Sample records for oscillating plate airflow

  1. Investigation of non-uniform airflow signal oscillation during high frequency chest compression

    PubMed Central

    Sohn, Kiwon; Warwick, Warren J; Lee, Yong W; Lee, Jongwon; Holte, James E

    2005-01-01

    Background High frequency chest compression (HFCC) is a useful and popular therapy for clearing bronchial airways of excessive or thicker mucus. Our observation of respiratory airflow of a subject during use of HFCC showed the airflow oscillation by HFCC was strongly influenced by the nonlinearity of the respiratory system. We used a computational model-based approach to analyse the respiratory airflow during use of HFCC. Methods The computational model, which is based on previous physiological studies and represented by an electrical circuit analogue, was used for simulation of in vivo protocol that shows the nonlinearity of the respiratory system. Besides, airflow was measured during use of HFCC. We compared the simulation results to either the measured data or the previous research, to understand and explain the observations. Results and discussion We could observe two important phenomena during respiration pertaining to the airflow signal oscillation generated by HFCC. The amplitudes of HFCC airflow signals varied depending on spontaneous airflow signals. We used the simulation results to investigate how the nonlinearity of airway resistance, lung capacitance, and inertance of air characterized the respiratory airflow. The simulation results indicated that lung capacitance or the inertance of air is also not a factor in the non-uniformity of HFCC airflow signals. Although not perfect, our circuit analogue model allows us to effectively simulate the nonlinear characteristics of the respiratory system. Conclusion We found that the amplitudes of HFCC airflow signals behave as a function of spontaneous airflow signals. This is due to the nonlinearity of the respiratory system, particularly variations in airway resistance. PMID:15904523

  2. Investigation of nanosecond pulsed dielectric barrier discharge using plate-to-plate electrode with asymmetric dielectric arrangement in airflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Haicheng; School of Physics Science and Technology, Anshan Normal University, Anshan 114005; Fan, Zhihui

    Atmospheric pressure dielectric barrier discharge plasma is produced in airflow by applying nanosecond high voltage pulses with peak voltage about 35 kV and rising time about 40 ns on a plate-to-plate electrode arrangement. The effects of airflow rate (0–50 m/s) on the discharge characteristics are investigated under different barrier conditions (the bare anode case and the bare cathode case). For both cases, the breakdown voltage and the time lag increase distinctly and the discharge intensity decreases sharply when the airflow rate increases from 0 to 30 m/s, and then keep almost constant until the airflow rate is further increased to 50 m/s. For the baremore » anode case (the cathode is covered by dielectric plate), the discharge mode transforms gradually from filamentary to diffuse discharge with the increasing airflow rate. While for the bare cathode case, some micro-discharge channels are still excited, though the discharge becomes more diffuse when the airflow rate is higher than 30 m/s. By acquiring the time-resolved images of the discharge, it is proved that it is the primary discharge which becomes diffuse when airflow is introduced and the following two discharges of the same voltage pulse occur principally at the positions where the primary discharge is more intense. And in both cases, the plasma temperatures are reduced, but the degree is different. All the phenomena can be explained mainly by the variation of the space charge distribution when the airflow is introduced into the discharge gap. And it is indicated that the bare anode case has an advantage in obtaining diffuse discharge.« less

  3. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    NASA Astrophysics Data System (ADS)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  4. The study of shielding influence of the disks placed coaxially on rotational oscillations of the cylinder in the airflow

    NASA Astrophysics Data System (ADS)

    Kiselev, Nikolay; Ryabinin, Anatoly

    2018-05-01

    The experimental study of shielding effects of the disk placed upstream of a cylinder is described. The disk reduces the drag of the cylinder and changes its dynamic characteristics. Two cylinders with different aspect ratio are studied. Without a disk, an elastically fixed cylinder in the airflow performs rotational oscillations with constant amplitude. The influence of the aerodynamic force on the damping of the oscillations depends on the disk diameter, the gap between disk and cylinder and aspect ratio of the cylinder. The disk reduces the amplitude of steady rotational oscillations or causes the damped rotational oscillations. A mathematical model is proposed for describing the rotational steady and damped oscillations of a cylinder with the disk.

  5. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  6. [Phonatory airflow in the supraglottal space].

    PubMed

    Müsebeck, K; Rosenberg, H

    1983-05-01

    The phonatory airflow can be measured by means of a hot wire tube placed in the supraglottic space without tying down the tongue. The velocity of airflow above the glottis reaches values around c = 50 to 150 cm/s. The variations in airflow oscillations were recorded. The voice of the person under examination was picked up by a condenser microphone (Bruel & Kjaer No. 2112). According to D'Alembert's wave equation, the sound intensity is related to the velocity of the phonatory air stream. The validity of this statement has been confirmed by repeated testing. The fundamental frequency of voice and of the airflow were analysed synchronously by means of the Nicolet analyser. The air consumption is not utilized for sound production in phonation by breathing. A "hard" or "pressed" voice is associated with diminished or irregular air consumption. The method can be employed in assessing the conditions of phonetic airflow in normal and dysphonic voices.

  7. Apparent Mass Nonlinearity for Paired Oscillating Plates

    NASA Astrophysics Data System (ADS)

    Granlund, Kenneth; Ol, Michael

    2014-11-01

    The classical potential-flow problem of a plate oscillating sinusoidally at small amplitude, in a direction normal to its plane, has a well-known analytical solution of a fluid ``mass,'' multiplied by plate acceleration, being equal to the force on the plate. This so-called apparent-mass is analytically equal to that of a cylinder of fluid, with diameter equal to plate chord. The force is directly proportional to frequency squared. Here we consider experimentally a generalization, where two coplanar plates of equal chord are placed at some lateral distance apart. For spacing of ~0.5 chord and larger between the two plates, the analytical solution for a single plate can simply be doubled. Zero spacing means a plate of twice the chord and therefore a heuristic cylinder of fluid of twice the cross-sectional area. This limit is approached for plate spacing <0.5c. For a spacing of 0.1-0.2c, the force due to apparent mass was found to increase with frequency, when normalized by frequency squared; this is a nonlinearity and a departure from the classical theory. Flow visualization in a water-tank suggests that such departure can be imputed to vortex shedding from the plates' edges inside the inter-plate gap.

  8. Unsteady laminar boundary-layer calculations on oscillating configurations including backflow. Part 1: Flat plate, oscillating in its own plane

    NASA Technical Reports Server (NTRS)

    Geissler, W.

    1983-01-01

    A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.

  9. Closed loop oscillating heat pipe as heating device for copper plate

    NASA Astrophysics Data System (ADS)

    Kamonpet, Patrapon; Sangpen, Waranphop

    2017-04-01

    In manufacturing parts by molding method, temperature uniformity of the mold holds a very crucial aspect for the quality of the parts. Studies have been carried out in searching for effective method in controlling the mold temperature. Using of heat pipe is one of the many effective ways to control the temperature of the molding area to the right uniform level. Recently, there has been the development of oscillating heat pipe and its application is very promising. The semi-empirical correlation for closed-loop oscillating heat pipe (CLOHP) with the STD of ±30% was used in design of CLOHP in this study. By placing CLOHP in the copper plate at some distance from the plate surface and allow CLOHP to heat the plate up to the set surface temperature, the temperature of the plate was recorded. It is found that CLOHP can be effectively used as a heat source to transfer heat to copper plate with excellent temperature distribution. The STDs of heat rate of all experiments are well in the range of ±30% of the correlation used.

  10. Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation

    NASA Astrophysics Data System (ADS)

    Mogilevich, L. I.; Popov, V. S.; Popova, A. A.; Christoforova, A. V.

    2018-01-01

    The forced oscillations of the elastic fixed stamp and the plate, resting on Pasternak foundation are studied. The oscillations are caused by pressure pulsation in liquid layer between the stamp and the plate. Pasternak model is chosen as an elastic foundation. The laws of the stamp movement, the plate deflection and pressure in the liquid are discovered on the basis of hydroelasticity problem analytical solution. The functions of amplitude deflection distribution and liquid pressure along the plate are constructed, as well as the stamp amplitude-frequency characteristic. The obtained mathematical model allows to investigate the dynamics of hydroelastic interaction of the stamp with the plate, resting on elastic foundation, to define resonance frequencies of the plate and the stamp and corresponding deflections amplitudes, as well as liquid presser amplitudes.

