Science.gov

Sample records for oscillating plate airflow

  1. Investigation of non-uniform airflow signal oscillation during high frequency chest compression

    PubMed Central

    Sohn, Kiwon; Warwick, Warren J; Lee, Yong W; Lee, Jongwon; Holte, James E

    2005-01-01

    Background High frequency chest compression (HFCC) is a useful and popular therapy for clearing bronchial airways of excessive or thicker mucus. Our observation of respiratory airflow of a subject during use of HFCC showed the airflow oscillation by HFCC was strongly influenced by the nonlinearity of the respiratory system. We used a computational model-based approach to analyse the respiratory airflow during use of HFCC. Methods The computational model, which is based on previous physiological studies and represented by an electrical circuit analogue, was used for simulation of in vivo protocol that shows the nonlinearity of the respiratory system. Besides, airflow was measured during use of HFCC. We compared the simulation results to either the measured data or the previous research, to understand and explain the observations. Results and discussion We could observe two important phenomena during respiration pertaining to the airflow signal oscillation generated by HFCC. The amplitudes of HFCC airflow signals varied depending on spontaneous airflow signals. We used the simulation results to investigate how the nonlinearity of airway resistance, lung capacitance, and inertance of air characterized the respiratory airflow. The simulation results indicated that lung capacitance or the inertance of air is also not a factor in the non-uniformity of HFCC airflow signals. Although not perfect, our circuit analogue model allows us to effectively simulate the nonlinear characteristics of the respiratory system. Conclusion We found that the amplitudes of HFCC airflow signals behave as a function of spontaneous airflow signals. This is due to the nonlinearity of the respiratory system, particularly variations in airway resistance. PMID:15904523

  2. Investigation of nanosecond pulsed dielectric barrier discharge using plate-to-plate electrode with asymmetric dielectric arrangement in airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Atmospheric pressure dielectric barrier discharge plasma is produced in airflow by applying nanosecond high voltage pulses with peak voltage about 35 kV and rising time about 40 ns on a plate-to-plate electrode arrangement. The effects of airflow rate (0-50 m/s) on the discharge characteristics are investigated under different barrier conditions (the bare anode case and the bare cathode case). For both cases, the breakdown voltage and the time lag increase distinctly and the discharge intensity decreases sharply when the airflow rate increases from 0 to 30 m/s, and then keep almost constant until the airflow rate is further increased to 50 m/s. For the bare anode case (the cathode is covered by dielectric plate), the discharge mode transforms gradually from filamentary to diffuse discharge with the increasing airflow rate. While for the bare cathode case, some micro-discharge channels are still excited, though the discharge becomes more diffuse when the airflow rate is higher than 30 m/s. By acquiring the time-resolved images of the discharge, it is proved that it is the primary discharge which becomes diffuse when airflow is introduced and the following two discharges of the same voltage pulse occur principally at the positions where the primary discharge is more intense. And in both cases, the plasma temperatures are reduced, but the degree is different. All the phenomena can be explained mainly by the variation of the space charge distribution when the airflow is introduced into the discharge gap. And it is indicated that the bare anode case has an advantage in obtaining diffuse discharge.

  3. Limit cycle oscillation of a fluttering plate

    NASA Astrophysics Data System (ADS)

    Ye, Wei-Liang

    1992-09-01

    The limit cycle oscillation for a cantilever plate in a uniform flow stream is investigated. Von Karman's theory for a large deflection plate and quasi-steady aerodynamic theory are assumed. The equations for computing the nonlinear oscillation of a fluttering cantilever plate are derived by means of Rayleigh-Ritz approach. Lagrange's equations and a set of mode function expansions are employed. Time marching simulation is used to determine the limit cycle oscillation and fluttering boundary. The results indicate that the modal expansion is of convergence. The length-to-width ratio of a plate has a great effect on the flutter amplitude of the limit cycle.

  4. The planar jet-plate oscillator

    NASA Astrophysics Data System (ADS)

    Arthurs, David; Ziada, Samir

    2011-01-01

    The aeroacoustic noise generated by a high speed, planar gas jet impinging on a flat plate is investigated experimentally. The jet used in this study is typical of those commonly found in industrial applications such as in various coating control and heat transfer processes. Normal jet impingement on the plate is found to generate strong acoustic tones over a wide range of impingement distances and jet velocities. The characteristics of these tones, as a function of the jet velocity and impingement distance, are quantified. Phase and amplitude measurements of the pressure fluctuations on the impingement plate indicate that the acoustic tones are generated by an antisymmetric instability mode of the jet oscillation. The effect of plate inclination in both the transverse and span-wise directions, with respect to the incident jet, is also studied. The jet-plate tone is found to be much more sensitive to changes in the span-wise plate inclination than to changes in the transverse inclination, but in both cases, a complete suppression of the tone is found to be possible.

  5. Oscillating layer thickness and vortices generated in oscillation of finite plate

    NASA Astrophysics Data System (ADS)

    Sin, V. K.; Wong, I. K.

    2016-06-01

    Moving mesh strategy is used in the model of flow induced by oscillating finite plate through software - COMSOL Multiphysics. Flow is assumed to be laminar and arbitrary Lagrangian-Eulerian method is used for moving mesh in the simulation. Oscillating layer thickness is found which is different from the analytical solution by 2 to 3 times depends on the oscillating frequency. Vortices are also observed near the oscillating finite plate because of the edge effect of the finite plate.

  6. Effects of combined treatment with rhDNase and airflow oscillations on spinnability of cystic fibrosis sputum in vitro.

    PubMed

    Dasgupta, B; Tomkiewicz, R P; Boyd, W A; Brown, N E; King, M

    1995-08-01

    Treatment with either rhDNase or high-frequency oscillation has been shown to be effective in improving the physical and transport properties of airway secretions in cystic fibrosis (CF). The objects of this in vitro study was to examine whether combined treatment with oscillation and rhDNase results in greater change of CF sputum spinnability than either treatment by itself. Aliquots of sputum (0.4 g) from eight CF patients were subjected to the following protocols for 15 minutes and then followed for a total of 30 minutes: 1) incubation with 0.04 ml DNase 50 micrograms rhDNase/normal saline (10% dilution) at 37 degrees C to achieve 5 micrograms DNase/g of sputum final concentration; 2) airflow oscillation at 27 Hz similar to the airflow magnitude produced by a commercial high-frequency chest compression (HFCC) device; 3) negative control with no treatment; 4) positive (dilution) control, incubating with 10% saline by volume; 5) combination of DNase and oscillation, and 6) combination of saline and oscillation. For each protocol, sputum spinnability (in mm, mean +/- SD) was measured by means of a filancemeter at baseline, 15, and 30 minutes. Treatment with DNase decreased spinnability significantly more than either saline or oscillation at 15 and 30 minutes (P < 0.02 and P < 0.04, respectively). Incubation with saline or oscillation of CF sputum for 15 and 30 minutes decreased spinnability significantly compared with control. The combination of DNase and oscillation decreased spinnability significantly more than treatment with DNase alone (3.74 +/- 0.45 vs. 6.54 +/- 0.73 at 15 minutes, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Parallel-Plate Electrostatic Dual Mass Oscillator

    SciTech Connect

    Allen, James J.; Dyck, Christopher W.; Huber, Robert J.

    1999-07-22

    A surface-micromachined two-degree-of-freedom system that was driven by parallel-plate actuation at antiresonance was demonstrated. The system consisted of an absorbing mass connected by folded springs to a drive mass. The system demonstrated substantial motion amplification at antiresonance. The absorber mass amplitudes were 0.8-0.85 pm at atmospheric pressure while the drive mass amplitudes were below 0.1 pm. Larger absorber mass amplitudes were not possible because of spring softening in the drive mass springs. Simple theory of the dual-mass oscillator has indicated that the absorber mass may be insensitive to limited variations in strain and damping. This needs experimental verification. Resonant and antiresonant frequencies were measured and compared to the designed values. Resonant frequency measurements were difficult to compare to the design calculations because of time-varying spring softening terms that were caused by the drive configuration. Antiresonant frequency measurements were close to the design value of 5.1 kHz. The antiresonant frequency was not dependent on spring softening. The measured absorber mass displacement at antiresonance was compared to computer simulated results. The measured value was significantly greater, possibly due to neglecting fringe fields in the force expression used in the simulation.

  8. Dynamic rheology of a supercooled polymer melt in nonuniform oscillating flows between rapidly oscillating plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2011-09-01

    The dynamic rheology of a polymer melt composed of short chains with ten beads between rapidly oscillating plates is investigated for various oscillation frequencies by using the hybrid simulation of the molecular dynamics and computational fluid dynamics. In the quiescent state, the melt is in a supercooled state, and the stress relaxation function G(t) exhibits a stretched exponential relaxation on the time scale of the α relaxation time τα (the structural relaxation of beads) and then follows the Rouse relaxation function characterized by the Rouse relaxation time τR (the conformational relaxation of polymer chains). In the rapidly oscillating plates, nonuniform boundary layer flows are generated over the plate due to inertia of the fluid, and the local rheological properties of the melt are spatially varied according to the local flow fields. The local strain and local strain rate of the melt monotonically decrease with the distance from the plate at each oscillation frequency of the plate, but their dependencies on the oscillation frequency at a fixed distance from the plate vary with the distance. Far from the plate, the local strain decreases as the oscillation frequency increases such that the dynamic rheology deviates from the linear moduli at the low oscillation frequencies rather than high oscillation frequencies. On the contrary, near the plate, the local strain rate increases with the oscillation frequency such that the shear thinning is enhanced at high oscillation frequencies. In close vicinity to the plate, the dynamic viscosity is mostly independent of the oscillation frequency, and the shear thinning behavior becomes similar to that observed in steady shear flows. We show the diagram of the loss tangent of the melt for different oscillation frequencies and local strain rates. It is seen that the melt generates three different rheological regimes, i.e., the viscous fluid regime, liquidlike viscoelastic regime, and solidlike viscoelastic regime

  9. Limit cycle oscillation of a fluttering cantilever plate

    NASA Technical Reports Server (NTRS)

    Dowell, Earl; Ye, Weiliang

    1991-01-01

    A response of a cantilever plate in high supersonic flow to a disturbance is considered. The Rayleigh-Ritz method is used to solve the nonlinear oscillation of a fluttering plate. It is found that the length-to-width ratio for a cantilever plate has a great effect on flutter amplitude of the limit cycle. For small length-to-width ratio, the dominant chordwise modes are translation and rotation. It is suggested that higher bending modes must be included to obtain an accurate prediction of the flutter onset and limit cycle oscillation. For large length-to-width ratio, significant chordwise bending is apparent in the flutter motion, with the trailing edge area having the largest motion.

  10. High frequency chest wall oscillation in patients with chronic air-flow obstruction.

    PubMed

    Piquet, J; Brochard, L; Isabey, D; de Cremoux, H; Chang, H K; Bignon, J; Harf, A

    1987-12-01

    In order to assess high frequency chest wall oscillation (HFCWO) as a way to assist spontaneous breathing in obstructive lung disease, we studied 12 patients with severe and stable COPD. HFCWO at 5 Hz were applied by means of an inflatable vest. In order to avoid any discomfort, oscillations were applied only during the expiratory phase of the spontaneous breathing cycle. We compared gas exchange and pattern of breathing during control and HFCWO periods, each lasting 15 min. Minute ventilation did not change, but the pattern of breathing was markedly altered during HFCWO: breathing frequency decreased (p less than 0.001) from 18 +/- 6/min during control to 14 +/- 5/min, whereas tidal volume increased (p less than 0.01) from 600 +/- 200 ml during control to 860 +/- 400 ml. Secondary to this change in the pattern of breathing, arterial PO2 increased slightly (p less than 0.01) from 54 +/- 7 mm Hg during control to 57 +/- 8 mm Hg during HFCWO, and arterial PCO2 significantly (p less than 0.01) decreased from 46 +/- 6 mm Hg during control to 43 +/- 7 mm Hg during HFCWO. In addition, duty cycle (Ti/Ttot) decreased (p less than 0.001) from 0.37 +/- 0.03 s during control to 0.29 +/- 0.05 s during HFCWO. Such a decrease in duty cycle suggest that inspiratory muscle work was facilitated under HFCWO. In 8 patients, we obtained the tension-time index (TTdi), or the product of duty cycle and Pdi/Pdimax, and found that this index significantly decreased (p less than 0.05) from 0.06 +/- 0.03 during control to 0.04 +/- 0.02 during HFCWO.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. External vortex pumping by oscillating plate arrays of mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Sensenig, Andrew; Kiger, Ken; Shultz, Jeffrey

    2009-11-01

    Mayfly nymphs are aquatic insects, many of which can generate ventilation currents by beating two linear arrays of external plate-like gills. The oscillation Reynolds number associated with the gill motion changes with animal size, varying from Re ˜ 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontogenetic changes in pumping mechanisms associated with transitions from a more viscous- to inertia-dominated flow. Observation of the 3-D kinematics of the gill motion of the species C. triangulifer reveal that the mayfly makes a transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Time-resolved PIV measurements within the inter-gill space reveal the basic elements of the flow consist of vortex rings generated by the strokes of the individual gills. For the larger Re case, the phasing of the plate motion generates a complex array of small vortices that interact to produce an intermittent dorsally directed jet. For Re<5, distinct vortices are still observed, but increased diffusion creates vortices that simultaneously envelope several gills, forcing a new flow pattern to emerge and preventing the effective use of the high Re stroke kinematics. Thus we argue the transition in the kinematics is a reflection of a single mechanism adapted over the traversed Re range, rather than a shift to a completely new mechanism. This work is supported by the NSF under grant CBET-0730907.

  12. Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Paimushin, V. N.; Firsov, V. A.

    2016-03-01

    A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.

  13. Oscillations of a spring-magnet system damped by a conductive plate

    NASA Astrophysics Data System (ADS)

    Ladera, C. L.; Donoso, G.

    2013-09-01

    We study the motion of a spring-magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level.

  14. Self-Sustained Oscillations in Flows around Long Blunt Plates

    NASA Astrophysics Data System (ADS)

    Hourigan, K.; Thompson, M. C.; Tan, B. T.

    2001-04-01

    The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t=16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.

  15. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  16. Effect of metachronal phasing on the pumping efficiency of oscillating plate arrays

    NASA Astrophysics Data System (ADS)

    Larson, Mary; Kiger, Ken T.; Abdelaziz, Khaled; Balaras, Elias

    2014-05-01

    A programmable oscillating plate array was constructed in order to study the detailed hydrodynamics of external pumping by a series of oscillating plates at Reynolds numbers on the order of 10. The array was modeled after the geometry and kinematics found in the nymphal mayfly (Ephemeroptera) Centroptilum triangulifer, and consisted of five plates, each of which could be actuated independently for stroke and pitch. Scaled tests were performed at a Reynolds number, Re = fL {g/2}/ ν = 18, with a single stroke kinematic pattern modeled after the living animal. In mayflies, and in many other oscillating plate systems, an antiplectic metachronal wave is used with a phase delay of approximately 90°, which corresponds to a travelling wave that moves from posterior to anterior with a wavelength of approximately four plates. In order to better understand possible reasons for why the animal system might favor the observed phase lag, ensemble-correlation stereo PIV measurements were made to reconstruct the unsteady three-dimensional phase averaged flow field at a resolution that allowed a uniform and converged estimate of the net pumped flux and the total energy dissipation within and around the vicinity of the gill array. The results indicate that the baseline case offered an optimal spot in the mass flux of fluid pumped through the array per unit energy expended, while also providing a great deal of flexibility in modifying the stroke amplitude without interference effects from adjacent gills.

  17. Self-sustained oscillations of a sinusoidally-deformed plate

    NASA Astrophysics Data System (ADS)

    Muriel, Diego F.; Cowen, Edwin A.

    2015-11-01

    Motivated by energy harvesting, the oscillatory motion of a deformed elastic material with aspect ratio Length/Width=2, immerse in an incompressible flow is studied experimentally. To induce the wave-like deformation a polycarbonate sheet is placed under longitudinal compression with external forcing provided by equispaced tension lines anchored in a frame. No additional constrains are placed in the material. Based on quantitative image-based edge detection, ADV, and PIV measurements, we document the existence of three natural states of motion. Bellow a critical velocity, a stable state presents a sinusoidal-like deformation with weak small perturbations. Above a critical velocity, instability appears in the form of a traveling wave with predictable dominant frequency accompanied by higher-order harmonics. As the flow velocity increases the instability converges faster to its limit cycle in the phase plane (e.g., vertical velocity and position), until the stable oscillatory mode transitions to chaos showing a broad energy spectrum and unstable limit cycle. The underlying objective is to induce the onset of the instability at lower critical velocities for higher bending rigidities, promoting possible energy extraction and increasing the range at which stable oscillations appear.

  18. Flexural-gravity circumferential and radial oscillations of a plate floating in shallow water

    NASA Astrophysics Data System (ADS)

    Shemelina, V. O.

    2016-05-01

    The natural and quasi-natural flexural-gravity oscillations of an elastic plate floating on a liquid surface have been studied numerically and analytically based on shallow-water long-wave theory. Dependences of the natural and quasi-natural frequencies on the geometrical parameters of the oscillation region have been investigated for the cases of bounded and unbounded basins. The effect of bottom irregularity in the form of a circular cylinder or a circular truncated cone on the natural and quasi-natural frequencies and functions has been examined.

  19. Entropy generation effects in a hydromagnetic free convection flow past a vertical oscillating plate

    NASA Astrophysics Data System (ADS)

    Butt, A. S.; Ali, A.

    2016-01-01

    An unsteady free convective flow of a viscous fluid past an oscillating plate is considered, and the effects of entropy generation are investigated. The governing partial differential equations are normalized by using suitable transformations, and an exact solution of the problem is obtained by using the Laplace transformation technique. The expressions for the velocity and temperature are then used to compute the skin friction, Nusselt number, local entropy generation number, and Bejan number.

  20. MHD Convective rotating flow past an oscillating porous plate with chemical reaction and Hall effects

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Gangadhar Reddy, M.

    2016-09-01

    In this paper, we have considered Hall effects on the unsteady MHD free convective rotating flow of visco-elastic fluid with heat and mass transfer near oscillating porous plate. The equations of the flow are solved by perturbation method for small elastic parameter. The analytical expressions for the velocity, temperature, concentration have been derived and also its behaviour is computationally discussed with the help of graphs. The skin friction, Nusselt number, and Sherwood number are also obtained analytically and their behaviour discussed.

  1. Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Guo, Xiao-ling; Tang, Guo-qiang; Liu, Ming-ming; Chen, Chuan-qi; Xie, Zhi-hua

    2016-09-01

    Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the

  2. Multi-frequency excitation of stiffened triangular plates for large amplitude oscillations

    NASA Astrophysics Data System (ADS)

    Askari, H.; Saadatnia, Z.; Esmailzadeh, E.; Younesian, D.

    2014-10-01

    Free and forced vibrations of triangular plate are investigated. Diverse types of stiffeners were attached onto the plate to suppress the undesirable large-amplitude oscillations. The governing equation of motion for a triangular plate, based on the von Kármán theory, is developed and the nonlinear ordinary differential equation of the system using Galerkin approach is obtained. Closed-form expressions for the free undamped and large-amplitude vibration of an orthotropic triangular elastic plate are presented using the two well-known analytical methods, namely, the energy balance method and the variational approach. The frequency responses in the closed-form are presented and their sensitivities with respect to the initial amplitudes are studied. An error analysis is performed and the vibration behavior, as well as the accuracy of the solution methods, is evaluated. Different types of the stiffened triangular plates are considered in order to cover a wide range of practical applications. Numerical simulations are carried out and the validity of the solution procedure is explored. It is demonstrated that the two methods of energy balance and variational approach have been quite straightforward and reliable techniques to solve those nonlinear differential equations. Subsequently, due to the importance of multiple resonant responses in engineering design, multi-frequency excitations are considered. It is assumed that three periodic forces are applied to the plate in three specific positions. The multiple time scaling method is utilized to obtain approximate solutions for the frequency resonance cases. Influences of different parameters, namely, the position of applied forces, geometry and the number of stiffeners on the frequency response of the triangular plates are examined.

  3. Development of a Flat-plate Cryogenic Oscillating Heat Pipe for Improving HTS Magnet Cooling

    NASA Astrophysics Data System (ADS)

    Natsume, K.; Mito, T.; Yanagi, N.; Tamura, H.

    A new method of including cryogenic oscillating heat pipes (OHPs) in the HTS coil windings as a thermal transport device has been studied. In this work, two type of OHPs are tested in low temperature. Employed working fluids are H2, Ne, N2. We have attained high performance thermal property using a bent-pipe cryogenic OHP as a prototype. Obtained effective conductivities have reached to 46000 W/m K. Then a flat-plate cryogenic OHP has been developed, that is suitable for imbedding in magnet windings. Preliminary experiments have been conducted and the result has been promising.

  4. On performance of an oscillating plate underwater propulsion system with variable chordwise flexibility at different depths of submergence

    NASA Astrophysics Data System (ADS)

    Barannyk, Oleksandr; Buckham, Bradley J.; Oshkai, Peter

    2012-01-01

    In this work, an oscillating plate propulsor undergoing a combination of heave translation and pitch rotation is investigated experimentally. The oscillation kinematics are inspired by swimming mechanisms employed by fish and other marine animals. The primary focus was on the propulsive characteristics of such oscillating plates, which were studied by means of direct force measurements in the thrust-producing regime. Experiments were performed at constant Reynolds number and constant heave amplitude. By varying the Strouhal number, the depth of submergence and the chordwise flexibility of the plate, it was possible to investigate corresponding changes in the generated thrust and the hydromechanical efficiency. It was possible to establish a set of parameters, including the driving frequency of the system, the ratio of rigid to flexible segment length of the plate, and the range of Strouhal numbers that led to an overall increase in thrust and efficiency. The experiments, involving plates with various ratios of rigid to flexible segment lengths, showed that greater flexibility increased the propulsive efficiency and thrust compared to an identical motion of the purely rigid plate. By submerging the plate at different depths, it was observed that the proximity of the propulsor to the bottom of the channel led to an overall increase in the thrust coefficient across the oscillation frequencies considered. The flow visualization revealed the formation of large dynamic stall vortices that influenced the wake structure, and suggested that their constructive interaction with trailing edge vortices might lead to overall improvement of thrust and efficiency.

  5. Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate

    NASA Astrophysics Data System (ADS)

    Koffi, Moise

    The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary

  6. Removal of particles from holes in submerged plates with oscillating bubbles

    NASA Astrophysics Data System (ADS)

    Pavard, Delphine; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2009-08-01

    This study is motivated by a common problem in submerged tubes and structures, which is the blockage of the tubes by pollutant particles or debris from the surrounding fluid. To clear the obstruction from the tube, an expanding bubble is used to propel the obstruction away from the tube (the tube is represented as a submerged transparent plate with a hole in our experiments). In some cases the obstruction removal effect is reinforced by the impacting jet of such a collapsing bubble. The bubble is generated via a simple low voltage electric spark discharge circuit. The pressure generated by the oscillating bubble effectively pushes the particle away from the tube, thereby successfully clearing the obstruction. High-speed photography is used to record and analyze the phenomenon. The speed of the particle is found to be around 1 m/s shortly after the collapse of the bubble. Interestingly, there is a clear difference between air-backed plates and water-backed plates in terms of bubble and particle dynamics. The bubbles in the current study are typically of millimeter size. Since the physics are similar for smaller bubbles, the process can possibly be downsized for other microapplications such as the removal of blood clots in vessels [S. R. Visuri et al., U.S. Patent No. 6428531 (August 6, 2002)].

  7. Airflow control system

    DOEpatents

    Motszko, Sean Ronald; McEnaney, Ryan Patrick; Brush, Jeffrey Alan; Zimmermann, Daniel E.

    2007-03-13

    A dual airflow control system for an environment having a first air zone and a second air zone. The system includes a first input device operable to generate a first input signal indicative of a desired airflow to the first zone and a second input device operable to generate a second input signal indicative of a desired airflow to the second zone. First and second flow regulators are configured to regulate airflow to the first and second zones, respectively, such that the first and second regulators selectively provide the airflow to each of the first and second zones based on the first and second input signals. A single actuator is associated with the first and second flow regulators. The actuator is operable to simultaneously actuate the first and second flow regulators based on an input from the first and second input devices to allow the desired airflows to the first and the second zones.

  8. Effect of kinematics and flexibility on the pumping dynamics of an array of oscillating plates

    NASA Astrophysics Data System (ADS)

    Saffaraval, Farhad; Kiger, Ken

    2015-11-01

    A robotic array of two-dimensional oscillating plates was constructed to examine the net pumping produced over a transition from viscous to inertia dominated flows. The actuators consist of single rigid plates or multiple rigid segments connected with a thin polymer film to provide for a specified degree of flexibility. The parameters for the study include: 1) inter-gill phase difference, 2) asymmetry of the protraction/retraction stroke speeds, and 3) the presence of a one-way elastic hinge. PIV measurements were conducted to examine the unsteady two-dimensional flow field at a sufficient resolution to provide measurements of the net pumped flow rate, energy dissipation, and pumping efficiency. Preliminary results at a Reynolds number of 15 show that the introduction of asymmetric flexibility under synchronous actuation of a sinusoidal waveform provides an increasing flow rate with increased flexibility. Introduction of an asymmetric stroke kinematics, however, appears to nullify the improvement effect of flexibility, with rigid and flexible gills providing comparable levels of pumping performance when using the same stroke pattern. Using a combination of stroke phasing and asymmetric kinematics shows further enhancement beyond the use of either individually. Work supported under NSF grant 1067066.

  9. Transitions in low Re pumping by oscillating plate arrays of mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Kiger, Ken; Sensenig, Andrew; Shultz, Jeffrey

    2008-11-01

    Mayfly nymphs are aquatic insects which alter behavior and metabolism to accommodate changes in ambient dissolved oxygen. Many species can generate a ventilation current to compensate for low oxygen levels by beating two linear arrays of plate-like gills that line the lateral edge of the abdomen. The oscillation Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontological changes in pumping mechanisms associated with transitions from a viscous- to inertia-dominated flow. Observation of the detailed 3-D kinematics of the gill motion of the species Centroptilum triangulifer reveal that the mayfly makes a marked transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Results of the time-resolved flow within the inter-gill space shows that for Re>12 the plate motion generates a complex array of bound and shed vortices, which interact to produce an intermittent dorsally directed jet. For the Re<5, distinct bound vortices are still observed, but increased diffusive effects creates vortices which simultaneously envelope several gills, forcing a new flow pattern to emerge. Details of the flow mechanism and its implications will be discussed. This work is supported by NSF under grant CBET-0730907.

  10. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  11. Assessing multizone airflow software

    SciTech Connect

    Lorenzetti, D.M.

    2001-12-01

    Multizone models form the basis of most computer simulations of airflow and pollutant transport in buildings. In order to promote computational efficiency, some multizone simulation programs, such as COMIS and CONTAM, restrict the form that their flow models may take. While these tools allow scientists and engineers to explore a wide range of building airflow problems, increasingly their use has led to new questions not answerable by the current generation of programs. This paper, directed at software developers working on the next generation of building airflow models, identifies structural aspects of COMIS and related programs that prevent them from easily incorporating desirable new airflow models. The paper also suggests criteria for evaluating alternate simulation environments for future modeling efforts.

  12. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate.

    PubMed

    Shahid, N

    2015-01-01

    Exact expressions of velocity, temperature and mass concentration have been calculated for free convective flow of fractional MHD viscous fluid over an oscillating plate. Expressions of velocity have been obtained both for sine and cosine oscillations of plate. Corresponding fractional differential equations have been solved by using Laplace transform and inverse Laplace transform. The expression of temperature and mass concentration have been presented in the form of Fox-H function and in the form of general Wright function, respectively and velocity is presented in the form of integral solutions using Generalized function. Some limiting cases of fluid and fractional parameters have been discussed to retrieve some solutions present in literature. The influence of thermal radiation, mass diffusion and fractional parameters on fluid flow has been analyzed through graphical illustrations. PMID:26543774

  13. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate.

    PubMed

    Ali, Farhad; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.

  14. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives

    NASA Astrophysics Data System (ADS)

    Shah, Nehad Ali; Khan, Ilyas

    2016-07-01

    This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α _2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow.

  15. Control of Tollmien-Schlichting Waves on a Flat Plate Using a Piezoelectric-Driven Oscillating Surface

    NASA Astrophysics Data System (ADS)

    Dell'Orso, Haley; Tuna, Burak; Memauro, Edward; Amitay, Michael

    2014-11-01

    Micro-air vehicles operate in the regime of low Reynolds numbers where the drag associated with skin friction is significant. One proposed method for drag reduction is to control the transition from laminar to turbulent flow by using active surface modification to either excite or suppress instabilities within the flow. To do so, the Piezoelectric-Driven Oscillating Surface (PDOS) actuator was developed and quantified. Two PDOS actuators were placed on a flat plate at two stream wise locations in a low Reynolds number flow. The upstream PDOS was actuated at a characteristic frequency appropriate to phase-lock Tollmien-Schlichting waves within the flow while the downstream PDOS was actuated at the anti-phase to reduce the magnitude of the T-S waves. Particle image velocimetry data were obtained along the centerline of the flat plate at different streamwise locations. Data showed that the upstream PDOS successfully locked-in to the instabilities in the flow and the growth of T-S waves was recorded over the increasing streamwise locations from the leading edge of the flat plate. Finally, the anti-phase (at the proper amplitude) was applied using the downstream PDOS and yielded substantial attenuation of the magnitude of the T-S waves.

  16. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  17. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  18. Unsteady Boundary Layer Flow and Heat Transfer of a Casson Fluid past an Oscillating Vertical Plate with Newtonian Heating

    PubMed Central

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782

  19. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    PubMed

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  20. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    NASA Astrophysics Data System (ADS)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  1. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  2. Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems

    NASA Astrophysics Data System (ADS)

    Pal, Debashis; Chakraborty, Suman

    2015-05-01

    We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave.

  3. Airflow models gaining clout

    SciTech Connect

    Post, N.M.

    1994-10-10

    Move over, mock-ups. So long, smoke bombs. Take a walk, wind tunnels. Computational fluid dynamics, a spaceage simulation technique, is gaining velocity in the building community. And the design of inner spaces may never be the same. CFD is an equation-intensive computer modeling method that can simulate transient and steady-state airflow patterns and temperature gradients, indoors or out. CFD is used to downsize heating, ventilating and air conditioning systems, locate air outlets, and in general, create spaces that offer creature comfort, provide quality air and use less energy. The method is good for new construction, retrofits and forensic work, for example to investigate a building fire or a contaminant. In a room, CFD helps engineers consider, over a period of time, the combined impacts of ventilation, size, shape, contents, weather, even fenestration. For its first decade or two, CFD stayed the near-exclusive domain of aerospace, defense and electronics. With few exceptions, the building community could not afford the supercomputers that were needed to run the tens of thousands of equations involved. However, in the past few years, thanks to the increasing power and decreasing cost of computers, CFD simulation became practical. Curtain wall designers are even using it, though not without some controversy. Indoor air quality specialists, smoke and fire-spread researchers, laboratory designers, energy engineers, code writers, architects, and plant and building engineers are uncharacteristically upbeat about the tool. {open_quotes}CFD modeling is so many light years ahead of design tools that exist,{close_quotes} says Mariano Rodriguez, director of research and development for architect The Hillier Group, Princeton, N.J. {open_quotes}It`s the next step up from a wind tunnel test, and you don`t need a $300,000 wind tunnel.{close_quotes}

  4. Visual exploration of nasal airflow.

    PubMed

    Zachow, Stefan; Muigg, Philipp; Hildebrandt, Thomas; Doleisch, Helmut; Hege, Hans-Christian

    2009-01-01

    Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various Information Visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities. PMID:19834215

  5. Visco-elastic effects with simultaneous thermal and mass diffusion in MHD free convection flow near an oscillating plate in the slip flow regime

    NASA Astrophysics Data System (ADS)

    Das, Bandita; Choudhury, Rita

    2016-06-01

    The present study analyzes the influence of visco-elastic flow of fluid through a porous medium bounded by an oscillating porous plate with heat source in the slip flow regime. Effects of heat transfer, mass transfer and chemical reaction are also taken into account. The porous plate is subjected to a transverse suction velocity. The dimensionless governing equations of the problem are solved by regular perturbation technique. The analytical expressions for the velocity, temperature, concentration, and Shearing stress have been obtained and illustrated graphically for different values of physical parameters involved in the problem. The investigation reveals that the visco-elastic fluid has significant effects on the considered flow field in comparison with Newtonian fluid flow phenomenon.

  6. Mechanical responses of rat vibrissae to airflow

    PubMed Central

    Yu, Yan S. W.; Graff, Matthew M.; Hartmann, Mitra J. Z.

    2016-01-01

    ABSTRACT The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors – able to sense both airflow and touch – and that they may play a particularly important role in anemotaxis. PMID:27030774

  7. Airflow dispersion in unsaturated soil.

    PubMed

    Gidda, T; Cann, D; Stiver, W H; Zytner, R G

    2006-01-01

    Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied. PMID:16246460

  8. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  9. Insert metering plates for gas turbine nozzles

    DOEpatents

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  10. The coupled airflow and thermal analysis problem in building airflow system simulation

    SciTech Connect

    Axley, J. ); Grot, R. )

    1989-01-01

    The Indoor Air Quality and Ventilation Group at the National Institute for Standards and Technology (NIST, formerly the National Bureau of Standards) has developed a method of building airflow analysis, based upon element assembly techniques, that has been successfully applied to the determination of the macroscopic characteristics of infiltration, exfiltration, and interzonal airflows in complex building airflow systems driven by wind pressures, buoyant forces, and the building HVAC system. This analytical method was formulated to be compatible with a discrete thermal analysis method, also based on element assembly techniques and developed earlier, which may be applied to problems of building thermal analysis. This paper reviews the theoretical bases of these two related methods and presents a theoretical framework for integrating the flow with the thermal analysis methods to solve the coupled airflow and thermal analysis problem in building airflow system simulation. Formulation of the coupled airflow-thermal analysis problem is presented and numerical methods for the solution of this problem are outlined.

  11. On an ill-posed model of oscillations of a flat plate with a variety of mounts on opposite sides

    NASA Astrophysics Data System (ADS)

    Iskakova, Ulzada A.

    2016-08-01

    In this paper, we consider a model case of stationary vibrations of a thin flat plate, one side of which is embedded, the opposite side is free, and the sides are freely leaned. In mathematical modeling, there is a local boundary value problem for the biharmonic equation in a rectangular domain. Boundary conditions are given on all boundary of the domain. We show that the considered problem is self-adjoint. Herewith, the problem is ill-posed. We show that the stability of solution to the problem is disturbed. Necessary and sufficient conditions of existence of the problem solution are found. Spaces of the ill-posedness of the considered problem are constructed.

  12. Airflow resistance of selected biomass materials

    SciTech Connect

    Cooper, S.C.; Sumner, H.R.

    1985-01-01

    Pressure drop created when air was forced through beds of selected biomass materials was determined. Materials tested included peanut hulls, peanut hull pellets, maize cobs, and wood shavings, chips and bark. The data were presented as logarithmic plots and equations of pressure drop versus airflow. The airflow resistances of the biomass materials increased with an increase in bulk density and were found to be in the range between values for ear and shelled maize. 12 references.

  13. Stiffness of sphere-plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium.

    PubMed

    Vlachová, Jana; König, Rebekka; Johannsmann, Diethelm

    2015-01-01

    The stiffness of micron-sized sphere-plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0-20 nm). The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM), where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate) (PMMA). The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson-Kendall-Roberts (JKR) model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo-Mindlin model. This finding is remarkable insofar, as the Cattaneo-Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor), which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting (i.e., a transport of

  14. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  15. Indirect evaporative cooler with condensation of primary airflow

    SciTech Connect

    Vollebregt, H.J.M.; Jong, T. de

    1994-12-31

    In this paper a new application for indirect evaporative cooling is introduced. This cooling principle may be used to cool and dehumidify closed greenhouses. A prototype indirect evaporative cooler with a crossflow configuration was built and its performance was determined in an experimental facility. During tests under Dutch design conditions of the greenhouse and outside air, the plate temperature was less than the dew point of the greenhouse air, so condensation occurred. The rates of sensible and latent heat transferred from the greenhouse air by the prototype cooler were determined. Also, the influence of greenhouse and outside air conditions and airflow rates in the cooler on the enthalpy efficiency was studied. Although the amount of condensation in the prototype indirect evaporative cooler was large, the resulting climate in a closed greenhouse may be more humid than that in a conventional one.

