information Center
Blevins-Knabe, Belinda
The purpose of this study was to examine the division procedures of preschool children to determine whether such procedures involved one-to-one correspondence. Large and small numerosity trials were included so that the amount of effort and ease of using other procedures would vary. Odd and even number trials were included to determine whether…
77 FR 54611 - Antitrust Division
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Section 6(b) of the Act on June 30, 2000 (65 FR 40693). The last notification was filed with the... on June 8, 2012 (77 FR 34067). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division...; Tiburon Associates, Inc., Alexandria, VA; Streamline Automation, LLC (dba C3 Propulsion), Huntsville,...
International Division Regional Advisers' Reports
ERIC Educational Resources Information Center
Johnson, Jenny
2006-01-01
An Advisers primary job is to nominate candidates for the five annual ID awards; this involves working with the five International Division award coordinators. Advisers also submit an annual report on activities in their country/ region to their Area Coordinators who, in turn, report on educational technology activities in their Areas. In the…
75 FR 70031 - Antitrust Division
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Open... National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Open Axis... branding program based upon distinctive trademarks to create high customer awareness of, demand for,...
Physics division annual report 2000.
Thayer, K., ed.
2001-10-04
This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as the highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter
NASA Astrophysics Data System (ADS)
Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru
In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.
NASA Astrophysics Data System (ADS)
Futatani, Shimpei; Bos, Wouter J. T.; del-Castillo-Negrete, Diego; Schneider, Kai; Benkadda, Sadruddin; Farge, Marie
2011-03-01
We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa-Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics.
Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF.
Chen, Yiqin; Hu, Rong; Yang, Qi; Luo, Ming; Yu, Shaohua; Li, Wei
2015-05-01
We propose a novel fading-free direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) scheme for 100-Gb/s medium-reach transmission. In the proposed scheme, we adopts two bands spaced at 100-GHz to accommodate the same complex-valued OFDM signal. However, the signals are coupled with a pair of orthogonal optical carriers. By doing so, real and imaginary parts of the complex-valued OFDM signal can be recovered from the two bands, respectively. We also propose a cost-effective scheme to generate such DDO-OFDM signal using an optical 90-degree hybrid and an optical I/Q modulator. The advantage of the proposed method is that it is fading-free, and the electrical spectral efficiency (SE) is doubled compared to traditional direct-detection method. Finally, we experimentally demonstrated a 101-Gb/s dual-band transmission over 320-km SSMF within only 30-GHz electrical bandwidth, which is highly competitive in both capacity and cost. PMID:25969294
Fully Parallel Electrical Impedance Tomography Using Code Division Multiplexing.
Tsoeu, M S; Inggs, M R
2016-06-01
Electrical Impedance Tomography (EIT) has been dominated by the use of Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM) as methods of achieving orthogonal injection of excitation signals. Code Division Multiplexing (CDM), presented in this paper is an alternative that eliminates temporal data inconsistencies of TDM for fast changing systems. Furthermore, this approach eliminates data inconsistencies that arise in FDM when frequency bands of current injecting electrodes are chosen over frequencies that have large changes in the imaged object's impedance. To the authors knowledge no fully functional wideband system or simulation platform using simultaneous injection of Gold codes currents has been reported. In this paper, we formulate, simulate and develop a fully functional pseudo-random (Gold) code driven EIT system with 15 excitation currents and 16 separate voltage measurement electrodes. In the work we verify the use of CDM as a multiplexing modality in simultaneous injection EIT, using a prototype system with an overall bandwidth of 15 kHz, and attainable speed of 462 frames/s using codes with a period of 31 chips. Simulations and experiments are performed using the Electrical Impedance and Diffuse Optics Reconstruction Software (EIDORS). We also propose the use of image processing on reconstructed images to establish their quality quantitatively without access to raw reconstruction data. The results of this study show that CDM can be successfully used in EIT, and gives results of similar visual quality to TDM and FDM. Achieved performance shows average position error of 3.5% and size error of 6.2%. PMID:26731774
Code division controlled-MAC in wireless sensor network by adaptive binary signature design
NASA Astrophysics Data System (ADS)
Wei, Lili; Batalama, Stella N.; Pados, Dimitris A.; Suter, Bruce
2007-04-01
We consider the problem of signature waveform design for code division medium-access-control (MAC) of wireless sensor networks (WSN). In contract to conventional randomly chosen orthogonal codes, an adaptive signature design strategy is developed under the maximum pre-detection SINR (signal to interference plus noise ratio) criterion. The proposed algorithm utilizes slowest descent cords of the optimization surface to move toward the optimum solution and exhibits, upon eigenvector decomposition, linear computational complexity with respect to signature length. Numerical and simulation studies demonstrate the performance of the proposed method and offer comparisons with conventional signature code sets.
Heat welding of non-orthogonal X-junction of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Yang, Xueming; Han, Zhonghe; Li, Yonghua; Chen, Dongci; Zhang, Pu; To, Albert C.
2012-09-01
Though X-junctions of single-walled carbon nanotubes (SWCNTs) have been intensively studied, studies concerning non-orthogonal X-junctions are still very rare. In this paper, the heat welding of defect-free non-orthogonal X-junctions with different crossed angles are investigated by molecular dynamics simulations. The difference between the heat welding of non-orthogonal and orthogonal X-junctions is described, and the angle effect on the configuration and stability of the heat welded non-orthogonal X-junctions is discussed. Compared with the orthogonal X-junction, two crossed SWCNTs with a smaller non-orthogonal angle are easier to join by heat welding, and this may be an important reason why the large tubes are difficult to join, whereas large nanotube bundles are easier to observe in experiments.
Accelerator and Fusion Research Division: summary of activities, 1983
Not Available
1984-08-01
The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.
Code division in optical memory devices based on photon echo
NASA Astrophysics Data System (ADS)
Kalachev, Alexey A.; Vlasova, Daria D.
2006-03-01
The theory of multi-channel optical memory based on photon echo is developed. It is shown that under long-lived photon echo regime the writing and reading of information with code division is possible using phase modulation of reference and reading pulses. A simple method for construction of a system of noise-like signals, which is based on the segmentation of Frank sequence is proposed. It is shown that in comparison to the system of random biphase signals this system leads to the efficient decreasing of mutual influence of channels and increasing of random/noise ratio under reading of information.
Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Pauli, Mario; Wiesbeck, Werner
2015-04-01
Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been
Circadian clocks and cell division
2010-01-01
Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114
Health, Safety, and Environment Division
Wade, C
1992-01-01
The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.
Trumbo, D.E.
1959-02-10
A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.
Water Resources Division training catalog
Hotchkiss, W.R.; Foxhoven, L.A.
1984-01-01
The National Training Center provides technical and management sessions nesessary for the conductance of the U.S. Geological Survey 's training programs. This catalog describes the facilities and staff at the Lakewood Training Center and describes Water Resources Division training courses available through the center. In addition, the catalog describes the procedures for gaining admission, formulas for calculating fees, and discussion of course evaluations. (USGS)
Resolution enhancement of computed radiography images using two orthogonal tilts
NASA Astrophysics Data System (ADS)
Pollmann, Steven I.; Norley, Chris J. D.; Yuan, Xunhua; Holdsworth, David W.
2012-03-01
Limitations to the spatial resolution of current digital x-ray systems are bounded by the physical characteristics of the xray detector. However, the need to image smaller structures provides motivation to develop high-resolution x-ray detector systems for use with computed radiographic, and tomographic x-ray systems. We report the implementation of a tilted detector technique (TDT) to attain near isotropic resolution enhancement by combining two orthogonal image views, acquired with existing detector hardware tilted at a fixed angle. Images were acquired using a ceiling-mounted x-ray unit (Proteus XR/a, GE Medical Systems, 50kVp, 250mAs). Images were digitized using a Fujifilm Capsula X CR system, from a 35×43cm detector cassette placed on an angulated stand, featuring a 3520×4280 image matrix with an in-plane pixel spacing of 0.1mm. Three images were acquired: two for use with our TDT; and one for comparison, with no detector tilt. Performance was determined by using two line-pair phantoms (Models 07-521 and 07-533, Nuclear Associates) placed orthogonally to each other in the field of view. Custom software corrected for perspective distortion, co-registered and combined the tilted-detector images into a single higher-resolution image. Following unwarping and co-registration, the limiting spatial resolution of an image obtained via the weighted combination of the two orthogonal views (8 lp/mm) is found to be superior to that of a single view acquired with no detector tilt (5 lp/mm). This novel technique shows significant improvement in the spatial resolution of x-ray image acquisitions, using existing x-ray components and detector hardware.
The Arabidopsis Cell Division Cycle
Gutierrez, Crisanto
2009-01-01
Plant cells have evolved a complex circuitry to regulate cell division. In many aspects, the plant cell cycle follows a basic strategy similar to other eukaryotes. However, several key issues are unique to plant cells. In this chapter, both the conserved and unique cellular and molecular properties of the plant cell cycle are reviewed. In addition to division of individual cells, the specific characteristic of plant organogenesis and development make that cell proliferation control is of primary importance during development. Therefore, special attention should be given to consider plant cell division control in a developmental context. Proper organogenesis depends on the formation of different cell types. In plants, many of the processes leading to cell differentiation rely on the occurrence of a different cycle, termed the endoreplication cycle, whereby cells undergo repeated full genome duplication events in the absence of mitosis and increase their ploidy. Recent findings are focusing on the relevance of changes in chromatin organization for a correct cell cycle progression and, conversely, in the relevance of a correct functioning of chromatin remodelling complexes to prevent alterations in both the cell cycle and the endocycle. PMID:22303246
Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer
NASA Astrophysics Data System (ADS)
Elrefai, Ahmed L.; Sasada, Ichiro
2015-05-01
A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
Aspects of surface generation in orthogonal ultraprecision machining
Lucca, D.A.; Seo, Y.W.; Rhorer, R.L.
1994-10-01
The depth of the plastically deformed layer at the workpiece surface which resulted in the orthogonal ultraprecision machining of Cu over the range of uncut chip thicknesses of 0.01-10 {mu}m was investigated. Two tools with the same nominal geometry but with differing edge geometries were used to machine both Te-Cu and fine grain Cu. Tool edge geometries were characterized by atomic force microscopy, taking into account the AFM cantilever tip radius. Magnitudes of the measured depths appear to be consistent with values reported in the literature and those arrived at by simple analyses.
Basis difference method for orthogonal systems on a surface
NASA Astrophysics Data System (ADS)
Korobitsyn, V. A.
2011-07-01
The basis operator method intended for constructing systems of difference approximations to differential operators in vector and tensor analysis is extended to orthogonal systems on a surface. A class of completely conservative differential-difference schemes for continuum mechanics in Lagrangian variables is constructed. Basis operators are constructed using the finite volume equation, consistency conditions for discrete operators of the first derivative, and consistent projection operators for grid functions. A system of differential-difference continuum mechanics equations on a surface is obtained, which implies all conservation laws typical of the continuum case, including additional ones. A stability estimate is derived for discrete equations of an incompressible viscous fluid.
Orthogonal (transverse) arrangements of actin in endothelia and fibroblasts
Curtis, Adam; Aitchison, Gregor; Tsapikouni, Theodora
2006-01-01
Though actin filaments running across the cell (transverse actin) have been occasionally reported for epithelial cells in groups and for cells growing on fibres, there has been no report heretofore of transverse actin in cells grown on planar substrata. This paper describes evidence in support of this possibility derived from actin staining, polarization microscopy and force measurements. The paper introduces two new methods for detecting the orientation and activity of contractile elements in cells. The orthogonal actin is most obvious in cells grown on groove ridge structures, but can be detected in cells grown on flat surfaces. PMID:17015307
The Local Orthogonality Between Quantum States and Entanglement Decomposition
NASA Astrophysics Data System (ADS)
Kim, Sunho; Wu, Junde; Zhang, Lin; Cho, Minhyung
2016-06-01
In the paper, we show that when a quantum state can be decomposed as a convex combination of locally orthogonal mixed states, its entanglement can be decomposed into the entanglement of these mixed states without losing them. The obtained result generalizes a corresponding one proved by Horodecki (Acta Phys. Slov. 48, 141 1998). But, for the entanglement cost it requires certain conditions for holding the decomposition, and the distillable entanglement only has a week result as inequality. Finally, we presented an example to show that the conditions of our conclusions are existence.