  11. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  12. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  13. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  14. Investigation of airflow effects on the dielectric barrier discharge with single/double discharge channel arrangement

    NASA Astrophysics Data System (ADS)

    Fan, Zhihui; Yan, Huijie; Liu, Yidi; Guo, Hongfei; Wang, Yuying; Ren, Chunsheng

    2018-05-01

    Atmospheric-pressure dielectric barrier discharge (DBD) with airflow participation has been widely used in recent years. In this paper, effects of airflow on DBD characteristics are experimentally investigated by single/double pin-to-plate DBD arrangements with an AC exciting source. The discharge electrical characteristics and the movements of discharge channels in airflow are investigated with a single pin electrode arrangement. The current intensities increase in positive cycles and decrease in negative cycles with the increase in airflow velocity. The transition from a filamentary discharge to a diffuse discharge is observed under certain airflow conditions, and the discharge channels move with the airflow with a movement velocity less than the corresponding airflow velocity. In the cases of double pin electrode arrangements, the repulsion between double pin discharge channels is apparent at a 10 mm distance but is not obvious at a 20 mm distance. When the airflow is introduced into the discharge gap, not as in the case of single pin electrode arrangement, the movements of discharge channels in airflow are affected by adjacent discharge channels. The corresponding reasons are analyzed in the paper.

  15. Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Guo, Xiao-ling; Tang, Guo-qiang; Liu, Ming-ming; Chen, Chuan-qi; Xie, Zhi-hua

    2016-09-01

    Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the

  16. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  17. Insert metering plates for gas turbine nozzles

    DOEpatents

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  18. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.

    PubMed

    Lucero, Jorge C; Koenig, Laura L; Lourenço, Kelem G; Ruty, Nicolas; Pelorson, Xavier

    2011-03-01

    This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic /h/. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon. © 2011 Acoustical Society of America

  19. A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis

    PubMed Central

    Lucero, Jorge C.; Koenig, Laura L.; Lourenço, Kelem G.; Ruty, Nicolas; Pelorson, Xavier

    2011-01-01

    This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic ∕h∕. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon. PMID:21428520

  20. Precipitation hydrometeor type relative to the mesoscale airflow in mature oceanic deep convection of the Madden-Julian Oscillation

    DOE PAGES

    Barnes, Hannah C.; Houze, Robert A.

    2014-12-25

    We present that composite analysis of mature near-equatorial oceanic mesoscale convective systems (MCSs) during the active stage of the Madden-Julian Oscillation (MJO) shows where different hydrometeor types occur relative to convective updraft and stratiform midlevel inflow layers. The National Center for Atmospheric Research (NCAR) S-PolKa radar observed these MCSs during the Dynamics of the Madden-Julian Oscillation/Atmospheric Radiation Measurement-MJO Investigation Experiment (DYNAMO/AMIE). NCAR's particle identification algorithm (PID) is applied to S-PolKa's polarimetric data to identify the dominant hydrometeor type in each radar sample volume. Combining S-PolKa's Doppler velocity data with the PID demonstrates that hydrometeors have a systematic relationship to themore » airflow within mature MCSs. In the convective region, moderate rain occurs within the updraft core; the heaviest rain occurs just downwind of the core; wet aggregates occur immediately below the melting layer; narrow zones containing graupel/rimed aggregates occur just downstream of the updraft core at midlevels; dry aggregates dominate above the melting level; and smaller ice particles occur along the edges of the convective zone. In the stratiform region, rain intensity decreases toward the anvil; melting aggregates occur in horizontally extensive but vertically thin regions at the melting layer; intermittent pockets of graupel/rimed aggregates occur atop the melting layer; dry aggregates and small ice particles occur sequentially above the melting level; and horizontally oriented ice crystals occur between -10°C and -20°C in turbulent air above the descending midlevel inflow, suggesting enhanced depositional growth of dendrites. Finally, the organization of hydrometeors within the midlevel inflow layer is insensitive to the presence or absence of a leading convective line.« less

  1. Experimental study of oscillating plates in viscous fluids: Qualitative and quantitative analysis of the flow physics and hydrodynamic forces

    NASA Astrophysics Data System (ADS)

    Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo

    2018-01-01

    In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.

  2. Power requirement of rotating rods in airflow

    NASA Technical Reports Server (NTRS)

    Barna, P. S.; Crossman, G. R.

    1974-01-01

    Experiments were performed to determine the power required for rotating a rotor disc fitted with a number of radially arranged rods placed into a ducted airflow. An array of stationary rods, also radially arranged, were placed upstream close to the rotor with a small gap between the rods to cause wake interference. The results show that power increased with increasing airflow and the rate of increase varied considerably. At lower values of airflow the rate of increase was larger than at higher airflow and definite power peaks occurred at certain airflow rates, where the power attained a maximum within the test airflow range. During the test a maximum blade passage frequency of 2037 Hz was attained.

  3. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging

    NASA Astrophysics Data System (ADS)

    Halboth, Florian; Roces, Flavio

    2017-10-01

    Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

  4. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging.

    PubMed

    Halboth, Florian; Roces, Flavio

    2017-09-19

    Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

  5. Mechanical responses of rat vibrissae to airflow

    PubMed Central

    Yu, Yan S. W.; Graff, Matthew M.; Hartmann, Mitra J. Z.

    2016-01-01

    ABSTRACT The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors – able to sense both airflow and touch – and that they may play a particularly important role in anemotaxis. PMID:27030774

  6. Visualization of airflow growing soap bubbles

    NASA Astrophysics Data System (ADS)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  7. Flow over a cylinder with a hinged-splitter plate

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate

  8. Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate

    NASA Astrophysics Data System (ADS)

    Koffi, Moise

    The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary

  9. External vortex pumping by oscillating plate arrays of mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Sensenig, Andrew; Kiger, Ken; Shultz, Jeffrey

    2009-11-01

    Mayfly nymphs are aquatic insects, many of which can generate ventilation currents by beating two linear arrays of external plate-like gills. The oscillation Reynolds number associated with the gill motion changes with animal size, varying from Re ˜ 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontogenetic changes in pumping mechanisms associated with transitions from a more viscous- to inertia-dominated flow. Observation of the 3-D kinematics of the gill motion of the species C. triangulifer reveal that the mayfly makes a transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Time-resolved PIV measurements within the inter-gill space reveal the basic elements of the flow consist of vortex rings generated by the strokes of the individual gills. For the larger Re case, the phasing of the plate motion generates a complex array of small vortices that interact to produce an intermittent dorsally directed jet. For Re<5, distinct vortices are still observed, but increased diffusion creates vortices that simultaneously envelope several gills, forcing a new flow pattern to emerge and preventing the effective use of the high Re stroke kinematics. Thus we argue the transition in the kinematics is a reflection of a single mechanism adapted over the traversed Re range, rather than a shift to a completely new mechanism. This work is supported by the NSF under grant CBET-0730907.

  10. Comparing performance of three oscillating positive expiratory pressure devices at similar amplitude and frequencies of oscillations on displacement of mucus inside trachea during cough.

    PubMed

    Ragavan, Anpalaki J

    2012-03-13

    generate high amplitude oscillations at moderate frequencies, increasing frontal depths of mucus facing airflow and slightly increasing resistance to airflow in airways in COPD patients.

  11. [Ca2+]i oscillations in ASM: relationship with persistent airflow obstruction in asthma.

    PubMed

    Sweeney, David; Hollins, Fay; Gomez, Edith; Saunders, Ruth; Challiss, R A John; Brightling, Christopher E

    2014-07-01

    The cause of airway smooth muscle (ASM) hypercontractility in asthma is not fully understood. The relationship of spontaneous intracellular calcium oscillation frequency in ASM to asthma severity was investigated. Oscillations were increased in subjects with impaired lung function abolished by extracellular calcium removal, attenuated by caffeine and unaffected by verapamil or nitrendipine. Whether modulation of increased spontaneous intracellular calcium oscillations in ASM from patients with impaired lung function represents a therapeutic target warrants further investigation. © 2014 The Authors. Respirology published by Wiley Publishing Asia Pty Ltd on behalf of Asian Pacific Society of Respirology.

  12. In-depth survey report of American Airlines plating facility

    NASA Astrophysics Data System (ADS)

    Mortimer, V. D., Jr.