  16. 42 CFR 84.180 - Airflow resistance tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Purifying Particulate Respirators § 84.180 Airflow resistance tests. (a) Resistance to airflow will be... inhalation shall not exceed 35 mm water column height pressure and upon initial exhalation shall not exceed 25 mm water column height pressure....

  17. 42 CFR 84.180 - Airflow resistance tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Purifying Particulate Respirators § 84.180 Airflow resistance tests. (a) Resistance to airflow will be... inhalation shall not exceed 35 mm water column height pressure and upon initial exhalation shall not exceed 25 mm water column height pressure....

  18. 42 CFR 84.180 - Airflow resistance tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance tests. 84.180 Section 84.180... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.180 Airflow resistance tests. (a) Resistance to airflow will...

  19. 42 CFR 84.180 - Airflow resistance tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance tests. 84.180 Section 84.180... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.180 Airflow resistance tests. (a) Resistance to airflow will...

  20. 42 CFR 84.180 - Airflow resistance tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance tests. 84.180 Section 84.180... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.180 Airflow resistance tests. (a) Resistance to airflow will...

  1. A miniature airflow energy harvester from piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Sun, H.; Zhu, D.; White, N. M.; Beeby, S. P.

    2013-12-01

    This paper describes design, simulation, fabrication, and testing of a miniature wind energy harvester based on a flapping cantilevered piezoelectric beam. The wind generator is based on oscillations of a cantilever that faces the direction of the airflow. The oscillation is amplified by interactions between an aerofoil attached on the cantilever and a bluff body placed in front of the aerofoil. A piezoelectric transducer with screen printed PZT materials is used to extract electrical energy. To achieve the optimum design of the harvester, both computational simulations and experiments have been carried out to investigate the structure. A prototype of the wind harvester, with the volume of 37.5 cm3 in total, was fabricated by thick-film screen printing technique. Wind tunnel test results are presented to determine the optimum structure and to characterize the performance of the harvester. The optimized device finally achieved a working wind speed range from 1.5 m/s to 8 m/s. The power output was ranging from 0.1 to 0.86 μW and the open-circuit output voltage was from 0.5 V to 1.32 V.

  2. The effects of simultaneous electrophoresis and thermophoresis on particulate contamination of an inverted EUVL photomask surface in parallel airflow

    NASA Astrophysics Data System (ADS)

    Lee, Handol; Yook, Se-Jin; Young Han, Seog

    2012-10-01

    The combined influences of electrophoresis and thermophoresis on particle deposition on the inverted critical surface of a flat plate in parallel airflow were investigated by employing the statistical Lagrangian particle tracking approach in an effort to assess the degree of particulate contamination of EUVL photomasks during horizontal transport in cleanroom environments. The numerical method was validated through the comparison with the experimental data, found in the literature, about particle deposition velocity onto a wafer in vertical airflow with and without electrophoresis or thermophoresis. In addition, the validation of the present model was performed via the comparison with the theoretical prediction of particle deposition velocity onto a flat plate under no phoretic forces in parallel airflow. Then, the particle deposition velocity onto the face-down surface of a flat plate in parallel airflow was obtained by varying the temperature of the inverted critical surface in different strengths of uniform electric fields. Injected particles were assumed to be charged with -1 , 0, or +1 elementary unit of charge, in order to consider attractive or repulsive electric force. The degree of particulate contamination of the inverted critical surface was found to be significantly influenced by the combination of electrophoretic and thermophoretic effects.

  3. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  4. Parametric study of the cyclic behaviour of a hygroscopic matrix in a desiccant airflow system

    NASA Astrophysics Data System (ADS)

    Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.

    2011-09-01

    The study of the transport phenomena in desiccant airflow systems has been addressed in numerous research works, some of them concerning combined processes of cooling, dehumidification and energy recovery. In this paper a detailed numerical model is used to simulate the behaviour of a parallel-plate channel, cyclically exposed to two airflows with different inlet conditions, the plate being composed by a substrate and a desiccant porous layer. The modelled channel is considered to be representative of a real channel of a hygroscopic matrix that is operating at steady state regime, like it occurs in desiccant or enthalpy rotors. The numerical results are treated in order to represent the global behaviour of the hygroscopic rotor under steady state conditions. Results of a parametric study are presented as maps of isovalues of the heat and mass transfer rates and of the outlet states of both airflows, considering channels of distinct wall thickness, of different thickness of the desiccant and the subtract layers, together with wide ranges of the rotation speed and of the wheel partition. The mapped results presented provide an overview of the operation characteristics of hygroscopic rotors, allowing a quick determination of the optimum range of values for relevant parameters, such as the rotation speed and the wheel partition. The model is thus an interesting tool for design and manufacture purposes of enthalpy and desiccant wheels.

  5. Hybrid Mesh for Nasal Airflow Studies

    PubMed Central

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  6. Hybrid mesh for nasal airflow studies.

    PubMed

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  7. Considerations for efficient airflow design in cleanrooms

    SciTech Connect

    Xu, Tengfang

    2004-07-29

    A high-performance cleanroom should provide efficient energy performance in addition to effective contamination control. Energy-efficient designs can yield capital and operational cost savings, and can be part of a strategy to improve productivity in the cleanroom industry. Based upon in-situ measurement data from ISO Class 5 clean rooms, this article discusses key factors affecting cleanroom air system performance and benefits of efficient airflow design in clean rooms. Cleanroom HVAC systems used in the semiconductor, pharmaceutical, and healthcare industries are very energy intensive, requiring large volumes of cleaned air to remove or dilute contaminants for satisfactory operations. There is a tendency, however, to design excessive airflow rates into cleanroom HVAC systems, due to factors such as design conservatism, lack of thorough understanding of airflow requirements, concerns about cleanliness reliability, and potential design and operational liabilities. Energy use of cleanroom environmental systems varies with system type and design, cleanroom functions, and the control of critical parameters such as temperature and humidity. In particular, cleanroom cleanliness requirements specified by cleanliness class have an impact on overall energy use. A previous study covering Europe and the US reveals annual cleanroom electricity usage for cooling and fan energy varies significantly depending on cleanliness class, and may account for up to three-quarters of total annual operating costs. A study on a semiconductor cleanroom in Japan found air delivery systems account for more than 30% of total power consumption. It is evident that the main factors dictating cleanroom operation energy include airflow rates and HVAC system efficiency. Improving energy efficiency in clean rooms may potentially contribute to significant savings in the initial costs of the facilities as well as operation and maintenance costs. For example, energy consumption by a typical chip

  8. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  9. Co-Articulatory Airflow Characteristics of Intervocalic Voiceless Plosives

    ERIC Educational Resources Information Center

    Barry, William; Kuenzel, Hermann

    1975-01-01

    A pneumotachographic investigation of intervocalic /p/, /t/ and /k/ was undertaken to isolate physiological parameters responsible for coarticulatory air-flow phenomena. Airflow was most sensitive during the /k/ closure phase. The dynamics of the closure phase for each place of articulation and their implications for pneumotachography are…

  10. Airflow patterns in a human nasal model

    SciTech Connect

    Hornung, D.E.; Leopold, D.A.; Youngentob, S.L.; Sheehe, P.R.; Gagne, G.M.; Thomas, F.D.; Mozell, M.M.

    1987-02-01

    Nasal airflow patterns were studied by using xenon 133 gas to image the course taken by air as it flowed through a plastic model of the human nasal cavity. The model was produced from the head of a human cadaver, and was anatomically correct. A needle catheter was used to infuse the radioactive xenon into a continuous flow of room air maintained through the model by a variable vacuum source connected to the nasopharynx. The radioactive gas was infused at one of five release sites in the nostril, and the distribution of the radioactivity was imaged in the sagittal plane with a scintillation camera. The data were organized to show the activity in six contiguous regions of the midnose. For each catheter, release site activity patterns were determined for three flow rates. The results of this experiment showed that both catheter position and flow rate had significant and reproducible effects on the distribution of radioactivity within the model.

  11. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  12. Experimental evidence of condensation-driven airflow

    NASA Astrophysics Data System (ADS)

    Bunyard, P.; Hodnett, M.; Poveda, G.; Burgos Salcedo, J. D.; Peña, C.

    2015-10-01

    The dominant "convection" model of atmospheric circulation is based on the premise that hot air expands and rises, to be replaced by colder air, thereby creating horizontal surface winds. A recent theory put forward by Makarieva and Gorshkov (2007, 2013) maintains that the primary motive force of atmospheric circulation derives from the intense condensation and sharp pressure reduction that is associated with regions where a high rate of evapotranspiration from natural closed-canopy forests provides the "fuel" for cloud formation. The net result of the "biotic pump" theory is that moist air flows from ocean to land, drawn in by the pressure changes associated with a high rate of condensation. To test the physics underpinning the biotic pump theory, namely that condensation of water vapour, at a sufficiently high rate, results in an uni-directional airflow, a 5 m tall experimental apparatus was designed and built, in which a 20 m3 body of atmospheric air is enclosed inside an annular 14 m long space (a "square donut") around which it can circulate freely, allowing for rotary air flows. One vertical side of the apparatus contains some 17 m of copper refrigeration coils, which cause condensation. The apparatus contains a series of sensors measuring temperature, humidity and barometric pressure every five seconds, and air flow every second. The laws of Newtonian physics are used in calculating the rate of condensation inside the apparatus. The results of more than one hundred experiments show a highly significant correlation, with r2 > 0.9, of airflow and the rate of condensation. The rotary air flows created appear to be consistent both in direction and velocity with the biotic pump hypothesis, the critical factor being the rate change in the partial pressure of water vapour in the enclosed body of atmospheric air. Air density changes, in terms of kinetic energy, are found to be orders of magnitude smaller than the kinetic energy of partial pressure change. The

  13. The Evolution of Unidirectional Pulmonary Airflow.

    PubMed

    Farmer, C G

    2015-07-01

    Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting

  14. The Evolution of Unidirectional Pulmonary Airflow.

    PubMed

    Farmer, C G

    2015-07-01

    Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting

  15. Numerical simulation of laboratory fume hood airflow performance

    SciTech Connect

    Kirkpatrick, A.T.; Reither, R.

    1998-12-31

    A three-dimensional computational fluid dynamics (CFD) analysis has been used to predict airflow patterns in laboratory fume hoods. The simulation includes bypass fume hood primary operational features including the top and bottom bypasses, front airfoils, and rear-slotted baffles. All results were validated experimentally, and the simulation was found to adequately predict fume hood airflow patterns. The results indicate that fume hood flow patterns are highly dependent on inlet flow boundary conditions so that the computation must include the near field room airflow. Additionally, the study included the effects on the fume hood airflow of sash height changes, an operator positioned outside the fume hood, and equipment within the main fume hood chamber. It was shown that for conditions of a fully open sash height, a person in front of the fume hood, and an object inside the fume hood, the fume hood experiences a loss of containment of the flow.

  16. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  17. Airflow patterns in a small subalpine basin

    NASA Astrophysics Data System (ADS)

    Wooldridge, G.; Musselman, R.; Connell, B.; Fox, D.

    1992-03-01

    A study of mean wind speeds and directions has been completed in the Snowy Range of Southern Wyoming, U.S.A. It was conducted in a subalpine ecosystem at an altitude of 3 200 m to 3 400 m above sea level during the summers of 1988 and 1989. Indexes of deformation and axes of asymmetry due to wind shaping of Engelmann spruce ( Picea engelmannii) and subalpine fir ( Abies lasiocarpa) are related to wind speeds and directions on a 100 m × 100 m grid spacing over the 300 ha research site. Isotach and airflow patterns are drawn to represent climatological near-ground-level winds. A statistical analysis of the wind data and deformation indexes indicates that the indexes estimated independently by three of the authors were not significantly different at the F0.025 level. Two methods of calculating wind speeds were applied. At lower mean wind speeds in Engelmann spruce, results from the Wade-Hewson method were not significantly different from the Griggs-Putnam method at the F0.025 level. In slightly higher wind speeds in subalpine fir, the Wade-Hewson method produced significantly lower wind speeds than the Griggs-Putnam method.

  18. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold. PMID:26809314

  19. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold.

  20. Soil vapor extraction in sandy soils: influence of airflow rate.

    PubMed

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2008-11-01

    Airflow rate is one of the most important parameters for the soil vapor extraction of contaminated sites, due to its direct influence on the mass transfer occurring during the remediation process. This work reports the study of airflow rate influence on soil vapor extractions, performed in sandy soils contaminated with benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene. The objectives were: (i) to analyze the influence of airflow rate on the process; (ii) to develop a methodology to predict the remediation time and the remediation efficiency; and (iii) to select the most efficient airflow rate. For dry sandy soils with negligible contents of clay and natural organic matter, containing the contaminants previously cited, it was concluded that: (i) if equilibrium between the pollutants and the different phases present in the soil matrix was reached and if slow diffusion effects did not occur, higher airflow rates exhibited the fastest remediations, (ii) it was possible to predict the remediation time and the efficiency of remediation with errors below 14%; and (iii) the most efficient remediation were reached with airflow rates below 1.2 cm(3)s(-1) standard temperature and pressure conditions.

  1. Association of Radiographic Emphysema and Airflow Obstruction with Lung Cancer

    PubMed Central

    Wilson, David O.; Weissfeld, Joel L.; Balkan, Arzu; Schragin, Jeffrey G.; Fuhrman, Carl R.; Fisher, Stephen N.; Wilson, Jonathan; Leader, Joseph K.; Siegfried, Jill M.; Shapiro, Steven D.; Sciurba, Frank C.

    2008-01-01

    Rationale: To study the relationship between emphysema and/or airflow obstruction and lung cancer in a high-risk population. Objective: We studied lung cancer related to radiographic emphysema and spirometric airflow obstruction in tobacco-exposed persons who were screened for lung cancer using chest computed tomography (CT). Methods: Subjects completed questionnaires, spirometry, and low-dose helical chest CT. CT scans were scored for emphysema based on National Emphysema Treatment Trial criteria. Multiple logistic regressions estimated the independent associations between various factors, including radiographic emphysema and airflow obstruction, and subsequent lung cancer diagnosis. Measurements and Main Results: Among 3,638 subjects, 57.5, 18.8, 14.6, and 9.1% had no, trace, mild, and moderate–severe emphysema, and 57.3, 13.6, 22.8, and 6.4% had no, mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] I), moderate (GOLD II), and severe (GOLD III–IV) airflow obstruction. Of 3,638 subjects, 99 (2.7%) received a lung cancer diagnosis. Adjusting for sex, age, years of cigarette smoking, and number of cigarettes smoked daily, logistic regression showed the expected lung cancer association with the presence of airflow obstruction (GOLD I–IV, odds ratio [OR], 2.09; 95% confidence interval [CI], 1.33–3.27). A second logistic regression showed lung cancer related to emphysema (OR, 3.56; 95% CI, 2.21–5.73). After additional adjustments for GOLD class, emphysema remained a strong and statistically significant factor related to lung cancer (OR, 3.14; 95% CI, 1.91–5.15). Conclusions: Emphysema on CT scan and airflow obstruction on spirometry are related to lung cancer in a high-risk population. Emphysema is independently related to lung cancer. Both radiographic emphysema and airflow obstruction should be considered when assessing lung cancer risk. PMID:18565949

  2. Minimum airflow reset of single-duct VAV terminal boxes

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  3. Importance of Airflow for Physiologic and Ergogenic Effects of Precooling

    PubMed Central

    Morrison, Shawnda A.; Cheung, Stephen; Cotter, James D.

    2014-01-01

    Context: Cooling the body before exercise (precooling) has been studied as an ergogenic aid for many thermal conditions; however, airflow accompanying exercise is seldom reported. Objective: To determine whether the physiologic and ergogenic benefits of precooling before endurance exercise may be negated with semirealistic airflow in hot conditions. Design: Crossover study. Setting: Climate-controlled chamber in a research laboratory. Patients or Other Participants: Ten fit, healthy cyclists. Intervention(s): After a familiarization trial, participants completed 4 randomized, counterbalanced sessions consisting of no precooling versus precooling and no fan airflow versus airflow (~4.8 m/s) during exercise. Precooling was via chest-deep immersion (~24°C) for 1 hour or until core temperature dropped 0.5°C. Participants then cycled at 95% ventilatory threshold in a hot environment (temperature = 30°C, relative humidity = 50%) until volitional exhaustion, core temperature reached >39.5°C, or heart rate reached >95% of maximum. Main Outcome Measure(s): Thermal strain was assessed via core temperature (esophageal and rectal thermistors) and mean skin temperature (thermistors at 10 sites) and cardiovascular strain via heart rate and ratings of perceived exertion. Results: Endurance time (28 ± 12 minutes without precooling or airflow) increased by 30 ± 23 minutes with airflow (~109%; 95% confidence interval = 12, 45 minutes; P < .001) and by 16 ± 15 minutes with precooling (~61%; 95% confidence interval = 4, 25 minutes; P = .013), but it was not further extended when the strategies were combined (29 ± 21 minutes longer than control). During cycling without precooling or airflow, mean core and skin temperatures were higher than in all other trials. Precooling reduced heart rate by 7–11 beats/min during the first 5 minutes of exercise, but this attenuation ended by 15 minutes. Conclusions: Most laboratory-based precooling studies have (inadvertently) overestimated

  4. Pitot-tube flowmeter for quantification of airflow during sleep.

    PubMed

    Kirkness, J P; Verma, M; McGinley, B M; Erlacher, M; Schwartz, A R; Smith, P L; Wheatley, J R; Patil, S P; Amis, T C; Schneider, H

    2011-02-01

    The gold-standard pneumotachograph is not routinely used to quantify airflow during overnight polysomnography due to the size, weight, bulkiness and discomfort of the equipment that must be worn. To overcome these deficiencies that have precluded the use of a pneumotachograph in routine sleep studies, our group developed a lightweight, low dead space 'pitot flowmeter' (based on pitot-tube principle) for use during sleep. We aimed to examine the characteristics and validate the flowmeter for quantifying airflow and detecting hypopneas during polysomnography by performing a head-to-head comparison with a pneumotachograph. Four experimental paradigms were utilized to determine the technical performance characteristics and the clinical usefulness of the pitot flowmeter in a head-to-head comparison with a pneumotachograph. In each study (1-4), the pitot flowmeter was connected in series with a pneumotachograph under either static flow (flow generator inline or on a face model) or dynamic flow (subject breathing via a polyester face model or on a nasal mask) conditions. The technical characteristics of the pitot flowmeter showed that, (1) the airflow resistance ranged from 0.065 ± 0.002 to 0.279 ± 0.004 cm H(2)O L(-1) s(-1) over the airflow rates of 10 to 50 L min(-1). (2) On the polyester face model there was a linear relationship between airflow as measured by the pitot flowmeter output voltage and the calibrated pneumotachograph signal a (β(1) = 1.08 V L(-1) s(-1); β(0) = 2.45 V). The clinically relevant performance characteristics (hypopnea detection) showed that (3) when the pitot flowmeter was connected via a mask to the human face model, both the sensitivity and specificity for detecting a 50% decrease in peak-to-peak airflow amplitude was 99.2%. When tested in sleeping human subjects, (4) the pitot flowmeter signal displayed 94.5% sensitivity and 91.5% specificity for the detection of 50% peak-to-peak reductions in pneumotachograph-measured airflow. Our data

  5. Respiratory phase resetting and airflow changes induced by swallowing in humans.

    PubMed Central

    Paydarfar, D; Gilbert, R J; Poppel, C S; Nassab, P F

    1995-01-01

    timing of swallowing events, were not significantly altered by the phase in the respiratory cycle at which swallowing was exhibited. 6. To quantify the relationship between bolus flow and respiration, we determined the latencies between cessation of inspiratory airflow and arrival of the bolus at the larynx (alpha), and between laryngeal bolus departure and resumption of inspiratory airflow (delta). Both values were dependent upon the respiratory phase of swallowing. The lowest values for alpha and delta were found for early-inspiratory and late-expiratory swallows, respectively. 7. We conclude that swallowing causes respiratory phase resetting with a pattern that is characteristic of the strong perturbations of an attractor-cycle oscillator.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 4 PMID:7776238

  6. Evaluation of airflow patterns following procedures established by NUREG-1400.

    PubMed

    Fritz, Brad G; Khan, Fenton; Mendoza, Donaldo P

    2006-08-01

    The U.S. Nuclear Regulatory Commission's guide, NUREG-1400, addresses many aspects of air sampling in the work place. Here, we present detailed examples of the methodology used to conduct two qualitative airflow studies at different sites. In one test, smoke was used to evaluate the airflow patterns within a high-bay building for the purpose of determining appropriate locations for air monitoring equipment. The study revealed a stagnant layer of the air within the transfer area that made predicting movement of contamination within the transfer area difficult. Without conducting an airflow study, the stagnant layer may not have been identified and could have resulted in placement of samplers at inappropriate locations. In a second test, smoke was used to verify the effectiveness of an air space barrier curtain. The results showed that the curtain adequately separated the two air spaces. The methodology employed in each test provided sound, easy to interpret information that satisfied the requirements of each test. The methods described in this article can be applied at most facilities where determination of airflow patterns or the verification of suspected airflow patterns is required. PMID:16823267

  7. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material.

  8. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  9. Braided oscillators

    NASA Astrophysics Data System (ADS)

    Yildiz, A.

    2002-03-01

    A generalized oscillator algebra is proposed and the braided Hopf algebra structure for this generalized oscillator is investigated. Using the solutions for the braided Hopf algebra structure, two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators as special cases of the Fibonacci oscillators. We also find the braided Hopf algebra solutions for the three dimensional braided space. One of these, as a special case, gives the Hopf algebra given in the literature.

  10. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  11. Airflow studies in a forced ventilated chamber with low partitions

    SciTech Connect

    Chow, W.K.; Tsui, K.F.

    1995-12-31

    A climate chamber was used to study experimentally the airflow characteristics in a ventilated space with low partitions. Two types of commonly used air distribution devices were selected for the study--a ceiling diffuser and side grille systems. A total of 16 tests were performed using the two diffusers with partition heights varying up to 1.8 m (5.91 ft) above floor level. From the measured results, the thermal comfort indices were assessed. A stabilization effect of airflow was found when the partition height reached 1.8 m (5.91 ft). Local draft risk was located in the occupied zone. Also, the modified Archimedes number proposed by Jackman (1990) was used to describe the indoor airflow in the absence of a workable design guide for partitioned spaces.

  12. Low-airflow drying of fungicide-treated shelled corn

    SciTech Connect

    Peterson, W.H.; Benson, P.W. . Dept. of Agricultural Engineering); McFate, K.L. )

    1993-02-01

    Approved fungicides inhibit mold growth in shelled corn and allow for longer, natural-air drying. The longer drying periods permit lower than-normal airflows and smaller power units, thus reducing electrical demands on utilities in corn-producing states. Researchers placed approximately 67 m[sup 3] (1900 bu) of one variety of shelled corn at approximately 24% moisture in each of five equally sized storage bins. They partitioned each bin vertically and filled one half of each bin with fungicide-treated corn and one half with untreated corn. Each of four bins used a different airflow. A fifth bin used the lowest of the four airflows but was equipped to capture and use solar energy. All corn dried rapidly with resulting good quality. The percentage of damaged kernels was significantly higher for untreated than for treated corn. The energy required for the lowest airflow system was approximately one half of that required for the higher, more traditional airflows. Because of lower-than-normal airflows, the electrical demand on the utility is approximately one fourth as great as that imposed when the higher, more traditional natural-air systems are used. The 1991 corn growing and drying seasons were unusual in central Illinois, the site of the study. Both harvest and drying occurred several weeks ahead of schedule. Additional work is needed to verify that findings hold true during more-normal Midwest corn growing and drying seasons; the investigators predict that they will. It should be noted that the fungicide used in this study has not yet been approved for widespread use in drying corn.

  13. Unidirectional pulmonary airflow patterns in the savannah monitor lizard.

    PubMed

    Schachner, Emma R; Cieri, Robert L; Butler, James P; Farmer, C G

    2014-02-20

    The unidirectional airflow patterns in the lungs of birds have long been considered a unique and specialized trait associated with the oxygen demands of flying, their endothermic metabolism and unusual pulmonary architecture. However, the discovery of similar flow patterns in the lungs of crocodilians indicates that this character is probably ancestral for all archosaurs--the group that includes extant birds and crocodilians as well as their extinct relatives, such as pterosaurs and dinosaurs. Unidirectional flow in birds results from aerodynamic valves, rather than from sphincters or other physical mechanisms, and similar aerodynamic valves seem to be present in crocodilians. The anatomical and developmental similarities in the primary and secondary bronchi of birds and crocodilians suggest that these structures and airflow patterns may be homologous. The origin of this pattern is at least as old as the split between crocodilians and birds, which occurred in the Triassic period. Alternatively, this pattern of flow may be even older; this hypothesis can be tested by investigating patterns of airflow in members of the outgroup to birds and crocodilians, the Lepidosauromorpha (tuatara, lizards and snakes). Here we demonstrate region-specific unidirectional airflow in the lungs of the savannah monitor lizard (Varanus exanthematicus). The presence of unidirectional flow in the lungs of V. exanthematicus thus gives rise to two possible evolutionary scenarios: either unidirectional airflow evolved independently in archosaurs and monitor lizards, or these flow patterns are homologous in archosaurs and V. exanthematicus, having evolved only once in ancestral diapsids (the clade encompassing snakes, lizards, crocodilians and birds). If unidirectional airflow is plesiomorphic for Diapsida, this respiratory character can be reconstructed for extinct diapsids, and evolved in a small ectothermic tetrapod during the Palaeozoic era at least a hundred million years before the

  14. Unidirectional pulmonary airflow patterns in the savannah monitor lizard.

    PubMed

    Schachner, Emma R; Cieri, Robert L; Butler, James P; Farmer, C G

    2014-02-20

    The unidirectional airflow patterns in the lungs of birds have long been considered a unique and specialized trait associated with the oxygen demands of flying, their endothermic metabolism and unusual pulmonary architecture. However, the discovery of similar flow patterns in the lungs of crocodilians indicates that this character is probably ancestral for all archosaurs--the group that includes extant birds and crocodilians as well as their extinct relatives, such as pterosaurs and dinosaurs. Unidirectional flow in birds results from aerodynamic valves, rather than from sphincters or other physical mechanisms, and similar aerodynamic valves seem to be present in crocodilians. The anatomical and developmental similarities in the primary and secondary bronchi of birds and crocodilians suggest that these structures and airflow patterns may be homologous. The origin of this pattern is at least as old as the split between crocodilians and birds, which occurred in the Triassic period. Alternatively, this pattern of flow may be even older; this hypothesis can be tested by investigating patterns of airflow in members of the outgroup to birds and crocodilians, the Lepidosauromorpha (tuatara, lizards and snakes). Here we demonstrate region-specific unidirectional airflow in the lungs of the savannah monitor lizard (Varanus exanthematicus). The presence of unidirectional flow in the lungs of V. exanthematicus thus gives rise to two possible evolutionary scenarios: either unidirectional airflow evolved independently in archosaurs and monitor lizards, or these flow patterns are homologous in archosaurs and V. exanthematicus, having evolved only once in ancestral diapsids (the clade encompassing snakes, lizards, crocodilians and birds). If unidirectional airflow is plesiomorphic for Diapsida, this respiratory character can be reconstructed for extinct diapsids, and evolved in a small ectothermic tetrapod during the Palaeozoic era at least a hundred million years before the

  15. Benchmark Supercritical Wing on oscillating turntable at TDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    View of semispan supercritical rectangular wing as tested on splitter plate at the Transonic Dynamics Tunnel. This model was oscillated at frequencies up to 30 hz to measure unsteady pressures due to pitch oscillations.

  16. Study of Airflow Out of the Mouth During Speech.

    ERIC Educational Resources Information Center

    Catford, J.C.; And Others

    Airflow outside the mouth is diagnostic of articulatory activities in the vocal tract, both total volume-velocity and the distribution of particle velocities over the flow-front being useful for this purpose. A system for recording and displaying both these types of information is described. This consists of a matrix of l6 hot-wire anemometer flow…

  17. Cough expired volume and airflow rates during sequential induced cough

    PubMed Central

    Hegland, Karen W.; Troche, Michelle S.; Davenport, Paul W.

    2013-01-01

    Cough effectiveness is determined by a combination of volume of air expired and maximum expiratory airflow rate. Studies of cough sensitivity identify cough thresholds based on at least 2 or 5-cough re-accelerations to a stimulus, however, to date no study has examined the interplay between the distribution of cough expired air and cough airflow rates for these induced sequential coughs. The goal of this study was to investigate the relationship between reflex cough re-accelerations, cough airflow and cough inspired and expired volume. Twenty adults (18–40 years, four men) volunteered for study participation, and were outfitted with a facemask in-line with a pneumotachograph and a one-way valve for capsaicin delivery on inspiration. Cough inspired and expired volume (Liters of air) as well as airflow parameters (peak expiratory flow rates L/s) were measured for each cough response. Results demonstrate significant linear relationships between cough expired volume, flow rates, and the total number of coughs produced. Thus, as the number of coughs in an epoch increase, the mechanical effectiveness of coughs within the epoch may decrease according to peak expiratory flow rates and cough expired volume, particularly for coughs comprised of more than 3 re-accelerations. PMID:23847546

  18. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  19. The airflow effect on a negative corona discharge

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Barengol'ts, S. A.; Korostelev, E. V.; Pestovskii, N. V.; Petrov, A. A.; Savinov, S. Yu.; Samoilov, I. S.

    2016-09-01

    The effect of the airflow on the negative corona discharge is studied. It is shown by use of telemicroscopy that the localization of the discharge torch on the cathode surface can be significantly affected by the aerodynamic action on the discharge gap region.

  20. Stability of a Soft Plate in Channel Flow

    NASA Astrophysics Data System (ADS)

    Tanida, Yoshimichi

    The present paper gives a computational method for the flutter analysis of a soft plate placed in two-dimensional subsonic channel flow, remarking the palatal flutter in snoring. The computations were carried out first for the prelimanary case of a hard plate oscillating in windtunnel and then for the case of a soft plate oscillating with standing- or travelling-wave mode, simulating the palatal oscillation. The results obtained for a hard plate are in good agreement with those for the windtunnel wall effects, showing the validity of the present method. The results for a soft plate show that the palatal flutter can be caused by the oscillation of travelling-wave mode, and that the flutter is slightly promoted by the channel walls but slightly suppressed by the hard plate attached fore the soft plate. The effect of mechanical damping is also discussed.

  1. Nonlinear and chaotic vibration and stability analysis of an aero-elastic piezoelectric FG plate under parametric and primary excitations

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Jahangiri, Reza

    2015-05-01

    In this study, in the presence of supersonic aerodynamic loading, the nonlinear and chaotic vibrations and stability of a simply supported Functionally Graded Piezoelectric (FGP) rectangular plate with bonded piezoelectric layer have been investigated. It is assumed that the plate is simultaneously exposed to the effects of harmonic uniaxial in-plane force and transverse piezoelectric excitations and aerodynamic loading. It is considered that the potential distribution varies linearly through the piezoelectric layer thickness, and the aerodynamic load is modeled by the first order piston theory. The von-Karman nonlinear strain-displacement relations are used to consider the geometrical nonlinearity. Based on the Classical Plate Theory (CPT) and applying the Hamilton's principle, the nonlinear coupled partial differential equations of motion are derived. The Galerkin's procedure is used to reduce the equations of motion to nonlinear ordinary differential Mathieu equations. The validity of the formulation for analyzing the Limit Cycle Oscillation (LCO), aero-elastic stability boundaries is accomplished by comparing the results with those of the literature, and the convergence study of the FGP plate is performed. By applying the Multiple Scales Method, the case of 1:2 internal resonance and primary parametric resonance are taken into account and the corresponding averaged equations are derived and analyzed numerically. The results are provided to investigate the effects of the forcing/piezoelectric detuning parameter, amplitude of forcing/piezoelectric excitation and dynamic pressure, on the nonlinear dynamics and chaotic behavior of the FGP plate. It is revealed that under the certain conditions, due to the existence of bi-stable region of non-trivial solutions, system shows the hysteretic behavior. Moreover, in absence of airflow, it is observed that variation of control parameters leads to the multi periodic and chaotic motions.

  2. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  3. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  4. Computational Investigation of Dynamic Glottal Aperture Effects on Respiratory Airflow

    NASA Astrophysics Data System (ADS)

    Xi, Jinxiang; Yan, Hong; Dong, Haibo

    2008-11-01

    The periodic movement of the glottal aperture (vocal folds) during tidal breathing has been long recognized as a factor in altering the airflow dynamics in the tracheobrnchial region. The potential influence from these altered flow structures on the transport and deposition of inhaled particles is not known. However, studies devoted to this dynamic physiological feature are scarce due to the complex anatomy in of the larynx and numerical challenges in simulating dynamic geometries. In this study, a high-fidelity immersed boundary solver is used to investigate this problem. A 3D human oral-larynx-lung model is firstly reconstructed from MRI data. The role of the vocal fold movement and associated airflow characteristics such as vortex shedding, Coanda effect etc. during inhalation and exhalation are then numerically studied.

  5. Silica exposure and chronic airflow limitation in pottery workers.

    PubMed

    Neukirch, F; Cooreman, J; Korobaeff, M; Pariente, R

    1994-01-01

    We assessed the relationship between exposure to silica dust and chronic airflow limitation in an epidemiological survey conducted among pottery workers and controls who were of the same socioeconomic status (average age: 35 y; 78% males). Data were collected by questionnaire for respiratory symptoms, allergy, respiratory history, smoking habits, and occupation. Lung function was measured with a computer-equipped Gauthier spirometer. We excluded subjects with silicosis or doubtful chest x-ray, and two exposure levels were defined. No differences were observed between exposed subjects and controls with respect to respiratory conditions. Mean pulmonary function values for men and women were significantly lower, after adjustment for age, height, and smoking habits, in even indirectly exposed pottery workers, compared with controls. These results suggest that exposure to silica dust is a risk factor for chronic airflow limitation and is independent of radiographic changes.

  6. Airflow and Particle Transport in the Human Respiratory System

    NASA Astrophysics Data System (ADS)

    Kleinstreuer, C.; Zhang, Z.

    2010-01-01

    Airflows in the nasal cavities and oral airways are rather complex, possibly featuring a transition to turbulent jet-like flow, recirculating flow, Dean's flow, vortical flows, large pressure drops, prevailing secondary flows, and merging streams in the case of exhalation. Such complex flows propagate subsequently into the tracheobronchial airways. The underlying assumptions for particle transport and deposition are that the aerosols are spherical, noninteracting, and monodisperse and deposit upon contact with the airway surface. Such dilute particle suspensions are typically modeled with the Euler-Lagrange approach for micron particles and in the Euler-Euler framework for nanoparticles. Micron particles deposit nonuniformly with very high concentrations at some local sites (e.g., carinal ridges of large bronchial airways). In contrast, nanomaterial almost coats the airway surfaces, which has implications of detrimental health effects in the case of inhaled toxic nanoparticles. Geometric airway features, as well as histories of airflow fields and particle distributions, may significantly affect particle deposition.

  7. Estimating Subglottal Pressure via Airflow Interruption with Auditory Masking

    PubMed Central

    Hoffman, Matthew R.; Jiang, Jack J.

    2009-01-01

    Objective Current noninvasive measurement of subglottal pressure using airflow interruption often produces inconsistent results due to the elicitation of audio-laryngeal reflexes. Auditory feedback could be considered as a means of ensuring measurement accuracy and precision. The purpose of this study was to determine if auditory masking could be used with the airflow interruption system to improve intrasubject consistency. Study Design A prerecorded sample of subject phonation was played on a loop over headphones during the trials with auditory masking. This provided subjects with a target pitch and blocked out distracting ambient noise created by the airflow interrupter. Methods Subglottal pressure was noninvasively measured using the airflow interruption system. Thirty subjects, divided into two equal groups, performed ten trials without auditory masking and ten trials with auditory masking. Group one performed the normal trials first, followed by the trials with auditory masking. Group two performed the auditory masking trials first, followed by the normal trials. Results Intrasubject consistency was improved by adding auditory masking, resulting in a decrease in average intrasubject standard deviation from 0.93 ± 0.51 to 0.47 ± 0.22 cmH2O (p < .001). Conclusions Auditory masking can be used effectively to combat audio-laryngeal reflexes and aid subjects in maintaining constant glottal configuration and frequency, thereby increasing intrasubject consistency when measuring subglottal pressure. By considering auditory feedback, a more reliable method of measurement was developed. This method could be employed by clinicians, as reliable, immediately available values of subglottal pressure are useful in evaluating laryngeal health and monitoring treatment progress. PMID:18538988

  8. Realistic glottal motion and airflow rate during human breathing.

    PubMed

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Lagier, Aude; Legou, Thierry; Pichelin, Marine; Caillibotte, Georges; Giovanni, Antoine

    2015-09-01

    The glottal geometry is a key factor in the aerosol delivery efficiency for treatment of lung diseases. However, while glottal vibrations were extensively studied during human phonation, the realistic glottal motion during breathing is poorly understood. Therefore, most current studies assume an idealized steady glottis in the context of respiratory dynamics, and thus neglect the flow unsteadiness related to this motion. This is particularly important to assess the aerosol transport mechanisms in upper airways. This article presents a clinical study conducted on 20 volunteers, to examine the realistic glottal motion during several breathing tasks. Nasofibroscopy was used to investigate the glottal geometrical variations simultaneously with accurate airflow rate measurements. In total, 144 breathing sequences of 30s were recorded. Regarding the whole database, two cases of glottal time-variations were found: "static" or "dynamic" ones. Typically, the peak value of glottal area during slow breathing narrowed from 217 ± 54 mm(2) (mean ± STD) during inspiration, to 178 ± 35 mm(2) during expiration. Considering flow unsteadiness, it is shown that the harmonic approximation of the airflow rate underevaluates the inertial effects as compared to realistic patterns, especially at the onset of the breathing cycle. These measurements provide input data to conduct realistic numerical simulations of laryngeal airflow and particle deposition.

