Science.gov

Sample records for orthogonal trna-aminoacyl-trna synthetase

  1. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  2. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  3. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  4. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  5. Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA; Santoro, Stephen [Cambridge, MA

    2009-05-05

    Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.

  6. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  7. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  8. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  9. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G

    2014-03-11

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  10. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    SciTech Connect

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G.

    2009-08-18

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  11. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G.

    2011-10-04

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  12. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G.

    2009-12-29

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  13. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Truong, Tan M.; Ai, Hui-Wang

    2015-07-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.

  14. Suppression of amber codons in Caulobacter crescentus by the orthogonal Escherichia coli histidyl-tRNA synthetase/tRNAHis pair.

    PubMed

    Ko, Jae-hyeong; Llopis, Paula Montero; Heinritz, Jennifer; Jacobs-Wagner, Christine; Söll, Dieter

    2013-01-01

    While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNA(His) have distinctive identity elements, we constructed E. coli tRNA(His) CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNA(His) CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNA(His) CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNA(His) CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair.

  15. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells

    PubMed Central

    Köhrer, Caroline; Sullivan, Eric L.; RajBhandary, Uttam L.

    2004-01-01

    We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells. PMID:15576346

  16. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Xie, Jianming; Zeng, Huaqiang

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate unnatural amino acids into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  17. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Alfonta, Lital; Chittuluru, Johnathan R.; Deiters, Alexander; Groff, Dan; Summerer, Daniel; Tsao, Meng -Lin; Wang, Jiangyun; Wu, Ning; Xie, Jianming; Zeng, Huaqiang; Seyedsayamdost, Mohammad; Turner, James

    2015-08-11

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate unnatural amino acid into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  18. Evolution of lanthipeptide synthetases

    PubMed Central

    Zhang, Qi; Yu, Yi; Vélasquez, Juan E.; van der Donk, Wilfred A.

    2012-01-01

    Lanthionine-containing peptides (lanthipeptides) are a family of ribosomally synthesized and posttranslationally modified peptides containing (methyl)lanthionine residues. Here we present a phylogenomic study of the four currently known classes of lanthipeptide synthetases (LanB and LanC for class I, LanM for class II, LanKC for class III, and LanL for class IV). Although they possess very similar cyclase domains, class II–IV synthetases have evolved independently, and LanB and LanC enzymes appear to not always have coevolved. LanM enzymes from various phyla that have three cysteines ligated to a zinc ion (as opposed to the more common Cys-Cys-His ligand set) cluster together. Most importantly, the phylogenomic data suggest that for some scaffolds, the ring topology of the final lanthipeptides may be determined in part by the sequence of the precursor peptides and not just by the biosynthetic enzymes. This notion was supported by studies with two chimeric peptides, suggesting that the nisin and prochlorosin biosynthetic enzymes can produce the correct ring topologies of epilancin 15X and lacticin 481, respectively. These results highlight the potential of lanthipeptide synthetases for bioengineering and combinatorial biosynthesis. Our study also demonstrates unexplored areas of sequence space that may be fruitful for genome mining. PMID:23071302

  19. Purification of isopenicillin N synthetase.

    PubMed Central

    Pang, C P; Chakravarti, B; Adlington, R M; Ting, H H; White, R L; Jayatilake, G S; Baldwin, J E; Abraham, E P

    1984-01-01

    Isopenicillin N synthetase was extracted from Cephalosporium acremonium and purified about 200-fold. The product showed one major protein band, coinciding with synthetase activity, when subjected to electrophoresis in polyacrylamide gel. An isopenicillin N synthetase from Penicillium chrysogenum was purified about 70-fold by similar procedures. The two enzymes resemble each other closely in their Mr, in their mobility on electrophoresis in polyacrylamide gel and in their requirement for Fe2+ and ascorbate for maximum activity. Preliminary experiments have shown that a similar isopenicillin N synthetase can be extracted from Streptomyces clavuligerus. PMID:6435606

  20. Coherent orthogonal polynomials

    SciTech Connect

    Celeghini, E.; Olmo, M.A. del

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines

  1. Orthogonal tensor decompositions

    SciTech Connect

    Tamara G. Kolda

    2000-03-01

    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  2. Orthogonal tandem catalysis

    NASA Astrophysics Data System (ADS)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-06-01

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, with particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.

  3. Reengineering orthogonally selective riboswitches.

    PubMed

    Dixon, Neil; Duncan, John N; Geerlings, Torsten; Dunstan, Mark S; McCarthy, John E G; Leys, David; Micklefield, Jason

    2010-02-16

    The ability to independently control the expression of multiple genes by addition of distinct small-molecule modulators has many applications from synthetic biology, functional genomics, pharmaceutical target validation, through to gene therapy. Riboswitches are relatively simple, small-molecule-dependent, protein-free, mRNA genetic switches that are attractive targets for reengineering in this context. Using a combination of chemical genetics and genetic selection, we have developed riboswitches that are selective for synthetic "nonnatural" small molecules and no longer respond to the natural intracellular ligands. The orthogonal selectivity of the riboswitches is also demonstrated in vitro using isothermal titration calorimetry and x-ray crystallography. The riboswitches allow highly responsive, dose-dependent, orthogonally selective, and dynamic control of gene expression in vivo. It is possible that this approach may be further developed to reengineer other natural riboswitches for application as small-molecule responsive genetic switches in both prokaryotes and eukaryotes. PMID:20133756

  4. Some discrete multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Arvesú, J.; Coussement, J.; van Assche, W.

    2003-04-01

    In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.

  5. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  6. Sequence and Phylogenetic Analysis of FAD Synthetase

    NASA Astrophysics Data System (ADS)

    Schubert, Luisa; Frago, Susana; Martínez-Júlvez, Marta; Medina, Milagros

    2006-08-01

    An evolutionary analysis of the sequences available till now for FAD synthetases has been carried out. Several identical conserved residues have been observed along the sequences of all the FAD synthetases analyzed, which might correlate with role for these residues in the catalytic activity of the enzyme. Phylogenetic analysis shows that FAD synthetase sequences can be organized in two main clusters. One of them mainly contains temperature, pressure or pH resistant organisms, whereas in the other one organisms with pathogenic character can be found.

  7. Neurospora crassa mutants deficient in asparagine synthetase.

    PubMed Central

    MacPhee, K G; Nelson, R E; Schuster, S M

    1983-01-01

    Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase. PMID:6137480

  8. Orthogonal Regression: A Teaching Perspective

    ERIC Educational Resources Information Center

    Carr, James R.

    2012-01-01

    A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…

  9. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  10. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  11. "Orthogonality" in Learning and Assessment

    ERIC Educational Resources Information Center

    Leslie, David

    2014-01-01

    This chapter proposes a simple framework, "orthogonality," to help clarify what stakeholders think about learning in college, how we assess outcomes, and how clear assessment methods might help increase confidence in returns on investment.

  12. Orthogonal polynomials and deformed oscillators

    NASA Astrophysics Data System (ADS)

    Borzov, V. V.; Damaskinsky, E. V.

    2015-10-01

    In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.

  13. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase.

    PubMed

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-02-18

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2-4 SV gave an alternative, neomorphic dimer interface 'orthogonal' to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2-3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  14. [Studies on regulation of glutamine synthetase activity from Streptomyces lincolnensis].

    PubMed

    Jin, Z; Jiao, R; Mao, Y

    2001-08-01

    Glutamine synthetase in crude extracts from Streptomyces lincolnensis growing under different nitrogen sources were studied. The results showed that NH4+ in high concentration repressed the biosynthesis of the enzyme. To determine whether Streptomyces lincolnensis has undergone covalent modification, a comparison of the glutamine synthetase isolated from cells grown on different nitrogen sources was made. No significant difference was observed in specific activity, pH optima, divalent cation response, and ultraviolet absorption spectra. Glutamine synthetase activity was not influenced by ammonia shock or snake venom phosphodiesterase treatment. Under these conditions, the activity of glutamine synthetase from K. aerogenes was markedly changed. There was therefore no evidence for enzymatic adenylylation of glutamine synthetase from Streptomyces lincolnensis. Glutamine synthetase was subject to feedback inhibition by end products of glutamine metabolism. Cumulative feedback inhibition of the Mn(2+)-dependent glutamine synthetase activity was demonstrated. These results suggest that glutamine synthetase from Streptomyces lincolnensis is an allosteric enzyme. PMID:12552916

  15. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  16. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  17. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... PubMed Njålsson R. Glutathione synthetase deficiency. Cell Mol Life Sci. 2005 Sep;62(17):1938-45. Review. Citation on PubMed Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. Review. Citation on PubMed or ...

  18. Orthogonality preserving infinite dimensional quadratic stochastic operators

    SciTech Connect

    Akın, Hasan; Mukhamedov, Farrukh

    2015-09-18

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  19. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. Peptide synthetase gene in Trichoderma virens.

    PubMed

    Wilhite, S E; Lumsden, R D; Straney, D C

    2001-11-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated N(delta)-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used.

  1. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  2. Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?

    PubMed Central

    Bakken, A M; Farstad, M; Holmsen, H

    1991-01-01

    Apparent Km values have been determined for the substrates ATP, CoA and fatty acids for the long-chain acyl-CoA synthetase (EC 6.2.1.3) reaction in lysates of human blood platelets. The apparent Km for ATP was higher for saturated fatty acids (C12:0 to C18:0) than for unsaturated acids (C18:1 to C22:6). Other apparent Km values were very similar for all long-chain fatty acids tested. Palmitic acid inhibited the formation of [14C]arachidonoyl-CoA, and arachidonic acid inhibited the formation of [14C]palmitoyl-CoA, with [14C]arachidonate or [14C]palmitate respectively as substrate. After chromatography of Triton X-100-extracted platelet protein in several systems (hydroxyapatite, DEAE-Sepharose, Sephacryl S-200 HR, CoA-Sepharose, Sephadex G-100 and AcA 34), both arachidonoyl-CoA synthetase and palmitoyl-CoA synthetase activities were eluted together in the various protein peaks, and with approximately the same ratio of activities in all peaks. After some purification steps (DEAE-Sepharose and Sephacryl S-200 HR), the acyl-CoA synthetase activity was up to 37 nmol/min per mg of protein with [14C]palmitate as substrate, and up to 116 nmol/min per mg of protein with [14C]arachidonate as substrate. The purification was respectively about 8- and 10-fold. The results indicate that palmitoyl-CoA (or unspecific) synthetase and arachidonoyl-CoA (or specific) synthetase are in fact the same enzyme, in agreement with previously reported results from this laboratory. PMID:1848073

  3. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  4. Truncations of random orthogonal matrices.

    PubMed

    Khoruzhenko, Boris A; Sommers, Hans-Jürgen; Życzkowski, Karol

    2010-10-01

    Statistical properties of nonsymmetric real random matrices of size M, obtained as truncations of random orthogonal N×N matrices, are investigated. We derive an exact formula for the density of eigenvalues which consists of two components: finite fraction of eigenvalues are real, while the remaining part of the spectrum is located inside the unit disk symmetrically with respect to the real axis. In the case of strong nonorthogonality, M/N=const, the behavior typical to real Ginibre ensemble is found. In the case M=N-L with fixed L, a universal distribution of resonance widths is recovered.

  5. Truncations of random orthogonal matrices

    NASA Astrophysics Data System (ADS)

    Khoruzhenko, Boris A.; Sommers, Hans-Jürgen; Życzkowski, Karol

    2010-10-01

    Statistical properties of nonsymmetric real random matrices of size M , obtained as truncations of random orthogonal N×N matrices, are investigated. We derive an exact formula for the density of eigenvalues which consists of two components: finite fraction of eigenvalues are real, while the remaining part of the spectrum is located inside the unit disk symmetrically with respect to the real axis. In the case of strong nonorthogonality, M/N=const , the behavior typical to real Ginibre ensemble is found. In the case M=N-L with fixed L , a universal distribution of resonance widths is recovered.

  6. Prostaglandin synthetase and prostacyclin synthetase in mature rat skeletal muscles: immunohistochemical localisation to arterioles, tendons and connective tissues.

    PubMed Central

    McLennan, I S; Macdonald, R E

    1991-01-01

    Mature skeletal muscles produce appreciable quantities of prostacyclin (PGI2) and smaller amounts of PGF2 alpha and PGE2, but the sources of these prostaglandins within skeletal muscle are unknown. Monoclonal antibodies to prostaglandin synthetase and prostacyclin synthetase were used to determine which muscle cells produce prostaglandins. The antibody to prostacyclin synthetase stained the tendon, fascia, epimysium and the arteries leading to the muscles. The endothelia of arterioles were also stained in the tibialis anterior and cremaster but not in the soleus muscles. Only trace levels of immunoreactivity were observed with the antibody to prostaglandin synthetase in normal muscles. However, immunoreactivity was observed in the muscles of rats that had been pretreated with aspirin, a drug that inhibits and stabilises prostaglandin synthetase. In muscles of the aspirin-treated rats, all cell types that were stained by the antiprostacyclin synthetase also reacted weakly with the antibody to prostaglandin synthetase. In addition, some cells in the endomysium were strongly stained with the antiprostaglandin synthetase but not with the antiprostacyclin synthetase. We conclude that (1) at least one aspect of the regulation of blood flow in the microcirculation of slow muscles is different from that of fast muscles, (2) that the tendon and connective tissue is the major source of PGI2 in mature skeletal muscles, and (3) that the prostaglandin-dependent effects of insulin and some other stimuli on skeletal muscle may be mediated by the muscle's arterioles or connective tissue. Images Fig. 1 Fig. 2 Fig. 3 PMID:1810931

  7. Numerical analysis of the orthogonal descent method

    SciTech Connect

    Shokov, V.A.; Shchepakin, M.B.

    1994-11-01

    The author of the orthogonal descent method has been testing it since 1977. The results of these tests have only strengthened the need for further analysis and development of orthogonal descent algorithms for various classes of convex programming problems. Systematic testing of orthogonal descent algorithms and comparison of test results with other nondifferentiable optimization methods was conducted at TsEMI RAN in 1991-1992 using the results.

  8. Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B.

    PubMed

    Boehlein, S K; Nakatsu, T; Hiratake, J; Thirumoorthy, R; Stewart, J D; Richards, N G; Schuster, S M

    2001-09-18

    Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B. PMID:11551215

  9. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.].

  10. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.]. PMID:27631486

  11. Orthogonality catastrophe in quantum sticking.

    PubMed

    Clougherty, Dennis P; Zhang, Yanting

    2012-09-21

    We show that the orthogonality catastrophe can dramatically affect the probability with which an ultralow energy atom or ion will stick to a surface. We predict new energy-dependent scaling laws for the sticking probability in this low-energy regime. We provide numerical results of this theory for the case of ultracold electrons sticking to the surface of highly porous silicon and show that the sticking probability can differ substantially from that calculated with perturbation theory. We then generalize our results for finite surface temperatures and find surprisingly that the sticking probability can change sharply, vanishing below a critical incident energy that varies with the surface temperature. We describe in detail this superreflective surface phase for ultralow energy matter waves where the reflection coefficient is strictly equal to one. PMID:23005925

  12. Orthogonality Catastrophe in Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Zhang, Yanting

    2012-09-01

    We show that the orthogonality catastrophe can dramatically affect the probability with which an ultralow energy atom or ion will stick to a surface. We predict new energy-dependent scaling laws for the sticking probability in this low-energy regime. We provide numerical results of this theory for the case of ultracold electrons sticking to the surface of highly porous silicon and show that the sticking probability can differ substantially from that calculated with perturbation theory. We then generalize our results for finite surface temperatures and find surprisingly that the sticking probability can change sharply, vanishing below a critical incident energy that varies with the surface temperature. We describe in detail this superreflective surface phase for ultralow energy matter waves where the reflection coefficient is strictly equal to one.

  13. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  14. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  15. Non-orthogonal subband/transform coder

    NASA Technical Reports Server (NTRS)

    Glover, Daniel R. (Inventor)

    1993-01-01

    The present invention is directed to a simplified digital subband coder/decoder. In the present invention a signal is fed into a coder. The coder uses a non-orthogonal algorithm that is simply implemented in the coder hardware. The simple non-orthogonal design is then used in the implementation of the decoder to decode the signal.

  16. Comparative Biochemical and Immunological Studies of Bacterial Glutamine Synthetases

    PubMed Central

    Tronick, Steven R.; Ciardi, Joseph E.; Stadtman, E. R.

    1973-01-01

    Antisera prepared against adenylylated and unadenylylated Escherichia coli glutamine synthetase cross-reacted with the glutamine synthetases from a number of gram-negative bacteria and one gram-variable species as demonstrated by immunodiffusion and inhibition of enzyme activity. In contrast, the antisera did not cross-react with the glutamine synthetases from gram-positive bacteria (with one exception) nor with the synthetases of higher organisms. Modification of the various glutamine synthetases by covalent attachment of adenosine 5′-monophosphate (or other nucleotides) was tested for by determining whether or not snake venom phosphodiesterase altered catalytic activity in a manner similar to its effect on adenylylated E. coli glutamine synthetase. Only the activity of the glutamine synthetases from gram-negative bacteria grown with specific levels of nitrogen sources could be altered by snake venom phosphodiesterase. In addition, a relative order of antigenic homology between cross-reacting enzymes was suggested based on the patterns of spur formation in the immunodiffusion assay. Images PMID:4125585

  17. Energetics of S-adenosylmethionine synthetase catalysis.

    PubMed

    McQueney, M S; Anderson, K S; Markham, G D

    2000-04-18

    S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced. PMID:10757994

  18. Molecular definition of bovine argininosuccinate synthetase deficiency.

    PubMed Central

    Dennis, J A; Healy, P J; Beaudet, A L; O'Brien, W E

    1989-01-01

    Citrullinemia is an inborn error of metabolism due to deficiency of the urea cycle enzyme, argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5]. The disease was first described in humans but was recently reported in dairy cattle in Australia. Here we report the nucleotide sequence of the normal bovine cDNA for argininosuccinate synthetase and the mutation present in animals with citrullinemia. Analysis of DNA from affected animals by Southern blotting did not readily identify the mutation in the bovine gene. RNA (Northern) blotting revealed a major reduction in the steady-state amount of mRNA in the liver of affected animals to less than 5% of controls. The bovine cDNA was cloned and sequenced and revealed 96% identity with the deduced human sequence at the amino acid level. Starting with mutant bovine liver, the mRNA was reverse-transcribed; the cDNA product was amplified with the polymerase chain reaction, cloned, and sequenced. The sequence revealed a C----T transition converting arginine-86 (CGA) to a nonsense codon (TGA). A second C----T transition represented a polymorphism in proline-175 (CCC----CCT). The mutation and the polymorphism were confirmed by amplification of genomic DNA and demonstration with restriction endonuclease enzymes of both the loss of an Ava II site in DNA from mutant animals at codon 86 and the presence or absence of a Dde I site at codon 175. The loss of the Ava II site can be used for rapid, economical, nonradioactive detection of heterozygotes for bovine citrullinemia. Images PMID:2813370

  19. Depolarization remote sensing by orthogonality breaking.

    PubMed

    Fade, Julien; Alouini, Mehdi

    2012-07-27

    A new concept devoted to sensing the depolarization strength of materials from a single measurement is proposed and successfully validated on a variety of samples. It relies on the measurement of the orthogonality breaking between two orthogonal states of polarization after interaction with the material to be characterized. Due to orthogonality preservation between the two states after propagation in birefringent media, this measurement concept is shown to be perfectly suited to depolarization remote sensing through fibers, opening the way to real-time depolarization endoscopy.

  20. On orthogonality preserving quadratic stochastic operators

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-05-01

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  1. On orthogonality preserving quadratic stochastic operators

    SciTech Connect

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  2. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions carbamoyl phosphate synthetase I deficiency ...

  3. [Regulation of glucosamine synthetase activity by cholesterol and hydrocortisone].

    PubMed

    Sharaev, P N; Ivanov, V G; Bogdanov, N G

    1988-09-01

    The effects of cholesterol and hydrocortisone (cortisol) on the activity of purified glucosamine synthetase from rat liver was studied in vitro. It was found that the enzyme activity is increased by cholesterol and inhibited by hydrocortisone. These steroids block the allosteric effect of vitamin K1 on the enzyme. There is evidence testifying to the allosteric type of cholesterol and hydrocortisone effects on glucosamine synthetase. PMID:3203113

  4. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  5. Orthogonality and distinguishability: Criterion for local distinguishability of arbitrary orthogonal states

    SciTech Connect

    Chen Pingxing; Li Chengzu

    2003-12-01

    We consider the relation between the orthogonality and the distinguishability of a set of arbitrary states (including multipartite states). It is shown that if a set of arbitrary states can be distinguished by local operations and classical communication (LOCC), each of the states can be written as a linear combination of product vectors such that all product vectors of one of the states are orthogonal to the other states. With this result we then prove a simple necessary condition for LOCC distinguishability of a class of orthogonal states. These conclusions may be useful in discussing the distinguishability of orthogonal quantum states further, understanding the essence of nonlocality and discussing the distillation of entanglement.

  6. Function of the major synthetase subdomains of carbamyl-phosphate synthetase.

    PubMed

    Guy, H I; Evans, D R

    1996-06-01

    The amidotransferase domain (GLNase) of mammalian carbamyl-phosphate synthetase II hydrolyzes glutamine and transfers ammonia to the synthetase domain where carbamyl phosphate is formed in a three-step reaction sequence. The synthetase domain consists of two homologous subdomains, CPS.A and CPS.B. Recent studies suggest that CPS.A catalyzes the initial ATP dependent-activation of bicarbonate, whereas CPS.B uses a second ATP to form carbamyl phosphate. To establish the function of these substructural elements, we have cloned and expressed the mammalian protein and its subdomains in Escherichia coli. Recombinant CPSase (GLNase-CPS.A-CPS.B) was found to be fully functional. Two other proteins were made; the first consisted of only GLNase and CPS.A, whereas the second lacked CPS.A and had the GLNase domain fused directly to CPS.B. Remarkably, both proteins catalyzed the entire series of reactions involved in glutamine-dependent carbamyl phosphate synthesis. The stoichiometry, like that of the native enzyme, was 2 mol of ATP utilized per mol of carbamyl phosphate formed. GLN-CPS.B is allosterically regulated, whereas GLN-CPS.A was insensitive to effectors, a result consistent with evidence showing that allosteric effectors bind to CPS.B. These properties are not peculiar to the mammalian protein, because the separately cloned CPS.A subdomain of the E. coli enzyme was also found to catalyze carbamyl phosphate synthesis. Gel filtration chromatography and chemical cross-linking studies showed that these molecules are dimers, a structural organization that may be a prerequisite for the overall reaction. Thus, the homologous CPS.A and CPS.B subdomains are functionally equivalent, although in the native enzyme they may have different functions resulting from their juxtaposition relative to the other components in the complex. PMID:8662713

  7. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  8. Allosteric dominance in carbamoyl phosphate synthetase.

    PubMed

    Braxton, B L; Mullins, L S; Raushel, F M; Reinhart, G D

    1999-02-01

    A linked-function analysis of the allosteric responsiveness of carbamoyl phosphate synthetase (CPS) from E. coli was performed by following the ATP synthesis reaction at low carbamoyl phosphate concentration. All three allosteric ligands, ornithine, UMP, and IMP, act by modifying the affinity of CPS for the substrate MgADP. Individually ornithine strongly promotes, and UMP strongly antagonizes, the binding of MgADP. IMP causes only a slight inhibition at 25 degreesC. When both ornithine and UMP were varied, models which presume a mutually exclusive binding relationship between these ligands do not fit the data as well as does one which allows both ligands (and substrate) to bind simultaneously. The same result was obtained with ornithine and IMP. By contrast, the actions of UMP and IMP together must be explained with a competitive model, consistent with previous reports that UMP and IMP bind to the same site. When ornithine is bound to the enzyme, its activation dominates the effects when either UMP or IMP is also bound. The relationship of this observation to the structure of CPS is discussed. PMID:9931004

  9. Glutamine Synthetase of Nicotiana plumbaginifolia1

    PubMed Central

    Tingey, Scott V.; Coruzzi, Gloria M.

    1987-01-01

    We have characterized the distinct forms of glutamine synthetase (GS) which are present in leaves and roots of Nicotiana plumbaginifolia. Mature leaves contain a single GS polypeptide (44 kilodaltons in size) which is localized to the stroma of intact chloroplasts. In contrast, the GS polypeptide in roots is distinct in size (38 kilodaltons) and charge. A lectin stain of leaf soluble protein indicates that the size difference of these mature GS polypeptides is not the result of posttranslational glycosylation. cDNA clones encoding a GS mRNA of N. plumbaginifolia were characterized and used as molecular probes to examine GS transcripts in leaves and roots. GS mRNA hybrid-selected from leaves or roots translated in vitro into distinct GS primary translation products (49 or 38 kilodaltons). The 49 kilodalton GS primary translation product, specific to leaf poly(A)RNA is proposed to be a precursor to the mature 44 kilodalton chloroplast stromal GS polypeptide. The 38 kilodalton GS primary translation product encoded by root GS mRNA, corresponds in size to the polypeptide encoded by the GS cDNA clones characterized. Southern blot analysis of nuclear DNA indicates that there are several different genomic fragments encoding GS in N. plumbaginifolia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:16665445

  10. Face hallucination using orthogonal canonical correlation analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Huiling; Lam, Kin-Man

    2016-05-01

    A two-step face-hallucination framework is proposed to reconstruct a high-resolution (HR) version of a face from an input low-resolution (LR) face, based on learning from LR-HR example face pairs using orthogonal canonical correlation analysis (orthogonal CCA) and linear mapping. In the proposed algorithm, face images are first represented using principal component analysis (PCA). Canonical correlation analysis (CCA) with the orthogonality property is then employed, to maximize the correlation between the PCA coefficients of the LR and the HR face pairs to improve the hallucination performance. The original CCA does not own the orthogonality property, which is crucial for information reconstruction. We propose using orthogonal CCA, which is proven by experiments to achieve a better performance in terms of global face reconstruction. In addition, in the residual-compensation process, a linear-mapping method is proposed to include both the inter- and intrainformation about manifolds of different resolutions. Compared with other state-of-the-art approaches, the proposed framework can achieve a comparable, or even better, performance in terms of global face reconstruction and the visual quality of face hallucination. Experiments on images with various parameter settings and blurring distortions show that the proposed approach is robust and has great potential for real-world applications.

  11. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  12. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    PubMed

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes.

  13. Glutamine synthetase in liver of the American alligator, Alligator mississippiensis.

    PubMed

    Smith, D D; Campbell, J W

    1987-01-01

    Glutamine synthetase was shown to be localized in liver mitochondria of the American alligator, Alligator mississippiensis, by immunofluorescent staining of frozen liver sections and by the detection of enzymatic activity and immunoreactive protein in the mitochondrial fraction following subcellular fractionation of liver tissue by differential centrifugation. The primary translation product of alligator liver glutamine synthetase mRNA was shown to have an Mr = 45,000 which is similar if not identical in size to that of the mature subunit. This mRNA was found to be heterogeneous in size with a major form corresponding to 2.8-3.0 kb and a lesser form corresponding to around 2 kb. Both are in excess of the size required to code for the glutamine synthetase subunit. The synthesis and presumably the mitochondrial import of glutamine synthetase in alligator liver are thus very similar to the same processes in avian liver. Despite the excretion of a high percentage of nitrogen as ammonia, the demonstration of a mitochondrial glutamine synthetase indicates the alligator has the typical avian-type uricotelic ammonia-detoxification system in liver. This suggests that the transition to uricotelism occurred in the sauropsid line of evolution and has persisted through both the lepidosaurian (snakes, lizards) and archosaurian (dinosaurs, crocodilians, birds) lines.

  14. An Evolved Orthogonal Enzyme/Cofactor Pair.

    PubMed

    Reynolds, Evan W; McHenry, Matthew W; Cannac, Fabien; Gober, Joshua G; Snow, Christopher D; Brustad, Eric M

    2016-09-28

    We introduce a strategy that expands the functionality of hemoproteins through orthogonal enzyme/heme pairs. By exploiting the ability of a natural heme transport protein, ChuA, to promiscuously import heme derivatives, we have evolved a cytochrome P450 (P450BM3) that selectively incorporates a nonproteinogenic cofactor, iron deuteroporphyrin IX (Fe-DPIX), even in the presence of endogenous heme. Crystal structures show that selectivity gains are due to mutations that introduce steric clash with the heme vinyl groups while providing a complementary binding surface for the smaller Fe-DPIX cofactor. Furthermore, the evolved orthogonal enzyme/cofactor pair is active in non-natural carbenoid-mediated olefin cyclopropanation. This methodology for the generation of orthogonal enzyme/cofactor pairs promises to expand cofactor diversity in artificial metalloenzymes.

  15. Nonlinear aerodynamic modeling using multivariate orthogonal functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1993-01-01

    A technique was developed for global modeling of nonlinear aerodynamic coefficients using multivariate orthogonal functions based on the data. Each orthogonal function retained in the model was decomposed into an expansion of ordinary polynomials in the independent variables, so that the final model could be interpreted as selectively retained terms from a multivariable power series expansion. A predicted squared-error metric was used to determine the orthogonal functions to be retained in the model; analytical derivatives were easily computed. The approach was demonstrated on the Z-body axis aerodynamic force coefficient (Cz) wind tunnel data for an F-18 research vehicle which came from a tabular wind tunnel and covered the entire subsonic flight envelope. For a realistic case, the analytical model predicted experimental values of Cz very well. The modeling technique is shown to be capable of generating a compact, global analytical representation of nonlinear aerodynamics. The polynomial model has good predictive capability, global validity, and analytical differentiability.

  16. Orthogonal wavelet moments and their multifractal invariants

    NASA Astrophysics Data System (ADS)

    Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.

    2015-02-01

    This paper introduces a new family of moments, namely orthogonal wavelet moments (OWMs), which are orthogonal realization of wavelet moments (WMs). In contrast to WMs with nonorthogonal kernel function, these moments can be used for multiresolution image representation and image reconstruction. The paper also introduces multifractal invariants (MIs) of OWMs which can be used instead of OWMs. Some reconstruction tests performed with noise-free and noisy images demonstrate that MIs of OWMs can also be used for image smoothing, sharpening and denoising. It is established that the reconstruction quality for MIs of OWMs can be better than corresponding orthogonal moments (OMs) and reduces to the reconstruction quality for the OMs if we use the zero scale level.

  17. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  18. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  19. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  20. Nonlinear Submodels Of Orthogonal Linear Models

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.

    1973-01-01

    It is the purpose of this paper to suggest the orthogonal analysis of variance as a device for simplifying either the analytic or iterative problem of finding LS (least squares) estimates for the parameters of particular nonlinear models. (Author/RK)

  1. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures

    NASA Astrophysics Data System (ADS)

    Ahnood, Arman; Zhou, H.; Suzuki, Y.; Sliz, R.; Fabritius, T.; Nathan, Arokia; Amaratunga, G. A. J.

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  2. Gram-Schmidt Orthogonalization by Gauss Elimination.

    ERIC Educational Resources Information Center

    Pursell, Lyle; Trimble, S. Y.

    1991-01-01

    Described is the hand-calculation method for the orthogonalization of a given set of vectors through the integration of Gaussian elimination with existing algorithms. Although not numerically preferable, this method adds increased precision as well as organization to the solution process. (JJK)

  3. Secure quantum communication with orthogonal states

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Banerjee, Anindita; Pathak, Anirban; Srikanth, R.

    2016-08-01

    In majority of protocols of secure quantum communication (such as, BB84, B92, etc.), the unconditional security of the protocols are obtained by using conjugate coding (two or more mutually unbiased bases (MUBs)). Initially, all the conjugate-coding-based protocols of secure quantum communication were restricted to quantum key distribution (QKD), but later on they were extended to other cryptographic tasks (such as, secure direct quantum communication and quantum key agreement). In contrast to the conjugate-coding-based protocols, a few completely orthogonal-state-based protocols of unconditionally secure QKD (such as, Goldenberg-Vaidman and N09) were also proposed. However, till the recent past, orthogonal-state-based protocols were only a theoretical concept and were limited to QKD. Only recently, orthogonal-state-based protocols of QKD are experimentally realized and extended to cryptographic tasks beyond QKD. This paper aims to briefly review the orthogonal-state-based protocols of secure quantum communication that are recently introduced by our group and other researchers.

  4. The Rigid Orthogonal Procrustes Rotation Problem

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.

    2006-01-01

    The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has…

  5. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    PubMed

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics. PMID:26676997

  6. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    PubMed

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  7. Multipartite invariant states. II. Orthogonal symmetry

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2006-06-15

    We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.

  8. Orthogonal and Non-Orthogonal Tight Binding Parameters for III-V Semiconductors Nitrides

    NASA Astrophysics Data System (ADS)

    Martins, A. S.; Fellows, C. E.

    2016-08-01

    A simulated annealing (SA) approach is employed in the determination of different tight binding (TB) sets of parameters for the nitride semiconductors AlN, GaN and InN, as well their limitations and potentialities are also discussed. Two kinds of atomic basis set are considered: (i) the orthogonal sp 3 s∗ with interaction up to second neighbors and (ii) a spd non-orthogonal set, with the Hamiltonian matrix elements calculated within the Extended Hückel Theory (EHT) prescriptions. For the non-orthogonal method, TB parameters are given for both zincblend and wurtzite crystalline structures.

  9. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    SciTech Connect

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  10. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  11. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  12. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  13. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  14. Variant human phosphoribosylpyrophosphate synthetase altered in regulatory and catalytic functions.

    PubMed Central

    Becker, M A; Raivio, K O; Bakay, B; Adams, W B; Nyhan, W L

    1980-01-01

    An inherited, structurally abnormal and superactive form of the enzyme 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) synthetase (EC 2.7.6.1) has been characterized in fibroblasts cultured from a 14-yr-old male (S.M.) with clinical manifestations of uric acid overproduction present since infancy. PP-ribose-P synthetase from the cells of this child showed four- to fivefold greater than normal resistance to purine nucleotide (ADP and GDP) feedback inhibition of enzyme activity and hyperbolic rather than sigmoidal inorganic phosphate (Pi) activation in incompletely dialyzed extracts. Excessive maximal velocity of the enzyme reaction catalyzed by the mutant enzyme was indicated by: enzyme activities twice those of normal at all concentrations of Pi in chromatographed fibroblast extracts; normal affinity constants for substrates and for the activator, Mg2+; and twofold greater than normal activity per immunoreactive enzyme molecule. The mutant enzyme thus possessed deficient regulatory and superactive catalytic properties, two mechanisms previously demonstrated individually to underlie the excessive PPRribose-P and uric acid synthesis of affected members of families with superactive PP-ribose-P synthetases. Increased PP-ribose-P concentration (4-fold) and generation (2.7-fold) and enhanced rates of PP-ribose-P dependent purine synthetic reactions, including purine synthesis de novo, in S.M. fibroblasts confirmed the functional significance of this patient's mutant enzyme. Diminished stability of the variant PP-ribose-P synthetase was manifested in vitro by increased thermal lability and in vivo by deficiency of enzyme activity at Pi concentrations greater than 0.3 mM in hemolysates and by an accelerated, age-related decrement in enzyme activity in lysates of erythrocytes separated by specific density. Despite the diminished amount of PP-ribose-P synthetase in the S.M. erythrocyte population, S.M. erythrocytes had increased PP-ribose-P concentration and increased rates

  15. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  16. Orthogonal photoswitching in a multifunctional molecular system

    PubMed Central

    Lerch, Michael M.; Hansen, Mickel J.; Velema, Willem A.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    The wavelength-selective, reversible photocontrol over various molecular processes in parallel remains an unsolved challenge. Overlapping ultraviolet-visible spectra of frequently employed photoswitches have prevented the development of orthogonally responsive systems, analogous to those that rely on wavelength-selective cleavage of photo-removable protecting groups. Here we report the orthogonal and reversible control of two distinct types of photoswitches in one solution, that is, a donor–acceptor Stenhouse adduct (DASA) and an azobenzene. The control is achieved by using three different wavelengths of irradiation and a thermal relaxation process. The reported combination tolerates a broad variety of differently substituted photoswitches. The presented system is also extended to an intramolecular combination of photoresponsive units. A model application for an intramolecular combination of switches is presented, in which the DASA component acts as a phase-transfer tag, while the azobenzene moiety independently controls the binding to α-cyclodextrin. PMID:27401266

  17. HOLA: Human-like Orthogonal Network Layout.

    PubMed

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  18. Orthogonal nilpotent superfields from linear models

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Karlsson, Anna; Mosk, Benjamin; Murli, Divyanshu

    2016-05-01

    We derive supersymmetry/supergravity models with constrained orthogonal nilpotent superfields from the linear models in the formal limit where the masses of the sgoldstino, inflatino and sinflaton tend to infinity. The case where the sinflaton mass remains finite leads to a model with a `relaxed' constraint, where the sinflaton remains an independent field. Our procedure is equivalent to a requirement that some of the components of the curvature of the moduli space tend to infinity.