    1982-12-01

    An in depth survey was conducted at the American Airlines Maintenance and Engineering Center as part of National Institute for Occupational Safety and Health (NIOSH) study evaluating measures to control occupational health hazards associated with the metal plating industry. This American Airlines plating facility, employing approximately 25 workers, is primarily engaged in plating hard chromium, nickel and cadmium on aircraft engine and landing gear parts. Six tanks were studied, including an electroless nickel tank. Area and personal samples for chromium, nickel, cadmium, and cyanide were collected. Ventilation airflow and tank dimensions were measured and data recorded on plating operations. The relationships between air contaminants emitted, local exhaust ventilation flow rate, tank size, and plating activity were evaluated.

  13. A Prototype Flight-Deck Airflow Hazard Visualization System

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Airflow hazards such as turbulence, vortices, or low-level wind shear can pose a threat to landing aircraft and are especially dangerous to helicopters. Because pilots usually cannot see airflow, they may be unaware of the extent of the hazard. We have developed a prototype airflow hazard visual display for use in helicopter cockpits to alleviate this problem. We report on the results of a preliminary usability study of our airflow hazard visualization system in helicopter-shipboard operations.

  14. Demonstration of nonlinear effects in acoustic landmine experiments using a clamped-plate soil oscillator

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Bond, Emilia

    2005-09-01

    Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.

  15. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.

    PubMed

    Alsved, M; Civilis, A; Ekolind, P; Tammelin, A; Andersson, A Erichsen; Jakobsson, J; Svensson, T; Ramstorp, M; Sadrizadeh, S; Larsson, P-A; Bohgard, M; Šantl-Temkiv, T; Löndahl, J

    2018-02-01

    To evaluate three types of ventilation systems for operating rooms with respect to air cleanliness [in colony-forming units (cfu/m 3 )], energy consumption and comfort of working environment (noise and draught) as reported by surgical team members. Two commonly used ventilation systems, vertical laminar airflow (LAF) and turbulent mixed airflow (TMA), were compared with a newly developed ventilation technique, temperature-controlled airflow (T c AF). The cfu concentrations were measured at three locations in an operating room during 45 orthopaedic procedures: close to the wound (<40cm), at the instrument table and peripherally in the room. The operating team evaluated the comfort of the working environment by answering a questionnaire. LAF and T c AF, but not TMA, resulted in less than 10cfu/m 3 at all measurement locations in the room during surgery. Median values of cfu/m 3 close to the wound (250 samples) were 0 for LAF, 1 for T c AF and 10 for TMA. Peripherally in the room, the cfu concentrations were lowest for T c AF. The cfu concentrations did not scale proportionally with airflow rates. Compared with LAF, the power consumption of T c AF was 28% lower and there was significantly less disturbance from noise and draught. T c AF and LAF remove bacteria more efficiently from the air than TMA, especially close to the wound and at the instrument table. Like LAF, the new T c AF ventilation system maintained very low levels of cfu in the air, but T c AF used substantially less energy and provided a more comfortable working environment than LAF. This enables energy savings with preserved air quality. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Nonlinear piezoelectric devices for broadband air-flow energy harvesting

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Havránek, Z.; Tofel, P.; Meggs, C.; Hughes, H.; Button, T. W.

    2015-11-01

    This paper presents preliminary work on an investigation of a nonlinear air-flow energy harvester integrating magnets and a piezoelectric cantilever array. Two individual piezoelectric cantilevers with the structure of free-standing multi-layer thick-films have been fabricated and assembled with a free-spinning fan. The cantilevers were attached with different tip masses thereby achieving separated resonant frequencies. Also, permanent magnets were fixed onto the blades of the fan as well as the tips of the cantilevers, in order to create nonlinear coupling and transfer fluidic movement into mechanical oscillation. The device has been tested in a wind tunnel. Bifurcations in the spectra of the blade rotation speed of the fan as a function of output voltage have been observed, and a bandwidth (blade rotation speed range) widening effect has been achieved.

  17. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  18. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  19. Effects of Forced Air Warming on Airflow around the Operating Table.

    PubMed

    Shirozu, Kazuhiro; Kai, Tetsuya; Setoguchi, Hidekazu; Ayagaki, Nobuyasu; Hoka, Sumio

    2018-01-01

    Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.

  20. Transitions in low Re pumping by oscillating plate arrays of mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Kiger, Ken; Sensenig, Andrew; Shultz, Jeffrey

    2008-11-01

    Mayfly nymphs are aquatic insects which alter behavior and metabolism to accommodate changes in ambient dissolved oxygen. Many species can generate a ventilation current to compensate for low oxygen levels by beating two linear arrays of plate-like gills that line the lateral edge of the abdomen. The oscillation Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontological changes in pumping mechanisms associated with transitions from a viscous- to inertia-dominated flow. Observation of the detailed 3-D kinematics of the gill motion of the species Centroptilum triangulifer reveal that the mayfly makes a marked transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Results of the time-resolved flow within the inter-gill space shows that for Re>12 the plate motion generates a complex array of bound and shed vortices, which interact to produce an intermittent dorsally directed jet. For the Re<5, distinct bound vortices are still observed, but increased diffusive effects creates vortices which simultaneously envelope several gills, forcing a new flow pattern to emerge. Details of the flow mechanism and its implications will be discussed. This work is supported by NSF under grant CBET-0730907.

  1. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  2. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  3. Experimental Investigation of the Induced Airflow of Corona Discharge

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, Xin; Wang, Xun-Nian; Wang, Wan-Bo; Huang, Zong-Bo; Li, Hua-Xing

    2013-09-01

    In order to improve the acceleration effect of corona discharge acting on air, we present an experimental study on the induced airflow produced by corona discharge between two parallel electrodes. The parameters investigated are the type of electrodes, actuation voltage and the distance in the absence of free airflow. The induced flow velocity is measured directly in the accelerated region using the particle image velocimetry technology. The results show that if corona discharge is not developed into arc discharge, the induced airflow velocity increases nearly linearly with the applied voltage and the maximum induced airflow velocity near the needle electrode reaches 36 m/s. It is expected that in the future, the result can be referred to in the research about effect of active flow control to reach much higher induced airflow speed.

  4. Laser irradiation effects on thin aluminum plates subjected to surface flow

    NASA Astrophysics Data System (ADS)

    Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin

    2016-10-01

    The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.

  5. Contamination control in HVAC systems for aseptic processing area. Part I: Case study of the airflow velocity in a unidirectional airflow workstation with computational fluid dynamics.

    PubMed

    Ogawa, M

    2000-01-01

    A unidirectional airflow workstation for processing a sterile pharmaceutical product is required to be "Grade A," according to EU-GMP and WHO-GMP. These regulations have employed the wording of "laminar airflow" for unidirectional airflow, with an unclear definition given. This seems to have allowed many reports to describe discussion of airflow velocity only. The guidance values as to the velocity are expressed in various words of 90 ft/min, 0.45 m/sec, 0.3 m/sec, +/- 20%, or "homogeneous air speed." It has been also little clarified how variation in airflow velocity gives influences on contamination control of a workstation working with varying key characteristics, such as ceiling height, internal heat load, internal particle generation, etc. The present author has revealed following points from a case study using Computational Fluid Dynamics: the airflow characteristic in Grade A area shows no significant changes with varying the velocity of supplied airflow, and the particles generated from the operator will be exhausted outside Grade A area without contamination.

  6. Review on airflow in unsaturated zones induced by natural forcings

    NASA Astrophysics Data System (ADS)

    Kuang, Xingxing; Jiao, Jiu Jimmy; Li, Hailong

    2013-10-01

    Subsurface airflow in unsaturated zones induced by natural forcings is of importance in many environmental and engineering fields, such as environmental remediation, water infiltration and groundwater recharge, coastal soil aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere. This review synthesizes the published literature on subsurface airflow driven by natural forcings such as atmospheric pressure fluctuations, topographic effect, water table fluctuations, and water infiltration. The present state of knowledge concerning the mechanisms, analytical and numerical models, and environmental and engineering applications related to the naturally occurring airflow is discussed. Airflow induced by atmospheric pressure fluctuations is studied the most because of the applications to environmental remediation and transport of trace gases from soil to atmosphere, which are very important in understanding biogeochemical cycling and global change. Airflow induced by infiltration is also an extensively investigated topic because of its implications in rainfall infiltration and groundwater recharge. Airflow induced by water table fluctuations is important in coastal areas because it plays an important role in coastal environmental remediation and ecological systems. Airflow induced by topographic effect is studied the least. However, it has important applications in unsaturated zone gas transport and natural ventilation of mines and tunnels. Finally, the similarities and differences in the characteristics of the air pressure and airflow are compared and future research efforts are recommended.