Recurrence relations of the multi-indexed orthogonal polynomials. III
NASA Astrophysics Data System (ADS)
Odake, Satoru
2016-02-01
In Paper II, we presented conjectures of the recurrence relations with constant coefficients for the multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types. In this paper we present a proof for the Laguerre and Jacobi cases. Their bispectral properties are also discussed, which gives a method to obtain the coefficients of the recurrence relations explicitly. This paper extends to the Laguerre and Jacobi cases the bispectral techniques recently introduced by Gómez-Ullate et al. [J. Approx. Theory 204, 1 (2016); e-print arXiv:1506.03651 [math.CA
Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels
NASA Technical Reports Server (NTRS)
Allen, Jeffrey S.
2005-01-01
Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.
Conditioning analysis of incomplete Cholesky factorizations with orthogonal dropping
Napov, Artem
2012-03-16
The analysis of preconditioners based on incomplete Cholesky factorization in which the neglected (dropped) components are orthogonal to the approximations being kept is presented. General estimate for the condition number of the preconditioned system is given which only depends on the accuracy of individual approximations. The estimate is further improved if, for instance, only the newly computed rows of the factor are modified during each approximation step. In this latter case it is further shown to be sharp. The analysis is illustrated with some existing factorizations in the context of discretized elliptic partial differential equations.
Orthogonal cutting characteristics of graphite/epoxy composite material
NASA Astrophysics Data System (ADS)
Wang, D. H.; Ramulu, M.; Wern, C. W.
Orthogonal cutting experimental study was conducted to investigate the machining characteristics of Graphite/Epoxy (Gr/Ep) composite material. Machining characteristics were evaluated in terms of cutting forces, chip formation, and surface morphology of unidirectional Gr/Ep composite material of different fiber orientations. The cutting forces were measured by a three-dimensional circular-type dynamometer. Chips were examined under Scanning Electron Microscopy (SEM) and the machined surface morphology was investigated by measuring the surface roughness and by observing SEM photographs. Cutting forces, chip formation process and the surface morphology of machined surface were found to be highly dependent on the fiber orientations with respect to the cutting direction.
Variability in GRB light curves: Introducing Orthogonal Matching Pursuit
NASA Astrophysics Data System (ADS)
Dereli, Husne; Bégué, Damien; Ryde, Felix
2016-07-01
Constraining the variability of GRBs is important as it is one of the few keys to estimate many unknown parameters, such as the emission radius, the Lorentz factor, the size of the progenitor. In this work, we introduced the Orthogonal Matching Pursuit (OMP) method to study GRB light curves and to compute the minimum time variability of GRBs. Commonly used in medical sciences, this method reconstructs a signal by choosing among predefined functional shapes. We will discuss the implementation of the code, and compare its performances with those of other dedicated methods (Haar wavelet analysis, peak finding algorithm and step wise filter correlation).
Spin Symmetry and Size Consistency of Strongly Orthogonal Geminals.
Jeszenszki, Péter; Surján, Péter R; Szabados, Ágnes
2015-07-14
An overview of geminal-based wavefunctions is given, allowing for singlet-triplet mixing within the two-electron units. Spin contamination of the total wavefunction (obtained as an antisymmetrized product) is restored by spin projection. Full variation after projection is examined for two models. One is the long known spin-projected, extended Hartree-Fock (EHF). The other is a yet unexplored function, termed spin-projected, extended antisymmetrized product of strongly orthogonal geminals (EAPSG). Studies on size consistency are presented for both models. Numerical evaluation of EHF and EAPSG is performed for small test systems (H4 and H8). PMID:26575746
Orthogonal linear group-subgroup pairs with the same invariants
NASA Astrophysics Data System (ADS)
Solomon, S.
2005-03-01
The main theorem of Galois theory states that there are no finite group-subgroup pairs with the same invariants. On the other hand, if we consider complex linear reductive groups instead of finite groups, the analogous statement is no longer true: There exist counterexample group-subgroup pairs with the same invariants. However, it's possible to classify all these counterexamples for certain types of groups. In [16], we provided the classification for connected complex irreducible groups, and, in this paper, for connected complex orthogonal groups, i.e., groups that preserve some non-degenerate quadratic form.
Universality of Mesoscopic Fluctuations for Orthogonal Polynomial Ensembles
NASA Astrophysics Data System (ADS)
Breuer, Jonathan; Duits, Maurice
2016-03-01
We prove that the fluctuations of mesoscopic linear statistics for orthogonal polynomial ensembles are universal in the sense that two measures with asymptotic recurrence coefficients have the same asymptotic mesoscopic fluctuations (under an additional assumption on the local regularity of one of the measures). The convergence rate of the recurrence coefficients determines the range of scales on which the limiting fluctuations are identical. Our main tool is an analysis of the Green's function for the associated Jacobi matrices.As a particular consequencewe obtain a central limit theorem for the modified Jacobi Unitary Ensembles on all mesoscopic scales.
Proton lifetime in orthogonal theories of family unification
NASA Astrophysics Data System (ADS)
Bagger, Jonathan; Dimopoulos, Savas; Massó, Eduard
1984-09-01
We compute the proton lifetime in recently proposed orthogonal theories of family unification. For ΛMS = 100 MeV, we find a partial lifetime τ(p-->e+π0) of 5.9×1031+/-1 yr, where the error in the exponent comes from uncertainties in the hadronic wave function. Important decay products include electrons, neutrinos and non-strange mesons. Fulbright Fellow. On leave of absence from Departament de Física Teòrica, Universitat Autónoma de Barcelona, Belaterra, Spain.
Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer
Elrefai, Ahmed L. Sasada, Ichiro
2015-05-07
A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.
Analytical Chemistry Division's sample transaction system
Stanton, J.S.; Tilson, P.A.
1980-10-01
The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.
Ultrafast time-division demultiplexing of polarization-entangled photons.
Donohue, John M; Lavoie, Jonathan; Resch, Kevin J
2014-10-17
Maximizing the information transmission rate through quantum channels is essential for practical implementation of quantum communication. Time-division multiplexing is an approach for which the ultimate rate requires the ability to manipulate and detect single photons on ultrafast time scales while preserving their quantum correlations. Here we demonstrate the demultiplexing of a train of pulsed single photons using time-to-frequency conversion while preserving their polarization entanglement with a partner photon. Our technique converts a pulse train with 2.69 ps spacing to a frequency comb with 307 GHz spacing which may be resolved using diffraction techniques. Our work enables ultrafast multiplexing of quantum information with commercially available single-photon detectors. PMID:25361257
DPSK modulated video service overlaid wavelength division multiplexed OFDM-PON
NASA Astrophysics Data System (ADS)
Xin, Xiangjun; Zhang, Lijia; Liu, Bo; Wang, Yongjun; Zhang, Qi
2010-12-01
In this paper, we have proposed and demonstrated a novel architecture for orthogonal frequency division multiplexing wavelength-division-multiplexing passive optical network (OFDM-PON) with centralized lightwave and differential phase shift keying (DPSK) broadcast overlaid. In the architecture, 10-Gb/s 16QAM-OFDM point to point (P2P) signals and 2.5-Gb/s DPSK broadcast signals are used for downstream transmission. We employ a wavelength re-modulation for 2.5-Gb/s on-off keying (OOK) upstream signals to simplify the optical network unit as well as reduce the cost. Single-sideband (SSB) modulation format is utilized to eliminate the fading effect for downstream signals. The results show its prospect in future optical access network.
Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels.
Prilepsky, Jaroslaw E; Derevyanko, Stanislav A; Blow, Keith J; Gabitov, Ildar; Turitsyn, Sergei K
2014-07-01
We scrutinize the concept of integrable nonlinear communication channels, resurrecting and extending the idea of eigenvalue communications in a novel context of nonsoliton coherent optical communications. Using the integrable nonlinear Schrödinger equation as a channel model, we introduce a new approach-the nonlinear inverse synthesis method-for digital signal processing based on encoding the information directly onto the nonlinear signal spectrum. The latter evolves trivially and linearly along the transmission line, thus, providing an effective eigenvalue division multiplexing with no nonlinear channel cross talk. The general approach is illustrated with a coherent optical orthogonal frequency division multiplexing transmission format. We show how the strategy based upon the inverse scattering transform method can be geared for the creation of new efficient coding and modulation standards for the nonlinear channel. PMID:25032926
Aganj, Iman; Lenglet, Christophe; Yacoub, Essa; Sapiro, Guillermo; Harel, Noam
2011-01-01
Hardware constraints, scanning time limitations, patient movement, and SNR considerations, restrict the slice-selection and the in-plane resolutions of MRI differently, generally resulting in anisotropic voxels. This non-uniform sampling can be problematic, especially in image segmentation and clinical examination. To alleviate this, the acquisition is divided into (two or) three separate scans, with higher in-plane resolutions and thick slices, yet orthogonal slice-selection directions. In this work, a non-iterative wavelet-based approach for combining the three orthogonal scans is adopted, and its advantages compared to other existing methods, such as Fourier techniques, are discussed, including the consideration of the actual pulse response of the MRI scanner, and its lower computational complexity. Experimental results are shown on simulated and real 7T MRI data. PMID:21761448
Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases.
Sagredo, Sandra; Pirzer, Tobias; Aghebat Rafat, Ali; Goetzfried, Marisa A; Moncalian, Gabriel; Simmel, Friedrich C; de la Cruz, Fernando
2016-03-18
DNA-binding proteins are promising reagents for the sequence-specific modification of DNA-based nanostructures. Here, we investigate the utility of a series of relaxase proteins-TrwC, TraI, and MobA-for nanofunctionalization. Relaxases are involved in the conjugative transfer of plasmids between bacteria, and bind to their DNA target sites via a covalent phosphotyrosine linkage. We study the binding of the relaxases to two standard DNA origami structures-rodlike six-helix bundles and flat rectangular origami sheets. We find highly orthogonal binding of the proteins with binding yields of 40-50 % per binding site, which is comparable to other functionalization methods. The yields differ for the two origami structures and also depend on the position of the binding sites. Due to their specificity for a single-stranded DNA target, their orthogonality, and their binding properties, relaxases are a uniquely useful addition to the toolbox available for the modification of DNA nanostructures with proteins. PMID:26915475
Xylonucleic acid: synthesis, structure, and orthogonal pairing properties
Maiti, Mohitosh; Maiti, Munmun; Knies, Christine; Dumbre, Shrinivas; Lescrinier, Eveline; Rosemeyer, Helmut; Ceulemans, Arnout; Herdewijn, Piet
2015-01-01
There is a common interest for studying xeno-nucleic acid systems in the fields of synthetic biology and the origin of life, in particular, those with an engineered backbone and possessing novel properties. Along this line, we have investigated xylonucleic acid (XyloNA) containing a potentially prebiotic xylose sugar (a 3′-epimer of ribose) in its backbone. Herein, we report for the first time the synthesis of four XyloNA nucleotide building blocks and the assembly of XyloNA oligonucleotides containing all the natural nucleobases. A detailed investigation of pairing and structural properties of XyloNAs in comparison to DNA/RNA has been performed by thermal UV-melting, CD, and solution state NMR spectroscopic studies. XyloNA has been shown to be an orthogonal self-pairing system which adopts a slightly right-handed extended helical geometry. Our study on one hand, provides understanding for superior structure-function (-pairing) properties of DNA/RNA over XyloNA for selection as an informational polymer in the prebiotic context, while on the other hand, finds potential of XyloNA as an orthogonal genetic system for application in synthetic biology. PMID:26175047
Geometric Attitude Controls And Estimations On The Special Orthogonal Group
NASA Astrophysics Data System (ADS)
Wu, Tse-Huai
This dissertation is concerned with spacecraft attitude control and estimation problems from the point of view of geometric mechanics. The controllers and observers are built on the special orthogonal group without any parameterizations, where the attitude dynamics is treated in a global and unique manner. The dissertation is composed of three parts. A leader-follower attitude formation control scheme is reported such that the leader spacecraft control its absolute attitude with respect to the inertial reference frame and the follower spacecraft control relative attitude with respect to other spacecraft in the formation. The unique feature is that both the absolute attitude and the relative attitude control systems are developed directly in terms of the line-of-sight observations, where attitude determination and estimation processes are not required. Second, an angular velocity observer is developed such that the estimated angular velocity is guaranteed to converge to the true angular velocity asymptotically from almost all initial estimates. Then, the presented observer is integrated with a proportional-derivative attitude tracking controller to show a separation type property for attitude tracking in the absence of angular velocity measurements. A hybrid observer for the attitude dynamics of a rigid body is proposed to guarantee global asymptotic stability. By designing a set of attitude error functions, attitude estimates are expelled from undesired equilibria to achieve global asymptotic stability. To guarantee that the estimated attitudes evolve on the special orthogonal group, a numerical algorithm based on the Lie group method is presented.