  19. Smallest zeros of some types of orthogonal polynomials: asymptotics

    NASA Astrophysics Data System (ADS)

    Moreno-Balcazar, Juan Jose

    2005-07-01

    We establish Mehler-Heine-type formulas for orthogonal polynomials related to rational modifications of Hermite weight on the real line and for Hermite-Sobolev orthogonal polynomials. These formulas give us the asymptotic behaviour of the smallest zeros of the corresponding orthogonal polynomials. Furthermore, we solve a conjecture posed in a previous paper about the asymptotics of the smallest zeros of the Hermite-Sobolev polynomials as well as an open problem concerning the asymptotics of these Sobolev orthogonal polynomials.

  20. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOEpatents

    Smith, Stephen F.; Dress, William B.

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  1. Functional systems with orthogonal dynamic covalent bonds.

    PubMed

    Wilson, Adam; Gasparini, Giulio; Matile, Stefan

    2014-03-21

    This review summarizes the use of orthogonal dynamic covalent bonds to build functional systems. Dynamic covalent bonds are unique because of their dual nature. They can be as labile as non-covalent interactions or as permanent as covalent bonds, depending on conditions. Examples from nature, reaching from the role of disulfides in protein folding to thioester exchange in polyketide biosynthesis, indicate how dynamic covalent bonds are best used in functional systems. Several synthetic functional systems that employ a single type of dynamic covalent bonds have been reported. Considering that most functional systems make simultaneous use of several types of non-covalent interactions together, one would expect the literature to contain many examples in which different types of dynamic covalent bonds are similarly used in tandem. However, the incorporation of orthogonal dynamic covalent bonds into functional systems is a surprisingly rare and recent development. This review summarizes the available material comprehensively, covering a remarkably diverse collection of functions. However, probably more revealing than the specific functions addressed is that the questions asked are consistently quite unusual, very demanding and highly original, focusing on molecular systems that can self-sort, self-heal, adapt, exchange, replicate, transcribe, or even walk and "think" (logic gates). This focus on adventurous chemistry off the beaten track supports the promise that with orthogonal dynamic covalent bonds we can ask questions that otherwise cannot be asked. The broad range of functions and concepts covered should appeal to the supramolecular organic chemist but also to the broader community. PMID:24287608

  2. Spectral face recognition using orthogonal subspace bases

    NASA Astrophysics Data System (ADS)

    Wimberly, Andrew; Robila, Stefan A.; Peplau, Tansy

    2010-04-01

    We present an efficient method for facial recognition using hyperspectral imaging and orthogonal subspaces. Projecting the data into orthogonal subspaces has the advantage of compactness and reduction of redundancy. We focus on two approaches: Principal Component Analysis and Orthogonal Subspace Projection. Our work is separated in three stages. First, we designed an experimental setup that allowed us to create a hyperspectral image database of 17 subjects under different facial expressions and viewing angles. Second, we investigated approaches to employ spectral information for the generation of fused grayscale images. Third, we designed and tested a recognition system based on the methods described above. The experimental results show that spectral fusion leads to improvement of recognition accuracy when compared to regular imaging. The work expands on previous band extraction research and has the distinct advantage of being one of the first that combines spatial information (i.e. face characteristics) with spectral information. In addition, the techniques are general enough to accommodate differences in skin spectra.

  3. Orthogonal ion injection apparatus and process

    SciTech Connect

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  4. Nested Krylov methods and preserving the orthogonality

    NASA Technical Reports Server (NTRS)

    Desturler, Eric; Fokkema, Diederik R.

    1993-01-01

    Recently the GMRESR inner-outer iteraction scheme for the solution of linear systems of equations was proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski and Saad (FGMRES). The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction vector by approximately solving the residual equation. However, the optimality of the approximation over the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal corrections to the solution in the outer iteration, as components of the outer iteration directions may reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular, non-symmetric operator. We will discuss some important properties, and we will show by experiments that, in terms of matrix vector products, this modification (almost) always leads to better convergence. However, because we do more orthogonalizations, it does not always give an improved performance in CPU-time. Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer GCR process. The experimental results indicate that for such methods it is advantageous to preserve the orthogonality in the inner iteration. Of course we can also use iteration schemes other than GMRES as the inner method; methods with short recurrences like GICGSTAB are of interest.

  5. Orthogonal NGS for High Throughput Clinical Diagnostics.

    PubMed

    Chennagiri, Niru; White, Eric J; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J; Mauceli, Evan; Margulies, David; Milos, Patrice M; Napolitano, Nichole; Nizzari, Marcia M; Yu, Timothy; Thompson, John F

    2016-04-19

    Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly.

  6. Orthogonal NGS for High Throughput Clinical Diagnostics

    PubMed Central

    Chennagiri, Niru; White, Eric J.; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S.; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J.; Mauceli, Evan; Margulies, David; Milos, Patrice M.; Napolitano, Nichole; Nizzari, Marcia M.; Yu, Timothy; Thompson, John F.

    2016-01-01

    Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly. PMID:27090146

  7. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    PubMed

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  8. Glutamine synthetase gene evolution: A good molecular clock

    SciTech Connect

    Pesole, G.; Lanvave, C.; Saccone, C. ); Bozzetti, M.P. ); Preparata, G. )

    1991-01-15

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.

  9. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-08-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia.

  10. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  11. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  12. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  13. Noncommutative Pfaffians associated with the orthogonal algebra

    SciTech Connect

    Artamonov, Dmitrii V; Golubeva, Valentina A

    2012-12-31

    Commutators of Pfaffians associated with the orthogonal algebra are found in skew-symmetric and root realizations of o{sub N}. A generating function of Pfaffians is proved to satisfy the reflection equation. A relation between Pfaffians in skew-symmetric and root realizations of o{sub N} is established. Using these results we construct an integrable equation of Knizhnik-Zamolodchikov type using the Capelli central elements in U(o{sub N}), which are sums of squares of the considered Pfaffians. A classical limit of the obtained Knizhnik-Zamolodchikov type equation turns out to be a very specific system of equations of isomonodromic deformations. Bibliography: 18 titles.

  14. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    PubMed Central

    Fewer, David P; Rouhiainen, Leo; Jokela, Jouni; Wahlsten, Matti; Laakso, Kati; Wang, Hao; Sivonen, Kaarina

    2007-01-01

    Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1) and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains. PMID:17908306

  15. A Rationally Engineered Misacylating Aminoacyl-Trna Synthetase

    SciTech Connect

    Bullock, T.L.; Rodriguez-Hernandez, A.; Corigliano, E.M.; Perona, J.J.

    2009-05-12

    Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K{sub M} of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA{sup Gln} by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA{sup Gln} by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA{sup Gln} complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.

  16. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    PubMed

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  17. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  18. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed Central

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover. Images PMID:6113590

  19. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    PubMed

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  20. Extended Empirical Orthogonal Teleconnection (EEOT) Analysis

    NASA Astrophysics Data System (ADS)

    Eastman, R.; Wu, Q.

    2012-12-01

    Earth System Science (ESS) is particularly concerned with understanding coupled earth systems. With the advent of the Earth Observing System, empirical analysis of coupled systems is now greatly facilitated. However, the conventional means of spectral decomposition through Extended EOF (EEOF) is highly susceptible to the determination of components that mix the character of underlying factors. In this paper we present Extended Empirical Orthogonal Teleconnection (EEOT) analysis as a means to address this issue. EEOT is an extension of Empirical Orthogonal Teleconnection analysis - a regression-based form of spectral decomposition that offers the advantage of a natural and automatic form of rotation. In this extended form where multiple image times series are analyzed simultaneously, EEOT provides an opportunity to search for coupled sources of variability. The technique is illustrated through an analysis of the relationship between anomalies in detrended sea surface temperature, middle tropospheric temperature and lower stratospheric temperature for the 30-year period from 1982-2011. One of the predominant patterns found is a pan-tropical Atmospheric Bridge effect whereby ENSO ocean forcing is propagated throughout the tropical troposphere with feedbacks to the Atlantic and Indian ocean basins.

  1. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  2. Functional expansion of human tRNA synthetases achieved by structural inventions.

    PubMed

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-21

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.

  3. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  4. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1991-01-01

    The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged. Images PMID:2014166

  5. Beta-integrals and finite orthogonal systems of Wilson polynomials

    SciTech Connect

    Neretin, Yu A

    2002-08-31

    The integral is calculated and the system of orthogonal polynomials with weight equal to the corresponding integrand is constructed. This weight decreases polynomially, therefore only finitely many of its moments converge. As a result the system of orthogonal polynomials is finite. Systems of orthogonal polynomials related to {sub 5}H{sub 5}-Dougall's formula and the Askey integral is also constructed. All the three systems consist of Wilson polynomials outside the domain of positiveness of the usual weight.

  6. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    PubMed

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  7. Orthogonal patterns in binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    A binary neural network that stores only mutually orthogonal patterns is shown to converge, when probed by any pattern, to a pattern in the memory space, i.e., the space spanned by the stored patterns. The latter are shown to be the only members of the memory space under a certain coding condition, which allows maximum storage of M=(2N) sup 0.5 patterns, where N is the number of neurons. The stored patterns are shown to have basins of attraction of radius N/(2M), within which errors are corrected with probability 1 in a single update cycle. When the probe falls outside these regions, the error correction capability can still be increased to 1 by repeatedly running the network with the same probe.

  8. Confocal imaging with orthogonally polarized illumination beams

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Boruah, Bosanta R.

    2016-03-01

    In confocal microscopy the polarization of the illumination beam plays an important role in determining the orientation of the fluorescent molecules being illuminated. The efficiency of the excitation depends on the angle between the excitation electric field and the direction of the molecular dipole. In order to determine the orientation of the fluorescent molecules in the focal plane the molecules are to be excited using two mutually orthogonal electric fields. In this paper we show how a computer generated holography technique can be implemented using a ferroelectric liquid crystal spatial light modulator to conveniently obtain two images of the same target once with an X polarized illumination beam and another with a Y polarized illumination beam.

  9. Helicopter tail rotor orthogonal blade vortex interaction

    NASA Astrophysics Data System (ADS)

    Coton, F. N.; Marshall, J. S.; Galbraith, R. A. McD.; Green, R. B.

    2004-10-01

    The aerodynamic operating environment of the helicopter is particularly complex and, to some extent, dominated by the vortices trailed from the main and tail rotors. These vortices not only determine the form of the induced flow field but also interact with each other and with elements of the physical structure of the flight vehicle. Such interactions can have implications in terms of structural vibration, noise generation and flight performance. In this paper, the interaction of main rotor vortices with the helicopter tail rotor is considered and, in particular, the limiting case of the orthogonal interaction. The significance of the topic is introduced by highlighting the operational issues for helicopters arising from tail rotor interactions. The basic phenomenon is then described before experimental studies of the interaction are presented. Progress in numerical modelling is then considered and, finally, the prospects for future research in the area are discussed.

  10. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  11. The symplectic-orthogonal Penner models

    NASA Astrophysics Data System (ADS)

    Dalabeeh, Mohammad; Chair, Noureddine

    2010-11-01

    The generating function for the orbifold Euler characteristic of the moduli space of real algebraic curves of genus 2g (locally orientable surfaces) with n marked points \\chi ^r(\\mathfrak {M}_{2g,n}) is identified with a simple formula. It is shown that the free energies in the continuum limit of both the symplectic and the orthogonal Penner models are almost identical, with the structure F^{SP/SO}(\\mu )=\\frac{1}{2}F(\\mu )\\mp F^{NO}(\\mu ), where F(μ) is the Penner free energy and FNO(μ) is the free energy contributions from the non-orientable surfaces. Both of these models have the same critical point as of the Penner model.

  12. Multifunctional Surface Manipulation Using Orthogonal Click Chemistry.

    PubMed

    Brooks, Karson; Yatvin, Jeremy; McNitt, Christopher D; Reese, R Alexander; Jung, Calvin; Popik, Vladimir V; Locklin, Jason

    2016-07-01

    Polymer brushes are excellent substrates for the covalent immobilization of a wide variety of molecules due to their unique physicochemical properties and high functional group density. By using reactive microcapillary printing, poly(pentafluorophenyl acrylate) brushes with rapid kinetic rates toward aminolysis can be partially patterned with other click functionalities such as strained cyclooctyne derivatives and sulfonyl fluorides. This trireactive surface can then react locally and selectively in a one pot reaction via three orthogonal chemistries at room temperature: activated ester aminolysis, strain promoted azide-alkyne cycloaddition, and sulfur(VI) fluoride exchange, all of which are tolerant of ambient moisture and oxygen. Furthermore, we demonstrate that these reactions can also be used to create areas of morphologically distinct surface features on the nanoscale, by inducing buckling instabilities in the films and the grafting of nanoparticles. This approach is modular, and allows for the development of highly complex surface motifs patterned with different chemistry and morphology. PMID:27280689

  13. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields.

  14. Orthogonal collocation of the nonlinear Boltzman equation

    NASA Astrophysics Data System (ADS)

    Morin, T. J.; Hawley, M. C.

    1985-07-01

    A numerical solution to the nonlinear Boltzmann equation for Maxwell molecules, including the momentum conserving kernel by the method of orthogonal collocation, is presented and compared with the similarity solution of Krupp (1967), Bobylev (1975), Krook and Wu (1976) (KBKW). Excellent agreement is found between the two for KBKW initial values. The calculations of the evolution of a distribution function from nonKBKW initial conditions are examined. The correlation of the nonKBKW trajectories to the presence of a robust unstable manifold in the eigenspace of the linearized Boltzmann equation is considered. The results of a linear analysis are compared with the work of Wang Chang and Uhlenbeck (1952). The implications of the results for the relaxation of nonequilibrium distribution functions are discussed.

  15. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  16. LOCC indistinguishable orthogonal product quantum states

    PubMed Central

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-01-01

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310

  17. LOCC indistinguishable orthogonal product quantum states.

    PubMed

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-01-01

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of (2k+i) ⊗ (2l+j) (i, j ∈ {0, 1} and i ≥ j ) and (3k+i) ⊗ (3l+j) (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of (3k+i) ⊗ (3l+j) is more generalized than the other construction such as Wang et al.'s construction and Zhang et al.'s construction, because it contains the quantum system of not only (2k) ⊗ (2l) and (2k+1) ⊗ (2l) but also (2k) ⊗ (2l+1) and (2k+1) ⊗ (2l+1). We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of (2k) ⊗ (2l) in Wang et al.'s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310

  18. LOCC indistinguishable orthogonal product quantum states.

    PubMed

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-07-05

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of (2k+i) ⊗ (2l+j) (i, j ∈ {0, 1} and i ≥ j ) and (3k+i) ⊗ (3l+j) (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of (3k+i) ⊗ (3l+j) is more generalized than the other construction such as Wang et al.'s construction and Zhang et al.'s construction, because it contains the quantum system of not only (2k) ⊗ (2l) and (2k+1) ⊗ (2l) but also (2k) ⊗ (2l+1) and (2k+1) ⊗ (2l+1). We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of (2k) ⊗ (2l) in Wang et al.'s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.

  19. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    PubMed

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  20. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  1. Inhibition of Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Merali, S; Zhang, Y; Sloan, D; Meshnick, S

    1990-01-01

    A new reversed-phase high-pressure liquid chromatography assay procedure for dihydropteroate synthetase (DHPS) that involves the elution of the enzyme incubation solution with a series of three solvents of decreasing polarity (ammonium phosphate buffer, 10% methanol, and 50% methanol) was designed. By this procedure DHPS was detected in Escherichia coli and Pneumocystis carinii with specific activities of 450 and 14 U/mg, respectively. A comparison of the effects of five sulfa drugs on P. carinii DHPS activity revealed that dapsone is the most potent of these drugs. PMID:2203302

  2. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. PMID:26472323

  3. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  4. On multiple orthogonal polynomials for discrete Meixner measures

    SciTech Connect

    Sorokin, Vladimir N

    2010-12-07

    The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.

  5. Experimental quantum cryptography scheme based on orthogonal states: preliminary results

    NASA Astrophysics Data System (ADS)

    Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo P.; Genovese, Marco; Gramegna, Marco; Traina, Paolo

    2010-04-01

    Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75 (7), pp. 12391243, 1995] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets which travel along separate channels, i.e. two different paths inside a balanced Mach-Zehnder interferometer. Here we present an experiment realizing this scheme.

  6. Analytical modeling of orthogonal spiral structures

    NASA Astrophysics Data System (ADS)

    Santos, Auteliano A.; Hobeck, Jared D.; Inman, Daniel J.

    2016-11-01

    This paper presents the analytical modeling of orthogonal spiral structures (OSS), a promising option for small-scale energy harvesting applications. This unique multi-beam structure is analyzed using a distributed parameter approach with Euler–Bernoulli assumptions. First, an aluminum substrate is evaluated to determine if the proposed design can be used to capture vibration energy in the desired frequency range using a twelve beam OSS. Finite element calculations are used to validate the analytical model. This model is then modified to include the electromechanical effects of a piezoelectric layer added to the aluminum substrate. Lastly, the effects of the beam width and the number of beams is analyzed for a particular surface area of the OSS. Results show that increasing the number of beams causes a reduction in the first natural frequency. From those results, it is possible to conclude that OSS can be used as an alternative to current energy harvesting systems for MEMS applications, allowing the capture of environmental energy in the frequency range of common mechanical systems.

  7. Genuinely multipartite entangled states and orthogonal arrays

    NASA Astrophysics Data System (ADS)

    Goyeneche, Dardo; Życzkowski, Karol

    2014-08-01

    A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, which we call a k-uniform state, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudit Greenberger-Horne-Zeilinger states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N >5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Furthermore, we establish links between the existence of k-uniform states and classical and quantum error correction codes and provide a graph representation for such states.

  8. Unsupervised orthogonalization neural network for image compression

    NASA Astrophysics Data System (ADS)

    Liu, Lurng-Kuo; Ligomenides, Panos A.

    1992-11-01

    In this paper, we present a unsupervised orthogonalization neural network, which, based on Principal Component (PC) analysis, acts as an orthonormal feature detector and decorrelation network. As in the PC analysis, this network involves extracting the most heavily information- loaded features that contained in the set of input training patterns. The network self-organizes its weight vectors so that they converge to a set of orthonormal weight vectors that span the eigenspace of the correlation matrix in the input patterns. Therefore, the network is applicable to practical image transmission problems for exploiting the natural redundancy that exists in most images and for preserving the quality of the compressed-decompressed image. We have applied the proposed neural model to the problem of image compression for visual communications. Simulation results have shown that the proposed neural model provides a high compression ratio and yields excellent perceptual visual quality of the reconstructed images, and a small mean square error. Generalization performance and convergence speed are also investigated.

  9. Nonambipolarity, orthogonal conductivity, poloidal flow, and torque

    SciTech Connect

    Hulbert, G.W.; Perkins, F.W.

    1989-02-01

    Nonambipolar processes, such as neutral injection onto trapped orbits or ripple-diffusion loss of ..cap alpha..-particles, act to charge a plasma. A current j/sub r/ across magnetic surfaces must arise in the bulk plasma to maintain charge neutrality. An axisymmetric, neoclassical model of the bulk plasma shows that these currents are carried by the ions and exert a j/sub r/B/sub theta/R/c torque in the toroidal direction. A driven poloidal flow V/sub theta/ = E/sub r/'c/B must also develop. The average current density is related to the radial electric field E/sub r/' = E/sub r/ + v/sub /phi//B/sub theta//c in a frame moving with the plasma via the orthogonal conductivity = sigma/sub /perpendicular//E/sub r/', which has the value sigma/sub /perpendicular// = (1.65epsilon/sup 1/2/)(ne/sup 2/..nu../sub ii//M..cap omega../sub theta//sup 2/) in the banana regime. If an ignited plasma loses an appreciable fraction ..delta.. of its thermonuclear ..cap alpha..-particles by banana ripple diffusion, then the torque will spin the plasma to sonic rotation in a time /tau//sub s/ approx. 2/tau//sub E//..delta.., /tau//sub E/ being the energy confinement time. 10 refs., 1 fig.

  10. An orthogonal oriented quadrature hexagonal image pyramid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1987-01-01

    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.

  11. Anatomy of lithosphere necking during orthogonal rifting

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Cavozzi, Cristian; Storti, Fabrizio

    2013-04-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal-state of rifted margin. The necking shape depends on several parameters, including the extensional strain-rate and thermal layering of the lithosphere. Despite a large number of analogue and numerical modelling studies on lithosphere extension, a quantitative description of the evolution of necking through time is still lacking. We used analogue modelling to simulate in three-dimension the progression of lithosphere thinning and necking during orthogonal rifting. In our models we simulated a typical "cold and young" 4-layer lithosphere stratigraphy: brittle upper crust (loose quartz sand), ductile lower crust (silicon-barite mixture), brittle upper mantle (loose quartz sand), and ductile lower mantle (silicon-barite mixture). The experimental lithosphere rested on a glucose syrup asthenosphere. We monitored model evolution by periodic and coeval laser scanning of both the surface topography and the lithosphere base. After model completion, each of the four layers was removed and the top of the underlying layer was scanned. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for both the whole lithosphere (βz) and the crust (γ). The area of incremental effective stretching (βy) parallel to the extensional direction was obtained from the βz maps.

  12. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    PubMed Central

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  13. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis.

  14. Mistranslation and its control by tRNA synthetases

    PubMed Central

    Schimmel, Paul

    2011-01-01

    Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great challenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistranslation, powerful selective pressures developed to prevent mistranslation through a special editing activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistranslation is so challenging that a separate, genome-encoded fragment of the editing domain of AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistranslation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine mistranslation is a universal problem, and on the selective pressures that engendered the appearance of AlaXps at the base of the Tree of Life. PMID:21930589

  15. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  16. Novel insights into regulation of asparagine synthetase in conifers.

    PubMed

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.

  17. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  18. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  19. Testis-specific transcription initiation sites of rat farnesyl pyrophosphate synthetase mRNA.

    PubMed Central

    Teruya, J H; Kutsunai, S Y; Spear, D H; Edwards, P A; Clarke, C F

    1990-01-01

    A variety of rat tissues were screened at low stringency with a rat farnesyl pyrophosphate (FPP) synthetase cDNA. In testis, an FPP synthetase-related RNA was detected that was larger than the liver FPP synthetase mRNA and was present at very high levels comparable with liver FPP synthetase RNA levels obtained from rats fed diets supplemented with cholestyramine and mevinolin. Sequence analysis of testis cDNA clones, together with primer extension and S1 nuclease experiments, indicated that testis FPP synthetase transcripts contain an extended 5' untranslated region. The 5' extension contained one or two out-of-frame upstream ATGs, depending on the site of transcription initiation. Protein in vitro translation studies indicated that the extended 5' untranslated region may play a role in regulating the translation of the FPP synthetase polypeptide in rat testis. Southern blot analysis with a probe containing both testis and liver 5' untranslated sequences provided evidence that both liver and testis transcripts derive from the same gene. The data suggest that an upstream testis-specific promoter results in the abundant production of FPP synthetase transcripts that are translated at low efficiency; another promoter functions in liver and other somatic tissues and directs the regulated synthesis of shorter discrete transcripts. Images PMID:2325654

  20. Effect of Liver Damage and Hyperbaric Oxygenation on Glutamine Synthetase of Hepatocytes.

    PubMed

    Savilov, P N; Yakovlev, V N

    2016-01-01

    Activity of glutamine synthetase in the hepatocytes of healthy animals and animals with chronic CCl4-induced hepatitis was studied on white mature female rats after liver resection (15-20% of organ weight) and hyperbaric oxygenation (3 atm, 50 min, 3 times). Surgically operated left and non-operated middle lobes of the liver were analyzed on day 3 after liver resection and exposure to hyperbaric oxygenation. On day 65 of CCl4 poisoning, activity of glutamine synthetase decreased in both lobes and did not recover on day 3 after toxin cessation. Liver resection under conditions of CCl4-induced hepatitis restored reduced activity of glutamine synthetase in both liver lobes to the normal level. In healthy rats, the increase in glutamine synthetase activity after liver resection was found only in the middle lobe of the liver. Hyperbaric oxygenation enhanced the stimulatory effect of liver resection on glutamine synthetase activity in hepatocytes during chronic CCl4-induced hepatitis. In healthy animals with liver resection, activity of glutamine synthetase did not change after hyperbaric oxygenation, while normally oxygenation inhibited glutamine synthetase activity.

  1. Ocean Models and Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Salas-de-Leon, D. A.

    2007-05-01

    The increasing computational developments and the better understanding of mathematical and physical systems resulted in an increasing number of ocean models. Long time ago, modelers were like a secret organization and recognize each other by using secret codes and languages that only a select group of people was able to recognize and understand. The access to computational systems was reduced, on one hand equipment and the using time of computers were expensive and restricted, and on the other hand, they required an advance computational languages that not everybody wanted to learn. Now a days most college freshman own a personal computer (PC or laptop), and/or have access to more sophisticated computational systems than those available for research in the early 80's. The resource availability resulted in a mayor access to all kind models. Today computer speed and time and the algorithms does not seem to be a problem, even though some models take days to run in small computational systems. Almost every oceanographic institution has their own model, what is more, in the same institution from one office to the next there are different models for the same phenomena, developed by different research member, the results does not differ substantially since the equations are the same, and the solving algorithms are similar. The algorithms and the grids, constructed with algorithms, can be found in text books and/or over the internet. Every year more sophisticated models are constructed. The Proper Orthogonal Decomposition is a technique that allows the reduction of the number of variables to solve keeping the model properties, for which it can be a very useful tool in diminishing the processes that have to be solved using "small" computational systems, making sophisticated models available for a greater community.

  2. Subjective ranking of concert halls substantiated through orthogonal objective parameters.

    PubMed

    Cerdá, Salvador; Giménez, Alicia; Cibrián, Rosa; Girón, Sara; Zamarreño, Teófilo

    2015-02-01

    This paper studies the global subjective assessment, obtained from mean values of the results of surveys addressed to members of the audience of live concerts in Spanish auditoriums, through the mean values of the three orthogonal objective parameters (Tmid, IACCE3, and LEV), expressed in just noticeable differences (JNDs), regarding the best-valued hall. Results show that a linear combination of the relative variations of orthogonal parameters can largely explain the overall perceived quality of the sample. However, the mean values of certain orthogonal parameters are not representative, which shows that an alternative approach to the problem is necessary. Various possibilities are proposed.

  3. d-Orthogonality of Humbert and Jacobi type polynomials

    NASA Astrophysics Data System (ADS)

    Lamiri, I.; Ouni, A.

    2008-05-01

    In this paper, we treat three questions related to the d-orthogonality of the Humbert polynomials. The first one consists to determinate the explicit expression of the d-dimensional functional vector for which the d-orthogonality holds. The second one is the investigation of the components of Humbert polynomial sequence. That allows us to introduce, as far as we know, new d-orthogonal polynomials generalizing the classical Jacobi ones. The third one consists to solve a characterization problem related to a generalized hypergeometric representation of the Humbert polynomials.

  4. Subjective ranking of concert halls substantiated through orthogonal objective parameters.

    PubMed

    Cerdá, Salvador; Giménez, Alicia; Cibrián, Rosa; Girón, Sara; Zamarreño, Teófilo

    2015-02-01

    This paper studies the global subjective assessment, obtained from mean values of the results of surveys addressed to members of the audience of live concerts in Spanish auditoriums, through the mean values of the three orthogonal objective parameters (Tmid, IACCE3, and LEV), expressed in just noticeable differences (JNDs), regarding the best-valued hall. Results show that a linear combination of the relative variations of orthogonal parameters can largely explain the overall perceived quality of the sample. However, the mean values of certain orthogonal parameters are not representative, which shows that an alternative approach to the problem is necessary. Various possibilities are proposed. PMID:25697992

  5. Properties of Kaurene Synthetase from Marah macrocarpus1

    PubMed Central

    Frost, Russell G.; West, Charles A.

    1977-01-01

    The kaurene synthetase from immature seeds of Marah macrocarpus (Greene) Greene was partially purified from cell-free homogenates of endosperm by a combination of QAE-Sephadex A-25 chromatography and hydroxyapatite chromatography and freed of contaminating phosphatase activity. The two catalytic activities associated with kaurene synthetase, the cyclization of geranylgeranyl-pyrophosphate to copalyl-pyrophosphate (activity A) and the cyclization of copalyl-pyrophosphate to ent-kaurene (activity B), were not even partially resolved from one another during these procedures. Both activities had identical elution profiles from a calibrated Sepharose 4B column corresponding to a molecular weight less than that of ovalbumin (45,000). The A and B activities had pH optima of 7.3 and 6.9, respectively. Both activities required millimolar concentrations of the following divalent cations in the order: Mg2+ > Mn2+ > Co2+. Activities A and B were both sensitive to inhibition by Hg2+, Cu2+, p-hydroxymercuribenzoate, and N-ethylmaleimide, but activity B was much more sensitive than activity A. The average value of Km′ (apparent Km in the absence of substrate inhibition) for geranylgeranyl-pyrophosphate was 1.6 μm. Values of 0.5 and 0.6 μm were obtained for Km′ and Km, respectively, for copalyl-pyrophosphate. The Vm′ values for the two activities were similar: 12 and 9 pmol/minute·μg protein for activities A and B, respectively. N,N-Dimethylaminoethyl-2,2-diphenylpentanoate (SKF-525A) and N,N-dimethylaminoethyl-2,2-diphenylphentyl ether (SKF-3301A), tributyl-2,4-dichlorobenzylphosphonium chloride (Phosfon D), tributyl-2,4-dichlorobenzylammonium chloride (Phosfon S), 2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (Amo-1618), 2-(N,N-dimethyl-N-heptylammonium bromide)-p-methan-1-ol (Q-58), and 2-(N,N-dimethyl-N-octylammonium bromide)-p-methan-1-ol (Q-64), at concentrations from 1 to 5 μm, were effective inhibitors of kaurene

  6. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke.

    PubMed

    Jeitner, Thomas M; Battaile, Kevin; Cooper, Arthur J L

    2015-12-01

    The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia-reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

  7. Effect of thromboxane synthetase inhibitor on feline infectious peritonitis in cats.

    PubMed

    Watari, T; Kaneshima, T; Tsujimoto, H; Ono, K; Hasegawa, A

    1998-05-01

    Two cats with abdominal effusion and anorexia were diagnosed as feline infectious peritonitis (FIP). We tried to evaluate the effect of thromboxane (Tx) synthetase inhibitor, ozagrel hydrochloride, on the progression of symptoms and clinicopathologic data characteristic to FIP. After administration of Tx synthetase inhibitor, improvement of appetite and activity, decreases of peritoneal effusion, reduction of leukocyte number to normal level, and improvement of hyper gamma-globulinemia were found in 2 cats with FIP. These findings suggest that the vasculitis in FIP can be successfully treated with Tx synthetase inhibitor which inhibits platelet aggregation.

  8. The MTCY428.08 Gene of Mycobacterium tuberculosis Codes for NAD+ Synthetase

    PubMed Central

    Cantoni, Rita; Branzoni, Manuela; Labò, Monica; Rizzi, Menico; Riccardi, Giovanna

    1998-01-01

    The product of the MTCY428.08 gene of Mycobacterium tuberculosis shows sequence homology with several NAD+ synthetases. The MTCY428.08 gene was cloned into the expression vectors pGEX-4T-1 and pET-15b. Expression in Escherichia coli led to overproduction of glutathione S-transferase fused and His6-tagged gene products, which were enzymatically assayed for NAD synthetase activity. Our results demonstrate that the MTCY428.08 gene of M. tuberculosis is the structural gene for NAD+ synthetase. PMID:9620974

  9. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.

    PubMed

    Richardson, Charles J; First, Eric A

    2016-03-15

    Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine. PMID:26890980

  10. Characterization of carbamoyl phosphate synthetase of Streptomyces spp.

    PubMed

    Vaishnav, P; Randev, S; Jatiani, S; Aggarwal, S; Keharia, H; Vyas, P R; Nareshkumar, G; Archana, G

    2000-09-01

    Carbamoyl phosphate synthetase (CPS) activity in Streptomyces lividans was repressed (70%) by addition of arginine and uracil in the growth medium. Enzyme activity was also inhibited by UMP and activated by ornithine and IMP. Pattern of inhibition and activation was similar irrespective of whether the cells were grown in medium supplemented with arginine or with uracil. A mutant of S. coelicolor with dual auxotrophy for arginine and uracil possessed only about 20% of CPS activity compared to the wild-type strain. An activity staining protocol has been developed for CPS enzyme. Using this method a single CPS band has been observed in the crude extracts of Escherichia coli as well as in S. lividans. Taken together, our results supported the conclusion that Streptomyces species might possess a single CPS enzyme unlike other gram-positive bacteria, which show the presence of two pathway-specific isozymes (Bacillus) or none (Lactobacillus and Leuconostoc). PMID:12561954

  11. Aminoacyl-tRNA synthetase inhibitors as potential antibiotics.

    PubMed

    Vondenhoff, Gaston H M; Van Aerschot, Arthur

    2011-11-01

    Increasing resistance to antibiotics is a major problem worldwide and provides the stimulus for development of new bacterial inhibitors with preferably different modes of action. In search for new leads, several new bacterial targets are being exploited beside the use of traditional screening methods. Hereto, inhibition of bacterial protein synthesis is a long-standing validated target. Aminoacyl-tRNA synthetases (aaRSs) play an indispensable role in protein synthesis and their structures proved quite conserved in prokaryotes and eukaryotes. However, some divergence has occurred allowing the development of selective aaRS inhibitors. Following an outline on the action mechanism of aaRSs, an overview will be given of already existing aaRS inhibitors, which are largely based on mimics of the aminoacyl-adenylates, the natural reaction intermediates. This is followed by a discussion on more recent developments in the field and the bioavailability problem.

  12. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    PubMed

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.

  13. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase.

    PubMed

    Kosikowska, Paulina; Bochno, Marta; Macegoniuk, Katarzyna; Forlani, Giuseppe; Kafarski, Paweł; Berlicki, Łukasz

    2016-12-01

    Inhibition of glutamine synthetase (GS) is one of the most promising strategies for the discovery of novel drugs against tuberculosis. Forty-three bisphosphonic and bis-H-phosphinic acids of various scaffolds, bearing aromatic substituents, were screened against recombinant GS from Mycobacterium tuberculosis. Most of the studied compounds exhibited activities in micromolar range, with N-(3,5-dichlorophenyl)-2-aminoethylidenebisphoshonic acid, N-(3,5-difluorophenyl)-2-aminoethylidene-bisphoshonic acid and N-(3,4-dichlorophenyl)-1-hydroxy-1,1-ethanebisphosphonic acid showing the highest potency with kinetic parameters similar to the reference compound - L-methionine-S-sulfoximine. Moreover, these inhibitors were found to be much more effective against pathogen enzyme than against the human ortholog. Thus, with the bone-targeting properties of the bisphosphonate compounds in mind, this activity/selectivity profile makes these compounds attractive agents for the treatment of bone tuberculosis.