  9. Energy Harvesting from Human Motion Using Footstep-Induced Airflow

    NASA Astrophysics Data System (ADS)

    Fu, H.; Xu, R.; Seto, K.; Yeatman, E. M.; Kim, S. G.

    2015-12-01

    This paper presents an unobtrusive in-shoe energy harvester converting foot-strike energy into electricity to power wearable or portable devices. An air-pumped turbine system is developed to address the issues of the limited vertical deformation of shoes and the low frequency of human motion that impede harvesting energy from this source. The air pump is employed to convert the vertical foot-strike motion into airflow. The generated airflow passes through the miniaturized wind turbine whose transduction is realized by an electromagnetic generator. Energy is extracted from the generator with a higher frequency than that of footsteps, boosting the output power of the device. The turbine casing is specifically designed to enable the device to operate continuously with airflow in both directions. A prototype was fabricated and then tested under different situations. A 6 mW peak power output was obtained with a 4.9 Ω load. The achievable power from this design was estimated theoretically for understanding and further improvement.

  10. Realistic glottal motion and airflow rate during human breathing.

    PubMed

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Lagier, Aude; Legou, Thierry; Pichelin, Marine; Caillibotte, Georges; Giovanni, Antoine

    2015-09-01

    The glottal geometry is a key factor in the aerosol delivery efficiency for treatment of lung diseases. However, while glottal vibrations were extensively studied during human phonation, the realistic glottal motion during breathing is poorly understood. Therefore, most current studies assume an idealized steady glottis in the context of respiratory dynamics, and thus neglect the flow unsteadiness related to this motion. This is particularly important to assess the aerosol transport mechanisms in upper airways. This article presents a clinical study conducted on 20 volunteers, to examine the realistic glottal motion during several breathing tasks. Nasofibroscopy was used to investigate the glottal geometrical variations simultaneously with accurate airflow rate measurements. In total, 144 breathing sequences of 30s were recorded. Regarding the whole database, two cases of glottal time-variations were found: "static" or "dynamic" ones. Typically, the peak value of glottal area during slow breathing narrowed from 217 ± 54 mm(2) (mean ± STD) during inspiration, to 178 ± 35 mm(2) during expiration. Considering flow unsteadiness, it is shown that the harmonic approximation of the airflow rate underevaluates the inertial effects as compared to realistic patterns, especially at the onset of the breathing cycle. These measurements provide input data to conduct realistic numerical simulations of laryngeal airflow and particle deposition. PMID:26159687

  11. Airflow Simulations around OA Intake Louver with Electronic Velocity Sensors

    SciTech Connect

    Han, Hwataik; Sullivan, Douglas P.; Fisk, William J.

    2009-04-01

    It is important to control outdoor airflow rates into HVAC systems in terms of energy conservation and healthy indoor environment. Technologies are being developed to measure outdoor air (OA) flow rates through OA intake louvers on a real time basis. The purpose of this paper is to investigate the airflow characteristics through an OA intake louver numerically in order to provide suggestions for sensor installations. Airflow patterns are simulated with and without electronic air velocity sensors within cylindrical probes installed between louver blades or at the downstream face of the louver. Numerical results show quite good agreements with experimental data, and provide insights regarding measurement system design. The simulations indicate that velocity profiles are more spatially uniform at the louver outlet relative to between louver blades, that pressure drops imposed by the sensor bars are smaller with sensor bars at the louver outlet, and that placement of the sensor bars between louver blades substantially increases air velocities inside the louver. These findings suggest there is an advantage to placing the sensor bars at the louver outlet face.

  12. Field measurement of uncontrolled airflow and depressurization in restaurants

    SciTech Connect

    Cummings, J.B.; Fairey, P.W.; Withers, C.R. Jr.; McKendry, B.B.; Moyer, N.A.

    1996-11-01

    Field investigations were done in seven restaurants (subsample of a study of 63 commercial buildings) to identify uncontrolled airflows and pressure imbalances. Testing included building airtightness tests, identification of building air barrier locations, duct system airtightness, characterization of pressure differentials, building airflow balance, and infiltration/ventilation rates. All restaurants were found to operate at negative pressures that ranged from {minus}0.003 in. w.c. ({minus}0.8 Pa) to {minus}0.173 in. w.c. ({minus}43 Pa) and averaged {minus}0.051 in. w.c. ({minus}12.7 Pa) under normal operation. The variables that affect depressurization are large exhaust fans, missing or undersized make up air, intermittent outdoor air caused by the cycling of air handlers, dirty outdoor air and make up air filters, and building airtightness. These uncontrolled airflows and pressure imbalances impact energy use, ventilation rates, sizing of heating and air-conditioning systems, indoor comfort, relative humidity, moisture damage to building materials, mold and mildew growth, operation of combustion equipment, and indoor air quality.

  13. Carbimazole and exercise tolerance in chronic airflow obstruction.

    PubMed

    Butland, R J; Pang, J A; Geddes, D M

    1982-01-01

    Ten patients with severe dyspnoea and chronic airflow obstruction entered a randomised double-blind crossover trial comparing the effect of carbimazole 80 mg daily for two months with that of placebo. Assessment of thyroid function, lung function, and exercise tolerance was performed monthly. The mean free thyroxine index after two months of carbimazole was significantly lower at 64.1 (+/- 10.5, SEM) than the 89.1 (+/- 3.8) while on placebo. Serum tri-iodothyronine was reduced and thyroid stimulating hormone raised while on the active drug. There was no significant difference in the 12-minute walking distance (TMD), the rating of perceived exertion during the TMD, the oxygen cost score, the dyspnoea grade, the resting arterialised capillary blood gas tensions or the resting minute ventilation. During a progressive exercise test to exhaustion on a cycle ergometer, there was no significant difference in the minute ventilation, heart rate, blood gas tensions at exhaustion, or the total work done. There were no symptoms or signs of hypothyroidism. Lung function (FEV1, FVC, TLC, KCO) was unchanged. Thus a 28% reduction in the free thyroxine index produced no symptomatic or objective benefit in exercise tolerance in patients with severe airflow obstruction. These results provide no support for the use of carbimazole in chronic airflow obstruction.

  14. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  15. Airflow calibration of a bellmouth inlet for measurement of compressor airflow in turbine-powered propulsion simulators

    NASA Technical Reports Server (NTRS)

    Smith, S. C.

    1985-01-01

    The development of turbine-powered propulsion simulators for high-speed wind tunnel models requires a bellmouth inlet which can accurately measure compressor-inlet airflow. A bellmouth inlet was instrumented with total pressure probes, static pressure probes, and thermocouples for airflow measurement. The bellmouth flowmeter against a critical venturi flowmeter was calibrated. The calibration was done at four inlet pressures ranging from 58 to 114 kPa. The bellmouth discharge coefficient varied as a function of bellmouth-throat Mach number. Over the range of Reynolds number and Mach number tested the Reynolds number was not a significant influence on the discharge coefficient. The overall accuracy of the bellmouth inlet as a flowmeter was estimated to be + or - 0.5% of the flowmeter reading.

  16. Contamination control in HVAC systems for aseptic processing area. Part I: Case study of the airflow velocity in a unidirectional airflow workstation with computational fluid dynamics.

    PubMed

    Ogawa, M

    2000-01-01

    A unidirectional airflow workstation for processing a sterile pharmaceutical product is required to be "Grade A," according to EU-GMP and WHO-GMP. These regulations have employed the wording of "laminar airflow" for unidirectional airflow, with an unclear definition given. This seems to have allowed many reports to describe discussion of airflow velocity only. The guidance values as to the velocity are expressed in various words of 90 ft/min, 0.45 m/sec, 0.3 m/sec, +/- 20%, or "homogeneous air speed." It has been also little clarified how variation in airflow velocity gives influences on contamination control of a workstation working with varying key characteristics, such as ceiling height, internal heat load, internal particle generation, etc. The present author has revealed following points from a case study using Computational Fluid Dynamics: the airflow characteristic in Grade A area shows no significant changes with varying the velocity of supplied airflow, and the particles generated from the operator will be exhausted outside Grade A area without contamination.

  17. Integrative pathway genomics of lung function and airflow obstruction.

    PubMed

    Gharib, Sina A; Loth, Daan W; Soler Artigas, María; Birkland, Timothy P; Wilk, Jemma B; Wain, Louise V; Brody, Jennifer A; Obeidat, Ma'en; Hancock, Dana B; Tang, Wenbo; Rawal, Rajesh; Boezen, H Marike; Imboden, Medea; Huffman, Jennifer E; Lahousse, Lies; Alves, Alexessander C; Manichaikul, Ani; Hui, Jennie; Morrison, Alanna C; Ramasamy, Adaikalavan; Smith, Albert Vernon; Gudnason, Vilmundur; Surakka, Ida; Vitart, Veronique; Evans, David M; Strachan, David P; Deary, Ian J; Hofman, Albert; Gläser, Sven; Wilson, James F; North, Kari E; Zhao, Jing Hua; Heckbert, Susan R; Jarvis, Deborah L; Probst-Hensch, Nicole; Schulz, Holger; Barr, R Graham; Jarvelin, Marjo-Riitta; O'Connor, George T; Kähönen, Mika; Cassano, Patricia A; Hysi, Pirro G; Dupuis, Josée; Hayward, Caroline; Psaty, Bruce M; Hall, Ian P; Parks, William C; Tobin, Martin D; London, Stephanie J

    2015-12-01

    Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease. PMID:26395457

  18. Integrative pathway genomics of lung function and airflow obstruction.

    PubMed

    Gharib, Sina A; Loth, Daan W; Soler Artigas, María; Birkland, Timothy P; Wilk, Jemma B; Wain, Louise V; Brody, Jennifer A; Obeidat, Ma'en; Hancock, Dana B; Tang, Wenbo; Rawal, Rajesh; Boezen, H Marike; Imboden, Medea; Huffman, Jennifer E; Lahousse, Lies; Alves, Alexessander C; Manichaikul, Ani; Hui, Jennie; Morrison, Alanna C; Ramasamy, Adaikalavan; Smith, Albert Vernon; Gudnason, Vilmundur; Surakka, Ida; Vitart, Veronique; Evans, David M; Strachan, David P; Deary, Ian J; Hofman, Albert; Gläser, Sven; Wilson, James F; North, Kari E; Zhao, Jing Hua; Heckbert, Susan R; Jarvis, Deborah L; Probst-Hensch, Nicole; Schulz, Holger; Barr, R Graham; Jarvelin, Marjo-Riitta; O'Connor, George T; Kähönen, Mika; Cassano, Patricia A; Hysi, Pirro G; Dupuis, Josée; Hayward, Caroline; Psaty, Bruce M; Hall, Ian P; Parks, William C; Tobin, Martin D; London, Stephanie J

    2015-12-01

    Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.

  19. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    PubMed Central

    Li, Hancao; Haddad, Wassim M.

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles. PMID:22719793

  20. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  1. Evaluation of airflow patterns in 2706-T and 2706-TA

    SciTech Connect

    DEROSA, D.C.

    1999-08-26

    The purpose of this study was to evaluate the adequacy of the current placement of fixed head air samplers and continuous air monitors (CAMs) in the 2706-T and 2706-TA Complex. The airflow study consisted of 6 configurations of facility HVAC and HEPA filtration equipment to determine impacts on CAM location. The results of this study provide recommendations based on guidance in DOE G 411.1-8 and NUREG-1400 for placement of fixed head air samplers or CAMS within 2706-T and 2706-TA.

  2. In-depth survey report of American Airlines plating facility

    NASA Astrophysics Data System (ADS)

    Mortimer, V. D., Jr.

    1982-12-01

    An in depth survey was conducted at the American Airlines Maintenance and Engineering Center as part of National Institute for Occupational Safety and Health (NIOSH) study evaluating measures to control occupational health hazards associated with the metal plating industry. This American Airlines plating facility, employing approximately 25 workers, is primarily engaged in plating hard chromium, nickel and cadmium on aircraft engine and landing gear parts. Six tanks were studied, including an electroless nickel tank. Area and personal samples for chromium, nickel, cadmium, and cyanide were collected. Ventilation airflow and tank dimensions were measured and data recorded on plating operations. The relationships between air contaminants emitted, local exhaust ventilation flow rate, tank size, and plating activity were evaluated.

  3. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  4. Raindrop oscillations

    NASA Technical Reports Server (NTRS)

    Beard, K. V.

    1982-01-01

    A model of the change in shape of a raindrop is presented. Raindrops measured by two orthogonal cameras were classified by shape and orientation to determine the nature of the oscillation. A physical model based on potential energy was then developed to study the amplitude variation of oscillating drops. The model results show that oscillations occur about the equilibrium axis ratio, but the time average axis ratio if significantly more spherical for large amplitudes because of asymmetry in the surface potential energy. A generalization of the model to oscillations produced by turbulence yields average axis ratios that are consistent with the camera measurements. The model results for average axis ratios were applied to rainfall studies with a dual polarized radar.

  5. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control

    NASA Astrophysics Data System (ADS)

    Lucero, Jorge C.; Koenig, Laura L.

    2005-03-01

    In this study we use a low-dimensional laryngeal model to reproduce temporal variations in oral airflow produced by speakers in the vicinity of an abduction gesture. It attempts to characterize these temporal patterns in terms of biomechanical parameters such as glottal area, vocal fold stiffness, subglottal pressure, and gender differences in laryngeal dimensions. A two-mass model of the vocal folds coupled to a two-tube approximation of the vocal tract is fitted to oral airflow records measured in men and women during the production of /aha/ utterances, using the subglottal pressure, glottal width, and Q factor as control parameters. The results show that the model is capable of reproducing the airflow records with good approximation. A nonlinear damping characteristics is needed, to reproduce the flow variation at glottal abduction. Devoicing is achieved by the combined action of vocal fold abduction, the decrease of subglottal pressure, and the increase of vocal fold tension. In general, the female larynx has a more restricted region of vocal fold oscillation than the male one. This would explain the more frequent devoicing in glottal abduction-adduction gestures for /h/ in running speech by women, compared to men. .

  6. Cherenkov radiation oscillator without reflectors

    SciTech Connect

    Li, D.; Wang, Y.; Wei, Y.; Yang, Z.; Hangyo, M.; Miyamoto, S.

    2014-05-12

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  7. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  8. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  9. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  10. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  11. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  12. IEA BESTEST Multi-Zone Non-Airflow In-Depth Diagnostic Cases: Preprint

    SciTech Connect

    Neymark, J.; Judkoff, R.; Alexander, D.; Felsmann, C.; Strachan, P.; Wijsman, A.

    2011-11-01

    This paper documents a set of in-depth diagnostic test cases for multi-zone heat transfer models that do not include the heat and mass transfer effects of airflow between zones. The multi-zone non-airflow test cases represent an extension to IEA BESTEST (Judkoff and Neymark 1995a).

  13. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  14. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  15. A Theoretical Study on Airflow Motive Force and Heat Transfer by the Water Spray

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuyuki

    On assuming the abscissa moving uniformly with the horizontal airflow in disregard of gravity, airflow motive force and heat transfer by the water spray have been easily analyzed theoretically. Here main results are as follows. The theoretical maximum airflow motive pressure is proportional to both the initial relative velocity of waterdrop and the relative water flow per unit cross-sectional area of the apparatus to the airflow or the moving abscissa but unrelated to the size of waterdrop. The airflow motive pressure approaches to the above maximum with an increase in the length of the apparatus. Making the waterdrop size smaller has an effect on the aparatus to get longer virtually. The initial velocity of waterdrop or the spraying nozzle pressure has little effect on the heat transfer between the air and the water.

  16. Energy savings from repair of uncontrolled airflow in 18 small commercial buildings

    SciTech Connect

    Withers, C.R. Jr.; Cummings, J.B.; Fairey, P.W.; McKendry, B.B.; Moyer, N.A.

    1996-12-31

    Uncontrolled airflow, including duct leakage, pressure imbalances caused by closed interior doors, and exhaust/intake airflow imbalance, was characterized in 70 commercial buildings. In 18 of these buildings, uncontrolled airflows were repaired and energy savings from these repairs were monitored. In most buildings, the retrofit was duct repair. In other cases, outdoor airflow was reduced and return air transfers were provided. Cooling energy use was reduced by an average 15.1% in these 18 buildings. With an average repair cost of $455 and average cooling energy savings of $195 per year, uncontrolled airflow retrofits proved to be very cost-effective. Various factors indicate that greater energy savings could be achieved in the future.

  17. Flow distribution in parallel-channel plate for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Ming, Pingwen; Hou, Ming; Fu, Yunfeng; Yi, Baolian; Shao, Zhi-Gang

    Parallel channel flow field with manifold openings is widely used in Proton exchange membrane fuel cells (PEMFCs) because of its low-pressure drop and easiness of manufacture. This research presents a hydrodynamic model to describe the airflow distribution, and the predicted pressure differences are validated by experiments. We also investigate the influences of the flow rate, the geometry of header and the length ratio of manifold opening to header region on the airflow distribution. Therefore, the optimal strategy is proposed based on an overall consideration of uniformity and configuration in the fuel-cell plate for application.

  18. Airflow and optic flow mediate antennal positioning in flying honeybees.

    PubMed

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. PMID:27097104

  19. Mechanics of airflow in the human nasal airways.

    PubMed

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  20. Airflow and optic flow mediate antennal positioning in flying honeybees.

    PubMed

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium.

  1. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  2. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  3. Air-Flow Simulation in Realistic Models of the Trachea

    SciTech Connect

    Deschamps, T; Schwartz, P; Trebotich, D

    2004-12-09

    In this article we present preliminary results from a new technique for flow simulation in realistic anatomical airways. The airways are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of anatomical objects. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier- Stokes equations for incompressible fluids. While most classical techniques require construction of a structured mesh that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the air-flow inside the extracted surface without losing any complicated details and without building additional grids.

  4. Effect of airflow on biodrying of gardening wastes in reactors.

    PubMed

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  5. Excitation and Characterization of Chladni Plate Patterns

    NASA Astrophysics Data System (ADS)

    Bourke, Shannon; Behringer, Ernest

    2011-04-01

    When a thin metal plate with a small amount of sand on it is made to vibrate, aesthetically pleasing sand patterns can form along the nodal lines of the plate. These symmetric patterns are called Chladni Patterns. Students taking PHY 101 Physical Science in the Arts at Eastern Michigan University create these patterns by pulling a violin bow across the edge of a plate, or by using a mechanical oscillator to drive the center of a plate. These two methods only allow a small subset of all possible points on the plate to be excited. We designed and built an electronic device that allows its user to excite the plate at any point. We present patterns created with this electronic device and other methods, and describe ways to model the observed patterns.

  6. Numerical simulation of airflow in the human nose.

    PubMed

    Weinhold, Ivo; Mlynski, Gunter

    2004-09-01

    Unobstructed air passageways as well as sufficient contact of the air stream with the mucous membrane are essential for the correct function of the nose. For that, local flow phenomena, which often cannot be captured by standard diagnostic methods, are important. We developed and validated a method for the numerical simulation of the nasal airflow. Two anatomically correct, transparent resin models of human nasal cavities, manufactured by a special casting technology, and the nasal cavities of two patients were reconstructed as Computer Aided Design models based on computed tomography (CT) scans. One of the nasal models and one clinical case represented a normal nasal anatomy, while the others were examples of pathological alterations. The velocity and pressure fields in these reconstructed cavities were calculated for the entire range of physiological nasal inspiration using commercially available computational fluid dynamics software. To validate the results rhinoresistometric data were measured and characteristic streamlines were videotaped for the resin models. The numerical results were in good agreement with the experimental data for the investigated cases. An example of a complex clinical case demonstrates the potential benefit of the developed simulation method for rhinosurgical planning. The results support the assumption that even under the specific conditions of the clinical practice the application of numerical simulation of nasal airflow phenomena may become realistic in the near future. However, important technical issues such as a completely automated reconstruction of the nasal cavity still need to be resolved before such simulations are efficient and cost effective enough to become a standard tool for the rhinologist. PMID:14652769

  7. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  8. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  9. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  10. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  11. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will be... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test, Type A and Type...

  12. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  13. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will be... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test, Type A and Type...

  14. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will be... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test, Type A and Type...

  15. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  16. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  17. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  18. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-01-01

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands. PMID:25405953

  19. STABILIZED OSCILLATOR

    DOEpatents

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  20. Antiperiodic oscillations

    PubMed Central

    Freire, Joana G.; Cabeza, Cecilia; Marti, Arturo; Pöschel, Thorsten; Gallas, Jason A. C.

    2013-01-01

    The investigation of regular and irregular patterns in nonlinear oscillators is an outstanding problem in physics and in all natural sciences. In general, regularity is understood as tantamount to periodicity. However, there is now a flurry of works proving the existence of “antiperiodicity”, an unfamiliar type of regularity. Here we report the experimental observation and numerical corroboration of antiperiodic oscillations. In contrast to the isolated solutions presently known, we report infinite hierarchies of antiperiodic waveforms that can be tuned continuously and that form wide spiral-shaped stability phases in the control parameter plane. The waveform complexity increases towards the focal point common to all spirals, a key hub interconnecting them all. PMID:23739041

  1. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  2. Neutrino oscillations.

    PubMed

    Thomson, Mark

    2002-05-15

    The wave theory of light, and in particular the principle of interference, was formulated by Thomas Young in 1801. In the 20th century, the principle of interference was extended to the quantum mechanical wave functions describing matter. The phenomenon of quantum mechanical interference of different neutrino states, neutrino oscillations, has provided one of the most exciting developments in high energy particle physics of the last decade. Observations of the flavour oscillations of neutrinos produced by distant sources, such as from the core of the Sun, provide compelling evidence that neutrinos have mass. This article describes the main features and the most significant experimental observations of this unusual application of the principle of interference.

  3. Spike oscillations

    NASA Astrophysics Data System (ADS)

    Heinzle, J. Mark; Uggla, Claes; Lim, Woei Chet

    2012-11-01

    According to Belinskiǐ, Khalatnikov and Lifshitz (BKL), a generic spacelike singularity is characterized by asymptotic locality: Asymptotically, toward the singularity, each spatial point evolves independently from its neighbors, in an oscillatory manner that is represented by a sequence of Bianchi type I and II vacuum models. Recent investigations support this conjecture but with a modification: Apart from local BKL behavior there also exists formation of spatial structures (“spikes”) at, and in the neighborhood of, certain spatial surfaces that break asymptotic locality; the complete description of a generic spacelike singularity involves spike oscillations, which are described by sequences of Bianchi type I and certain inhomogeneous vacuum models. In this paper we describe how BKL and spike oscillations arise from concatenations of exact solutions in a Hubble-normalized state space setting, suggesting the existence of hidden symmetries and showing that the results of BKL are part of a greater picture.

  4. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  5. Data Visualization of Invisible Airflow Hazards During Helicopter Takeoff and Landing Operations

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground such as vortices, downdrafts, wind shear, microbursts, or other turbulence. While such hazards frequently pose problems to fixed-wing airplanes, they are especially dangerous to helicopters, which often have to operate in confined spaces and under operationally stressful conditions. We are developing flight-deck visualizations of airflow hazards during helicopter takeoff and landing operations, and are evaluating their effectiveness with usability studies. Our hope is.that this work will lead to the production of an airflow hazard detection system for pilots that will save lives.

  6. Evaluation of circumferential airflow uniformity entering combustors from compressors. Volume 1: Discussion of data and results

    NASA Technical Reports Server (NTRS)

    Shadowen, J. H.; Egan, W. J., Jr.

    1972-01-01

    The compressor discharge airflow uniformity of two compressors from advanced engines, the J58 and F100/F401, was studied. Compressor discharge pressures and temperatures at up to 33 circumferential rake locations allowed the airflow distribution to be ascertained and computer plotted. Several flight conditions and compressor variables, i.e., inlet distortion, modified seals, etc., were analyzed. An unexpectedly high nonuniform airflow was found for both compressors. Circumferential airflow deviation differences of up to 52% from maximum to minimum were found for the J58, and up to 40% for the F100/F401. The effects of aerodynamic and thermal distortion were found to be additive. The data were analyzed for influence of exit guide vane wakes and found free of any effect. Data system errors were small in relation to the measured pressure and temperature variations.

  7. Turbulent airflow meter for long-term monitoring in patient-ventilator circuits.

    PubMed

    Elliott, S E; Shore, J H; Barnes, C W; Lindauer, J; Osborn, J J

    1977-03-01

    A new type of flowmeter is described which operates on the principle that pressure drop (deltaP) produced by turbulent volume flow (V) through a simple resistance chamber obeys a relation of V = K (deltaP)0.50. Data are given showing that the device follows a true power law with a single exponent for airflows ranging from 3.5 to 270 l/min. Standard instrumentation and a linearization circuit are used with the new flowmeter to provide linear steady-state and alternating airflow measurements up to peak rates of 150 l/min and frequency to 15 Hz. Data are presented comparing integrated airflow readings from the new turbulent flowmeter and a laminar-type flowmeter. The turbulent airflow meter appears to offer increased reliability for long-term patient monitoring use in patient-ventilator circuits.

  8. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model

    EPA Science Inventory

    In order to achieve both manageable simulation and local accuracy of airflow and nanoparticle deposition in a representative human tracheobronchial (TB) region, the complex airway network was decomposed into adjustable triple-bifurcation units, spreading axially and laterally. Gi...

  9. Evaluation of airflow patterns following procedures established by NUREG-1400

    SciTech Connect

    Fritz, Brad G.; Khan, Fenton; Mendoza, Donaldo P.

    2006-07-26

    The U.S. Nuclear Regulatory Commission's NUREG-1400 addresses many aspects of air sampling in the work place. Here, we present two detailed examples of the implementation of qualitative air flow studies at different scales using guidelines established by NUREG-1400. In one test, smoke was used to evaluate the airflow patterns within the transfer area of the 105 KE Basin, located on the Hanford Site, Richland, Washington. The purpose of the study was to determine appropriate locations for air monitoring equipment in support of sludge water pumping activities. The study revealed a stagnant layer of the air within the transfer area that made predicting movement of contamination within the transfer area difficult. Without conducting an air flow study, the stagnant layer would not have been identified, and could have resulted in locating samplers at inappropriate locations. In a second test, smoke was used to verify the effectiveness of an air space barrier curtain. The results showed that the curtain adequately separated the two air spaces. The methodology employed in each test provided sound, easy to interpret information that satisfied the requirements of each test.

  10. Reflex modulation of airflow dynamics through the upper airway.

    PubMed

    Seelagy, M M; Schwartz, A R; Russ, D B; King, E D; Wise, R A; Smith, P L

    1994-06-01

    We studied the effect of respiratory reflexes on maximal inspiratory flow (VImax) and its mechanical determinants, pharyngeal critical pressure (Pcrit) and nasal resistance, in an isolated feline upper airway preparation. Chemoreceptor reflexes were evaluated by varying inspired oxygen and end-tidal CO2 concentrations. At each gas concentration, we found that changes in VImax were related to changes in Pcrit. As CO2 increased, Pcrit became increasingly subatmospheric (P < 0.02), indicating reductions in pharyngeal collapsibility. In contrast, progressive hypoxia had no effect on Pcrit. We then examined the effects of vagal afferents and upper airway mucosal receptors on airflow dynamics at three levels of CO2. We confirmed that CO2 increased VImax (P < 0.01) and decreased Pcrit to more subatmospheric levels (P < 0.05) in both the presence and absence of vagal and airway mucosal afferent activity. Moreover, airway mucosal afferents led to smaller reductions in Pcrit (a less collapsible airway) (P < 0.05), whereas vagal afferents led to a larger increase in Pcrit (a more collapsible pharynx) under hypercapnic conditions (P < 0.01). We conclude that CO2 had a major effect on pharyngeal collapsability and that its effect was modulated by vagal and mucosal afferents. We speculate that the sensitivity and threshold to reflex CO2 responses play a major role in the maintenance of airway patency.

  11. RANS and LES simulations of the airflow through nasal cavities

    NASA Astrophysics Data System (ADS)

    Lamberti, Giacomo

    2015-11-01

    The prediction of detailed flow patterns in nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics and health problems. The long-term goal of the OpenNOSE project is to develop a reliable open-source computational tool based on the OpenFOAM CFD toolbox that can assist surgeons in their daily practice. The objective of this study was to investigate the effect of the turbulence model and boundary conditions on simulations of the airflow in nasal cavities. The geometry, including paranasal sinuses, was reconstructed from a carefully selected CT scan, and RANS and LES simulations were carried out for steady inspiration and expiration. At a flow rate near 20 l/min, the flow is laminar in most of the domain. During the inspiration phase, turbulence develops in nasopharynx and oropharynx regions; during the expiration phase, another vortical region is observed down the nostrils. A comparison between different boundary conditions suggests the use of a total pressure condition, or alternatively a uniform velocity, at the inlet and outlet. In future work the same geometry will be used for setting up a laboratory experiment, intended to cross-validate the numerical results.

  12. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  13. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

    PubMed

    Maschmann, Matthew R; Ehlert, Gregory J; Dickinson, Benjamin T; Phillips, David M; Ray, Cody W; Reich, Greg W; Baur, Jeffery W

    2014-05-28

    Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.

  14. An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S. A.; Schneebeli, M.; Steinfeld, A.

    2014-09-01

    An instrumented sample holder was developed for time-lapse microtomography of snow samples to enable in situ nondestructive spatial and temporal measurements under controlled advective airflows, temperature gradients, and air humidities. The design was aided by computational fluid dynamics simulations to evaluate the airflow uniformity across the snow sample. Morphological and mass transport properties were evaluated during a 4-day test run. This instrument allows the experimental characterization of metamorphism of snow undergoing structural changes with time.

  15. Effects of airflow on body temperatures and sleep stages in a warm humid climate

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kazuyo; Okamoto-Mizuno, Kazue; Mizuno, Koh; Iwaki, Tatsuya

    2008-03-01

    Airflow is an effective way to increase heat loss—an ongoing process during sleep and wakefulness in daily life. However, it is unclear whether airflow stimulates cutaneous sensation and disturbs sleep or reduces the heat load and facilitates sleep. In this study, 17 male subjects wearing short pyjamas slept on a bed with a cotton blanket under two of the following conditions: (1) air temperature (Ta) 26°C, relative humidity (RH) 50%, and air velocity (V) 0.2 m s-1; (2) Ta 32°C, RH 80%, V 1.7 m s-1; (3) Ta 32°C; RH 80%, V 0.2 m s-1 (hereafter referred to as 26/50, 32/80 with airflow, and 32/80 with still air, respectively). Electroencephalograms, electrooculograms, and mental electromyograms were obtained for all subjects. Rectal (Tre) and skin (Ts) temperatures were recorded continuously during the sleep session, and body-mass was measured before and after the sleep session. No significant differences were observed in the duration of sleep stages between subjects under the 26/50 and 32/80 with airflow conditions; however, the total duration of wakefulness decreased significantly in subjects under the 32/80 with airflow condition compared to that in subjects under the 32/80 with still air condition ( P < 0.05). Tre, Tsk, Ts, and body-mass loss under the 32/80 with airflow condition were significantly higher compared to those under the 26/50 condition, and significantly lower than those under the 32/80 with still air condition ( P < 0.05). An alleviated heat load due to increased airflow was considered to exist between the 32/80 with still air and the 26/50 conditions. Airflow reduces the duration of wakefulness by decreasing Tre, Tsk, Ts, and body-mass loss in a warm humid condition.

  16. Benchmark Supercritical Wing on oscillating turntable at TDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    View of semispan supercritical rectangular wing as tested on splitter plate at the Transonic Dynamics Tunnel. This model was oscillated at frequencies up to 30 hz to measure unsteady pressures due to pitch oscillations. People in the group photograph include (from left to right): Russ Rausch, Chuck McClish, Tom Ivanco, and Dave Piatak (absent from the group photo was Jennifer Pinkerton Florance).

  17. Airflow in the Human Nasal Passage and Sinuses of Chronic Rhinosinusitis Subjects

    PubMed Central

    Kumar, Haribalan; Jain, Ravi; Douglas, Richard G.; Tawhai, Merryn H.

    2016-01-01

    Endoscopic surgery is performed on patients with chronic inflammatory disease of the paranasal sinuses to improve sinus ventilation. Little is known about how sinus surgery affects sinonasal airflow. In this study nasal passage geometry was reconstructed from computed tomographic imaging from healthy normal, pre-operative, and post-operative subjects. Transient air flow through the nasal passage during calm breathing was simulated. Subject-specific differences in ventilation of the nasal passage were observed. Velocity magnitude at ostium was different between left and right airway. In FESS, airflow in post-surgical subjects, airflow at the maxillary sinus ostium was upto ten times higher during inspiration. In a Lothrop procedure, airflow at the frontal sinus ostium can be upto four times higher during inspiration. In both post-operative subjects, airflow at ostium was not quasi-steady. The subject-specific effect (of surgery) on sinonasal interaction evaluated through airflow simulations may have important consequences for pre- and post-surgical assessment and surgical planning, and design for improvement of the delivery efficiency of nasal therapeutics. PMID:27249219

  18. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids.

    PubMed

    Pang, Benison; Yee, Karen K; Lischka, Fritz W; Rawson, Nancy E; Haskins, Mark E; Wysocki, Charles J; Craven, Brent A; Van Valkenburgh, Blaire

    2016-06-15

    The surface area of the maxilloturbinals and fronto-ethmoturbinals is commonly used as an osteological proxy for the respiratory and the olfactory epithelium, respectively. However, this assumption does not fully account for animals with short snouts in which these two turbinal structures significantly overlap, potentially placing fronto-ethmoturbinals in the path of respiratory airflow. In these species, it is possible that anterior fronto-ethmoturbinals are covered with non-sensory (respiratory) epithelium instead of olfactory epithelium. In this study, we analyzed the distribution of olfactory and non-sensory, respiratory epithelia on the turbinals of two domestic cats (Felis catus) and a bobcat (Lynx rufus). We also conducted a computational fluid dynamics simulation of nasal airflow in the bobcat to explore the relationship between epithelial distribution and airflow patterns. The results showed that a substantial amount of respiratory airflow passes over the anterior fronto-ethmoturbinals, and that contrary to what has been observed in caniform carnivorans, much of the anterior ethmoturbinals are covered by non-sensory epithelium. This confirms that in short-snouted felids, portions of the fronto-ethmoturbinals have been recruited for respiration, and that estimates of olfactory epithelial coverage based purely on fronto-ethmoturbinal surface area will be exaggerated. The correlation between the shape of the anterior fronto-ethmoturbinals and the direction of respiratory airflow suggests that in short-snouted species, CT data alone are useful in assessing airflow patterns and epithelium distribution on the turbinals. PMID:27045093

  19. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  20. Rain-induced subsurface airflow and Lisse effect

    USGS Publications Warehouse

    Guo, H.; Jiao, J.J.; Weeks, E.P.

    2008-01-01

    Water-level increase after rainfall is usually indicative of rainfall recharge to groundwater. This, however, may not be true if the Lisse effect occurs. This effect represents the water-level increase in a well driven by airflow induced by an advancing wetting front during highly intensive rains. The rainwater, which may behave like a low-permeability lid, seals the ground surface so that the air pressure beneath the wetting front is increased because of air compression due to downward movement of the wetting front. A rapid and substantial rise of the water level in the well screened below water table, which bears no relationship to groundwater recharge, can be induced when various factors such as soil properties and the rain-runoff condition combine favorably. A transient, three-dimensional and variably saturated flow model was employed to study the air and groundwater flows in the soil under rain conditions. The objectives of this paper are two-fold: to evaluate the reliability of the theory of the Lisse effect presented by Weeks to predict its magnitude in modeled situations that mimic the physical complexity of real aquifers, and to conduct parametric studies on the sensitivity of the water-level rise in the well to soil properties and the rain event. The simulation results reveal that the magnitude of the Lisse effect increases with the ponding depth. Soil permeability plays a key role in generating the Lisse effect. The water-level rise in the well is delayed relative to the air-pressure rise in the unsaturated zone when the soil permeability is low, and the maximum water-level rise is less than the maximum air pressure induced by rain infiltration. The simulation also explores the sensitivity of the Lisse effect to the van Genuchten parameters and the water table depth. Copyright 2008 by the American Geophysical Union.