Orthogonal Cherenkov sound in spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Smirnov, Sergey
2015-06-01
Conventionally the Cherenkov sound is governed by orbital degrees of freedom and is excited by supersonic particles. Additionally, it usually has a forward nature with a conic geometry known as the Cherenkov cone whose axis is oriented along the supersonic particle motion. Here we predict Cherenkov sound of a unique nature entirely resulting from the electronic spin degree of freedom and demonstrate a fundamentally distinct Cherenkov effect originating from essentially subsonic electrons in two-dimensional gases with both Bychkov-Rashba and Dresselhaus spin-orbit interactions. Specifically, we show that the axis of the conventional forward Cherenkov cone gets a nontrivial quarter-turn and at the same time the sound distribution strongly localizes around this rotated axis being now orthogonal to the subsonic particle motion. Apart from its fundamentally appealing nature, the orthogonal Cherenkov sound could have applications in planar semiconductor technology combining spin and acoustic phenomena to develop, e.g., acoustic amplifiers or sound sources with a flexible spin dependent orientation of the sound propagation.
Impact Damage of 3D Orthogonal Woven Composite Circular Plates
NASA Astrophysics Data System (ADS)
Ji, Changgan; Sun, Baozhong; Qiu, Yiping; Gu, Bohong
2007-11-01
The damages of 3D orthogonal woven composite circular plate under quasi-static indentation and transverse impact were tested with Materials Test System (MTS) and modified split Hopkinson bar (SHPB) apparatus. The load vs. displacement curves during quasi-static penetration and impact were obtained to study the energy absorption of the composite plate. The fluctuation of the impact stress waves has been unveiled. Differences of the load-displacement curves between the quasi-static and impact loading are discussed. This work also aims at establishing a unit-cell model to analyze the damage of composites. A user material subroutine which named VUMAT for characterizing the constitutive relationship of the 3-D orthogonal woven composite and the damage evolution is incorporated with a finite element code ABAQUS/Explicit to simulate the impact damage process of the composite plates. From the comparison of the load-displacement curves and energy absorption curves of the composite plate between experimental and FEM simulation, it is shown that the unit-cell model of the 3D woven composite and the VUMAT combined with the ABAQUS/Explicit can calculate the impact responses of the circular plate precisely. Furthermore, the model can also be extended to simulate the impact behavior of the 3D woven composite structures.
Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit
NASA Astrophysics Data System (ADS)
Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin
2015-03-01
Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.
Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Liang, Wen-Ye; Wen, Hao; Yin, Zhen-Qiang; Chen, Hua; Li, Hong-Wei; Chen, Wei; Han, Zheng-Fu
2015-09-01
At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. Supported by the National Basic Research Program of China under Grant Nos. 2011CBA00200 and 2011CB921200 and the National Natural Science Foundation of China under Grant Nos. 60921091, 61475148, and 61201239 and Zhejiang Natural Science Foundation under Grant No. LQ13F050005
Orthogonalizing EM: A design-based least squares algorithm
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.
2016-01-01
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volumeconstancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
Hyvärinen, Aapo; Hirayama, Jun-ichiro; Kiviniemi, Vesa; Kawanabe, Motoaki
2016-03-01
In many multivariate time series, the correlation structure is nonstationary, that is, it changes over time. The correlation structure may also change as a function of other cofactors, for example, the identity of the subject in biomedical data. A fundamental approach for the analysis of such data is to estimate the correlation structure (connectivities) separately in short time windows or for different subjects and use existing machine learning methods, such as principal component analysis (PCA), to summarize or visualize the changes in connectivity. However, the visualization of such a straightforward PCA is problematic because the ensuing connectivity patterns are much more complex objects than, say, spatial patterns. Here, we develop a new framework for analyzing variability in connectivities using the PCA approach as the starting point. First, we show how to analyze and visualize the principal components of connectivity matrices by a tailor-made rank-two matrix approximation in which we use the outer product of two orthogonal vectors. This leads to a new kind of transformation of eigenvectors that is particularly suited for this purpose and often enables interpretation of the principal component as connectivity between two groups of variables. Second, we show how to incorporate the orthogonality and the rank-two constraint in the estimation of PCA itself to improve the results. We further provide an interpretation of these methods in terms of estimation of a probabilistic generative model related to blind separation of dependent sources. Experiments on brain imaging data give very promising results. PMID:26735746
Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices
NASA Astrophysics Data System (ADS)
Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.
2014-03-01
Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.
Empirical Orthogonal Functions of the Australian Regional Ionosphere
NASA Astrophysics Data System (ADS)
Bouya, Z.; Terkildsen, M.; Francis, M.
2011-12-01
Understanding the natural background variability of the ionosphere is required for investigations of the ionospheric response to external perturbations. Decomposition of ionospheric observations into a set of spatiotemporal structures allows the separation of the anomalous response of the ionosphere from the background variability. This paper presents preliminary results of the analysis of Australian regional Total Electron Content (TEC) using an Empirical Orthogonal Function (EOF) technique to distinguish the variability of the ionosphere caused by the solar and geomagnetic activity. TEC data at evenly distributed grid points was estimated using the Spherical Cap Harmonic Analysis (SCHA) method, applied to GPS data collected from the Australian Regional GPS Network (ARGN). This approach yields more detailed maps of regional TEC variation than can be obtained using global models. EOF analysis was used to decompose the TEC data set into a series of orthogonal Eigenfunction (EOF base function) and associated coefficients. The base function represents the variation in TEC with latitude and longitude. The coefficients represent the variation with time. Analysis of a year worth of data from 2010 yielded the following results: The first 5 EOFs describe 95% of the total TEC variance. The equatorial zone dominates in the spatial structure of the first EOF. This mode has a distinct diurnal and seasonal evolution its proportion is ~65% and highly correlates with the solar activity. Keywords: EOF, Equatorial Anomaly, Regional, SCHA, TEC, GPS, Australia .
Signaling to stomatal initiation and cell division
Le, Jie; Zou, Junjie; Yang, Kezhen; Wang, Ming
2014-01-01
Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage. PMID:25002867
Signaling to stomatal initiation and cell division.
Le, Jie; Zou, Junjie; Yang, Kezhen; Wang, Ming
2014-01-01
Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage. PMID:25002867
Bohachevsky, I.O.; Torrey, M.D.
1986-06-10
An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.
Emerging facets of plastid division regulation.
Basak, Indranil; Møller, Simon Geir
2013-02-01
Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process. PMID:22965912
Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2015-10-20
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2012-05-08
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2006-08-01
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Collisions of plastic and foam laser-driven foils studied by orthogonal x-ray imaging.
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Weaver, J.; Oh, J.; Harding, E. C.
2007-11-01
We report an experimental study of hydrodynamic Rayleigh-Taylor and Richtmyer-Meshkov-type instabilities developing at the material interface produced in double-foil collisions. Our double-foil targets consist of a plastic foil irradiated by the 4 ns Nike KrF laser pulse at ˜50 TW/cm^2 and accelerated toward a stationary plastic or foam foil. Either the rear side of the front foil or the front side of the rear foil is rippled. Orthogonal imaging, i. e., a simultaneous side-on and face-on x-ray radiography of the targets has been used in these experiments to observe the process of collision and the evolution of the areal mass amplitude modulation. Its observed evolution is similar to the case of the classical RM instability in finite thickness targets first studied by Y. Aglitsky et al., Phys. Plasmas 13, 80703 (2006). Our data are favorably compared with 1D and 2D simulation results.
Interference Resilient Sigma Delta-Based Pulse Oximeter.
Shokouhian, Mohsen; Morling, Richard; Kale, Izzet
2016-06-01
Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management. PMID:26742140
1. Oblique view of 215 Division Street, looking southwest, showing ...
1. Oblique view of 215 Division Street, looking southwest, showing front (east) facade and north side, 213 Division Street is visible at left and 217 Division Street appears at right - 215 Division Street (House), Rome, Floyd County, GA
Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B; Schneider, Kai; Benkadda, S.; Farge, Marie
2011-01-01
We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.
NASA Astrophysics Data System (ADS)
Thomas, T.; Suyker, A.; Burba, G. G.; Billesbach, D.
2014-12-01
The eddy covariance method for estimating fluxes of trace gases, energy and momentum in the constant flux layer above a plant canopy fundamentally relies on accurate measurements of the vertical wind speed. This wind speed is typically measured using a three dimensional ultrasonic anemometer. These anemometers incorporate designs with transducer sets that are aligned either orthogonally or non-orthogonally. Previous studies comparing the two designs suggest differences in measured 3D wind speed components, in particular vertical wind speed, from the non-orthogonal transducer relative to the orthogonal design. These differences, attributed to additional flow distortion caused by the non-orthogonal transducer arrangement, directly affect fluxes of trace gases, energy and momentum. A field experiment is being conducted over a rain-fed soybean field at the AmeriFlux site (US-Ne3) near Mead, Nebraska. In this study, ultrasonic anemometers featuring orthogonal transducer sets (ATI Vx Probe) and non-orthogonal transducer sets (Gill R3-100) collect high frequency wind vector and sonic temperature data. Sensible heat and momentum fluxes and other key sonic performance data are evaluated based on environmental parameters including wind speed, wind direction, temperature, and angle of attack. Preliminary field experiment results are presented.
Application of neural networks with orthogonal activation functions in control of dynamical systems
NASA Astrophysics Data System (ADS)
Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.
2016-04-01
In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.
One method for calculating flux-MMF relationship of orthogonal-core
Tajima, Katsubumi; Kaga, Akio; Anazawa, Yoshihisa . Dept. of Electrical and Electronics Engineering); Ichinokura, Osamu . Dept. of Electrical Engineering)
1993-11-01
The orthogonal-core has various applications, e.g. as a variable inductor, a parametric transformer and a DC-AC converter. This paper describes one method for calculating the flux-MMF relationship of an orthogonal-core. The calculation is based on a 3-dimensional magnetic circuit model of the orthogonal-core. The model is derived by dividing the orthogonal-core, inclusive of the surrounding region, into elements comprising a 3-dimensional magnetic circuit. Using this model, the authors can compute the flux-MMF relationship of the orthogonal core with arbitrary dimensions from the B-H characteristic of the core material. The calculation method presented here is useful for optimum design of devices using an orthogonal-core.
The generation of arbitrary vector beams using a division of a wavefront-based setup
NASA Astrophysics Data System (ADS)
Kalita, Ranjan; Gaffar, Md; Boruah, Bosanta R.
2016-07-01
In this paper, we introduce an arbitrary vector-beam-forming scheme using a simple arrangement involving only one liquid crystal spatial light modulator. An arbitrary vector beam can be obtained by overlapping two orthogonally polarized beams. In most of the existing vector-beam-forming schemes the two orthogonally polarized beams are essentially copies of a single incident wavefront. However, in the proposed scheme the two orthogonally polarized beams correspond to two separated parts of a single incident wavefront. Taking a cue from the two-beam interference phenomenon, the present scheme can be referred to as a division of a wavefront-based scheme. The proposed setup offers certain important advantages and is more suitable for the generation of higher average-power vector beams. We demonstrate the working of the vector-beam-forming scheme by generating various vector beams such as radially polarized, azimuthally polarized, and Bessel–Gauss beams and also a boat-shaped beam in the focal volume of a low-numerical-aperture focusing lens. The boat-shaped beam comprises a dark center surrounded by intense light from all but one direction. The beam is realized at the focus of an azimuthally polarized beam in the presence of a moderate amount of coma in the beam. The experimental results obtained using the proposed setup are verified by comparing them with the theoretical results.
Fully orthogonal optical-code multiplex for broadcasting.
Macdonald, R I
1988-06-01
A novel method of optical-code multiplex transmission from a central location is proposed. It has the advantages that the receivers can be configured to any channel quickly, the channels have in principle zero cross talk, and the bandwidth-expansion factors are less than for other optical-code-division multiple access arrangements. The proposed method is based on arrays of optoelectronic switching detectors that are at present under development for broadband matrix switching. PMID:19745958
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G.
2009-08-18
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G.
2009-12-29
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G.