  14. Astrocyte glutamine synthetase: pivotal in health and disease.

    PubMed

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  15. Studies on the control of hexosamine biosynthesis by glucosamine synthetase

    PubMed Central

    Winterburn, P. J.; Phelps, C. F.

    1971-01-01

    1. The nature of the feedback inhibition of hexosamine biosynthesis on rat liver glucosamine synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) by UDP-N-acetylglucosamine was investigated in detail. 2. Further modifiers of physiological importance are described. Glucose 6-phosphate and AMP potentiated the UDP-N-acetylglucosamine inhibition, and UTP behaved as an activator. These three compounds only exerted their action when the feedback inhibitor was bound to the enzyme. 3. ATP also inhibited the enzyme. 4. The actions of these various effectors are discussed in kinetic terms. 5. An interpretation of these findings with reference to the regulation of hexosamine biosynthesis is presented. PMID:5114979

  16. Aminoacyl-tRNA synthetases in medicine and disease

    PubMed Central

    Yao, Peng; Fox, Paul L

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous ‘house-keeping’ enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries. PMID:23427196

  17. p59OASL, a 2'-5' oligoadenylate synthetase like protein: a novel human gene related to the 2'-5' oligoadenylate synthetase family.

    PubMed Central

    Hartmann, R; Olsen, H S; Widder, S; Jorgensen, R; Justesen, J

    1998-01-01

    The 2'-5' oligoadenylate synthetases form a well conserved family of interferon induced proteins, presumably present throughout the mammalian class. Using the Expressed Sequence Tag databases, we have identified a novel member of this family. This protein, which we named p59 2'-5' oligoadenylate synthetase-like protein (p59OASL), shares a highly conserved N-terminal domain with the known forms of 2'-5' oligoadenylate synthetases, but differs completely in its C-terminal part. The C-terminus of p59OASL is formed of two domains of ubiquitin-like sequences. Here we present the characterisation of a full-length cDNA clone, the genomic sequence and the expression pattern of this gene. We have addressed the evolution of the 2'-5' oligoadenylate synthetase gene family, in the light of both this new member and new 2'-5' oligoadenylate synthetase sequence data from other species, which have recently appeared in the databases. PMID:9722630

  18. Parameter-based Fisher's information of orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Dehesa, J. S.; Olmos, B.; Yanez, R. J.

    2008-04-01

    The Fisher information of the classical orthogonal polynomials with respect to a parameter is introduced, its interest justified and its explicit expression for the Jacobi, Laguerre, Gegenbauer and Grosjean polynomials found.

  19. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  20. 13. Credit JTL: Detail, orthogonal view of Egyptian Revivial decorative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Credit JTL: Detail, orthogonal view of Egyptian Revivial decorative motifs used typically at midpoints of diagonals - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA

  1. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  2. Identification of pantoate kinase and phosphopantothenate synthetase from Methanospirillum hungatei.

    PubMed

    Katoh, Hiroki; Tamaki, Hideyuki; Tokutake, Yuka; Hanada, Satoshi; Chohnan, Shigeru

    2013-04-01

    Pantothenate synthetase (PanC) and pantothenate kinase which function in the canonical coenzyme A (CoA) biosynthetic pathway cannot be found in most archaea. COG1829 and COG1701 intrinsic to archaea were proposed as the candidate proteins for producing 4'-phosphopantothenate instead, and the COG1701 protein from Methanosarcina mazei was assigned as PanC. Meanwhile, the Thermococcus kodakarensis COG1829 and COG1701 proteins were biochemically identified as novel enzymes, i.e., pantoate kinase (PoK) and phosphopantothenate synthetase (PPS). In this study, the functions of Mhun_0831 (COG1829) and Mhun_0832 (COG1701) from Methanospirillum hungatei were identified, and the recombinant enzymes were partially characterized. Plasmids simultaneously possessing the two genes encoding Mhun_0831 and Mhun_0832 complemented the poor growth of the temperature-sensitive Escherichia coli pantothenate kinase mutant ts9. The recombinant Mhun_0831 and Mhun_0832 expressed in E. coli cells exhibited PoK and PPS activities, respectively, being in accord with the functions of T. kodakarensis proteins. The PoK activity was most active at pH 8.5 and 40°C, and accepted ATP and UTP as a phosphate donor. Although CoA did not affect the PoK activity, the end product considerably accelerated the PPS activity. The homologs of both proteins are widely conserved in most archaeal genomes. Taken together, our findings indicate that archaea can synthesize CoA through the unique pathway involving PoK and PPS, in addition to the canonical one that the order Thermoplasmatales employs.

  3. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    SciTech Connect

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  4. Expansion and orthogonalization of measured modes for structure identification

    NASA Technical Reports Server (NTRS)

    Smith, Suzanne Weaver

    1989-01-01

    The purpose was to investigate a new simultaneous expansion/orthogonalization method in comparison with two previously published expansion methods and a widely used orthogonalization technique. Each expansion method uses data from an analytical model of the structure to complete the estimate of the mode shape vectors. Berman and Nagy used Guyan expansion in their work with improving analytical models. In this method, modes are expanded one at a time, producing a set not orthogonal with respect to the mass matrix. Baruch and Bar Itzhack's optimal orthogonalization procedure was used to subsequently adjust the expanded modes. A second expansion technique was presented by O'Callahan, Avitabile, and Reimer and separately by Kammer. Again, modes are expanded individually and orthogonalized after expansion with the same optimal technique as above. Finally, a simultaneous expansion/orthogonalization method was developed from the orthogonal Procrustes problem of computational mathematics. In this method modes are optimally expanded as a set and orthogonal with respect to the mass matrix as a result. Two demonstation problems were selected for the comparison of the methods described. The first problem is an 8 degree of freedom spring-mass problem first presented by Kabe. Several conditions were examined for expansion method including the presence of errors in the measured data and in the analysis models. As a second demonstration problem, data from tests of laboratory scale model truss structures was expanded for system identification. Tests with a complete structure produced a correlated analysis model and the stiffness and mass matrices. Tests of various damaged configurations produced measured data for 6 modes at 14 dof locations.

  5. Local unitary equivalence of quantum states and simultaneous orthogonal equivalence

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Yang, Min; Zhao, Hui

    2016-06-01

    The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂd1 ⊗ ℂd2 are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.

  6. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  7. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  8. Expeditious oligosaccharide synthesis via selective, semi-orthogonal, and orthogonal activation

    PubMed Central

    Kaeothip, Sophon; Demchenko, Alexei V.

    2011-01-01

    Traditional strategies for oligosaccharide synthesis often require extensive protecting and/or leaving group manipulations between each glycosylation step, thereby increasing the total number of synthetic steps while decreasing the efficiency of the synthesis. In contrast, expeditious strategies allow for the rapid chemical synthesis of complex carbohydrates by minimizing extraneous chemical manipulations. Oligosaccharide synthesis by selective activation of one leaving group over another is one such expeditious strategy. Herein, the significant improvements that have recently emerged in the area of the selective activation are discussed. The development of orthogonal strategy further expands the scope of the selective activation methodology. Surveyed in this article, are representative examples wherein these excellent innovations have been applied to the synthesis of various oligosaccharide sequences. PMID:21663897

  9. Diffuse glutamine synthetase overexpression restricted to areas of peliosis in a β-catenin-activated hepatocellular adenoma: a potential pitfall in glutamine synthetase interpretation.

    PubMed

    Berry, Ryan S; Gullapalli, Rama R; Wu, Jin; Morris, Katherine; Hanson, Joshua A

    2014-08-01

    Hepatocellular adenomas have recently been classified into four subtypes based on molecular findings: hepatocyte nuclear factor 1α (HNF1α) inactivated, inflammatory/telangiectatic, β-catenin activated, and unclassifiable. β-catenin-activated adenomas have the potential for malignant transformation and are thus important to recognize. Diffuse glutamine synthetase immunohistochemical positivity has been shown to be a reliable surrogate marker for β-catenin activation, though variations in staining patterns may be difficult to interpret. We report a case of a peliotic adenoma that was morphologically consistent with a β-catenin wild-type hepatocellular adenoma but harbored a β-catenin mutation by molecular analysis. The tumor lacked nuclear β-catenin positivity and demonstrated a hitherto undescribed pattern of glutamine synthetase overexpression restricted to areas of peliosis with mostly negative staining in non-peliotic areas. This pattern was initially interpreted as physiologic and may represent a potential pitfall in glutamine synthetase interpretation.

  10. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  11. Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei

    PubMed Central

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth

    2014-01-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

  12. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions. PMID:25697791

  13. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.

  14. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    SciTech Connect

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  15. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae

    PubMed Central

    Chang, Yu-Fang; Carman, George M.

    2008-01-01

    CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C. PMID:18439916

  16. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  17. Orthogonal rotation-invariant moments for digital image processing.

    PubMed

    Lin, Huibao; Si, Jennie; Abousleman, Glen P

    2008-03-01

    Orthogonal rotation-invariant moments (ORIMs), such as Zernike moments, are introduced and defined on a continuous unit disk and have been proven powerful tools in optics applications. These moments have also been digitized for applications in digital image processing. Unfortunately, digitization compromises the orthogonality of the moments and, therefore, digital ORIMs are incapable of representing subtle details in images and cannot accurately reconstruct images. Typical approaches to alleviate the digitization artifact can be divided into two categories: 1) careful selection of a set of pixels as close approximation to the unit disk and using numerical integration to determine the ORIM values, and 2) representing pixels using circular shapes such that they resemble that of the unit disk and then calculating ORIMs in polar space. These improvements still fall short of preserving the orthogonality of the ORIMs. In this paper, in contrast to the previous methods, we propose a different approach of using numerical optimization techniques to improve the orthogonality. We prove that with the improved orthogonality, image reconstruction becomes more accurate. Our simulation results also show that the optimized digital ORIMs can accurately reconstruct images and can represent subtle image details. PMID:18270118

  18. Aminoacyl-tRNA Synthetases in the Bacterial World.

    PubMed

    Giegé, Richard; Springer, Mathias

    2016-05-01

    Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and

  19. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    PubMed

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  20. Orthogonal arrays in normal and injured respiratory airway epithelium.

    PubMed

    Gordon, R E

    1985-02-01

    Orthogonal arrays are found on plasma membranes of glial cells, in the central nervous system, on muscle plasma membranes at neuromuscular junctions, and on a variety of epithelial cells. These structures have been correlated with ion flux. With the aid of freeze fracture technique, orthogonal particle arrays were found on plasma membranes on airway epithelial cells of rats and hamsters. They have been found in abundance at the base of secretory cells throughout normal airway epithelium. These structures were found to increase in number during regeneration in response to injury and they were found in great numbers on plasma membranes of all airway cells in response to acute and chronic NO2 exposure. The lateral and basal plasma membranes of the respiratory epithelium are a new source for studying orthogonal arrays. The normal number and distribution of these arrays can be perturbed in response to mechanical and chemical injury. PMID:3968185

  1. Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei

    2016-08-01

    As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.

  2. Investigation of formation mechanisms of chips in orthogonal cutting process

    NASA Astrophysics Data System (ADS)

    Ma, W.

    2012-08-01

    This work investigates the formation mechanisms of chips in orthogonal cutting of mild steel and the transformation conditions between various morphology chips. It is supposed that the modeling material follows the Johnson-Cook constitutive model. In orthogonal cutting process, both the plastic flow and the instability behaviors of chip materials are caused by the plane strain loadings. Therefore, the general instability behaviors of materials in plane strain state are first analyzed with linear perturbation method and a universal instability criterion is established. Based on the analytical results, the formation mechanisms of chips and the transformation conditions between continuous and serrated chips are further studied by instability phase diagram method. The results show that the chip formation strongly depends on the intensity ratios between shear and normal stresses. The ratios of dissipative rates of plastic work done by compression and shear stresses govern the transformation from continuous to serrated chips. These results are verified by the numerical simulations on the orthogonal cutting process.

  3. Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system

    PubMed Central

    Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei

    2016-01-01

    As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634

  4. Experimental quantum-cryptography scheme based on orthogonal states

    NASA Astrophysics Data System (ADS)

    Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo

    2010-12-01

    Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.1239 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.

  5. Experimental quantum-cryptography scheme based on orthogonal states

    SciTech Connect

    Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo

    2010-12-15

    Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.

  6. Measurement matrix optimization method based on matrix orthogonal similarity transformation

    NASA Astrophysics Data System (ADS)

    Pan, Jinfeng

    2016-05-01

    Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.

  7. Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system.

    PubMed

    Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei

    2016-01-01

    As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634

  8. Semi-orthogonal wavelets for elliptic variational problems

    SciTech Connect

    Hardin, D.P.; Roach, D.W.

    1998-04-01

    In this paper the authors give a construction of wavelets which are (a) semi-orthogonal with respect to an arbitrary elliptic bilinear form a({center_dot},{center_dot}) on the Sobolev space H{sub 0}{sup 1}((0, L)) and (b) continuous and piecewise linear on an arbitrary partition of [0, L]. They illustrate this construction using a model problem. They also construct alpha-orthogonal Battle-Lemarie type wavelets which fully diagonalize the Galerkin discretized matrix for the model problem with domain IR. Finally they describe a hybrid basis consisting of a combination of elements from the semi-orthogonal wavelet basis and the hierarchical Schauder basis. Numerical experiments indicate that this basis leads to robust scalable Galerkin discretizations of the model problem which remain well-conditioned independent of {epsilon}, L, and the refinement level K.

  9. Calculation on flux-MMF relationship of orthogonal-core

    SciTech Connect

    Tajima, K.; Kaga, A.; Anazawa, Y. ); Ichinokura, O. )

    1993-03-01

    Orthogonal-cores have various potential applications, for instance in parametric transformers and dc-ac converters. The operating characteristics of the devices can be calculated on the basis of the measured relationship of flux to MMF of the orthogonal-core. To achieve optimal design of the applied device, the relationship of flux to MMF must be determined; however, this involves solving a three dimensional nonlinear problem. In this paper, the authors calculate the flux-MMF relationship based on a magnetic circuit model for the orthogonal-core. The computed results agree well with experiment. The method of this study is shown to be valid for calculation of characteristics and useful for optimal design of application devices.

  10. Differential expression of argininosuccinate synthetase in serous and non-serous ovarian carcinomas.

    PubMed

    Cheon, Dong-Joo; Walts, Ann E; Beach, Jessica A; Lester, Jenny; Bomalaski, John S; Walsh, Christine S; Ruprecht Wiedemeyer, W; Karlan, Beth Y; Orsulic, Sandra

    2015-01-01

    The current standard of care for epithelial ovarian cancer does not discriminate between different histologic subtypes (serous, clear cell, endometrioid and mucinous) despite the knowledge that ovarian carcinoma subtypes do not respond uniformly to conventional platinum/taxane-based chemotherapy. Exploiting addictions and vulnerabilities in cancers with distinguishable molecular features presents an opportunity to develop individualized therapies that may be more effective than the current 'one size fits all' approach. One such opportunity is arginine depletion therapy with pegylated arginine deiminase, which has shown promise in several cancer types that exhibit low levels of argininosuccinate synthetase including hepatocellular and prostate carcinoma and melanoma. Based on the high levels of argininosuccinate synthetase previously observed in ovarian cancers, these tumours have been considered unlikely candidates for arginine depletion therapy. However, argininosuccinate synthetase levels have not been evaluated in the individual histologic subtypes of ovarian carcinoma. The current study is the first to examine the expression of argininosuccinate synthetase at the mRNA and protein levels in large cohorts of primary and recurrent ovarian carcinomas and ovarian cancer cell lines. We show that the normal fallopian tube fimbria and the majority of primary high-grade and low-grade serous ovarian carcinomas express high levels of argininosuccinate synthetase, which tend to further increase in recurrent tumours. In contrast to the serous subtype, non-serous ovarian carcinoma subtypes (clear cell, endometrioid and mucinous) frequently lack detectable argininosuccinate synthetase expression. The in vitro sensitivity of ovarian cancer cell lines to arginine depletion with pegylated arginine deiminase was inversely correlated with argininosuccinate synthetase expression. Our data suggest that the majority of serous ovarian carcinomas are not susceptible to therapeutic

  11. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  12. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    PubMed

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  13. Carbamoyl phosphate synthetase: a crooked path from substrates to products.

    PubMed

    Raushel, F M; Thoden, J B; Reinhart, G D; Holden, H M

    1998-10-01

    The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl phosphate synthetase has revealed the location of three separate active sites connected by two molecular tunnels that run through the interior of the protein. It has been demonstrated that the amidotransferase domain within the small subunit of the enzyme from Escherichia coli hydrolyzes glutamine to ammonia via a thioester intermediate with Cys269. The ammonia migrates through the interior of the protein, where it reacts with carboxy phosphate to produce the carbamate intermediate. The carboxy phosphate intermediate is formed by the phosphorylation of bicarbonate by ATP at a site contained within the amino-terminal half of the large subunit. The carbamate intermediate is transported through the interior of the protein to a second site within the carboxy-terminal half of the large subunit, where it is phosphorylated by another ATP to yield the final product, carbamoyl phosphate. The entire journey from substrate to product covers a distance of nearly 100 A. PMID:9818189

  14. Regulation of carbamoyl phosphate synthetase by MAP kinase.

    PubMed

    Graves, L M; Guy, H I; Kozlowski, P; Huang, M; Lazarowski, E; Pope, R M; Collins, M A; Dahlstrand, E N; Earp, H S; Evans, D R

    2000-01-20

    The de novo synthesis of pyrimidine nucleotides is required for mammalian cells to proliferate. The rate-limiting step in this pathway is catalysed by carbamoyl phosphate synthetase (CPS II), part of the multifunctional enzyme CAD. Here we describe the regulation of CAD by the mitogen-activated protein (MAP) kinase cascade. When phosphorylated by MAP kinase in vitro or activated by epidermal growth factor in vivo, CAD lost its feedback inhibition (which is dependent on uridine triphosphate) and became more sensitive to activation (which depends upon phosphoribosyl pyrophosphate). Both these allosteric regulatory changes favour biosynthesis of pyrimidines for growth. They were accompanied by increased epidermal growth factor-dependent phosphorylation of CAD in vivo and were prevented by inhibition of MAP kinase. Mutation of a consensus MAP kinase phosphorylation site abolished the changes in CAD allosteric regulation that were stimulated by growth factors. Finally, consistent with an effect of MAP kinase signalling on CPS II activity, epidermal growth factor increased cellular uridine triphosphate and this increase was reversed by inhibition of MAP kinase. Hence these studies may indicate a direct link between activation of the MAP kinase cascade and de novo biosynthesis of pyrimidine nucleotides. PMID:10659854

  15. Purification and characterization of beef pancreatic asparagine synthetase.

    PubMed

    Luehr, C A; Schuster, S M

    1985-03-01

    Bovine pancreatic asparagine synthetase has been partially purified using ammonium sulfate fractionation, DEAE ion-exchange, Cibacron Blue affinity chromatography, and HPLC anion-exchange chromatography to a specific activity of 170 nmol asparagine produced min-1 mg protein-1, or 1400-fold, from a crude homogenate. Using HPLC size exclusion chromatography, an apparent molecular weight of 110,000-120,000 was determined. An aspartyl-adenylate intermediate was found to occur by demonstrating an 18O transfer from [18O]Asp to AMP that was detected with 31P NMR. A number of divalent metals were found to be able to replace magnesium with retention of activity, but none produced as high an activity as Mg2+, and the stoichiometry of the ATP/Mg2+ ratio was found to be 1. The chloride ion was found to stimulate the glutamine-dependent and glutaminase reactions, but the ammonia-dependent reaction was inhibited. Chloride appeared to be a competitive inhibitor with respect to ammonia and produced negative cooperativity. PMID:2858178

  16. In situ autoradiographic detection of folylpolyglutamate synthetase activity

    SciTech Connect

    Sussman, D.J.; Milman, G.; Osborne, C.; Shane, B.

    1986-11-01

    The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of (6-/sup 3/H)deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of (6-/sup 3/H)deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which functions in mammalian cells.

  17. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  18. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    SciTech Connect

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  19. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  20. Glutamine synthetase predicts adjuvant TACE response in hepatocellular carcinoma

    PubMed Central

    Zhang, Bo; Liu, Kai; Zhang, Jian; Dong, Liwei; Jin, Zhichao; Zhang, Xinji; Xue, Feng; He, Jia

    2015-01-01

    Background: Adjuvant transcatheter arterial chemoembolization (TACE) is associated with better outcome and reduced tumor recurrence in hepatocellular carcinoma (HCC) patients. This study aimed to investigate the relationship between glutamine synthetase (GS) expression and survival of HCC patients after postoperative adjuvant TACE. Methods: We retrospectively analyzed 554 HCC patients in two independent cohorts who underwent curative resection. Immunohistochemistry assay was used to investigate the expression of GS protein and evaluate the association with survival and the response to adjuvant TACE. Results: In training cohort, patients with low GS expression who received postoperative adjuvant TACE showed a better overall survival (OS) (P<0.001) and less early phase recurrence (P=0.016). Adjuvant TACE was an independent prognostic factor for 5-year OS (HR=0.408, 95% CI 0.261-0.639, P<0.001) and early phase recurrence (HR=0.592, 95% CI 0.376-0.931, P=0.023). The same result was confirmed in validation cohort. Patients with high GS expression in both cohorts did not have a significant response to adjuvant TACE in OS and early phase recurrence. Conclusions: GS status in tumor might be a useful tool in the selection of HCC patients who would be likely to benefit from postoperative adjuvant TACE. PMID:26884995

  1. Versatility of acyl-acyl carrier protein synthetases.

    PubMed

    Beld, Joris; Finzel, Kara; Burkart, Michael D

    2014-10-23

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. We show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E. coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. In vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms. PMID:25308274

  2. Expression, purification, and characterization of recombinant human glutamine synthetase.

    PubMed Central

    Listrom, C D; Morizono, H; Rajagopal, B S; McCann, M T; Tuchman, M; Allewell, N M

    1997-01-01

    A bacterial expression system has been engineered for human glutamine synthetase (EC 6.3.1.2) that produces approximately 60 mg of enzyme (20% of the bacterial soluble protein) and yields approx. 8 mg of purified enzyme per litre of culture. The recombinant enzyme was purified 5-fold to apparent homogeneity and characterized. It has a subunit molecular mass of approx. 45000 Da. The Vmax value obtained using a radioactive assay with ammonia and l-[G-3H]glutamic acid as substrates was 15.9 micromol/min per mg, 40% higher than that obtained in the colorimetric assay (9.9 micromol/min per mg) with hydroxylamine replacing ammonia as a substrate. Km values for glutamate were 3.0 mM and 3.5 mM, and for ATP they were 2.0 mM and 2. 9 mM for the radioactive and spectrophotometric assays respectively. The Km for ammonia in the radioactive assay was 0.15 mM. The midpoint of thermal inactivation was 49.7 degrees C. Hydroxylamine, Mg(II) and Mg(II)-ATP stabilized the enzyme against thermal inactivation, whereas ATP promoted inactivation. The pure enzyme is stable for several months in storage and provides a source for additional studies, including X-ray crystallography. PMID:9359847

  3. Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis.

    PubMed Central

    Martin, G; Haehnel, W; Böger, P

    1997-01-01

    In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation. PMID:9006027

  4. Purification and some kinetic properties of rat liver glucosamine synthetase

    PubMed Central

    Winterburn, P. J.; Phelps, C. F.

    1971-01-01

    1. Glucosamine synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was purified about 300-fold from rat liver by two techniques. One procedure utilized the protective action of fructose 6-phosphate and gave a relatively stable preparation, the other yielded an unstable enzyme (half-life of about 20h), free of contaminant activities, on which kinetic experiments were performed. Although the properties of the two preparations showed slight differences, the unstabilized form could be converted into the stabilized form. 2. During preparation the enzyme retained its sensitivity to the feedback inhibitor, UDP-N-acetylglucosamine. 3. The reversibility of the enzyme-catalysed reaction could not be demonstrated. There was no apparent requirement for a cofactor. 4. The pH optimum was at 7.5, at which pH the reaction obeyed a Ping Pong Bi Bi rate equation. At pH values outside the range 6.9–7.6 and at temperatures below 29°C the velocity was described by an ordered Bi Bi rate equation. 5. The molecular weight of the enzyme, determined by two procedures, was 360000–400000. 6. The aminotransferase was unable to utilize ammonia as a substrate. PMID:4255955

  5. Inhibition of Plant Asparagine Synthetase by Monoterpene Cineoles1

    PubMed Central

    Romagni, Joanne G.; Duke, Stephen O.; Dayan, Franck E.

    2000-01-01

    Asparagine (Asn) synthetase (AS) is the key enzyme in Asn biosynthesis and plays an important role in nitrogen mobilization. Despite its important physiological function, little research has been done documenting inhibitors of plant AS. Plant growth inhibition caused by the natural monoterpene 1,4-cineole and its structurally related herbicide cinmethylin was reversed 65% and 55%, respectively, by providing 100 μm Asn exogenously. Reversion of the phytotoxic effect was dependent on the concentration of Asn. The presence of either 1,4-cineole or cinmethylin stimulated root uptake of [14C]Asn by lettuce (Lactuca sativa) seedlings. Although the physiological responses suggested that both compounds affected Asn biosynthesis, biochemical analysis of AS activity showed that the natural monoterpene was a potent inhibitor (I50 = approximately 0.5 μm) of the enzyme, whereas the commercial product was not inhibitory up to levels of 10 mm. Analysis of the putative metabolite, 2-hydroxy-1,4-cineole, showed that the cis-enantiomer was much more active than the trans-enantiomer, suggesting that the hydroxyl group was involved in the specific ligand/active site interaction. This is the first report that AS is a suitable herbicide target site, and that cinmethylin is apparently a proherbicide that requires metabolic bioactivation via cleavage of the benzyl-ether side chain. PMID:10859202

  6. Orthogonality of decision boundaries in complex-valued neural networks.

    PubMed

    Nitta, Tohru

    2004-01-01

    This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron consists of two hypersurfaces that intersect orthogonally, and divides a decision region into four equal sections. The XOR problem and the detection of symmetry problem that cannot be solved with two-layered real-valued neural networks, can be solved by two-layered complex-valued neural networks with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued neural nets. Furthermore, the fading equalization problem can be successfully solved by the two-layered complex-valued neural network with the highest generalization ability. (2) A decision boundary of a three-layered complex-valued neural network has the orthogonal property as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs to each hidden neuron grow. In particular, most of the decision boundaries in the three-layered complex-valued neural network inetersect orthogonally when the network is trained using Complex-BP algorithm. As a result, the orthogonality of the decision boundaries improves its generalization ability. (3) The average of the learning speed of the Complex-BP is several times faster than that of the Real-BP. The standard deviation of the learning speed of the Complex-BP is smaller than that of the Real-BP. It seems that the complex-valued neural network and the related algorithm are natural for learning complex-valued patterns for the above reasons.

  7. Structure relations for monic orthogonal polynomials in two discrete variables

    NASA Astrophysics Data System (ADS)

    Rodal, J.; Area, I.; Godoy, E.

    2008-04-01

    In this paper, extensions of several relations linking differences of bivariate discrete orthogonal polynomials and polynomials themselves are given, by using an appropriate vector-matrix notation. Three-term recurrence relations are presented for the partial differences of the monic polynomial solutions of admissible second order partial difference equation of hypergeometric type. Structure relations, difference representations as well as lowering and raising operators are obtained. Finally, expressions for all matrix coefficients appearing in these finite-type relations are explicitly presented for a finite set of Hahn and Kravchuk orthogonal polynomials.

  8. Characterisation of a Si(Li) orthogonal-strip detector

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Sweeney, A.; Beau, J.; Lampert, M.; Pirard, B.; Zuvic, M.

    2013-10-01

    A Compton camera composed of an orthogonal-strip Si(Li) detector and an orthogonal-strip HPGe SmartPET detector is under investigation at the University of Liverpool. To optimise the performance of the system, it is essential to quantify the response of the detectors to gamma irradiation. Such measurements have previously been reported for the SmartPET detector and in this work we report on the experimental characterisation of the Si(Li) detector. Precision scans of the detector have been performed using a finely collimated 241Am gamma-ray source to determine the uniformity and charge collection properties of the detector.

  9. Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase.

    PubMed

    Donohue, T J; Bernlohr, R W

    1981-10-01

    The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM). PMID:6169702

  10. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    PubMed

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  11. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Small organic ligands.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The usefulness of affinity chromatography for the purification of aminoacyl-tRNA synthetases was explored by using column ligands derived from the corresponding amino acid and aminoalkyladenylate, a non-labile analogue of the aminoacyladenylate reaction intermediate. Four modes of attachment of the aminoalkyladenylate to Sepharose were studied. The interaction between amino acid derivatives and the corresponding aminoacyl-tRNA synthetases is too weak to allow their use as ligands for affinity chromatography. Attachment of the aminoalkyladenylate via the alpha-nitrogen atom of the amino acid or via C-8 of the nucleotide abolishes synthetase binding, and immobilization via the oxidized ribose ring is only marginally useful. However, attachment of the aminoalkyladenylate to the matrix via N-6 of the nucleotide allows strong and specific synthetase binding, and the use of such columns permits the isolation of homogeneous synthetase from crude mixtures. The effect of non-specific adsorption and the utility of pre-columns and of specific substrate elution are investigated and discussed. Images Fig. 4. Fig. 7. PMID:597251

  12. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    PubMed

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  13. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  14. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511

    PubMed Central

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P.; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  15. Effect of glucose deprivation on rat glutamine synthetase in cultured astrocytes.

    PubMed Central

    Rosier, F; Lambert, D; Mertens-Strijthagen, M

    1996-01-01

    Glutamine synthetase was purified from the cerebral cortex of adult rats and characterized. Polyclonal rabbit antibodies were raised against the enzyme, purified and their specific anti-(glutamine synthetase) activity determined. A primary astroglial culture was prepared from newborn Sprague-Dawley rats. Astrocytes at different ages of development were incubated in the presence and absence of glucose. In glucose-deprived conditions the specific activity of glutamine synthetase decreased. This decrease was more pronounced in 8-day-old than in 21-day-old cultures. Kinetic analysis demonstrated that the reduction in activity was mainly related to a decrease in Vmax. By immunoprecipitation, it was shown that the number of enzyme molecules in astrocytes was decreased in glucose-deprived conditions. On addition of glucose, a total recovery of glutamine synthetase was obtained after 36 h in 8-day-old culture. Rates of degradation and synthesis were investigated. When compared with an incubation in the presence of glucose, glucose deprivation increased enzyme turnover, as estimated from the first-order disappearance of radioactivity from glutamine synthetase. Synthesis rate was estimated from the incorporation of [35S]methionine during a 2 h incubation period and was decreased in glucose-deprived conditions. Trichloroacetate-precipitable proteins changed only slightly in the experimental conditions, and total protein did not vary significantly during the experimental period. A mathematical model is presented which attempts to integrate degradation and synthesis in our experimental model. PMID:8615836

  16. Effect of estrogen administration on rat liver 2-5A synthetase activity.

    PubMed

    Smekens, M; Dumont, J E; Degeyter, A; Galand, P

    1986-08-01

    Interferon-induced 2-5A synthetase is also present in various cells and tissues in the absence of any interferon treatment. The activity of this enzyme, which synthesizes a series of oligoadenylates, ppp(A2'p)n5'A (collectively referred to as 2-5A), was previously shown to vary with the growth status of liver tissue i.e., it decreased before and during the peak of DNA synthesis activity induced in rat liver by a two third hepatectomy. In the course of studies aimed at testing the hypothesis that 2-5A synthetase activity might exert negative control on normal cell growth and multiplication, we show here that a treatment of ovariectomized rats with a single dose of estradiol-17beta (100 micrograms/100 g body weight) induced a transient increase in the [3H]thymidine labelling index in the liver after 24 h and markedly decreased the 2-5A synthetase activity. A time course study revealed that 2-5A synthetase activity started to decrease after 3 h, reaching a minimal value (10% of the control level) after 12 h, then slowly increased to come back to control level at 48 h. These results, together with our similar data on regenerating liver, suggest that low 2-5A synthetase activity is permissive for acquisition of proliferative 'competence' by G0 cells. PMID:3730433

  17. Connection coefficients between orthogonal polynomials and the canonical sequence

    NASA Astrophysics Data System (ADS)

    Maroni, P.; Da Rocha, Z.

    2008-03-01

    We deal with the problem of obtaining closed formulas for the connection coefficients between orthogonal polynomials and the canonical sequence. We use a recurrence relation fulfilled by these coefficients and symbolic computation with the Mathematica language. We treat the cases of Gegenbauer, Jacobi and a new semi-classical sequence.

  18. Orthogonal basis functions in discrete least-squares rational approximation

    NASA Astrophysics Data System (ADS)

    Bultheel, A.; van Barel, M.; van Gucht, P.

    2004-03-01

    We consider a problem that arises in the field of frequency domain system identification. If a discrete-time system has an input-output relation Y(z)=G(z)U(z), with transfer function G, then the problem is to find a rational approximation for G. The data given are measurements of input and output spectra in the frequency points zk: {U(zk),Y(zk)}k=1N together with some weight. The approximation criterion is to minimize the weighted discrete least squares norm of the vector obtained by evaluating in the measurement points. If the poles of the system are fixed, then the problem reduces to a linear least-squares problem in two possible ways: by multiplying out the denominators and hide these in the weight, which leads to the construction of orthogonal vector polynomials, or the problem can be solved directly using an orthogonal basis of rational functions. The orthogonality of the basis is important because if the transfer function is represented with respect to a nonorthogonal basis, then this least-squares problem can be very ill conditioned. Even if an orthogonal basis is used, but with respect to the wrong inner product (e.g., the Lebesgue measure on the unit circle) numerical instability can be fatal in practice. We show that both approaches lead to an inverse eigenvalue problem, which forms the common framework in which fast and numerically stable algorithms can be designed for the computation of the orthonormal basis.

  19. Crossover ensembles of random matrices and skew-orthogonal polynomials

    SciTech Connect

    Kumar, Santosh; Pandey, Akhilesh

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  20. Trusted materials using orthogonal testing. 2015 Annual report

    SciTech Connect

    Van Benthem, Mark

    2015-09-01

    The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.

  1. Response Surface Model Building Using Orthogonal Arrays for Computer Experiments

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.

    1997-01-01

    This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.

  2. Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets

    NASA Astrophysics Data System (ADS)

    Shao, S.; Pyrak-Nolte, L. J.

    2016-10-01

    Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.

  3. Adaptive integrand decomposition in parallel and orthogonal space

    NASA Astrophysics Data System (ADS)

    Mastrolia, Pierpaolo; Peraro, Tiziano; Primo, Amedeo

    2016-08-01

    We present the integrand decomposition of multiloop scattering amplitudes in parallel and orthogonal space-time dimensions, d = d ∥ + d ⊥, being d ∥ the dimension of the parallel space spanned by the legs of the diagrams. When the number n of external legs is n ≤ 4,thecorrespondingrepresentationofmultiloopintegralsexposesasubsetofintegration variables which can be easily integrated away by means of Gegenbauer polynomials orthogonality condition. By decomposing the integration momenta along parallel and orthogonal directions, the polynomial division algorithm is drastically simplified. Moreover, the orthogonality conditions of Gegenbauer polynomials can be suitably applied to integrate the decomposed integrand, yielding the systematic annihilation of spurious terms. Consequently, multiloop amplitudes are expressed in terms of integrals corresponding to irreducible scalar products of loop momenta and external ones. We revisit the one-loop decomposition, which turns out to be controlled by the maximum-cut theorem in different dimensions, and we discuss the integrand reduction of two-loop planar and non-planar integrals up to n = 8 legs, for arbitrary external and internal kinematics. The proposed algorithm extends to all orders in perturbation theory.