  7. Scanning LDV for vibration measurement of filiform hairs in crickets in response to induced airflow

    NASA Astrophysics Data System (ADS)

    Santulli, C.; Finn, T. J.; Seidel, R.; Jeronimidis, G.

    2006-06-01

    Cercal hairs represent in cricket a wind sensitive escape system, able to detect the airflow generated from predating species. These sensors have been studied as a biomimetic concept to allow the development of MEMS for biomedical use. In particular, the behaviour of the hairs, including airflow response, resonant frequency and damping, has been investigated up to a frequency of 20 kHz. The microscopic nature of the hairs, the complex vibrations of excited hairs and the high damping of the system suggested that the use of Laser Doppler vibrometry could possibly improve the test performance. Two types of tests were performed: in the first case the hairs were indirectly excited using the signal obtained from a vibrating aluminium plate, whilst in the second case the hairs were directly excited using a white noise chirp. The results from the first experiment indicated that the hairs move in-phase with the exciting signal up to frequencies in the order of 10 kHz, responding to the vibration modes of the plate with a signal attenuation of 12 to 20 dB. The chirp experiment revealed the presence of rotational resonant modes at 6850 and 11300 Hz. No clear effect of hair length was perceivable on the vibration response of the filiform sensors. The obtained results proved promising to support the mechanical and vibration characterisation of the hairs and suggest that scanning Laser vibrometry can be used extensively on highly dampened biological materials.

  8. Monitoring minimization of grade B environments based on risk assessment using three-dimensional airflow measurements and computer simulation.

    PubMed

    Katayama, Hirohito; Higo, Takashi; Tokunaga, Yuji; Katoh, Shigeo; Hiyama, Yukio; Morikawa, Kaoru

    2008-01-01

    A practical, risk-based monitoring approach using the combined data collected from actual experiments and computer simulations was developed for the qualification of an EU GMP Annex 1 Grade B, ISO Class 7 area. This approach can locate and minimize the representative number of sampling points used for microbial contamination risk assessment. We conducted a case study on an aseptic clean room, newly constructed and specifically designed for the use of a restricted access barrier system (RABS). Hotspots were located using three-dimensional airflow analysis based on a previously published empirical measurement method, the three-dimensional airflow analysis. Local mean age of air (LMAA) values were calculated based on computer simulations. Comparable results were found using actual measurements and simulations, demonstrating the potential usefulness of such tools in estimating contamination risks based on the airflow characteristics of a clean room. Intensive microbial monitoring and particle monitoring at the Grade B environmental qualification stage, as well as three-dimensional airflow analysis, were also conducted to reveal contamination hotspots. We found representative hotspots were located at perforated panels covering the air exhausts where the major piston airflows collect in the Grade B room, as well as at any locations within the room that were identified as having stagnant air. However, we also found that the floor surface air around the exit airway of the RABS EU GMP Annex 1 Grade A, ISO Class 5 area was always remarkably clean, possibly due to the immediate sweep of the piston airflow, which prevents dispersed human microbes from falling in a Stokes-type manner on settling plates placed on the floor around the Grade A exit airway. In addition, this airflow is expected to be clean with a significantly low LMAA. Based on these observed results, we propose a simplified daily monitoring program to monitor microbial contamination in Grade B environments. To

  9. Flow separation in a computational oscillating vocal fold model

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Scherer, Ronald C.

    2004-09-01

    A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be ``delayed'' during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.

  10. Pitot-tube flowmeter for quantification of airflow during sleep.

    PubMed

    Kirkness, J P; Verma, M; McGinley, B M; Erlacher, M; Schwartz, A R; Smith, P L; Wheatley, J R; Patil, S P; Amis, T C; Schneider, H

    2011-02-01

    The gold-standard pneumotachograph is not routinely used to quantify airflow during overnight polysomnography due to the size, weight, bulkiness and discomfort of the equipment that must be worn. To overcome these deficiencies that have precluded the use of a pneumotachograph in routine sleep studies, our group developed a lightweight, low dead space 'pitot flowmeter' (based on pitot-tube principle) for use during sleep. We aimed to examine the characteristics and validate the flowmeter for quantifying airflow and detecting hypopneas during polysomnography by performing a head-to-head comparison with a pneumotachograph. Four experimental paradigms were utilized to determine the technical performance characteristics and the clinical usefulness of the pitot flowmeter in a head-to-head comparison with a pneumotachograph. In each study (1-4), the pitot flowmeter was connected in series with a pneumotachograph under either static flow (flow generator inline or on a face model) or dynamic flow (subject breathing via a polyester face model or on a nasal mask) conditions. The technical characteristics of the pitot flowmeter showed that, (1) the airflow resistance ranged from 0.065 ± 0.002 to 0.279 ± 0.004 cm H(2)O L(-1) s(-1) over the airflow rates of 10 to 50 L min(-1). (2) On the polyester face model there was a linear relationship between airflow as measured by the pitot flowmeter output voltage and the calibrated pneumotachograph signal a (β(1) = 1.08 V L(-1) s(-1); β(0) = 2.45 V). The clinically relevant performance characteristics (hypopnea detection) showed that (3) when the pitot flowmeter was connected via a mask to the human face model, both the sensitivity and specificity for detecting a 50% decrease in peak-to-peak airflow amplitude was 99.2%. When tested in sleeping human subjects, (4) the pitot flowmeter signal displayed 94.5% sensitivity and 91.5% specificity for the detection of 50% peak-to-peak reductions in pneumotachograph-measured airflow. Our data

  11. Change in airflow among patients with asthma discussing relationship problems with their partners.

    PubMed

    Schmaling, Karen B; Afari, Niloofar; Hops, Hyman; Barnhart, Scott; Buchwald, Dedra

    2009-09-01

    This study examined the covariation of negative emotions with airflow among 48 persons with asthma and their partners as they discussed relationship problems. Measures included self-reported questionnaires, airflow and behavior coded from videotaped discussions. Significantly increased self-reported hostility and statistically but not clinically significant declines in airflow were found post- versus pre-discussion. Self-reported responses to asthma symptoms of more anger and less loneliness predicted lower post-discussion airflow after accounting for pre-discussion airflow. The use of effort-independent measures of airflow and autonomic nervous system monitoring may inform future research regarding the physiological mechanisms through which mood and behavior affect airflow.

  12. Airflow obstruction, atherosclerosis and cardiovascular risk factors in the AGES Reykjavik study.

    PubMed

    Gudmundsson, Gunnar; Margretardottir, Olof Birna; Sigurdsson, Martin Ingi; Harris, Tamara B; Launer, Lenore J; Sigurdsson, Sigurdur; Olafsson, Orn; Aspelund, Thor; Gudnason, Vilmundur

    2016-09-01

    Airflow limitation, i.e. reduced forced expiratory volume in 1-s (FEV1), is associated with increased prevalence of atherosclerosis, however, causal mechanisms remain elusive. The objective of the study was to determine if the association between airflow obstruction and markers of atherosclerosis is mediated by systemic inflammation. 1154 subjects from the longitudinal AGES Reykjavik study were included. Population characteristics, systemic inflammation markers from blood (white blood cell counts (WBC) and level of C-reactive protein (CRP)) were compared between patients with and without airflow limitation defined by reduced FEV1 on spirometry. Atherosclerosis burden was quantified by measurements of coronary artery calcium, aortic arch and distal aortic calcification in addition to carotid intimal media thickness (CIMT). Subjects were split into four groups according to smoking status and whether airflow limitation was present. There was a higher overall burden of atherosclerosis in ever-smokers compared to never-smokers, and in individuals with airflow obstruction compared to individuals without airflow obstruction. After adjusting for population characteristics, Framingham cardiovascular risk factors and markers of systemic inflammation (WBC and CRP), there was a significantly increased aortic arch and distal aorta calcification and higher CIMT measurement in individuals with airflow obstruction compared to individuals without airflow obstruction. After adjusting for population characteristics, Framingham cardiovascular risk factors and markers of systemic inflammation (WBC and CRP), there was a significantly increased aortic arch and distal aorta calcification and higher CIMT measurement in individuals with airflow obstruction compared to individuals without airflow obstruction. Systemic inflammation (WBC and CRP) does not appear to mediate the association between airflow limitation and atherosclerosis. Only airflow limitation and not systemic inflammation (WBC