  1. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  2. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    NASA Astrophysics Data System (ADS)

    Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav

    2016-03-01

    Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  3. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  4. Flow over a cylinder with a hinged-splitter plate

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate

  5. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity

    PubMed Central

    Nguyen, Chinh D.; Wellman, Andrew; Jordan, Amy S.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Methods: Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. Results: During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV2, P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV2, P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV2, P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Conclusion: Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). Citation: Nguyen CD, Wellman A, Jordan AS, Eckert DJ. Mild airflow limitation during N2 sleep increases k-complex frequency and slows

  6. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  7. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification. PMID:24347160

  8. Airflow Model Testing to Determine the Distribution of Hot Gas Flow and O/F Ratio Across the Space Shuttle Main Engine Main Injector Assembly

    NASA Technical Reports Server (NTRS)

    Mahorter, L.; Chik, J.; McDaniels, D.; Dill, C.

    1990-01-01

    Engine 0209, the certification engine for the new Phase 2+ Hot Gas Manifold (HGM), showed severe deterioration of the Main Combustion Chamber (MCC) liner during hot fire tests. One theory on the cause of the damage held that uneven local distribution of the fuel rich hot gas flow through the main injector assembly was producing regions of high oxidizer/fuel (O/F) ratio near the wall of the MCC liner. Airflow testing was proposed to measure the local hot gas flow rates through individual injector elements. The airflow tests were conducted using full scale, geometrically correct models of both the current Phase 2 and the new Phase 2+ HGMs. Different main injector flow shield configurations were tested for each HGM to ascertain their effect on the pressure levels and distribution of hot gas flow. Instrumentation located on the primary faceplate of the main injector measured hot gas flow through selected injector elements. These data were combined with information from the current space shuttle main engine (SSME) power balances to produce maps of pressure, hot gas flow rate, and O/F ratio near the main injector primary plate. The O/F distributions were compared for the different injector and HGM configurations.

  9. Modelling the Effect of Tree Foliage on Sprayer Airflow in Orchards

    NASA Astrophysics Data System (ADS)

    Melese Endalew, Ayenew; Debaer, Christof; Rutten, Nick; Vercammen, Jef; Delele, Mulugeta Admasu; Ramon, Herman; Nicolaï, Bart M.; Verboven, Pieter

    2011-01-01

    The effect of tree foliage on sprayer airflow through pear trees in a fruit orchard was studied and modelled in detail. A new three-dimensional (3-D) computational fluid dynamics model that integrates the 3-D canopy architecture with a local closure model to simulate the effect of the stem and branches and leaves of trees separately on airflow was developed. The model was validated with field observations made in an experimental orchard (pcfruit, Sint-Truiden, Belgium) in spring and summer 2008 and was used to investigate the airflow from three air-assisted orchard sprayers (Condor V, Duoprop and AirJet quatt). Velocity magnitudes were measured before and behind leafless and fully-leafed pear canopies across the row while the operating sprayers are passing along the row, and were compared with the simulations. The simulation results predicted the measured values well with all the local relative errors within 20%. The effect of foliar density on airflow from the three air assisted sprayers was manifested by changing the magnitude and direction of the sprayers' air velocity behind the canopy, especially at the denser regions of the canopy and by changing the pattern of velocity decay horizontally along the jet. The developed methodology will also allow a thorough investigation of atmospheric airflow in canopy structures.

  10. Computer simulation of airflow through a multi-generation tracheobronchial conducting airway

    SciTech Connect

    Fan, B.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Knowledge of airflow patterns in the human lung is important for an analysis of lung diseases and drug delivery of aerosolized medicine for medical treatment. However, very little systematic information is available on the pattern of airflow in the lung and on how this pattern affects the deposition of toxicants in the lung, and the efficacy of aerosol drug therapy. Most previous studies have only considered the airflow through a single bifurcating airway. However, the flow in a network of more than one bifurcation is more complicated due to the effect of interrelated lung generations. Because of the variation of airway geometry and flow condition from generation to generation, a single bifurcating airway cannot be taken as a representative for the others in different generations. The flow in the network varies significantly with airway generations because of a redistribution of axial momentum by the secondary flow motions. The influence of the redistribution of flow is expected in every generation. Therefore, a systematic information of the airflow through a multi-generation tracheobronchial conducting airway is needed, and it becomes the purpose of this study. This study has provided information on airflow in a lung model which is necessary to the study of the deposition of toxicants and therapeutic aerosols.

  11. A calibration of the lamb airflow classification model to predict past precipitation in Wales

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter; Hawksworth, Kevin

    1997-11-01

    Daily precipitation data from 146 sites for the period 1982 to 1991 inclusive have been analysed in conjunction with the 27 Lamb airflow types. An areal mean precipitation (AMP) series for Wales is constructed for the period 1861 to 1995 by summing the mean daily AMP values associated with each Lamb airflow type. The results reveal that the use of coherent precipitation regions together with seasonal AMP values are more likely to provide a better estimate of mean annual precipitation than those combining a simple unweighted summation with non-seasonal values. The mean annual series for Wales compares favourably with that provided by Wigley et al. and Woodley for England and Wales. Finally, the importance of the major Lamb airflow types are considered in relation to periods of the record when dry and wet phases occur. Anticyclonic and cyclonic Lamb types are shown to be better predictors of mean annual precipitation than Lamb westerlies. In part, this reflects the fact that at the regional scale non-westerly Lamb airflow types can be embedded within a mobile westerly circulation. These non-westerly airflow types often produce high precipitation totals over Wales.

  12. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis.

    PubMed

    Wang, T; Chen, D; Wang, P H; Chen, J; Deng, J

    2016-01-01

    We used a computational fluid dynamics (CFD) model to study the inspiratory airflow profiles of patients with anterior nasal cavity stenosis who underwent curative surgery, by comparing pre- and postoperative airflow characteristics. Twenty patients with severe anterior nasal cavity stenosis, including one case of bilateral stenosis, underwent computed tomography (CT) scans for CFD modelling. The pre- and postoperative airflow characteristics of the nasal cavity were simulated and analyzed. The narrowest area of the nasal cavity in all 20 patients was located within the nasal valve area, and the mean cross-sectional area increased from 0.39 cm2 preoperative to 0.78 cm2 postoperative (P<0.01). Meanwhile, the mean airflow velocity in the nasal valve area decreased from 6.19 m/s to 2.88 m/s (P<0.01). Surgical restoration of the nasal symmetry in the bilateral nasal cavity reduced nasal resistance in the narrow sides from 0.24 Pa.s/mL to 0.11 Pa.s/mL (P<0.01). Numerical simulation of the nasal cavity in patients with anterior nasal cavity stenosis revealed structural changes and the resultant patterns of nasal airflow. Surgery achieved balanced bilateral nasal ventilation and decreased nasal resistance in the narrow region of the nasal cavity. The correction of nasal valve stenosis is not only indispensable for reducing nasal resistance, but also the key to obtain satisfactory curative effect. PMID:27533764

  13. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis

    PubMed Central

    Wang, T.; Chen, D.; Wang, P.H.; Chen, J.; Deng, J.

    2016-01-01

    We used a computational fluid dynamics (CFD) model to study the inspiratory airflow profiles of patients with anterior nasal cavity stenosis who underwent curative surgery, by comparing pre- and postoperative airflow characteristics. Twenty patients with severe anterior nasal cavity stenosis, including one case of bilateral stenosis, underwent computed tomography (CT) scans for CFD modelling. The pre- and postoperative airflow characteristics of the nasal cavity were simulated and analyzed. The narrowest area of the nasal cavity in all 20 patients was located within the nasal valve area, and the mean cross-sectional area increased from 0.39 cm2 preoperative to 0.78 cm2 postoperative (P<0.01). Meanwhile, the mean airflow velocity in the nasal valve area decreased from 6.19 m/s to 2.88 m/s (P<0.01). Surgical restoration of the nasal symmetry in the bilateral nasal cavity reduced nasal resistance in the narrow sides from 0.24 Pa.s/mL to 0.11 Pa.s/mL (P<0.01). Numerical simulation of the nasal cavity in patients with anterior nasal cavity stenosis revealed structural changes and the resultant patterns of nasal airflow. Surgery achieved balanced bilateral nasal ventilation and decreased nasal resistance in the narrow region of the nasal cavity. The correction of nasal valve stenosis is not only indispensable for reducing nasal resistance, but also the key to obtain satisfactory curative effect. PMID:27533764

  14. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results

    PubMed Central

    Amaral, André F. S.; Coton, Sonia; Kato, Bernet; Tan, Wan C.; Studnicka, Michael; Janson, Christer; Gislason, Thorarinn; Mannino, David; Bateman, Eric D.; Buist, Sonia; Burney, Peter G. J.

    2015-01-01

    Background In small studies and cases series, a history of tuberculosis has been associated with both airflow obstruction, which is characteristic of chronic obstructive pulmonary disease, and restrictive patterns on spirometry. Objective To assess the association between a history of tuberculosis and airflow obstruction and spirometric abnormalities in adults. Methods The study was performed in adults, aged 40 and above, who took part in the multicentre cross-sectional, general population-based, Burden of Obstructive Lung Disease study, had provided acceptable post-bronchodilator spirometry measurements and information on a history of tuberculosis. The associations between a history of tuberculosis and airflow obstruction and spirometric restriction were assessed within each participating centre, and estimates combined using meta-analysis. These estimates were stratified by high and low/middle income countries, according to gross national income. Results A self-reported history of tuberculosis was associated with airflow obstruction (adjusted odds ratio = 2.51, 95% confidence interval 1.83-3.42) and spirometric restriction (adjusted odds ratio = 2.13, 95% confidence interval 1.42-3.19). Conclusion A history of tuberculosis was associated with both airflow obstruction and spirometric restriction, and should be considered as a potentially important cause of obstructive disease and low lung function, particularly where tuberculosis is common. PMID:26113680

  15. Predictive models and airflow distribution associated with the zone of influence (ZOI) during air sparging remediation.

    PubMed

    Song, Xinglong; Zhao, Yongsheng; Wang, Hefei; Qin, Chuanyu

    2015-12-15

    Laboratory two-dimensional airflow visualisation model tests were conducted to assess the effect of particle size and air injection pressure on airflow patterns, physical characteristics of the zone of influence (ZOI) and the airflow rate distribution within the ZOI. The results indicate that the pattern transitions from chamber flow to channelized flow and then to bubbly flow occurred at effective particle sizes (D10) in the ranges 0.22-0.42 mm and 1.42-2.1mm, respectively. The ZOI is shaped like a conical frustum, and there exists a "stable ZOI" for each type of porous medium in channelised and bubbly flow during sparging tests. A formula for calculating the size of the ZOI radius was established based on the conical frustum-shaped results and the "stable ZOI", and comparing the calculated results with field data demonstrated that the formula has application value, except in large-scale heterogeneous aquifers. The distribution of the airflow rate within the ZOI, which is quite uneven, varies from the maximum rate (which occurred just above the sparger) to zero with the increase of the lateral distance from the sparger. Moreover, the airflow distribution can be fitted using a unified dimensionless Gaussian function under different sparging pressures for a given porous medium. All of the results described above provide valuable information for the design and theoretical modelling of air sparging for groundwater remediation.

  16. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.

    PubMed

    Tao, Chao; Zhang, Yu; Hottinger, Daniel G; Jiang, Jack J

    2007-10-01

    A model constructed from Navier-Stokes equations and a two-mass vocal fold description is proposed in this study. The composite model not only has the capability to describe the aerodynamics in a vibratory glottis but also can be used to study the vocal fold vibration under the driving of the complex airflow in the glottis. Numerical simulations show that this model can predict self-oscillations of the coupled glottal aerodynamics and vocal fold system. The Coanda effect could occur in the vibratory glottis even though the vocal folds have left-right symmetric prephonatory shape and tissue properties. The Coanda effect causes the asymmetric flow in the glottis and the difference in the driving force on the left and right vocal folds. The different pressures applied to the left and right vocal folds induce their displacement asymmetry. By using various lung pressures (0.6-2.0 kPa) to drive the composite model, it was found that the asymmetry of the vocal fold displacement is increased from 1.87% to 11.2%. These simulation results provide numerical evidence for the presence of asymmetric flow in the vibratory glottis; moreover, they indicate that glottal aerodynamics is an important factor in inducing the asymmetric vibration of the vocal folds. PMID:17902863

  17. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  18. Repulsive Casimir interaction: Boyer oscillators at nanoscale

    NASA Astrophysics Data System (ADS)

    Sarabadani, Jalal; Ojaghi Dogahe, Badrosadat; Podgornik, Rudolf

    2015-11-01

    We study the effect of temperature on the repulsive Casimir interaction between an ideally permeable and an ideally polarizable plate in vacuo. At small separations or for low temperatures the quantum fluctuations of the electromagnetic field give the main contribution to the interaction, while at large separations or for high temperatures the interaction is dominated by the classical thermal fluctuations of the field. At intermediate separations or finite temperatures both the quantum and thermal fluctuations contribute. For a system composed of one infinitely permeable plate between two ideal conductors at a finite temperature, we identify a stable mechanical equilibrium state, if the infinitely permeable plate is located in the middle of the cavity. For small displacements the restoring force of this Boyer oscillator is linear in the deviation from the equilibrium position, with a spring constant that depends inversely on the separation between the two conducting plates and linearly on temperature. Furthermore, an array of such oscillators presents an ideal Einsteinian crystal that displays a fluctuation force between its outer boundaries stemming from the displacement fluctuations of the Boyer oscillators.

  19. Atomization of water jets and sheets in axial and swirling airflows

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70 deg blake angle, air swirling. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swirling markedly reduced the spray mean drop size.

  20. [A nonlinear multi-compartment lung model for optimization of breathing airflow pattern].

    PubMed

    Cai, Yongming; Gu, Lingyan; Chen, Fuhua

    2015-02-01

    It is difficult to select the appropriate ventilation mode in clinical mechanical ventilation. This paper presents a nonlinear multi-compartment lung model to solve the difficulty. The purpose is to optimize respiratory airflow patterns and get the minimum of the work of inspiratory phrase and lung volume acceleration, minimum of the elastic potential energy and rapidity of airflow rate changes of expiratory phrase. Sigmoidal function is used to smooth the respiratory function of nonlinear equations. The equations are established to solve nonlinear boundary conditions BVP, and finally the problem was solved with gradient descent method. Experimental results showed that lung volume and the rate of airflow after optimization had good sensitivity and convergence speed. The results provide a theoretical basis for the development of multivariable controller monitoring critically ill mechanically ventilated patients. PMID:25997262

  1. Dynamic Changes in Heart Rate Variability and Nasal Airflow Resistance during Nasal Allergen Provocation Test.

    PubMed

    Seppänen, Tiina M; Alho, Olli-Pekka; Seppänen, Tapio

    2016-01-01

    Allergic rhinitis is a major chronic respiratory disease and an immunoneuronal disorder. We aimed at providing further knowledge on the function of the neural system in nasal allergic reaction. Here, a method to assess simultaneously the nasal airflow resistance and the underlying function of autonomic nervous system (ANS) is presented and used during the nasal provocation of allergic and nonallergic subjects. Continuous nasal airflow resistance and spectral heart rate variability parameters show in detail the timing and intensity differences in subjects' reactions. After the provocation, the nasal airflow resistance of allergic subjects showed a positive trend, whereas LF/HF (Low Frequency/High Frequency) ratio and LF power showed a negative trend. This could imply a gradual sympathetic withdrawal in allergic subjects after the allergen provocation. The groups differed significantly by these physiological descriptors. The proposed method opens entirely new opportunities to research accurately concomitant changes in nasal breathing function and ANS. PMID:27196870

  2. Competition between pressure effects and airflow influence for the performance of plasma actuators

    SciTech Connect

    Kriegseis, J.; Barckmann, K.; Grundmann, S.; Frey, J.; Tropea, C.

    2014-05-15

    The present work addresses the combined influence of pressure variations and different airflow velocities on the discharge intensity of plasma actuators. Power consumption, plasma length, and discharge capacitance were investigated systematically for varying pressure levels (p = 0.1–1 bar) and airflow velocities (U{sub ∞}=0−100 m/s) to characterize and quantify the favorable and adverse effects on the discharge intensity. In accordance with previous reports, an increasing plasma actuator discharge intensity is observed for decreasing pressure levels. At constant pressure levels, an adverse airflow influence on the electric actuator performance is demonstrated. Despite the improved discharge intensity at lower pressure levels, the seemingly improved performance of the plasma actuators is accompanied with a more pronounced drop of the relative performance. These findings demonstrate the dependency of the (kinematic and thermodynamic) environmental conditions on the electric performance of plasma actuators, which in turn affects the control authority of plasma actuators for flow control applications.

  3. Low-airflow drying of fungicide-treated shelled corn. Final report

    SciTech Connect

    Peterson, W.H.; Benson, P.W.; McFate, K.L.

    1993-02-01

    Approved fungicides inhibit mold growth in shelled corn and allow for longer, natural-air drying. The longer drying periods permit lower than-normal airflows and smaller power units, thus reducing electrical demands on utilities in corn-producing states. Researchers placed approximately 67 m{sup 3} (1900 bu) of one variety of shelled corn at approximately 24% moisture in each of five equally sized storage bins. They partitioned each bin vertically and filled one half of each bin with fungicide-treated corn and one half with untreated corn. Each of four bins used a different airflow. A fifth bin used the lowest of the four airflows but was equipped to capture and use solar energy. All corn dried rapidly with resulting good quality. The percentage of damaged kernels was significantly higher for untreated than for treated corn. The energy required for the lowest airflow system was approximately one half of that required for the higher, more traditional airflows. Because of lower-than-normal airflows, the electrical demand on the utility is approximately one fourth as great as that imposed when the higher, more traditional natural-air systems are used. The 1991 corn growing and drying seasons were unusual in central Illinois, the site of the study. Both harvest and drying occurred several weeks ahead of schedule. Additional work is needed to verify that findings hold true during more-normal Midwest corn growing and drying seasons; the investigators predict that they will. It should be noted that the fungicide used in this study has not yet been approved for widespread use in drying corn.

  4. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    SciTech Connect

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  5. What is normal nasal airflow? A computational study of 22 healthy adults

    PubMed Central

    Zhao, Kai; Jiang, Jianbo

    2014-01-01

    Objective Nasal airflow is essential for functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related variations. Methods Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. Results Common features across subjects included: >50% total pressure-drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r=-0.65, p<0.01). This middle flow percentage combined with peak post-vestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r=0.53, p<0.01). Conclusion Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications. PMID:24664528

  6. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats.

    PubMed

    Eiting, Thomas P; Perot, J Blair; Dumont, Elizabeth R

    2015-02-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity.

  7. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats

    PubMed Central

    Eiting, Thomas P.; Perot, J. Blair; Dumont, Elizabeth R.

    2015-01-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. PMID:25520358

  8. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  9. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    NASA Astrophysics Data System (ADS)

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-11-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected.

  10. Two-dimensional airflow modeling underpredicts the wind velocity over dunes.

    PubMed

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J R; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune's symmetry axis - that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  11. Aerodynamic-wave break-up of liquid sheets in swirling airflows and combustor modules

    NASA Technical Reports Server (NTRS)

    Ingebo, R.

    1983-01-01

    Experimental mean drop diameter data were obtained for the atomization of liquid sheets injected axially downstream in high velocity swirling and nonswirling airflow. Conventional simplex pressure atomizing fuel nozzles and splash type fuel injectors were studied under simulated combustor inlet airflow conditions. A general empirical expression relating recirprocal mean drop diameter to airstream mass velocity was obtained and is presented. The finest degree of atomization, i.e., the highest value of the coefficient C, was obtained with swirl can combustor modules (C = 15) as compared with pressure atomizing nozzles (C = 12).

  12. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    PubMed Central

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  13. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  14. Laser oscillating apparatus

    SciTech Connect

    Hoag, E.D.

    1988-03-08

    This patent describes a laser oscillating apparatus of type having a hollow cylindrical housing, gas flow generating means for generating a circulatory gas flow within the housing, paired discharge electrode assemblies opposedly disposed in spaced relationship to define a lasing region therebetween traversed by the circulatory gas flow for carrying out a predetermined discharge within the gas flow traversing the lasing region thereby generating a ray of radiation, and optical resonator means disposed within the housing for resonating the ray of radiation generated in the discharge. Each of the paired discharge electrode assemblies comprises: a. an insulated substrate having a molded base portion and an insulated ceramic surface portion disposed adjacent the molded base portion; b. pin-shaped electrodes; c. a ballast capacitor disposed within the molded base portion of the insulated substrate; d. cooling tube means disposed within the molded base portion of the insulated substrate so as to pass between each pair of adjacent rows of the capacitor units forming the ballast capacitor; and e. at least one heat absorbing plate disposed between each pair of adjacent rows of capacitor units forming the ballast capacitor in contact with the cooling tube means passing therebetween.

  15. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  16. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  17. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  18. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  19. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  20. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  1. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  2. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  3. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE... A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  4. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE... A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  5. Study on plate silencer with general boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Gongmin; Zhao, Xiaochen; Zhang, Wenping; Li, Shuaijun

    2014-09-01

    A plate silencer consists of an expansion chamber with two side-branch rigid cavities covered by plates. Previous studies showed that, in a duct, the introduction of simply supported or clamped plates into an air conveying system could achieve broadband quieting from low to medium frequencies. In this study, analytical formulation is extended to the plate silencer with general boundary conditions. A set of static beam functions, which are a combination of sine series and third-order polynomial, is employed as the trial functions of the plate vibration velocity. Greens function and Kirchhoff-Helmholtz integral are used to solve the sound radiation in the duct and the cavity, and then the vibration velocity of the plate is obtained. Having obtained the vibration velocity, the pressure perturbations induced by the plate oscillation and the transmission loss are found. Optimization is carried out in order to obtain the widest stopband. The transmission loss calculated by the analytical method agrees closely with the result of the finite element method simulation. Further studies with regard to the plate under several different classical boundary conditions based on the validated model show that a clamped-free plate silencer has the worst stopband. Attempts to release the boundary restriction of the plate are also made to study its effect on sound reflection. Results show that a softer end for a clamped-clamped plate silencer helps increase the optimal bandwidth, while the same treatment for simply supported plate silencer will result in performance degradation.

  6. Test-Retest Reliability of Respiratory Resistance Measured with the Airflow Perturbation Device

    ERIC Educational Resources Information Center

    Gallena, Sally K.; Solomon, Nancy Pearl; Johnson, Arthur T.; Vossoughi, Jafar; Tian, Wei

    2014-01-01

    Purpose: In this study, the authors aimed to determine reliability of the airflow perturbation device (APD) to measure respiratory resistance within and across sessions during resting tidal (RTB) and postexercise breathing in healthy athletes, and during RTB across trials within a session in athletes with paradoxical vocal fold motion (PVFM)…

  7. Turbine Air-Flow Test Rig CFD Results for Test Matrix

    NASA Technical Reports Server (NTRS)

    Wilson, Josh

    2003-01-01

    This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.

  8. Airflow produced by dielectric barrier discharge between asymmetric parallel rod electrodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazuo; Tanaka, Motofumi; Yasui, Hiroyuki; Hashimoto, Kiyoshi

    2007-09-01

    We observed a novel type of airflow produced by an atmospheric rf discharge between asymmetric parallel rod electrodes. The electrodes were a bare metal rod 1mm in diameter and a glass-coated metal rod 3.2mm in diameter. The thrust, measured by a pendulum, increased with discharge input power.

  9. Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest.

    PubMed

    Segal, Rebecca A; Kepler, Grace M; Kimbell, Julia S

    2008-11-01

    Differences in nasal anatomy among human subjects may cause significant differences in respiratory airflow patterns and subsequent dosimetry of inhaled gases and particles in the respiratory tract. This study used computational fluid dynamics (CFD) to study inter-individual differences in nasal airflow among four healthy individuals. Magnetic resonance imaging (MRI) scans were digitized and nasal-surface-area-to-volume ratios (SAVR) were calculated for 15 adults. Two males and two females, representative of the range of SAVR values, were selected for flow analysis. Nasal CFD models were constructed for each subject by a semi-automated process that provided input to a commercial mesh generator to generate structured hexahedral meshes (Gambit, Fluent, Inc., Lebanon, NH, USA). Steady-state inspiratory laminar airflow at 15 L/min was calculated using commercial CFD software (FIDAP, Fluent, Inc., Lebanon, NH, USA). Streamline patterns, velocities, and helicity values were compared. In all subjects, the majority of flow passed through the middle and ventral regions of the nasal passages; however, the amount and location of swirling flow differed among individuals. Cross-sectional flow allocation analysis also indicated inter-individual differences. Laboratory water-dye experiments confirmed streamlines and velocity magnitudes predicted by the computational model. These results suggest that significant inter-individual differences exist in bulk airflow patterns in the nose.

  10. Study on airflow characteristics in the semi-closed irregular narrow flow channel

    NASA Astrophysics Data System (ADS)

    Jin, Yuzhen; Hu, Xiaodong; Zhu, Linhang; Hu, Xudong; Jin, Yingzi

    2016-04-01

    The air-jet loom is widely used in the textile industry. The interaction mechanism of airflow and yarn is not clear in such a narrow flow channel, the gas consumption is relatively large, the yarn motion is unstable and the weft insertion is often interrupted during the operation. In order to study the characteristics of the semi-closed flow field in profiled dents, the momentum conservation equation is modified and the model parameters and boundary conditions are set. Compared with the different r, the ratio of profiled dent's thickness and gap, the results show that the smaller the r is, the smaller the velocity fluctuations of the airflow is. When the angle of profiled dents α is close to zero, the diffusion of the airflow will be less. The experiment is also conducted to verify the result of the simulation with a high-speed camera and pressure sensor in profiled dents. The airflow characteristics in the semi-closed irregular narrow flow channel in the paper would provide the theoretical basis for optimizing the weft insertion process of the air-jet loom.

  11. Cooling tower irrigator layout with allowances for non-uniformity of the airflow velocity field

    NASA Astrophysics Data System (ADS)

    Pushnov, A. S.; Ryabushenko, A. S.

    2016-07-01

    This article covers the results of analysis of aerodynamic processes in the cooling tower irrigator and provides the approaches to optimal layout of preformed packing blocks (of the irrigator) developed based on these results. The analysis of the airflow velocity field in the cooling towers shows that the irrigation space can be broken down into the following zones: the peripheral zone of the cooling tower near the airblast windows, the zone near the cooling tower center, and the intermediate zone. Furthermore, the highest level of nonuniformity of the airflow velocity field in cooling towers is in the zone adjoining the tower's airblast windows. The proposed concept of the cooling tower irrigator's layout is made with allowances for the airflow velocity field characteristics in the cross-section of the irrigation space of the cooling tower. Based on this concept, we suggest that higher irrigator blocks should be placed in the zone of increased airflow consumption, which provides the possibility to enhance the hydraulic resistance and, respectively, decrease the gas flow velocity as well as to boost the efficiency of chilling the circulating water in the cooling tower. For this purpose, additional irrigator blocks can be of the same design as the main irrigator. As an option, it is possible to use blocks of the geometry and design other than the main irrigator block in the cooling tower.

  12. Atomization of water jets and sheets in axial and swirling airflows

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1979-01-01

    Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70 deg blake angle, air swirling. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swirling markedly reduced the spray mean drop size. Test conditions included a water flow rate of 68.0 liter per hour and airflow rates (per unit area) of 3.7 to 25.7 g per square cm per sec, at 293 K and inlet-air static pressures of 1.01 x 10 to the 5th to 1.98 x 10 to the 5th N/sq m.

  13. Experimental investigation of transient thermal behavior of an airship under different solar radiation and airflow conditions

    NASA Astrophysics Data System (ADS)

    Li, De-Fu; Xia, Xin-Lin; Sun, Chuang

    2014-03-01

    Knowledge of the thermal behavior of airships is crucial to the development of airship technology. An experiment apparatus is constructed to investigate the thermal response characteristics of airships, and the transient temperature distributions of both hull and inner gas are obtained under the irradiation of a solar simulator and various airflow conditions. In the course of the research, the transient temperature change of the experimental airship is measured for four airflow speeds of 0 m/s (natural convection), 3.26 m/s, 5.5 m/s and 7.0 m/s, and two incident solar radiation values of 842.4 W/m2 and 972.0 W/m2. The results show that solar irradiation has significant influence on the airship hull and inner gas temperatures even if the airship stays in a ground airflow environment where the heat transfer is dominated by radiation and convection. The airflow around the airship is conducive to reduce the hull temperature and temperature nonuniformity. Transient thermal response of airships rapidly varies with time under solar radiation conditions and the hull temperature remains approximately constant in ˜5-10 min. Finally, a transient thermal model of airship is developed and the model is validated through comparison with the experimental data.

  14. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines

    PubMed Central

    Zhou, L.; Goodman, G.; Martikainen, A.

    2015-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines. PMID:26388684

  15. Detection of Mouse Cough Based on Sound Monitoring and Respiratory Airflow Waveforms

    PubMed Central

    Chen, Liyan; Lai, Kefang; Lomask, Joseph Mark; Jiang, Bert; Zhong, Nanshan

    2013-01-01

    Detection for cough in mice has never yielded clearly audible sounds, so there is still a great deal of debates as to whether mice can cough in response to tussive stimuli. Here we introduce an approach for detection of mouse cough based on sound monitoring and airflow signals. 40 Female BALB/c mice were pretreated with normal saline, codeine, capasazepine or desensitized with capsaicin. Single mouse was put in a plethysmograph, exposed to aerosolized 100 µmol/L capsaicin for 3 min, followed by continuous observation for 3 min. Airflow signals of total 6 min were recorded and analyzed to detect coughs. Simultaneously, mouse cough sounds were sensed by a mini-microphone, monitored manually by an operator. When manual and automatic detection coincided, the cough was positively identified. Sound and sound waveforms were also recorded and filtered for further analysis. Body movements were observed by operator. Manual versus automated counts were compared. Seven types of airflow signals were identified by integrating manual and automated monitoring. Observation of mouse movements and analysis of sound waveforms alone did not produce meaningful data. Mouse cough numbers decreased significantly after all above drugs treatment. The Bland-Altman and consistency analysis between automatic and manual counts was 0.968 and 0.956. The study suggests that the mouse is able to present with cough, which could be detected by sound monitoring and respiratory airflow waveform changes. PMID:23555643

  16. Airflow produced by dielectric barrier discharge between asymmetric parallel rod electrodes

    SciTech Connect

    Hayashi, Kazuo; Tanaka, Motofumi; Yasui, Hiroyuki; Hashimoto, Kiyoshi

    2007-09-15

    We observed a novel type of airflow produced by an atmospheric rf discharge between asymmetric parallel rod electrodes. The electrodes were a bare metal rod 1 mm in diameter and a glass-coated metal rod 3.2 mm in diameter. The thrust, measured by a pendulum, increased with discharge input power.

  17. Citric acid cough threshold and airway responsiveness in asthmatic patients and smokers with chronic airflow obstruction.

    PubMed Central

    Auffarth, B; de Monchy, J G; van der Mark, T W; Postma, D S; Koëter, G H

    1991-01-01

    The relation between citric acid cough threshold and airway hyperresponsiveness was investigated in 11 non-smoking patients with allergic asthma (mean FEV1 94% predicted) and 25 non-atopic smokers with chronic airflow obstruction (mean FEV1 65% predicted). Cough threshold was determined on two occasions by administering doubling concentrations of citric acid. Seven of the 11 asthmatic subjects and 14 of 25 smokers with chronic airflow obstruction had a positive cough threshold on both test days. Cough threshold measurements were reproducible in both groups (standard deviation of duplicate measurements 1.2 doubling concentrations in asthma, 1.1 doubling concentrations in chronic airflow obstruction). Citric acid provocation did not cause bronchial obstruction in most patients, though four patients had a fall in FEV1 of more than 20% for a short time on one occasion only. No significant difference in cough threshold was found between the two patient groups despite differences in baseline FEV1 values. There was no significant correlation between cough threshold and the provocative concentration of histamine causing a 20% fall in FEV1 (PC20) histamine in either group. Thus sensory nerves can be activated with a tussive agent in patients with asthma and chronic airflow obstruction without causing bronchial smooth muscle contraction. PMID:1948792

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  19. A computational study of the respiratory airflow characteristics in normal and obstructed human airways.

    PubMed

    Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet

    2014-09-01

    Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally.

  20. Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria

    PubMed Central

    Hutchinson, John R.; Farmer, CG

    2013-01-01

    The lungs of birds have long been known to move air in only one direction during both inspiration and expiration through most of the tubular gas-exchanging bronchi (parabronchi). Recently a similar pattern of airflow has been observed in American alligators, a sister taxon to birds. The pattern of flow appears to be due to the arrangement of the primary and secondary bronchi, which, via their branching angles, generate inspiratory and expiratory aerodynamic valves. Both the anatomical similarity of the avian and alligator lung and the similarity in the patterns of airflow raise the possibility that these features are plesiomorphic for Archosauria and therefore did not evolve in response to selection for flapping flight or an endothermic metabolism, as has been generally assumed. To further test the hypothesis that unidirectional airflow is ancestral for Archosauria, we measured airflow in the lungs of the Nile crocodile (Crocodylus niloticus). As in birds and alligators, air flows cranially to caudally in the cervical ventral bronchus, and caudally to cranially in the dorsobronchi in the lungs of Nile crocodiles. We also visualized the gross anatomy of the primary, secondary and tertiary pulmonary bronchi of C. niloticus using computed tomography (CT) and microCT. The cervical ventral bronchus, cranial dorsobronchi and cranial medial bronchi display similar characteristics to their proposed homologues in the alligator, while there is considerable variation in the tertiary and caudal group bronchi. Our data indicate that the aspects of the crocodilian bronchial tree that maintain the aerodynamic valves and thus generate unidirectional airflow, are ancestral for Archosauria. PMID:23638399

  1. Usability Evaluation of a Flight-Deck Airflow Hazard Visualization System

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground, such as vortices, downdrafts, low level wind shear, microbursts, or turbulence from surrounding vegetation or structures near the landing site. These hazards can be dangerous even to airliners; there have been hundreds of fatalities in the United States in the last two decades attributable to airliner encounters with microbursts and low level wind shear alone. However, helicopters are especially vulnerable to airflow hazards because they often have to operate in confined spaces and under operationally stressful conditions (such as emergency search and rescue, military or shipboard operations). Providing helicopter pilots with an augmented-reality display visualizing local airflow hazards may be of significant benefit. However, the form such a visualization might take, and whether it does indeed provide a benefit, had not been studied before our experiment. We recruited experienced military and civilian helicopter pilots for a preliminary usability study to evaluate a prototype augmented-reality visualization system. The study had two goals: first, to assess the efficacy of presenting airflow data in flight; and second, to obtain expert feedback on sample presentations of hazard indicators to refine our design choices. The study addressed the optimal way to provide critical safety information to the pilot, what level of detail to provide, whether to display specific aerodynamic causes or potential effects only, and how to safely and effectively shift the locus of attention during a high-workload task. Three-dimensional visual cues, with varying shape, color, transparency, texture, depth cueing, and use of motion, depicting regions of hazardous airflow, were developed and presented to the pilots. The study results indicated that such a visualization system could be of significant value in improving safety during critical takeoff and landing operations, and also

  2. Voltage-controlled oscillator

    NASA Technical Reports Server (NTRS)

    Durand, J. L.

    1971-01-01

    Oscillator generates symmetrical triangular waveform when inverting and noninverting inputs are equal. Oscillator portion of circuit has integrated circuit, high-performance operational amplifier wired as differential integrator, and two silicon controlled rectifiers.

  3. Saturation in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Roman, Ahmed; Hanna, James

    2015-03-01

    We consider a weakly nonlinear system consisting of a resonantly forced oscillator coupled to an unforced oscillator. It has long been known that, for quadratic nonlinearities and a 2:1 resonance between the oscillators, a perturbative solution of the dynamics exhibits a phenomenon known as saturation. At low forcing, the forced oscillator responds, while the unforced oscillator is quiescent. Above a critical value of the forcing, the forced oscillator's steady-state amplitude reaches a plateau, while that of the unforced oscillator increases without bound. We show that, contrary to established folklore, saturation is not unique to quadratically nonlinear systems. We present conditions on the form of the nonlinear couplings and resonance that lead to saturation. Our results elucidate a mechanism for localization or diversion of energy in systems of coupled oscillators, and suggest new approaches for the control or suppression of vibrations in engineered systems.