  4. Further characterization of Escherichia coli alanyl-tRNA synthetase.

    PubMed

    Sood, S M; Slattery, C W; Filley, S J; Wu, M X; Hill, K A

    1996-04-15

    Selected physical and thermodynamic parameters for Escherichia coli alanyl-tRNA synthetase (AlaRS) have been determined primarily to assess the quaternary structure of this enzyme. The extinction coefficient (epsilon) at 280 nm was determined experimentally to be 0.71 ml mg-1 cm-1, and the partial specific volume (nu) was calculated from the amino acid composition to be 0.73 ml g-1. From viscosity experiments the intrinsic viscosity (eta) of AlaRS was extrapolated to be 3.4 ml g-1 and the degree of hydration (delta 1) estimated to be 0.67 gH2O g(-1)(AlaRS). Laser light-scattering studies indicated some heterogeneity; a radius of 6.3 nm was calculated for the major fraction with a diffusion coefficient (D20,W) of 3.89 x 10(-7) cm2 s-1. In 50 mM Hepes, pH 7.5, 20 mM KCl, 2 mM 2-mercaptoethanol and at a protein concentration of 4.2 mg ml-1 the sedimentation coefficient (S20,W) was 6.36 S; this value increased slightly when the protein concentration was decreased. The combination of S20,W and D20,W under these conditions yielded a molecular weight of approximately 186,000 Da, corresponding to a dimer. The S20,W was virtually independent of temperature in the range of 10-37 degrees C, while an Arrhenius plot of aminoacylation activity was biphasic. The isoelectric point was determined experimentally to be 4.9. Sedimentation equilibrium data were best fit to a decamer association complex in which dimeric AlaRS is the predominant species at 25 degrees C. PMID:8645007

  5. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  6. Chemical Bonding: The Orthogonal Valence-Bond View

    PubMed Central

    Sax, Alexander F.

    2015-01-01

    Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476

  7. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Cognate transfer ribonucleic acid as a ligand.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The use of tRNA affinity columns for the purification of aminoacyl-tRNA synthetases was investigated. A purification method for valyl-tRNA synthetase from Bacillus stearothermophilus is described that uses two affinity columns, one containing the pure cognate tRNA, and the other containing all tRNA species except the cognate tRNA. A method for the rapid preparation of the two columns was developed, which does not require prior isolation of cognate tRNA but makes use of the ability of the target synthetase to select its cognate tRNA. The usefulness of tRNA columns is compared with that of affinity columns derived from the aminoalkyladenylate reported in the preceding paper [Clarke & Knowles (1977) Biochem J. 167, 405-417]. PMID:23108

  8. Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen Fusarium sacchari.

    PubMed

    Munawar, Asifa; Marshall, James W; Cox, Russell J; Bailey, Andy M; Lazarus, Colin M

    2013-02-11

    FSN1, a gene isolated from the sugar-cane pathogen Fusarium sacchari, encodes a 4707-residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally.

  9. Nineteen-year follow-up of a patient with severe glutathione synthetase deficiency.

    PubMed

    Atwal, Paldeep S; Medina, Casey R; Burrage, Lindsay C; Sutton, V Reid

    2016-07-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here, we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium.

  10. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  11. Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen Fusarium sacchari.

    PubMed

    Munawar, Asifa; Marshall, James W; Cox, Russell J; Bailey, Andy M; Lazarus, Colin M

    2013-02-11

    FSN1, a gene isolated from the sugar-cane pathogen Fusarium sacchari, encodes a 4707-residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally. PMID:23307607

  12. Inhibition of Dihydropteroate Synthetase from Escherichia coli by Sulfones and Sulfonamides

    PubMed Central

    McCullough, Jerry L.; Maren, Thomas H.

    1973-01-01

    The inhibitory action of various diphenylsulfones and sulfonamides on dihydropteroate synthetase partially purified from Escherichia coli was examined. 4,4′-Diaminodiphenylsulfone (DDS; I50 = 2 × 10−5 M) and the monosubstituted derivatives 4-amino-4′-formamidodiphenylsulfone (I50 = 5.8 × 10−5 M) and 4-amino-4′-acetamidodiphenylsulfone (I50 = 5.2 × 10−5 M) were effective inhibitors of dihydropteroate synthetase activity. Disubstitution of the arylamine groups of DDS (4,4′-diformamidodiphenylsulfone and 4,4′-diacetamidodiphenylsulfone) resulted in complete loss of inhibitory activity. Both DDS (KI = 5.9 × 10−6 M) and sulfadiazine (KI = 2.5 × 10−6 M) were found to be competitive inhibitors of dihydropteroate synthetase. These findings are discussed in regard to the Bell and Roblin theory of structure-activity relationships for p-aminobenzoic acid antagonists. PMID:4597736

  13. 19-Year Follow-up of A Patient With Severe Glutathione Synthetase Deficiency

    PubMed Central

    Atwal, Paldeep S.; Medina, Casey R.; Burrage, Lindsay C.; Sutton, V. Reid

    2016-01-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium. PMID:26984560

  14. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.

    PubMed

    Wan, Wei; Tharp, Jeffery M; Liu, Wenshe R

    2014-06-01

    The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs. PMID:24631543

  15. Novel subunit-subunit interactions in the structure of glutamine synthetase.

    PubMed

    Almassy, R J; Janson, C A; Hamlin, R; Xuong, N H; Eisenberg, D

    We present an atomic model for glutamine synthetase, an enzyme of central importance in bacterial nitrogen metabolism, from X-ray crystallography. The 12 identical subunits are arranged as the carbon atoms in two face-to-face benzene rings, with unusual subunit contacts. Our model, which places the active sites at the subunit interfaces, suggests a mechanism for the main functional role of glutamine synthetase: how the enzyme regulates the rate of synthesis of glutamine in response to covalent modification and feedback inhibition. PMID:2876389

  16. Acute Onset Anti-Synthetase Syndrome With Pericardial Effusion and Non-Specific Interstitial Pneumonia

    PubMed Central

    Shah, Aditya; Patel, Samir R.

    2016-01-01

    Anti-synthetase syndrome (AS) is a clinical entity which is described classically by the triad of interstitial lung disease (ILD), inflammatory myositis and presence of aminoacyl-tRNA synthetase antibodies (ASA). We describe a rare presentation of this condition with regard to the uncharacteristically acute nature of presentation, acute decompensation in clinical condition, development of acute interstitial pneumonitis requiring rescue extracorporeal membrane oxygenation (ECMO) and accompaniment of significant pericardial effusion on presentation, followed by rapid improvement with initiation of steroids. PMID:27540445

  17. A Novel Tryptophanyl-tRNA Synthetase Gene Confers High-Level Resistance to Indolmycin▿ †

    PubMed Central

    Vecchione, James J.; Sello, Jason K.

    2009-01-01

    Indolmycin, a potential antibacterial drug, competitively inhibits bacterial tryptophanyl-tRNA synthetases. An effort to identify indolmycin resistance genes led to the discovery of a gene encoding an indolmycin-resistant isoform of tryptophanyl-tRNA synthetase. Overexpression of this gene in an indolmycin-sensitive strain increased the indolmycin MIC 60-fold. Its transcription and distribution in various bacterial genera were assessed. The level of resistance conferred by this gene was compared to that of a known indolmycin resistance gene and to those of genes with resistance-conferring point mutations. PMID:19546369

  18. Time course of the uridylylation and adenylylation states in the glutamine synthetase bicyclic cascade.

    PubMed Central

    Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F

    1993-01-01

    A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399

  19. The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state.

    PubMed

    Jiang, P; Peliska, J A; Ninfa, A J

    1998-09-15

    The regulation of Escherichia coli glutamine synthetase (GS) by reversible adenylylation has provided one of the classical paradigms for signal transduction by cyclic cascades. Yet, many mechanistic features of this regulation remain to be elucidated. We examined the regulation of GS adenylylation state in a reconstituted system containing GS, adenylyltransferase (ATase), the PII signal transduction protein that controls ATase, and the uridylyltransferase/uridylyl-removing enzyme (UTase/UR), which has a role in regulating PII. In this reconstituted bicyclic cascade system, the adenylylation state of GS was regulated reciprocally by the small molecule effectors 2-ketoglutarate and glutamine at physiological effector concentrations. By examination of the individual regulatory monocycles and comparison to the bicyclic system and existing data, we could deduce that the only sensors of 2-ketoglutarate were PII and PII-UMP. At physiological conditions, we observed that the main role of 2-ketoglutarate in bringing about the deadenylylation of GS was to inhibit GS adenylylation, and this was due to the allosteric regulation of PII activity. Glutamine acted as an allosteric regulator of both ATase and UTase/UR. We also compared the regulation of GS adenylylation state to the regulation of phosphorylation state of the transcription factor NRI (NtrC) in a reconstituted bicyclic system containing NRI, the bifunctional kinase/phosphatase NRII (NtrB), PII, and the UTase/UR. This comparison indicated that, at a fixed 2-ketoglutarate concentration, the regulation of GS adenylylation state by glutamine was sharper and occurred at a higher concentration than did the regulation of NRI phosphorylation. The possible biological implications of this regulatory arrangement are discussed. PMID:9737857

  20. Post-transcriptional regulation of S-adenosylmethionine synthetase from its stored mRNA in germinated wheat embryos.

    PubMed

    Mathur, M; Saluja, D; Sachar, R C

    1991-06-24

    About 2-3-fold stimulation of S-adenosylmethionine synthetase was witnessed in germinated wheat embryos (48 h). The enhancement of enzyme activity was significantly inhibited by cycloheximide and amino acid analogues. Simultaneous addition of corresponding amino acids alleviated the inhibitory effect of amino acid analogues. Conclusive proof for the de novo synthesis of S-adenosylmethionine synthetase was obtained by labelling this enzyme with [35SO4]2- in vivo. Thus de novo enzyme synthesis seemed necessary for the rise in activity of AdoMet synthetase in wheat embryos. Curiously, blocking of transcription with cordycepin failed to repress the de novo synthesis of AdoMet synthetase in germinated wheat embryos. We envisage the presence of stored mRNA for AdoMet synthetase in wheat embryos. Thus the regulation of this enzyme occurs at the post-transcriptional level. L-Methionine, which is one of the substrates of AdoMet synthetase, stimulated the enzyme activity (2-2.4-fold) over that observed in control germinated embryos. L-Methionine promotes increased de novo synthesis of AdoMet synthetase. Preincubation of enzyme fraction with L-Methionine failed to activate or stabilize the activity of AdoMet synthetase. Three isozymes of AdoMet synthetase were physically separated by DE-52 ion-exchange chromatography. One of the isozymes of AdoMet synthetase has been purified (1529-fold) to electrophoretic homogeneity by resorting to phenyl Sepharose and ATP Sepharose affinity chromatography. The purified enzyme catalyzed the synthesis of S-adenosylmethionine and also exhibited tripolyphosphatase activity. The reaction product of the purified enzyme was chemically and enzymatically characterized as S-adenosylmethionine. The molecular weight of the native enzyme is 174,000 and that of its subunit is 84,000 as determined on SDS-PAGE. Thus the native enzyme seems to be dimeric in nature. PMID:1648405

  1. CVS Decomposition of 3D Homogeneous Turbulence Using Orthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Farge, Marie; Schneider, Kai; Pellegrino, Giulio; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    This paper compares the filtering used in Coherent Vortex Simulation (CVS) decomposition with an orthogonal wavelet basis, with the Proper Orthogonal Decomposition (POD) or Fourier filtering. Both methods are applied to a field of Direct Numerical Simulation (DNS) data of 3D forced homogeneous isotropic turbulence at microscale Reynolds number R(sub lambda) = 168. We show that, with only 3%N retained modes, CVS filtering separates the coherent vortex tubes from the incoherent background flow. The latter is structureless, has an equipartition energy spectrum, and has a Gaussian velocity probability distribution function (PDF) and an exponential vorticity PDF. On the other hand, the Fourier basis does not extract the coherent vortex tubes cleanly and leaves organized structures in the residual high wavenumber modes whose PDFs are stretched exponentials for both the velocity and the vorticity.

  2. Entanglement as a resource to distinguish orthogonal product states.

    PubMed

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-07-26

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.

  3. Entanglement as a resource to distinguish orthogonal product states

    PubMed Central

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-01-01

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034

  4. Unambiguously determining the orthogonality of multiple quantum states

    NASA Astrophysics Data System (ADS)

    Pang, Shengshi; Wu, Shengjun

    2010-10-01

    In this article, we study an opposite problem of universal quantum state comparison, that is unambiguously determining whether multiple unknown quantum states from a Hilbert space are orthogonal or not. We show that no unambiguous quantum measurement can accomplish this task with a nonzero probability. Moreover, we extend the problem to a more general case, that is to compare how orthogonal multiple unknown quantum states are with a threshold, and it turns out that given any threshold this extended task is also impossible by any unambiguous quantum measurement except for a trivial case. It will be seen that the impossibility revealed in our problem is stronger than that in the universal quantum state comparison problem and distinct from those in the existing “no-go” theorems.

  5. Orthogonally modulated molecular transport junctions for resettable electronic logic gates

    PubMed Central

    Meng, Fanben; Hervault, Yves-Marie; Shao, Qi; Hu, Benhui; Norel, Lucie; Rigaut, Stéphane; Chen, Xiaodong

    2014-01-01

    Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design. PMID:24394717

  6. Sensitive analysis of a finite element model of orthogonal cutting

    NASA Astrophysics Data System (ADS)

    Brocail, J.; Watremez, M.; Dubar, L.

    2011-01-01

    This paper presents a two-dimensional finite element model of orthogonal cutting. The proposed model has been developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting will be validated by comparing these process variables to experimental and numerical results obtained by Filice et al. [1]. This model can be considered to be reliable enough to make qualitative analysis of entry parameters related to cutting process and frictional models. A sensitivity analysis is conducted on the main entry parameters (coefficients of the Johnson-Cook law, and contact parameters) with the finite element model. This analysis is performed with two levels for each factor. The sensitivity analysis realised with the numerical model on the entry parameters has allowed the identification of significant parameters and the margin identification of parameters.

  7. Entanglement as a resource to distinguish orthogonal product states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-07-01

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.

  8. Evaluation of chemometric techniques to select orthogonal chromatographic systems.

    PubMed

    Van Gyseghem, E; Dejaegher, B; Put, R; Forlay-Frick, P; Elkihel, A; Daszykowski, M; Héberger, K; Massart, D L; Heyden, Y Vander

    2006-04-11

    Several chemometric techniques were compared for their performance to determine the orthogonality and similarity between chromatographic systems. Pearson's correlation coefficient (r) based color maps earlier were used to indicate selectivity differences between systems. These maps, in which the systems were ranked according to decreasing or increasing dissimilarities observed in the weighted-average-linkage dendrogram, were now applied as reference method. A number of chemometric techniques were evaluated as potential alternative (visualization) methods for the same purpose. They include hierarchical clustering techniques (single, complete, unweighted-average-linkage, centroid and Ward's method), the Kennard and Stone algorithm, auto-associative multivariate regression trees (AAMRT), and the generalized pairwise correlation method (GPCM) with McNemar's statistical test. After all, the reference method remained our preferred technique to select orthogonal and identify similar systems.

  9. Entanglement as a resource to distinguish orthogonal product states.

    PubMed

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-01-01

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034

  10. Orthogonal polarization Mirau interferometer using reflective-type waveplate.

    PubMed

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Jen, Yi-Jun; Lin, Shyh-Tsong; Yeh, Sheng-Lih

    2013-07-15

    This work proposes an orthogonal polarization Mirau interferometry using a reflective-type waveplate to generate different polarization orientations for broadband white light interferometry. The reflective-type half-waveplate is employed as the reference arm of the Mirau interferometer to convert polarization and it generates a reference light with an orientation orthogonal to the object light. An advantage of the proposed interferometer is its ability to control the ratio of light intensity between the object and reference arms to maximize the interferometric fringe contrast. Better, more accurate calibration of standard step height has been achieved by the developed interferometer, which also can measure solder bumps that traditional Mirau interferometers usually cannot measure. PMID:23939094

  11. Multi-frequency orthogonality sampling for inverse obstacle scattering problems

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland

    2011-08-01

    We discuss a simple non-iterative method to reconstruct the support of a collection of obstacles from the measurements of far-field patterns of acoustic or electromagnetic waves corresponding to plane-wave incident fields with one or few incident directions at several frequencies. The method is a variant of the orthogonality sampling algorithm recently studied by Potthast (2010 Inverse Problems 26 074015). Our theoretical analysis of the algorithm relies on an asymptotic expansion of the far-field pattern of the scattered field as the size of the scatterers tends to zero with respect to the wavelength of the incident field that holds not only at a single frequency, but also across appropriate frequency bands. This expansion suggests some modifications to the original orthogonality sampling algorithm and yields a theoretical motivation for its multi-frequency version. We illustrate the performance of the reconstruction method by numerical examples.

  12. Analog compound orthogonal neural network control of robotic manipulators

    NASA Astrophysics Data System (ADS)

    Jun, Ye

    2005-12-01

    An analog compound orthogonal neural network is presented which is based on digital compound orthogonal neural networks. The compound neural network's control performance was investigated as applied to a robot control problem. The analog neural network is a Chebyshev neural network with a high speed-learning rate in an on-line manner. Its control algorithm does not relate to controlled plant models. The analog neural network is used as the feedforward controller, and PD is used as the feedback controller in the control system of robots. The excellent performance in system response, tracking accuracy, and robustness was verified through a simulation experiment applied to a robotic manipulator with friction and nonlinear disturbances. The trajectory tracking control showed results in satisfactory effectiveness. This analog neural controller provides a novel approach for the control of uncertain or unknown systems.

  13. Orthogonal Fabry-Pérot sensors for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Ellwood, R.; Ogunlade, O.; Zhang, E. Z.; Beard, P. C.; Cox, B. T.

    2016-03-01

    Fabry-Pérot (FP) sensors have been used to produce in-vivo photoacoustic images of exquisite quality. However, for simplicity of construction FP sensors are produced in a planar form. Planar sensors suffer from a limited detection aperture, due to their planarity. We present a novel sensor geometry that allowed a greater field of view by placing a second sensor orthogonal to the first. This captured data from the deeper lying regions of interest and mitigated the limited view.

  14. A general boundary capability embedded in an orthogonal mesh

    SciTech Connect

    Hewett, D.W.; Yu-Jiuan Chen

    1995-07-01

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.

  15. Representation of Signals as Series of Orthogonal Functions

    NASA Astrophysics Data System (ADS)

    Aristidi, E.

    2016-09-01

    This paper gives an introduction to the theory of orthogonal projection of functions or signals. Several kinds of decomposition are explored: Fourier, Fourier-Legendre, Fourier-Bessel series for 1D signals, and Spherical Harmonic series for 2D signals. We show how physical conditions and/or geometry can guide the choice of the base of functions for the decomposition. The paper is illustrated with several numerical examples.

  16. Parsimonious extreme learning machine using recursive orthogonal least squares.

    PubMed

    Wang, Ning; Er, Meng Joo; Han, Min

    2014-10-01

    Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results. PMID:25291736

  17. Orthogonality breaking through few-mode optical fiber.

    PubMed

    Parnet, Francois; Fade, Julien; Alouini, Mehdi

    2016-04-01

    Polarization sensing and imaging through optical fibers is a technological challenge motivated by promising applications for in vivo, in situ polarimetric endoscopy for biomedical diagnosis. Among the recent approaches proposed to solve this issue, the depolarization/dichroism sensing by polarization orthogonality breaking (DSOB) technique was shown to perform remotely through single-mode optical fibers for depolarization/diattenuation measurements. In this article, we investigate the applicability of such a technique in slightly multimode waveguides. Through theoretical modeling and numerical simulations, we evidence the conditions required for the polarization orthogonality to be preserved after propagation in a few-mode fiber, notably in terms of detection geometry of the spatial modes. Original experiments realized in few-mode fibers both in transmission and reflection configurations are also reported and validate the theoretical predictions. These results allow us to analyze the influence of the experimental parameters, such as detection geometry, sample tilt, or fiber length, on orthogonality preservation and on the measurement dynamics of the DSOB technique in slightly multimode waveguides.

  18. Time-resolved proper orthogonal decomposition of liquid jet dynamics

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Soteriou, Marios C.

    2009-11-01

    New insight into the mechanism of liquid jet in crossflow atomization is provided by an analysis technique based on proper orthogonal decomposition and spectral analysis. Data are provided in the form of high-speed videos of the jet near field from experiments over a broad range of injection conditions. For each condition, proper orthogonal modes (POMs) are generated and ordered by intensity variation relative to the time average. The feasibility of jet dynamics reduction by truncation of the POM series to the first few modes is then examined as a function of crossflow velocity for laminar and turbulent liquid injection. At conditions where the jet breaks up into large chunks of liquid, the superposition of specific orthogonal modes is observed to track long waves traveling along the liquid column. The temporal coefficients of these modes can be described as a bandpass spectrum that shifts toward higher frequencies as the crossflow velocity is increased. The dynamic correlation of these modes is quantified by their cross-power spectrum density. Based on the frequency and wavelength extracted from the videos, the observed traveling waves are linked to the linearly fastest growing wave of Kelvin-Helmholtz instability. The gas boundary layer thickness at the gas-liquid shear layer emerges at the end of this study as the dominant length scale of jet dynamics at moderate Weber numbers.

  19. Parallel and orthogonal stimulus in ultradiluted neural networks.

    PubMed

    Sobral, G A; Vieira, V M; Lyra, M L; da Silva, C R

    2006-10-01

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T = 0. PMID:17155143

  20. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    SciTech Connect

    Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill; Chand, Kyle

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory bounding the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.

  1. Animation of orthogonal texture patterns for vector field visualization.

    PubMed

    Bachthaler, Sven; Weiskopf, Daniel

    2008-01-01

    This paper introduces orthogonal vector field visualization on 2D manifolds: a representation by lines that are perpendicular to the input vector field. Line patterns are generated by line integral convolution (LIC). This visualization is combined with animation based on motion along the vector field. This decoupling of the line direction from the direction of animation allows us to choose the spatial frequencies along the direction of motion independently from the length scales along the LIC line patterns. Vision research indicates that local motion detectors are tuned to certain spatial frequencies of textures, and the above decoupling enables us to generate spatial frequencies optimized for motion perception. Furthermore, we introduce a combined visualization that employs orthogonal LIC patterns together with conventional, tangential streamline LIC patterns in order to benefit from the advantages of these two visualization approaches. In addition, a filtering process is described to achieve a consistent and temporally coherent animation of orthogonal vector field visualization. Different filter kernels and filter methods are compared and discussed in terms of visualization quality and speed. We present respective visualization algorithms for 2D planar vector fields and tangential vector fields on curved surfaces, and demonstrate that those algorithms lend themselves to efficient and interactive GPU implementations. PMID:18467751

  2. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Baritzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  3. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  4. Regression analysis of correlated ordinal data using orthogonalized residuals.

    PubMed

    Perin, J; Preisser, J S; Phillips, C; Qaqish, B

    2014-12-01

    Semi-parametric regression models for the joint estimation of marginal mean and within-cluster pairwise association parameters are used in a variety of settings for population-averaged modeling of multivariate categorical outcomes. Recently, a formulation of alternating logistic regressions based on orthogonalized, marginal residuals has been introduced for correlated binary data. Unlike the original procedure based on conditional residuals, its covariance estimator is invariant to the ordering of observations within clusters. In this article, the orthogonalized residuals method is extended to model correlated ordinal data with a global odds ratio, and shown in a simulation study to be more efficient and less biased with regards to estimating within-cluster association parameters than an existing extension to ordinal data of alternating logistic regressions based on conditional residuals. Orthogonalized residuals are used to estimate a model for three correlated ordinal outcomes measured repeatedly in a longitudinal clinical trial of an intervention to improve recovery of patients' perception of altered sensation following jaw surgery.

  5. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  6. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  7. Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus.

    PubMed Central

    Logan, D T; Mazauric, M H; Kern, D; Moras, D

    1995-01-01

    The sequence and crystal structure at 2.75 A resolution of the homodimeric glycyl-tRNA synthetase from Thermus thermophilus, the first representative of the last unknown class II synthetase subgroup, have been determined. The three class II synthetase sequence motifs are present but the structure was essential for identification of motif 1, which does not possess the proline previously believed to be an essential class II invariant. Nevertheless, crucial contacts with the active site of the other monomer involving motif 1 are conserved and a more comprehensive description of class II now becomes possible. Each monomer consists of an active site strongly resembling that of the aspartyl and seryl enzymes, a C-terminal anticodon recognition domain of 100 residues and a third domain unusually inserted between motifs 1 and 2 almost certainly interacting with the acceptor arm of tRNA(Gly). The C-terminal domain has a novel five-stranded parallel-antiparallel beta-sheet structure with three surrounding helices. The active site residues most probably responsible for substrate recognition, in particular in the Gly binding pocket, can be identified by inference from aspartyl-tRNA synthetase due to the conserved nature of the class II active site. Images PMID:7556056

  8. Leucyl-tRNA synthetase: double duty in amino acid sensing.

    PubMed

    Durán, Raúl V; Hall, Michael N

    2012-08-01

    The cellular response to amino acids is controlled at the molecular level by TORC1. While many of the elements that participate in TORC1 signaling are known, we still have no clear idea how cells sense amino acids. Two recent studies found that leucyl-tRNA synthetase (LRS) is a leucine sensor for TORC1, in both yeast and mammalian cells.

  9. Draft Genome Sequences of Five Novel Polyketide Synthetase-Containing Mouse Escherichia coli Strains

    PubMed Central

    Mannion, Anthony; Shen, Zeli; Feng, Yan; Garcia, Alexis

    2016-01-01

    We report herein the draft genomes of five novel Escherichia coli strains isolated from surveillance and experimental mice housed at MIT and the Whitehead Institute and describe their genomic characteristics in context with the polyketide synthetase (PKS)-containing pathogenic E. coli strains NC101, IHE3034, and A192PP.

  10. A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases

    PubMed Central

    Park, Byung Sun; Yeo, Seung Geun; Jung, Junyang; Jeong, Na Young

    2015-01-01

    Aminoacyl-tRNA synthetases (AminoARSs) are essential enzymes that perform the first step of protein synthesis. Beyond their original roles, AminoARSs possess non-canonical functions, such as cell cycle regulation and signal transduction. Therefore, AminoARSs represent a powerful pharmaceutical target if their non-canonical functions can be controlled. Using AminoARSs-specific primers, we screened mRNA expression in the spinal cord dorsal horn of rats with peripheral nerve injury created by sciatic nerve axotomy. Of 20 AminoARSs, we found that phenylalanyl-tRNA synthetase beta chain (FARSB), isoleucyl-tRNA synthetase (IARS) and methionyl-tRNA synthetase (MARS) mRNA expression was increased in spinal dorsal horn neurons on the injured side, but not in glial cells. These findings suggest the possibility that FARSB, IARS and MARS, as a neurotransmitter, may transfer abnormal sensory signals after peripheral nerve damage and become a new target for drug treatment. PMID:26692865

  11. Molecular cloning and primary structure of the Escherichia coli methionyl-tRNA synthetase gene.

    PubMed Central

    Dardel, F; Fayat, G; Blanquet, S

    1984-01-01

    The intact metG gene was cloned in plasmid pBR322 from an F32 episomal gene library by complementation of a structural mutant, metG83. The Escherichia coli strain transformed with this plasmid (pX1) overproduced methionyl-tRNA synthetase 40-fold. Maxicell analysis showed that three major polypeptides with MrS of 76,000, 37,000, and 29,000 were expressed from pX1. The polypeptide with an Mr of 76,000 was identified as the product of metG on the basis of immunological studies and was indistinguishable from purified methionyl-tRNA synthetase. In addition, DNA-DNA hybridization studies demonstrated that the metG regions were homologous on the E. coli chromosome and on the F32 episome. DNA sequencing of 642 nucleotides was performed. It completes the partial metG sequence already published (D. G. Barker, J. P. Ebel, R. Jakes, and C. J. Bruton, Eur. J. Biochem. 127:449-451, 1982). Examination of the deduced primary structure of methionyl-tRNA synthetase excludes the occurrence of any significant repeated sequences. Finally, mapping of mutation metG83 by complementation experiments strongly suggests that the central part of methionyl-tRNA synthetase is involved in methionine recognition. This observation is discussed in the light of the known three-dimensional crystallographic structure. Images PMID:6094501

  12. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  13. A NONSTEADY STATE MODEL FOR THE TIGHT-BINDING INHIBITION OF THYMIDYLATE SYNTHETASE BY 5-FLUOROURACIL

    EPA Science Inventory

    5-Fluorouracil (5_FU) is a widely used chemotherapeutic drug and tratogen that was chosen as a prototypic toxicant to contruct a biologically based dose-resonse (BBDR) model (Setzer et. al., 2001). Part of the BBDR model simulates the inhibition of thymidylate synthetase (TS), a...

  14. Activation of chitin synthetase in permeabilized cells of a Saccharomyces cerevisiae mutant lacking proteinase B.

    PubMed Central

    Fernandez, M P; Correa, J U; Cabib, E

    1982-01-01

    Digitonin treatment at 30 degrees C of a Saccharomyces cerevisiae mutant lacking proteinase B permeabilized the cells and caused rapid and extensive activation of chitin synthetase in situ. The same result was obtained with a mutant generally defective in vacuolar proteases. By lowering the temperature and using different permeabilization procedures, we showed that increases in permeability and activation are distinct processes. Activation was inhibited by the protease inhibitors antipain and leupeptin, but by pepstatin or chymostatin. Metal chelators were also inhibitory, and their effect was reversed by the addition of Ca2+ but not by Mg2+. Antipain added together with Ca2+ after incubation of the cells in the presence of a chelating agent prevented reversal of inhibition, a result that was interpreted as indicating that antipain acts either on the same step affected by Ca2+ or on a subsequent step. Efforts to obtain activation in cell-free extracts were unsuccessful, but it was possible to extract the synthetase, once activated, by breaking permeabilized cells with glass beads. Treatment of the cell-free extracts with trypsin led not only to increased activity of chitin synthetase, but also to a change in the pH-activity curve and a diminished requirement by the enzyme for free N-acetylglucosamine. These observations suggest that the modification undergone by the synthetase during endogenous activation is different from that brought about by trypsin treatment. Images PMID:6216245

  15. Nucleotide synthetase ribozymes may have emerged first in the RNA world

    PubMed Central

    Ma, Wentao; Yu, Chunwu; Zhang, Wentao; Hu, Jiming

    2007-01-01

    Though the “RNA world” hypothesis has gained a central role in ideas concerning the origin of life, the scenario concerning its emergence remains uncertain. It has been speculated that the first scene may have been the emergence of a template-dependent RNA synthetase ribozyme, which catalyzed its own replication: thus, “RNA replicase.” However, the speculation remains uncertain, primarily because of the large sequence length requirement of such a replicase and the lack of a convincing mechanism to ensure its self-favoring features. Instead, we propose a nucleotide synthetase ribozyme as an alternative candidate, especially considering recent experimental evidence suggesting the possibility of effective nonenzymatic template-directed synthesis of RNA. A computer simulation was conducted to support our proposal. The conditions for the emergence of the nucleotide synthetase ribozyme are discussed, based on dynamic analysis on a computer. We suggest the template-dependent RNA synthetase ribozyme emerged later, perhaps after the emergence of protocells. PMID:17878321

  16. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

    PubMed Central

    Jiménez, Alberto; Santos, María A; Revuelta, José L

    2008-01-01

    Background Phosphoribosyl pyrophosphate (PRPP) is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability. Results Here we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C). We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains. Conclusion It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii. PMID:18782443

  17. Role of Jo-1 in the Immunopathogenesis of the Anti-synthetase Syndrome.

    PubMed

    Ascherman, Dana P

    2015-09-01

    Histidyl-tRNA synthetase (HRS = Jo-1) represents a key autoantibody target in the anti-synthetase syndrome that is marked by myositis as well as extra-muscular organ complications including interstitial lung disease (ILD). Over the last 25 years, a wealth of clinical, epidemiological, genetic, and experimental data have collectively supported a role for Jo-1 in mediating deleterious cell-mediated, adaptive immune responses contributing to the disease phenotype of the anti-synthetase syndrome. Complementing these studies, more recent work suggests that unique, non-enzymatic functional properties of Jo-1 also endow this antigen with the capacity to activate components of the innate immune system, particularly cell surface as well as endosomal Toll-like receptors and their downstream signaling pathways. Combining these facets of Jo-1-mediated immunity now supports a more integrated model of disease pathogenesis that should lead to improved therapeutic targeting in the anti-synthetase syndrome and related subsets of idiopathic inflammatory myopathy.

  18. Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase.

    PubMed

    Hacker, C; Glinski, M; Hornbogen, T; Doller, A; Zocher, R

    2000-10-01

    N-Methylcyclopeptides like cyclosporins and enniatins are synthesized by multifunctional enzymes representing hybrid systems of peptide synthetases and S-adenosyl-l-methionine (AdoMet)-dependent N-methyltransferases. The latter constitute a new family of N-methyltransferases sharing high homology within procaryotes and eucaryotes. Here we describe the mutational analysis of the N-methyltransferase domain of enniatin synthetase from Fusarium scirpi to gain insight into the assembly of the AdoMet-binding site. The role of four conserved motifs (I, (2085)VLEIGTGSGMIL; II/Y, (2105)SYVGLDPS; IV, (2152)DLVVFNSVVQYFTPPEYL; and V, (2194)ATNGHFLAARA) in cofactor binding as measured by photolabeling was studied. Deletion of the first 21 N-terminal amino acid residues of the N-methyltransferase domain did not affect AdoMet binding. Further shortening close to motif I resulted in loss of binding activity. Truncation of 38 amino acids from the C terminus and also internal deletions containing motif V led to complete loss of AdoMet-binding activity. Point mutations converting the conserved Tyr(223) (corresponding to position 2106 in enniatin synthetase) in motif II/Y (close to motif I) into Val, Ala, and Ser, respectively, strongly diminished AdoMet binding, whereas conversion of this residue to Phe restored AdoMet-binding activity to approximately 70%, indicating that Tyr(223) is important for AdoMet binding and that the aromatic Tyr(223) may be crucial for AdoMet binding in N-methylpeptide synthetases.