  13. Closed Form Solutions for Unsteady Free Convection Flow of a Second Grade Fluid over an Oscillating Vertical Plate

    PubMed Central

    Ali, Farhad; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions. PMID:24551033

  14. New CFD tools to evaluate nasal airflow.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Del Pino, C; Sevilla-García, M A; Esteban-Ortega, F

    2017-08-01

    Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. As currently CFD is not a usual tool for rhinologists, a group of engineers in collaboration with experts in Rhinology have developed a very intuitive CFD software. The program MECOMLAND ® only required snapshots from the patient's cross-sectional (tomographic) images, being the output those results originated by CFD, such as airflow distributions, velocity profiles, pressure, temperature, or wall shear stress. This is useful complementary information to cover diagnosis, prognosis, or follow-up of nasal pathologies based on quantitative magnitudes linked to airflow. In addition, the user-friendly environment NOSELAND ® helps the medical assessment significantly in the post-processing phase with dynamic reports using a 3D endoscopic view. Specialists in Rhinology have been asked for a more intuitive, simple, powerful CFD software to offer more quality and precision in their work to evaluate the nasal airflow. We present MECOMLAND ® and NOSELAND ® which have all the expected characteristics to fulfil this demand and offer a proper assessment with the maximum of quality plus safety for the patient. These programs represent a non-invasive, low-cost (as the CT scan is already performed in every patient) alternative for the functional study of the difficult rhinologic case. To validate the software, we studied two groups of patients from the Ear Nose Throat clinic, a first group with normal noses and a second group presenting septal deviations. Wall shear stresses are lower in the cases of normal noses in comparison with those for septal deviation. Besides, velocity field distributions, pressure drop between nasopharynx and the ambient, and flow rates in each nostril were different among the nasal cavities in the two groups. These software modules open up a promising future to simulate the nasal airflow behaviour in virtual surgery intervention scenarios under different pressure or

  15. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  16. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control

    NASA Astrophysics Data System (ADS)

    Lucero, Jorge C.; Koenig, Laura L.

    2005-03-01

    In this study we use a low-dimensional laryngeal model to reproduce temporal variations in oral airflow produced by speakers in the vicinity of an abduction gesture. It attempts to characterize these temporal patterns in terms of biomechanical parameters such as glottal area, vocal fold stiffness, subglottal pressure, and gender differences in laryngeal dimensions. A two-mass model of the vocal folds coupled to a two-tube approximation of the vocal tract is fitted to oral airflow records measured in men and women during the production of /aha/ utterances, using the subglottal pressure, glottal width, and Q factor as control parameters. The results show that the model is capable of reproducing the airflow records with good approximation. A nonlinear damping characteristics is needed, to reproduce the flow variation at glottal abduction. Devoicing is achieved by the combined action of vocal fold abduction, the decrease of subglottal pressure, and the increase of vocal fold tension. In general, the female larynx has a more restricted region of vocal fold oscillation than the male one. This would explain the more frequent devoicing in glottal abduction-adduction gestures for /h/ in running speech by women, compared to men. .

  17. Airflow attenuation and bed net utilization: observations from Africa and Asia.

    PubMed

    von Seidlein, Lorenz; Ikonomidis, Konstantin; Bruun, Rasmus; Jawara, Musa; Pinder, Margaret; Knols, Bart Gj; Knudsen, Jakob B

    2012-06-15

    Qualitative studies suggest that bed nets affect the thermal comfort of users. To understand and reduce this discomfort the effect of bed nets on temperature, humidity, and airflow was measured in rural homes in Asia and Africa, as well as in an experimental wind tunnel. Two investigators with architectural training selected 60 houses in The Gambia, Tanzania, Philippines, and Thailand. Data-loggers were used to measure indoor temperatures in hourly intervals over a 12 months period. In a subgroup of 20 houses airflow, temperature and humidity were measured at five-minute intervals for one night from 21.00 to 6.00 hrs inside and outside of bed nets using sensors and omni-directional thermo-anemometers. An investigator set up a bed net with a mesh size of 220 holes per inch 2 in each study household and slept under the bed net to simulate a realistic environment. The attenuation of airflow caused by bed nets of different mesh sizes was also measured in an experimental wind tunnel. The highest indoor temperatures (49.0 C) were measured in The Gambia. During the hottest months of the year the mean temperature at night (9 pm) was between 33.1 C (The Gambia) and 26.2 C (Thailand). The bed net attenuated the airflow from a minimum of 27% (Philippines) to a maximum of 71% (The Gambia). Overall the bed nets reduced airflow compared to un-attenuated airflow from 9 to 4 cm sec-1 or 52% (p<0.001). In all sites, no statistically significant difference in temperature or humidity was detected between the inside and outside of the bed net. Wind tunnel experiments with 11 different mesh-sized bed nets showed an overall reduction in airflow of 64% (range 55 - 71%) compared to un-attenuated airflow. As expected, airflow decreased with increasing net mesh size. Nets with a mesh of 136 holes inch-2 reduced airflow by 55% (mean; range 51 - 73%). A denser net (200 holes inch-2) attenuated airflow by 59% (mean; range 56 - 74%). Despite concerted efforts to increase the uptake of this

  18. Experimental study on the resonance frequencies of a cantilevered plate in air flow

    NASA Astrophysics Data System (ADS)

    Cros, Anne; Arellano Castro, Rocío F.

    2016-02-01

    The present experimental work focuses on the resonances exhibited by a cantilevered plate immersed in airflow. The flexible plate is clamped at its leading edge and submitted to a small, lateral harmonic displacement. Throughout this work, our two control parameters are the forcing frequency and the air velocity. We determine experimentally the evolution of the first three resonant frequencies as air velocity is increased. Our results are in agreement with the Eloy et al. (2007) [1] and Michelin and Llewellyn-Smith (2009) [2] linear theoretical predictions.

  19. Minimum airflow reset of single-duct VAV terminal boxes

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  20. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Design and Implementation of a Portable Forced Oscillation Respiration Resistance Detector].

    PubMed

    Zhou, Chuiliu; Wan, Wu; Xie, Liansheng; Zeng, Bixin

    2016-10-01

    This paper proposes a forced oscillation respiration resistance detector which has the characteristics of portable and friendly interface,with remote transmission function.STM32 is used to produce single frequency or complex frequency oscillation signal.In the experiments,the signal was magnified by the power amplifier to drive speaker to generate oscillates airflow into the subject’s oral cavity.The analog to digital coverter of STM32 was used to measure the signals obtained by the pressure sensor and the flow sensor,and then the operation parameters were to be displayed on the TFT-LCD touch screen,and could also be transferred to the master computer.Simulated lung and volunteerism were used to verify the reliability of the detector.The test results showed that the system was reliable,and it achieved the significance in respiratory impedance detecting.

  2. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  3. Reducing airflow energy use in multiple zone vav systems

    NASA Astrophysics Data System (ADS)

    Tukur, Ahmed Gidado

    Variable Air Volume (VAV) systems are the most popular HVAC systems in commercial buildings. VAV systems are designed to deliver airflows at design conditions which only occur for a few hours in a year. Minimizing energy use in VAV systems requires reducing the amount of airflow delivered through the system at part load conditions. Air Handling Unit (AHU) fans are the major drivers of airflow in VAV systems and installing a Variable Frequency Drive (VFD) is the most common method of regulating airflow in VAV systems. A VFD drive does not necessarily save energy without use of an appropriate control strategy. Static pressure reset (SPR) is considered to be the most energy efficient control strategy for AHU fans with VFDs installed. The implementation of SPR however has many challenges; for example, rogue zones--zones which have faulty sensors or failed controls and actuators, system dynamics like hunting and system diversity. By investigating the parameters associated with the implementation of SPR in VAV systems, a new, improved, more stable SPR algorithm was developed and validated. This approach was further improved using Fault Detection and Diagnostics (FDD) to eliminate rogue zones. Additionally, a CO2-Demand Control Ventilation (DCV) based minimum airflow control was used to further reduce ventilation airflow and save more energy from SPR. Energy savings ranging from 25% to 51% were recorded in actual buildings with the new SPR algorithm. Finally, a methodology that utilizes historical VAV data was developed to estimate the potential savings that could be realized using SPR. The approach employed first determines an effective system loss coefficient as a function of mean damper position using the historical duct static pressure, VAV damper positions and airflows. Additionally, the historical data is used to identify the maximum mean duct damper position realizable as a result of insuring a sufficient number of VAVs are fully open at any time. Savings are

  4. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-12-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  5. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  6. Unidirectional pulmonary airflow patterns in the savannah monitor lizard.