2011-10-04
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G
2014-03-11
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Ensemble forecast of typhoon generated by orthogonal conditional nonlinear optimal perturbations
NASA Astrophysics Data System (ADS)
Huo, Zhenhua; Duan, Wansuo; Zhou, Feifan
2016-04-01
Orthogonal conditional nonlinear optimal perturbations (CNOPs) are the initial perturbations that have the largest impact on the forecast results in orthogonal subspaces of the initial perturbation space. Previous studies demonstrate the successful application of orthogonal CNOPs in ensemble forecasting. And further analysis indicates that orthogonal CNOPs may be more adapt to the prediction of strong events, among which typhoon events occur in the tropical or subtropical areas where the diabatic physical processes is very important and has strong nonlinear behavior. For these reasons, this paper focuses on the application of orthogonal CNOPs in ensemble forecast of typhoon. In this study, orthogonal CNOPs, orthogonal singular vectors (SVs), bred vectors (BVs) and random perturbations (RPs) are applied for typhoon ensemble forecasts using MM5 model. The results show that, for typhoons Matsa in 2005 and Sepat in 2007, ensemble forecasts generated by orthogonal CNOPs greatly improve the control forecast, successfully predicts the landing location of Matsa, and gives the warning information of the landing of Sepat. In detail, for the ensemble mean associated with orthogonal CNOPs, the averaging track forecast error over 5 days is decreased by 45.58 km for Matsa and 87.8 km for Sepat, compared with control forecast. However, ensemble forecasts generated by other three methods could not successfully predict the landing location of Matsa and give the warning information of the landing of Sepat. Compared with orthogonal SVs, BVs and RPs, ensemble forecasts generated by orthogonal CNOPs corresponds to the largest ensemble spread, improves the control forecast at the largest extent, and best samples the distribution of initial analysis errors. All these results show that orthogonal CNOPs may provide another useful technique for ensemble forecast of typhoon.
NEN Division Funding Gap Analysis
Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.; Lakis, Rollin E.; Miko, David K.
2012-09-05
The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.
Stochastic models for cell division
NASA Astrophysics Data System (ADS)
Stukalin, Evgeny; Sun, Sean
2013-03-01
The probability of cell division per unit time strongly depends of age of cells, i.e., time elapsed since their birth. The theory of cell populations in the age-time representation is systematically applied for modeling cell division for different spreads in generation times. We use stochastic simulations to address the same issue at the level of individual cells. Our approach unlike deterministic theory enables to analyze the size fluctuations of cell colonies at different growth conditions (in the absence and in the presence of cell death, for initially synchronized and asynchronous cell populations, for conditions of restricted growth). We find the simple quantitative relation between the asymptotic values of relative size fluctuations around mean values for initially synchronized cell populations under growth and the coefficients of variation of generation times. Effect of initial age distribution for asynchronous growth of cell cultures is also studied by simulations. The influence of constant cell death on fluctuations of sizes of cell populations is found to be essential even for small cell death rates, i.e., for realistic growth conditions. The stochastic model is generalized for biologically relevant case that involves both cell reproduction and cell differentiation.
Structures Division 1994 Annual Report
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.
Control of the polarization of attosecond pulses using a two-color field
NASA Astrophysics Data System (ADS)
Ruiz, Camilo; Hoffmann, David J.; Torres, Ricardo; Chipperfield, Luke E.; Marangos, Jonathan P.
2009-11-01
Control over the polarization of an attosecond pulse train (APT) is demonstrated theoretically using orthogonally polarized two-color fields. The carrier envelope phase of the two pulses is used as a control parameter to generate both an APT with linear polarization in two nearly perpendicular planes or a train of elliptically polarized pulses of alternating helicity. By using few-cycle driving laser fields an isolated attosecond pulse with elliptical polarization is shown to be generated after selecting the cut-off region of the harmonic spectrum. The control mechanism is explained in terms of classical trajectories.
State diagram of an orthogonal spin transfer spin valve device
Ye, Li; Wolf, Georg; Pinna, Daniele; Chaves-O'Flynn, Gabriel D.; Kent, Andrew D.
2015-05-21
We present the switching characteristics of a spin-transfer device that incorporates a perpendicularly magnetized spin-polarizing layer with an in-plane magnetized free and fixed magnetic layer, known as an orthogonal spin transfer spin valve device. This device shows clear switching between parallel (P) and antiparallel (AP) resistance states and the reverse transition (AP → P) for both current polarities. Further, hysteretic transitions are shown to occur into a state with a resistance intermediate between that of the P and AP states, again for both current polarities. These unusual spin-transfer switching characteristics can be explained within a simple macrospin model that incorporates thermal fluctuations and considers a spin-polarized current that is tilted with respect to the free layer's plane, due to the presence of the spin-transfer torque from the polarizing layer.
Orthogonally referenced integrated ensemble for navigation and timing
Smith, Stephen Fulton; Moore, James Anthony
2014-04-01
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.
Orthogonally referenced integrated ensemble for navigation and timing
Smith, Stephen Fulton; Moore, James Anthony
2013-02-26
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.
Extraction optimization of carbohydrate compound from Huangqi using orthogonal design.
Zhou, Shen-kang; Bi, Tie-Nan; Xu, Yun-Feng; Zhang, Rui-Li; Yang, Mei-Juan
2013-07-01
The effect of extraction time, extraction temperature and time on the yield of Huangqi carbohydrate compound (HQCC) was investigated using single factor and orthogonal experiment design. The influence by the parameters on the extraction yields of carbohydrate compound decreased in the order of: C (extraction number)>A (extraction time)>B (extraction temperature) according to the R values. Based on this analysis, and considering the carbohydrate compound extraction efficiency, the cost of energy and the feasibility of experiment, the optimum conditions of extraction were therefore determined as follows: extraction time 120min, extraction temperature 80°C, and extraction number 4. Oral administration of HQCC reduced lipid peroxidation level and enhanced antioxidant enzymes activities in gastric mucosa. In addition, HQCC reduced the serum IL-8 and TNF-α levels. In conclusion, these data reveal that HQCC promotes regeneration of damaged gastric mucosa, probably through its antioxidative mechanism. PMID:23541555
Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings
Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2016-01-01
A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors. PMID:27005493
Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings.
Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2016-01-01
A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors. PMID:27005493
Integrated power divider/combiner at hybrid orthogonal junctions
NASA Astrophysics Data System (ADS)
El Sherif, Mohamed H.; Ahmed, Osman S.; Bakr, Mohamed H.
2014-03-01
We propose an integrated power divider/combiner at the interface between silicon nanowire and plasmonic slot waveguide (PSW). The proposed configuration facilitates light access and manipulation in planar nano-plasmonic circuits. The light is incident from a standard silicon nanowire to be accessed by a nano-plasmonic circuit providing subwavelength confinement. The structure overcomes the losses associated with long distance light propagation in nanoplasmonic splitters as coupling and splitting are performed at the same interface with minimal losses. Two PSWs placed orthogonally to the silicon nanowire forming hybrid junctions are exploited for the power dividing/combining functionality. The power splitter has been analyzed using the finite difference time domain (FDTD) numerical method. The ultra-compact proposed device provides wide-band power splitting functionality. A splitting of 34.7%, over most of the wavelength spectrum from 0.8 μm - 2.5 μm, is demonstrated.
Rational design of orthogonal libraries of protein coding genes.
Ryan, Daniel; Papamichail, Dimitris
2013-05-17
Array-based oligonucleotide synthesis technologies provide access to thousands of custom-designed sequence variants at low cost. Large-scale synthesis and high-throughput assays have become valuable experimental tools to study in detail the interplay between sequence and function. We have developed a methodology and corresponding algorithms for the design of diverse protein coding gene libraries, to exploit the potential of multiplex synthesis and help elucidate the effects of codon utilization and other factors in gene expression. Using our algorithm, we have computationally designed gene libraries with hundreds to thousands of orthogonal codon usage variants, uniformly exploring the design space of codon utilization, while demanding only a small fraction of the synthesis cost that would be required if these variants were synthesized independently. PMID:23654273
Sequence-defined polymers via orthogonal allyl acrylamide building blocks.
Porel, Mintu; Alabi, Christopher A
2014-09-24
Biological systems have long recognized the importance of macromolecular diversity and have evolved efficient processes for the rapid synthesis of sequence-defined biopolymers. However, achieving sequence control via synthetic methods has proven to be a difficult challenge. Herein we describe efforts to circumvent this difficulty via the use of orthogonal allyl acrylamide building blocks and a liquid-phase fluorous support for the de novo design and synthesis of sequence-specific polymers. We demonstrate proof-of-concept via synthesis and characterization of two sequence-isomeric 10-mer polymers. (1)H NMR and LCMS were used to confirm their chemical structure while tandem MS was used to confirm sequence identity. Further validation of this methodology was provided via the successful synthesis of a sequence-specific 16-mer polymer incorporating nine different monomers. This strategy thus shows promise as an efficient approach for the assembly of sequence-specific functional polymers. PMID:25204618
Asymptotic formulae for the zeros of orthogonal polynomials
Badkov, V M
2012-09-30
Let p{sub n}(t) be an algebraic polynomial that is orthonormal with weight p(t) on the interval [-1, 1]. When p(t) is a perturbation (in certain limits) of the Chebyshev weight of the first kind, the zeros of the polynomial p{sub n}( cos {tau}) and the differences between pairs of (not necessarily consecutive) zeros are shown to satisfy asymptotic formulae as n{yields}{infinity}, which hold uniformly with respect to the indices of the zeros. Similar results are also obtained for perturbations of the Chebyshev weight of the second kind. First, some preliminary results on the asymptotic behaviour of the difference between two zeros of an orthogonal trigonometric polynomial, which are needed, are established. Bibliography: 15 titles.
Antioxidant peptides from corn gluten meal: Orthogonal design evaluation.
Zhou, Cunshan; Hu, Jiali; Ma, Haile; Yagoub, Abu ElGasim A; Yu, Xiaojie; Owusu, John; Ma, Haiyan; Qin, Xiaopei
2015-11-15
Protamex catalyzed corn gluten meal (CGM) hydrolysis peptides (CHP) were prepared. Orthogonal design L16 (4(5)) was used to optimize processing variables of CGM concentration, CGM heat pretreatment (121 °C) time, and enzymolysis pH, temperature, and time. Degree of hydrolysis (DH), undigested residue ratio, molecular weight (MW) distribution and DPPH radical inhibition were selected as analysis indicators. Optimum variables were CGM concentration of 18%, heat pretreatment time of 40 min, and enzymolysis pH, temperature and time of 7.5, 55 °C and 24h, respectively. Verification test showed that CHP IC50 for scavenging hydroxyl radical was the best and then followed by reducing power. Oligopeptides improved after hydrolysis at the expense of di- and tripeptides, suggesting formation of soluble aggregates from low MW peptides. The increase in the DH, oligopeptides, Alanyl-Tyrosine, and antioxidant free amino acids coincided with the improvement in the antioxidant activity of CHP. PMID:25977026
Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings
NASA Astrophysics Data System (ADS)
Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2016-03-01
A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.
The Full Classification of Orthogonal Easy Quantum Groups
NASA Astrophysics Data System (ADS)
Raum, Sven; Weber, Moritz
2016-02-01
We study easy quantum groups, a combinatorial class of orthogonal quantum groups introduced by Banica-Speicher in 2009. We show that there is a countable descending chain of easy quantum groups interpolating between Bichon's free wreath product with the permutation group S n and a semi-direct product of a permutation action of S n on a free product. This reveals a series of new commutation relations interpolating between a free product construction and the tensor product. Furthermore, we prove a dichotomy result saying that every hyperoctahedral easy quantum group is either part of our new interpolating series of quantum groups or belongs to a class of semi-direct product quantum groups recently studied by the authors. This completes the classification of easy quantum groups. We also study combinatorial and operator algebraic aspects of the new interpolating series.
Grimmett, E.S.
1964-01-01
This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)
Compression of Laplacian pyramids through orthogonal transforms and improved prediction.
Rath, Gagan; Yang, Wenxian; Guillemot, Christine
2008-09-01
Scalable representation of visual signals, such as image and video signals, has become a subject of active research since early 1980s. Scalability allows the adaptation of the bit rate and/or the resolution of the transmitted data to the network bandwidth and/or the rendering capability of the receiving device. For many years, spatial scalability has been achieved through wavelets, but recently the Laplacian pyramid (LP) has become an alternative choice because of reduced aliasing in the lower resolutions. In this paper, we focus on the coding efficiency of the LP with a view to transmitting it over a communication channel. In particular, we aim to improve the compression efficiency of the LP detail layers through improved interlayer prediction and orthogonal spatial transforms. First, we consider an LP in the open-loop configuration and propose to improve its rate-distortion performance by compressing it to a critically sampled representation. We derive four different orthogonal spatial transforms from the upsampling and downsampling filters that can achieve this representation, and apply them on the detail layers. The application of these transforms to the detail layers renders a fixed number of transform coefficients either zero or redundant, thus making their transmission unnecessary. Then we consider the compression of an LP in the closed-loop configuration through similar spatial transforms. Because of the introduction of quantization in the prediction loop, these spatial transforms applied on the detail layers do not produce the same number of zero or redundant transform coefficients as in the open-loop case. Nevertheless, the insight obtained from the open-loop coding leads us to enhance the interlayer prediction, and the subsequent application of the spatial transforms to the new detail layers aims to achieve better energy compaction. PMID:18701397
Orthogonal Relations and Color Constancy in Dichromatic Colorblindness
Pridmore, Ralph W.