  4. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  5. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  6. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  7. Thermal self-oscillations in radiative heat exchange

    SciTech Connect

    Dyakov, S. A.; Dai, J.; Yan, M.; Qiu, M.

    2015-02-09

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO{sub 2} and VO{sub 2} which exchange heat by thermal radiation in vacuum. The non-linear feedback in the self-oscillating system is provided by metal-insulator transition in VO{sub 2}. Using the method of fluctuational electrodynamics, we show that under the action of an external laser of a constant power, the temperature of VO{sub 2} plate oscillates around its phase transition value. The period and amplitude of oscillations depend on the geometry of the structure. We found that at 500 nm vacuum gap separating bulk SiO{sub 2} plate and 50 nm thick VO{sub 2} plate, the period of self-oscillations is 2 s and the amplitude is 4 K, which is determined by phase switching at threshold temperatures of phase transition.

  8. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  9. Plating Tank Control Software

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  10. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  11. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  12. Discrete monotron oscillator

    SciTech Connect

    Carlsten, B.E.; Haynes, W.B.

    1996-08-01

    The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.

  13. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  14. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  15. Angular shear plate

    SciTech Connect

    Ruda, Mitchell C.; Greynolds, Alan W.; Stuhlinger, Tilman W.

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  16. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  17. Geologically current plate motions

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Gordon, Richard G.; Argus, Donald F.

    2010-04-01

    We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit-MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6-2.6mmyr-1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca-Antarctic and Nazca-Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also

  18. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  19. Oscillations of a cylindrical body submerged in a fluid with ice cover

    NASA Astrophysics Data System (ADS)

    Tkacheva, L. A.

    2015-11-01

    The linear plane problem of oscillations of an elliptic cylinder in an ideal incompressible fluid of finite depth in the presence of an ice cover of finite length is solved. The ice cover is modeled by an elastic plate of constant thickness. The hydrodynamic loads acting on the body are determined as functions of the oscillation frequency and the positions of the cylinder and plate.

  20. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  1. Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow

    SciTech Connect

    Kopyl, P. V.; Surkont, O. S.; Shibkov, V. M.; Shibkova, L. V.

    2012-06-15

    Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3-0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches {approx}2000 K.

  2. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  3. Influence of airflow rate and substrate nature on heterogeneous struvite precipitation.

    PubMed

    Saidou, H; Ben Moussa, S; Ben Amor, M

    2009-01-01

    In wastewater treatment plants a hard scale consisting of struvite crystals can be formed, in pipes and recirculation pumps, during anaerobic digestion of wastewater. This study was conducted to evaluate the effect of airflow rate and substrate nature on nucleation type, induction period and supersaturation coefficient during struvite precipitation. A crystallization reactor similar to that designed for calcium carbonate precipitation was used. The pH of synthetic wastewater solution was increased by air bubbling. Experimental results indicated that the airflow increased heterogeneous precipitation of struvite. The susceptibility to scale formation was more important on polyamide and polyvinyl chloride than on stainless steel. In all cases, X-ray diffraction and infrared spectroscopy showed that the precipitated solid phase was solely struvite. No difference in crystal morphology was observed. However, at similar experimental conditions, the particle size of struvite was higher for stainless-steel material than that for plastic materials. PMID:19213469

  4. The coupling influence of airflow and temperature on the wall-wetted fuel film distribution

    SciTech Connect

    Cheng, Yong-sheng; Deng, Kangyao; Li, Tao

    2010-02-15

    The coupling influence of airflow and temperature on the two-dimensional distribution of the film resulted from fuel spray impinging on a horizontal flat wall was studied with experiments. The horizontal airflow direction was perpendicular to the vertical axis of the injection spray. The results show that, as air velocity increases, the film shape turns from a circle to an oblong. As wall temperature increases, the film area shrinks. Film thickness decreases as wall temperature or air velocity increases. The boiling point of the fuel is an important temperature to affect the film area and the film thickness. Film center moves more far away in the downstream direction as air velocity increases. For a certain air velocity, film center moves less far away as wall temperature increases. (author)

  5. Methane emissions and airflow patterns along longwall faces and through bleeder ventilation systems

    PubMed Central

    Schatzel, Steven J.; Dougherty, Heather N.

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of longwall face and bleeder ventilation systems using tracer gas experiments and computer network ventilation. The condition of gateroad entries, along with the caved material’s permeability and porosity changes as the longwall face advances, determine the resistance of the airflow pathways within the longwall’s worked-out area of the bleeder system. A series of field evaluations were conducted on a four-panel longwall district. Tracer gas was released at the mouth of the longwall section or on the longwall face and sampled at various locations in the gateroads inby the shield line. Measurements of arrival times and concentrations defined airflow/gas movements for the active/completed panels and the bleeder system, providing real field data to delineate these pathways. Results showed a sustained ability of the bleeder system to ventilate the longwall tailgate corner as the panels retreated. PMID:26925166

  6. Study of airflow during respiratory cycle in semi-realistic model of human tracheobronchial tree

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Zaremba, M.; Maly, M.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2016-06-01

    This article deals with study of airflow under breathing process, which is characteristic by unsteady behavior. Simulations provided by computational fluid dynamics (CFD) was compared with experiments performed on similar geometry of human upper airways. This geometry was represented by mouth cavity of realistic shape connected to an idealized tracheobronchial tree up to fourth generation of branching. Commercial CFD software Star-CCM+ was used to calculate airflow inside investigated geometry and method of Reynolds averaging of Navier-Stokes equations was used for subscribing the turbulent behavior through model geometry. Conditions corresponding to resting state were considered. Comparisons with experiments were provided on several points through trachea and bronchial tree and results with respect to inspiratory and respiratory part of breathing cycle was discussed.

  7. Two models of high frequency chest compression therapy: interaction of jacket pressure and mouth airflow.

    PubMed

    Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) therapy assists clearing the secretions in the lung. This paper presents two mathematical models: 1) HFCC jacket function model (JFM) and 2) respiratory function model (RFM). JFM predicts the variation of the jacket pressure (Pj) from the respiratory pattern of mouth airflow (Fm). RFM predicts the HFCC induced mouth airflow (Fm) from the HFCC pulse pressures at the jacket (Pj). Fm and Pj were measured from a healthy subject during HFCC therapy. JFM, which was implemented with 2nd order system using prediction error method, shows the existence of breathing pattern at Pj. RFM, which was implemented with amplitude modulation technique, shows how the HFCC pulses affects to the Fm. JFM calculations match 78% of the measured respiratory pattern of Pj>. RFM calculations match 90% of measured HFCC induced Fm. These models can be used to test new breathing patterns before designing studies on patients having chronic obstructive pulmonary diseases.

  8. Influence of airflow rate and substrate nature on heterogeneous struvite precipitation.

    PubMed

    Saidou, H; Ben Moussa, S; Ben Amor, M

    2009-01-01

    In wastewater treatment plants a hard scale consisting of struvite crystals can be formed, in pipes and recirculation pumps, during anaerobic digestion of wastewater. This study was conducted to evaluate the effect of airflow rate and substrate nature on nucleation type, induction period and supersaturation coefficient during struvite precipitation. A crystallization reactor similar to that designed for calcium carbonate precipitation was used. The pH of synthetic wastewater solution was increased by air bubbling. Experimental results indicated that the airflow increased heterogeneous precipitation of struvite. The susceptibility to scale formation was more important on polyamide and polyvinyl chloride than on stainless steel. In all cases, X-ray diffraction and infrared spectroscopy showed that the precipitated solid phase was solely struvite. No difference in crystal morphology was observed. However, at similar experimental conditions, the particle size of struvite was higher for stainless-steel material than that for plastic materials.

  9. Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour.

    PubMed

    Klopsch, Christian; Kuhlmann, Hendrik C; Barth, Friedrich G

    2013-05-01

    When hungry, the wandering spider Cupiennius salei is frequently seen to catch flying insect prey. The success of its remarkable prey-capture jump from its sitting plant into the air obviously depends on proper timing and sensory guidance. In this study, it is shown that particular features of the airflow generated by the insect suffice to guide the spider. Vision and the reception of substrate vibrations and airborne sound are not needed. The behavioural reactions of blinded spiders were examined by exposing them to natural and synthetic flows imitating the fly-generated flow or particular features of it. Thus, the different roles of the three phases previously identified in the fly-generated flow and described in the companion paper could be demonstrated. When exposing the spider to phase I flow only (exponentially increasing flow velocity with very little fluctuation and typical of the fly's approach), an orienting behaviour could be observed but a prey-capture jump never be elicited. Remarkably, the spider reacted to the onset of phase II (highly fluctuating flow) of a synthetically generated flow field with a jump as frequently as it did when exposed to natural fly-generated flows. In all cases using either natural or artificial flows, the spider's jump was triggered before its flow sensors were hit by phase III flow (steadily decreasing airflow velocity). Phase III may tell the spider that the prey has passed by already in case of no prey-capture reaction. Our study underlines the relevance of airflow in spider behaviour. It also reflects the sophisticated workings of their flow sensors (trichobothria) previously studied in detail. Presumably, the information contained in prey-generated airflows plays a similar role in many other arthropods.

  10. 3D airflow dynamics over transverse ridges Mpekweni, South Africa: implications for dune field migration behaviour

    NASA Astrophysics Data System (ADS)

    Jackson, Derek; Cooper, Andrew; Green, Andrew; Beyers, Meiring; Wiles, Errol; Benallack, Keegan

    2016-04-01

    Un-vegetated dune fields provide excellent opportunities to examine airflow dynamics over various types and scales of dune landforms. The three dimensional surface over which lower boundary layers travel, help adjust surface airflow and consequently the aeolian response of the dunes themselves. The use of computational fluid dynamic (CFD) modelling in recent studies now enables investigation of the 3D behaviour of airflow over complex terrain, providing new insights into heterogeneous surface flow and aeolian response of dune surfaces on a large (dunefield) scale. Using a largely un-vegetated coastal dune field site at Mpekweni, Eastern Cape, South Africa, a detailed (0.1m gridded) terrestrial laser scanning survey was conducted to create a high resolution topographical surface. Using local wind flow measurements and local met station records as input, CFD modelling was performed for a number of scenarios involving variable direction and magnitude to examine surface flow patterns across multiple dune forms. Near surface acceleration, expansion and separation of airflow inducing convergence and divergence (steering) of flow velocity streamlines are investigated. Flow acceleration over dune crests/brink lines is a key parameter in driving dune migration and slip face dynamics. Dune aspect ratio (height to length) is also important in determining the degree of crestal flow acceleration, with an increase in flow associated with increasing aspect ratios. Variations in dune height appear to be the most important parameter in driving general flow acceleration. The results from the study provide new insights into dune migration behaviour at this site as well as surface flow behaviour across multiple dune configurations and length scales within un-vegetated dune fields.

  11. Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2013-01-01

    When hungry, the wandering spider Cupiennius salei is frequently seen to catch flying insect prey. The success of its remarkable prey-capture jump from its sitting plant into the air obviously depends on proper timing and sensory guidance. In this study, it is shown that particular features of the airflow generated by the insect suffice to guide the spider. Vision and the reception of substrate vibrations and airborne sound are not needed. The behavioural reactions of blinded spiders were examined by exposing them to natural and synthetic flows imitating the fly-generated flow or particular features of it. Thus, the different roles of the three phases previously identified in the fly-generated flow and described in the companion paper could be demonstrated. When exposing the spider to phase I flow only (exponentially increasing flow velocity with very little fluctuation and typical of the fly's approach), an orienting behaviour could be observed but a prey-capture jump never be elicited. Remarkably, the spider reacted to the onset of phase II (highly fluctuating flow) of a synthetically generated flow field with a jump as frequently as it did when exposed to natural fly-generated flows. In all cases using either natural or artificial flows, the spider's jump was triggered before its flow sensors were hit by phase III flow (steadily decreasing airflow velocity). Phase III may tell the spider that the prey has passed by already in case of no prey-capture reaction. Our study underlines the relevance of airflow in spider behaviour. It also reflects the sophisticated workings of their flow sensors (trichobothria) previously studied in detail. Presumably, the information contained in prey-generated airflows plays a similar role in many other arthropods. PMID:23427092

  12. Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Johnston, James D., Jr.

    1988-01-01

    Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.

  13. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow.

    PubMed

    Craven, Brent A; Paterson, Eric G; Settles, Gary S; Lawson, Michael J

    2009-09-01

    The canine nasal cavity contains a complex airway labyrinth, dedicated to respiratory air conditioning, filtering of inspired contaminants, and olfaction. The small and contorted anatomical structure of the nasal turbinates has, to date, precluded a proper study of nasal airflow in the dog. This study describes the development of a high-fidelity computational fluid dynamics (CFD) model of the canine nasal airway from a three-dimensional reconstruction of high-resolution magnetic resonance imaging scans of the canine anatomy. Unstructured hexahedral grids are generated, with large grid sizes ((10-100) x 10(6) computational cells) required to capture the details of the nasal airways. High-fidelity CFD solutions of the nasal airflow for steady inspiration and expiration are computed over a range of physiological airflow rates. A rigorous grid refinement study is performed, which also illustrates a methodology for verification of CFD calculations on complex unstructured grids in tortuous airways. In general, the qualitative characteristics of the computed solutions for the different grid resolutions are fairly well preserved. However, quantitative results such as the overall pressure drop and even the regional distribution of airflow in the nasal cavity are moderately grid dependent. These quantities tend to converge monotonically with grid refinement. Lastly, transient computations of canine sniffing were carried out as part of a time-step study, demonstrating that high temporal accuracy is achievable using small time steps consisting of 160 steps per sniff period. Here we demonstrate that acceptable numerical accuracy (between approximately 1% and 15%) is achievable with practical levels of grid resolution (approximately 100 x 10(6) computational cells). Given the popularity of CFD as a tool for studying flow in the upper airways of humans and animals, based on this work we recommend the necessity of a grid dependence study and quantification of numerical error when

  14. Analysis of the development of dynamic stall based on oscillating airfoil experiments

    NASA Technical Reports Server (NTRS)

    Carr, L. W.; Mcalister, K. W.; Mccroskey, W. J.

    1977-01-01

    The effects of dynamic stall on airfoils oscillating in pitch were investigated by experimentally determining the viscous and inviscid characteristics of the airflow on the NACA 0012 airfoil and on several leading-edge modifications. The test parameters included a wide range of frequencies, Reynolds numbers, and amplitudes-of-oscillation. Three distinct types of separation development were observed within the boundary layer, each leading to classical dynamic stall. The NACA 0012 airfoil is shown to stall by the mechanism of abrupt turbulent leading-edge separation. A detailed step-by-step analysis of the events leading to dynamic stall, and of the results of the stall process, is presented for each of these three types of stall. Techniques for flow analysis in the dynamic stall environment are discussed. A method is presented that reduces most of the oscillating airfoil normal force and pitching-moment data to a single curve, independent of frequency or Reynolds number.

  15. Characteristics of airflow in a CT-based ovine lung: a numerical study.

    PubMed

    Kabilan, Senthil; Lin, Ching-Long; Hoffman, Eric A

    2007-04-01

    The transient airflow in a rigid, asymmetric monopodial sheep (ovine) tracheobronchial tree of up to 13 generations was investigated numerically. The lung geometry was segmented and reconstructed from computed-tomographic (CT) images. The flow characteristics in the image-based sheep airway were compared with the flow patterns produced by a Weibel-based model at prime locations. Boundary conditions were prescribed 1) a velocity profile from experimental data at the inlet and 2) zero pressure at the bronchial outlets. A mesh convergence study was carried out to establish confidence in the model predictions, and gross left-right ventilation was validated against experimental xenon wash-in-washout data. Detailed flow characteristics were investigated at three points in the breathing cycle: 1) peak inhalation, 2) peak exhalation, and 3) transition. Simulation results revealed fundamental differences between airflow in monopodial and bipodial branching airways. Compared with idealized bipodial flow, the flow in the sheep airway was asymmetric and highly vortical, especially during exhalation and transition. The streak lines during the inhalation phase suggest that the left and right upper lobes are ventilated by airflow in the peripheral region of the trachea. This work may contribute to understanding the interplay between structure and function in the lung.

  16. Large-eddy simulation of airflow and heat transfer in a general ward of hospital

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Farhad; Himika, Taasnim Ahmed; Molla, Md. Mamun

    2016-07-01

    In this paper, a very popular alternative computational technique, the Lattice Boltzmann Method (LBM) has been used for Large-Eddy Simulation (LES) of airflow and heat transfer in general ward of hospital. Different Reynolds numbers have been used to study the airflow pattern. In LES, Smagorinsky turbulence model has been considered and a discussion has been conducted in brief. A code validation has been performed comparing the present results with benchmark results for lid-driven cavity problem and the results are found to agree very well. LBM is demonstrated through simulation in forced convection inside hospital ward with six beds with a partition in the middle, which acted like a wall. Changes in average rate of heat transfer in terms of average Nusselt numbers have also been recorded in tabular format and necessary comparison has been showed. It was found that partition narrowed the path for airflow and once the air overcame this barrier, it got free space and turbulence appeared. For higher turbulence, the average rate of heat transfer increased and patients near the turbulence zone released maximum heat and felt more comfortable.

  17. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor. PMID:26343789

  18. Pale nasal mucosa affects airflow limitations in upper and lower airways in asthmatic children

    PubMed Central

    Odajima, Hiroshi; Yamada, Atsunobu; Taba, Naohiko; Murakami, Yoko; Nishima, Sankei

    2016-01-01

    Background Severe asthmatics are thought to have severer rhinitis than mild asthmatics. A pale nasal mucosa is a typical clinical finding in subjects with severe allergic rhinitis. Objective The aim of this study was to investigate whether a pale nasal mucosa affects airflow limitations in the upper and lower airways in asthmatic children. Methods Rhinomanometry, nasal scraping, and spirometry were performed in 54 asthmatic children (median age, 10 years). The nasal mucosa was evaluated by an otolaryngologist. Thirty-seven patients were treated with inhaled corticosteroids, and 11 patients were treated with intranasal corticosteroids. Results Subjects with a pale nasal mucosa (n = 23) exhibited a lower nasal airflow (p < 0.05) and a larger number of nasal eosinophils (p < 0.05) in the upper airway as well as lower pulmonary functional parameters (p < 0.05 for all comparisons), i.e., the forced vital capacity (FVC), the forced expiratory volume in 1 second, and the peak expiratory flow, compared with the subjects who exhibited a normal or pinkish mucosa (n = 31). No significant difference in the forced expiratory flow between 25%–75% of the FVC, regarded as indicating the peripheral airway, was observed between the 2 groups. Conclusion A pale nasal mucosa may be a predictor of eosinophil infiltration of the nasal mucosa and central airway limitations in asthmatic children. When allergists observe a pale nasal mucosa in asthmatic children, they should consider the possibility of airflow limitations in not only the upper airway, but also the lower airway. PMID:27803882

  19. Hair sensor using a photoelectronic principle for sensing airflow and its direction

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Yuh; Huang, Chien-Tai

    2011-01-01

    Many organisms have diverse hair cells to instantaneously perceive the change of surroundings so that they can keep away from threats. These organs can precisely detect the tiny variations of airflow, water flow, sound, or pressure, and also resolve their affecting directions. Through this brilliant inspiration by the insects' cilia, we decided to design and develop a hair sensor for detecting two-dimensional airflow and pressure waves by using photoelectronic principles. The hair sensor inherently consists of an artificial cilium supported by an elastic membrane. A light-emitting diode and a quadrant photodiode are used as the photoelectronic sensor. The airflow or pressure wave directly stimulates the cilium to sway, and this motion contributes to let the projected light beam shift over the quadrant photodiode, whose four photodiodes produce then corresponding output signals. Because of dynamic and high-sensitive properties of the photoelectronic sensor, the hair sensor we developed possesses a high measurement resolution to be able to detect very tiny stimulation and its affecting direction. According to its multifaceted characteristics and simple structure, the hair sensor can be applied in numerous potential application fields, such as intrusion alarm system, noise detection system, as well as a tactile sensor.

  20. Multizone airflow and contaminant modeling: Performance of two common ventilation systems in Swedish apartment buildings

    SciTech Connect

    Herrlin, M.K.

    1999-07-01

    The goal of this work was to assess the performance of two common ventilation systems, an exhaust and an exhaust-supply system, in Swedish apartment buildings. Since correct air-exchange and interzonal airflows are important for removing contaminants and improving indoor air quality, these air flows were analyzed by systematic computer calculations when selected input parameters were varied around their default values. The research specifically involved establishing characteristics of a prototypical building, determining appropriate boundary conditions (climate and operation), developing necessary physical/mathematical models, and establishing a protocol for carrying out the parametric studies required to assess airflows in buildings of this type. The study results, though specific for the prototypical building, present useful generalities that allow substitutions to be made in working with comparable buildings. The exhaust ventilation system allows a pressure hierarchy that is beneficial for controlling interzonal airflows and exfiltration. This hierarchy, however, turns into a disadvantage when leakage levels are altered by closing ventilation slots, for example. The exhaust-supply ventilation system has the advantage of guaranteeing a minimum air-exchange rate under all conditions. A drawback of this system is that air flows from apartments on the lower levels to apartments on upper levels via the staircase. Because of this flow pattern, contaminants can be transported to upper-level apartments.

  1. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  2. Chronic endotoxin exposure produces airflow obstruction and lung dendritic cell expansion.

    PubMed

    Lai, Peggy S; Fresco, Jennifer M; Pinilla, Miguel A; Macias, Alvaro A; Brown, Ronald D; Englert, Joshua A; Hofmann, Oliver; Lederer, James A; Hide, Winston; Christiani, David C; Cernadas, Manuela; Baron, Rebecca M

    2012-08-01

    Little is known about the mechanisms of persistent airflow obstruction that result from chronic occupational endotoxin exposure. We sought to analyze the inflammatory response underlying persistent airflow obstruction as a result of chronic occupational endotoxin exposure. We developed a murine model of daily inhaled endotoxin for periods of 5 days to 8 weeks. We analyzed physiologic lung dysfunction, lung histology, bronchoalveolar lavage fluid and total lung homogenate inflammatory cell and cytokine profiles, and pulmonary gene expression profiles. We observed an increase in airway hyperresponsiveness as a result of chronic endotoxin exposure. After 8 weeks, the mice exhibited an increase in bronchoalveolar lavage and lung neutrophils that correlated with an increase in proinflammatory cytokines. Detailed analyses of inflammatory cell subsets revealed an expansion of dendritic cells (DCs), and in particular, proinflammatory DCs, with a reduced percentage of macrophages. Gene expression profiling revealed the up-regulation of a panel of genes that was consistent with DC recruitment, and lung histology revealed an accumulation of DCs in inflammatory aggregates around the airways in 8-week-exposed animals. Repeated, low-dose LPS inhalation, which mirrors occupational exposure, resulted in airway hyperresponsiveness, associated with a failure to resolve the proinflammatory response, an inverted macrophage to DC ratio, and a significant rise in the inflammatory DC population. These findings point to a novel underlying mechanism of airflow obstruction as a result of occupational LPS exposure, and suggest molecular and cellular targets for therapeutic development.

  3. SMA actuators for vibration control and experimental determination of model parameters dependent on ambient airflow velocity

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.

    2016-05-01

    This article demonstrates the practical applicability of a method of modelling shape memory alloys (SMAs) as actuators. For this study, a pair of SMA wires was installed in an antagonistic manner to form an actuator, and a linear differential equation that describes the behaviour of the actuator’s generated force relative to its input voltage was derived for the limited range below the austenite onset temperature. In this range, hysteresis need not be considered, and the proposed SMA actuator can therefore be practically applied in linear control systems, which is significant because large deformations accompanied by hysteresis do not necessarily occur in most vibration control cases. When specific values of the parameters used in the differential equation were identified experimentally, it became clear that one of the parameters was dependent on ambient airflow velocity. The values of this dependent parameter were obtained using an additional SMA wire as a sensor. In these experiments, while the airflow distribution around the SMA wires was varied by changing the rotational speed of the fans in the wind tunnels, an input voltage was conveyed to the SMA actuator circuit, and the generated force was measured. In this way, the parameter dependent on airflow velocity was estimated in real time, and it was validated that the calculated force was consistent with the measured one.

  4. The effects of a hot drink on nasal airflow and symptoms of common cold and flu.

    PubMed

    Sanu, A; Eccles, R

    2008-12-01

    Hot drinks are a common treatment for common cold and flu but there are no studies reported in the scientific and clinical literature on this mode of treatment. This study investigated the effects of a hot fruit drink on objective and subjective measures of nasal airflow, and on subjective scores for common cold/flu symptoms in 30 subjects suffering from common cold/flu. The results demonstrate that the hot drink had no effect on objective measurement of nasal airflow but it did cause a significant improvement in subjective measures of nasal airflow. The hot drink provided immediate and sustained relief from symptoms of runny nose, cough, sneezing, sore throat, chilliness and tiredness, whereas the same drink at room temperature only provided relief from symptoms of runny nose, cough and sneezing. The effects of the drinks are discussed in terms of a placebo effect and physiological effects on salivation and airway secretions. In conclusion the results support the folklore that a hot tasty drink is a beneficial treatment for relief of most symptoms of common cold and flu.

  5. Human-Mediated Dispersal of Seeds by the Airflow of Vehicles

    PubMed Central

    von der Lippe, Moritz; Bullock, James M.; Kowarik, Ingo; Knopp, Tatjana; Wichmann, Matthias

    2013-01-01

    Human-mediated dispersal is known as an important driver of long-distance dispersal for plants but underlying mechanisms have rarely been assessed. Road corridors function as routes of secondary dispersal for many plant species but the extent to which vehicles support this process remains unclear. In this paper we quantify dispersal distances and seed deposition of plant species moved over the ground by the slipstream of passing cars. We exposed marked seeds of four species on a section of road and drove a car along the road at a speed of 48 km/h. By tracking seeds we quantified movement parallel as well as lateral to the road, resulting dispersal kernels, and the effect of repeated vehicle passes. Median distances travelled by seeds along the road were about eight meters for species with wind dispersal morphologies and one meter for species without such adaptations. Airflow created by the car lifted seeds and resulted in longitudinal dispersal. Single seeds reached our maximum measuring distance of 45 m and for some species exceeded distances under primary dispersal. Mathematical models were fit to dispersal kernels. The incremental effect of passing vehicles on longitudinal dispersal decreased with increasing number of passes as seeds accumulated at road verges. We conclude that dispersal by vehicle airflow facilitates seed movement along roads and accumulation of seeds in roadside habitats. Dispersal by vehicle airflow can aid the spread of plant species and thus has wide implications for roadside ecology, invasion biology and nature conservation. PMID:23320077

  6. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Tropea, C.; Grundmann, S.

    2012-07-15

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4airflow velocities. Two non-dimensional scaling numbers are proposed to characterize and quantify the airflow influence. It is demonstrated that these numbers span a universal performance drop diagram for the entire range of investigated operating parameters.

  7. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  8. Coolant pressure and airflow distribution in a strut-supported transpiration-cooled vane for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Poferl, D. J.; Richards, H. T.

    1972-01-01

    An analysis to predict pressure and flow distribution in a strut-supported wire-cloth vane was developed. Results were compared with experimental data obtained from room-temperature airflow tests conducted over a range of vane inlet airflow rates from 10.7 to 40.4 g/sec (0.0235 to 0.0890 lb/sec). The analytical method yielded reasonably accurate predictions of vane coolant flow rate and pressure distribution.

  9. An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S. A.; Schneebeli, M.; Steinfeld, A.

    2014-06-01

    An instrumented sample holder was developed for time-lapse micro-tomography of snow samples to enable in-situ nondestructive spatial and temporal measurements under controlled advective airflows, temperature gradients, and air humidities. The design was aided by computational fluid dynamics simulations to evaluate the airflow uniformity across the snow sample. Morphological and mass transport properties were evaluated during a 4 day test run. This instrument allows the experimental characterization of metamorphism of snow undergoing structural changes with time.

  10. A threshold lung volume for optimal mechanical effects on upper airway airflow dynamics: studies in an anesthetized rabbit model.

    PubMed

    Kairaitis, Kristina; Verma, Manisha; Amatoury, Jason; Wheatley, John R; White, David P; Amis, Terence C

    2012-04-01

    Increasing lung volume improves upper airway airflow dynamics via passive mechanisms such as reducing upper airway extraluminal tissue pressures (ETP) and increasing longitudinal tension via tracheal displacement. We hypothesized a threshold lung volume for optimal mechanical effects on upper airway airflow dynamics. Seven supine, anesthetized, spontaneously breathing New Zealand White rabbits were studied. Extrathoracic pressure was altered, and lung volume change, airflow, pharyngeal pressure, ETP laterally (ETPlat) and anteriorly (ETPant), tracheal displacement, and sternohyoid muscle activity (EMG%max) monitored. Airflow dynamics were quantified via peak inspiratory airflow, flow limitation upper airway resistance, and conductance. Every 10-ml lung volume increase resulted in caudal tracheal displacement of 2.1 ± 0.4 mm (mean ± SE), decreased ETPlat by 0.7 ± 0.3 cmH(2)O, increased peak inspiratory airflow of 22.8 ± 2.6% baseline (all P < 0.02), and no significant change in ETPant or EMG%max. Flow limitation was present in most rabbits at baseline, and abolished 15.7 ± 10.5 ml above baseline. Every 10-ml lung volume decrease resulted in cranial tracheal displacement of 2.6 ± 0.4 mm, increased ETPant by 0.9 ± 0.2 cmH(2)O, ETPlat was unchanged, increased EMG%max of 11.1 ± 0.3%, and a reduction in peak inspiratory airflow of 10.8 ± 1.0%baseline (all P < 0.01). Lung volume, resistance, and conductance relationships were described by exponential functions. In conclusion, increasing lung volume displaced the trachea caudally, reduced ETP, abolished flow limitation, but had little effect on resistance or conductance, whereas decreasing lung volume resulted in cranial tracheal displacement, increased ETP and increased resistance, and reduced conductance, and flow limitation persisted despite increased muscle activity. We conclude that there is a threshold for lung volume influences on upper airway airflow dynamics. PMID:22241061

  11. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  12. Hypervelocity plate acceleration

    SciTech Connect

    Marsh, S.P.; Tan, T.H.

    1991-01-01

    Shock tubes have been used to accelerate 1.5-mm-thick stainless steel plates to high velocity while retaining their integrity. The fast shock tubes are 5.1-cm-diameter, 15.2-cm-long cylinders of PBX-9501 explosive containing a 1.1-cm-diameter cylindrical core of low-density polystyrene foam. The plates have been placed directly in contact with one face of the explosive system. Plane-wave detonation was initiated on the opposite face. A Mach disk was formed in the imploding styrofoam core, which provided the impulse required to accelerate the metal plate to high velocity. Parametric studies were made on this system to find the effect of varying plate metal, plate thickness, foam properties, and addition of a barrel. A maximum plate velocity of 9.0 km/s has been observed. 6 refs., 17 figs.

  13. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  14. Self-oscillation

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  15. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  16. Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent research

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1981-01-01

    Finite element papers published in the open literature on the static bending and free vibration of layered, anisotropic, and composite plates and shells are reviewed. A literature review of large-deflection bending and large-amplitude free oscillations of layered composite plates and shells is also presented. Non-finite element literature is cited for continuity of the discussion.

  17. Plating methods, a survey

    NASA Technical Reports Server (NTRS)

    Berkowitz, J. B.; Emerson, N. H.

    1972-01-01

    Results are presented of a comprehensive search of the literature available, much of which has been generated by the research centers of NASA and its contractors, on plating and coating methods and techniques. Methods covered included: (1) electroplating from aqueous solutions; (2) electroplating from nonaqueous solutions; (3) electroplating from fused-salt baths; (4) electroforming; (5) electroless plating, immersion plating, and mirroring; (6) electroplating from gaseous plasmas; and (7) anodized films and conversion coatings.

  18. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  19. Secondary Airflow Structure around Clustered Shrubs and Its Significance for Vegetated Dune Evolution

    NASA Astrophysics Data System (ADS)

    Luo, Wanyin; Dong, Zhibao; Qian, Guangqiang; Lu, Junfeng

    2016-04-01

    Shrubs have an important significance in aeolian processes due to their disturbance of the local airflow. In the formation of vegetated dunes, there is an iterative interaction between shrub geometry, the structure of the secondary airflow, and the interaction between neighboring shrubs. Understanding the dynamics of vegetated dunes thus requires an insight into the airflow fields around shrubs. Based on aerodynamic and aeolian sand physics theory, this project measured the complex secondary flow field and aeolian sand deposition pattern around single and cluster shrubs with varied densities (i.e., 0.05, 0.08, 0.15, 0.20) and gap ratios (the ratio of the gap spacing between the shrub models to the center-to-center distance for the shrub models, ranged from 1.1 to 1.8 with side-by-side arrangement and 1.2 to 4.3 with tandem arrangement) using the particle image velocimetry system through wind tunnle simulation. The relationship between the secondary airflow structure and the shrub's porosity and arrangement was analyzed quantitatively. Research results revealed that porosity (density) is the key parameter to affect the flow patterns around single shrub. Compared to solid obstacles, bleed flow through the shrubs has great influence on the secondary airflow patterns around itself. Under cluster modes, the distance between two adjacent shrubs has great influence on flow field structures around them. The flow patterns around two side-by-side arranged shrubs can be classified into three kinds of modes, that is: single-bluff-body, biased flow pattern and parallel vortex streets. The flow patterns around two tandem arranged shrubs can be classified into three regimes, that is: the extended body regime, reattachment regime and co-shedding regime. The "shadow zone" with low velocity in the lee of shrubs is the optimal position for sand deposition, but its form, size and orientation would varied with the shrub porosity and gap ratio between them. With the increase of the gap

  20. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  1. Microfabrication and characterization of superconducting radio-frequency oscillators

    NASA Astrophysics Data System (ADS)

    Götz, M.; Khanin, V. V.; Zorin, A. B.; Niemeyer, J.

    2001-11-01

    We have prepared integrated oscillators consisting of niobium-made pancake coils and plate capacitors with sputter-deposited silicon dioxide as the dielectric. In combination with a GaAs-based preamplifier, samples with different layout parameters taken from the same wafer were operated in the liquid helium bath. Resonant frequencies in the range from 50 to 150 MHz were found.

  2. Determining the Strength of an Electromagnet through Damped Oscillations

    ERIC Educational Resources Information Center

    Thompson, Michael; Leung, Chi Fan

    2011-01-01

    This article describes a project designed to extend sixth-form pupils looking to further their knowledge and skill base in physics. This project involves a quantitative analysis of the decaying amplitude of a metal plate oscillating in a strong magnetic field; the decay of the amplitude is used to make estimates of the strength of the magnetic…

  3. Chord-wise Tip Actuation on Flexible Flapping Plates

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Gharib, Morteza

    2015-11-01

    The aerodynamic characteristics of low aspect ratio flapping plates are strongly influenced by the interaction between tip and edge vortices. This has led to the development of tip actuation mechanisms which bend the tip towards the root of the plate in the span-wise direction during oscillation to investigate its impact. In our current work, a tip actuation mechanism to bend a flat plate's two free corners towards one another in the chord-wise direction is developed using a shape memory alloy. The aerodynamic forces and resulting flow field are investigated from dynamically altering the tip chord-wise curvature while flapping. The frequency of oscillation, stroke angle, flexibility, and tip actuation timing are independently varied to determine their individual effects. These results will further the fundamental understanding of flapping wing aerodynamics. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144469.

  4. Active-bridge oscillator

    DOEpatents

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  5. Investigating Magnetic Oscillations.

    ERIC Educational Resources Information Center

    Brueningsen, Christopher A.

    1993-01-01

    Studies magnetic oscillation using an air track. Ceramic magnets are attached to the cart and also are used as dampeners in place of the springs. The resulting oscillations are fairly sinusoidal and is a good example of simple harmonic motion. (MVL)

  6. Oscillating Chemical Reactions

    ERIC Educational Resources Information Center

    Hawkins, M. D.; And Others

    1975-01-01

    Describes several oscillating chemical reactions which can be used in undergraduate chemistry laboratories. In one such reaction, ferroin oscillates from red (reducing solution) to blue (oxidizing solution) for about an hour at a frequency which can readily be shown to depend on such factors as the temperature, type of solvent, and concentration…

  7. Earthquakes and plate tectonics

    USGS Publications Warehouse

    Spall, H.