    PubMed

    Schachner, Emma R; Cieri, Robert L; Butler, James P; Farmer, C G

    2014-02-20

    The unidirectional airflow patterns in the lungs of birds have long been considered a unique and specialized trait associated with the oxygen demands of flying, their endothermic metabolism and unusual pulmonary architecture. However, the discovery of similar flow patterns in the lungs of crocodilians indicates that this character is probably ancestral for all archosaurs--the group that includes extant birds and crocodilians as well as their extinct relatives, such as pterosaurs and dinosaurs. Unidirectional flow in birds results from aerodynamic valves, rather than from sphincters or other physical mechanisms, and similar aerodynamic valves seem to be present in crocodilians. The anatomical and developmental similarities in the primary and secondary bronchi of birds and crocodilians suggest that these structures and airflow patterns may be homologous. The origin of this pattern is at least as old as the split between crocodilians and birds, which occurred in the Triassic period. Alternatively, this pattern of flow may be even older; this hypothesis can be tested by investigating patterns of airflow in members of the outgroup to birds and crocodilians, the Lepidosauromorpha (tuatara, lizards and snakes). Here we demonstrate region-specific unidirectional airflow in the lungs of the savannah monitor lizard (Varanus exanthematicus). The presence of unidirectional flow in the lungs of V. exanthematicus thus gives rise to two possible evolutionary scenarios: either unidirectional airflow evolved independently in archosaurs and monitor lizards, or these flow patterns are homologous in archosaurs and V. exanthematicus, having evolved only once in ancestral diapsids (the clade encompassing snakes, lizards, crocodilians and birds). If unidirectional airflow is plesiomorphic for Diapsida, this respiratory character can be reconstructed for extinct diapsids, and evolved in a small ectothermic tetrapod during the Palaeozoic era at least a hundred million years before the

  7. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  8. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    NASA Astrophysics Data System (ADS)

    Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav

    2016-03-01

    Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  9. MICROPROCESSOR CONTROL OF ROTOGRAVURE AIRFLOWS

    EPA Science Inventory

    The report discusses the technical and economic viability of using micro-processor-based control technology to collect volatile organic compound (VOC) emissions from a paper coating operation. The microprocessor-based control system monitors and controls both the airflow rate and...

  10. The Measurement of Airflow Using Singing Helmet That Allows Free Movement of the Jaw.

    PubMed

    Jiang, Jack J; Hanna, Rewais B; Willey, Malachi V; Rieves, Adam

    2016-11-01

    Airflow measurement is a useful method of evaluating laryngeal physiology. We introduce a noninvasive device that measures airflow without restricting jaw movement or requiring phonation into a mouthpiece, thus facilitating measurement during singing and connected speech. Validation and human subject trials were conducted. Airflow measurements were obtained from 16 male and 16 female subjects during singing, speech, and constant vowel production tasks. A similar helmet was designed by Stevens and Mead in 1968. The new device validity was evaluated by comparing the measured volume of air to a known volume of administered air using a calibration syringe. Subjects were asked to voice sustained vowels at low, medium, and high vocal intensity, read two sentences at a conversational volume, and perform different singing exercises while airflow was recorded. The device accurately and reliably measured airflow with mean airflow values falling within previously published ranges. There was an experimentally determined response time of 0.173 ± 0.014 seconds. Subjects were able to comfortably perform speech and singing exercises. Male subjects had higher airflow for all sustained vowels (P < 0.05). Airflow was higher for abduction rather than adduction sentences (P < 0.05). No other portable device has been shown to measure airflow during singing and speech while allowing for free movement of the jaw. This device provides a more natural environment to measure airflow that could be used to help evaluate laryngeal function and aid in singing training. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Airflow accelerates bovine and human articular cartilage drying and chondrocyte death.

    PubMed

    Paterson, S I; Amin, A K; Hall, A C

    2015-02-01

    Exposure of articular cartilage to static air results in changes to the extracellular matrix (ECM) and stimulates chondrocyte death, which may cause joint degeneration. However during open orthopaedic surgery, cartilage is often exposed to laminar airflow, which may exacerbate these damaging effects. We compared drying in static and moving air in terms of cartilage appearance, hydration and chondrocyte viability, and tested the ability of saline-saturated gauze to limit the detrimental effects of air exposure. Articular cartilage from bovine metatarsophalangeal joints (N = 50) and human femoral heads (N = 6) was exposed for 90 min to (1) static air (2) airflow (up to 0.34 m/s), or (3) airflow (0.18 m/s), covered with gauze. Following air exposure, cartilage was also rehydrated (0.9% saline; 120 min) to determine the reversibility of drying effects. The influence of airflow was assessed by studying macroscopic appearance, and quantifying superficial zone (SZ) chondrocyte viability and cartilage hydration. Airflow caused advanced changes to cartilage appearance, accelerated chondrocyte death, and increased dehydration compared to static air. These effects were prevented if cartilage was covered by saline-saturated gauze. Cartilage rehydration reversed macroscopic changes associated with drying but the chondrocyte death was not altered. Chondrocytes at the cut edge of cartilage were more sensitive to drying compared to cells distant from the edge. Airflow significantly increased articular cartilage dehydration and chondrocyte death compared to static air. As laminar airflow is routinely utilised in operating theatres, it is essential that articular cartilage is kept wet via irrigation or by covering with saline-saturated gauze to prevent chondrocyte death. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Measurement of Turbine Engine Transient Airflow in Ground Test Facilities

    DTIC Science & Technology

    1980-08-01

    REPORT NUMBER 12 GOVT ACCESSION NO. A E D C - T R - 8 0 - 2 1 L 6. T I T L E (aqd Subl l l |e ) MEASUREMENT OF TURBINE ENGINE TRANSIENT AIRFLOW IN...21 ILLUSTRATIONS Figure !. Direct-Connect Turbine Engine Test Cell Installation...26 3. Turbine Engine Transient Airflow Simulator (TETAS) . . . . . . . . . . . . . . . . . . . . . . . . . 27 4

  13. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  14. The Oscillating Circular Airfoil on the Basis of Potential Theory

    NASA Technical Reports Server (NTRS)

    Schade, T.; Krienes, K.

    1947-01-01

    Proceeding from the thesis by W. Kinner the present report treats the problem of the circular airfoil in uniform airflow executing small oscillations, the amplitudes of which correspond to whole functions of the second degree in x and y. The pressure distribution is secured by means of Prandtl's acceleration potential. It results in a system of linear equations the coefficients of which can be calculated exactly with the aid of exponential functions and Hankel's functions. The equations necessary are derived in part I; the numerical calculation follows in part II.

  15. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  16. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  17. Computer simulation of airflow through a multi-generation tracheobronchial conducting airway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, B.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Knowledge of airflow patterns in the human lung is important for an analysis of lung diseases and drug delivery of aerosolized medicine for medical treatment. However, very little systematic information is available on the pattern of airflow in the lung and on how this pattern affects the deposition of toxicants in the lung, and the efficacy of aerosol drug therapy. Most previous studies have only considered the airflow through a single bifurcating airway. However, the flow in a network of more than one bifurcation is more complicated due to the effect of interrelated lung generations. Because of the variation ofmore » airway geometry and flow condition from generation to generation, a single bifurcating airway cannot be taken as a representative for the others in different generations. The flow in the network varies significantly with airway generations because of a redistribution of axial momentum by the secondary flow motions. The influence of the redistribution of flow is expected in every generation. Therefore, a systematic information of the airflow through a multi-generation tracheobronchial conducting airway is needed, and it becomes the purpose of this study. This study has provided information on airflow in a lung model which is necessary to the study of the deposition of toxicants and therapeutic aerosols.« less

  18. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  19. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  20. Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.