2014-01-01
This paper employs uniform color space to analyze relations in dichromacy (protanopia, deuteranopia, tritanopia). Fifty percent or less of dichromats represent the classical reduction form of trichromacy, where one of three cones is inoperative but normal trichromatic color mixture such as complementary colors (pairs that mix white) are accepted by the dichromat, whose data can thus be plotted to CIE chromaticity spaces. The remaining dichromats comprise many and varied more-complex gene arrays from mutations, recombinations, etc. Though perhaps a minority, the three reductionist types provide a simple standard, in genotype and phenotype, to which the more complex remainder may be compared. Here, previously published data on dichromacy are plotted and analyzed in CIELUV uniform color space to find spatial relations in terms of color appearance space (e.g., hue angle). Traditional residual (seen) hues for protanopia and deuteranopia (both red–green colorblindness) are yellow and blue, but analysis indicates the protanopic residual hues are more greenish yellow and reddish blue than in tradition. Results for three illuminants (D65, D50, B) imply four principles in the spatial structure of dichromacy: (1) complementarity of confusion hue pairs and of residual hue pairs; (2) orthogonality of confusion locus and residual hues locus at their intersection with the white point, in each dichromatic type; (3) orthogonality of protanopic and tritanopic confusion loci; and (4) inverse relations between protanopic and tritanopic systems generally, such that one's confusion hues are the other's residual hues. Two of the three dichromatic systems do not represent components of normal trichromatic vision as sometimes thought but are quite different. Wavelength shifts between illuminants demonstrate chromatic adaptation correlates exactly with that in trichromatic vision. In theory these results clarify relations in and between types of dichromacy. They also apply in Munsell and
Orthogonal arrays for computer experiments to assess important inputs
Moore, L. M.; McKay, Michael D.
2002-01-01
The topic of this paper is experiment planning, particularly fractional factorial designs or orthogonal arrays, for computer experiments to assess important inputs. The work presented in the paper is motivated by considering a non-stochastic computer simulation which has many inputs and which can, in a reasonable period of time, be run thousands of times. With many inputs, information that allows focus on a subset of important inputs is valuable. The characterization of 'importance' is expected to follow suggestions in McKay (1995) or McKay, et al. (1992). This analysis approach leads to considering factorial experiment designs. Inputs are associated with a finite number of discrete values, referred to as levels, so if each input has K levels and there are p inputs then there are K{sup P} possible distinct runs which constitute the K{sup P} factorial design space. The suggested size of p has been 35 to 50 so that even with K=2 the complete 2{sup P} factorial design space would not be run. Further, it is expected that the complexity of the simulation code and discrete levels possibly associated with equi-probable intervals from the input distribution make it desirable to consider more than 2 level inputs. Inputs levels of 5 and 7 have been investigated. In this paper, orthogonal array experiment designs, which are subsets of factorial designs also referred to as fractional factorial designs, are suggested as candidate experiments which provide meaningful basis for calculating and comparing R{sup 2} across subsets of inputs.
Orthogonal relations and color constancy in dichromatic colorblindness.
Pridmore, Ralph W
2014-01-01
This paper employs uniform color space to analyze relations in dichromacy (protanopia, deuteranopia, tritanopia). Fifty percent or less of dichromats represent the classical reduction form of trichromacy, where one of three cones is inoperative but normal trichromatic color mixture such as complementary colors (pairs that mix white) are accepted by the dichromat, whose data can thus be plotted to CIE chromaticity spaces. The remaining dichromats comprise many and varied more-complex gene arrays from mutations, recombinations, etc. Though perhaps a minority, the three reductionist types provide a simple standard, in genotype and phenotype, to which the more complex remainder may be compared. Here, previously published data on dichromacy are plotted and analyzed in CIELUV uniform color space to find spatial relations in terms of color appearance space (e.g., hue angle). Traditional residual (seen) hues for protanopia and deuteranopia (both red-green colorblindness) are yellow and blue, but analysis indicates the protanopic residual hues are more greenish yellow and reddish blue than in tradition. Results for three illuminants (D65, D50, B) imply four principles in the spatial structure of dichromacy: (1) complementarity of confusion hue pairs and of residual hue pairs; (2) orthogonality of confusion locus and residual hues locus at their intersection with the white point, in each dichromatic type; (3) orthogonality of protanopic and tritanopic confusion loci; and (4) inverse relations between protanopic and tritanopic systems generally, such that one's confusion hues are the other's residual hues. Two of the three dichromatic systems do not represent components of normal trichromatic vision as sometimes thought but are quite different. Wavelength shifts between illuminants demonstrate chromatic adaptation correlates exactly with that in trichromatic vision. In theory these results clarify relations in and between types of dichromacy. They also apply in Munsell and
NASA Astrophysics Data System (ADS)
Wang, Zhixin; Xu, Yinfan; Wang, Yanyi; Wang, Yuanquan; Chi, Nan
2016-04-01
In this study, we propose and experimentally demonstrate a simple direct detection passive optical network (PON) uplink transmission scheme based on frequency division multiplexing and polarization division multiplexing. Two optical network units (ONUs) are assigned to two different frequency bands at two different orthogonal polarization directions. At the optical line terminal, both ONU signals can be simultaneously detected by a single photodiode without utilizing any polarization control, polarization selection, or complicated polarization demultiplexing algorithms. As a proof-of-concept, the 2×ONU 80 Gbps 32-ary quadrature amplitude modulation Nyquist single carrier signals are successfully transmitted over 2 km standard single mode fiber or 20 km large effective area fiber with the assistance of frequency domain equalization and decision-directed least-mean-square. The measured bit error rate can be below the 7% pre-forward error correction threshold of 3.8×10-3. Meanwhile, this scheme is compatible with the widely used wavelength-division multiplexed PON, which shows the promising potential and feasibility of this proposal.
Wavelength and code-division multiplexing in diffuse optical imaging
NASA Astrophysics Data System (ADS)
Ascari, Luca; Berrettini, Gianluca; Iannaccone, Sandro; Giacalone, Matteo; Contini, Davide; Spinelli, Lorenzo; Trivella, Maria Giovanna; L'Abbate, Antonio; Potí, Luca
2011-02-01
We recently applied time domain near infrared diffuse optical spectroscopy (TD-NIRS) to monitor hemodynamics of the cardiac wall (oxy and desoxyhemoglobin concentration, saturation, oedema) on anesthetized swine models. Published results prove that NIRS signal can provide information on myocardial hemodynamic parameters not obtainable with conventional diagnostic clinical tools.1 Nevertheless, the high cost of equipment, acquisition length, sensitivity to ambient light are factors limiting its clinical adoption. This paper introduces a novel approach, based on the use of wavelength and code division multiplexing, applicable to TD-NIRS as well as diffuse optical imaging systems (both topography and tomography); the approach, called WS-CDM (wavelength and space code division mltiplexing), essentially consists of a double stage intensity modulation of multiwavelength CW laser sources using orthogonal codes and their parallel correlation-based decoding after propagation in the tissue; it promises better signal to noise ratio (SNR), higher acquisition speed, robustness to ambient light and lower costs compared to both the conventional systems and the more recent spread spectrum approach based on single modulation with pseudo-random bit sequences (PRBS).2 Parallel acquisition of several wavelengths and from several locations is achievable. TD-NIRS experimental results guided Matlab-based simulations aimed at correlating different coding sequences, lengths, spectrum spreading factor, with the WS-CDM performances on such tissues (achievable SNR, acquisition and reconstruction speed, robustness to channel inequalization, ...). Simulations results and preliminary experimental validation confirm the significant improvements that WS-CDM could bring to diffuse optical imaging (not limited to cardiac functional imaging).
Nakamura, M; Kitayama, K
1998-05-10
Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance. PMID:18273237
Signal Selection in High-Resolution NMR by Pulsed Field Gradients. I. Geometrical Analysis
NASA Astrophysics Data System (ADS)
Mitschang, Lorenz
1999-03-01
A geometrical description for the selection of coherence transfer pathways in high resolution NMR by the application of pulsed field gradients along three orthogonal directions in space is presented. The response of the spin system is one point of the three-dimensional Fourier transform of the sample volume affected by a sequence of field gradients. The property that a pathway is retained (or suppressed) when a sequence of field gradients is applied is expressed by the property of vectors, representing the pathway and the sequence, respectively, to be orthogonal (or not orthogonal). Ignoring imperfections of RF pulses, and with the exception of sensitivity enhanced experiments and experiments where the relevant coherence order is zero while field gradients are applied, it is shown that at most only half of the relevant pathways, as compared to a phase cycled experiment, are retained when field gradients are used for signal selection.
Tapered pulse tube for pulse tube refrigerators
Swift, Gregory W.; Olson, Jeffrey R.
1999-01-01
Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.
Operational Characterization of Divisibility of Dynamical Maps.
Bae, Joonwoo; Chruściński, Dariusz
2016-07-29
In this work, we show the operational characterization to the divisibility of dynamical maps in terms of the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to the structure of entanglement between system and environment. This shows that (i) channel distinguishability is the operational quantity signifying (detecting) divisibility (indivisibility) of dynamical maps and (ii) the decision problem for the divisibility of maps is as hard as the separability problem in entanglement theory. We also provide the information-theoretic characterization to the divisibility of maps with conditional min-entropy. PMID:27517760
Chemical Technology Division annual technical report 1997
1998-06-01
The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.
Asymmetrical division of Saccharomyces cerevisiae.
Lord, P G; Wheals, A E
1980-01-01
The unequal division model proposed for budding yeast (L. H. Hartwell and M. W. Unger, J. Cell Biol. 75:422-435, 1977) was tested by bud scar analyses of steady-state exponential batch cultures of Saccharomyces cerevisiae growing at 30 degrees C at 19 different rates, which were obtained by altering the carbon source. The analyses involved counting the number of bud scars, determining the presence or absence of buds on at least 1,000 cells, and independently measuring the doubling times (gamma) by cell number increase. A number of assumptions in the model were tested and found to be in good agreement with the model. Maximum likelihood estimates of daughter cycle time (D), parent cycle time (P), and the budded phase (B) were obtained, and we concluded that asymmetrical division occurred at all growth rates tested (gamma, 75 to 250 min). D, P, and B are all linearly related to gamma, and D, P, and gamma converge to equality (symmetrical division) at gamma = 65 min. Expressions for the genealogical age distribution for asymmetrically dividing yeast cells were derived. The fraction of daughter cells in steady-state populations is e-alpha P, and the fraction of parent cells of age n (where n is the number of buds that a cell has produced) is (e-alpha P)n-1(1-e-alpha P)2, where alpha = IN2/gamma; thus, the distribution changes with growth rate. The frequency of cells with different numbers of bud scars (i.e., different genealogical ages) was determined for all growth rates, and the observed distribution changed with the growth rate in the manner predicted. In this haploid strain new buds formed adjacent to the previous buds in a regular pattern, but at slower growth rates the pattern was more irregular. The median volume of the cells and the volume at start in the cell cycle both increased at faster growth rates. The implications of these findings for the control of the cell cycle are discussed. PMID:6991494
Multi-pulse multi-delay (MPMD) multiple access modulation for UWB
Dowla, Farid U.; Nekoogar, Faranak
2007-03-20
A new modulation scheme in UWB communications is introduced. This modulation technique utilizes multiple orthogonal transmitted-reference pulses for UWB channelization. The proposed UWB receiver samples the second order statistical function at both zero and non-zero lags and matches the samples to stored second order statistical functions, thus sampling and matching the shape of second order statistical functions rather than just the shape of the received pulses.
The Materials Division: A case study
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.; Lowell, Carl E.
1989-01-01
The Materials Division at NASA's Lewis Research Center has been engaged in a program to improve the quality of its output. The division, its work, and its customers are described as well as the methodologies developed to assess and improve the quality of the Division's staff and output. Examples of these methodologies are presented and evaluated. An assessment of current progress is also presented along with a summary of future plans.
Physics division annual report 2005.
Glover, J.; Physics
2007-03-12
This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were
Major Programs | Division of Cancer Prevention
The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |
Children's Inventions for Multidigit Multiplication and Division.