  19. Functional analysis of a pyoverdine synthetase from Pseudomonas sp. MIS38.

    PubMed

    Lim, Siew Ping; Roongsawang, Niran; Washio, Kenji; Morikawa, Masaaki

    2007-08-01

    Fluorescent Pseudomonas sp. MIS38 produces a cyclic lipopeptide, arthrofactin. Arthrofactin is synthesized by a unique nonribosomal peptide synthetase (NRPS) with dual C/E-domains. In this study, another class of cyclic peptide, pyoverdine, was isolated from MIS38, viz., Pvd38. The main fraction of Pvd38 had an m/z value of 1,064.57 and contained Ala, Glu, Gly, (OHOrn), Ser, and Thr at a ratio of 2:1:1:(1):1:1 in the peptide part, suggesting a new structure compound. A gene encoding NRPS for the chromophore part of Pvd38 was identified, and we found that it contained a conventional E-domain. Gene disruption completely impaired the production of Pvd38, demonstrating that the synthetase is functional. This observation allows us to conclude that different NRPS systems with dual C/E-domains (in arthrofactin synthetase) and a conventional E-domain (in pyoverdine synthetase) are both functional in MIS38. PMID:17690457

  20. Effects of univalent cations on the activity of particulate starch synthetase.

    PubMed

    Nitsos, R E; Evans, H J

    1969-09-01

    An investigation was made to determine the univalent cation requirements of starch synthetase from a variety of plant species of economic importance. The particulate enzyme from sweet corn was shown to have an absolute requirement for potassium, with the optimum activation occurring at 0.05 M KCl. Rubidium, cesium, and ammonium were 80% as effective as potassium while sodium and lithium were respectively 21% and 8% as effective as potassium. The K(A) for potassium was determined to be 6 mM. In the case of the particulate starch synthetase from wheat, bush beans, field corn, soybeans, peas, or potatoes, considerable stimulation of enzyme activity was obtained by the addition of potassium to the reaction mixture. In these studies, low enzyme activity was observed in the absence of added potassium, but the content of endogenous univalent cations in the reactions may be sufficient to account for the activities observed. Anions of various types had no effect on starch synthetase activity. Divalent cations produced slight activation in the presence or absence of potassium. All efforts to show a potassium requirement for glycogen synthetase from rat liver have been negative.

  1. Asparagine Synthesis in Pea Leaves, and the Occurrence of an Asparagine Synthetase Inhibitor 1

    PubMed Central

    Joy, Kenneth W.; Ireland, Robert J.; Lea, Peter J.

    1983-01-01

    Asparagine is present in the mature leaves of young pea (Pisum sativum cv Little Marvel) seedlings, and is synthesized in detached shoots. This accumulation and synthesis is greatly enhanced by darkening. In detached control shoots, [14C]aspartate was metabolized predominantly to organic acids and, as other workers have shown, there was little labeling of asparagine (after 5 hours, 3.1% of metabolized label). Addition of the aminotransferase inhibitor aminooxyacetate decreased the flow of aspartate carbon to organic acids and enhanced (about 3-fold) the labeling of asparagine. The same treatment applied to darkened shoots resulted in a substantial conversion of [14C]aspartate to asparagine, over 10-fold greater than in control shoots (66% of metabolized label), suggesting that aspartate is the normal precursor of asparagine. Only traces of glutamine-dependent asparagine synthetase activity could be detected in pea leaf or root extracts; activity was not enhanced by sulfhydryl reagents, oxidizing conditions, or protease inhibitors. Asparagine synthetase is readily extracted from lupin cotyledons, but yield was greatly reduced by extraction in the presence of pea leaf tissue; pea leaf homogenates contained an inhibitor which produced over 95% inhibition of an asparagine synthetase preparation from lupin cotyledons. The inhibitor was heat stable, with a low molecular weight. Presence of an inhibitor may prevent detection of asparagine synthetase in pea extracts and in Asparagus, where a cyanide-dependent pathway has been proposed to account for asparagine synthesis: an inhibitor with similar properties was present in Asparagus shoot tissue. PMID:16663168

  2. Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.

    PubMed

    Malhotra, K T; Malhotra, K; Lubin, B H; Kuypers, F A

    1999-11-15

    Full-length cDNA species encoding two forms of acyl-CoA synthetase from a K-562 human erythroleukaemic cell line were cloned, sequenced and expressed. The first form, named long-chain acyl-CoA synthetase 5 (LACS5), was found to be a novel, unreported, human acyl-CoA synthetase with high similarity to rat brain ACS2 (91% identical). The second form (66% identical with LACS5) was 97% identical with human liver LACS1. The LACS5 gene encodes a highly expressed 2.9 kb mRNA transcript in human haemopoietic stem cells from cord blood, bone marrow, reticulocytes and fetal blood cells derived from fetal liver. An additional 6.3 kb transcript is also found in these erythrocyte precursors; 2.9 and 9.6 kb transcripts of LACS5 are found in human brain, but transcripts are virtually absent from human heart, kidney, liver, lung, pancreas, spleen and skeletal muscle. The 78 kDa expressed LACS5 protein used the long-chain fatty acids palmitic acid, oleic acid and arachidonic acid as substrates. Antibodies directed against LACS5 cross-reacted with erythrocyte membranes. We conclude that early erythrocyte precursors express at least two different forms of acyl-CoA synthetase and that LACS5 is present in mature erythrocyte plasma membranes.

  3. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes.

    PubMed

    da Silva, Robin; Levillain, Oliver; Brosnan, John T; Araneda, Silvia; Brosnan, Margaret E

    2013-05-01

    There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population. PMID:23656379

  4. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes.

    PubMed

    da Silva, Robin; Levillain, Oliver; Brosnan, John T; Araneda, Silvia; Brosnan, Margaret E

    2013-05-01

    There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population.

  5. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  6. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  7. The effect of glial glutamine synthetase inhibition on recognition and temporal memories in the rat.

    PubMed

    Kant, Deepika; Tripathi, Shweta; Qureshi, Munazah F; Tripathi, Shweta; Pandey, Swati; Singh, Gunjan; Kumar, Tankesh; Mir, Fayaz A; Jha, Sushil K

    2014-02-01

    The glutamate neurotransmitter is intrinsically involved in learning and memory. Glial glutamine synthetase enzyme synthesizes glutamine, which helps maintain the optimal neuronal glutamate level. However, the role of glutamine synthetase in learning and memory remains unclear. Using associative trace learning task, we investigated the effects of methionine sulfoximine (MSO) (glutamine synthetase inhibitor) on recognition and temporal memories. MSO and vehicle were injected (i.p.) three hours before training in separate groups of male Wistar rats (n=11). Animals were trained to obtain fruit juice after following a set of sequential events. Initially, house-light was presented for 15s followed by 5s trace interval. Thereafter, juice was given for 20s followed by 20s inter-presentation interval. A total of 75 presentations were made over five sessions during the training and testing periods. The average number of head entries to obtain juice per session and during individual phases at different time intervals was accounted as an outcome measure of recognition and temporal memories. The total head entries in MSO and vehicle treated animals were comparable on training and testing days. However, it was 174.90% (p=0.08), 270.61% (p<0.05), 143.20% (p<0.05) more on training day and 270.33% (p<0.05), 157.94% (p<0.05), 170.42% (p<0.05) more on testing day, during the house-light, trace-interval and inter-presentation interval phases in MSO animals. Glutamine synthetase inhibition did not induce recognition memory deficit, while temporal memory was altered, suggesting that glutamine synthetase modulates some aspects of mnemonic processes.

  8. Effect of treatment on erythrocyte phosphoribosyl pyrophosphate synthetase and glutathione reductase activity in patients with primary gout.

    PubMed Central

    Braven, J; Hardwell, T R; Hickling, P; Whittaker, M

    1986-01-01

    The activities of erythrocyte phosphoribosyl pyrophosphate (PRPP) synthetase and glutathione reductase (GTR) were studied in 26 patients with primary gout who were receiving no treatment or treatment with either allopurinol or azapropazone, and compared with the activity in a group of healthy controls. The activity of PRPP synthetase was significantly higher in the gout group and was not influenced by either drug. No significant difference in the activity of GTR was observed. The failure of either drug to suppress the increased activity of PRPP synthetase associated with gout is discussed. PMID:3024593

  9. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  10. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.

    PubMed

    Dutta, Saheb; Choudhury, Kaberi; Banik, Sindrila Dutta; Nandi, Nilashis

    2014-03-01

    The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the

  11. Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer

    NASA Astrophysics Data System (ADS)

    Elrefai, Ahmed L.; Sasada, Ichiro

    2015-05-01

    A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.

  12. Variability in GRB light curves: Introducing Orthogonal Matching Pursuit

    NASA Astrophysics Data System (ADS)

    Dereli, Husne; Bégué, Damien; Ryde, Felix

    2016-07-01

    Constraining the variability of GRBs is important as it is one of the few keys to estimate many unknown parameters, such as the emission radius, the Lorentz factor, the size of the progenitor. In this work, we introduced the Orthogonal Matching Pursuit (OMP) method to study GRB light curves and to compute the minimum time variability of GRBs. Commonly used in medical sciences, this method reconstructs a signal by choosing among predefined functional shapes. We will discuss the implementation of the code, and compare its performances with those of other dedicated methods (Haar wavelet analysis, peak finding algorithm and step wise filter correlation).

  13. Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer

    SciTech Connect

    Elrefai, Ahmed L. Sasada, Ichiro

    2015-05-07

    A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.

  14. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  15. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    NASA Technical Reports Server (NTRS)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  16. On the dimensions of oscillator algebras induced by orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Honnouvo, G.; Thirulogasanthar, K.

    2014-09-01

    There is a generalized oscillator algebra associated with every class of orthogonal polynomials lbrace Ψ _n(x)rbrace _{n = 0}^{infty }, on the real line, satisfying a three term recurrence relation xΨn(x) = bnΨn+1(x) + bn-1Ψn-1(x), Ψ0(x) = 1, b-1 = 0. This note presents necessary and sufficient conditions on bn for such algebras to be of finite dimension. As examples, we discuss the dimensions of oscillator algebras associated with Hermite, Legendre, and Gegenbauer polynomials. Some remarks on the dimensions of oscillator algebras associated with multi-boson systems are also presented.

  17. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    SciTech Connect

    Teodorescu, Razvan

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.

  18. Conditioning Analysis of Incomplete Cholesky Factorizations with Orthogonal Dropping

    SciTech Connect

    Napov, Artem

    2013-08-01

    The analysis of preconditioners based on incomplete Cholesky factorization in which the neglected (dropped) components are orthogonal to the approximations being kept is presented. General estimate for the condition number of the preconditioned system is given which only depends on the accuracy of individual approximations. The estimate is further improved if, for instance, only the newly computed rows of the factor are modified during each approximation step. In this latter case it is further shown to be sharp. The analysis is illustrated with some existing factorizations in the context of discretized elliptic partial differential equations.

  19. Dendron avidity platforms with orthogonal focal point coupling site

    NASA Astrophysics Data System (ADS)

    McNerny, Daniel Quinn

    This thesis explores the design and synthesis of bifunctional or modular platforms from poly(amidoamine) (PAMAM) dendrons. PAMAM dendrons with an orthogonal focal point are evaluated, testing several click chemistry reactions for high conversion and mild conditions. The orthogonal reaction chemistry used at the dendron focal point gives a precise 1:1 ratio of the attachment of multiple functionalities to a small molecular weight, chemically stable high avidity molecule. In the first component of the thesis, dendrons were synthesized with c(RGDyK) peptide on the surface to create a scaffold for cellular targeting and multivalent binding. Binary dendron-RGD conjugates were synthesized with a single imaging agent, therapeutic drug, or additional functionalized dendron at the focal point after a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction. The targeted-dendron platform was shown to specifically target alphaVbeta3 integrin expressing human umbilical vein endothelial cells (HUVEC) and human glioblastoma cells (U87MG) in vitro via flow cytometry. Specific targeting of the dendron-RGD platform was further confirmed by confocal microscopy. Biological activity of the targeted drug conjugate was confirmed via XTT assay. The remainder of the thesis explores click chemistry reactions that do not require a metal catalyst, which may cause undesired toxicity for some biological applications. Thiol-based click chemistry, specifically the thiol-ene and thiol-yne reactions, is explored on dendron platforms. The thiol click reactions provide an improved efficiency, compared to CuAAC, by reaching quantitative conversion of the focal point in most cases. The thiol click reactions suffer from some setbacks: the need for a thermal or photoinitiator may prevent the conjugation of some functional ligands and the thiol chemistry is more prone to side reactions. Finally, strain-promoted alkyne-azide cycloadditions are examined. The ring-strain click chemistry

  20. Preparation of the multienzyme system gramicidin S-synthetase 2 with an aqueous three-phase system.

    PubMed

    Kirchner, A; Simonis, M; von Döhren, H

    1987-06-19

    The distribution of gramicidin S-synthetase activity from disrupted cells suspended in aqueous two- and three-phase systems was investigated. An optimized three-phase system containing 5% dextran, 8% Ficoll, 11% PEG and 6.7% disrupted cells was found to be effective in extracting gramicidin S-synthetase activity. The activity yield achieved was higher in comparison to other preparation methods, and the subsequent purification steps were greatly facilitated. The time needed for the preparation of the labile gramicidin S-synthetase was considerably reduced. The combination of the aqueous phase extraction with chromatographic methods yielded 19 mg gramicidin S-synthetase 2 in essentially pure form from 30 g (wet weight) of cells.

  1. Effects of experimental hypo- and hyperthyroidism on hepatic long-chain fatty acyl-CoA synthetase and hydrolase.

    PubMed

    Dang, A Q; Faas, F H; Carter, W J

    1989-07-01

    The effects of T3 treatment and thyroidectomy on rat liver microsomal long-chain fatty acyl-CoA (LCFA-CoA) synthetase and LCFA-CoA hydrolase activities were determined. Hyperthyroid rats had a 36-42% decrease in LCFA-CoA synthetase with no change in hydrolase activity. This may contribute to the redirection of fatty acids from esterification to oxidation reactions in hyperthyroidism. Thyroidectomized rats had a 40-44% decrease in synthetase and a 27-42% decrease in LCFA-CoA hydrolase activity. The decrease in both LCFA-CoA synthetase and hydrolase activities in hypothyroidism may indicate that the LCFA-CoA turnover in this futile cycle is decreased in the liver.

  2. Peptides from aminoacyl-tRNA synthetases can cure the defects due to mutations in mt tRNA genes.

    PubMed

    Francisci, Silvia; Montanari, Arianna; De Luca, Cristina; Frontali, Laura

    2011-11-01

    Recent results from several laboratories have confirmed that human and yeast leucyl- and valyl-tRNA synthetases can rescue the respiratory defects due to mutations in mitochondrial tRNA genes. In this report we show that this effect cannot be ascribed to the catalytic activity per se and that isolated domains of aminoacyl-tRNA synthetases and even short peptides thereof have suppressing effects.

  3. Orthogonal Cherenkov sound in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2015-06-01

    Conventionally the Cherenkov sound is governed by orbital degrees of freedom and is excited by supersonic particles. Additionally, it usually has a forward nature with a conic geometry known as the Cherenkov cone whose axis is oriented along the supersonic particle motion. Here we predict Cherenkov sound of a unique nature entirely resulting from the electronic spin degree of freedom and demonstrate a fundamentally distinct Cherenkov effect originating from essentially subsonic electrons in two-dimensional gases with both Bychkov-Rashba and Dresselhaus spin-orbit interactions. Specifically, we show that the axis of the conventional forward Cherenkov cone gets a nontrivial quarter-turn and at the same time the sound distribution strongly localizes around this rotated axis being now orthogonal to the subsonic particle motion. Apart from its fundamentally appealing nature, the orthogonal Cherenkov sound could have applications in planar semiconductor technology combining spin and acoustic phenomena to develop, e.g., acoustic amplifiers or sound sources with a flexible spin dependent orientation of the sound propagation.

  4. Supervised orthogonal discriminant subspace projects learning for face recognition.

    PubMed

    Chen, Yu; Xu, Xiao-Hong

    2014-02-01

    In this paper, a new linear dimension reduction method called supervised orthogonal discriminant subspace projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix that describes the relationship between the data points is first built. And in order to model the manifold structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix, the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood structure can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint into a graph-based maximum margin analysis, seeking to find a projection that maximizes the difference, rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale face database B and FERET face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of SODSP.

  5. Texel-based image classification with orthogonal bases

    NASA Astrophysics Data System (ADS)

    Carbajal-Degante, Erik; Nava, Rodrigo; Olveres, Jimena; Escalante-Ramírez, Boris; Kybic, Jan

    2016-04-01

    Periodic variations in patterns within a group of pixels provide important information about the surface of interest and can be used to identify objects or regions. Hence, a proper analysis can be applied to extract particular features according to some specific image properties. Recently, texture analysis using orthogonal polynomials has gained attention since polynomials characterize the pseudo-periodic behavior of textures through the projection of the pattern of interest over a group of kernel functions. However, the maximum polynomial order is often linked to the size of the texture, which implies in many cases, a complex calculation and introduces instability in higher orders leading to computational errors. In this paper, we address this issue and explore a pre-processing stage to compute the optimal size of the window of analysis called "texel." We propose Haralick-based metrics to find the main oscillation period, such that, it represents the fundamental texture and captures the minimum information, which is sufficient for classification tasks. This procedure avoids the computation of large polynomials and reduces substantially the feature space with small classification errors. Our proposal is also compared against different fixed-size windows. We also show similarities between full-image representations and the ones based on texels in terms of visual structures and feature vectors using two different orthogonal bases: Tchebichef and Hermite polynomials. Finally, we assess the performance of the proposal using well-known texture databases found in the literature.

  6. Improved analytical model for residual stress prediction in orthogonal cutting

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxu; Li, Bin; Xiong, Liangshan

    2014-09-01

    The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volumeconstancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.

  7. SpyAvidin Hubs Enable Precise and Ultrastable Orthogonal Nanoassembly

    PubMed Central

    2014-01-01

    The capture of biotin by streptavidin is an inspiration for supramolecular chemistry and a central tool for biological chemistry and nanotechnology, because of the rapid and exceptionally stable interaction. However, there is no robust orthogonal interaction to this hub, limiting the size and complexity of molecular assemblies that can be created. Here we combined traptavidin (a streptavidin variant maximizing biotin binding strength) with an orthogonal irreversible interaction. SpyTag is a peptide engineered to form a spontaneous isopeptide bond to its protein partner SpyCatcher. SpyTag or SpyCatcher was successfully fused to the C-terminus of Dead streptavidin subunits. We were able to generate chimeric tetramers with n (0 ≤ n ≤ 4) biotin binding sites and 4-n SpyTag or SpyCatcher binding sites. Chimeric SpyAvidin tetramers bound precise numbers of ligands fused to biotin or SpyTag/SpyCatcher. Mixing chimeric tetramers enabled assembly of SpyAvidin octamers (8 subunits) or eicosamers (20 subunits). We validated assemblies using electrophoresis and native mass spectrometry. Eicosameric SpyAvidin was used to cluster trimeric major histocompatibility complex (MHC) class I:β2-microglobulin:peptide complexes, generating an assembly with up to 56 components. MHC eicosamers surpassed the conventional MHC tetramers in acting as a powerful stimulus to T cell signaling. Combining ultrastable noncovalent with irreversible covalent interaction, SpyAvidins enable a simple route to create robust nanoarchitectures. PMID:25111182

  8. Xylonucleic acid: synthesis, structure, and orthogonal pairing properties

    PubMed Central

    Maiti, Mohitosh; Maiti, Munmun; Knies, Christine; Dumbre, Shrinivas; Lescrinier, Eveline; Rosemeyer, Helmut; Ceulemans, Arnout; Herdewijn, Piet

    2015-01-01

    There is a common interest for studying xeno-nucleic acid systems in the fields of synthetic biology and the origin of life, in particular, those with an engineered backbone and possessing novel properties. Along this line, we have investigated xylonucleic acid (XyloNA) containing a potentially prebiotic xylose sugar (a 3′-epimer of ribose) in its backbone. Herein, we report for the first time the synthesis of four XyloNA nucleotide building blocks and the assembly of XyloNA oligonucleotides containing all the natural nucleobases. A detailed investigation of pairing and structural properties of XyloNAs in comparison to DNA/RNA has been performed by thermal UV-melting, CD, and solution state NMR spectroscopic studies. XyloNA has been shown to be an orthogonal self-pairing system which adopts a slightly right-handed extended helical geometry. Our study on one hand, provides understanding for superior structure-function (-pairing) properties of DNA/RNA over XyloNA for selection as an informational polymer in the prebiotic context, while on the other hand, finds potential of XyloNA as an orthogonal genetic system for application in synthetic biology. PMID:26175047

  9. Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices

    NASA Astrophysics Data System (ADS)

    Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.

    2014-03-01

    Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.

  10. Orthogonal Cherenkov sound in spin-orbit coupled systems

    PubMed Central

    Smirnov, Sergey

    2015-01-01

    Conventionally the Cherenkov sound is governed by orbital degrees of freedom and is excited by supersonic particles. Additionally, it usually has a forward nature with a conic geometry known as the Cherenkov cone whose axis is oriented along the supersonic particle motion. Here we predict Cherenkov sound of a unique nature entirely resulting from the electronic spin degree of freedom and demonstrate a fundamentally distinct Cherenkov effect originating from essentially subsonic electrons in two-dimensional gases with both Bychkov-Rashba and Dresselhaus spin-orbit interactions. Specifically, we show that the axis of the conventional forward Cherenkov cone gets a nontrivial quarter-turn and at the same time the sound distribution strongly localizes around this rotated axis being now orthogonal to the subsonic particle motion. Apart from its fundamentally appealing nature, the orthogonal Cherenkov sound could have applications in planar semiconductor technology combining spin and acoustic phenomena to develop, e.g., acoustic amplifiers or sound sources with a flexible spin dependent orientation of the sound propagation. PMID:26083355

  11. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  12. Orthogonal least squares learning algorithm for radial basis function networks.

    PubMed

    Chen, S; Cowan, C N; Grant, P M

    1991-01-01

    The radial basis function network offers a viable alternative to the two-layer neural network in many applications of signal processing. A common learning algorithm for radial basis function networks is based on first choosing randomly some data points as radial basis function centers and then using singular-value decomposition to solve for the weights of the network. Such a procedure has several drawbacks, and, in particular, an arbitrary selection of centers is clearly unsatisfactory. The authors propose an alternative learning procedure based on the orthogonal least-squares method. The procedure chooses radial basis function centers one by one in a rational way until an adequate network has been constructed. In the algorithm, each selected center maximizes the increment to the explained variance or energy of the desired output and does not suffer numerical ill-conditioning problems. The orthogonal least-squares learning strategy provides a simple and efficient means for fitting radial basis function networks. This is illustrated using examples taken from two different signal processing applications.

  13. Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases

    PubMed Central

    Sagredo, Sandra; Pirzer, Tobias; Aghebat Rafat, Ali; Goetzfried, Marisa A.; Moncalian, Gabriel

    2016-01-01

    Abstract DNA‐binding proteins are promising reagents for the sequence‐specific modification of DNA‐based nanostructures. Here, we investigate the utility of a series of relaxase proteins—TrwC, TraI, and MobA—for nanofunctionalization. Relaxases are involved in the conjugative transfer of plasmids between bacteria, and bind to their DNA target sites via a covalent phosphotyrosine linkage. We study the binding of the relaxases to two standard DNA origami structures—rodlike six‐helix bundles and flat rectangular origami sheets. We find highly orthogonal binding of the proteins with binding yields of 40–50 % per binding site, which is comparable to other functionalization methods. The yields differ for the two origami structures and also depend on the position of the binding sites. Due to their specificity for a single‐stranded DNA target, their orthogonality, and their binding properties, relaxases are a uniquely useful addition to the toolbox available for the modification of DNA nanostructures with proteins. PMID:26915475

  14. Orthogonal Ambipolar Semiconductor Nanostructures for Complementary Logic Gates.

    PubMed

    Huang, Weiguo; Markwart, Jens C; Briseno, Alejandro L; Hayward, Ryan C

    2016-09-27

    We report orthogonal ambipolar semiconductors that exhibit hole and electron transport in perpendicular directions based on aligned films of nanocrystalline "shish-kebabs" containing poly(3-hexylthiophene) (P3HT) and N,N'-di-n-octyl-3,4,9,10-perylenetetracarboxylic diimide (PDI) as p- and n-type components, respectively. Polarized optical microscopy, scanning electron microscopy, and X-ray diffraction measurements reveal a high degree of in-plane alignment. Relying on the orientation of interdigitated electrodes to enable efficient charge transport from either the respective p- or n-channel materials, we demonstrate semiconductor films with high anisotropy in the sign of charge carriers. Films of these aligned crystalline semiconductors were used to fabricate complementary inverter devices, which exhibited good switching behavior and a high noise margin of 80% of 1/2 Vdd. Moreover, complementary "NAND" and "NOR" logic gates were fabricated and found to exhibit excellent voltage transfer characteristics and low static power consumption. The ability to optimize the performance of these devices, simply by adjusting the solution concentrations of P3HT and PDI, makes this a simple and versatile method for preparing ambipolar organic semiconductor devices and high-performance logic gates. Further, we demonstrate that this method can also be applied to mixtures of PDI with another conjugated polymer, poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]) (PBTTT), with better hole transport characteristics than P3HT, opening the door to orthogonal ambipolar semiconductors with higher performance.

  15. Orthogonal Connectivity Factorization: Interpretable Decomposition of Variability in Correlation Matrices.

    PubMed

    Hyvärinen, Aapo; Hirayama, Jun-ichiro; Kiviniemi, Vesa; Kawanabe, Motoaki

    2016-03-01

    In many multivariate time series, the correlation structure is nonstationary, that is, it changes over time. The correlation structure may also change as a function of other cofactors, for example, the identity of the subject in biomedical data. A fundamental approach for the analysis of such data is to estimate the correlation structure (connectivities) separately in short time windows or for different subjects and use existing machine learning methods, such as principal component analysis (PCA), to summarize or visualize the changes in connectivity. However, the visualization of such a straightforward PCA is problematic because the ensuing connectivity patterns are much more complex objects than, say, spatial patterns. Here, we develop a new framework for analyzing variability in connectivities using the PCA approach as the starting point. First, we show how to analyze and visualize the principal components of connectivity matrices by a tailor-made rank-two matrix approximation in which we use the outer product of two orthogonal vectors. This leads to a new kind of transformation of eigenvectors that is particularly suited for this purpose and often enables interpretation of the principal component as connectivity between two groups of variables. Second, we show how to incorporate the orthogonality and the rank-two constraint in the estimation of PCA itself to improve the results. We further provide an interpretation of these methods in terms of estimation of a probabilistic generative model related to blind separation of dependent sources. Experiments on brain imaging data give very promising results. PMID:26735746

  16. [Inhibition of glutamine synthetase activity by biologically active derivatives of glutamic acid].

    PubMed

    Firsova, N A; Selivanova, K M; Alekseeva, L V; Evstigneeva, Z G

    1986-05-01

    The inhibition of activity of glutamine synthetase from Chlorella and porcine brain by 4-hydroxy-D-4-fluoro-D,L- and 4-amino-D,L-glutamic acids diastereoisomers was studied. Each compound was shown to exert the same inhibiting effect on glutamine synthetase from both sources. In case of threo-4-hydroxy-D-glutamic acid the inhibition of the Chlorella enzyme was of a competitive and of a completely mixed type. The enzyme inhibition by 4-fluoro-D, L-glutamic acids seemed to be of a completely non-competitive type. The Ki values for all inhibition reactions were determined. A comparison of biochemical parameters and biological activity revealed that the most effective inhibitors of the enzyme exert a most potent antitumour and antiviral action.

  17. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    PubMed

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  18. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor

    PubMed Central

    Mirando, Adam C.; Fang, Pengfei; Williams, Tamara F.; Baldor, Linda C.; Howe, Alan K.; Ebert, Alicia M.; Wilkinson, Barrie; Lounsbury, Karen M.; Guo, Min; Francklyn, Christopher S.

    2015-01-01

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans. PMID:26271225

  19. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  20. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs.

    PubMed Central

    Zhang, Y; Meshnick, S R

    1991-01-01

    The Michaelis-Menten inhibitory constants (Kis) and the concentrations required for 50% inhibition of the Plasmodium falciparum dihydropteroate synthetase were determined for six sulfa drugs. These drugs inhibited the in vitro growth of P. falciparum (50% lethal concentration) at concentrations of 30 to 500 nM; these concentrations were 100 to 1,000 times lower than the concentrations required for 50% inhibition and Kis (6 to 500 microM). The uptake of p-aminobenzoic acid was not inhibited by the sulfa drugs. However, infected erythrocytes took up more labeled sulfamethoxazole than did uninfected erythrocytes. Thus, the concentration of sulfa drugs by malaria parasites may explain how sulfa drugs inhibit in vitro growth of parasites through the inhibition of dihydropteroate synthetase. PMID:2024960

  1. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    PubMed

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology. PMID:25310879

  2. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  3. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase.

    PubMed

    Pérez-Delgado, Carmen M; García-Calderón, Margarita; Márquez, Antonio J; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4(+) accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4(+) when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4(+). Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4(+) when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.

  4. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  5. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  6. What is the oligoadenylate synthetases-like protein and does it have therapeutic potential for influenza?

    PubMed Central

    Alcorn, John F.; Sarkar, Saumendra N.

    2015-01-01

    Besides its pandemic potential, seasonal influenza infection is associated with an estimated 250,000 to 500,000 deaths worldwide every year. Part of this virulence of influenza virus can be attributed to its ability to evade the host innate immune response. Here we discuss the possibility of using a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like protein, to combat influenza infections. PMID:25544107

  7. Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis.

    PubMed

    Niva, Cintia Carla; Lee, Jae Min; Myohara, Maroko

    2008-01-01

    Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4-5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61-71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion

  8. Tryptophan boost caused by senescence occurred independently of cytoplasmic glutamine synthetase.

    PubMed

    Park, Sangkyu; Lee, Kyungjin; Kang, Kiyoon; Kim, Young Soon; Lee, Sungbeom; Kweon, Soon-Jong; Back, Kyoungwhan

    2010-01-01

    We examined to determine whether senescence-induced tryptophan levels are positively associated with levels of glutamine synthetase (GS1), the initial enzyme in tryptophan biosynthesis. We generated transgenic rice plants in which GS1 was suppressed by RNA interference technology. The transgenic line showed a dramatic decrease in GS1 protein and glutamine content, but the levels of tryptophan and mRNA of the key tryptophan biosynthetic genes upon senescence were comparable to those of the wild type.

  9. Crystal structure of a human aminoacyl-tRNA synthetase cytokine.

    PubMed

    Yang, Xiang-Lei; Skene, Robert J; McRee, Duncan E; Schimmel, Paul

    2002-11-26

    The 20 aminoacyl-tRNA synthetases catalyze the first step of protein synthesis and establish the rules of the genetic code through aminoacylation reactions. Biological fragments of two human enzymes, tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, connect protein synthesis to cell-signaling pathways including angiogenesis. Alternative splicing or proteolysis produces these fragments. The proangiogenic N-terminal fragment mini-TyrRS has IL-8-like cytokine activity that, like other CXC cytokines, depends on a Glu-Leu-Arg motif. Point mutations in this motif abolish cytokine activity. The full-length native TyrRS lacks cytokine activity. No structure has been available for any mammalian tRNA synthetase that, in turn, might give insight into why mini-TyrRS and not TyrRS has cytokine activities. Here, the structure of human mini-TyrRS, which contains both the catalytic and the anticodon recognition domain, is reported to a resolution of 1.18 A. The critical Glu-Leu-Arg motif is located on an internal alpha-helix of the catalytic domain, where the guanidino side chain of R is part of a hydrogen-bonding network tethering the anticodon-recognition domain back to the catalytic site. Whereas the catalytic domains of the human and bacterial enzymes superimpose, the spatial disposition of the anticodon recognition domain relative to the catalytic domain is unique in mini-TyrRS relative to the bacterial orthologs. This unique orientation of the anticodon-recognition domain can explain why the fragment mini-TyrRS, and not full-length native TyrRS, is active in cytokine-signaling pathways. PMID:12427973

  10. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    SciTech Connect

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B; Schneider, Kai; Benkadda, S.; Farge, Marie

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.

  11. Three Dimensional Wind Speed and Flux Measurement over a Rain-fed Soybean Field Using Orthogonal and Non-orthogonal Sonic Anemometer Designs

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Suyker, A.; Burba, G. G.; Billesbach, D.

    2014-12-01

    The eddy covariance method for estimating fluxes of trace gases, energy and momentum in the constant flux layer above a plant canopy fundamentally relies on accurate measurements of the vertical wind speed. This wind speed is typically measured using a three dimensional ultrasonic anemometer. These anemometers incorporate designs with transducer sets that are aligned either orthogonally or non-orthogonally. Previous studies comparing the two designs suggest differences in measured 3D wind speed components, in particular vertical wind speed, from the non-orthogonal transducer relative to the orthogonal design. These differences, attributed to additional flow distortion caused by the non-orthogonal transducer arrangement, directly affect fluxes of trace gases, energy and momentum. A field experiment is being conducted over a rain-fed soybean field at the AmeriFlux site (US-Ne3) near Mead, Nebraska. In this study, ultrasonic anemometers featuring orthogonal transducer sets (ATI Vx Probe) and non-orthogonal transducer sets (Gill R3-100) collect high frequency wind vector and sonic temperature data. Sensible heat and momentum fluxes and other key sonic performance data are evaluated based on environmental parameters including wind speed, wind direction, temperature, and angle of attack. Preliminary field experiment results are presented.

  12. Differential inactivation of alfalfa nodule glutamine synthetases by tabtoxinine-. beta. -lactam. [Pseudomonas syringae

    SciTech Connect

    Knight, T.J.; Unkefer, P.J.

    1987-04-01

    The presence of the pathogen Pseudomonas syringae pv. tabaci within the rhizosphere of nodulated alfalfa plants results in an increase in N/sub 2/-fixation potential and growth, but a 40-50% decrease in nodule glutamine synthetase (GS) activity, as compared to nodulated control plants. Tabtoxinine-..beta..-Lactam an exocellular toxin produced by Pseudomonas syringae pv tabaci irreversibly inhibits glutamine synthetase. Partial purification of nodule GS by DEAE-cellulose chromatography reveals two enzyme forms are present (GS/sub n1/ and GS/sub n2/). In vitro inactivation of the two glutamine synthetases associated with the nodule indicates a differential sensitivity to T-..beta..-L. The nodule specific GS/sub n1/ is much less sensitive to T-..beta..-L than the GS/sub n2/ enzyme, which was found to coelute with the root enzyme (GS/sub r/). However, both GS/sub n1/ and GS/sub n2/ are rapidly inactivated by methionine sulfoximine, another irreversible inhibitor of GS.

  13. Examination of the mechanism of sucrose synthetase by positional isotope exchange.

    PubMed

    Singh, A N; Hester, L S; Raushel, F M

    1987-02-25

    The mechanism of the sucrose synthetase reaction has been probed by the technique of positional isotope exchange. [beta-18O2, alpha beta-18O]UDP-Glc has been synthesized starting from oxygen-18-labeled phosphate and the combined activities of carbamate kinase, hexokinase, phosphoglucomutase, and uridine diphosphoglucose pyrophosphorylase. The oxygen-18 at the alpha beta-bridge position of the labeled UDP-Glc has been shown to cause a 0.014 ppm upfield chemical shift in the 31P NMR spectrum of both the alpha- and beta-phosphorus atoms in UDP-Glc relative to the unlabeled compound. The chemical shift induced by each of the beta-nonbridge oxygen-18 atoms was 0.030 ppm. Incubation of [beta-18O2, alpha beta-18O]UDP-Glc with sucrose synthetase in the presence and absence of 2,5-anhydromannitol did not result in any significant exchange of an oxygen-18 from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. It can thus be concluded that either sucrose synthetase does not catalyze the cleavage of the scissile carbon-oxygen bond of UDP-Glc in the absence of fructose or, alternatively, the beta-phosphoryl group of the newly formed UDP is rotationally immobilized. PMID:2950088

  14. Examination of the mechanism of sucrose synthetase by positional isotope exchange

    SciTech Connect

    Singh, A.N.; Hester, L.S.; Raushel, F.M.