    1977-01-01

    An explanation is to be found in plate tectonics, a concept which has revolutionized thinking in the Earth sciences in the last 10 years. The theory of plate tectonics combines many of the ideas about continental drift (originally proposed in 1912 by Alfred Wegener in Germany) and sea-floor spreading (suggested originally by Harry Hess of Princeton University). 

  8. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  9. Turbine vane plate assembly

    SciTech Connect

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  10. Plating To Reinforce Welded Joints

    NASA Technical Reports Server (NTRS)

    Otousa, J. E.

    1982-01-01

    Electrodeposition used to strengthen welded joints gouged, nicked, or suffered other mechanical damage. Plating cell, typically of acrylic plastic such as poly (Methylmetacrylate), is assembled around part to be plated. Areas not to be plated are masked with plater's tape. Weld area is plated in standard nickel-plating process.

  11. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  12. A swirl flow evaporative cold plate

    NASA Technical Reports Server (NTRS)

    Niggemann, R. E.; Greenlee, W. J.; Hill, D. G.; Ellis, W.; Marshall, P.

    1985-01-01

    A forced flow evaporative cold plate is under development for future application to the thermal bus concept being pursued by NASA for Space Station Thermal Control. The vaporizer is a swirl-flow device employing a spiral tube coil geometry sandwiched between conductive metal plates upon which electric components could be mounted. This concept is based on the inherent phase separation that occurs in a two phase stream in curvilinear flow. This is a zero 'g' design with one 'g' all-attitude capability and is capable of high heat transfer coefficients, good isothermality, and the ability to function at heat fluxes approaching 5w/sq cm on the cold plates (10w/sq cm on the tube wall) with Freon 114. The advantages of this design over other two phase evaporator approaches are high heat flux capability, simplified control requirements, insensitivity to micro-gravity oscillations, and inexpensive manufacturability. The program included design, fabrication, and test of such a cold plate utilizing an existing test stand developed for two-phase thermal management system (TPTMS) testing. Test results analysis and conclusions are included.

  13. Four mass coupled oscillator guitar model.

    PubMed

    Popp, John E

    2012-01-01

    Coupled oscillator models have been used for the low frequency response (50 to 250 Hz) of a guitar. These 2 and 3 mass models correctly predict measured resonance frequency relationships under various laboratory boundary conditions, but did not always represent the true state of a guitar in the players' hands. The model presented has improved these models in three ways, (1) a fourth oscillator includes the guitar body, (2) plate stiffnesses and other fundamental parameters were measured directly and effective areas and masses used to calculate the responses, including resonances and phases, directly, and (3) one of the three resultant resonances varies with neck and side mass and can also be modeled as a bar mode of the neck and body. The calculated and measured resonances and phases agree reasonably well.

  14. Four mass coupled oscillator guitar model.

    PubMed

    Popp, John E

    2012-01-01

    Coupled oscillator models have been used for the low frequency response (50 to 250 Hz) of a guitar. These 2 and 3 mass models correctly predict measured resonance frequency relationships under various laboratory boundary conditions, but did not always represent the true state of a guitar in the players' hands. The model presented has improved these models in three ways, (1) a fourth oscillator includes the guitar body, (2) plate stiffnesses and other fundamental parameters were measured directly and effective areas and masses used to calculate the responses, including resonances and phases, directly, and (3) one of the three resultant resonances varies with neck and side mass and can also be modeled as a bar mode of the neck and body. The calculated and measured resonances and phases agree reasonably well. PMID:22280705

  15. Porous silver nanosheets: a novel sensing material for nanoscale and microscale airflow sensors.

    PubMed

    Marzbanrad, Ehsan; Zhao, Boxin; Zhou, Norman Y

    2015-11-01

    Fabrication of nanoscale and microscale machines and devices is one of the goals of nanotechnology. For this purpose, different materials, methods, and devices should be developed. Among them, various types of miniaturized sensors are required to build the nanoscale and microscale systems. In this research, we introduce a new nanoscale sensing material, silver nanosheets, for applications such as nanoscale and microscale gas flow sensors. The silver nanosheets were synthesized through the reduction of silver ions by ascorbic acid in the presence of poly(methacrylic acid) as a capping agent, followed by the growth of silver in the shape of hexagonal and triangular nanoplates, and self-assembly and nanojoining of these structural blocks. At the end of this process, the synthesized nanosheets were floated on the solution. Then, their electrical and thermal stability was demonstrated at 120 °C, and their atmospheric corrosion resistance was clarified at the same temperature range by thermogravimetric analysis. We employed the silver nanosheets in fabricating airflow sensors by scooping out the nanosheets by means of a sensor substrate, drying them at room temperature, and then annealing them at 300 °C for one hour. The fabricated sensors were tested for their ability to measure airflow in the range of 1 to 5 ml min(-1), which resulted in a linear response to the airflow with a response and recovery time around 2 s. Moreover, continuous dynamic testing demonstrated that the response of the sensors was stable and hence the sensors can be used for a long time without detectable drift in their response.

  16. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model.

    PubMed

    Harvey, Emily P; Ben-Tal, Alona

    2016-02-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  17. The incremental shuttle walking test in elderly people with chronic airflow limitation

    PubMed Central

    Dyer, C; Singh, S; Stockley, R; Sinclair, A; Hill, S

    2002-01-01

    Background: There is a concern that comorbidity or frailty in older people could limit the usefulness of currently available exercise tests for chronic lung disease. This study evaluated the feasibility and reproducibility of the incremental shuttle walking test (SWT) in people aged 70 years or over, compared exercise tolerance with other disability markers, and assessed whether the SWT is responsive to change after bronchodilators. Methods: Fifty elderly patients with chronic airflow limitation (CAL) and 32 controls without airflow limitation attempted the SWT before and after combined nebulised salbutamol/ipratropium bromide. Subjects also completed the Nottingham Extended Activities of Daily Living index (NEADL) and the London Handicap score (LHS). Results: Forty four subjects with CAL (88%) and 29 controls (84%) completed the SWT, including many with co-morbidities. Two week repeatability was good and the SWT was strongly associated with EADL (r=0.51, p<0.001) and LHS (r=0.43, p<0.004), but only weakly with forced expiratory volume in 1 second (FEV1) (r=0.31, p=0.05). Subjects with CAL walked a mean distance of 177.7 m compared with 243.3 m in controls (p<0.001); following bronchodilator therapy the distance walked increased in the CAL group by 13.2% (p=0.009). Conclusion: The SWT is a feasible and reproducible measure of exercise tolerance in elderly people with and without airflow obstruction and correlates with other markers of disability. It is sensitive to change following bronchodilation in subjects with CAL, although the change correlates less well with improvements in FEV1. Overall, these results suggest that the SWT might be an appropriate measure to assess interventions in elderly people. PMID:11809987

  18. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.

  19. Effect of air-flow on the evaluation of refractive surgery ablation patterns.

    PubMed

    Dorronsoro, Carlos; Schumacher, Silvia; Pérez-Merino, Pablo; Siegel, Jan; Mrochen, Michael; Marcos, Susana

    2011-02-28

    An Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the ablation was performed with the clinical air aspiration system, and also without air flow. Increasing air-flow produced deeper ablations, improved symmetry, and increased the repeatability of the ablation pattern. Shielding of the laser pulse by the plume of smoke during the ablation of plastic samples reduced the central ablation depth by more than 40% with no-air flow, 30% with clinical air aspiration, and 5% with 1.15 m/s air flow. A simple model based on non-inertial dragging of the particles by air flow predicts no central shielding with 2.3 m/s air flow, and accurately predicts (within 2 μm) the decrease of central ablation depth by shielding. The shielding effects for PMMA and Filofocon A were similar despite the differences in the ablation properties of the materials and the different full-shielding transmission coefficient, which is related to the number of particles ejected and their associated optical behavior. Air flow is a key factor in the evaluation of ablation patterns in refractive surgery using plastic models, as significant shielding effects are found with typical air-flow levels used under clinical conditions. Shielding effects can be avoided by tuning the air flow to the laser repetition rate.

  20. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults

    PubMed Central

    Brandimore, Alexandra E.; Troche, Michelle S.; Huber, Jessica E.; Hegland, Karen W.

    2015-01-01

    Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms. PMID:26500560

  1. Nasal Airflow Measured by Rhinomanometry Correlates with FeNO in Children with Asthma

    PubMed Central

    Hsu, Jong-Hau; Liu, Yi-Ching; Wu, Jiunn-Ren; Dai, Zen-Kong

    2016-01-01

    Background Rhinitis and asthma share similar immunopathological features. Rhinomanometry is an important test used to assess nasal function and spirometry is an important tool used in asthmatic children. The degree to which the readouts of these tests are correlated has yet to be established. We sought to clarify the relationship between rhinomanometry measurements, fractional exhaled nitric oxide (FeNO), and spirometric measurements in asthmatic children. Methods Patients’ inclusion criteria: age between 5 and 18 years, history of asthma with nasal symptoms, and no anatomical deformities. All participants underwent rhinomanometric evaluations and pulmonary function and FeNO tests. Results Total 84 children were enrolled. By rhinomanometry, the degree of nasal obstruction was characterized as follows: (1) no obstruction in 33 children, (2) slight obstruction in 29 children, and (3) moderate obstruction in 22 children. FeNO was significantly lower in patients without obstruction than those with slight or moderate obstruction. Dividing patients according to ATS Clinical Practice Guidelines regarding FeNO, patients < 12 years with FeNO > 20 ppb had a lower total nasal airflow rate than those with FeNO < 20 ppb. Patients ≥ 12 years with FeNO > 25 ppb had a lower total nasal airflow rate than those with FeNO < 25 ppb. Conclusions Higher FeNO was associated with a lower nasal airflow and higher nasal resistance. This supports a relationship between upper and lower airway inflammation, as assessed by rhinomanometry and FeNO. The results suggest that rhinomanometry may be integrated as part of the functional assessment of asthma. PMID:27792747

  2. Porous silver nanosheets: a novel sensing material for nanoscale and microscale airflow sensors

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Ehsan; Zhao, Boxin; Zhou, Norman Y.

    2015-11-01

    Fabrication of nanoscale and microscale machines and devices is one of the goals of nanotechnology. For this purpose, different materials, methods, and devices should be developed. Among them, various types of miniaturized sensors are required to build the nanoscale and microscale systems. In this research, we introduce a new nanoscale sensing material, silver nanosheets, for applications such as nanoscale and microscale gas flow sensors. The silver nanosheets were synthesized through the reduction of silver ions by ascorbic acid in the presence of poly(methacrylic acid) as a capping agent, followed by the growth of silver in the shape of hexagonal and triangular nanoplates, and self-assembly and nanojoining of these structural blocks. At the end of this process, the synthesized nanosheets were floated on the solution. Then, their electrical and thermal stability was demonstrated at 120 °C, and their atmospheric corrosion resistance was clarified at the same temperature range by thermogravimetric analysis. We employed the silver nanosheets in fabricating airflow sensors by scooping out the nanosheets by means of a sensor substrate, drying them at room temperature, and then annealing them at 300 °C for one hour. The fabricated sensors were tested for their ability to measure airflow in the range of 1 to 5 ml min-1, which resulted in a linear response to the airflow with a response and recovery time around 2 s. Moreover, continuous dynamic testing demonstrated that the response of the sensors was stable and hence the sensors can be used for a long time without detectable drift in their response.

  3. Instrumentation and measurement of airflow and temperature in attics fitted with ridge and soffit vents

    SciTech Connect

    Romero, M.I.; Brenner, R.J.

    1998-12-31

    This study established a research facility where airflow velocities, temperature, and differential pressures could be measured at the ridge of an attic. Following the construction of a test building, sensors were constructed, calibrated, and installed inside the attic. Paired tests were performed for three different ridge vent treatments; two were rolled type vents and one was a baffled vent. When both attics were fitted with the same ridge vent, the airspeed and differential pressure profiles at the ridge were very similar for both attics, indicating that any observed differences in airspeed and differential pressure were caused by the ridge vent treatment used. The baffled vent and rolled vents were then installed on the ridge of the west and east attics, respectively. The data demonstrated that the baffled ridge vent provided a minimum of twice the ridge airspeed of the rolled vents, when all wind conditions were considered. On the day selected to study the direction of the airflows at the ridge, the baffled vent had airflow speeds at the ridge similar to the rolled vent without fabric backing. The baffled vent allowed air to come out of the attic through both sides of the ridge (negative differential pressures on both sides), while the rolled vent without fabric backing caused air to enter through the south side of the ridge and exit through the north side (positive differential pressure on the south side and negative differential pressure on the north), in effect short-circuiting the vent. The fabric-backed rolled vent allowed attic air to come out of the attic through both sides of the ridge, as did the baffled vent, but the airspeed was slower. The baffled vent was the one with the highest airspeed at the ridge and also had both sides of the vent under negative differential pressure, providing the most effective ventilation.

  4. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  5. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model

    PubMed Central

    Harvey, Emily P.; Ben-Tal, Alona

    2016-01-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  6. Nasal airflow diagnosis--comparison of experimental studies and computer simulations.

    PubMed

    Müller-Wittig, Wolfgang; Mlynsji, Gunter; Weinhold, Ivo; Bockholt, Uli; Voss, Gerrit

    2002-01-01

    The lack of suited diagnostic tools providing insight into patient specific flow characteristics of the nasal airflow is one of the main problems in functional diagnosis. Diagnostic methods currently used do not provide the necessary information for flow analysis. But the flow distribution is essential for a physiological respiration, in particular for cleaning, moistening and tempering of the inhaled air as well as for the olfactory function of the nose. To overcome this current situation a cooperation project of the ENT surgeons and computer graphic engineers was established to develop the computer assisted planning system STAN (Simulation Tool for Airflow in the human Nose) combining Computer Fluid Dynamics (CFD) with advanced Computer Graphic Technology. The idea of the STAN system is to perform patient specific airflow simulations in the patient's nasal cavities. Therefore a geometrical model of the nasal airways is derived from the patient's tomography scans. A discretization of the surrounded flow volume is made by a computational grid. To establish the flow simulation Finite Element Methods are performed on the grid. A tailored visualization is offered to the surgeon that overlaps the flow pattern to the patient's tomography data shown in the coronal, sagittal and transversal plane. The surgeon can not only analyze the patient's current respiratory situation he has also the possibility to describe the planned surgical intervention. The goal is to simulate the flow distribution that can be expected after the surgical intervention and to offer a possibility to validate various surgical strategies. To verify the simulation results experimental investigations and measurements are made in nasal models. Silicon Models of patient's nose channels are made to analyze flow characteristics. The CT or MR scans of the same patients are used as input data for the simulation. The experimental outcome is compared to the simulation results to validate this diagnostic

  7. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  8. Lohse's historic plate archive

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M.; Tsvetkova, K.; Richter, G.; Scholz, G.; Böhm, P.

    The description and the analysis of Oswald Lohse's astrophotographic plates, collected at the Astrophysical Observatory Potsdam in the period 1879 - 1889, are presented. 67 plates of the archive, taken with the greatest instrument of the observatory at that time - the refractor (D = 0.30 m, F = 5.40 m, scale = 38''/mm) and with the second heliographic objective (D = 0.13 m, F = 1.36 m, scale = 152''/mm) - - survived two world wars in relative good condition. The plate emulsions are from different manufacturers in the beginning of astrophotography (Gädicke, Schleussner, Beernaert, etc.). The sizes of the plates are usually 9x12 cm2, which corresponds to fields of 1.2deg and 5deg respectively for each instrument mentioned above. The average limiting magnitude is 13.0(pg). Besides of the plates received for technical experiments (work on photographic processes, testing of new instruments and methods of observations), the scientific observations follow programs for studies of planet surfaces, bright stars, some double stars, stellar clusters and nebulous objects. Lohse's archive is included into the Wide Field Plate Database (http://www.skyarchive.org) as the oldest systematic one, covering the fields of Orion (M42/43), Pleiades, h & chi Persei, M37, M3, M11, M13, M92, M31, etc. With the PDS 2020 GM+ microdensitometer of Münster University 10 archive plates were digitized.

  9. Computational valve plate design

    NASA Astrophysics Data System (ADS)

    Kalbfleisch, Paul

    Axial piston machines are widely used in many industries for their designs compactness, flexibility in power transfer, variable flow rate, and high efficiencies as compared to their manufacturing costs. One important component of all axial piston machines that is a very influential on the performance of the unit is the valve plate. The aim of this research is to develop a design methodology that is general enough to design all types of valve plates and the simple enough not to require advanced technical knowledge from the user. A new style of valve plate designs has been developed that comprehensively considers all previous design techniques and does not require significant changes to the manufacturing processes of valve plates. The design methodology utilizes a previously developed accurate computer model of the physical phenomenon. This allows the precise optimization of the valve plate design through the use of simulations rather than expensive trial and error processes. The design of the valve plate is clarified into the form of an optimization problem. This formulation into an optimization problem has motivated the selection of an optimization algorithm that satisfies the requirements of the design. The proposed design methodology was successfully tested in a case study in the shown to be very successful in improving required performance of the valve plate design.

  10. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators.

    PubMed

    Biganzoli, I; Capone, C; Barni, R; Riccardi, C

    2015-02-01

    Background Oriented Schlieren (BOS) is an optical technique sensitive to the first spatial derivative of the refractive index inside a light-transmitting medium. Compared to other Schlieren-like techniques, BOS is more versatile and allows to capture bi-dimensional gradients rather than just one spatial component. We propose to adopt BOS for studying the capabilities of surface dielectric barrier discharges to work like plasma actuators in flow control applications. The characteristics of the BOS we implemented at this purpose are discussed, together with few results concerning the ionic wind produced by the discharge in absence of an external airflow.

  11. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators

    NASA Astrophysics Data System (ADS)

    Biganzoli, I.; Capone, C.; Barni, R.; Riccardi, C.

    2015-02-01

    Background Oriented Schlieren (BOS) is an optical technique sensitive to the first spatial derivative of the refractive index inside a light-transmitting medium. Compared to other Schlieren-like techniques, BOS is more versatile and allows to capture bi-dimensional gradients rather than just one spatial component. We propose to adopt BOS for studying the capabilities of surface dielectric barrier discharges to work like plasma actuators in flow control applications. The characteristics of the BOS we implemented at this purpose are discussed, together with few results concerning the ionic wind produced by the discharge in absence of an external airflow.

  12. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow.

    PubMed

    Quadrio, Maurizio; Pipolo, Carlotta; Corti, Stefano; Messina, Francesco; Pesci, Chiara; Saibene, Alberto M; Zampini, Samuele; Felisati, Giovanni

    2016-03-01

    The article focuses on the robustness of a CFD-based procedure for the quantitative evaluation of the nasal airflow. CFD ability to yield robust results with respect to the unavoidable procedural and modeling inaccuracies must be demonstrated to allow this tool to become part of the clinical practice in this field. The present article specifically addresses the sensitivity of the CFD procedure to the spatial resolution of the available CT scans, as well as to the choice of the segmentation level of the CT images. We found no critical problems concerning these issues; nevertheless, the choice of the segmentation level is potentially delicate if carried out by an untrained operator.

  13. Relation of pulmonary vessel size to transfer factor in subjects with airflow obstruction

    SciTech Connect

    Musk, A.W.

    1983-11-01

    In a group of 61 consecutive patients undergoing assessment of airflow obstruction, a significant linear relation was demonstrated between measurements of the diameter of the midzonal pulmonary vessels on the plain chest radiographs and transfer factor (diffusing capacity for carbon monoxide) (r = 0.46, p < 0.001). Since reduction in transfer factor has been shown to relate to structural emphysema, reduction in midzone vessel caliber implies the same. However, in the individual patient neither the transfer factor nor structural emphysema can be reliably predicted from midzone vessel diameters alone.

  14. Microwave discharge initiated by double laser spark in a supersonic airflow

    NASA Astrophysics Data System (ADS)

    Khoronzhuk, R. S.; Karpenko, A. G.; Lashkov, V. A.; Potapeko, D. P.; Mashek, I. Ch.

    2015-06-01

    In this paper, we report the results of an experimental study of microwave (MW) discharge in the supersonic flow initiated by the laser spark and numerical simulation of multiple laser spark shockwave structures in airflow. The MW discharge initiation has been produced by single and double laser sparks. By using different spatial and temporal configuration of laser sparks in supersonic flow, we demonstrate the feasibility of an MW breakdown threshold decrease and control over shape and location of MW plasma. Calculation of laser spark shock wave structures shows good agreement with experimental shadow photographs both in the front shock wave diameter and its internal structure.

  15. Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.

    1980-01-01

    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.

  16. Gas crossflow effects on airflow through a wire-form transpiration cooling material

    NASA Technical Reports Server (NTRS)

    Kaufman, A. S.; Russell, L. M.; Poferl, D. J.

    1972-01-01

    An experimental analysis was conducted to determine the effects of gas stream flow parallel to the discharging surface on the flow characteristics of a wire-form porous material. Flow data were obtained over a range of transpiration airflow rates from 0.129 to 0.695/grams per second-centimeter squared and external gas stream Mach numbers from 0 to 0.46. The conclusion was drawn that the flow characteristics of the wire cloth were not significantly affected by the external gas flows.

  17. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout

    NASA Astrophysics Data System (ADS)

    Smyth, Thomas A. G.; Jackson, Derek W. T.; Cooper, J. Andrew G.

    2012-12-01

    Blowouts are common landforms found within coastal dunes. Their dynamics are primarily driven by aeolian transport caused by surface wind stress, though patterns of deflation and deposition within blowouts are poorly understood as near surface wind flow is complex. Three-dimensional wind flows around blowouts have yet to be properly quantified, especially within zones of separation, re-attachment and acceleration. This has been largely due to inadequate measurement of airflow and a lack of suitable airflow models. With this in mind, we present results from a study that has quantified alongshore and oblique onshore wind flow dynamics over a bowl blowout on the Belmullet Peninsula, Ireland. Using ultrasonic three-dimensional anemometry (measuring at 50 Hz) and three-dimensional computational fluid dynamic (CFD) modelling, we measure and model for the first time in 3D a detailed picture of the heterogeneity of wind flow over this type of terrain. During alongshore wind conditions, wind speeds within the deflation basin were retarded by 50% compared to the foredune zone and flow separation restricted to a small zone in lee of the windward rim. Wind was directed into the deflation basin through a gap in a western erosional wall, termed the blowout throat. In oblique onshore wind, airflow orientated with the blowout throat remained unchanged in direction and slowed by only 30% compared to wind speed on the foredune. In lee of the erosional wall adjacent to the blowout throat, small zones of flow separation occurred close to the erosional wall. In both cases, the highest variation in wind speed and direction occurred in zones of separation and attachment whilst flow increased in steadiness with height over the erosional walls. The results illustrate that wind is manipulated according to localised topography within the bowl blowout itself. Resulting zones of potential sediment transport (erosion and deposition) are spatially complex and alter with wind direction. The

  18. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    PubMed

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  19. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    PubMed

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528784

  20. Plate removal following orthognathic surgery.

    PubMed

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature.

  1. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  2. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors. PMID:25618046

  3. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors.

  4. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  5. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  6. Plate tectonics: Metamorphic myth

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2016-01-01

    Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist.

  7. Positive battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John R. (Inventor)

    1985-01-01

    The power characteristics of a lead acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). Positive plate potential must be kept high enough to prevent reduction of the tin oxide to tin by utilizing an oversized, precharged positive paste.

  8. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  9. Oscillations of Quasars.

    PubMed

    McVittie, G C

    1964-10-01

    Rotation in addition to free gravitational motion can produce oscillations in a large spherical mass of gas. The theory may provide an explanation of the variations of brightness in such objects as 3C273.

  10. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  11. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  12. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing; Zettl, Alexander K.

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  13. A nonlinear oscillator

    SciTech Connect

    Tomlin, R.

    1990-01-27

    A nonlinear oscillator design was imported from Cornell modified, and built for the purpose of simulating the chaotic states of a forced pendulum. Similar circuits have been investigated in the recent nonlinear explosion.

  14. Oscillating fluid power generator

    SciTech Connect

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  15. The Potsdam Plate Archive

    NASA Astrophysics Data System (ADS)

    Boehm, P.; Steinmetz, M.; Tsvetkov, M.; Tsvetkova, K.

    2006-08-01

    The Virtual Observatory (VO) project will provide a global network platform to support modern astronomical research with fast and easy access to distributed archives via a unified interface and data model. Our aim is to include the historical photographic plates of the Potsdam observatory into this database in the framework of GAVO, the German contribution to VO. This work is part of the DFG project 436 BUL. The Postdam collection of wide-field plates consists of 11 archives, obtained from 1879 to 1970 (see Catalogue of Wide-Field Plate Archives, version 5.0, March 2005, http://www.skyarchive.org/catalogue.html), with a total amount of about 10000 plates and films stored not only in Potsdam but also in Leiden and Sonneberg. Apart from the long timeline provided for the observed objects, the archives reflect the history and development of the Potsdam observatory and of astronomical photography as well. The first astronomical photographs represent a scientific treasure. They offer the possibility to follow the photometric behavior of astronomical objects for about 120 years. This information is unique, because no more reproducible. Our aim is to digitize the old plates as long as their physical status does still allow it, and continue their systematic incorporation into the already existing Wide-Field Plate Database. These data can be used to search for any kind of long-term brightness variations like new flare stars or rapidly varying stars (Froehlich et al., 2002, A&A 391).

  16. Airflow and thrust calibration of an F100 engine, S/N P680059, at selected flight conditions

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Lee, D.; Rodriguez, J. R.

    1978-01-01

    An airflow and thrust calibration of an F100 engine, S/N P680059, was conducted to study airframe propulsion system integration losses in turbofan-powered high-performance aircraft. The tests were conducted with and without thrust augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. The resulting corrected airflow data generalized into one curve with corrected fan speed while corrected gross thrust increased as simulated flight conditions increased. Overall agreement between measured data and computed results was 1 percent for corrected airflow and -1 1/2 percent for gross thrust. The results of an uncertainty analysis are presented for both parameters at each simulated flight condition.

  17. A smart, intermittent driven particle sensor with an airflow change trigger using a lead zirconate titanate (PZT) cantilever

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Tomimatsu, Yutaka; Kobayashi, Takeshi; Isozaki, Akihiro; Itoh, Toshihiro; Maeda, Ryutaro; Matsumoto, Kiyoshi; Shimoyama, Isao

    2014-02-01

    This paper reports on a smart, intermittent driven particle sensor with an airflow trigger. A lead zirconate titanate cantilever functions as the trigger, which detects an airflow change without requiring a power supply to drive the sensing element. Because an airflow change indicates that the particle concentration has changed, the trigger switches the optical particle counter from sleep mode to active mode only when the particle concentration surrounding the sensor changes. The sensor power consumption in sleep mode is 100 times less than that in the active mode. Thus, this intermittent driven method significantly reduces the total power consumption of the particle sensor. In this paper, we fabricate a prototype of the particle sensor and demonstrate that the optical particle counter can be switched on by the fabricated trigger and thus that the particle concentration can be measured.

  18. Ultrastable Multigigahertz Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  19. Current oscillations in nanopores

    NASA Astrophysics Data System (ADS)

    Hyland, Brittany

    We develop a simple phenomenological model to describe current oscillations in single, conically shaped nanopores. The model utilizes aspects of reaction rate theory, electrochemical oscillators, and nonlinear dynamical systems. Time series of experimental data were analyzed and compared to time series simulated using the model equations. There is good qualitative agreement between experiment and simulation, though the model needs to be improved in order to obtain better quantitative agreement.

  20. Effects of surface roughness on evaporation from porous surfaces into turbulent airflows

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Or, Dani

    2014-05-01

    The ubiquitous and energy intensive mass transfer between wet porous surfaces and turbulent airflows is of great importance for various natural and industrial applications. The roughness of natural surfaces is likely to influence the structure of adjacent boundary layer and thus affecting heat and mass fluxes from surfaces. These links were formalized in a new model that considers the intermittent turbulence-induced boundary layer with local mass and energy exchange rates. We conducted experiments with regular surface roughness patterns subjected to constant turbulent airflows and monitored mass loss and thermal signatures of localized evaporative fluxes using infrared thermography. The resulting patterns were in good agreement with model predictions for local and surface averaged turbulent exchange rates. Preliminary results obtained for evaporation from sinusoidal wavy soil surfaces reveal that evaporative fluxes can be either enhanced or suppressed (relative to a flat surface) owing to relative contribution of downstream (separation zone) and rising (reattachment zone) surfaces of the wave with thick and thin viscous sublayer thicknesses, respectively. For isolated roughness elements (bluff bodies) over a flat evaporating surface, the resulting fluxes are enhanced (relative to a smooth surface) due to formation of vortices that induce thinner boundary layer. Potential benefits of the study for interpretation and upscaling of evaporative and heat fluxes from natural (rough) terrestrial surfaces will be discussed. Keywords: Turbulent Evaporation, Porous Media, Surface Roughness, Infrared Thermography.

  1. Detailed predictions of particle aspiration affected by respiratory inhalation and airflow

    NASA Astrophysics Data System (ADS)

    Inthavong, Kiao; Ge, Qin Jiang; Li, Xiang Dong; Tu, Ji Yuan

    2012-12-01

    The effects of air pollution found in the atmosphere and exposure to airborne particles are an important problem in the interest of public health. Exposure to contaminated air under different flow conditions is studied using the latest computational fluid dynamics models. For the first time the upper respiratory airway is integrated into a human body and placed inside a room, facing different airflow speeds (0.05-0.35 m s-1). It was found that the airflow streamlines diverged as it approached the human body, at the torso and accelerated upwards past the face and head before separating at the rear of the head, forming recirculating regions in the wake behind the body. Inhaled particles were tracked backwards to determine its origins. At a plane upstream from the face the locations of particles inhaled form a region known as the critical area, which is presented. This study establishes a better understanding of particle inhalability and provides a step towards a more holistic approach in determining inhalation toxicology effects of exposure to atmospheric particles.

  2. Effects of the ambient temperature on the airflow across a Caucasian nasal cavity.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Martín-Alcántara, A; Hidalgo-Martínez, M

    2014-03-01

    We analyse the effects of the air ambient temperature on the airflow across a Caucasian nasal cavity under different ambient temperatures using CFD simulations. A three-dimensional nasal model was constructed from high-resolution computed tomography images for a nasal cavity from a Caucasian male adult. An exhaustive parametric study was performed to analyse the laminar-compressible flow driven by two different pressure drops between the nostrils and the nasopharynx, which induced calm breathing flow rates ࣈ 5.7 L/min and ࣈ 11.3 L/min. The inlet air temperature covered the range - 10(o) C ⩽ To ⩽50(o) C. We observed that, keeping constant the wall temperature of the nasal cavity at 37(o) C, the ambient temperature affects mainly the airflow velocity into the valve region. Surprisingly, we found an excellent linear relationship between the ambient temperature and the air average temperature reached at different cross sections, independently of the pressure drop applied. Finally, we have also observed that the spatial evolution of the mean temperature data along the nasal cavity can be collapsed for all ambient temperatures analysed with the introduction of suitable dimensionless variables, and this evolution can be modelled with the help of hyperbolic functions, which are based on the heat exchanger theory. PMID:24574201

  3. Characteristics of aerodynamic sound sources generated by coiled wires in a uniform air-flow

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Nishida, K.; Saitoh, K.

    2003-11-01

    This study deals experimentally with aerodynamic sounds generated by coiled wires in a uniform air-flow. The coiled wire is a model of the hair dryer's heater. In the experiment, the effects of the coil diameter D, wire diameter d and coil spacing s of the coiled wire on the aerodynamic sound have been clarified. The results of frequency analyses of the aerodynamic sounds show that an Aeolian sound is generated by the coiled wire, when s/d is larger than 1. Also the peak frequencies of Aeolian sounds generated by the coiled wires are higher than the ones generated by a straight cylinder having the same diameter d. To clarify the characteristics of the aerodynamic sound sources, the directivity of the aerodynamic sound generated by the coiled wire has been examined, and the coherent function between the velocity fluctuation around the coiled wire and the aerodynamic sound has been calculated. Moreover, the band overall value of coherent output power between the sound and the velocity fluctuations has been calculated. This method has clarified the sound source region of the Aeolian sound generated by the coiled wire. These results show that the Aeolian sound is generated by the arc part of the coiled wire, which is located in the upstream side of the air-flow.

  4. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  5. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  6. Collective odor source estimation and search in time-variant airflow environments using mobile robots.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650

  7. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.

    2007-10-01

    The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.

  8. A Numerical Model of Viscoelastic Layer Entrainment by Airflow in Cough

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin M.

    2008-07-01

    Coughing is an alternative mode of ensuring mucus clearance in the lung when normal cilia induced flow breaks down. A numerical model of this process is presented with the following aspects. (1) A portion of the airway comprising the first three bronchus generations is modeled as radially reinforced elastic tubes. Elasticity equations are solved to predict airway deformation under effect of airway pressure. (2) The compressible, turbulent flow induced by rapid lung contraction is modeled by direct numerical simulation for Reynolds numbers in the range 5,000-10,000 and by Large Eddy Simulation for Reynolds numbers in the range 5,000-40,000. (3) A two-layer model of the airway surface liquid (ASL) covering the airway epithelial layer is used. The periciliary liquid (PCL) in direct contact with the epithelial layer is considered to be a Newtonian fluid. Forces modeling cilia beating can act upon this layer. The mucus layer between the PCL and the interior airflow is modeled as an Oldroyd-B fluid. The overall computation is a fluid-structure interaction simulation that tracks changes in ASL thickness and airway diameters that result from impulsive airflow boundary conditions imposed at bronchi ends. In particular, the amount of mucus that is evacuated from the system is computed as a function of cough intensity and mucus rheological properties.

  9. Synthesis of Fluorophore-Doped Polystyrene Microspheres: Seed Material for Airflow Sensing.

    PubMed

    Wohl, Christopher J; Kiefer, Jacob M; Petrosky, Brian J; Tiemsin, Pacita I; Lowe, K Todd; Maisto, Pietro M F; Danehy, Paul M

    2015-09-23

    Kiton red 620 (KR620) doped polystyrene latex microspheres (PSLs) were synthesized via soap-free emulsion polymerization to be utilized as a relatively nontoxic, fluorescent seed material for airflow characterization experiments. Poly(styrene-co-styrenesulfonate) was used as the PSL matrix to promote KR620 incorporation. Additionally, a bicarbonate buffer and poly(diallyldimethylammonium chloride), polyD, cationic polymer were added to the reaction solution to stabilize the pH and potentially influence the electrostatic interactions between the PSLs and dye molecules. A design of experiments (DOE) approach was used to efficiently investigate the variation of these materials. Using a 4-factor, 2-level response surface design with a center point, a series of experiments were performed to determine the dependence of these factors on particle diameter, diameter size distribution, fluorescent emission intensity, and KR620 retention. Using statistical analysis, the factors and factor interactions that most significantly affect the outputs were identified. These particles enabled velocity measurements to be made much closer to walls and surfaces than previously. Based on these results, KR620-doped PSLs may be utilized to simultaneously measure the velocity and mixing concentration, among other airflow parameters, in complex flows. PMID:26322378

  10. [Effects of typhoon 'Haitang' airflow field on the northward migration route of rice brown planthopper].

    PubMed

    Wang, Cui-Hua; Zhai, Bao-Ping; Bao, Yun-Xuan

    2009-10-01

    Based on GIS, GrADS, and HYSPLIT-4.8 model, this paper analyzed the daily light-trap catches of rice brown planthopper at 42 pest monitoring stations of 10 provinces in China, the wind field on 850 hPa isobaric surface, and the migration tracks of rice brown planthopper at 20 pest monitoring stations during the occurrence of 0505 typhoon 'Haitang' from 19th to 21st July, 2005. After its landing on China, the typhoon 'Haitang' changed the southwest air flow, a flow which leads the northward migration of rice brown planthopper, and made the wind field converge in the southwest of the typhoon and swerve in larger areas. Accordingly, the northward migration of the rice brown planthopper was stopped, and the airborne populations were forced to descend in some areas. The shear line area nearby 850 hPa isobaric surface was the concentration and deposition area of the rice brown planthopper. There would be a mass migration area in the warm airflow shear area in the southeast of typhoon during the collapse of the typhoon. After the whole typhoon landed, the southwest airflow rebuilt, and a mass rice brown planthopper migrated to the north.

  11. Preparation of CNTs rope by electrostatic and airflow field carding with high speed rotor spinning

    NASA Astrophysics Data System (ADS)

    Dai, J. F.; Liu, J. F.; Zou, J. T.; Dai, Y. L.