ERIC Educational Resources Information Center
Caliandro, Christine Koller
2000-01-01
Describes an informal research activity in which third grade students invent their own algorithms for multidigit multiplication and division. Discusses teaching implications and action research ideas. (ASK)
Photobase generator assisted pitch division
NASA Astrophysics Data System (ADS)
Gu, Xinyu; Bates, Christopher M.; Cho, Younjin; Kawakami, Takanori; Nagai, Tomoki; Ogata, Toshiyuki; Sundaresan, Arunkumar K.; Turro, Nicholas J.; Bristol, Robert; Zimmerman, Paul; Willson, C. Grant
2010-04-01
The drive to sustain the improvements in productivity that derive from following Moore's law has led the semiconductor industry to explore new technologies that enable production of smaller and smaller features on semiconductor device. Pitch division techniques and double exposure lithography are approaches that print features beyond the fundamental resolution limit of state-of-art lenses by modifying the lithographic process. This paper presents a new technique that enables pitch division in the printing of gratings using only a single exposure that is fully compatible with the current manufacturing tools. This technique employs a classical photoresist polymer together with a photoactive system that incorporates both a photoacid generator (PAG) and a photobase generator (PBG). The PBG is added to the resist formulation in higher molar concentration than the PAG, but has a base production rate that is slower than the acid production rate of the PAG. The PBG functions as a dose-dependent base quencher, which neutralizes the acid in high dose exposure regions but not in the low dose regions. This photoactive system can be exploited in the design of both positive tone and negative tone resist formulations that provide a developed image of a grating that is twice the frequency of the grating on the mask. A simulation of this process was performed for a 52 nm line and space pattern using PROLITH and customized codes. The results showed generation of a 26 nm half pitch relief image after development. Through this new technique, a 45 nm half pitch line and space pattern was experimentally achieved with a mask that produces a 90 nm half pitch aerial image. This corresponds to a k1 factor of 0.13. The principles, the materials design and the first lithographic evaluations of this system are reported.
On Potential Flow Solutions from the Division Algebras
NASA Astrophysics Data System (ADS)
Dijkhuis, G. C.
2009-01-01
We write planar potential flow equations in real matrix form symmetrized by the Cauchy-Riemann conditions. From complex functions in matrix form we obtain parametric plots of a line vortex, of a vortex doublet and of vortex circulation confined by a wedge. For 3D potential flows we write quaternion functions in real matrix form regularized by six local and six global conditions for smooth closure. We identify the leading partial derivative in the Jacobian matrix as eigenvalue of its sub-matrix. Matrix symmetries ensure a nonzero expression for the Jacobian determinant. With quaternion inversion in matrix form we map planar vortex flow conformally on spherical surfaces as belts, lattices and Von Karman vortex streets. Likewise exponential quaternion functions map uniform 3D flow on concentric equipotential spheres orthogonal to stream surfaces with full-twist Möbius band topology. We connect the division algebras by a group structure resolving 8D octavian space into three quaternion sub- spaces, each resolving into three complex sub-planes.
Strong pulsed excitations using circularly polarized fields for ultra-low field NMR
NASA Astrophysics Data System (ADS)
Shim, Jeong Hyun; Lee, Seong-Joo; Yu, Kwon-Kyu; Hwang, Seong-Min; Kim, Kiwoong
2014-02-01
A pulse, which is produced by a single coil and thereby has a linear polarization, cannot coherently drive nuclear spins if the pulse is stronger than the static field B0. The inaccuracy of the pulse, which arises from the failure of the rotating wave approximation, has been an obstacle in adopting multiple pulse techniques in ultra-low field NMR where B0 is less than a few μT. Here, we show that such a limitation can be overcome by applying pulses of circular polarization using two orthogonal coils. The sinusoidal nutation of the nuclear spins was experimentally obtained, which indicates that coherent and precise controls of the nuclear spins can be achieved with circularly polarized pulses. Additional demonstration of the Carl-Purcell-Meiboom-Gill sequence verifies the feasibility of adopting multiple pulse sequences to ultra-low field NMR studies.
2D nearly orthogonal mesh generation with controls on distortion functions
Technology Transfer Automated Retrieval System (TEKTRAN)
A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is presented. The proposed method considers the effects from not only the local orthogonal condition but also the local smoothness condition (the geometry and the mesh size) on the distortion fu...
A note on the zeros of Freud-Sobolev orthogonal polynomials
NASA Astrophysics Data System (ADS)
Moreno-Balcazar, Juan J.
2007-10-01
We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.
Families of orthogonal Schrödinger cat-like-states
NASA Astrophysics Data System (ADS)
Praxmeyer, Ludmiła
2016-06-01
We analyze the condition of orthogonality between optical Schrödinger cat-like-states constructed as a superposition of two coherent states. We show that the orthogonality condition leads to the quantization of values of a naturally emerging symplectic form, while values of the corresponding metric form are continuous. A complete analytical solution of the problem is presented.
A pillar[5]arene-fused cryptand: from orthogonal self-assembly to supramolecular polymer.
Wang, Qi; Cheng, Ming; Zhao, Yue; Wu, Lin; Jiang, Juli; Wang, Leyong; Pan, Yi
2015-02-28
A pillar[5]arene-fused cryptand with two different cavities was synthesized successfully. It was found that the novel tricyclic host could associate with two different guest species in an orthogonal manner. And based on this orthogonal self-assembly of two host-guest interactions, a novel type of supramolecular polymer was constructed easily and conveniently. PMID:25636005
NASA Technical Reports Server (NTRS)
May, Brian D.
1991-01-01
The consequence of frequency domain multiple access channelization in a satellite communications system is that the ground- and space-based components often are required to operate in a linear region to prevent the generation of distortion signals. Components of a time division multiple access (TDMA) satellite system, such as a traveling-wave tube (TWT), can operate in the highest output power state because the channelization technique is relatively insensitive to the distortions resulting from saturated operation. A 30 GHz TWT was tested to determine the suitability of such a device in a TDMA system. Testing was focused on the ability of the TWT's output signal to rise up to full power at the leading edge of TDMA bursts, simulated by a pulse train. A peak power meter was used to display and measure the pulsed signal waveform. Measurements on the TWT output pulse rise time indicate that the TWT lengthened the rise time by 10 to 20 ns. Imposing modulator turn on timing that precedes the data burst by the TWT rise time is a logical approach to coordination of the two subsystem specification.
Orthogonal analysis of functional gold nanoparticles for biomedical applications.
Tsai, De-Hao; Lu, Yi-Fu; DelRio, Frank W; Cho, Tae Joon; Guha, Suvajyoti; Zachariah, Michael R; Zhang, Fan; Allen, Andrew; Hackley, Vincent A
2015-11-01
We report a comprehensive strategy based on implementation of orthogonal measurement techniques to provide critical and verifiable material characteristics for functionalized gold nanoparticles (AuNPs) used in biomedical applications. Samples were analyzed before and after ≈50 months of cold storage (≈4 °C). Biomedical applications require long-term storage at cold temperatures, which could have an impact on AuNP therapeutics. Thiolated polyethylene glycol (SH-PEG)-conjugated AuNPs with different terminal groups (methyl-, carboxylic-, and amine-) were chosen as a model system due to their high relevancy in biomedical applications. Electrospray-differential mobility analysis, asymmetric-flow field flow fractionation, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, inductively coupled plasma mass spectrometry, and small-angle X-ray scattering were employed to provide both complementary and orthogonal information on (1) particle size and size distribution, (2) particle concentrations, (3) molecular conjugation properties (i.e., conformation and surface packing density), and (4) colloidal stability. Results show that SH-PEGs were conjugated on the surface of AuNPs to form a brush-like polymer corona. The surface packing density of SH-PEG was ≈0.42 nm(-2) for the methyl-PEG-SH AuNPs, ≈0.26 nm(-2) for the amine-SH-PEG AuNPs, and ≈0.18 nm(-2) for the carboxylic-PEG-SH AuNPs before cold storage, approximately 10 % of its theoretical maximum value. The conformation of surface-bound SH-PEGs was then estimated to be in an intermediate state between brush-like and random-coiled, based on the measured thicknesses in liquid and in dry states. By analyzing the change in particle size distribution and number concentration in suspension following cold storage, the long term colloidal stability of AuNPs was shown to be significantly improved via functionalization with SH-PEG, especially in the case of methyl-PEG-SH and carboxylic
Deepening Students' Understanding of Multiplication and Division by Exploring Divisibility by Nine
ERIC Educational Resources Information Center
Young-Loveridge, Jenny; Mills, Judith
2012-01-01
This article explores how a focus on understanding divisibility rules can be used to help deepen students' understanding of multiplication and division with whole numbers. It is based on research with seven Year 7-8 teachers who were observed teaching a group of students a rule for divisibility by nine. As part of the lesson, students were shown a…
Moral Reasoning of Division III and Division I Athletes: Is There a Difference?
ERIC Educational Resources Information Center
Stoll, Sharon Kay; And Others
This study sought to examine the potentially corrupting influences of media attention, money, and the accompanying stress on the moral reasoning of student athletes at both Division I and Division III National College Athletics Association (NCAA) schools. Subjects were 718 nonathletes and 277 randomly selected athletes at a Division I school and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... Transportation Division, a division of Emerson Electric, Bridgeton, Missouri. The notice was published in the Federal Register on December 16, 2010 (75 FR 75701). At the request of a State of Arkansas agent, the... Division lived throughout the United States, including Arkansas, but report to the Bridgeton,...
Modal wavefront reconstruction over general shaped aperture by numerical orthogonal polynomials
NASA Astrophysics Data System (ADS)
Ye, Jingfei; Li, Xinhua; Gao, Zhishan; Wang, Shuai; Sun, Wenqing; Wang, Wei; Yuan, Qun
2015-03-01
In practical optical measurements, the wavefront data are recorded by pixelated imaging sensors. The closed-form analytical base polynomial will lose its orthogonality in the discrete wavefront database. For a wavefront with an irregularly shaped aperture, the corresponding analytical base polynomials are laboriously derived. The use of numerical orthogonal polynomials for reconstructing a wavefront with a general shaped aperture over the discrete data points is presented. Numerical polynomials are orthogonal over the discrete data points regardless of the boundary shape of the aperture. The performance of numerical orthogonal polynomials is confirmed by theoretical analysis and experiments. The results demonstrate the adaptability, validity, and accuracy of numerical orthogonal polynomials for estimating the wavefront over a general shaped aperture from regular boundary to an irregular boundary.
Design of generalised orthogonal filters: application to the modelling of dynamical systems
NASA Astrophysics Data System (ADS)
Nikolić, Saša S.; Antić, Dragan S.; Perić, Staniša Lj.; Danković, Nikola B.; Milojković, Marko T.
2016-02-01
In this article, we define a new class of orthogonal filters with complex poles and zeroes inside their transfer function. This further improvement of classical orthogonal filters allows the possibility to model a wider range of real systems, that is, the systems whose mathematical models have complex zeroes besides real ones. These filters can be applied in the following areas: circuit theory, telecommunications, signal processing, bond graphs, theory approximations and control system theory. First, we describe the rational functions with complex poles and zeroes, and prove their orthogonality. Based on these functions, we designed the block diagram of orthogonal Legendre-type filter with complex poles and zeroes. After that an appropriate analogue scheme of this filter for practical realisation is derived. To validate theoretical results, we performed an experiment with a cascade-connected system designed and practically realised in our laboratories. The experiments proved the quality of the designed orthogonal model in terms of accuracy and simplicity.
S-R compatibility effects with orthogonal stimulus and response dimensions
NASA Technical Reports Server (NTRS)
Andre, Anthony D.; Haskell, Ian; Wickens, Christopher D.
1991-01-01
An experiment was conducted to assess the relative influence of several factors on performance with orthogonal stimulus-response arrays. Subjects responded to the onset of one of three aligned light circles with a press of one of three aligned response keys. The response array was aligned parallel, angled, or orthogonal to the stimulus array. The results indicated that performance with orthogonal arrays is worse than with parallel or angled S-R arrays. For the orthogonal arrangements, the results also indicate that each hand prefers a mapping directly opposite to the other hand, and that this mapping reverses when the orientation of the stimulus and response arrays are transposed. In addition, the results also revealed that the relative costs of orthogonal S-R arrangements are somewhat attenuated when the assigned mapping associates (i.e., colocates) a given display with its closest control.
Physics Division annual report 2004.
Glover, J.
2006-04-06
This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to
25 CFR 213.29 - Division orders.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Division orders. 213.29 Section 213.29 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Rents and Royalties § 213.29 Division orders. (a)...
Teaching Cell Division: Basics and Recommendations.
ERIC Educational Resources Information Center
Smith, Mike U.; Kindfield, Ann C. H.