    1987-02-25

    The mechanism of the sucrose synthetase reaction has been probed by the technique of positional isotope exchange. (beta-/sup 18/O/sub 2/, alpha beta-/sup 18/O)UDP-Glc has been synthesized starting from oxygen-18-labeled phosphate and the combined activities of carbamate kinase, hexokinase, phosphoglucomutase, and uridine diphosphoglucose pyrophosphorylase. The oxygen-18 at the alpha beta-bridge position of the labeled UDP-Glc has been shown to cause a 0.014 ppm upfield chemical shift in the 31P NMR spectrum of both the alpha- and beta-phosphorus atoms in UDP-Glc relative to the unlabeled compound. The chemical shift induced by each of the beta-nonbridge oxygen-18 atoms was 0.030 ppm. Incubation of (beta-/sup 18/O/sub 2/, alpha beta-/sup 18/O)UDP-Glc with sucrose synthetase in the presence and absence of 2,5-anhydromannitol did not result in any significant exchange of an oxygen-18 from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. It can thus be concluded that either sucrose synthetase does not catalyze the cleavage of the scissile carbon-oxygen bond of UDP-Glc in the absence of fructose or, alternatively, the beta-phosphoryl group of the newly formed UDP is rotationally immobilized.

  15. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  16. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate.

  17. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate. PMID:27487822

  18. Substrate Specificity of the Nonribosomal Peptide Synthetase PvdD from Pseudomonas aeruginosa

    PubMed Central

    Ackerley, David F.; Caradoc-Davies, Tom T.; Lamont, Iain L.

    2003-01-01

    Pseudomonas aeruginosa PAO1 secretes a siderophore, pyoverdinePAO, which contains a short peptide attached to a dihydroxyquinoline moiety. Synthesis of this peptide is thought to be catalyzed by nonribosomal peptide synthetases, one of which is encoded by the pvdD gene. The first module of pvdD was overexpressed in Escherichia coli, and the protein product was purified. l-Threonine, one of the amino acid residues in pyoverdinePAO, was an effective substrate for the recombinant protein in ATP-PPi exchange assays, showing that PvdD has peptide synthetase activity. Other amino acids, including d-threonine, l-serine, and l-allo-threonine, were not effective substrates, indicating that PvdD has a high degree of substrate specificity. A three-dimensional modeling approach enabled us to identify amino acids that are likely to be critical in determining the substrate specificity of PvdD and to explore the likely basis of the high substrate selectivity. The approach described here may be useful for analysis of other peptide synthetases. PMID:12700264

  19. Periportal zonation of the cytosolic acetyl-CoA synthetase of male rat liver.

    PubMed

    Knudsen, C T; Immerdal, L; Grunnet, N; Quistorff, B

    1992-02-15

    Several important metabolic functions of the mammalian liver have been shown to be located in zones with respect to the complex microcirculation of the organ. The zonal distribution of the cytosolic component of the acetyl-CoA synthetase activity has been investigated using the dual-digitonin-pulse-perfusion technique, which allows highly zone-selective sampling of cytosol from the periportal and perivenous zone of rat liver. Approximately 80% of the cytosolic enzymes are eluted from the hepatocytes in the periportal and perivenous sub-zones affected by digitonin, while less than 1% of the glutamate dehydrogenase activity (a marker enzyme of the mitochondrial compartment) is eluted. A twofold higher activity of the cytosolic form of acetyl-CoA synthetase is found in the periportal zone compared to the perivenous zone in fed male rats. Following a fasting/refeeding transition, this activity gradient is abolished in a manner similar to that observed for the enzyme acetyl-CoA carboxylase. Since the latter enzyme is utilizing the product of acetyl-CoA synthetase, acetyl-CoA, the similarity in the observed regulation suggests a functional coupling between cytosolic acetate activation and fatty-acid synthesis.

  20. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase

    PubMed Central

    Kelly, M P; Jungbluth, A A; Wu, B-W; Bomalaski, J; Old, L J; Ritter, G

    2012-01-01

    Background: Some cancers have been shown to lack expression of argininosuccinate synthetase (ASS), an enzyme required for the synthesis of arginine and a possible biomarker of sensitivity to arginine deprivation. Arginine deiminase (ADI) is a microbial enzyme capable of efficiently depleting peripheral blood arginine. Methods: Argininosuccinate synthetase expression was assessed in human small cell lung cancer (SCLC) by immunohistochemistry (IHC), with expression also assessed in a panel of 10 human SCLC by qRT-PCR and western blot. Proliferation assays and analyses of apoptosis and autophagy assessed the effect of pegylated ADI (ADI-PEG20) in vitro. The in vivo efficacy of ADI-PEG20 was determined in mice bearing SCLC xenografts. Results: Approximately 45% of SCLC tumours and 50% of cell lines assessed were negative for ASS. Argininosuccinate synthetase-deficient SCLC cells demonstrated sensitivity to ADI-PEG20, which was associated with the induction of autophagy and caspase-independent cell death. Arginine deiminase-PEG20 treatment of ASS-negative SCLC xenografts caused significant, dose-dependent inhibition of tumour growth of both small and established tumours. Conclusion: These results suggest a role for ADI-PEG20 in the treatment of SCLC, and a clinical trial exploring this therapeutic approach in patients with ASS-negative SCLC by IHC has now been initiated. PMID:22134507

  1. (p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis.

    PubMed

    Zhu, Jiawen; Zhang, Tengfei; Su, Zhipeng; Li, Lu; Wang, Dong; Xiao, Ran; Teng, Muye; Tan, Meifang; Zhou, Rui

    2016-10-01

    (p)ppGpp-mediated stringent response is one of the main adaption mechanism in bacteria, and the ability to adapt to environment is linked to the pathogenesis of bacterial pathogens. In the zoonotic pathogen Streptococcus suis, there are two (p)ppGpp synthetases, RelA and RelQ. To investigate the regulatory functions of (p)ppGpp/(p)ppGpp synthetases on the pathogenesis of S. suis, the phenotypes of the [(p)ppGpp(0)] mutant ΔrelAΔrelQ and its parental strain were compared. Light and electron microscopy observation showed that the mutant strain had a longer chain-length than its parental strain. Disruption of relA and relQ led to decreased adhesive and invasive ability to HEp-2 cells, and increased sensitivity to the blood killing and phagocytosis. Mouse infection experiments showed that the mutant strain was attenuated and easier to be cleaned up in vivo. Quantitative reverse transcription PCR (qRT-PCR) analysis indicated that the expressions of virulence related genes involving in morphology and virulence were down-regulated in the mutant strain. Our study demonstrated that the (p)ppGpp synthetases or (p)ppGpp can regulate the pathogenesis of this important zoonotic pathogen.

  2. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis.

    PubMed

    Ojo, Kayode K; Ranade, Ranae M; Zhang, Zhongsheng; Dranow, David M; Myers, Janette B; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E; Davies, Douglas R; Lorimer, Donald; Boyle, Stephen M; Barrett, Lynn K; Buckner, Frederick S; Fan, Erkang; Van Voorhis, Wesley C

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  3. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue.

    PubMed

    Levine, R L

    1983-10-10

    Intracellular proteolytic degradation of glutamine synthetase occurs in two distinct steps in Escherichia coli (Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2120-2124). In the first step, a mixed function oxidation modifies the glutamine synthetase. The modified enzyme, which is catalytically inactive, becomes susceptible to proteolytic attack. In the second step, a protease specific for the modified enzyme catalyzes the actual proteolytic degradation. The oxidatively modified glutamine synthetase was studied to determine the chemical differences between it and the native enzyme. Only a single alteration was found; one of sixteen histidine residues/subunit was altered by the oxidative modification. The modification introduced a carbonyl group into the protein, permitting isolation of a stable dinitrophenylhydrazone. No other differences were detected between the native and modified proteins. Specifically, the cysteine, methionine, phenylalanine, tyrosine, and tryptophan contents were not altered. A number of other prokaryotic and eukaryotic enzymes are also susceptible to oxidative modification. This covalent modification may be important in intracellular proteolysis, in mammalian host defense systems, in prevention of autolysis, in aging processes, and in oxygen toxicity.

  4. Idiopathic Inflammatory Myopathies and the Anti-Synthetase Syndrome: A Comprehensive Review

    PubMed Central

    Mahler, Michael; Miller, Frederick W.; Fritzler, Marvin J.

    2014-01-01

    Autoantibodies are a hallmark in the diagnosis of many systemic autoimmune rheumatic diseases (SARD) including idiopathic inflammatory myopathies (IIM). Based on their specificity, autoantibodies in IIM are grouped into myositis specific (MSA) and myositis associated autoantibodies (MAA). Among the MSA, autoantibodies against aminoacyl-tRNA synthetases (ARS) represent the most common antibodies and can be detected in 25–35 % of patients. The presence of ARS and other autoantibodies have become a key feature for classification and diagnosis of IIM and are increasingly used to define clinically distinguishable IIM subsets. For example, anti-ARS autoantibodies are the key features of what has become known as anti-synthetase syndrome (aSS), characterized by multiple organ involvement, primarily interstitial lung disease, often accompanied by myositis, non-erosive arthritis, Raynaud’s phenomenon, fever, and “mechanic’s hands”. Autoantibodies directed to eight different ARS have been described: Jo-1 (histidyl), PL-7 (threonyl), PL-12 (alanyl), OJ (isoleucyl), EJ (glycyl), KS (asparaginyl), Zo (phenylalanyl) and Ha (tyrosyl). Each anti-ARS antibody seems to define a distinctive clinical phenotype. Although several research methods and commercial tests are available, routine testing for anti-ARS autoantibodies (other than anti-Jo-1/histidyl-tRNA synthetase) is not widely available, sometimes leading to delays in diagnosis and poor disease outcomes. PMID:24424190

  5. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.

    PubMed

    Wang, Xiaoyue; Wang, Guanglu; Li, Xinli; Fu, Jing; Chen, Tao; Wang, Zhiwen; Zhao, Xueming

    2016-08-10

    Adenylosuccinate synthetase (EC. 6.3.4.4) encoded by purA in Bacillus subtilis, catalyzing the first step of the conversion of IMP to AMP, plays an important role in flux distribution in the purine biosynthetic pathway. In this study, we described the use of site saturation mutagenesis to obtain a desired enzyme activity of adenylosuccinate synthetase and its application in flux regulation. Based on sequence alignment and structural modeling, a library of enzyme variants was created by a semi-rational evolution strategy in position Thr238 and Pro242. Other than purA deletion, the leaky mutation purA(P242N) partially reduced the flux towards AMP derived from IMP and increased the riboflavin synthesis precursor GTP, while also kept the requirement of ATP synthesis for cell growth. PurA(P242N) was introduced into an inosine-producing strain and resulted in an approximately 4.66-fold increase in inosine production, from 0.088±0.009g/L to 0.41±0.051g/L, in minimal medium without hypoxanthine accumulation. These results underline that the directed evolution of adenylosuccinate synthetase could tailor its activities and adjust metabolic flux. This mutation may provide a promising application in purine-based product accumulation, like inosine, guanosine and folate which are directly stemming from purine pathway in B. subtilis. PMID:27234879

  6. Beneficial consequences of a selective glutamine synthetase inhibitor in oats and legumes

    SciTech Connect

    Langston-Unkefer, P.J.; Knight, T.J.; Sengupta-Gopalan, C.

    1988-01-01

    We report on the effects of administering a unique glutamine synthetase inhibitor to cereals and N/sub 2/-fixing legumes. A bacterium (Pseudomonas syringae pv. tabaci) delivers this inhibitor to provide extended treatment periods; we inoculated the root systems of oat and legume plants with pv. tabaci to provide for delivery of this inhibitor to their root or root/nodule systems. Inoculation of legumes is accompanied by increased plant growth, total plant nitrogen, nodulation, and nitrogen fixation activity. Inoculation of the oats is accompanied by either of two results depending upon the genotype of the oat plant. One result is inhibition of plant growth followed by plant death as consequences of the loss of all of the glutamine synthetase activities in the plant and the subsequent accumulation of ammonia and cessation of nitrate uptake. The second and opposite result is observed in a small population of oats screened from a commercial cultivar and includes increased plant growth and leaf protein. The effects of this inhibitor can be beneficial when applied to appropriate plant material. In an attempt to effectively communicate these findings to the reader, we first introduce the inhibitor (a novel amino acid) and its bacterial delivery systems, the target of the inhibitor (glutamine synthetase-catalyzed ammonia assimilation), and the two different nitrogen economics in the legume and cereal plants used experimentally. The physiological, biochemical, and molecular genetic consequences of the inhibitor action in cereals and legumes, as we presently understand them, are then presented. 18 refs., 4 figs., 3 tabs.,

  7. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties.

    PubMed

    Li, Yajun; Wang, Meiling; Zhang, Fengxia; Xu, Yadong; Chen, Xiaohong; Qin, Xiaoliang; Wen, Xiaoxia

    2016-05-01

    Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments. PMID:26913793

  8. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties.

    PubMed

    Li, Yajun; Wang, Meiling; Zhang, Fengxia; Xu, Yadong; Chen, Xiaohong; Qin, Xiaoliang; Wen, Xiaoxia

    2016-05-01

    Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments.

  9. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  10. One method for calculating flux-MMF relationship of orthogonal-core

    SciTech Connect

    Tajima, Katsubumi; Kaga, Akio; Anazawa, Yoshihisa . Dept. of Electrical and Electronics Engineering); Ichinokura, Osamu . Dept. of Electrical Engineering)

    1993-11-01

    The orthogonal-core has various applications, e.g. as a variable inductor, a parametric transformer and a DC-AC converter. This paper describes one method for calculating the flux-MMF relationship of an orthogonal-core. The calculation is based on a 3-dimensional magnetic circuit model of the orthogonal-core. The model is derived by dividing the orthogonal-core, inclusive of the surrounding region, into elements comprising a 3-dimensional magnetic circuit. Using this model, the authors can compute the flux-MMF relationship of the orthogonal core with arbitrary dimensions from the B-H characteristic of the core material. The calculation method presented here is useful for optimum design of devices using an orthogonal-core.

  11. Density differences in embedding theory with external orbital orthogonality.

    PubMed

    Tamukong, Patrick K; Khait, Yuriy G; Hoffmann, Mark R

    2014-10-01

    First results on electron densities and energies for a number of molecular complexes with different interaction strengths (ranging from ca. 0.3 to 40 kcal/mol), obtained using our recently introduced DFT-in-DFT embedding equations (i.e., Kohn-Sham equations with constrained electron density (KSCED) and external orbital orthogonality (ext orth), KSCED(x, ext orth), where x denotes the single particle support: monomer (m); supermolecular (s); or extended monomer (e)) are compared with densities from supermolecular Kohn-Sham (KS)-DFT calculations and traditional DFT-in-DFT results. Because our methodology does not rely on error-prone potentials that are not present in supermolecular KS-DFT calculations, it allows DFT-in-DFT calculations to achieve much higher accuracy than previous protocols of DFT-in-DFT that employed such potentials. It is shown that whereas conventional DFT-in-DFT embedding theory leads to errors in the electron density at the boundary between subsystems, the situation is remedied when orbital orthogonality between subsystems (i.e., external orthogonality) is enforced. Our approach reproduces KS-DFT total energies at least to the seventh decimal place (and exactly at most geometries) for the tested systems. Potential energy curves (PECs) of the separation of some of the tested systems into fragments are calculated. PECs, obtained with the new equations, using the usual Kohn-Sham equations with constrained electron density and supermolecular basis expansion [KSCED(s, ext orth, v(T) = 0), where v(T) is the nonadditive kinetic potential] were found to be virtually identical to those from conventional KS-DFT; equilibrium distances and interaction energies were reproduced to all reported digits for both local density approximation (LDA) and generalized gradient approximation (GGA) functionals. As an additional approximation, an alternative one-particle space (to the common monomer or supermolecular spaces) in which KS orbitals of a subsystem are

  12. Ensemble forecast of typhoon generated by orthogonal conditional nonlinear optimal perturbations

    NASA Astrophysics Data System (ADS)

    Huo, Zhenhua; Duan, Wansuo; Zhou, Feifan

    2016-04-01

    Orthogonal conditional nonlinear optimal perturbations (CNOPs) are the initial perturbations that have the largest impact on the forecast results in orthogonal subspaces of the initial perturbation space. Previous studies demonstrate the successful application of orthogonal CNOPs in ensemble forecasting. And further analysis indicates that orthogonal CNOPs may be more adapt to the prediction of strong events, among which typhoon events occur in the tropical or subtropical areas where the diabatic physical processes is very important and has strong nonlinear behavior. For these reasons, this paper focuses on the application of orthogonal CNOPs in ensemble forecast of typhoon. In this study, orthogonal CNOPs, orthogonal singular vectors (SVs), bred vectors (BVs) and random perturbations (RPs) are applied for typhoon ensemble forecasts using MM5 model. The results show that, for typhoons Matsa in 2005 and Sepat in 2007, ensemble forecasts generated by orthogonal CNOPs greatly improve the control forecast, successfully predicts the landing location of Matsa, and gives the warning information of the landing of Sepat. In detail, for the ensemble mean associated with orthogonal CNOPs, the averaging track forecast error over 5 days is decreased by 45.58 km for Matsa and 87.8 km for Sepat, compared with control forecast. However, ensemble forecasts generated by other three methods could not successfully predict the landing location of Matsa and give the warning information of the landing of Sepat. Compared with orthogonal SVs, BVs and RPs, ensemble forecasts generated by orthogonal CNOPs corresponds to the largest ensemble spread, improves the control forecast at the largest extent, and best samples the distribution of initial analysis errors. All these results show that orthogonal CNOPs may provide another useful technique for ensemble forecast of typhoon.

  13. Antioxidant peptides from corn gluten meal: Orthogonal design evaluation.

    PubMed

    Zhou, Cunshan; Hu, Jiali; Ma, Haile; Yagoub, Abu ElGasim A; Yu, Xiaojie; Owusu, John; Ma, Haiyan; Qin, Xiaopei

    2015-11-15

    Protamex catalyzed corn gluten meal (CGM) hydrolysis peptides (CHP) were prepared. Orthogonal design L16 (4(5)) was used to optimize processing variables of CGM concentration, CGM heat pretreatment (121 °C) time, and enzymolysis pH, temperature, and time. Degree of hydrolysis (DH), undigested residue ratio, molecular weight (MW) distribution and DPPH radical inhibition were selected as analysis indicators. Optimum variables were CGM concentration of 18%, heat pretreatment time of 40 min, and enzymolysis pH, temperature and time of 7.5, 55 °C and 24h, respectively. Verification test showed that CHP IC50 for scavenging hydroxyl radical was the best and then followed by reducing power. Oligopeptides improved after hydrolysis at the expense of di- and tripeptides, suggesting formation of soluble aggregates from low MW peptides. The increase in the DH, oligopeptides, Alanyl-Tyrosine, and antioxidant free amino acids coincided with the improvement in the antioxidant activity of CHP. PMID:25977026

  14. Ultrasound vibrometry using orthogonal- frequency-based vibration pulses.

    PubMed

    Zheng, Yi; Yao, Aiping; Chen, Shigao; Urban, Matthew W; Lin, Haoming; Chen, Xin; Guo, Yanrong; Chen, Ke; Wang, Tianfu; Chen, Siping

    2013-11-01

    New vibration pulses are developed for shear wave generation in a tissue region with preferred spectral distributions for ultrasound vibrometry applications. The primary objective of this work is to increase the frequency range of detectable harmonics of the shear wave. The secondary objective is to reduce the required peak intensity of transmitted pulses that induce the vibrations and shear waves. Unlike the periodic binary vibration pulses, the new vibration pulses have multiple pulses in one fundamental period of the vibration. The pulses are generated from an orthogonal-frequency wave composed of several sinusoidal signals, the amplitudes of which increase with frequency to compensate for higher loss at higher frequency in tissues. The new method has been evaluated by studying the shear wave propagation in in vitro chicken and swine liver. The experimental results show that the new vibration pulses significantly increase tissue vibration with a reduced peak ultrasound intensity, compared with the binary vibration pulses.

  15. Non-coherent Receivers for Orthogonal Space-Time CPM

    NASA Astrophysics Data System (ADS)

    Pande, Tarkesh; Huh, Heon; Krogmeier, James; Love, David

    Continuous phase modulation (CPM) is a non-linear modulation technique whose power and bandwidth efficiency make it an attractive choice for mobile communication systems. Current research has focused on devising encoding rules for using CPM over multiple-input multiple-output (MIMO) systems in order to obtain the improved bit error rate (BER) and high data rates promised by MIMO technology. In this paper, optimal and suboptimal non-coherent receivers for a class of CPM signals called orthogonal space-time CPM (OST-CPM) are derived under a quasi-static fading channel assumption. The performance of these receivers is characterized and shown to achieve the same diversity order as that of the corresponding optimal coherent receiver.

  16. Regioselective chromatic orthogonality with light-activated metathesis catalysts.

    PubMed

    Levin, Efrat; Mavila, Sudheendran; Eivgi, Or; Tzur, Eyal; Lemcoff, N Gabriel

    2015-10-12

    The ability to selectively guide consecutive chemical processes towards a preferred pathway by using light of different frequencies is an appealing concept. Herein we describe the coupling of two photochemical reactions, one the photoisomerization and consequent activation of a sulfur-chelated latent olefin-metathesis catalyst at 350 nm, and the other the photocleavage of a silyl protecting group at 254 nm. Depending on the steric stress exerted by a photoremovable neighboring chemical substituent, we demonstrate the selective formation of either five- or six-membered-ring frameworks by light-triggered ring-closing metathesis. The orthogonality of these light-induced reactions allows the initiation of these processes independently and in interchangeable order, according to the wavelength of light used to promote them.

  17. Asymptotic formulae for the zeros of orthogonal polynomials

    SciTech Connect

    Badkov, V M

    2012-09-30

    Let p{sub n}(t) be an algebraic polynomial that is orthonormal with weight p(t) on the interval [-1, 1]. When p(t) is a perturbation (in certain limits) of the Chebyshev weight of the first kind, the zeros of the polynomial p{sub n}( cos {tau}) and the differences between pairs of (not necessarily consecutive) zeros are shown to satisfy asymptotic formulae as n{yields}{infinity}, which hold uniformly with respect to the indices of the zeros. Similar results are also obtained for perturbations of the Chebyshev weight of the second kind. First, some preliminary results on the asymptotic behaviour of the difference between two zeros of an orthogonal trigonometric polynomial, which are needed, are established. Bibliography: 15 titles.

  18. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  19. Calculation of turbulent reactive flows in general orthogonal coordinates

    NASA Astrophysics Data System (ADS)

    Lai, M. K. Y.

    1992-02-01

    The mathematical and numerical methodology for an extended and enhanced version of the TURCOM computer code, called TURCOM-BFC, is presented. This code solves the conservation equations of multi-component chemically reactive and turbulent flows in general curvilinear orthogonal coordinates. The k-epsilon turbulence submodel is used. Flame chemistry assumes a number of species and chemical reactions. The latter are subdivided into finite-rate reaction steps and a one-step irreversible reaction, whose rate is controlled by a combination of mixing and global kinetics. Both the SIMPLE and PISO algorithms are implemented to solve the system of equations. The capability of TURCOM-BFC is tested and demonstrated by predicting 3-dimensional combustion flow inside a reaction furnace, where both polar-cylindrical and bipolar coordinates are used.

  20. State diagram of an orthogonal spin transfer spin valve device

    SciTech Connect

    Ye, Li; Wolf, Georg; Pinna, Daniele; Chaves-O'Flynn, Gabriel D.; Kent, Andrew D.

    2015-05-21

    We present the switching characteristics of a spin-transfer device that incorporates a perpendicularly magnetized spin-polarizing layer with an in-plane magnetized free and fixed magnetic layer, known as an orthogonal spin transfer spin valve device. This device shows clear switching between parallel (P) and antiparallel (AP) resistance states and the reverse transition (AP → P) for both current polarities. Further, hysteretic transitions are shown to occur into a state with a resistance intermediate between that of the P and AP states, again for both current polarities. These unusual spin-transfer switching characteristics can be explained within a simple macrospin model that incorporates thermal fluctuations and considers a spin-polarized current that is tilted with respect to the free layer's plane, due to the presence of the spin-transfer torque from the polarizing layer.

  1. Independent component analysis (ICA) using wavelet subband orthogonality

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Hsu, Charles C.; Yamakawa, Takeshi

    1998-03-01

    There are two kinds of RRP: (1) invertible ones, such as global Fourier transform (FT), local wavelet transform (WT), and adaptive wavelet transform (AWT); and (2) non-invertible ones, e.g. ICA including the global principle component analysis (PCA). The invertible FT and WT can be related to the non-invertible ICA when the continuous transforms are approximate din discrete matrix-vector operations. The landmark accomplishment of ICA is to obtain, by unsupervised learning algorithm, the edge-map as image feature ayields, shown by Helsinki researchers using fourth order statistics of nyields -- Kurosis K(uyields), and derived from information- theoretical first principle is augmented by the orthogonality property of the DWT subband used necessarily for usual image compression. If we take the advantage of the subband decorrelation, we have potentially an efficient utilization of a pari of communication channels if we could send several more mixed subband images through the pair of channels.

  2. Orthogonally referenced integrated ensemble for navigation and timing

    DOEpatents

    Smith, Stephen Fulton; Moore, James Anthony

    2014-04-01

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  3. Orthogonally referenced integrated ensemble for navigation and timing

    DOEpatents

    Smith, Stephen Fulton; Moore, James Anthony

    2013-02-26

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  4. Orthogonal chromatographic descriptors for modelling Caco-2 drug permeability.

    PubMed

    Deconinck, E; Verstraete, T; Van Gyseghem, E; Vander Heyden, Y; Coomans, D

    2012-03-01

    The use of chromatographic descriptors as alternative for Caco-2 permeability in drug absorption screening was evaluated. Therefore, retentions were measured on 17 Reversed-Phase Liquid Chromatographic systems, considered to be orthogonal or dissimilar, and an Immobilized Artificial Membrane (IAM) system. Retentions on a Micellar Liquid Chromatography system were taken from the literature. From this set of systems, those found dissimilar for the used data set were selected. The retention factors on these systems were then used as descriptors in QSAR modelling. Modelling was performed using Stepwise Multiple Linear Regression. This resulted in a model using only two chromatographic systems with good descriptive and acceptable predictive properties. A high qualitative model was obtained by combining both chromatographic systems selected in the previous model with a lipophilicity parameter (the squared Moriguchi n-octanol/water partition coefficient) and the molecular volume.

  5. Awake hippocampal reactivations project onto orthogonal neuronal assemblies.

    PubMed

    Malvache, Arnaud; Reichinnek, Susanne; Villette, Vincent; Haimerl, Caroline; Cossart, Rosa

    2016-09-16

    The chained activation of neuronal assemblies is thought to support major cognitive processes, including memory. In the hippocampus, this is observed during population bursts often associated with sharp-wave ripples, in the form of an ordered reactivation of neurons. However, the organization and lifetime of these assemblies remain unknown. We used calcium imaging to map patterns of synchronous neuronal activation in the CA1 region of awake mice during runs on a treadmill. The patterns were composed of the recurring activation of anatomically intermingled, but functionally orthogonal, assemblies. These assemblies reactivated discrete temporal segments of neuronal sequences observed during runs and could be stable across consecutive days. A binding of these assemblies into longer chains revealed temporally ordered replay. These modules may represent the default building blocks for encoding or retrieving experience. PMID:27634534

  6. Orthogonal Frequency-Division Multiplexed Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Bahrani, Sima; Razavi, Mohsen; Salehi, Jawad A.

    2015-12-01

    We propose orthogonal frequency division multiplexing (OFDM), as a spectrally efficient multiplexing technique, for quantum key distribution (QKD) at the core of trustednode quantum networks. Two main schemes are proposed and analyzed in detail, considering system imperfections, specifically, time misalignment issues. It turns out that while multiple service providers can share the network infrastructure using the proposed multiplexing techniques, no gain in the total secret key generation rate is obtained if one uses conventional all-optical passive OFDM decoders. To achieve a linear increase in the key rate with the number of channels, an alternative active setup for OFDM decoding is proposed, which employs an optical switch in addition to conventional passive circuits. We show that by using our proposed decoder the bandwidth utilization is considerably improved as compared to conventional wavelength division multiplexing techniques.

  7. Improved orthogonal frequency division multiplexing communications through advanced coding

    NASA Astrophysics Data System (ADS)

    Westra, Jeffrey; Patti, John

    2005-08-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a communications technique that transmits a signal over multiple, evenly spaced, discrete frequency bands. OFDM offers some advantages over traditional, single-carrier modulation techniques, such as increased immunity to inter-symbol interference. For this reason OFDM is an attractive candidate for sensor network application; it has already been included in several standards, including Digital Audio Broadcast (DAB); digital television standards in Europe, Japan and Australia; asymmetric digital subscriber line (ASDL); and wireless local area networks (WLAN), specifically IEEE 802.11a. Many of these applications currently make use of a standard convolutional code with Viterbi decoding to perform forward error correction (FEC). Replacing such convolutional codes with advanced coding techniques using iterative decoding, such as Turbo codes, can substantially improve the performance of the OFDM communications link. This paper demonstrates such improvements using the 802.11a wireless LAN standard.

  8. Landmine detection using two-tapped joint orthogonal matching pursuits

    NASA Astrophysics Data System (ADS)

    Goldberg, Sean; Glenn, Taylor; Wilson, Joseph N.; Gader, Paul D.

    2012-06-01

    Joint Orthogonal Matching Pursuits (JOMP) is used here in the context of landmine detection using data obtained from an electromagnetic induction (EMI) sensor. The response from an object containing metal can be decomposed into a discrete spectrum of relaxation frequencies (DSRF) from which we construct a dictionary. A greedy iterative algorithm is proposed for computing successive residuals of a signal by subtracting away the highest matching dictionary element at each step. The nal condence of a particular signal is a combination of the reciprocal of this residual and the mean of the complex component. A two-tap approach comparing signals on opposite sides of the geometric location of the sensor is examined and found to produce better classication. It is found that using only a single pursuit does a comparable job, reducing complexity and allowing for real-time implementation in automated target recognition systems. JOMP is particularly highlighted in comparison with a previous EMI detection algorithm known as String Match.

  9. Awake hippocampal reactivations project onto orthogonal neuronal assemblies.

    PubMed

    Malvache, Arnaud; Reichinnek, Susanne; Villette, Vincent; Haimerl, Caroline; Cossart, Rosa

    2016-09-16

    The chained activation of neuronal assemblies is thought to support major cognitive processes, including memory. In the hippocampus, this is observed during population bursts often associated with sharp-wave ripples, in the form of an ordered reactivation of neurons. However, the organization and lifetime of these assemblies remain unknown. We used calcium imaging to map patterns of synchronous neuronal activation in the CA1 region of awake mice during runs on a treadmill. The patterns were composed of the recurring activation of anatomically intermingled, but functionally orthogonal, assemblies. These assemblies reactivated discrete temporal segments of neuronal sequences observed during runs and could be stable across consecutive days. A binding of these assemblies into longer chains revealed temporally ordered replay. These modules may represent the default building blocks for encoding or retrieving experience.

  10. Asymptotic formulae for the zeros of orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Badkov, V. M.

    2012-09-01

    Let p_n(t) be an algebraic polynomial that is orthonormal with weight p(t) on the interval \\lbrack -1, 1 \\rbrack . When p(t) is a perturbation (in certain limits) of the Chebyshev weight of the first kind, the zeros of the polynomial p_n(\\cos\\tau) and the differences between pairs of (not necessarily consecutive) zeros are shown to satisfy asymptotic formulae as n\\to\\infty, which hold uniformly with respect to the indices of the zeros. Similar results are also obtained for perturbations of the Chebyshev weight of the second kind. First, some preliminary results on the asymptotic behaviour of the difference between two zeros of an orthogonal trigonometric polynomial, which are needed, are established. Bibliography: 15 titles.

  11. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings.

    PubMed

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  12. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    PubMed Central

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors. PMID:27005493

  13. Orthogonally bifunctionalised polyacrylamide nanoparticles: a support for the assembly of multifunctional nanodevices

    NASA Astrophysics Data System (ADS)

    Giuntini, F.; Dumoulin, F.; Daly, R.; Ahsen, V.; Scanlan, E. M.; Lavado, A. S. P.; Aylott, J. W.; Rosser, G. A.; Beeby, A.; Boyle, R. W.

    2012-03-01

    Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry.Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11947a

  14. Orthogonal relations and color constancy in dichromatic colorblindness.

    PubMed

    Pridmore, Ralph W

    2014-01-01

    This paper employs uniform color space to analyze relations in dichromacy (protanopia, deuteranopia, tritanopia). Fifty percent or less of dichromats represent the classical reduction form of trichromacy, where one of three cones is inoperative but normal trichromatic color mixture such as complementary colors (pairs that mix white) are accepted by the dichromat, whose data can thus be plotted to CIE chromaticity spaces. The remaining dichromats comprise many and varied more-complex gene arrays from mutations, recombinations, etc. Though perhaps a minority, the three reductionist types provide a simple standard, in genotype and phenotype, to which the more complex remainder may be compared. Here, previously published data on dichromacy are plotted and analyzed in CIELUV uniform color space to find spatial relations in terms of color appearance space (e.g., hue angle). Traditional residual (seen) hues for protanopia and deuteranopia (both red-green colorblindness) are yellow and blue, but analysis indicates the protanopic residual hues are more greenish yellow and reddish blue than in tradition. Results for three illuminants (D65, D50, B) imply four principles in the spatial structure of dichromacy: (1) complementarity of confusion hue pairs and of residual hue pairs; (2) orthogonality of confusion locus and residual hues locus at their intersection with the white point, in each dichromatic type; (3) orthogonality of protanopic and tritanopic confusion loci; and (4) inverse relations between protanopic and tritanopic systems generally, such that one's confusion hues are the other's residual hues. Two of the three dichromatic systems do not represent components of normal trichromatic vision as sometimes thought but are quite different. Wavelength shifts between illuminants demonstrate chromatic adaptation correlates exactly with that in trichromatic vision. In theory these results clarify relations in and between types of dichromacy. They also apply in Munsell and

  15. Nonlinear Identification Using Orthogonal Forward Regression With Nested Optimal Regularization.

    PubMed

    Hong, Xia; Chen, Sheng; Gao, Junbin; Harris, Chris J

    2015-12-01

    An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

  16. Orthogonal arrays for computer experiments to assess important inputs

    SciTech Connect

    Moore, L. M.; McKay, Michael D.

    2002-01-01

    The topic of this paper is experiment planning, particularly fractional factorial designs or orthogonal arrays, for computer experiments to assess important inputs. The work presented in the paper is motivated by considering a non-stochastic computer simulation which has many inputs and which can, in a reasonable period of time, be run thousands of times. With many inputs, information that allows focus on a subset of important inputs is valuable. The characterization of 'importance' is expected to follow suggestions in McKay (1995) or McKay, et al. (1992). This analysis approach leads to considering factorial experiment designs. Inputs are associated with a finite number of discrete values, referred to as levels, so if each input has K levels and there are p inputs then there are K{sup P} possible distinct runs which constitute the K{sup P} factorial design space. The suggested size of p has been 35 to 50 so that even with K=2 the complete 2{sup P} factorial design space would not be run. Further, it is expected that the complexity of the simulation code and discrete levels possibly associated with equi-probable intervals from the input distribution make it desirable to consider more than 2 level inputs. Inputs levels of 5 and 7 have been investigated. In this paper, orthogonal array experiment designs, which are subsets of factorial designs also referred to as fractional factorial designs, are suggested as candidate experiments which provide meaningful basis for calculating and comparing R{sup 2} across subsets of inputs.

  17. Orthogonal Relations and Color Constancy in Dichromatic Colorblindness

    PubMed Central

    Pridmore, Ralph W.