    2015-12-01

    The large-scale preparation of disorderly CNTs with a length larger than 3 mm using CVD method were aligned in polymer monomer airflow fields in a quartz tube with an internal diameter of 200 μm and a length of 1.5 m. The airflow aligned CNTs at the output end of the pipe connects to a copper nozzle with an electrostatic field of applied voltage 5x105 V/m and space length of 0.03 m, which were further realigned using via electrostatic spinning. End to end spray into the high speed rotor twisted single-stranded carbon nanotubes threads via rotor spinning technology. The essential component of this technique was the use of carbon nanotubes at a high rotory speed (200000 r/min) combined with the double twisting of filaments that were twisted together to increase the radial friction of the entire section. SEM micrography showed that carbon nanotube thread has a uniform diameter of approximately 200 μm. Its tensile strength was tested up to 2.7 Gpa, with a length of several meters.

  12. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  13. Calibration for Thrust and Airflow Measurements in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Werner, Roger A.; Wolter, John D.

    2010-01-01

    CE-22 facility procedures and measurements for thrust and airflow calibration obtained with choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 sq. in.. Throat Reynolds number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. ASME nozzle calibrations need to be done before and after research model testing to achieve these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for throat areas between 20 and 30 sq. in.. Also presented are results for two of the ASME nozzles vectored at 10deg, a dead-weight check of the vertical (perpendicular to the jet axis) force measurement, a calibration of load cell forces for the effects of facility tank deflection with tank pressure, and the calibration of the metric-break labyrinth seal.

  14. Laminar-airflow equipment certification: what the pharmacist needs to know.

    PubMed

    Bryan, D; Marback, R C

    1984-07-01

    The basic information pharmacy practitioners need to determine the suitability and applicability of laminar-airflow equipment test standards and procedures is presented. The operative guideline for any laminar-flow clean bench (LFCB) certification is the cleanroom and work station requirements for controlled environments as defined by the federal government under Federal Standard 209b (FS 209b). FS 209b outlines the tests, test procedures, and acceptable performance ranges for all LFCB equipment. National Sanitation Foundation Standard Number 49 (NSF 49) is used in the certification of biological-safety cabinets (BSCs). NSF 49 covers those aspects of safety, maintenance, performance, and testing that are unique BSCs. To monitor certification properly, practitioners should be familiar with these standards and the air-velocity profile, high-efficiency particulate air filter performance, noise output, light, and electrical test procedures. A review of the requisite knowledge, experience, and reputation of certifying agents is presented, along with an outline of all the necessary procedures, equipment, and documentation to be used in the process. A thorough test report should be issued upon unit certification. As pharmacy practitioners are responsible for all other aspects of quality assurance, they should also be capable of auditing these certifications to ensure the aseptic quality of products compounded in the laminar-airflow environment. PMID:6465148

  15. Effects of the ambient temperature on the airflow across a Caucasian nasal cavity.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Martín-Alcántara, A; Hidalgo-Martínez, M

    2014-03-01

    We analyse the effects of the air ambient temperature on the airflow across a Caucasian nasal cavity under different ambient temperatures using CFD simulations. A three-dimensional nasal model was constructed from high-resolution computed tomography images for a nasal cavity from a Caucasian male adult. An exhaustive parametric study was performed to analyse the laminar-compressible flow driven by two different pressure drops between the nostrils and the nasopharynx, which induced calm breathing flow rates ࣈ 5.7 L/min and ࣈ 11.3 L/min. The inlet air temperature covered the range - 10(o) C ⩽ To ⩽50(o) C. We observed that, keeping constant the wall temperature of the nasal cavity at 37(o) C, the ambient temperature affects mainly the airflow velocity into the valve region. Surprisingly, we found an excellent linear relationship between the ambient temperature and the air average temperature reached at different cross sections, independently of the pressure drop applied. Finally, we have also observed that the spatial evolution of the mean temperature data along the nasal cavity can be collapsed for all ambient temperatures analysed with the introduction of suitable dimensionless variables, and this evolution can be modelled with the help of hyperbolic functions, which are based on the heat exchanger theory.

  16. Oscillating edge-flames

    NASA Astrophysics Data System (ADS)

    Buckmaster, J.; Zhang, Yi

    1999-09-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.

  17. Periodically oscillating plasma sphere

    SciTech Connect

    Park, J.; Nebel, R.A.; Stange, S.; Murali, S. Krupakar

    2005-05-15

    The periodically oscillating plasma sphere, or POPS, is a novel fusion concept first proposed by D. C. Barnes and R. A. Nebel [Fusion Technol. 38, 28 (1998)]. POPS utilizes the self-similar collapse of an oscillating ion cloud in a spherical harmonic oscillator potential well formed by electron injection. Once the ions have been phase-locked, their coherent motion simultaneously produces very high densities and temperatures during the collapse phase of the oscillation. A requirement for POPS is that the electron injection produces a stable harmonic oscillator potential. This has been demonstrated in a gridded inertial electrostatic confinement device and verified by particle simulation. Also, the POPS oscillation has been confirmed experimentally through observation that the ions in the potential well exhibit resonance behavior when driven at the POPS frequency. Excellent agreement between the observed POPS frequencies and the theoretical predictions has been observed for a wide range of potential well depths and three different ion species. Practical applications of POPS require large plasma compressions. These large compressions have been observed in particle simulations, although space charge neutralization remains a major issue.

  18. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  19. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  20. The active-bridge oscillator

    SciTech Connect

    Wessendorf, K.O.

    1998-07-01

    This paper describes the Active-Bridge Oscillator (ABO), a new concept in high-stability oscillator design. The ABO is ab ridge-type oscillator design that is easly to design and overcomes many of the operational and design difficulties associated with standard bridge oscillator designs. The ABO will oscillate with a very stable output amplitude over a wide range of operating conditions without the use of an automatic-level-control (ALC). A standard bridge oscillator design requires an ALC to maintain the desired amplitude of oscillation. for this and other reasons, bridge oscilaltors are not used in mainstream designs. Bridge oscillators are generally relegated to relatively low-volume, high-performance applications. The Colpitts and Pierce designs are the most popular oscillators but are typically less stable than a bridge-type oscillator.

  1. Caribbean plate interactions

    SciTech Connect

    Ball, M. )

    1993-02-01

    Vector analysis of plate motions, derived from studies of Atlantic magnetic lineations and fracture zone trends, indicates the following relative movements between the Caribbean, North American, and South American Plates. (1) During Early Jurassic to Early Cretaceous, the North American Plate moved 1900 km westward and 900 km northward relative to the South American Plate. A broad zone including the Caribbean region, i.e., the zone between the North and South America Plates, was a site of left-lateral shear and north-south extension. (2) During Early Cretaceous to Late Cretaceous, the North American Mate moved an additional 1200 km westward relative to South America across this zone. (3) During Late Cretaceous to the end of the Eocene, the North American Plate moved 200 km westward and 400 km northward relative to the South American Plate. (4) From the end of the Eocene to near the end of the Miocene, North America converged on South America some 200 km and moved 100 km eastward relative to it. Through the Mesozoic and earliest Tertiary history of the Caribbean, the region was a shear zone within which left-lateral displacement exceeded 3000 km and north-south extension exceeded 1300 km. In regard to time, 80% of the history of the Caribbean region is one of north-south extension and left-lateral shear. In terms of space, 97% of the shear is left-lateral and the ratio of divergence versus convergence is 7 to 1. Thus, characterizing the Caribbean region, and the Atlantic to its east, as a zone of north-south extension and left-lateral shear, is a fair generalization.

  2. A Theory of Oscillating Edge Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Zhang, Yi

    1999-01-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the

  3. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  4. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  5. Finite q-oscillator

    NASA Astrophysics Data System (ADS)

    Atakishiyev, Natig M.; Klimyk, Anatoliy U.; Wolf, Kurt Bernardo

    2004-05-01

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra suq(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x_s={\\case12}[2s]_q, s\\in\\{-j,-j+1,\\ldots,j\\} , and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrödinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q rarr 1 we recover the finite oscillator Lie algebra, the N = 2j rarr infin limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  6. Oscillations of soap bubbles

    NASA Astrophysics Data System (ADS)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  7. Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Wang, Yimeng; Zhang, Xinping; Zhang, Jian; Liu, Hongmei

    2014-07-01

    We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.

  8. Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators

    SciTech Connect

    Wang, Yimeng; Zhang, Xinping Zhang, Jian; Liu, Hongmei

    2014-07-07

    We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.

  9. The Influence of Hydraulic Non-Equilibrium on Pressure Plate Data

    SciTech Connect

    Gee, Glendon W.; Ward, Anderson L.; Zhang, Z. F.; Campbell, Gaylon S.; Mathison, Jon B.

    2002-08-15

    Pressure plates are used routinely to measure water retention characteristics of soils. Plates of varying porosity are used depending on the pressure range of interest. For applied pressures up to 1.5 MPa, 15-bar porous ceramic plates with fine porosity are used because of their high bubbling pressure (>15 bar), which limits airflow through the plate. The typical saturated hydraulic conductivity of the 15-bar plate is less than 1x10-13 m s-1. Low plate conductance coupled with decreasing soil hydraulic conductivities (e.g., <1x10-13 m s-1) at high pressures strongly influence equilibrium times, which theoretically may extend to months or years. We measured the soil water pressures (suctions) for three soils, a sand, a silt loam, and a clay placed on 15-bar pressure plates for 10 days or longer, with and without static loads and with and without use of a kaolinite slurry for improved plate contact. Total matric suctions, inferred from peltier psychrometry data, were always less than 1.5 MPa. When sample height was increased from 1.5 cm to 3 cm, the water contents increased and total suctions decreased to 0.15 MPa for sand, 0.3 MPa for silt loam, and 0.55 MPa for clay. These data suggest that alternative methods to pressure plates may be require to measure equilibrium water suctions of soils in reasonable times in the 15-bar pressure range and that loading of the samples and use of kaolinite appear to be ineffective in speeding equilibrium.

  10. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  11. Multipactor saturation in parallel-plate waveguides

    SciTech Connect

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  12. Plate-mantle coupling from post-Pangea plate kinematics

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Dietmar Müller, R.; Seton, Maria; Flament, Nicolas

    2015-04-01

    Convection in the Earth's mantle that involves plates at the surfaces gives rise to plate velocities that vary through time and depend on the balance of plate boundary forces, with the present-day providing a snapshot of this ongoing process. However, present-day plate velocities do not capture plate behaviour over geologically representative timeframes and thus cannot be used to evaluate factors limiting plate velocities. Previous studies investigated the effects of continental keels on plate speeds by either using the present-day snapshot or a limited number of reconstructed plate configurations, often leading to conflicting results. For example, an early assumption was that continental keels (especially cratons) were unlikely to impede fast plate motions because India's velocity approached ~20 cm/yr in the Eocene prior to the collision with Eurasia. We employ a modern plate reconstruction approach with evolving global topological plate boundaries for the post-Pangea timeframe (since 200 Ma) to evaluate factors controlling plate velocities. Plate boundary configurations and plate velocities are extracted from the open-source and cross-platform plate reconstruction package GPlates (www.gplates.org) at 1 Myr intervals. For each plate, at each timestep, the area of continental and cratonic lithosphere is calculated to evaluate the effect on plate velocities. Our results support that oceanic plates tend to be 2-3 times faster than plates with large portion of continental plate area, consistent with predictions of numerical models of mantle convection. The fastest plates (~8.5 cm/yr RMS) are dominated by oceanic plate area and high subducting portion of plate perimeter, while the slowest plates (~2.6-2.8 cm/yr RMS) are dominated by continental plate area and bounded by transforms and mid-oceanic ridge segments. Importantly, increasing cratonic fractions (both Proterozoic and Archean lithosphere) significantly impede plate velocities, suggesting that deep continental

  13. Damage detection of civil infrastructures with piezoelectric oscillator sensors

    NASA Astrophysics Data System (ADS)

    Roh, Y. R.; Kim, D. Y.; Park, S. H.; Yun, C. B.

    2006-03-01

    Many researches have been reported on the condition monitoring of civil infrastructures by means of piezoelectric sensors. Most of them made use of the impedance change of the piezoelectric device in relation to the creation of internal damages to the structure. The impedance measurement is a well accepted method in the piezoelectric sensor area, and has been proved by many authors to be useful for civil structure diagnosis. However, the impedance measurement normally requires sophisticated equipment and analysis technology. For more general and wide application of the piezoelectric diagnosis tool, a new methodology is desired to overcome the limitations of the impedance measurement. This paper presents the feasibility of a piezoelectric oscillator sensor to detect the damages in civil infrastructures. The oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric thickness mode vibrator to be attached to the structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of the resonant frequency of the structure. The oscillator sensors can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified in this work with a sample aluminum plate where artificial cracks of different depth were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of the plate with cracks. Performance of the oscillator sensor was also compared with that of its conventional counterpart, i.e. impedance measurement, to manifest the superiority of the oscillator sensor.

  14. A temperature-based variable for monitoring outdoor coil airflow in an air-source heat pump during frost-forming conditions

    SciTech Connect

    Payne, W.V. II; O`Neal, D.L.

    1994-12-31

    Frost-buildup tests were conducted on a 3-ton (10.6kW) nominal cooling capacity air-source heat pump with an orifice expansion device. This study was conducted to determine if a simple temperature-based control variable could be used to determine the amount of degradation in the outdoor airflow (and heating capacity) of the unit. Refrigerant pressures and temperatures were monitored through-out the system in addition to power requirements and airflow rates. A temperature-based variable was developed that could be used to predict airflow degradation across the outdoor heat exchanger. This variable was defined using the difference between ambient air temperature and a measured refrigerant temperature. Eight refrigerant temperatures in the system were recorded and evaluated. Plots of airflow as a function of this temperature variable, along with plots of the absolute value percent changes of this temperature variable and airflow, were evaluated to determine which refrigerant temperatures could best be used in the variable to predict degradation in airflow. The best fit between the temperature-based variable and airflow degradation occurred with the inclusion of the refrigerant temperature at the outlet from the evaporator. Calculations of percent changes based on values sampled after a defrost showed a polynomial or linear relationship between airflow and the temperature-based variable. Data from two previously tested heat pumps were also used to compare changes in the outdoor airflow to changes in the temperature-based variable. The base-case heat pump and another heat pump both used an orifice as the expansion device in the heating mode. A third heat pump, which used a thermostatic expansion valve (TXV) as the expansion device in the heating mode, failed to show the same goodness of fit between airflow and the temperature-based variable.

  15. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  16. Reduced Plating Ignitron

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)

    2014-01-01

    An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.

  17. Digital numerically controlled oscillator

    NASA Technical Reports Server (NTRS)

    Cellier, A.; Huey, D. C.; Ma, L. N. (Inventor)

    1980-01-01

    The frequency and phase of an output signal from an oscillator circuit are controlled with accuracy by a digital input word. Positive and negative alterations in output frequency are both provided for by translating all values of input words so that they are positive. The oscillator reference frequency is corrected only in one direction, by adding phase to the output frequency of the oscillator. The input control word is translated to a single algebraic sign and the digital 1 is added thereto. The translated input control word is then accumulated. A reference clock signal having a frequency at an integer multiple of the desired frequency of the output signal is generated. The accumulated control word is then compared with a threshold level. The output signal is adjusted in a single direction by dividing the frequency of the reference clock signal by a first integer or by an integer different from the first integer.

  18. The Fastest Quasiperiodic Oscillations

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    Quasi-periodic oscillations (QPOs) at frequencies near 1000 Hz have been detected from a umber of neutron star x-ray binaries using RXTE. These fast oscillations are likely associated with rbital motion very close to the neutron star and and, thus, give us information about the behavior of the accretion disk in the strong gravitational field near the neutron star. The oscillation frequencies can also be used to place constraints on the properties of the neutron stars with the highest detected frequencies being the most constraining. We propose TOOs observations of selected neutron star x-ray binaries when found to be in states likely to produce kHz QPOs with frequencies exceeding 1200 Hz.

  19. Airflow calibration and exhaust pressure/temperature survey of an F404, S/N 215-109, turbofan engine

    NASA Technical Reports Server (NTRS)

    Burns, Maureen E.; Kirchgessner, Thomas A.

    1987-01-01

    A General Electric F-404 turbofan engine was calibrated for thrust and airflow at the NASA Lewis Propulsion System Laboratory in support of future flight tests of the X-29 aircraft. Tests were conducted with and without augmentation, over a range of flight conditions, including the two design points of the airplane. Data obtained during the altitude tests will be used to correct two independent gross thrust calculation routines which will be installed and operated on the airplane to determine in-flight gross thrust. Corrected airflow data as a function of corrected fan speed collapsed onto a single curve. Similarly, trends were observed and defined for both augmented and dry thrust. Overall agreement between measured data and F-404 Engine Spec Deck data was within 2 percent for airflow and 6 percent for thrust. The results of an uncertainty analysis for thrust and airflow is presented. In addition to the thrust calibration, the exhaust gas boundary layer pressure and temperatures were surveyed at selected condition and engine power levels to obtain data for another NASA F-404 program. Test data for these surveys are presented.

  20. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exceed 50 millimeters (2 inches) of water at an air flow of 115 liters (4 cubic feet) per minute. (b) The exhalation resistance to a flow of air at a rate of 85 liters (3 cubic feet) per minute shall not exceed 25... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C...

  1. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  2. Using a Swinging Vane Anemometer to Measure Airflow. Module 14. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using a swinging vane anemometer to measure airflow. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each…

  3. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  4. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  5. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  6. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  7. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  8. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  9. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    Intermittent Plate Tectonics A basic premise of Earth Science is that plate tectonics has been continuously operating since it began early in Earth's history. Yet, plate-tectonic theory itself, specifically the collisional phase of the Wilson Cycle, constitutes a process that is capable of stopping all plate motion. The plausibility of a plate-tectonic hiatus is most easily illustrated by considering the expected future of the present-day plate-tectonic configuration. Since the opening of the Atlantic at ~200 ma, the area of the Atlantic basin has been growing at the expense of the Pacific. If this trend continues, relative plate motion models predict that in ~350 my, the Pacific Ocean basin will effectively close leading to widespread continent-continent collisions. Since a continent-continent collision represents the termination of subduction locally, the accumulated effect of all collisions is to stop subduction globally. In this scenario, ridges would then stop spreading and young oceanic lithosphere would cool, reaching a steady-state thickness of 100 km in about 80 my, based on the properties of oceanic lithosphere today. This would constitute the stoppage of plate tectonics. The presumption that plate tectonics never stops in the face of continental collisions is equivalent to requiring that subduction flux is approximately constant through time, such that subduction initiation roughly balances subduction termination. Such a balance then raises several questions about the subduction initiation process. When and how does subduction initiate? Is there a detectible relationship between subduction cessation and subduction initiation? We can gain some guidance into these questions by examining the plate motion history over the last 200 my. Subduction initiation has occurred over the last 80 my in three intra- oceanic subduction zones: Aleutians, Marianas-Izu-Bonin and Tonga-Kermadec in the Pacific basin. In these cases, however, subduction initiation would not

  10. QUANTITATIVE CT ANALYSIS, AIRFLOW OBSTRUCTION AND LUNG CANCER IN THE PITTSBURGH LUNG SCREENING STUDY

    PubMed Central

    Wilson, David O; Leader, Joseph K; Fuhrman, Carl R; Reilly, John J; Sciurba, Frank C.; Weissfeld, Joel L

    2011-01-01

    Background To study the relationship between emphysema, airflow obstruction and lung cancer in a high risk population we performed quantitative analysis of screening computed tomography (CT) scans. Methods Subjects completed questionnaires, spirometry and low-dose helical chest CT. Analyses compared cases and controls according to automated quantitative analysis of lung parenchyma and airways measures. Results Our case-control study of 117 matched pairs of lung cancer cases and controls did not reveal any airway or lung parenchymal findings on quantitative analysis of screening CT scans that were associated with increased lung cancer risk. Airway measures including wall area %, lumen perimeter, lumen area and average wall HU, and parenchymal measures including lung fraction < −910 Hounsfield Units (HU), were not statistically different between cases and controls. Conclusions The relationship between visual assessment of emphysema and increased lung cancer risk could not be verified by quantitative analysis of low-dose screening CT scans in a high risk tobacco exposed population. PMID:21610523

  11. Contam airflow models of three large buildings: Model descriptions and validation

    SciTech Connect

    Black, Douglas R.; Price, Phillip N.

    2009-09-30

    Airflow and pollutant transport models are useful for several reasons, including protection from or response to biological terrorism. In recent years they have been used for deciding how many biological agent samplers are needed in a given building to detect the release of an agent; to figure out where those samplers should be located; to predict the number of people at risk in the event of a release of a given size and location; to devise response strategies in the event of a release; to determine optimal trade-offs between sampler characteristics (such as detection limit and response time); and so on. For some of these purposes it is necessary to model a specific building of interest: if you are trying to determine optimal sampling locations, you must have a model of your building and not some different building. But for many purposes generic or 'prototypical' building models would suffice. For example, for determining trade-offs between sampler characteristics, results from one building will carry over other, similar buildings. Prototypical building models are also useful for comparing or testing different algorithms or computational pproaches: different researchers can use the same models, thus allowing direct comparison of results in a way that is not otherwise possible. This document discusses prototypical building models developed by the Airflow and Pollutant Transport Group at Lawrence Berkeley National Laboratory. The models are implemented in the Contam v2.4c modeling program, available from the National Institutes for Standards and Technology. We present Contam airflow models of three virtual buildings: a convention center, an airport terminal, and a multi-story office building. All of the models are based to some extent on specific real buildings. Our goal is to produce models that are realistic, in terms of approximate magnitudes, directions, and speeds of airflow and pollutant transport. The three models vary substantially in detail. The airport model

  12. Airflow-aligned helical nanofilament (B4) phase in topographic confinement

    PubMed Central

    Gim, Min-Jun; Kim, Hanim; Chen, Dong; Shen, Yongqiang; Yi, Youngwoo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2016-01-01

    We investigated a controlled helical nanofilament (HNF: B4) phase under topographic confinement with airflow that can induce a shear force and temperature gradient on the sample. The resulting orientation and ordering of the B4 phase in this combinational effort was directly investigated using microscopy. The structural freedom of the complex B7 phase, which is a higher temperature phase than the B4 phase, can result in relatively complex microscopic arrangements of HNFs compared with the B4 phase generated from the simple layer structure of the B2 phase. This interesting chiral/polar nanofilament behaviour offers new opportunities for further exploration of the exotic physical properties of the B4 phase. PMID:27384747

  13. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  14. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  15. Gamma Oscillation in Schizophrenia

    PubMed Central

    O'Donnell, Brian F.; Youn, Soyoung; Kwon, Jun Soo

    2011-01-01

    Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia. Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many perceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizophrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention, object representation, and working memory, in animals, healthy humans and patients with schizophrenia. PMID:22216037

  16. Advances in optoelectronic oscillators

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain M.; Saleh, Khaldoun; Lin, Guoping; Matinenghi, Romain; Chembo, Yanne K.

    2016-02-01

    Optoelectronic oscillators are used for a wide variety of applications in microwave photonics. We here report the latest advances in this technology from our research group, with emphasis on the analysis of phase noise performance. We present a stochastic modelling approach for phase noise performance analysis of optoelectronic oscillators based on whispering gallery mode resonators and/or optical fiber delay lines, and the theory is complemented with experimental measurements. We provide a detailed theoretical analysis which enables us to find the stationary states of the system as well as their stability. Our calculations also permit to find explicit formulas for the phase noise spectra, thereby allowing for their optimization.

  17. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  18. Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control

    PubMed Central

    Tang, Julian W.; Nicolle, Andre; Pantelic, Jovan; Koh, Gerald C.; Wang, Liang De; Amin, Muhammad; Klettner, Christian A.; Cheong, David K. W.; Sekhar, Chandra; Tham, Kwok Wai

    2012-01-01

    Cough airflow dynamics have been previously studied using a variety of experimental methods. In this study, real-time, non-invasive shadowgraph imaging was applied to obtain additional analyses of cough airflows produced by healthy volunteers. Twenty healthy volunteers (10 women, mean age 32.2±12.9 years; 10 men, mean age 25.3±2.5 years) were asked to cough freely, then into their sleeves (as per current US CDC recommendations) in this study to analyze cough airflow dynamics. For the 10 females (cases 1–10), their maximum detectable cough propagation distances ranged from 0.16–0.55 m, with maximum derived velocities of 2.2–5.0 m/s, and their maximum detectable 2-D projected areas ranged from 0.010–0.11 m2, with maximum derived expansion rates of 0.15–0.55 m2/s. For the 10 males (cases 11–20), their maximum detectable cough propagation distances ranged from 0.31–0.64 m, with maximum derived velocities of 3.2–14 m/s, and their maximum detectable 2-D projected areas ranged from 0.04–0.14 m2, with maximum derived expansion rates of 0.25–1.4 m2/s. These peak velocities were measured when the visibility of the exhaled airflows was optimal and compare favorably with those reported previously using other methods, and may be seen as a validation of these previous approaches in a more natural setting. However, the propagation distances can only represent a lower limit due to the inability of the shadowgraph method to visualize these cough airflows once their temperature cools to that of the ambient air, which is an important limitation of this methodology. The qualitative high-speed video footage of these volunteers coughing into their sleeves demonstrates that although this method rarely completely blocks the cough airflow, it decelerates, splits and redirects the airflow, eventually reducing its propagation. The effectiveness of this intervention depends on optimum positioning of the arm over the nose and mouth during coughing, though unsightly stains

  19. Peripheral resistance: a link between global airflow obstruction and regional ventilation distribution.

    PubMed

    Wongviriyawong, C; Harris, R S; Greenblatt, E; Winkler, T; Venegas, J G

    2013-02-15

    Airflow obstruction and heterogeneities in airway constriction and ventilation distribution are well-described prominent features of asthma. However, the mechanistic link between these global and regional features has not been well defined. We speculate that peripheral airway resistance (R(p)) may provide such a link. Structural and functional parameters are estimated from PET and HRCT images of asthmatic (AS) and nonasthmatic (NA) subjects measured at baseline (BASE) and post-methacholine challenge (POST). Conductances of 35 anatomically defined proximal airways are estimated from airway geometry obtained from high-resolution computed tomography (HRCT) images. Compliances of sublobar regions subtended by 19 most distal airways are estimated from changes in regional gas volume between two lung volumes. Specific ventilations (sV) of these sublobar regions are evaluated from 13NN-washout PET scans. For each pathway connecting the trachea to sublobar region, values of R(p) required to explain the sV distribution and global airflow obstruction are computed. Results show that R(p) is highly heterogeneous within each subject, but has average values consistent with global values in the literature. The contribution of R(p) to total pathway resistance (R(T)) increased substantially for POST (P < 0.0001). The fraction R(p)/R(T) was higher in AS than NA at POST (P < 0.0001) but similar at BASE (range: 0.960-0.997, median: 0.990). For POST, R(p)/R(T) range was 0.979-0.999 (NA) and 0.981-0.995 (AS). This approach allows for estimations of peripheral airway resistance within anatomically defined sublobar regions in vivo human lungs and may be used to evaluate peripheral effects of therapy in a subject specific manner. PMID:23123354

  20. Airflow limitation as a risk factor for low bone mineral density and hip fracture

    PubMed Central

    Herland, Trine; Apalset, Ellen M; Eide, Geir Egil; Tell, Grethe S; Lehmann, Sverre

    2016-01-01

    Aim To investigate whether airflow limitation is associated with bone mineral density (BMD) and risk of hip fractures. Methods A community sample of 5,100 subjects 47–48 and 71–73 years old and living in Bergen was invited. Participants filled in questionnaires and performed a post-bronchodilator spirometry measuring forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC). All attendants were invited to have a BMD measurement of the hip. During 10 years of follow-up, information on death was collected from the Norwegian Cause of Death Registry, and incident hip fractures were registered from regional hospital records of discharge diagnoses and surgical procedure codes. Results The attendance rate was 69% (n=3,506). The prevalence of chronic obstructive pulmonary disease (COPD) (FEV1/FVC<0.7) was 9%. In multiple logistic regression, the lowest quartile of BMD versus the three upper was significantly predicted by FEV1/FVC<0.7 and FEV1% predicted (odds ratio [OR]: 1.58, 95% confidence interval [CI]: 1.11 to 2.25, and OR per increase of 10%: 0.92, 95% CI: 0.86 to 0.99, respectively). Hip fracture occurred in 126 (4%) participants. In a Cox regression analysis, FEV1% predicted was associated with a lowered risk of hip fracture (hazard ratio per increase of 10%: 0.89, 95% CI: 0.79 to 0.997). Conclusion Airflow limitation is positively associated with low BMD and risk of hip fracture in middle-aged and elderly. PMID:27733234

  1. Respiratory-triggered electron beam CT with integrated spirometry for evaluation of dynamic airflow

    NASA Astrophysics Data System (ADS)

    McNitt-Gray, Michael F.; Goldin, Jonathan G.; Welch, Mike; Szold, Oded; Levine, Michael; Aberle, Denise R.

    1996-04-01

    The purpose is to integrate time-attenuation curves from Electron-Beam CT with flow-time curves from spirometry in the analysis of airflow obstruction. A pressure-sensitive switch was connected between a spirometer mouthpiece and a modified EBCT scanner keyboard. The onset of expiratory flow causes pressure changes which simultaneously trigger EBCT and spirometric acquisitions. Subjects performed a forced expiratory maneuver, during which EBCT images of the lung were obtained every 500 ms using 130 kVp, 630 mA, 100 ms scan time and 3 mm collimation. From EBCT images, time-attenuation curves were generated for each of three zones (non-dependent, middle and dependent lung) using small ROIs (12 mm2) placed over approximately the same anatomic regions of lung. The resulting time- attenuation curves and flow-time curves were then superimposed. Two normal subjects, two subjects with emphysema and three lung transplant subjects have been studied to date. In normal subjects, lung attenuation increases steadily during the first 4 - 6 seconds of expiration, whereas in patients with emphysema, lung attenuation was relatively constant over the course of expiration. Lung transplant subjects show both of these characteristics--normal characteristics for the transplant lung and emphysematous characteristics for the native lung. Lung transplant subjects may also demonstrate some dynamics between transplant and diseased lung. Respiratory-triggered EBCT can be used to simultaneously acquire time-attenuation and flow-time data. This has been used to characterize dynamic airflow patterns in patients with respiratory disease.

  2. Interactions between surface roughness and airflow turbulence affecting drying dynamics of rough porous surfaces

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James; Or, Dani

    2016-04-01

    Evaporative drying of porous surfaces interacting with turbulent airflows is common in various industrial and natural applications. The intrinsic relief and roughness of natural porous surfaces are likely to influence the structure of interacting turbulent airflow boundary layers, and thus affect rates and patterns of heat and vapor fluxes from the surface. These links have been formalized in new mechanistic models that consider intermittent and localized turbulence-induced boundary layers, resulting in rich surface evaporation and energy exchange dynamics. The models were evaluated experimentally by systematically varying surface roughness elements in drying experiments of wavy and bluff-body covered sand surfaces in a wind tunnel. Thermal infrared signatures of localized evaporative fluxes as well as mean evaporative mass losses were recorded. The resulting patterns were in good agreement with model predictions for local and surface averaged turbulent exchange rates. Experimental and theoretical results suggest that evaporative water losses from wavy sand surfaces can be either enhanced or suppressed (relative to a flat surface), due to the complex interplay between the local boundary layer thickness and internal limitations on water flow to the evaporating surface. For sand surfaces covered by isolated cylindrical elements (bluff bodies), model predictions and measurements show persistent enhancement of evaporative fluxes from bluff-rough surfaces compared to a flat surface under similar conditions. This enhancement is attributed to the formation of vortices that thin the boundary layer over part of the interacting surface footprint. The implications of this study for interpreting and upscaling evapotranspiration rates from terrestrial surfaces will be discussed.

  3. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization

    PubMed Central

    2011-01-01

    Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032

  4. Coupled opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor); Maleki, Lute (Inventor)

    1999-01-01

    A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.

  5. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  6. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  7. The Plate Tectonics Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  8. INL HIP Plate Fabrication

    SciTech Connect

    B. H. Park; C. R. Clark; J. F. Jue

    2010-02-01

    This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.

  9. Growth Plate Injuries

    MedlinePlus

    ... or crushed, the growth plate may close prematurely, forming a bony bridge or “bar.” The risk of ... this publication: James S. Panagis, M.D., M.P.H., NIAMS/NIH; R. Tracy Ballock, M.D., Case ...

  10. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway.

    PubMed

    Owens, Robert L; Edwards, Bradley A; Sands, Scott A; Butler, James P; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew

    2014-04-15

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an "iron lung" and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2-4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  11. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway

    PubMed Central

    Edwards, Bradley A.; Sands, Scott A.; Butler, James P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew

    2014-01-01

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an “iron lung” and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2–4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  12. Wein bridge oscillator circuit

    NASA Technical Reports Server (NTRS)

    Lipoma, P. C.

    1971-01-01

    Circuit with minimum number of components provides stable outputs of 2 to 8 volts at frequencies of .001 to 100 kHz. Oscillator exhibits low power consumption, portability, simplicity, and drive capability, it has application as loudspeaker tester and audible alarm, as well as in laboratory and test generators.

  13. Coupled Oscillators with Chemotaxis

    NASA Astrophysics Data System (ADS)

    Sawai, Satoshi; Aizawa, Yoji

    1998-08-01

    A simple coupled oscillator system with chemotaxis is introducedto study morphogenesis of cellular slime molds. The modelsuccessfuly explains the migration of pseudoplasmodium which hasbeen experimentally predicted to be lead by cells with higherintrinsic frequencies. Results obtained predict that its velocityattains its maximum value in the interface region between totallocking and partial locking and also suggest possible rolesplayed by partial synchrony during multicellular development.

  14. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  15. Frequency modulated oscillator

    NASA Technical Reports Server (NTRS)

    Honnell, M. A. (Inventor)

    1977-01-01

    A frequency modulated push-pull oscillator in which the non-linear characteristic of varactors producing frequency modulation is compensated for by an opposite non-linear characteristic of a field effect transistor providing modulating bias to the varactors is described.

  16. A simple violin oscillator

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  17. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  18. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  19. Nanoparticle Oscillations and Fronts

    SciTech Connect

    Lagzi, Istvan; Kowalczyk, Bartlomiej; Wang, Dawei; Grzybowski, Bartosz A.

    2010-09-30

    Chemical oscillations can be coupled to the dynamic self-assembly of nanoparticles. Periodic pH changes translate into protonation and deprotonation of the ligands that stabilize the nanoparticles, thus altering repulsive and attractive interparticle forces. In a continuous stirred-tank reactor, rhythmic aggregation and dispersion is observed; in spatially distributed media, propagation of particle aggregation fronts is seen.

  20. [Oscillating physiotherapy for secretolysis].

    PubMed

    Brückner, U

    2008-03-01

    Assisted coughing and mechanical cough aids compensate for the weak cough flow in patients with neuromuscular diseases (NMD). In cases with preserved respiratory muscles also breathing techniques and special devices, e. g., flutter or acapella can be used for secretion mobilisation during infections of the airways. These means are summarised as oscillating physiotherapy. Their mechanisms are believed to depend on separation of the mucus from the bronchial wall by vibration, thus facilitating mucus transport from the peripheral to the central airways. In mucoviscidosis and chronic obstructive pulmonary disease their application is established, but there is a paucity of data regarding the commitment in patients with neuromuscular diseases. The effective adoption of simple oscillation physiotherapeutic interventions demands usually a sufficient force of the respiratory muscles--exceptions are the application of the percussionaire (intrapulmonary percussive ventilator, IPV) or high frequency chest wall oscillation (HFCWO). In daily practice there is evidence that patients with weak respiratory muscles are overstrained with the use of these physiotherapeutic means, or get exhausted. A general recommendation for the adoption of simple oscillating physiotherapeutic interventions cannot be made in patients with NMDs. Perhaps in the future devices such as IPV or HFCWO will prove to be more effective in NMD patients.

  1. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  2. Axisymmetric oscillation modes of a double droplet system

    SciTech Connect

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) the pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.

  3. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  4. Orthogonal polynomials and deformed oscillators

    NASA Astrophysics Data System (ADS)

    Borzov, V. V.; Damaskinsky, E. V.

    2015-10-01

    In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.

  5. Self-propulsion of a flapping flexible plate near the ground

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Huang, Haibo; Gao, Peng; Lu, Xi-Yun

    2016-09-01

    The self-propulsion of a three-dimensional flapping flexible plate near the ground is studied using an immersed boundary-lattice Boltzmann method for fluid flow and a finite-element method for plate motion. When the leading edge of the flexible plate is forced into a vertical oscillation near the ground, the entire plate moves freely due to the fluid-structure interaction. The mechanisms underlying the dynamics of the plate near the ground are elucidated. Based on the propulsive behaviors of the flapping plate, three distinct regimes due to the ground effect can be qualitatively identified. These regimes can be described briefly as the expensive, benefited, and uninfluenced propulsion regimes. The analysis of unsteady dynamics and plate deformation indicates that the ground effect becomes weaker for a more flexible plate. We have found that a suitable degree of flexibility can improve propulsion near the ground. The vortical structure around the plate and the pressure distribution on the plate are analyzed to understand propulsive behaviors. The results obtained in this study can provide some physical insights into the propulsive mechanisms of a flapping flexible plate near the ground.