  1. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    NASA Astrophysics Data System (ADS)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  2. Measured Performance of a Varied Airflow Small-Diameter Duct System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew

    2017-03-01

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measuremore » of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.« less

  3. Measured Performance of a Varied Airflow Small-Diameter Duct System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measuremore » of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.« less

  4. A study of kinetic friction: The Timoshenko oscillator

    NASA Astrophysics Data System (ADS)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  5. Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI

    PubMed Central

    Collier, Guilhem J.; Marshall, Helen; Rao, Madhwesha; Stewart, Neil J.; Capener, David

    2015-01-01

    Recently, dynamic MRI of hyperpolarized 3He during inhalation revealed an alternation of the image intensity between left and right lungs with a cardiac origin (Sun Y, Butler JP, Ferrigno M, Albert MS, Loring SH. Respir Physiol Neurobiol 185: 468–471, 2013). This effect is investigated further using dynamic and phase-contrast flow MRI with inhaled 3He during slow inhalations (flow rate ∼100 ml/s) to elucidate airflow dynamics in the main lobes in six healthy subjects. The ventilation MR signal and gas inflow in the left lower lobe (LLL) of the lungs were found to oscillate clearly at the cardiac frequency in all subjects, whereas the MR signals in the other parts of the lungs had a similar oscillatory behavior but were smaller in magnitude and in anti-phase to the signal in the left lower lung. The airflow in the main bronchi showed periodic oscillations at the frequency of the cardiac cycle. In four of the subjects, backflows were observed for a short period of time of the cardiac cycle, demonstrating a pendelluft effect at the carina bifurcation between the left and right lungs. Additional 1H structural MR images of the lung volume and synchronized ECG recording revealed that maximum inspiratory flow rates in the LLL of the lungs occurred during systole when the corresponding left lung volume increased, whereas the opposite effect was observed during diastole, with gas flow redirected to the other parts of the lung. In conclusion, cardiogenic flow oscillations have a significant effect on regional gas flow and distribution within the lungs. PMID:26338461

  6. Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI.

    PubMed

    Collier, Guilhem J; Marshall, Helen; Rao, Madhwesha; Stewart, Neil J; Capener, David; Wild, Jim M

    2015-11-01

    Recently, dynamic MRI of hyperpolarized (3)He during inhalation revealed an alternation of the image intensity between left and right lungs with a cardiac origin (Sun Y, Butler JP, Ferrigno M, Albert MS, Loring SH. Respir Physiol Neurobiol 185: 468-471, 2013). This effect is investigated further using dynamic and phase-contrast flow MRI with inhaled (3)He during slow inhalations (flow rate ∼100 ml/s) to elucidate airflow dynamics in the main lobes in six healthy subjects. The ventilation MR signal and gas inflow in the left lower lobe (LLL) of the lungs were found to oscillate clearly at the cardiac frequency in all subjects, whereas the MR signals in the other parts of the lungs had a similar oscillatory behavior but were smaller in magnitude and in anti-phase to the signal in the left lower lung. The airflow in the main bronchi showed periodic oscillations at the frequency of the cardiac cycle. In four of the subjects, backflows were observed for a short period of time of the cardiac cycle, demonstrating a pendelluft effect at the carina bifurcation between the left and right lungs. Additional (1)H structural MR images of the lung volume and synchronized ECG recording revealed that maximum inspiratory flow rates in the LLL of the lungs occurred during systole when the corresponding left lung volume increased, whereas the opposite effect was observed during diastole, with gas flow redirected to the other parts of the lung. In conclusion, cardiogenic flow oscillations have a significant effect on regional gas flow and distribution within the lungs. Copyright © 2015 the American Physiological Society.

  7. Separate and combined effects of airflow and rehydration during exercise in the heat.

    PubMed

    Mora-Rodriguez, Ricardo; Del Coso, Juan; Aguado-Jimenez, Roberto; Estevez, Emma

    2007-10-01

    To determine whether airflow is required to obtain the beneficial effects of rehydration (thermoregulatory and cardiovascular) during exercise in dry heat. Ten moderately trained (VO2max = 55 +/- 8 mL.kg(-1).min(-1)) heat acclimated males pedaled for 60 min at 60% VO2max in a hot-dry environment (36 +/- 1 degrees C; 29 +/- 2% relative humidity) on four different occasions: 1) without rehydration or forced airflow (control trial; CON); 2) rehydrating 100% of sweat losses by ingestion of a 6% carbohydrate-electrolyte solution (rehydration trial; REH); 3) receiving airflow at a velocity of 2.55 m.s(-1) (wind trial; WIND); and 4) combining airflow and rehydration (W + R). Without airflow, rehydration alone (REH) did not lower rectal temperature below CON (39.0 +/- 0.1 vs 39.1 +/- 0.1 degrees C at 60 min; respectively). However, with airflow, rehydration reduced final rectal temperature (38.8 +/- 0.1 vs 38.5 +/- 0.1 degrees C; P < 0.05; WIND vs W + R). In the trials with wind (WIND and W + R), skin temperature was reduced by about 0.6 degrees C (P < 0.05), and heart rate drift was prevented. In the trials with rehydration (REH and W + R trials), cardiac output (CO2-rebreathing technique) was maintained higher than CON (16.5 +/- 0.4 and 17.0 +/- 0.7 vs 15.4 +/- 0.4 L.min(-1), respectively; P < 0.05). When exercising in a hot-dry environment, airflow is required for rehydration to improve thermoregulation and cardiovascular function.

  8. Energy Harvesting from Human Motion Using Footstep-Induced Airflow

    NASA Astrophysics Data System (ADS)

    Fu, H.; Xu, R.; Seto, K.; Yeatman, E. M.; Kim, S. G.

    2015-12-01

    This paper presents an unobtrusive in-shoe energy harvester converting foot-strike energy into electricity to power wearable or portable devices. An air-pumped turbine system is developed to address the issues of the limited vertical deformation of shoes and the low frequency of human motion that impede harvesting energy from this source. The air pump is employed to convert the vertical foot-strike motion into airflow. The generated airflow passes through the miniaturized wind turbine whose transduction is realized by an electromagnetic generator. Energy is extracted from the generator with a higher frequency than that of footsteps, boosting the output power of the device. The turbine casing is specifically designed to enable the device to operate continuously with airflow in both directions. A prototype was fabricated and then tested under different situations. A 6 mW peak power output was obtained with a 4.9 Ω load. The achievable power from this design was estimated theoretically for understanding and further improvement.

  9. Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems

    NASA Astrophysics Data System (ADS)

    Pal, Debashis; Chakraborty, Suman

    2015-05-01

    We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave.

  10. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid

    2018-02-01

    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  11. Validity of peak expiratory flow measurement in assessing reversibility of airflow obstruction.

    PubMed Central

    Dekker, F W; Schrier, A C; Sterk, P J; Dijkman, J H

    1992-01-01

    BACKGROUND: Assessing the reversibility of airflow obstruction by peak expiratory (PEF) measurements would be practicable in general practice, but its usefulness has not been investigated. METHODS: PEF measurements were performed (miniWright peak flow meter) in 73 general practice patients (aged 40 to 84) with a history of asthma or chronic obstructive lung disease before and after 400 micrograms inhaled sulbutamol. The change in PEF was compared with the change in forced expiratory volume in one second (FEV1). Reversible airflow obstruction was analysed in two ways according to previous criteria. When defined as a 9% or greater increase in FEV1 expressed as a percentage of predicted values reversibility was observed in 42% of patients. Relative operating characteristic analysis showed that an absolute improvement in PEF of 60 l/min or more gave optimal discrimination between patients with reversible and irreversible airflow obstruction (the sensitivity and specificity of an increase of 60 l/min in detecting a 9% or more increase in FEV1 as a percentage of predicted values were 68% and 93% respectively, with a positive predictive value of 87%). When defined as an increase of 190 ml or more in FEV1, reversible airflow obstruction was observed in 53% of patients. Again an absolute improvement in PEF of 60 l/min or more gave optimal discrimination between patients with reversible and irreversible airflow obstruction (sensitivity 56%, specificity 94%, and positive predictive value 92%). CONCLUSION: Absolute changes in PEF can be used as a simple technique to diagnose reversible airflow obstruction in patients from general practice. PMID:1519192

  12. Relationships among smoking habits, airflow limitations, and metabolic abnormalities in school workers.

    PubMed

    Horie, Masafumi; Noguchi, Satoshi; Tanaka, Wakae; Goto, Yasushi; Yoshihara, Hisanao; Kawakami, Masaki; Suzuki, Masaru; Sakamoto, Yoshio

    2013-01-01

    Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality. We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities. Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥ 30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history. Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012-1.018; p<0.0001) and low high-density-lipoprotein cholesterolemia (1.013; 1.010-1.016; p<0.0001) in men. Length of smoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975-0.994; p = 0.007). Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities.