    2014-01-01

    This paper employs uniform color space to analyze relations in dichromacy (protanopia, deuteranopia, tritanopia). Fifty percent or less of dichromats represent the classical reduction form of trichromacy, where one of three cones is inoperative but normal trichromatic color mixture such as complementary colors (pairs that mix white) are accepted by the dichromat, whose data can thus be plotted to CIE chromaticity spaces. The remaining dichromats comprise many and varied more-complex gene arrays from mutations, recombinations, etc. Though perhaps a minority, the three reductionist types provide a simple standard, in genotype and phenotype, to which the more complex remainder may be compared. Here, previously published data on dichromacy are plotted and analyzed in CIELUV uniform color space to find spatial relations in terms of color appearance space (e.g., hue angle). Traditional residual (seen) hues for protanopia and deuteranopia (both red–green colorblindness) are yellow and blue, but analysis indicates the protanopic residual hues are more greenish yellow and reddish blue than in tradition. Results for three illuminants (D65, D50, B) imply four principles in the spatial structure of dichromacy: (1) complementarity of confusion hue pairs and of residual hue pairs; (2) orthogonality of confusion locus and residual hues locus at their intersection with the white point, in each dichromatic type; (3) orthogonality of protanopic and tritanopic confusion loci; and (4) inverse relations between protanopic and tritanopic systems generally, such that one's confusion hues are the other's residual hues. Two of the three dichromatic systems do not represent components of normal trichromatic vision as sometimes thought but are quite different. Wavelength shifts between illuminants demonstrate chromatic adaptation correlates exactly with that in trichromatic vision. In theory these results clarify relations in and between types of dichromacy. They also apply in Munsell and

  18. Activation of 2',5'-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation.

    PubMed Central

    Schwartz, E L; Nilson, L A

    1989-01-01

    A 27-fold increase in 2',5'-oligoadenylate synthetase activity, an enzyme associated with the antiproliferative actions of interferon (IFN), was observed after treatment of HL-60 human leukemia cells with dimethyl sulfoxide (DMSO), an inducer of granulocytic differentiation of the cells. Enzyme activity was elevated after 24 h of exposure to DMSO, was maximal at 48 hours, and declined thereafter. A comparable increase was observed after treatment with 1 U of alpha interferon (IFN-alpha) per ml or 8 U of beta interferon (IFN-beta) per ml. Elevated levels of expression of other IFN-inducible genes, including type I histocompatibility antigen (HLA-B) mRNA and 2',5'-oligoadenylate phosphodiesterase activity, were also observed with DMSO treatment. DMSO-treated HL-60 cells had an increased amount of a 1.8-kilobase mRNA for oligoadenylate [oligo(A)] synthetase when compared with that of control cells; both DMSO- and IFN-treated HL-60 cells also expressed 1.6-, 3.4-, and 4.3-kilobase mRNA. The increase in both oligo(A) synthetase activity and mRNA levels was inhibited by polyclonal antiserum to human IFN-alpha; however, no IFN-alpha mRNA could be detected in the cells. Antiserum to IFN-beta or gamma interferon (IFN-gamma) had no effect on oligo(A) synthetase expression or activity nor was there any detectable IFN-beta 1 or IFN-beta 2 mRNA in the cells. The anti-IFN-alpha serum did not block the elevation of HLA-B mRNA in DMSO-treated cells. These observations suggest that the increased expression of oligo(A) synthetase in DMSO-treated cells may be mediated by the release of an IFN-alpha-like factor; however, the levels of any IFN-alpha mRNA produced in the cells were extremely low. Images PMID:2476665

  19. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.

    PubMed

    Brown, J R; Doolittle, W F

    1995-03-28

    Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an

  20. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells.

    PubMed

    Popp, Oliver; Larraillet, Vincent; Kettenberger, Hubert; Gorr, Ingo H; Hilger, Maximiliane; Lipsmeier, Florian; Zeck, Anne; Beaucamp, Nicola

    2015-06-01

    In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention.

  1. Urea synthesis in the African lungfish Protopterus dolloi--hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 days of aerial exposure.

    PubMed

    Chew, Shit F; Ong, Tan F; Ho, Lilian; Tam, Wai L; Loong, Ai M; Hiong, Kum C; Wong, Wai P; Ip, Yuen K

    2003-10-01

    Like the marine ray Taeniura lymma, the African lungfish Protopterus dolloi possesses carbamoyl phosphate III (CPS III) in the liver and not carbamoyl phosphate I (CPS I), as in the mouse Mus musculus or as in other African lungfish reported elsewhere. However, similar to other African lungfish and tetrapods, hepatic arginase of P. dolloi is present mainly in the cytosol. Glutamine synthetase activity is present in both the mitochondrial and cytosolic fractions of the liver of P. dolloi. Therefore, we conclude that P. dolloi is a more primitive extant lungfish, which is intermediate between aquatic fish and terrestrial tetrapods, and represents a link in the fish-tetrapod continuum. During 6 days of aerial exposure, the ammonia excretion rate in P. dolloi decreased significantly to 8-16% of the submerged control. However, there were no significant increases in ammonia contents in the muscle, liver or plasma of specimens exposed to air for 6 days. These results suggest that (1). endogenous ammonia production was drastically reduced and (2). endogenous ammonia was detoxified effectively into urea. Indeed, there were significant decreases in glutamate, glutamine and lysine levels in the livers of fish exposed to air, which led to a decrease in the total free amino acid content. This indirectly confirms that the specimen had reduced its rates of proteolysis and/or amino acid catabolism to suppress endogenous ammonia production. Simultaneously, there were significant increases in urea levels in the muscle (8-fold), liver (10.5-fold) and plasma (12.6-fold) of specimens exposed to air for 6 days. Furthermore, there was an increase in the hepatic ornithine-urea cycle (OUC) capacity, with significant increases in the activities of CPS III (3.8-fold), argininosuccinate synthetase + lyase (1.8-fold) and, more importantly, glutamine synthetase (2.2-fold). This is the first report on the upregulation of OUC capacity and urea synthesis rate in an African lungfish exposed to air

  2. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    PubMed Central

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V.; Carvalho, Helena G.; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-01-01

    The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants. PMID:24699643

  3. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture.

    PubMed

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V; Carvalho, Helena G; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-04-01

    The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants. PMID:24699643

  4. A note on the zeros of Freud-Sobolev orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  5. A pillar[5]arene-fused cryptand: from orthogonal self-assembly to supramolecular polymer.

    PubMed

    Wang, Qi; Cheng, Ming; Zhao, Yue; Wu, Lin; Jiang, Juli; Wang, Leyong; Pan, Yi

    2015-02-28

    A pillar[5]arene-fused cryptand with two different cavities was synthesized successfully. It was found that the novel tricyclic host could associate with two different guest species in an orthogonal manner. And based on this orthogonal self-assembly of two host-guest interactions, a novel type of supramolecular polymer was constructed easily and conveniently. PMID:25636005

  6. Families of orthogonal Schrödinger cat-like-states

    NASA Astrophysics Data System (ADS)

    Praxmeyer, Ludmiła

    2016-06-01

    We analyze the condition of orthogonality between optical Schrödinger cat-like-states constructed as a superposition of two coherent states. We show that the orthogonality condition leads to the quantization of values of a naturally emerging symplectic form, while values of the corresponding metric form are continuous. A complete analytical solution of the problem is presented.

  7. A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli.

    PubMed Central

    Fan, C; Moews, P C; Shi, Y; Walsh, C T; Knox, J R

    1995-01-01

    Examination of x-ray crystallographic structures shows the tertiary structure of D-alanine:D-alanine ligase (EC 6.3.2.4). a bacterial cell wall synthesizing enzyme, is similar to that of glutathione synthetase (EC 6.32.3) despite low sequence homology. Both Escherichia coli enzymes, which convert ATP to ADP during ligation to produce peptide products, are made of three domains, each folded around a 4-to 6-stranded beta-sheet core. Sandwiched between the beta-sheets of the C-terminal and central domains of each enzyme is a nonclassical ATP-binding site that contains a common set of spatially equivalent amino acids. In each enzyme, two loops are proposed to exhibit a required flexibility that allows entry of ATP and substrates, provides protection of the acylphosphate intermediate and tetrahedral adduct from hydrolysis during catalysis, and then permits release of products. PMID:7862655

  8. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots.

    PubMed

    Ohashi, Miwa; Ishiyama, Keiki; Kojima, Soichi; Konishi, Noriyuki; Nakano, Kentaro; Kanno, Keiichi; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2015-04-01

    Asparagine is synthesized from glutamine by the reaction of asparagine synthetase (AS) and is the major nitrogen form in both xylem and phloem sap in rice (Oryza sativa L.). There are two genes encoding AS, OsAS1 and OsAS2, in rice, but the functions of individual AS isoenzymes are largely unknown. Cell type- and NH4(+)-inducible expression of OsAS1 as well as analyses of knockout mutants were carried out in this study to characterize AS1. OsAS1 was mainly expressed in the roots, with in situ hybridization showing that the corresponding mRNA was specifically accumulated in the three cell layers of the root surface (epidermis, exodermis and sclerenchyma) in an NH4(+)-dependent manner. Conversely, OsAS2 mRNA was abundant in leaf blades and sheathes of rice. Although OsAS2 mRNA was detectable in the roots, its content decreased when NH4(+) was supplied. Retrotransposon-mediated knockout mutants lacking AS1 showed slight stimulation of shoot length and slight reduction in root length at the seedling stage. On the other hand, the mutation caused an approximately 80-90% reduction in free asparagine content in both roots and xylem sap. These results suggest that AS1 is responsible for the synthesis of asparagine in rice roots following the supply of NH4(+). Characteristics of the NH4(+)-dependent increase and the root surface cell-specific expression of OsAS1 gene are very similar to our previous results on cytosolic glutamine synthetase1;2 and NADH-glutamate synthase1 in rice roots. Thus, AS1 is apparently coupled with the primary assimilation of NH4(+) in rice roots. PMID:25634963

  9. Modal wavefront reconstruction over general shaped aperture by numerical orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Jingfei; Li, Xinhua; Gao, Zhishan; Wang, Shuai; Sun, Wenqing; Wang, Wei; Yuan, Qun

    2015-03-01

    In practical optical measurements, the wavefront data are recorded by pixelated imaging sensors. The closed-form analytical base polynomial will lose its orthogonality in the discrete wavefront database. For a wavefront with an irregularly shaped aperture, the corresponding analytical base polynomials are laboriously derived. The use of numerical orthogonal polynomials for reconstructing a wavefront with a general shaped aperture over the discrete data points is presented. Numerical polynomials are orthogonal over the discrete data points regardless of the boundary shape of the aperture. The performance of numerical orthogonal polynomials is confirmed by theoretical analysis and experiments. The results demonstrate the adaptability, validity, and accuracy of numerical orthogonal polynomials for estimating the wavefront over a general shaped aperture from regular boundary to an irregular boundary.

  10. Design of generalised orthogonal filters: application to the modelling of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Perić, Staniša Lj.; Danković, Nikola B.; Milojković, Marko T.

    2016-02-01

    In this article, we define a new class of orthogonal filters with complex poles and zeroes inside their transfer function. This further improvement of classical orthogonal filters allows the possibility to model a wider range of real systems, that is, the systems whose mathematical models have complex zeroes besides real ones. These filters can be applied in the following areas: circuit theory, telecommunications, signal processing, bond graphs, theory approximations and control system theory. First, we describe the rational functions with complex poles and zeroes, and prove their orthogonality. Based on these functions, we designed the block diagram of orthogonal Legendre-type filter with complex poles and zeroes. After that an appropriate analogue scheme of this filter for practical realisation is derived. To validate theoretical results, we performed an experiment with a cascade-connected system designed and practically realised in our laboratories. The experiments proved the quality of the designed orthogonal model in terms of accuracy and simplicity.

  11. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    PubMed

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  12. Combining orthogonal polarization for elongated target detection with GPR

    NASA Astrophysics Data System (ADS)

    Lualdi, Maurizio; Lombardi, Federico

    2014-10-01

    For an accurate imaging of ground penetrating radar data the polarization characteristics of the propagating electromagnetic (EM) wavefield and wave amplitude variations with antenna pattern orientation must be taken into account. For objects that show some directionality feature and cylindrical shape any misalignment between transmitter and target can strongly modify the polarization state of the backscattered wavefield, thus conditioning the detection capability of the system. Hints on the depolarization can be used to design the optimal GPR antenna survey to avoid omissions and pitfalls during data processing. This research addresses the issue of elongated target detection through a multi azimuth (or multi polarization) approach based on the combination of mutually orthogonal GPR data. Results from the analysis of the formal scattering problem demonstrate how this strategy can reach a scalar formulation of the scattering matrix and achieve a rotational invariant quantity. The effectiveness of the algorithm is then evaluated with a detailed field example showing results closely proximal to those obtained under the optimal alignment condition: detection is significantly improved and the risk of target missing is reduced.

  13. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  14. Orthogonal least squares based complex-valued functional link network.

    PubMed

    Amin, Md Faijul; Savitha, Ramasamy; Amin, Muhammad Ilias; Murase, Kazuyuki

    2012-08-01

    Functional link networks are single-layered neural networks that impose nonlinearity in the input layer using nonlinear functions of the original input variables. In this paper, we present a fully complex-valued functional link network (CFLN) with multivariate polynomials as the nonlinear functions. Unlike multilayer neural networks, the CFLN is free from local minima problem, and it offers very fast learning of parameters because of its linear structure. Polynomial based CFLN does not require an activation function which is a major concern in the complex-valued neural networks. However, it is important to select a smaller subset of polynomial terms (monomials) for faster and better performance since the number of all possible monomials may be quite large. Here, we use the orthogonal least squares (OLS) method in a constructive fashion (starting from lower degree to higher) for the selection of a parsimonious subset of monomials. It is argued here that computing CFLN in purely complex domain is advantageous than in double-dimensional real domain, in terms of number of connection parameters, faster design, and possibly generalization performance. Simulation results on a function approximation, wind prediction with real-world data, and a nonlinear channel equalization problem exhibit that the OLS based CFLN yields very simple structure having favorable performance.

  15. Magnetization reversal in orthogonal spin transfer magnetic devices

    NASA Astrophysics Data System (ADS)

    Wolf, Georg; Kent, Andrew D.; Kardasz, Bartek; Pinarbasi, Mustafa

    2014-03-01

    Orthogonal spin transfer (OST) magnetic devices have distinct magnetization dynamics and switching characteristics compared to conventional collinearly magnetized devices. A perpendicular magnetized layer provides a large initial spin torque on the free layer magnetization and thus initiates magnetization dynamics. In order to read out the information stored in the OST device, the free layer forms a magnetic tunnel junction with an in plane magnetized reference layer, which also exerts a spin torque on the free layer. The combination of those two spin torques leads to different switching dynamics of the free layer. Quasistatic and fast pulsed measurements have been conducted to explore the state diagram and magnetization dynamics of such devices. The absolute value of the switching current Is is in general smaller for the antiparallel (AP) to parallel (P) transition, due to the angular dependence of the reference layer torque. Is also has a weak field dependence for this transition, indicating that the reference layer torque governs this transition. On the other hand, the P to AP transition shows a stronger field dependence of Is and occurs for both current polarities. Both these features denote the influence of the spin-torque generated from the perpendicular polarizer. Supported by STT Inc.

  16. Transient Orthogonality Catastrophe in a Time Dependent Nonequilibrium Environment

    NASA Astrophysics Data System (ADS)

    Schiro, Marco; Mitra, Aditi; 0 Team

    2015-03-01

    We study the response of a highly-excited time dependent quantum many-body state to a sudden local perturbation, a sort of orthogonality catastrophe problem in a transient non-equilibrium environment. To this extent we consider, as key quantity, the overlap between time dependent wave-functions, that we write in terms of a novel two-time correlator generalizing the standard Loschmidt Echo. We discuss its physical meaning, general properties, and its connection with experimentally measurable quantities probed through non-equilibrium Ramsey interferometry schemes. Then we present explicit calculations for a one dimensional interacting Fermi system brought out of equilibrium by a sudden change of the interaction, and perturbed by the switching on of a local static potential. We show that different scattering processes give rise to remarkably different behaviors at long times, quite opposite from the equilibrium situation. In particular, while the forward scattering contribution retains its power law structure even in the presence of a large non-equilibrium perturbation, with an exponent that is strongly affected by the transient nature of the bath, the backscattering term is a source of non-linearity which generates an exponential decay in time of the Loschmidt Echo, reminiscent of

  17. Transient Orthogonality Catastrophe in a Time-Dependent Nonequilibrium Environment

    NASA Astrophysics Data System (ADS)

    Schiró, Marco; Mitra, Aditi

    2014-06-01

    We study the response of a highly excited time-dependent quantum many-body state to a sudden local perturbation, a sort of orthogonality catastrophe problem in a transient nonequilibrium environment. To this extent we consider, as a key quantity, the overlap between time-dependent wave functions, which we write in terms of a novel two-time correlator generalizing the standard Loschmidt echo. We discuss its physical meaning, general properties, and its connection with experimentally measurable quantities probed through nonequilibrium Ramsey interferometry schemes. Then we present explicit calculations for a one-dimensional interacting Fermi system brought out of equilibrium by a sudden change of the interaction, and perturbed by the switching on of a local static potential. We show that different scattering processes give rise to remarkably different behaviors at long times, quite opposite from the equilibrium situation. In particular, while the forward scattering contribution retains its power-law structure even in the presence of a large nonequilibrium perturbation, with an exponent that is strongly affected by the transient nature of the bath, the backscattering term is a source of nonlinearity which generates an exponential decay in time of the Loschmidt Echo, reminiscent of an effective thermal behavior.

  18. Orthogonal least squares based complex-valued functional link network.

    PubMed

    Amin, Md Faijul; Savitha, Ramasamy; Amin, Muhammad Ilias; Murase, Kazuyuki

    2012-08-01

    Functional link networks are single-layered neural networks that impose nonlinearity in the input layer using nonlinear functions of the original input variables. In this paper, we present a fully complex-valued functional link network (CFLN) with multivariate polynomials as the nonlinear functions. Unlike multilayer neural networks, the CFLN is free from local minima problem, and it offers very fast learning of parameters because of its linear structure. Polynomial based CFLN does not require an activation function which is a major concern in the complex-valued neural networks. However, it is important to select a smaller subset of polynomial terms (monomials) for faster and better performance since the number of all possible monomials may be quite large. Here, we use the orthogonal least squares (OLS) method in a constructive fashion (starting from lower degree to higher) for the selection of a parsimonious subset of monomials. It is argued here that computing CFLN in purely complex domain is advantageous than in double-dimensional real domain, in terms of number of connection parameters, faster design, and possibly generalization performance. Simulation results on a function approximation, wind prediction with real-world data, and a nonlinear channel equalization problem exhibit that the OLS based CFLN yields very simple structure having favorable performance. PMID:22386786

  19. Rhythm analysis of orthogonal signals from human walking.

    PubMed

    Ekimov, Alexander; Sabatier, James M

    2011-03-01

    In physical terms, periodic movements of a human body resulting from walking produce a pulse sequence with repetition time T(1) (instant cadence frequency, 1/T(1)) and duration time T(2). Footstep forces generate periodic T(1) broadband seismic and sound signals due to the dynamic forces between the foot and the ground/floor with duration time T(2), which is equal to the time interval for a single footstep from heel strike to toe slap and weight transfer. In a human gait study (for normal speeds of walking), T(1) was detected as 0.5-0.69 s and double limb support takes up about 12% of the gait cycle (2T(1)), so T(2) is greater than 0.12-0.17 s. Short range (of about 50 m) signatures for 30 humans were recorded simultaneously by four orthogonal sensor types at two locations. The sensor types were active Doppler sonar/radar and passive seismic/acoustics. Analysis of signals from these four sensors collected for walking humans showed temporal synchronization and stability of the cadence frequencies, and the cadence frequency from each sensor was equivalent. The time delay between signals from these sensors due to the differences in speeds of propagation for seismic, sound, and electromagnetic waves allows calculation of the distance from a walker to the sensor suite. PMID:21428494

  20. Exponential Orthogonality Catastrophe at the Anderson Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Kettemann, S.

    2016-09-01

    We consider the orthogonality catastrophe at the Anderson metal-insulator transition (AMIT). The typical overlap F between the ground state of a Fermi liquid and the one of the same system with an added potential impurity is found to decay at the AMIT exponentially with system size L as F ˜exp (-c Lη) , where η is the power of multifractal intensity correlations. Thus, strong disorder typically increases the sensitivity of a system to an added impurity exponentially. We recover, on the metallic side of the transition, Anderson's result that the fidelity F decays with a power law F ˜L-q (EF) with system size L . Its power increases as the Fermi energy EF approaches the mobility edge EM as q (EF)˜[(EF-EM )/EM]-ν η , where ν is the critical exponent of the correlation length ξc. On the insulating side of the transition, F is constant for system sizes exceeding the localization length ξ . While these results are obtained for the typical fidelity F , we find that log F is widely, log normally, distributed with a width diverging at the AMIT. As a consequence, the mean value of the fidelity F converges to one at the AMIT, in strong contrast to its typical value which converges to zero exponentially fast with system size L . This counterintuitive behavior is explained as a manifestation of multifractality at the AMIT.

  1. Anti-collusion forensics of multimedia fingerprinting using orthogonal modulation.

    PubMed

    Wang, Z Jane; Wu, Min; Zhao, Hong Vicky; Trappe, Wade; Liu, K J Ray

    2005-06-01

    Digital fingerprinting is a method for protecting digital data in which fingerprints that are embedded in multimedia are capable of identifying unauthorized use of digital content. A powerful attack that can be employed to reduce this tracing capability is collusion, where several users combine their copies of the same content to attenuate/remove the original fingerprints. In this paper, we study the collusion resistance of a fingerprinting system employing Gaussian distributed fingerprints and orthogonal modulation. We introduce the maximum detector and the thresholding detector for colluder identification. We then analyze the collusion resistance of a system to the averaging collusion attack for the performance criteria represented by the probability of a false negative and the probability of a false positive. Lower and upper bounds for the maximum number of colluders K(max) are derived. We then show that the detectors are robust to different collusion attacks. We further study different sets of performance criteria, and our results indicate that attacks based on a few dozen independent copies can confound such a fingerprinting system. We also propose a likelihood-based approach to estimate the number of colluders. Finally, we demonstrate the performance for detecting colluders through experiments using real images.

  2. Magnetocardiogram measured by fundamental mode orthogonal fluxgate array

    NASA Astrophysics Data System (ADS)

    Karo, Hikaru; Sasada, Ichiro

    2015-05-01

    Magnetocardiography (MCG) of healthy volunteers has been measured by using a fundamental mode orthogonal fluxgate magnetometer array of 32 channels in a magnetic shielded room (MSR). Sensor heads, which are employed, consist of a 45 mm long U-shaped amorphous wire core and a 1000-turn solenoid pick-up coil of 30 mm in length and 3 mm in outer diameter. The excitation current of 100 kHz with large dc bias current is fed directly into wire cores, which are connected in series, whereas the signal detection circuit is provided to each of the sensor heads. A special technique to avoid mutual interaction between sensor heads is implemented, where all the sensor heads are excited synchronously by using a single ac source. A 2-D array having 32 sensors with 4 cm grid spacing was used to measure MCG signals inside an MSR. Measured data from each channel were first filtered (0.16-100 Hz pass band), then averaged for 2 min synchronously with electrocardiogram's peaks taken from both hands. Noise remaining after the average is about 1.8 pTrms for the band-width of 0.16-100 Hz. The QRS complex and the T-wave are clearly detected.

  3. Newtonized Orthogonal Matching Pursuit: Frequency Estimation Over the Continuum

    NASA Astrophysics Data System (ADS)

    Mamandipoor, Babak; Ramasamy, Dinesh; Madhow, Upamanyu

    2016-10-01

    We propose a fast sequential algorithm for the fundamental problem of estimating frequencies and amplitudes of a noisy mixture of sinusoids. The algorithm is a natural generalization of Orthogonal Matching Pursuit (OMP) to the continuum using Newton refinements, and hence is termed Newtonized OMP (NOMP). Each iteration consists of two phases: detection of a new sinusoid, and sequential Newton refinements of the parameters of already detected sinusoids. The refinements play a critical role in two ways: (1) sidestepping the potential basis mismatch from discretizing a continuous parameter space, (2) providing feedback for locally refining parameters estimated in previous iterations. We characterize convergence, and provide a Constant False Alarm Rate (CFAR) based termination criterion. By benchmarking against the Cramer Rao Bound, we show that NOMP achieves near-optimal performance under a variety of conditions. We compare the performance of NOMP with classical algorithms such as MUSIC and more recent Atomic norm Soft Thresholding (AST) and Lasso algorithms, both in terms of frequency estimation accuracy and run time.

  4. Optimal detection using cyclostationary EOFs[Empirical orthogonal function

    SciTech Connect

    Kim, K.Y.; Wu, Q.

    2000-03-01

    The problem of detecting a climate change signal in the climatological record is of obvious importance in any strategies to understand global climate changes. Atmospheric scientists have applied various statistical techniques to the problem of detecting global warming trend due to increased greenhouse gases. Many climatic and geophysical processes are cyclostationary and exhibit appreciable cyclic (monthly, daily, etc.) variation of their statistics in addition to interannual fluctuations. Utilization of this nested variation of statistics will lead to a better chance of detecting a signal in such a varying background noise field, especially in terms of cyclostationary empirical orthogonal functions, which take the nested periodicity of noise statistics into account. To investigate the improved performance of the cyclostationary approach the developed algorithm is applied to three specific detection examples: El Nino, greenhouse warming, and sunspot fluctuations. In all the test cases, signal-to-noise ratio is raised between 2% and 43% compared with that of a stationary detection technique. The variation of signal strength when a detection filter is constructed based on a different section of modeled noise is within the range of mean signal-to-noise ratio for small to moderate signals. There is a significant variation, however, of signal strength when a detection filter is constructed based on a different model dataset. This implies that model discrepancy is a more important factor than sampling error for the accuracy of the detection method and that climate models need to be improved further in their noise statistics.

  5. Dual, orthogonal, backlit pinhole radiography in OMEGA experiments

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Blue, B. E.; Drake, R. P.; Robey, H. F.; Hansen, J. F.; Knauer, J. P.; Grosskopf, M. J.; Krauland, C.; Marion, D. C.

    2006-10-01

    Backlit pinhole radiography used with ungated film as a detector creates x-ray radiographs with increased resolution and contrast. Current hydrodynamics experiments on the OMEGA Laser use a three-dimensional sinusoidal pattern as a seed perturbation for the study of instabilities. The structure of this perturbation makes it highly desirable to obtain two simultaneous orthogonal backlighting views. We accomplished this using two backlit pinholes each mounted 12mm from the target. The pinholes, of varying size and shape, were centered on 5mm square foils of 50μm thick Ta. The backlighting is by K-alpha emission from a 500μm square Ti or Sc foil mounted 500μm from the Ta on a plastic substrate. Four laser beams overfill the metal foil, so that the expanding plastic provides radial tamping of the expanding metal plasma. The resulting x-rays pass through the target onto (ungated) direct exposure film (DEF). Interference between the two views is reduced by using a nose cone in front of the DEF, typically with a 9mm Ta aperture and with magnets to deflect electrons. Comparison of varying types of pinholes and film exposures will be presented from recent experiments as well as an analysis of the background noise created using this experimental technique.

  6. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  7. Progressive band processing of orthogonal subspace projection in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Hsiao-Chi; Li, Yao; Gao, Cheng; Song, Meiping; Chang, Chein-I.

    2015-05-01

    Progressive band processing (PBP) processes data band by band according to the Band SeQuential (BSQ) format acquired by a hyperspectral imaging sensor. It can be implemented in real time in the sense that data processing can be performed whenever bands are available without waiting for data completely collected. This is particularly important for satellite communication when data download is limited by bandwidth and transmission. This paper presents a new concept of processing a well-known technique, Orthogonal Subspace Projection (OSP) band by band, to be called PBPOSP. Several benefits can be gained by PBP-OSP. One is band processing capability which allows different receiving ends to process data whenever bands are available. Second, it enables users to identify significant bands during data processing. Third, unlike band selection which requires knowing the number of bands needed to be selected or band prioritization PBP-OSP can process arbitrary bands in real time with no need of such prior knowledge. Most importantly, PBP can locate and identify which bands are significant for data processing in a progressive manner. Such progressive profile resulting from PBP-OSP is the best advantage that PBP-OSP can offer and cannot be accomplished by any other OSP-like operators.

  8. Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields.

    PubMed

    Liedel, Clemens; Lewin, Christian; Tsarkova, Larisa; Böker, Alexander

    2015-12-01

    It is demonstrated that the orientation of striped patterns can be reversibly switched between two perpendicular in-plane orientations upon exposure to electric fields. The results on thin films of symmetric polystyrene-block-poly(2-vinyl pyridine) polymer in the intermediate segregation regime disclose two types of reorientation mechanisms from perpendicular to parallel relative to the electric field orientation. Domains orient via grain rotation and via formation of defects such as stretched undulations and temporal phase transitions. The contribution of additional fields to the structural evolution is also addressed to elucidate the generality of the observed phenomena. In particular solvent effects are considered. This study reveals the stabilization of the meta-stable in-plane oriented lamella due to sequential swelling and quenching of the film. Further, the reorientation behavior of lamella domains blended with selective nanoparticles is addressed, which affect the interfacial tensions of the blocks and hence introduce another internal field to the studied system. Switching the orientation of aligned block copolymer patterns between two orthogonal directions may open new applications of nanomaterials as switchable electric nanowires or optical gratings. PMID:26449286

  9. 622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.

    2002-01-01

    Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.

  10. [Orthogonal projection divergence-based hyperspectral band selection].

    PubMed

    Su, Hong-jun; Sheng, Ye-hua; Yang, He; Du, Qian

    2011-05-01

    Due to the high data dimensionality of a hyperspectral image, dimensionality reduction algorithm has attracted much attention in hyperspectral image analysis. Band selection algorithm, which selects appropriate bands from the original set of spectral bands, can preserve original information from the data and is useful for image classification and recognition. In the present paper, a novel band selection algorithm based on orthogonal projection divergence (OPD) is proposed, it aims to discriminate the interesting objects from background and noise information, maximize the spectral similarity between different spectral vectors by projecting the original data to feature space. Two HYDICE Washington DC Mall images and an HYMAP Purdue campus image data were experimented, and support vector machine (SVM) classifier was used for classification. The selected band number varies from 5 to 40 in order to study the impacts of different band selection algorithms on different features. For the computation complex, the sequential floating forward search (SFFS) was used to get the appropriate bands. The experiments have proved that our proposed OPD algorithm can outperform other traditional band selection methods such as SAM, ED, SID, and LCMV-BCC for hyperspectral image analysis. It is proven that OPD band selection is effective and robust in hyperspectral remote sensing dimensionality reduction

  11. Rhythm analysis of orthogonal signals from human walking.

    PubMed

    Ekimov, Alexander; Sabatier, James M

    2011-03-01

    In physical terms, periodic movements of a human body resulting from walking produce a pulse sequence with repetition time T(1) (instant cadence frequency, 1/T(1)) and duration time T(2). Footstep forces generate periodic T(1) broadband seismic and sound signals due to the dynamic forces between the foot and the ground/floor with duration time T(2), which is equal to the time interval for a single footstep from heel strike to toe slap and weight transfer. In a human gait study (for normal speeds of walking), T(1) was detected as 0.5-0.69 s and double limb support takes up about 12% of the gait cycle (2T(1)), so T(2) is greater than 0.12-0.17 s. Short range (of about 50 m) signatures for 30 humans were recorded simultaneously by four orthogonal sensor types at two locations. The sensor types were active Doppler sonar/radar and passive seismic/acoustics. Analysis of signals from these four sensors collected for walking humans showed temporal synchronization and stability of the cadence frequencies, and the cadence frequency from each sensor was equivalent. The time delay between signals from these sensors due to the differences in speeds of propagation for seismic, sound, and electromagnetic waves allows calculation of the distance from a walker to the sensor suite.

  12. Capillary electrophoresis as an orthogonal technique in HPLC method validation.

    PubMed

    Jimidar, M Ilias; De Smet, Maurits; Sneyers, Rudy; Van Ael, Willy; Janssens, Willy; Redlich, Dirk; Cockaerts, Paul

    2003-01-01

    High-performance liquid chromatography is usually used to assay the main compound and organic impurity content of drug substance and drug product during pharmaceutical development. A crucial validation parameter of these methods is specificity--the ability to unequivocally assess the analyte in the presence of component expected to be present. Typically, these include impurities, degradation products, and matrices. Besides adequate chromatographic separation with sufficient selectivity, additional 2- or 3-D spectroscopic or chromatographic tools are frequently necessary for this purpose. In our current practice, HPLC is used with ultraviolet photodiode array detection and on-line mass spectrometry (LC-UVDAD-MS) during the assessment of specificity. Although this approach is very powerful and can solve the majority of problems, separation of isomers of the main compound is still difficult. Since HPLC usually cannot offer the required selectivity and because of the similar molecular weights, structural isomers are not specifically detected using LC-MS. Capillary electrophoresis, on the other hand, offers high separation efficiency and can be applied as an adjunct to HPLC. Therefore, a set of highly selective CE methods is used orthogonally in the specificity assessment of HPLC methods.

  13. Large Covariance Estimation by Thresholding Principal Orthogonal Complements

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088

  14. Origin of Orthogonality of Strain-Promoted Click Reactions

    PubMed Central

    Wagner, Johannes A; Mercadante, Davide; Nikić, Ivana; Lemke, Edward A; Gräter, Frauke

    2015-01-01

    Site-specific labeling of biomolecules is rapidly advancing due to the discovery of novel mutually orthogonal reactions. Quantum chemistry studies have also increased our understanding of their relative rates, although these have until now been based on highly simplified reactants. Here we examine a set of strain-promoted click-type cycloaddition reactions of n-propyl azide, 3-benzyl tetrazine and 3-benzyl-6-methyl tetrazine with cyclooctenes/ynes, in which we aim to address all relevant structural details of the reactants. Our calculations have included the obligatory handles used to attach the label and biomolecule as these can critically influence the stereochemistry and electron demand of the reaction. We systematically computed orbital gaps, activation and distortion energies using density functional theory and determined experimental rates for validation. Our results challenge the current paradigm of the inverse electron demand for this class of reactions. We found that the ubiquitous handles, when next to the triple bond of cyclooctynes, can switch the Diels–Alder type ligations to normal electron demand, a class we term as SPINEDAC reactions. Electron donating substituents on tetrazine can enhance normal demand but also increase distortion penalties. The presence and isomeric configuration of handles thus determine the reaction speed and regioselectivity. Our findings can be directly utilized in engineering genuine cycloaddition click chemistries for biological labeling. PMID:26178299

  15. Simultaneous SHG of orthogonally polarized fundamentals in single QPM crystals

    NASA Astrophysics Data System (ADS)

    Johnston, Benjamin F.; Saltiel, Solomon M.; Withford, Michael J.; Kivshar, Yuri S.

    2007-02-01

    Fabrication of quasi-phase-matching (QPM) gratings suitable for cascading of two second-order parametric nonlinear processes in a single lithium niobate crystal is being undertaken using a new technique - electric field poling assisted by laser micro-machined topographical electrodes. To date, single period poled gratings with 45.75, and 45.8 μm periods have been fabricated in order to demonstrate second harmonic generation of 1064nm laser light with 1 st order type-I and 7 th order type-0 QPM simultaneously. The two frequency doubling processes share a common Z polarized second-harmonic wave which allows exchange of energy between the two orthogonally polarized fundamental waves and several second order cascading interactions can be realized. The use of the higher QPM orders (3rd, 5th or 7th) for the type-0 second harmonic generation process leads to comparable efficiencies of the two processes, as the respective nonlinear coefficients are d zzz ~27 pm/V and d yyz ~ 4.7 pm/V in lithium niobate crystals. Possible applications include; polarization switching, parametric amplification and polarization mode dispersion monitoring, and polarization insensitive second harmonic generation.