  6. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  7. Baseline concept for a precise measurement of atmospheric neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Ambrosio, M.; Aprile, E.; Bologna, G.; Bonesini, M.; Bencivenni, G.; Calvi, M.; Castellina, A.; Curioni, A.; Fulgione, W.; Ghia, P. L.; Gustavino, C.; Kokoulin, R. P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Negri, P.; Paganoni, M.; Periale, L.; Petrukhin, A. A.; Picchi, P.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Satta, L.; de Fatis, T. Tabarelli; Terranova, F.; Tonazzo, A.; Trinchero, G.; Vallania, P.; Villone, B.

    2000-08-01

    A high-density calorimeter, consisting of magnetized planes interleaved by Resistive Plates Chambers (RPCs, Ref. (1)) , as tracking and timing devices, is a good candidate for a new experiment on atmospheric neutrinos. With 34 kt of mass and in four years of data taking, this experiment will be sensitive to νμ→νx oscillation with Δm2>6×10-5 and large mixing, covering the region suggested by the SuperKamiokande results. Moreover, the experimental method will enable to measure the oscillation parameters from the modulation of the L/E spectrum (νμ disappearance). For >m2>3×10-3eV2, this experiment can also establish whether the oscillation occurs into a tau or a sterile neutrino, by looking for an excess of muon-less events at high energies produced by upward-going tau neutrinos(ντ appearence).

  8. Nonlinear Actuation Dynamics of Driven Casimir Oscillators with Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Waalkens, Holger; Svetovoy, Vitaly B.; Knoester, Jasper; Palasantzas, George

    2015-11-01

    At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of microelectromechanical systems (MEMS) in dry vacuum conditions. For a micron-size plate oscillating near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to a malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, stiction is of significance for fundamentally motivated experiments performed with MEMS.

  9. Dynamical behaviors of a plate activated by an induction motor

    NASA Astrophysics Data System (ADS)

    Tcheutchoua Fossi, D. O.; Woafo, P.

    2010-08-01

    Dynamics and chaotification of a system consisting of an induction motor activating a mobile plate (with variable contents) fixed to a spring are studied. The dynamical model of the device is presented and the electromechanical equations are formulated. The oscillations of the plate are analyzed through variations of the following reliable control parameters: phase voltage supply of the motor, frequency of the external source and mass of the plate. The dynamics of the system near the fundamental resonance region presents jump phenomenon. Mapping of the control parameters planes in terms of types of motion reveals period- n motion, quasi-periodicity and chaos. Anti-control of chaos of the induction motor is also obtained using the field-oriented control associated to the time delay feedback control.

  10. Evidences of global bifurcations of an imperfect circular plate

    NASA Astrophysics Data System (ADS)

    Yeo, M. H.; Lee, W. K.

    2006-05-01

    The global bifurcations in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of the third-order subharmonic resonance, in which an excitation frequency is near triple natural frequencies, is considered. The equations governing nonlinear oscillations of an imperfect circular plate are reduced to a system of non-autonomous ordinary differential equations via Galerkin's procedure. The method of multiple scales is used to obtain a system of autonomous ordinary differential equations, and then Kovačič and Wiggins' method is used to investigate the global dynamics of the plate. Having found a sufficient condition under which Silnikov-type homoclinic orbit can exist, we failed to observe any numerical evidences of global bifurcation.

  11. Neutrino Oscillations with Nil Mass

    NASA Astrophysics Data System (ADS)

    Floyd, Edward R.

    2016-09-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and ν ,bar{ν } oscillations are examined.

  12. MyPlate Food Guide

    MedlinePlus

    ... follow throughout your life. 2. Fruits Like veggies, fruits contain vitamins, minerals, and fiber. The red section of MyPlate is slightly smaller than the green, but together fruits and veggies should fill half your plate. Whole ...

  13. What Are Growth Plate Injuries?

    MedlinePlus

    ... activities. Other reasons for growth plate injuries are:  Child abuse  Injury from extreme cold (for example, frostbite)  Radiation ( ... problems) treats most growth plate injuries. At other times, the child will see a pediatric orthopaedic surgeon (a doctor ...

  14. What Are Growth Plate Injuries?

    MedlinePlus

    ... activities. Other reasons for growth plate injuries are: Child abuse Injury from extreme cold (for example, frostbite) Radiation ( ... problems) treats most growth plate injuries. At other times, the child will see a pediatric orthopaedic surgeon (a doctor ...

  15. North American plate dynamics

    NASA Technical Reports Server (NTRS)

    Richardson, Randall M.; Reding, Lynn M.

    1991-01-01

    Deformation within the North American plate in response to various tectonic processes is modeled using an elastic finite element analysis. The tectonic processes considered in the modeling include ridge forces associated with the normal thermal evolution of oceanic lithosphere, shear and normal stresses transmitted across transforms, normal stresses transmitted across convergent boundaries, stresses due to horizontal density contrasts within the continent, and shear tractions applied along the base of the plate. Model stresses are calculated with respect to a lithostatic reference stress state. Shear stresses transmitted across transform boundaries along the San Andreas and Caribbean are small, of the order of 5-10 MPa. Also, compressive stresses of the order of 5-10 MPa transmitted across the major transforms improve the fit to the data. Compressive stresses across convergent margins along the Aleutians and the Middle America trench are important.

  16. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  17. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  18. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  19. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  20. Oscillation death in diffusively coupled oscillators by local repulsive link.

    PubMed

    Hens, C R; Olusola, Olasunkanmi I; Pal, Pinaki; Dana, Syamal K

    2013-09-01

    A death of oscillation is reported in a network of coupled synchronized oscillators in the presence of additional repulsive coupling. The repulsive link evolves as an averaging effect of mutual interaction between two neighboring oscillators due to a local fault and the number of repulsive links grows in time when the death scenario emerges. Analytical condition for oscillation death is derived for two coupled Landau-Stuart systems. Numerical results also confirm oscillation death in chaotic systems such as a Sprott system and the Rössler oscillator. We explore the effect in large networks of globally coupled oscillators and find that the number of repulsive links is always fewer than the size of the network.

  1. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  2. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  3. Martian plate tectonics

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    1994-03-01

    The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses

  4. Plates with Incompatible Prestrain

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Lewicka, Marta; Schäffner, Mathias

    2016-07-01

    We study effective elastic behavior of the incompatibly prestrained thin plates, where the prestrain is independent of thickness and uniform through the plate's thickness h. We model such plates as three-dimensional elastic bodies with a prescribed pointwise stress-free state characterized by a Riemannian metric G, and seek the limiting behavior as {h to 0}. We first establish that when the energy per volume scales as the second power of h, the resulting {Γ} -limit is a Kirchhoff-type bending theory. We then show the somewhat surprising result that there exist non-immersible metrics G for whom the infimum energy (per volume) scales smaller than h 2. This implies that the minimizing sequence of deformations carries nontrivial residual three-dimensional energy but it has zero bending energy as seen from the limit Kirchhoff theory perspective. Another implication is that other asymptotic scenarios are valid in appropriate smaller scaling regimes of energy. We characterize the metrics G with the above property, showing that the zero bending energy in the Kirchhoff limit occurs if and only if the Riemann curvatures R 1213, R 1223 and R 1212 of G vanish identically. We illustrate our findings with examples; of particular interest is an example where {G_{2 × 2}}, the two-dimensional restriction of G, is flat but the plate still exhibits the energy scaling of the Föppl-von Kármán type. Finally, we apply these results to a model of nematic glass, including a characterization of the condition when the metric is immersible, for {G = Id3 + γ n ⊗ n} given in terms of the inhomogeneous unit director field distribution { n in R^3}.

  5. Organization of the tectonic plates in the last 200 Myr (Invited)

    NASA Astrophysics Data System (ADS)

    Morra, G.; Seton, M.; Quevedo, L. E.; Müller, D.

    2013-12-01

    The present tessellation of the Earth's surface into tectonic plates displays a remarkably regular plate size distribution, described by either one (Sornette and Pisarenko, 2003) or two (Bird, 2003) statistically distinct groups, characterised by large and small plate size. A unique distribution implies a hierarchical structure from the largest to the smallest plate. Alternatively, two distributions indicate distinct evolutionary laws for large and small plates, the first tied to mantle flow, the second determined by a hierarchical fragmentation process. We analyse detailed reconstructions of plate boundaries during the last 200 Myr and find that (i) large and small plates display distinct statistical distributions, (ii) the small plates display little organisational change since 60 Ma and (iii) the large plates oscillate between heterogeneous (200-170 Ma and 65-50 Ma) and homogeneous (120-100 Ma) plate tessellations on a timescale of about 100 Myr. Heterogeneous states are reached more rapidly, while the plate configuration decays into homogeneous states following a slower asymptotic curve, suggesting that heterogeneous configurations are excited states while homogeneous tessellations are equilibrium states. We explain this evolution by proposing a model that alternates between bottom- and top-driven Earth dynamics, physically described by fluid-dynamic analogies, the Rayleigh-Benard and Bénard-Marangoni convection, respectively. We discuss the implications for true polar wander (TPW), global kinematic reorganisations (50 and 100 Ma) and the Earth's magnetic field inversion frequency. Earth's present tessellation: grey scale proportional to the logarithm of plate size. Plot: logarithm of complementary 'cumulative plate count' (Y-axis) vs. the logarithm of the plate size (X-axis). Time evolution of the 'standard deviation' of the plate size every one million years.

  6. THz Local Oscillator Technology

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran

    2004-01-01

    The last decade has seen a number of technological advancements that have now made it possible to implement fully solid state local oscillator chains up to 2 THz. These chains are composed of cascaded planar multiplier stages that are pumped with W-band high power sources. The high power W-band sources are achieved by power combining MMIC amplifiers and can provide in access of 150 mW with about 10% bandwidth. Planar diode technology has also enabled novel circuit topologies that can take advantage of the high input power and demonstrate significant efficiencies well into the THz range. Cascaded chains to 1.9 THz have now been demonstrated with enough output power to successfully pump hot-electron bolometer mixers in this frequency range. An overview of the current State-of-the-Art of the local oscillator technology will be presented along with highlighting future trends and challenges.

  7. Stable local oscillator module.

    SciTech Connect

    Brocato, Robert Wesley

    2007-11-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

  8. Polychromatic optical Bloch oscillations.

    PubMed

    Longhi, Stefano

    2009-07-15

    Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.

  9. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  10. Decay of oscillating universes

    NASA Astrophysics Data System (ADS)

    Mithani, Audrey Todhunter

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  11. Entangled mechanical oscillators.

    PubMed

    Jost, J D; Home, J P; Amini, J M; Hanneke, D; Ozeri, R; Langer, C; Bollinger, J J; Leibfried, D; Wineland, D J

    2009-06-01

    Hallmarks of quantum mechanics include superposition and entanglement. In the context of large complex systems, these features should lead to situations as envisaged in the 'Schrödinger's cat' thought experiment (where the cat exists in a superposition of alive and dead states entangled with a radioactive nucleus). Such situations are not observed in nature. This may be simply due to our inability to sufficiently isolate the system of interest from the surrounding environment-a technical limitation. Another possibility is some as-yet-undiscovered mechanism that prevents the formation of macroscopic entangled states. Such a limitation might depend on the number of elementary constituents in the system or on the types of degrees of freedom that are entangled. Tests of the latter possibility have been made with photons, atoms and condensed matter devices. One system ubiquitous to nature where entanglement has not been previously demonstrated consists of distinct mechanical oscillators. Here we demonstrate deterministic entanglement of separated mechanical oscillators, consisting of the vibrational states of two pairs of atomic ions held in different locations. We also demonstrate entanglement of the internal states of an atomic ion with a distant mechanical oscillator. These results show quantum entanglement in a degree of freedom that pervades the classical world. Such experiments may lead to the generation of entangled states of larger-scale mechanical oscillators, and offer possibilities for testing non-locality with mesoscopic systems. In addition, the control developed here is an important ingredient for scaling-up quantum information processing with trapped atomic ions.

  12. Visualization of the airflow around a life-sized, heated, breathing mannequin at ultralow windspeeds.

    PubMed

    Schmees, Darrah K; Wu, Yi-Hsuan; Vincent, James H

    2008-07-01

    During the past two decades, there has been considerable progress in developing particle size-selective criteria for aerosol sampling and exposure assessment that relate more realistically to actual human exposures than previously. An important aspect has been the aspiration efficiency-the 'inhalability'-with which particles enter through the nose and mouth of aerosol-exposed individuals during breathing. Most of the reported experiments to determine inhalability have been conducted in wind tunnels with life-sized, breathing mannequins, for windspeeds from 0.5 m s(-1) and above. A few experiments have been reported for calm air. However, nothing has been reported for the intermediate range from 0.5 m s(-1) downward, and it so happens-as we now know-that this corresponds to most industrial workplaces. The research described in this paper represents a first step toward filling this knowledge gap. It focuses on identifying the features of the airflow near the mannequin at such low windspeeds that might have important influences on the nature of particle transport, and hence on inhalability, and eventually the performances of personal aerosol samplers mounted in the breathing zone. We have carried out flow visualization experiments for the realistic range of windspeeds indicated, investigating specifically the effect of the air jet released into the freestream during expiration and the effect of the upward-moving boundary layer near the body associated with the buoyancy of air in that region as a result of heat received from the warm body. We set out to identify the combinations of conditions-external windspeed, breathing mode (nose versus mouth breathing), breathing rate and body temperature-where such factors need to be taken into account. We developed an experimental system that allowed the visualization of smoke traces, providing very good observation of how the flow was modified as conditions changed. From inspection of a large number of moving pictures, we

  13. High-Resolution CFD Simulation of Airflow and Tracer Dispersion in New York City

    SciTech Connect

    Leach, M J; Chan, S T; Lundquist, J K

    2005-11-02

    In 2004, a research project--the New York City Urban Dispersion Program (NYC UDP)--was launched by the Department of Homeland Security with the goal to improve the permanent network of wind stations in and around New York City and to enhance the city's emergency response capabilities. Encompassing both field studies and computer modeling, one of the program's objectives is to improve and validate urban dispersion models using the data collected from field studies and to transfer the improved capabilities to NYC emergency agencies. The first two field studies were conducted in March and August 2005 respectively and an additional study is planned for the summer of 2006. Concurrently model simulations, using simple to sophisticated computational fluid dynamics (CFD) models, have been performed to aid the planning of field studies and also to evaluate the performance of such models. Airflow and tracer dispersion in urban areas such as NYC are extremely complicated. Some of the contributing factors are complex geometry, variable terrain, coupling between local and larger scale flows, deep canyon mixing and updrafts/downdrafts caused by large buildings, street channeling and upstream transport, roof features, and heating effects, etc. Sponsored by the U.S. Department of Energy (DOE) and Department of Homeland Security (DHS), we have developed a CFD model, FEM3MP, to address some of the above complexities. Our model is based on solving the three-dimensional, time-dependent, incompressible Navier-Stokes equations with appropriate physics for modeling airflow and dispersion in the urban environment. Also utilized in the model are finite-element discretization for effective treatment of complex geometries and a semi-implicit projection method for efficient time-integration. A description of the model can be found in Gresho and Chan (1998), Chan and Stevens (2000). Predictions from our model are continuously being verified against data from field studies, such as URBAN 2000

  14. Resonant frequency does not predict high-frequency chest compression settings that maximize airflow or volume.

    PubMed

    Luthy, Sarah K; Marinkovic, Aleksandar; Weiner, Daniel J

    2011-06-01

    High-frequency chest compression (HFCC) is a therapy for cystic fibrosis (CF). We hypothesized that the resonant frequency (f(res)), as measured by impulse oscillometry, could be used to determine what HFCC vest settings produce maximal airflow or volume in pediatric CF patients. In 45 subjects, we studied: f(res), HFCC vest frequencies that subjects used (f(used)), and the HFCC vest frequencies that generated the greatest volume (f(vol)) and airflow (f(flow)) changes as measured by pneumotachometer. Median f(used) for 32 subjects was 14 Hz (range, 6-30). The rank order of the three most common f(used) was 15 Hz (28%) and 12 Hz (21%); three frequencies tied for third: 10, 11, and 14 Hz (5% each). Median f(res) for 43 subjects was 20.30 Hz (range, 7.85-33.65). Nineteen subjects underwent vest-tuning to determine f(vol) and f(flow). Median f(vol) was 8 Hz (range, 6-30). The rank order of the three most common f(vol) was: 8 Hz (42%), 6 Hz (32%), and 10 Hz (21%). Median f(flow) was 26 Hz (range, 8-30). The rank order of the three most common f(flow) was: 30 Hz (26%) and 28 Hz (21%); three frequencies tied for third: 8, 14, and 18 Hz (11% each). There was no correlation between f(used) and f(flow) (r(2)  = -0.12) or f(vol) (r(2) = 0.031). There was no correlation between f(res) and f(flow) (r(2)  = 0.19) or f(vol) (r(2) = 0.023). Multivariable analysis showed no independent variables were predictive of f(flow) or f(vol). Vest-tuning may be required to optimize clinical utility of HFCC. Multiple HFCC frequencies may need to be used to incorporate f(flow) and f(vol).

  15. Prominence formation and oscillations

    NASA Astrophysics Data System (ADS)

    Chen, P. F.

    Prominences, or filaments, are a striking phenomenon in the solar atmosphere. Besides their own rich features and dynamics, they are related to many other activities, such as solar flares and coronal mass ejections (CMEs). In the past several years we have been investigating the prominence formation, oscillations, and eruptions through both data analysis and radiative hydrodynamic and magnetohydrodynamic (MHD) simulations. This paper reviews our progress on these topics, which includes: (1) With updated radiative cooling function, the coronal condensation becomes a little faster than previous work; (2) Once a seed condensation is formed, it can grow via siphon flow spontaneously even if the evaporation stops; (3) A scaling law was obtained to relate the length of the prominence thread to various parameters, indicating that higher prominences tend to have shorter threads, which is consistent with the fact that threads are long in active region prominences and short in quiescent prominences; (4) It was proposed that long-time prominence oscillations out of phase might serve as a precursor for prominence eruptions and CMEs; (5) An ensemble of oscillating prominence threads may explain the counter-streaming motion.

  16. Temperature sensitive oscillator

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1986-01-01

    An oscillator circuit for sensing and indicating temperature by changing oscillator frequency with temperature comprises a programmable operational amplifier which is operated on the roll-off portion of its gain versus frequency curve and has its output directly connected to the inverting input to place the amplifier in a follower configuration. Its output is also connected to the non-inverting input by a capacitor with a crystal or other tuned circuit also being connected to the non-inverting input. A resistor is connected to the program input of the amplifier to produce a given set current at a given temperature, the set current varying with temperature. As the set current changes, the gain-bandwidth of the amplifier changes and, in turn, the reflected capacitance across the crystal changes, thereby providing the desired change in oscillator frequency by pulling the crystal. There is no requirement that a crystal employed with this circuit display either a linear frequency change with temperature or a substantial frequency change with temperature.

  17. Nonlinear Oscillators in Space Physics

    NASA Technical Reports Server (NTRS)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  18. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  19. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  20. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  1. Comparison of calculated and altitude-facility-measured thrust and airflow of two prototype F100 turbofan engines

    NASA Technical Reports Server (NTRS)

    Kurtenbach, F. J.

    1978-01-01

    A comparison is made of the facility performance data for the two engines with an engine performance model, and it provides corrections that can be applied to the model so that it represents the test engines accurately over the flight envelope. Test conditions ranged from Mach numbers of 0.80 to 2.00 and altitudes from 4020 meters to 15,240 meters. Two distortion screens were used to determine the effect of distortion on airflow. Reynolds number effects were also determined. Engine hysteresis is documented, as is an attempt to determine engine degradation. The calibrated engine model had a twice standard deviation accuracy of approximately 1.24 percent for corrected airflow and 2.38 percent for gross thrust.

  2. Experimental study of the effects of airflow and vocal fold stiffness on male and female voice production

    NASA Astrophysics Data System (ADS)

    Campo, Elizabeth; Michael, Mcphail; Michael, Krane

    2011-11-01

    The effect of airflow in voice production is not fully understood, leading to difficulties when clinically diagnosing voice disorders. Many existing studies in this this area focus primarily on the male physiology. This study incorporates 2-layer, molded silicone vocal fold models whose geometry mimics the shape and dimensions of both male and female vocal folds. Measured quantities include subglottal and transglottal pressure, volume flow rate, and radiated sound. The results are used to clarify the relationship between glottal airflow and sound production. The Implications of the measurements for similarities and differences between male and phonation are discussed. Acknowledge support of NIH grant 5R01DC005642 and ARL E&F program.

  3. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    PubMed

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  4. Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Qi, Xiaohua; Yang, Liang; Yan, Huijie; Jin, Ying; Hua, Yue; Ren, Chunsheng

    2016-10-01

    The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths. supported by National Natural Science Foundation of China (No. 11175037), National Natural Science Foundation for Young Scientists of China (No. 11305017) and Special Fund for Theoretical Physics (No. 11247239)

  5. Breathing life into dinosaurs: tackling challenges of soft-tissue restoration and nasal airflow in extinct species.

    PubMed

    Bourke, Jason M; Porter, W M Ruger; Ridgely, Ryan C; Lyson, Tyler R; Schachner, Emma R; Bell, Phil R; Witmer, Lawrence M

    2014-11-01

    The nasal region plays a key role in sensory, thermal, and respiratory physiology, but exploring its evolution is hampered by a lack of preservation of soft-tissue structures in extinct vertebrates. As a test case, we investigated members of the "bony-headed" ornithischian dinosaur clade Pachycephalosauridae (particularly Stegoceras validum) because of their small body size (which mitigated allometric concerns) and their tendency to preserve nasal soft tissues within their hypermineralized skulls. Hypermineralization directly preserved portions of the olfactory turbinates along with an internal nasal ridge that we regard as potentially an osteological correlate for respiratory conchae. Fossil specimens were CT-scanned, and nasal cavities were segmented and restored. Soft-tissue reconstruction of the nasal capsule was functionally tested in a virtual environment using computational fluid dynamics by running air through multiple models differing in nasal soft-tissue conformation: a bony-bounded model (i.e., skull without soft tissue) and then models with soft tissues added, such as a paranasal septum, a scrolled concha, a branched concha, and a model combining the paranasal septum with a concha. Deviations in fluid flow in comparison to a phylogenetically constrained sample of extant diapsids were used as indicators of missing soft tissue. Models that restored aspects of airflow found in extant diapsids, such as appreciable airflow in the olfactory chamber, were judged as more likely. The model with a branched concha produced airflow patterns closest to those of extant diapsids. These results from both paleontological observation and airflow modeling indicate that S. validum and other pachycephalosaurids could have had both olfactory and respiratory conchae. Although respiratory conchae have been linked to endothermy, such conclusions require caution in that our re-evaluation of the reptilian nasal apparatus indicates that respiratory conchae may be more widespread

  6. Design and development of desiccant seed dryer with airflow inversion and recirculation.

    PubMed

    Gill, R S; Singh, Sukhmeet; Singh, Parm Pal

    2014-11-01

    A desiccant seed dryer has been developed to dry seed in deep bed at safe temperatures for good shelf life and germination. The dryer consists of two chambers viz., air conditioning control unit and seed drying chamber. It operates in seed drying mode and desiccant regeneration mode. It has provision for recirculation of the drying air to minimise the moisture removal from drying air. Also, it has provision of airflow inversion through deep seed bed for uniform drying. Moisture removal from drying air has been done using silica gel desiccant. Chilly 'Punjab Surakh', Chilly 'Punjab Guchhedaar', Paddy, Coriander, Fenugreek and Radish seeds was dried with hot air at 38 °C from initial moisture content of 26.9 to 5 % (wb) in 2 h, 46.52 to 4.19 % (wb) in 4.25 h, 13.3 to 2.61 % (wb) in 4 h, 13.4 to 10.08 % (wb) in 3 h, 12.4 to 8.22 % (wb) in 4¼ h and 10.6 to 6.08 % (wb) in 4 h respectively. The statistical analysis based on paired t-test showed that seed drying in this dryer has no adverse effect on seed germination. PMID:26396340

  7. CHARACTERIZATION OF AIRFLOWS NEAR THE EXIT OF HVAC REGISTERS USING LASER DOPPLER VELOCIMETRY (LDV).

    SciTech Connect

    TUTU,N.K.; KRISHNA,C.R.; ANDREWS,J.W.; BUTCHER,T.A.

    2003-03-13

    A facility to characterize the airflow at the exit of HVAC registers was designed and fabricated. The objective of this work is to obtain velocity and turbulence data at the exit of registers, which can then be used as an input boundary condition in a modern Computational Fluid Dynamics (CFD) code to predict the velocity and temperature distribution in an enclosure, and also the register performance parameters such as throw. During the course of this work, two commonly used registers were tested. Both registers were 8 inch x 4 inch sidewall registers. Laser Doppler Velocimetry was used to measure the axial and vertical components of the velocity vector at various locations across the face of the registers. For the two cases of registers studied here, the results suggest that the velocity field at the very exit of each of these registers scales with the flow rate through the registers. This means that, in the mode of operation in which the supply fan (of an HVAC system) has a ''High'' and ''Low'' setting, similar velocity scaling would result for the type of registers tested here.

  8. Surgical clothing systems in laminar airflow operating room: a numerical assessment.

    PubMed

    Sadrizadeh, Sasan; Holmberg, Sture

    2014-01-01

    This study compared two different laminar airflow distribution strategies - horizontal and vertical - and investigated the effectiveness of both ventilation systems in terms of reducing the sedimentation and distribution of bacteria-carrying particles. Three different staff clothing systems, which resulted in source strengths of 1.5, 4 and 5 CFU/s per person, were considered. The exploration was conducted numerically using a computational fluid dynamics technique. Active and passive air sampling methods were simulated in addition to recovery tests, and the results were compared. Model validation was performed through comparisons with measurement data from the published literature. The recovery test yielded a value of 8.1 min for the horizontal ventilation scenario and 11.9 min for the vertical ventilation system. Fewer particles were captured by the slit sampler and in sedimentation areas with the horizontal ventilation system. The simulated results revealed that under identical conditions in the examined operating room, the horizontal laminar ventilation system performed better than the vertical option. The internal constellation of lamps, the surgical team and objects could have a serious effect on the movement of infectious particles and therefore on postoperative surgical site infections.

  9. Multiscale Airflow Model and Aerosol Deposition in Healthy and Emphysematous Rat Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica; Marsden, Alison; Grandmont, Celine; Darquenne, Chantal; Vignon-Clementel, Irene

    2012-11-01

    The fate of aerosol particles in healthy and emphysematic lungs is needed to determine the toxic or therapeutic effects of inhalable particles. In this study we used a multiscale numerical model that couples a 0D resistance and capacitance model to 3D airways generated from MR images. Airflow simulations were performed using an in-house 3D finite element solver (SimVascular, simtk.org). Seven simulations were performed; 1 healthy, 1 uniform emphysema and 5 different cases of heterogeneous emphysema. In the heterogeneous emphysema cases the disease was confined to a single lobe. As a post processing step, 1 micron diameter particles were tracked in the flow field using Lagrangian particle tracking. The simulation results showed that the inhaled flow distribution was equal for the healthy and uniform emphysema cases. However, in the heterogeneous emphysema cases the delivery of inhaled air was larger in the diseased lobe. Additionally, there was an increase in delivery of aerosol particles to the diseased lobe. This suggests that as the therapeutic particles would reach the diseased areas of the lung, while toxic particles would increasingly harm the lung. The 3D-0D model described here is the first of its kind to be used to study healthy and emphysematic lungs. NSF Graduate Fellowship (Oakes), Burroughs Wellcome Fund (Marsden, Oakes) 1R21HL087805-02 from NHLBI at NIH, INRIA Team Grant.

  10. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow

    SciTech Connect

    Wang Jian; Li Yinghong; Xing Fei

    2009-10-01

    Wedge oblique shock wave control by arc discharge plasma in supersonic airflow was investigated theoretically, experimentally, and numerically in this paper. Using thermal choking model, the change in oblique shock wave was deduced, which refer that the start point of shock wave shifts upstream, the shock wave angle decreases, and its intensity weakens. Then the theoretical results were validated experimentally in a Mach 2.2 wind tunnel. On the test conditions of arc discharge power of approx1 kW and arc plasma temperature of approx3000 K, schlieren photography and gas pressure measurements indicated that the start point of shock wave shifted upstream of approx4 mm, the shock wave angle decreased 8.6%, and its intensity weakened 8.8%. The deduced theoretical results match the test results qualitatively, so thermal mechanism and thermal choking model are rational to explain the problem of oblique shock wave control by arc discharge plasma. Finally, numerical simulation was developed. Based on thermal mechanism, the arc discharge plasma was simplified as a thermal source term that added to the Navier-Stokes equations. The simulation results of the change in oblique shock wave were consistent with the test results, so the thermal mechanism indeed dominates the oblique shock wave control process.

  11. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.

    PubMed

    Hwang, Gi Byoung; Lee, Jung Eun; Nho, Chu Won; Lee, Byung Uk; Lee, Seung Jae; Jung, Jae Hee; Bae, Gwi-Nam

    2012-04-01

    Bioaerosols have received social and scientific attention because they can be hazardous to human health. Recently, antimicrobial treatments using natural products have been used to improve indoor air quality (IAQ) since they are typically less toxic to humans compared to other antimicrobial substances such as silver, carbon nanotubes, and metal oxides. Few studies, however, have examined how environmental conditions such as the relative humidity (RH), surrounding temperature, and retention time of bacteria on filters affect the filtration and antimicrobial characteristics of a filter treated with such natural products. In this study, we investigated changes in the morphology of the natural nanoparticles, pressure drop, filtration efficiency, and the inactivation rate caused by the short-term effect of humid airflow on antimicrobial fiber filters. Nanoparticles of Sophora flavescens were deposited on the filter media surface using an aerosol process. We observed coalescence and morphological changes of the nanoparticles on fiber filters under humid conditions of an RH >50%. The level of coalescence in these nanoparticles increased with increasing RH. Filters exposed to an RH of 25% have a higher pressure drop than those exposed to an RH >50%. In an inactivation test against Staphylococcus epidermidis bacterial aerosol, the inactivation efficiency at an RH of 25% was higher than that at an RH of 57% or 82%. To effectively apply antimicrobial filters using natural products in the environment, one must characterize the filters under various environmental conditions. Thus, this study provides important information on the use of antimicrobial filters made of natural products.

  12. Finite element analysis of airflow in the vocal tract with lateral channels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyan; Espy-Wilson, Carol Y.

    2003-10-01

    Lateral channels are airflow paths around the tongue produced by the laterally inward movement of the tongue toward the midsagittal plane during American English /l/ sound production. If contact is made with the palate, a closure is formed in the flow path along the midsagittal line. The closure is normally formed in the anterior part of the oral cavity and is about 1-1.5 cm long. However, it is speculated that the flow may split at a location posterior to the closure, thereby giving a longer length of the lateral channels up to 3-4 cm. Lateral channels of length around 3 cm have been shown to have significant effects on the resulting sound spectrum. To investigate the flow and acoustic field involved, finite element analysis was performed on a simplified model of the vocal tract during lateral sound production. The tongue was modeled as a rectangular constriction with a tapering slope on the upstream side and two flow channels on its two sides. The results show that the rising up of the tongue causes the flow to split into three regions of different flow amplitude and phase: one main region above the tongue surface and two regions around the tongue. This flow splitting occurs at the point where the tongue first begins rising up, well before the actual constriction location. The effective length of the lateral channels is therefore much longer than the length of the lingual constriction.

  13. Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II

    NASA Astrophysics Data System (ADS)

    Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea

    2016-04-01

    In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.

  14. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge.

    PubMed

    Huiliñir, Cesar; Villegas, Manuel

    2015-10-01

    The simultaneous effect of initial moisture content (initial Mc) and air-flow rate (AFR) on biodrying performance was evaluated. For the study, a 3(2) factorial design, whose factors were AFR (1, 2 and 3 L/min kg(TS)) and initial Mc (59, 68 and 78% w.b.), was used. Using energy and water mass balance the main routes of water removal, energy use and efficiencies were determined. The results show that initial Mc has a stronger effect on the biodrying than the AFR, affecting the air outlet temperature and improving the water removal, with higher maximum temperatures obtained around 68% and the lowest maximum matrix temperature obtained at initial Mc = 78%.Through the water mass balance it was found that the main mechanism for water removal was the aeration, with higher water removal at intermediate initial Mc (68%) and high AFR (3 L/min kg(TS)). The energy balance indicated that bioreaction is the main energy source for water evaporation, with higher energy produced at intermediate initial Mc (68%). Finally, it was found that low values of initial Mc (59%) improve biodrying efficiency.

  15. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  16. Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction

    PubMed Central

    Marcos, Veronica; Zhou-Suckow, Zhe; Önder Yildirim, Ali; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; Stoiber, Walter; Griese, Matthias; Eickelberg, Oliver; Mall, Marcus A.; Hartl, Dominik

    2015-01-01

    Chronic obstructive lung disease determines morbidity and mortality of patients with cystic fibrosis (CF). CF airways are characterized by a nonresolving neutrophilic inflammation. After pathogen contact or prolonged activation, neutrophils release DNA fibres decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). NETs have been described to act in a beneficial way for innate host defense by bactericidal, fungicidal, and virucidal actions. On the other hand, excessive NET formation has been linked to the pathogenesis of autoinflammatory and autoimmune disease conditions. We quantified free DNA structures characteristic of NETs in airway fluids of CF patients and a mouse model with CF-like lung disease. Free DNA levels correlated with airflow obstruction, fungal colonization, and CXC chemokine levels in CF patients and CF-like mice. When viewed in combination, our results demonstrate that neutrophilic inflammation in CF airways is associated with abundant free DNA characteristic for NETosis, and suggest that free DNA may be implicated in lung function decline in patients with CF. PMID:25918476

  17. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  18. [Degradation of purine nucleotides in patients with chronic obstruction to airflow].

    PubMed

    Mateos Antón, F; García Puig, J; Gómez Fernández, P; Ramos Hernández, T; López Jiménez, M

    1989-03-11

    The increase in hypoxanthine (Hx), xanthine (X), uric acid (VA) and total purines (TP) that may be found in several clinical conditions associated with tissue hypoxia has been attributed to an increase in adenine nucleotides degradation by a reduced ATP synthesis caused by oxygen deprivation. To test this hypothesis we have investigated the urinary excretion of Hx, X, VA, TP and radioactivity elimination after labeling the adenine nucleotides with adenine (8-14C) in 5 patients with chronic airflow obstruction (CAFO), in the basal state and after oxygen therapy (FiO2, 24%). The results were compared with those from 4 normal individuals. Patients with COFA showed an increase of the renal elimination of Hx, X, VA, TP and radioactivity, which was significantly different from the control group (p less than 0.05). Oxygen administration was associated with a significant reduction in the excretion of purines and radioactivity (p less than 0.01), which decreased to values similar to those found in normal individuals. These findings suggest that in patients with COFA and severe hypoxemia there is a marked increase in the degradation of adenine nucleotides. The normalization of the purine and radioactivity excretion after oxygen therapy points to a basic role of oxygen in the catabolism of adenine nucleotides. PMID:2716427

  19. 4DCT-based assessment of regional airflow distribution in healthy human lungs during tidal breathing

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Jahani, Nariman; Choi, Sanghun; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    Nonlinear dynamics of regional airflow distribution in healthy human lungs are studied with four-dimensional computed tomography (4DCT) quantitative imaging of four subjects. During the scanning session, subjects continuously breathed with tidal volumes controlled by the dual piston system. For each subject, 10 instantaneous volumetric image data sets (5 inspiratory and 5 expiratory phases) were reconstructed. A mass-preserving image registration was then applied to pairs of these image data to construct a breathing lung model. Regional distributions of local flow rate fractions are computed from time-varying local air volumes. The 4DCT registration-based method provides the link between local and global air volumes of the lung, allowing derivation of time-varying regional flow rates during the tidal breathing for computational fluid dynamics analysis. The local flow rate fraction remains greater in the lower lobes than in the upper lobes, being qualitatively consistent with those derived from three static CT (3SCT) images (Yin et al. JCP 2013). However, unlike 3SCT, the 4DCT data exhibit lung hysteresis between inspiration and expiration, providing more sensitive measures of regional ventilation and lung mechanics. NIH Grants U01-HL114494, R01-HL094315 and S10-RR022421.

  20. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed. PMID:23609636