1999-01-01
Presents a concise overview of cell division that includes only the essential concepts necessary for understanding genetics and evolution. Makes recommendations based on published research and teaching experiences that can be used to judge the merits of potential activities and materials for teaching cell division. Makes suggestions regarding the…
Polarized Cell Division of Chlamydia trachomatis.
Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V
2016-08-01
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160
"American Gothic" and the Division of Labor.
ERIC Educational Resources Information Center
Saunders, Robert J.
1987-01-01
Provides historical review of gender-based division of labor. Argues that gender-based division of labor served a purpose in survival of tribal communities but has lost meaning today and may be a handicap to full use of human talent and ability in the arts. There is nothing in various art forms which make them more appropriate for males or…
Friday's Agenda | Division of Cancer Prevention
TimeAgenda8:00 am - 8:10 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research GroupDivision of Cancer Prevention, NCI8:10 am - 8:40 amClinical Trials Statistical Concepts for Non-Statisticians |
Materials Sciences Division 1990 annual report
Not Available
1990-12-31
This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.
Polarized Cell Division of Chlamydia trachomatis
Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.
2016-01-01
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160
Research Networks Map | Division of Cancer Prevention
The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States. Five Major Programs' sites are shown on this map. | The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.
New Study Designs | Division of Cancer Prevention
The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease. | The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease.
Guide to the Division of Research Programs.
ERIC Educational Resources Information Center
National Endowment for the Humanities (NFAH), Washington, DC.
This brief guide to the Research Programs Division of the National Endowment for the Humanities covers basic information, describes programs, and summarizes policies and procedures. An introductory section describes the division and its mission to encourage the development and dissemination of significant knowledge and scholarship in the…
Cognitive and Neural Sciences Division, 1991 Programs.
ERIC Educational Resources Information Center
Vaughan, Willard S., Ed.
This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…
The Changing Nature of Division III Athletics
ERIC Educational Resources Information Center
Beaver, William
2014-01-01
Non-selective Division III institutions often face challenges in meeting their enrollment goals. To ensure their continued viability, these schools recruit large numbers of student athletes. As a result, when compared to FBS (Football Bowl Division) institutions these schools have a much higher percentage of student athletes on campus and a…
Cognitive and Neural Sciences Division 1990 Programs.
ERIC Educational Resources Information Center
Vaughan, Willard S., Jr., Ed.
Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…
Magnetocardiogram measured by fundamental mode orthogonal fluxgate array
NASA Astrophysics Data System (ADS)
Karo, Hikaru; Sasada, Ichiro
2015-05-01
Magnetocardiography (MCG) of healthy volunteers has been measured by using a fundamental mode orthogonal fluxgate magnetometer array of 32 channels in a magnetic shielded room (MSR). Sensor heads, which are employed, consist of a 45 mm long U-shaped amorphous wire core and a 1000-turn solenoid pick-up coil of 30 mm in length and 3 mm in outer diameter. The excitation current of 100 kHz with large dc bias current is fed directly into wire cores, which are connected in series, whereas the signal detection circuit is provided to each of the sensor heads. A special technique to avoid mutual interaction between sensor heads is implemented, where all the sensor heads are excited synchronously by using a single ac source. A 2-D array having 32 sensors with 4 cm grid spacing was used to measure MCG signals inside an MSR. Measured data from each channel were first filtered (0.16-100 Hz pass band), then averaged for 2 min synchronously with electrocardiogram's peaks taken from both hands. Noise remaining after the average is about 1.8 pTrms for the band-width of 0.16-100 Hz. The QRS complex and the T-wave are clearly detected.
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
NASA Technical Reports Server (NTRS)
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
Simultaneous SHG of orthogonally polarized fundamentals in single QPM crystals
NASA Astrophysics Data System (ADS)
Johnston, Benjamin F.; Saltiel, Solomon M.; Withford, Michael J.; Kivshar, Yuri S.
2007-02-01
Fabrication of quasi-phase-matching (QPM) gratings suitable for cascading of two second-order parametric nonlinear processes in a single lithium niobate crystal is being undertaken using a new technique - electric field poling assisted by laser micro-machined topographical electrodes. To date, single period poled gratings with 45.75, and 45.8 μm periods have been fabricated in order to demonstrate second harmonic generation of 1064nm laser light with 1 st order type-I and 7 th order type-0 QPM simultaneously. The two frequency doubling processes share a common Z polarized second-harmonic wave which allows exchange of energy between the two orthogonally polarized fundamental waves and several second order cascading interactions can be realized. The use of the higher QPM orders (3rd, 5th or 7th) for the type-0 second harmonic generation process leads to comparable efficiencies of the two processes, as the respective nonlinear coefficients are d zzz ~27 pm/V and d yyz ~ 4.7 pm/V in lithium niobate crystals. Possible applications include; polarization switching, parametric amplification and polarization mode dispersion monitoring, and polarization insensitive second harmonic generation.
An index of signal mode complexity based on orthogonal transformation.
Bhattacharya, Joydeep; Pereda, Ernesto
2010-08-01
Irregular and complex signals are ubiquitous in nature. The principal aim of this paper is to develop an index, quantifying the complexity of such signals, which is based on the distribution of the strengths of its orthogonal oscillatory modes estimated by singular value decomposition. The index is first tested with simulated chaotic and/or stochastic maps and flows. Among neural data analysis, the index is first applied to a cognitive EEG data set recorded from two groups, musicians and non-musicians, during listening to music and resting state. In the gamma band (30-50 Hz), musicians showed robust changes in complexity, consistent over various scalp regions, during listening to music from resting condition, whereas such changes were minimal for non-musicians. Then the index is used to separate healthy participants from epileptic and manic patients based on spontaneous EEG analysis. Finally, it is used to track a tonic-clonic seizure EEG signal, and a conspicuous change was found in the complexity profiles of delta band (1-3.5 Hz) oscillations at the onset of seizure. We conclude that this index would be useful for quantification of a wide range of time series including neural oscillations. PMID:19418211
Orthogonal-rotating tetrahedral scanning for cone-beam CT
NASA Astrophysics Data System (ADS)
Ye, Ivan B.; Wang, Ge
2012-10-01
In this article, a cone-beam CT scanning mode is designed assuming four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite to each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. Several scanning schemes are proposed which consist of two rotations about orthogonal axes, such that each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. Similar scanning schemes based on other regular or irregular polyhedra and various rotation speeds are also discussed.
Dual, orthogonal, backlit pinhole radiography in OMEGA experiments
NASA Astrophysics Data System (ADS)
Kuranz, C. C.; Blue, B. E.; Drake, R. P.; Robey, H. F.; Hansen, J. F.; Knauer, J. P.; Grosskopf, M. J.; Krauland, C.; Marion, D. C.
2006-10-01
Backlit pinhole radiography used with ungated film as a detector creates x-ray radiographs with increased resolution and contrast. Current hydrodynamics experiments on the OMEGA Laser use a three-dimensional sinusoidal pattern as a seed perturbation for the study of instabilities. The structure of this perturbation makes it highly desirable to obtain two simultaneous orthogonal backlighting views. We accomplished this using two backlit pinholes each mounted 12mm from the target. The pinholes, of varying size and shape, were centered on 5mm square foils of 50μm thick Ta. The backlighting is by K-alpha emission from a 500μm square Ti or Sc foil mounted 500μm from the Ta on a plastic substrate. Four laser beams overfill the metal foil, so that the expanding plastic provides radial tamping of the expanding metal plasma. The resulting x-rays pass through the target onto (ungated) direct exposure film (DEF). Interference between the two views is reduced by using a nose cone in front of the DEF, typically with a 9mm Ta aperture and with magnets to deflect electrons. Comparison of varying types of pinholes and film exposures will be presented from recent experiments as well as an analysis of the background noise created using this experimental technique.
Optimal detection using cyclostationary EOFs[Empirical orthogonal function
Kim, K.Y.; Wu, Q.
2000-03-01
The problem of detecting a climate change signal in the climatological record is of obvious importance in any strategies to understand global climate changes. Atmospheric scientists have applied various statistical techniques to the problem of detecting global warming trend due to increased greenhouse gases. Many climatic and geophysical processes are cyclostationary and exhibit appreciable cyclic (monthly, daily, etc.) variation of their statistics in addition to interannual fluctuations. Utilization of this nested variation of statistics will lead to a better chance of detecting a signal in such a varying background noise field, especially in terms of cyclostationary empirical orthogonal functions, which take the nested periodicity of noise statistics into account. To investigate the improved performance of the cyclostationary approach the developed algorithm is applied to three specific detection examples: El Nino, greenhouse warming, and sunspot fluctuations. In all the test cases, signal-to-noise ratio is raised between 2% and 43% compared with that of a stationary detection technique. The variation of signal strength when a detection filter is constructed based on a different section of modeled noise is within the range of mean signal-to-noise ratio for small to moderate signals. There is a significant variation, however, of signal strength when a detection filter is constructed based on a different model dataset. This implies that model discrepancy is a more important factor than sampling error for the accuracy of the detection method and that climate models need to be improved further in their noise statistics.
Origin of Orthogonality of Strain-Promoted Click Reactions
Wagner, Johannes A; Mercadante, Davide; Nikić, Ivana; Lemke, Edward A; Gräter, Frauke
2015-01-01
Site-specific labeling of biomolecules is rapidly advancing due to the discovery of novel mutually orthogonal reactions. Quantum chemistry studies have also increased our understanding of their relative rates, although these have until now been based on highly simplified reactants. Here we examine a set of strain-promoted click-type cycloaddition reactions of n-propyl azide, 3-benzyl tetrazine and 3-benzyl-6-methyl tetrazine with cyclooctenes/ynes, in which we aim to address all relevant structural details of the reactants. Our calculations have included the obligatory handles used to attach the label and biomolecule as these can critically influence the stereochemistry and electron demand of the reaction. We systematically computed orbital gaps, activation and distortion energies using density functional theory and determined experimental rates for validation. Our results challenge the current paradigm of the inverse electron demand for this class of reactions. We found that the ubiquitous handles, when next to the triple bond of cyclooctynes, can switch the Diels–Alder type ligations to normal electron demand, a class we term as SPINEDAC reactions. Electron donating substituents on tetrazine can enhance normal demand but also increase distortion penalties. The presence and isomeric configuration of handles thus determine the reaction speed and regioselectivity. Our findings can be directly utilized in engineering genuine cycloaddition click chemistries for biological labeling. PMID:26178299
Origin of Orthogonality of Strain-Promoted Click Reactions.
Wagner, Johannes A; Mercadante, Davide; Nikić, Ivana; Lemke, Edward A; Gräter, Frauke
2015-08-24
Site-specific labeling of biomolecules is rapidly advancing due to the discovery of novel mutually orthogonal reactions. Quantum chemistry studies have also increased our understanding of their relative rates, although these have until now been based on highly simplified reactants. Here we examine a set of strain-promoted click-type cycloaddition reactions of n-propyl azide, 3-benzyl tetrazine and 3-benzyl-6-methyl tetrazine with cyclooctenes/ynes, in which we aim to address all relevant structural details of the reactants. Our calculations have included the obligatory handles used to attach the label and biomolecule as these can critically influence the stereochemistry and electron demand of the reaction. We systematically computed orbital gaps, activation and distortion energies using density functional theory and determined experimental rates for validation. Our results challenge the current paradigm of the inverse electron demand for this class of reactions. We found that the ubiquitous handles, when next to the triple bond of cyclooctynes, can switch the Diels-Alder type ligations to normal electron demand, a class we term as SPINEDAC reactions. Electron donating substituents on tetrazine can enhance normal demand but also increase distortion penalties. The presence and isomeric configuration of handles thus determine the reaction speed and regioselectivity. Our findings can be directly utilized in engineering genuine cycloaddition click chemistries for biological labeling. PMID:26178299
A Fast Iterated Orthogonal Projection Framework for Smoke Simulation.
Yang, Yang; Yang, Xubo; Yang, Shuangcai
2016-05-01
We present a fast iterated orthogonal projection (IOP) framework for smoke simulations. By modifying the IOP framework with a different means for convergence, our framework significantly reduces the number of iterations required to converge to the desired precision. Our new iteration framework adds a divergence redistributor component to IOP that can improve the impeded convergence logic of IOP. We tested Jacobi, GS and SOR as divergence redistributors and used the Multigrid scheme to generate a highly efficient Poisson solver. It provides a rapid convergence rate and requires less computation time. In all of our experiments, our method only requires 2-3 iterations to satisfy the convergence condition of 1e-5 and 5-7 iterations for 1e-10. Compared with the commonly used Incomplete Cholesky Preconditioned Conjugate Gradient(ICPCG) solver, our Poisson solver accelerates the overall speed to approximately 7- to 30-fold faster for grids ranging from 128(3) to 256(3). Our solver can accelerate more on larger grids because of the property that the iteration count required to satisfy the convergence condition is independent of the problem size. We use various experimental scenes and settings to demonstrate the efficiency of our method. In addition, we present a feasible method for both IOP and our fast IOP to support free surfaces. PMID:27045907
Proper Orthogonal Decomposition in Optimal Control of Fluids
NASA Technical Reports Server (NTRS)
Ravindran, S. S.