  16. L-arginine recognition by yeast arginyl-tRNA synthetase.

    PubMed Central

    Cavarelli, J; Delagoutte, B; Eriani, G; Gangloff, J; Moras, D

    1998-01-01

    The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs. PMID:9736621

  17. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    PubMed

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.

  18. Synthesis of Glu-tRNA(Gln) by engineered and natural aminoacyl-tRNA synthetases.

    PubMed

    Rodríguez-Hernández, Annia; Bhaskaran, Hari; Hadd, Andrew; Perona, John J

    2010-08-10

    A protein engineering approach to delineating which distinct elements of homologous tRNA synthetase architectures are responsible for divergent RNA-amino acid pairing specificities is described. Previously, we constructed a hybrid enzyme in which 23 amino acids from the catalytic domain of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) were replaced with the corresponding residues of human glutamyl-tRNA synthetase (GluRS). The engineered hybrid (GlnRS S1/L1/L2) synthesizes Glu-tRNA(Gln) more than 10(4)-fold more efficiently than GlnRS. Detailed comparison of kinetic parameters between GlnRS S1/L1/L2 and the naturally occurring Methanothermobacter thermautotrophicus GluRS(ND), which is also capable of Glu-tRNA(Gln) synthesis, now shows that both k(cat) and K(m) for glutamate are recapitulated in the engineered enzyme, but that K(m) for tRNA is 200-fold higher. Thus, the simultaneous optimization of paired amino acid and tRNA binding sites found in a naturally occurring enzyme is not recapitulated in a hybrid that is successfully engineered for amino acid complementarity. We infer that the GlnRS architecture has differentiated to match only cognate amino acid-RNA pairs, and that the substrate selection functions do not operate independently of each other. Design and characterization of four additional hybrids identify further residues involved in improving complementarity for glutamate and in communicating between amino acid and tRNA binding sites. The robust catalytic function demonstrated in this engineered system offers a novel platform for exploring the stereochemical origins of coding as a property of the ancient Rossmann fold.

  19. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Hosaka, Hideaki; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2008-04-25

    Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.

  20. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    PubMed

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana.

  1. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  2. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  3. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  4. The McbB component of microcin B17 synthetase is a zinc metalloprotein.

    PubMed

    Zamble, D B; McClure, C P; Penner-Hahn, J E; Walsh, C T

    2000-12-26

    The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role.

  5. Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus).

    PubMed

    Dalessandro, G; Northcote, D H

    1981-01-01

    Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-(14)C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-(14)C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[(14)C]xylose and tri-O-methyl-[(14)C]xylose, suggesting a 1→4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg(2+) and Mn(2+) ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.

  6. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  7. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase.

    PubMed

    Haese, A; Pieper, R; von Ostrowski, T; Zocher, R

    1994-10-14

    Enniatin synthetase catalyzes the biosynthesis of N-methylated cyclohexadepsipeptides. The 347 kDa enzyme is encoded by the esyn1 gene of Fusarium scirpi and contains two domains (EA and EB) homologous to each other and to regions of other microbial peptide synthetases. Parts of the esyn1 gene were subcloned in frame to a small lacZ gene portion of Escherichia coli expression vectors. Overproduced recombinant proteins showed a high tendency towards inclusion body formation and could be only partially dissolved in 8 M urea or 6 M guanidine hydrochloride. After renaturation, a 121 kDa recombinant protein representing the N-terminal conserved domain EA of enniatin synthetase was shown to activate D-hydroxyisolvaleric acid via adenylation. Similarly, a 158 kDa recombinant protein comprising the C-terminal conserved domain EB catalyzed the activation of the substrate amino acid (e.g. L-valine). Moreover, this protein could be photolabeled with S-[methyl-14C]adenosyl-L-methionine, (AdoMet) indicating the presence of the methyltransferase. Both functions, L-valine activation and AdoMet binding, could be assigned to a 108 kDa recombinant protein encompassing the A and the M segment of domain EB. The fact that a 65 kDa recombinant protein representing the M portion could be photolabeled, indicated the localization of the methyltransferase in this region. Three deletion mutants of the 65 kDa protein were shown to be inactive with respect to UV-induced AdoMet labeling. PMID:7932733

  8. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    PubMed

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana. PMID:26205258

  9. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    SciTech Connect

    Chu, Wenchy; Horowitz, J. )

    1991-02-12

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA{sup Val} with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K{sub M} and V{sub max} values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA{sup Val}. Binding of VRS to (FUra)tRNA{sup Val} induces structural perturbations that are reflected in selective changes in the {sup 19}F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA{sup Val} along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA{sup Val}, suggesting conformational changes in this part of the molecule. No {sup 19}F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA{sup Val} that has been proposed as a common intermediate in the aminoacylation reaction.

  10. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases.

    PubMed

    Jeitner, Thomas M; Cooper, Arthur J L

    2014-12-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine (MSO) is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase by MSO is shown to be biphasic-an initial reversible competitive inhibition (K i 1.19 mM) is followed by rapid irreversible inactivation. This K i value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans.

  11. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    PubMed

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM. PMID:27125317

  12. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    SciTech Connect

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  13. Inhibitors of methionyl-tRNA synthetase have potent activity against Giardia intestinalis trophozoites.

    PubMed

    Ranade, Ranae M; Zhang, Zhongsheng; Gillespie, J Robert; Shibata, Sayaka; Verlinde, Christophe L M J; Hol, Wim G J; Fan, Erkang; Buckner, Frederick S

    2015-11-01

    The methionyl-tRNA synthetase (MetRS) is a novel drug target for the protozoan pathogen Giardia intestinalis. This protist contains a single MetRS that is distinct from the human cytoplasmic MetRS. A panel of MetRS inhibitors was tested against recombinant Giardia MetRS, Giardia trophozoites, and mammalian cell lines. The best compounds inhibited trophozoite growth at 500 nM (metronidazole did so at ∼5,000 nM) and had low cytotoxicity against mammalian cells, indicating excellent potential for further development as anti-Giardia drugs. PMID:26324270

  14. Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer's disease patients are unchanged.

    PubMed

    Timmer, Nienke M; Herbert, Megan K; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2015-03-01

    Decreased cerebral protein and activity levels of glutamine synthetase (GS) have been reported for Alzheimer's disease (AD) patients. Using a recently established method, we quantified total GS levels in cerebrospinal fluid (CSF) from AD patients and control subjects. Furthermore, we investigated if total GS levels in CSF could differentiate AD from frontotemperal dementia and dementia with Lewy bodies patients. As we found no significantly altered total GS levels in any of the patient groups compared with control subjects, we conclude that levels of total GS in CSF have no diagnostic value for AD, dementia with Lewy bodies, or frontotemperal dementia.

  15. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  16. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  17. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Fauth, Christine; Bergheim, Christa; Meierhofer, David; Radmayr, Doris; Zschocke, Johannes; Koch, Johannes; Sperl, Wolfgang

    2011-12-01

    Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.

  18. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase.

    PubMed

    Hassan, Yousef I; Zempleni, Janos

    2008-12-01

    Holocarboxylase synthetase catalyzes the covalent binding of biotin to histones in humans and other eukaryotes. Eleven biotinylation sites have been identified in histones H2A, H3, and H4. K12-biotinylated histone H4 is enriched in heterochromatin, repeat regions, and plays a role in gene repression. About 30% of the histone H4 molecules are biotinylated at K12 in histone H4 in human fibroblast telomeres. The abundance of biotinylated histones at distinct genomic loci depends on biotin availability. Decreased histone biotinylation decreases life span and stress resistance in Drosophila. Low enrichment of biotinylated histones at transposable elements impairs repression of these elements.

  19. Tissue Distribution of Glutamate Synthase and Glutamine Synthetase in Rice Leaves 1

    PubMed Central

    Yamaya, Tomoyuki; Hayakawa, Toshihiko; Tanasawa, Keisuke; Kamachi, Kazunari; Mae, Tadahiko; Ojima, Kunihiko

    1992-01-01

    To further explore the function of NADH-dependent glutamate synthase (GOGAT), the tissue distribution of NADH-GOGAT protein and activity was investigated in rice (Oryza sativa L.) leaves. The distributions of ferredoxin (Fd)-dependent GOGAT, plastidic glutamine synthetase, and cytosolic glutamine synthetase proteins were also determined in the same tissues. High levels of NADH-GOGAT protein (33.1 μg protein/g fresh weight) and activity were detected in the 10th leaf blade before emergence. The unexpanded, nongreen portion of the 9th leaf blade contained more than 50% of the NADH-GOGAT protein and activity per gram fresh weight when compared with the 10th leaf. The expanding, green portion of the 9th leaf blade outside of the sheath contained a slightly lower abundance of NADH-GOGAT protein than the nongreen portion of the 9th blade on a fresh weight basis. The fully expanded leaf blades at positions lower than the 9th leaf had decreased NADH-GOGAT levels as a function of increasing age, and the oldest, 5th blade contained only 4% of the NADH-GOGAT protein compared with the youngest 10th leaf blade. Fd-GOGAT protein, on the other hand, was the major form of GOGAT in the green tissues, and the highest amount of Fd-GOGAT protein (111 μg protein/g fresh weight) was detected in the 7th leaf blade. In the nongreen 10th leaf blade, the content of Fd-GOGAT protein was approximately 7% of that found in the 7th leaf blade. In addition, the content of NADH-GOGAT protein in the 10th leaf blade was about 4 times higher than that of Fd-GOGAT protein. The content of plastidic glutamine synthetase polypeptide was also the highest in the 7th leaf blade (429 μg/g fresh weight) and lowest in nongreen blades and sheaths. On the other hand, the relative abundance of the cytosolic glutamine synthetase polypeptide was the highest in the oldest leaf blade, decreasing to 10 to 20% of that value in young, nongreen leaves. These results suggest that NADH-GOGAT is important for the

  20. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  1. MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases.

    PubMed

    Felnagle, Elizabeth A; Barkei, John J; Park, Hyunjun; Podevels, Angela M; McMahon, Matthew D; Drott, Donald W; Thomas, Michael G

    2010-10-19

    The biosynthesis of many natural products of clinical interest involves large, multidomain enzymes called nonribosomal peptide synthetases (NRPSs). In bacteria, many of the gene clusters coding for NRPSs also code for a member of the MbtH-like protein superfamily, which are small proteins of unknown function. Using MbtH-like proteins from three separate NRPS systems, we show that these proteins copurify with the NRPSs and influence amino acid activation. As a consequence, MbtH-like proteins are integral components of NRPSs.

  2. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl) pairs in the Escherichia coli BL21(DE3) cell strain.

    PubMed

    Odoi, Keturah A; Huang, Ying; Rezenom, Yohannes H; Liu, Wenshe R

    2013-01-01

    Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNA(Pyl) pairs and cross recognition between nonsense codons and various tRNA(Pyl) anticodons in the Escherichia coli BL21(DE3) cell strain are reported. tRNA(CUA)(Pyl) is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS) and charged with a PylRS substrate, N(ε)-tert-butoxycarbonyl-L-lysine (BocK). Similar to tRNA(CUA)(Pyl), tRNA(UUA)(Pyl) is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although tRNA(UUA)(Pyl) is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS-tRNA(UUA)(Pyl) pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp) is incorporated at an opal mutation site. Although the PylRS-tRNA(UCA)(Pyl) pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. tRNA(CCU)(Pyl) fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli. PMID:23520461

  3. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    SciTech Connect

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V.; Carvalho, Helena G.; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-04-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  4. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  5. Terminal Synthesis of Xanthommatin in DROSOPHILA MELANOGASTER. III. Mutational Pleiotropy and Pigment Granule Association of Phenoxazinone Synthetase

    PubMed Central

    Phillips, John P.; Forrest, Hugh S.; Kulkarni, Anil D.

    1973-01-01

    Phenoxazinone synthetase, which catalyzes the condensation of 3-hydroxykynurenine to xanthommatin, the brown eye pigment of Drosophila, is shown to exist in association with a particle which resembles the cytologically defined Type I pigment granule. Several classical eye color mutants (v, cn, st, ltd, cd, w), including two which effect other enzymes in the xanthommatin pathway (v, cn), have low levels of phenoxazinone synthetase activity and disrupt the normal association of the enzyme with the pigment granule. A model is proposed depicting several structural and enzymatic interrelationships involved in the developmental control of xanthommatin synthesis in Drosophila. PMID:4631600

  6. Activity of interferon-dependent 2',5'-oligoadenylate synthetase in rat lymphoid cells under transformed environment conditions

    NASA Astrophysics Data System (ADS)

    Ostapchenko, L. I.; Mikhailik, I. V.; Prokopova, K. V.

    It is detected that interferon-dependent 2',5'-oligoadenylate synthetase is a sensitive index of immunocompetent cells functional state under transformed environment conditions. Microgravitation and ionising radiation induce increase of investigated enzyme activity in rat lymphocytes, which can be a result of lymphoid cells compensatory mechanisms starting in response to stress factors action. Administration of interferon inductors permits to stimulate the 2',5'-oligoadenylate synthetase, which enables one to correct pathological changes in the cells and to intensify adaptive reactions of immune systems.

  7. Heterogeneous clinical spectrum of interstitial lung disease in patients with anti-EJ anti-synthetase syndrome: a case series.

    PubMed

    Giannini, Margherita; Notarnicola, Antonella; Dastmalchi, Maryam; Lundberg, Ingrid E; Lopalco, Giuseppe; Iannone, Florenzo

    2016-09-01

    Auto-antibodies against aminoacyl-tRNA-synthetases (anti-ARS Abs) represent the hallmark of the anti-synthetase syndrome that is defined as the clinical association of fever, Raynaud's phenomenon, myositis, interstitial lung disease (ILD), arthritis and mechanic's hands. Recently, differences in clinical features depending on specific anti-ARS Abs have been reported. We describe three cases of anti-EJ (anti-glycyl) antibody-positive patients presenting with ILD as a common feature, but with heterogeneous histopathological and radiographic patterns and with different responses to treatment. Relapsing-remittent fever, refractory muscle involvement and seronegative arthritis were also striking clinical manifestations.

  8. Conductance Distributions for Empirical Orthogonal Function Analysis and Optimal Interpolation

    NASA Astrophysics Data System (ADS)

    Knipp, Delores; McGranaghan, Ryan; Matsuo, Tomoko

    2016-04-01

    We show the first characterizations of the primary modes of ionospheric Hall and Pedersen conductance variability as empirical orthogonal functions (EOFs). These are derived from six satellite years of Defense Meteorological Satellite Program (DMSP) particle data acquired during the rise of solar cycles 22 and 24. The 60 million DMSP spectra were each processed through the Global Airlglow Model. This is the first large-scale analysis of ionospheric conductances completely free of assumption of the incident electron energy spectra. We show that the mean patterns and first four EOFs capture ˜50.1 and 52.9% of the total Pedersen and Hall conductance variabilities, respectively. The mean patterns and first EOFs are consistent with typical diffuse auroral oval structures and quiet time strengthening/weakening of the mean pattern. The second and third EOFs show major disturbance features of magnetosphere-ionosphere (MI) interactions: geomagnetically induced auroral zone expansion in EOF2 and the auroral substorm current wedge in EOF3. The fourth EOFs suggest diminished conductance associated with ionospheric substorm recovery mode. These EOFs are then used in a new optimal interpolation (OI) technique to estimate complete high-latitude ionospheric conductance distributions. The technique combines particle precipitation-based calculations of ionospheric conductances and their errors with a background model and its error covariance (estimated by EOF analysis) to infer complete distributions of the high-latitude ionospheric conductances for a week in late 2011. The OI technique captures: 1) smaller-scaler ionospheric conductance features associated with discrete precipitation and 2) brings ground- and space-based data into closer agreement. We show quantitatively and qualitatively that this new technique provides better ionospheric conductance specification than past statistical models, especially during heightened geomagnetic activity.

  9. Hybrid proper orthogonal decomposition formulation for linear structural dynamics

    NASA Astrophysics Data System (ADS)

    Placzek, A.; Tran, D.-M.; Ohayon, R.

    2008-12-01

    Hybrid proper orthogonal decomposition (PODh) formulation is a POD-based reduced-order modeling method where the continuous equation of the physical system is projected on the POD modes obtained from a discrete model of the system. The aim of this paper is to evaluate the hybrid POD formulation and to compare it with other POD formulations on the simple case of a linear elastic rod subject to prescribed displacements in the perspective of building reduced-order models for coupled fluid-structure systems in the future. In the first part of the paper, the hybrid POD is compared to two other formulations for the response to an initial condition: an approach based on the discrete finite elements equation of the rod called the discrete POD (PODd), and an analytical approach using the exact solution of the problem and consequently called the analytical POD (PODa). This first step is useful to ensure that the PODh performs well with respect to the other formulations. The PODh is therefore used afterwards for the forced motion response where a displacement is imposed at the free end of the rod. The main contribution of this paper lies in the comparison of three techniques used to take into account the non-homogeneous Dirichlet boundary condition with the hybrid POD: the first method relies on control functions, the second on the penalty method and the third on Lagrange multipliers. Finally, the robustness of the hybrid POD is investigated on two examples involving firstly the introduction of structural damping and secondly a nonlinear force applied at the free end of the rod.

  10. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  11. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues.

    PubMed

    Taylor, J C; Markham, G D

    2000-02-11

    S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues. PMID:10660564

  12. Crystal Structure and Function of 5-Formaminoimidazole-4-carboxamide Ribonucleotide Synthetase from Methanocaldococcus jannaschii

    SciTech Connect

    Zhang, Yang; White, Robert H.; Ealick, Steven E.

    2008-08-06

    Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.

  13. Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase

    PubMed Central

    Sun, Xiaolin; Bognar, Andrew L.; Baker, Edward N.; Smith, Clyde A.

    1998-01-01

    Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates. PMID:9618466

  14. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I.

    PubMed

    McCudden, C R; Powers-Lee, S G

    1996-07-26

    Carbamoyl-phosphate synthetase I (CPSase I) catalyzes the entry and rate-limiting step in the urea cycle, the pathway by which mammals detoxify ammonia. One facet of CPSase I regulation is a requirement for N-acetylglutamate (AGA), which induces an active enzyme conformation and does not participate directly in the chemical reaction. We have utilized labeling with carbodiimide-activated [14C]AGA to identify peptides 120-127, 234-237, 625-630, and 1351-1356 as potentially being near the binding site for AGA. Identification of peptide 1351-1356 confirms the previous demonstration (Rodriquez-Aparicio, L. B., Guadalajara, A. M., and Rubio, V.(1989) Biochemistry 28, 3070-3074) that the C-terminal region is involved in binding AGA. Identification of peptides 120-127 and 234-237 constitutes the first evidence that the N-terminal region of the synthetase is involved in ligand binding. Since peptides 631-638 and 1327-1348 have been identified near the ATP site of CPSase I (Potter, M. D., and Powers-Lee, S. G.(1992) J. Biol. Chem. 267, 2023-2031), the present finding of involvement of peptides 625-630 and 1351-1356 at an "allosteric" activator site was unexpected. The idea that portions of the AGA effector site might be derived from an ancestral glutamine substrate site via a gene duplication and diversification event was considered. PMID:8663466

  15. Regulation of an Escherichia coli/mammalian chimeric carbamoyl-phosphate synthetase.

    PubMed

    Sahay, N; Guy, H I; Liu, X; Evans, D R

    1998-11-20

    Carbamoyl-phosphate synthetase (CPSase) consists of a 120-kDa synthetase domain (CPS) that makes carbamoyl phosphate from ATP, bicarbonate, and ammonia usually produced by a separate glutaminase domain. CPS is composed of two subdomains, CPS.A and CPS.B. Although CPS.A and CPS.B have specialized functions in intact CPSase, the separately cloned subdomains can catalyze carbamoyl phosphate synthesis. This report describes the construction of a 58-kDa chimeric CPSase composed of Escherichia coli CPS.A catalytic subdomains and the mammalian regulatory subdomain. The catalytic parameters are similar to those of the E. coli enzyme, but the activity is regulated by the mammalian effectors and protein kinase A phosphorylation. The chimera has a single site that binds phosphoribosyl 5'-pyrophosphate (PRPP) with a dissociation constant of 25 microM. The dissociation constant for UTP of 0.23 mM was inferred from its effect on PRPP binding. Thus, the regulatory subdomain is an exchangeable ligand binding module that can control both CPS.A and CPS.B domains, and the pathway for allosteric signal transmission is identical in E. coli and mammalian CPSase. A deletion mutant that truncates the polypeptide within a postulated regulatory sequence is as active as the parent chimera but is insensitive to effectors. PRPP and UTP bind to the mutant, suggesting that the carboxyl half of the subdomain is essential for transmitting the allosteric signal but not for ligand binding. PMID:9813025

  16. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    PubMed

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  17. Impaired Function is a Common Feature of Neuropathy-Associated Glycyl-tRNA Synthetase Mutations

    PubMed Central

    Griffin, Laurie B.; Sakaguchi, Reiko; McGuigan, David; Gonzalez, Michael A.; Searby, Charles; Züchner, Stephan; Hou, Ya-Ming; Antonellis, Anthony

    2014-01-01

    Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, thirteen GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset. PMID:25168514

  18. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies.

  19. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. PMID:27225077

  20. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.

  1. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress

    PubMed Central

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A. G.; Santamaría-Gómez, Javier; Patterson, Carl J.; Foster, Andrew W.; Bru-Martínez, Roque; Robinson, Nigel J.; Luque, Ignacio

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  2. Search for primitive Methanopyrus based on genetic distance between Val- and Ile-tRNA synthetases.

    PubMed

    Yu, Zhiliang; Takai, Ken; Slesarev, Alexei; Xue, Hong; Wong, J Tze-Fei

    2009-10-01

    Since evidence indicates that the Last Universal Common Ancestor (LUCA) was phylogenetically closest to Methanopyrus kandleri among living organisms with elucidated genomes, this study has been directed to a search for the most primitive Methanopyrus lineage. For this purpose, the divergence of valyl-tRNA synthetase (ValRS) and isoleucyl-tRNA synthetase (IleRS) was employed as a measure of primitivity. Comparison of Methanopyrus kandleri and the Methanopyrus isolates GC34 and GC37 from the Pacific Ocean and KOL6, TAG1, TAG11, and SNP6 from the Atlantic Ocean established that the Pacific lineages are more primitive than the Atlantic lineages. Both the groups, however, are younger than environmental genomes from the Kairei Field of Central Indian Ridge in the Indian Ocean. These results showed that different Methanopyrus isolates differ significantly with respect to ValRS-IleRS divergence. On this basis, genomes giving rise to the ValRS and IleRS gene fragments from the Central Indian Ridge represent the most primitive Methanopyrus, phylogenetically the oldest living lineage closest to LUCA. PMID:19841848

  3. Human Tyr-tRNA synthetase is a potent PARP-1 activating effector target for resveratrol

    PubMed Central

    Sajish, Mathew; Schimmel, Paul

    2014-01-01

    Resveratrol (RSV) is reported to extend life span1,2 and provide cardio-neuro-protective3, anti-diabetic4, and anti-cancer effects3,5 by initiating a stress response2 that induces survival genes. Because human tyrosyl tRNA synthetase (TyrRS) translocates to the nucleus under stress conditions6, we considered the possibility that the tyrosine-like phenolic ring of RSV might fit into the active site pocket to effect a nuclear role. Here we present a 2.1Å co-crystal structure of RSV bound to the active site of TyrRS. RSV nullified the catalytic activity and redirected TyrRS to a nuclear function, stimulating NAD+-dependent auto-poly-ADP-ribosylation of PARP-1. Downstream activation of key stress signaling pathways were causally connected to TyrRS-PARP-1-NAD+ collaboration. This collaboration was also demonstrated in the mouse, and was specifically blocked in vivo by a RSV-displacing tyrosyl adenylate analog. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites7, here a non-spliced TyrRS catalytic null reveals a new PARP-1- and NAD+-dependent dimension to the physiological mechanism of RSV. PMID:25533949

  4. Biosynthesis of Branched-Chain Amino Acids in Schizosaccharomyces pombe: Properties of Acetohydroxy Acid Synthetase1

    PubMed Central

    McDonald, Roderick A.; Satyanarayana, T.; Kaplan, J. G.

    1973-01-01

    The regulatory properties of acetohydroxy acid synthetase (AHAS), the first enzyme in the biosynthetic pathway to valine and the second in the isoleucine pathway, were investigated in the fission yeast Schizosaccharomyces pombe. The enzyme was partially purified from crude extracts by protamine sulfate treatment, ammonium sulfate fractionation, and gel filtration through Sephadex G-25. AHAS from S. pombe is unique in that its activity shows a single peak around pH 6.5; high sensitivity to feedback inhibition by valine at this pH (Ki = 0.1 mM) indicates that the enzyme is involved in valine biosynthesis. Pyruvate saturation kinetics of AHAS extracted from cells grown on glycerol as sole carbon and energy source were normal and hyperbolic. In contrast, the enzyme from glucose-grown cells exhibited sigmoidal saturation kinetics, an effect which disappeared when the synthetase from such cells was partially purified. This phenomenon was shown to be due to competition for pyruvate between AHAS and pyruvate decarboxylase; the latter enzyme is present in large amounts in cells fermenting glucose. Valine inhibition is noncompetitive in nature, and this effector exhibits homotropic cooperative effects; isoleucine is a less-potent inhibitor of AHAS activity. Mercurial treatment reversibly desensitized the enzyme to valine inhibition. On the basis of these data, the S. pombe AHAS appears to be an allosteric regulatory enzyme with the properties of a negative V system. PMID:4698210

  5. Regulation of Nodule Glutamine Synthetase by CO2 Levels in Bean (Phaseolus vulgaris L.) 1

    PubMed Central

    Ortega, José-Luis; Sánchez, Federico; Soberón, Mario; Flores, Miguel Lara

    1992-01-01

    Nodulated bean (Phaseolus vulgaris) plants were grown for 17 days after infection in normal (0.02%) CO2 and from day 8 to 17 in high (0.1%) CO2 in order to increase nitrogen fixation and define how nodule glutamine synthetase (GS) isoforms are regulated by the ammonia derived from the bacteroid. Nitrogenase activity was detected by day 10, and by day 17 activity was over twofold higher in 0.1% of CO2 compared with plants grown in 0.02% CO2 and inoculated with Rhizobium wild-type strain CE3. Likewise, plant fresh weight increased in response to increased CO2, particularly in plants inoculated with the Rhizobium phaseoli mutant strain CFN037. Glutamine synthetase specific activity increased 2.5- to 6.5-fold from day 11 to 17. However, increased CO2 did not appear to have an effect on GS specific activity. Analysis of the nodule GS polypeptide composition revealed that the γ polypeptide was significantly reduced in response to high CO2, whereas the β polypeptide was not affected. The significance of this result in relation to the regulation of GS isoforms and their role in the assimilation of ammonia in the nodule is discussed in this paper. ImagesFigure 4 PMID:16668681

  6. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase.

    PubMed

    Roy, Hervé; Ling, Jiqiang; Alfonzo, Juan; Ibba, Michael

    2005-11-18

    Accurate selection of amino acids is essential for faithful translation of the genetic code. Errors during amino acid selection are usually corrected by the editing activity of aminoacyl-tRNA synthetases such as phenylalanyl-tRNA synthetases (PheRS), which edit misactivated tyrosine. Comparison of cytosolic and mitochondrial PheRS from the yeast Saccharomyces cerevisiae suggested that the organellar protein might lack the editing activity. Yeast cytosolic PheRS was found to contain an editing site, which upon disruption abolished both cis and trans editing of Tyr-tRNA(Phe). Wild-type mitochondrial PheRS lacked cis and trans editing and could synthesize Tyr-tRNA(Phe), an activity enhanced in active site variants with improved tyrosine recognition. Possible trans editing was investigated in isolated mitochondrial extracts, but no such activity was detected. These data indicate that the mitochondrial protein synthesis machinery lacks the tyrosine proofreading activity characteristic of cytosolic translation. This difference between the mitochondria and the cytosol suggests that either organellar protein synthesis quality control is focused on another step or that translation in this compartment is inherently less accurate than in the cytosol. PMID:16162501

  7. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone.

    PubMed

    Steinchen, Wieland; Schuhmacher, Jan S; Altegoer, Florian; Fage, Christopher D; Srinivasan, Vasundara; Linne, Uwe; Marahiel, Mohamed A; Bange, Gert

    2015-10-27

    Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named "(p)ppGpp"] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp-but not ppGpp-positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles.

  8. [Modification of phenylalanyl-tRNA-synthetase from Escherichia coli MRE600 by adenosine-5'-trimetaphosphate].

    PubMed

    Khodyreva, S N; Nevinskiĭ, G A; Ankilova, V N; Lavrik, O I

    1983-01-01

    Modification of phenylalanyl-tRNA synthetase from E. coli MRE600 by adenosine-5'-trimetaphosphate, phosphorylating analog of ATP was shown to bring about the enzyme inactivation in the reactions of tRNA aminoacylation and ATP-[32P]pyrophosphate exchange. ATP when added in the reaction mixture protects the enzyme against inactivation in both reactions and decreases the level of covalent attachment of the analog. Phenylalanine has no protective effect. tRNA exhibits slight protective effect. Adenosine-5'-trimetaphosphate modifies both types (alpha and beta) of subunits of phenylalanyl-tRNA synthetase which is of alpha 2 beta 2 structure. ATP protects both types of the enzyme subunits against the covalent attachment of the analog. Disposition of the ATP-binding centers in the contact region of the nonequivalent subunits of the enzyme was proposed. The level of covalent attachment of the analog to the enzyme exceeds the number of the enzyme active sites that may be a consequence of the other nucleotide-binding center labeling. PMID:6361520

  9. The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis.

    PubMed

    Tang, Weixin; Thibodeaux, Gabrielle N; van der Donk, Wilfred A

    2016-09-16

    Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Nonenzymatic cyclization of the small subunit of a virulence lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a Dhx-Dhx-Xxx-Xxx-Cys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities. PMID:27348535

  10. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone

    PubMed Central

    Steinchen, Wieland; Schuhmacher, Jan S.; Altegoer, Florian; Fage, Christopher D.; Srinivasan, Vasundara; Linne, Uwe; Marahiel, Mohamed A.; Bange, Gert

    2015-01-01

    Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named “(p)ppGpp”] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp—but not ppGpp—positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles. PMID:26460002

  11. Neddylation requires glycyl-tRNA synthetase to protect activated E2.

    PubMed

    Mo, Zhongying; Zhang, Qian; Liu, Ze; Lauer, Janelle; Shi, Yi; Sun, Litao; Griffin, Patrick R; Yang, Xiang-Lei

    2016-08-01

    Neddylation is a post-translational modification that controls the cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme in protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not knockdown of a different tRNA synthetase, decreased the global level of neddylation and caused cell-cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds the APPBP1 subunit of E1 and captures and protects activated E2 (NEDD8-conjugated Ubc12) before the activated E2 reaches a downstream target. Therefore, GlyRS functions as a chaperone that critically supports neddylation. This function is probably conserved in all eukaryotic GlyRS enzymes and may contribute to the strong association of GlyRS with cancer progression. PMID:27348078

  12. Codon usage, amino acid usage, transfer RNA and amino-acyl-tRNA synthetases in Mimiviruses.

    PubMed

    Colson, Philippe; Fournous, Ghislain; Diene, Seydina M; Raoult, Didier

    2013-01-01

    Mimiviruses are giant viruses that infect phagocytic protists, including Acanthamoebae spp., which were discovered during the past decade. They are the current record holder among viruses for their large particle and genome sizes. One group is composed of three lineages, referred to as A, B and C, which include the vast majority of the Mimiviridae members. Cafeteria roenbergensis virus represents a second group, though the Mimiviridae family is still expanding. We analyzed the codon and amino acid usages in mimiviruses, as well as both the transfer RNA (tRNA) and amino acyl-tRNA synthetases. We confirmed that the codon and amino acid usages of these giant viruses are highly dissimilar to those in their amoebal host Acanthamoeba castellanii and are instead correlated with the high adenine and thymine (AT) content of Mimivirus genomes. We further describe that the set of tRNAs and amino acyl-tRNA synthetases in mimiviruses is globally not adapted to the codon and amino acid usages of these viruses. Notwithstanding, Leu(TAA)tRNA, present in several Mimivirus genomes and in multiple copies in some viral genomes, may complement the amoebal tRNA pool and may contribute to accommodate the viral AT-rich codons. In addition, we found that the genes most highly expressed at the beginning of the Mimivirus replicative cycle have a nucleotide content more adapted to the codon usage in A.castellanii.

  13. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo.

    PubMed

    Novoa, Eva Maria; Camacho, Noelia; Tor, Anna; Wilkinson, Barrie; Moss, Steven; Marín-García, Patricia; Azcárate, Isabel G; Bautista, José M; Mirando, Adam C; Francklyn, Christopher S; Varon, Sònia; Royo, Miriam; Cortés, Alfred; Ribas de Pouplana, Lluís

    2014-12-23

    Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo. PMID:25489076

  14. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.

    PubMed

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-04-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes.

  15. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  16. Oxygen-dependent inactivation of gramicidin S synthetase in Bacillus brevis.

    PubMed Central

    Friebel, T E; Demain, A L

    1977-01-01

    Incorporation of L-[14C]ornithine into gramicidin S by crude, unfractionated lysozyme extracts of Bacillus brevis ATCC 9999 was shown to represent the activity of the gramicidin synthetase complex. Frozen-thawed cells were the source of active extracts, but when cells were shaken in air at 37 degrees C, they rapidly lost activity in a first-order reaction with a half-life of 13 min. Protease inhibitors and inhibitors of energy metabolism had no effect on the inactivation process in frozen-thawed cells. Stabilization was achieved when the cells were shaken in nitrogen or helium instead of air. The addition of dithiothreitol produced a moderate degree of stabilization. The L-ornithine- and D-phenylalanine-activating activities of the gramicidin S synthetase complex were also lost during aeration of the cells. Crude cell-free extracts also lost activity when they were shaken in oxygen, but, in this case, inactivation was slower (half-life of 80 min). Nitrogen also stabilized these cell-free extracts. PMID:68033

  17. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli.

    PubMed

    Jayalakshmi, R; Sumathy, K; Balaram, Hemalatha

    2002-06-01

    Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.

  18. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis

    PubMed Central

    Gaudelli, Nicole M.; Long, Darcie H.; Townsend, Craig A.

    2014-01-01

    Non-ribosomal peptide synthetases (NRPSs) are giant enzymes comprised of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks.1 The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Although penicillins and cephalosporins are synthesised from a classically derived NRPS tripeptide (from ACVS, δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine synthetase)2, we now report an unprecedented NRPS activity to both assemble a serine-containing peptide and mediate its cyclisation to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation (C) domain, which typically carries out peptide bond formation during product assembly, was found to also synthesise the embedded 4-membered ring. Here, a mechanism is proposed and supporting experiments are described, which is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.3,4 PMID:25624104

  19. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

    PubMed Central

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J.; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  20. Characteristics of a magnetic fluid under an orthogonal alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Hu, J. H.; Zou, J. B.; Zhao, B.; Li, Y.

    2016-07-01

    Nonlinearity is a primary characteristic of a magnetic fluid. Under an orthogonal alternating magnetic field, the magnetization characteristics change, which produce a variable magnetic field in the magnetic fluid region. A mathematical model of a magnetic fluid under an orthogonal alternating magnetic field is here proposed. The model is solved by an analytic method, and the validity of the solution is verified using the finite element method in addition to experimental results. It is shown that the frequency of the magnetic field in a magnetic fluid is twice that of the orthogonal alternating magnetic field.