1999-01-01
In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.
Dual, orthogonal, backlit pinhole radiography in OMEGA experiments
Kuranz, C. C.; Blue, B. E.; Drake, R. P.; Robey, H. F.; Hansen, J. F.; Knauer, J. P.; Grosskopf, M. J.; Krauland, C.; Marion, D. C.
2006-10-15
Backlit pinhole radiography used with ungated film as a detector creates x-ray radiographs with increased resolution and contrast. Current hydrodynamics experiments on the OMEGA Laser use a three-dimensional sinusoidal pattern as a seed perturbation for the study of instabilities. The structure of this perturbation makes it highly desirable to obtain two simultaneous orthogonal backlighting views. We accomplished this using two backlit pinholes each mounted 12 mm from the target. The pinholes, of varying size and shape, were centered on 5 mm square foils of 50 {mu}m thick Ta. The backlighting is by K-alpha emission from a 500 {mu}m square Ti or Sc foil mounted 500 {mu}m from the Ta on a plastic substrate. Four laser beams overfill the metal foil, so that the expanding plastic provides radial tamping of the expanding metal plasma. The resulting x-rays pass through the target onto (ungated) direct exposure film (DEF). Interference between the two views is reduced by using a nose cone in front of the DEF, typically with a 9 mm Ta aperture and with magnets to deflect electrons. Comparison of varying types of pinholes and film exposures will be presented from recent experiments as well as an analysis of the background noise created using this experimental technique.
[Orthogonal projection divergence-based hyperspectral band selection].
Su, Hong-jun; Sheng, Ye-hua; Yang, He; Du, Qian
2011-05-01
Due to the high data dimensionality of a hyperspectral image, dimensionality reduction algorithm has attracted much attention in hyperspectral image analysis. Band selection algorithm, which selects appropriate bands from the original set of spectral bands, can preserve original information from the data and is useful for image classification and recognition. In the present paper, a novel band selection algorithm based on orthogonal projection divergence (OPD) is proposed, it aims to discriminate the interesting objects from background and noise information, maximize the spectral similarity between different spectral vectors by projecting the original data to feature space. Two HYDICE Washington DC Mall images and an HYMAP Purdue campus image data were experimented, and support vector machine (SVM) classifier was used for classification. The selected band number varies from 5 to 40 in order to study the impacts of different band selection algorithms on different features. For the computation complex, the sequential floating forward search (SFFS) was used to get the appropriate bands. The experiments have proved that our proposed OPD algorithm can outperform other traditional band selection methods such as SAM, ED, SID, and LCMV-BCC for hyperspectral image analysis. It is proven that OPD band selection is effective and robust in hyperspectral remote sensing dimensionality reduction PMID:21800589
1998 Chemical Technology Division Annual Technical Report.
Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.
1999-08-06
The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.
ADJUSTABLE DOUBLE PULSE GENERATOR
Gratian, J.W.; Gratian, A.C.
1961-08-01
>A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)
Physics division annual report 1999
Thayer, K., ed.; Physics
2000-12-06
This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the
Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian
2015-11-16
Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively. PMID:26698429
Cell Division During Inhibition of Deoxyribonucleic Acid Synthesis in Escherichia coli
Helmstetter, Charles E.; Pierucci, Olga
1968-01-01
When cultures of Escherichia coli B/r growing at various rates were exposed to ultraviolet light, mitomycin C, or nalidixic acid, deoxyribonucleic acid (DNA) synthesis stopped but cell division continued for at least 20 min. The chromosome configurations in the cells which divided were estimated by determining the rate of DNA synthesis during the division cycle. The cultures were pulse-labeled with 14C-thymidine, and the amount of label incorporated into cells of different ages was found by measuring the radioactivity in cells born subsequent to the labeling period. The cells which divided in the absence of DNA synthesis were those which had completed a round of chromosome replication prior to the treatments. It was concluded that completion of a round of replication is a necessary and sufficient condition of DNA synthesis for cell division. PMID:4870278
A 2-GHz discrete-spectrum waveband-division microscopic imaging system
NASA Astrophysics Data System (ADS)
Xing, Fangjian; Chen, Hongwei; Lei, Cheng; Chen, Minghua; Yang, Sigang; Xie, Shizhong
2015-03-01
Limited by dispersion-induced pulse overlap, the frame rate of serial time-encoded amplified microscopy is confined to the megahertz range. Replacing the ultra-short mode-locked pulse laser by a multi-wavelength source, based on waveband-division technique, a serial time stretch microscopic imaging system with a line scan rate of in the gigahertz range is proposed and experimentally demonstrated. In this study, we present a surface scanning imaging system with a record line scan rate of 2 GHz and 15 pixels. Using a rectangular spectrum and a sufficiently large wavelength spacing for waveband-division, the resulting 2D image is achieved with good quality. Such a superfast imaging system increases the single-shot temporal resolution towards the sub-nanosecond regime.
Single-photon routing by time-division phase modulation in a Sagnac interferometer
NASA Astrophysics Data System (ADS)
Zhou, Chunyuan; Wu, Guang; Ding, Liang'en; Zeng, Heping
2003-07-01
In this letter, we report the experimental demonstration of a single-photon router based on a time-division Sagnac interferometer, wherein differential phase shifts are applied on either the clockwise or counterclockwise quasi-single-photon pulses to determine the single photon interference and consequently output photon routing. High fidelity (>85%) of single-photon routing was demonstrated over a long-distance Sagnac loop. Stable performance was guaranteed by passive compensation of stress and temperature dependent drifts of the fiber-optic path. Experimental data show that time-division single-photon routing can be realized by controlling the applied electric pulses on the integrated phase modulators in the Sagnac loop, which makes this setup suitable for a practical quantum cryptography system.
49 CFR 1242.03 - Made by accounting divisions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year....
49 CFR 1242.03 - Made by accounting divisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year....
Yoshida, Yuki; Maruta, Akihiro; Ishii, Kenji; Akiyama, Yuji; Yoshida, Tsuyoshi; Suzuki, Naoki; Koguchi, Kazuumi; Nakagawa, Junichi; Mizuochi, Takashi; Kitayama, Ken-ichi
2013-05-20
This paper proposes a novel bandwidth-elastic and energy-efficient passive optical network (PON) based on the coherent interleaved frequency division multiple access (IFDMA) scheme. We experimentally demonstrate the coherent IFDMA-PON uplink transmission up-to 30 Gbps over a 30 km standard single-mode fiber with 2 × optical network units (ONUs). A low-complexity digital carrier synchronization technique enables multiple access of the ONUs on the basis of 78.1 MHz narrow band orthogonal subcarriers without any guard-bands. PMID:23736447
Photonic integrated circuit as a picosecond pulse timing discriminator.
Lowery, Arthur James; Zhuang, Leimeng
2016-04-18
We report the first experimental demonstration of a compact on-chip optical pulse timing discriminator that is able to provide an output voltage proportional to the relative timing of two 60-ps input pulses on separate paths. The output voltage is intrinsically low-pass-filtered, so the discriminator forms an interface between high-speed optics and low-speed electronics. Potential applications include timing synchronization of multiple pulse trains as a precursor for optical time-division multiplexing, and compact rangefinders with millimeter dimensions. PMID:27137311
Differential pulse amplitude modulation for multiple-input single-output OWVLC
NASA Astrophysics Data System (ADS)
Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.
2015-01-01
White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.
Physics Division annual progress report, January 1-December 31, 1983
Trela, W.J.
1984-12-01
The Physics Division is organized into three major research areas: Weapons Physics, Inertial Fusion Physics, and Basic Research. In Weapons Physics, new strategic defensive research initiatives were developed in response to President Reagan's speech in May 1983. Significant advances have been made in high-speed diagnostics including electro-optic technique, fiber-optic systems, and imaging. In Inertial Fusion, the 40-kJ Antares CO/sub 2/ laser facility was completed, and the 1- by 1- by 2-m-long large-aperture module amplifier (LAM) was constructed and operated. In Basic Research, our main emphasis was on development of the Weapons Neutron Research (WNR) facility as a world-class pulsed neutron research facility
Fundamental studies of MALDI with an orthogonal TOF mass spectrometer
NASA Astrophysics Data System (ADS)
Qiao, Hui
The interaction between the matrix and analyte molecules are studied with a high resolution MALDI imaging technique in an orthogonal-injection time of flight (TOF) mass spectrometer. The analyte incorporation and distribution patterns have been clearly demonstrated. Purified protein analytes were found to be homogeneously incorporated in large single crystals of DHB and sinapinic acid matrices, with no evidence for preferred crystal faces. Segregation of some species was observed and appeared to correlate with analyte hydrophobicity, and to a lesser extent analyte mass or mobility. Similar segregation phenomena were observed with confocal laser scanning microscopy of the same analytes labeled with fluorescent dyes in 2,5-DHB single crystals. The above investigations may shed some light on optimizing sample preparation with different matrices. The influence of incident laser parameters on sensitivity in MALDI has been investigated using orthogonal-injection TOF instruments. A qualitative comparison was first made between the beam profiles obtained with a N 2 laser and a Nd:YAG laser using 2-m long optical fibers. The N 2 laser gives better sensitivity, consistent with a more uniform fluence distribution and therefore better coverage of the N2 laser profile. Most of the difference disappears when a 30-m long fiber is used or when the fibers are twisted during irradiation to smooth out the fluence distribution. In more systematic measurements, the total integrated ion yield from a single spot (a measure of sensitivity) was found to increase rapidly with fluence to a maximum, and then saturate or decrease slightly. Thus, the optimum sensitivity is achieved at high fluence. For a fluence near threshold, the integrated yield has a steep (cubic) dependence on the spot size, but the yield saturates at higher fluence for smaller spots. The area dependence is much weaker (close to linear) for fluence values above saturation, with the result that the highest integrated yields
Conductance Distributions for Empirical Orthogonal Function Analysis and Optimal Interpolation
NASA Astrophysics Data System (ADS)
Knipp, Delores; McGranaghan, Ryan; Matsuo, Tomoko
2016-04-01
We show the first characterizations of the primary modes of ionospheric Hall and Pedersen conductance variability as empirical orthogonal functions (EOFs). These are derived from six satellite years of Defense Meteorological Satellite Program (DMSP) particle data acquired during the rise of solar cycles 22 and 24. The 60 million DMSP spectra were each processed through the Global Airlglow Model. This is the first large-scale analysis of ionospheric conductances completely free of assumption of the incident electron energy spectra. We show that the mean patterns and first four EOFs capture ˜50.1 and 52.9% of the total Pedersen and Hall conductance variabilities, respectively. The mean patterns and first EOFs are consistent with typical diffuse auroral oval structures and quiet time strengthening/weakening of the mean pattern. The second and third EOFs show major disturbance features of magnetosphere-ionosphere (MI) interactions: geomagnetically induced auroral zone expansion in EOF2 and the auroral substorm current wedge in EOF3. The fourth EOFs suggest diminished conductance associated with ionospheric substorm recovery mode. These EOFs are then used in a new optimal interpolation (OI) technique to estimate complete high-latitude ionospheric conductance distributions. The technique combines particle precipitation-based calculations of ionospheric conductances and their errors with a background model and its error covariance (estimated by EOF analysis) to infer complete distributions of the high-latitude ionospheric conductances for a week in late 2011. The OI technique captures: 1) smaller-scaler ionospheric conductance features associated with discrete precipitation and 2) brings ground- and space-based data into closer agreement. We show quantitatively and qualitatively that this new technique provides better ionospheric conductance specification than past statistical models, especially during heightened geomagnetic activity.
Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations
2016-01-01
Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT
Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations.
Amon, Miha; Jager, Franc
2016-01-01
Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT
Long pulse production from short pulses
Toeppen, J.S.
1994-08-02
A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.
Long pulse production from short pulses
Toeppen, John S.
1994-01-01
A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
Physics Division progress report, January 1, 1984-September 30, 1986
Keller, W.E.
1987-10-01
This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.
Earth Sciences Division collected abstracts: 1979
Henry, A.L.; Schwartz, L.L.
1980-04-30
This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.