  13. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  14. Blade Sections in Streamwise Oscillations into Reverse Flow

    DTIC Science & Technology

    2015-05-07

    NC 27709-2211 Reverse Flow, Oscillating Airfoils , Oscillating Freesteam REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...plate or bluff body rather than an airfoil . Reverse flow operation requires investigation and quantification to accurately capture these Submitted for... airfoil integrated quantities (lift, drag, moment) in reverse flow and developed new algorithms for comprehensive codes, reducing errors from 30 %–50

  15. Data Visualization of Invisible Airflow Hazards During Helicopter Takeoff and Landing Operations

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground such as vortices, downdrafts, wind shear, microbursts, or other turbulence. While such hazards frequently pose problems to fixed-wing airplanes, they are especially dangerous to helicopters, which often have to operate in confined spaces and under operationally stressful conditions. We are developing flight-deck visualizations of airflow hazards during helicopter takeoff and landing operations, and are evaluating their effectiveness with usability studies. Our hope is.that this work will lead to the production of an airflow hazard detection system for pilots that will save lives.

  16. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results.

    PubMed

    Amaral, André F S; Coton, Sonia; Kato, Bernet; Tan, Wan C; Studnicka, Michael; Janson, Christer; Gislason, Thorarinn; Mannino, David; Bateman, Eric D; Buist, Sonia; Burney, Peter G J

    2015-10-01

    In small studies and cases series, a history of tuberculosis has been associated with both airflow obstruction, which is characteristic of chronic obstructive pulmonary disease, and restrictive patterns on spirometry. The objective of the present study was to assess the association between a history of tuberculosis and airflow obstruction and spirometric abnormalities in adults.The study was performed in adults, aged 40 years and above, who took part in the multicentre, cross-sectional, general population-based Burden of Obstructive Lung Disease study, and had provided acceptable post-bronchodilator spirometry measurements and information on a history of tuberculosis. The associations between a history of tuberculosis and airflow obstruction and spirometric restriction were assessed within each participating centre, and estimates combined using meta-analysis. These estimates were stratified by high- and low/middle-income countries, according to gross national income.A self-reported history of tuberculosis was associated with airflow obstruction (adjusted odds ratio 2.51, 95% CI 1.83-3.42) and spirometric restriction (adjusted odds ratio 2.13, 95% CI 1.42-3.19).A history of tuberculosis was associated with both airflow obstruction and spirometric restriction, and should be considered as a potentially important cause of obstructive disease and low lung function, particularly where tuberculosis is common. Copyright ©ERS 2015.

  17. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results

    PubMed Central

    Amaral, André F. S.; Coton, Sonia; Kato, Bernet; Tan, Wan C.; Studnicka, Michael; Janson, Christer; Gislason, Thorarinn; Mannino, David; Bateman, Eric D.; Buist, Sonia; Burney, Peter G. J.

    2015-01-01

    Background In small studies and cases series, a history of tuberculosis has been associated with both airflow obstruction, which is characteristic of chronic obstructive pulmonary disease, and restrictive patterns on spirometry. Objective To assess the association between a history of tuberculosis and airflow obstruction and spirometric abnormalities in adults. Methods The study was performed in adults, aged 40 and above, who took part in the multicentre cross-sectional, general population-based, Burden of Obstructive Lung Disease study, had provided acceptable post-bronchodilator spirometry measurements and information on a history of tuberculosis. The associations between a history of tuberculosis and airflow obstruction and spirometric restriction were assessed within each participating centre, and estimates combined using meta-analysis. These estimates were stratified by high and low/middle income countries, according to gross national income. Results A self-reported history of tuberculosis was associated with airflow obstruction (adjusted odds ratio = 2.51, 95% confidence interval 1.83-3.42) and spirometric restriction (adjusted odds ratio = 2.13, 95% confidence interval 1.42-3.19). Conclusion A history of tuberculosis was associated with both airflow obstruction and spirometric restriction, and should be considered as a potentially important cause of obstructive disease and low lung function, particularly where tuberculosis is common. PMID:26113680

  18. Using Computational Fluid Dynamics to examine airflow characteristics in Empty Nose Syndrome

    NASA Astrophysics Data System (ADS)

    Flint, Tim; Esmaily-Moghadam, Mahdi; Thamboo, Andrew; Velasquez, Nathalia; Nayak, Jayakar V.; Sellier, Mathieu; Moin, Parviz

    2016-11-01

    The enigmatic disorder, empty nose syndrome (ENS), presents with a complex subjective symptom profile despite objectively patent nasal airways, and recent reports suggest that surgical augmentation of the nasal airway can improve quality of life and ENS-related complaints. In this study, computational fluid dynamics (CFD) was performed both prior to, and following, inferior turbinate augmentation to model the resultant changes in airflow patterns and better understand the pathophysiology of ENS. An ENS patient with marked reduction in ENS symptoms following turbinate augmentation was identified, and pre- and post-operative CT imaging was collected. A Finite element framework with the variational multiscale method (Esmaily-Moghadam, Comput. Methods Appl. Mech. Engrg. 2015) was used to compute the airflow, temperature, and moisture transport through the nasal cavity. Comparison of the CFD results following corrective surgery showed higher levels of airflow turbulence. Augmentation produced 50%, 25%, and 25% increases in root mean square pressure, wall shear stress, and heat flux respectively. These results provide insight into the changes in nasal airflow characteristics attainable through surgical augmentation, and by extension, how nasal airflow patterns may be distorted in the 'overly patent' airway of ENS patients. Supported by Stanford University CTR and Fulbright New Zealand.

  19. An updated model of induced airflow in the unsaturated zone

    USGS Publications Warehouse

    Baehr, Arthur L.; Joss, Craig J.

    1995-01-01

    Simulation of induced movement of air in the unsaturated zone provides a method to determine permeability and to design vapor extraction remediation systems. A previously published solution to the airflow equation for the case in which the unsaturated zone is separated from the atmosphere by a layer of lower permeability (such as a clay layer) has been superseded. The new solution simulates airflow through the layer of lower permeability more rigorously by defining the leakage in terms of the upper boundary condition rather than by adding a leakage term to the governing airflow equation. This note presents the derivation of the new solution. Formulas for steady state pressure, specific discharge, and mass flow in the domain are obtained for the new model and for the case in which the unsaturated zone is in direct contact with the atmosphere.

  20. The study of micro-inextensible piezoelectric cantilever plate

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Xu, J. W.; Zhang, W.

    2018-06-01

    In this paper, a micro-inextensible piezoelectric cantilever plate is analyzed and its nonlinear dynamic behaviour is studied. The nonlinear oscillation differential equation is established by using Hamilton’s principle with the application of strain gradient theory to consider the size effect, and inextensible theory to consider the large deformation and rotation effect of cantilever plate. Based on MATLAB software, using the Runge-Kuta method, we can obtain the response of the nonlinear oscillation differential equation. The influences of the strain gradient length scale parameter and voltage on the dynamic response of micro piezoelectric cantilever plate are investigated separately. The results confirmed an increase of the stiffness of the system by using the strain gradient theory and the amplitude of the vibration is reduced. The vibration of the system can be controlled by applying an active voltage. The effect of external excitation frequency on nonlinear dynamic behaviour is considered by using Poincare surface of section and diagrams of waveforms, phase and bifurcation.

  1. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  2. Coupling the Multizone Airflow and Contaminant Transport Software CONTAM with EnergyPlus Using Co-Simulation.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-08-01

    Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.

  3. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    PubMed

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  4. Exact solutions for unsteady free convection flow over an oscillating plate due to non-coaxial rotation.

    PubMed

    Mohamad, Ahmad Qushairi; Khan, Ilyas; Ismail, Zulkhibri; Shafie, Sharidan

    2016-01-01

    Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).

  5. Weld pool oscillation during GTA welding of mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y.H.; Ouden, G. den

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized bymore » a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.« less

  6. Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows.

    PubMed Central

    Schreur, H J; Sterk, P J; Vanderschoot, J; van Klink, H C; van Vollenhoven, E; Dijkman, J H

    1992-01-01

    BACKGROUND: A common auscultatory finding in pulmonary emphysema is a reduction of lung sounds. This might be due to a reduction in the generation of sounds due to the accompanying airflow limitation or to poor transmission of sounds due to destruction of parenchyma. Lung sound intensity was investigated in normal and emphysematous subjects in relation to airflow. METHODS: Eight normal men (45-63 years, FEV1 79-126% predicted) and nine men with severe emphysema (50-70 years, FEV1 14-63% predicted) participated in the study. Emphysema was diagnosed according to pulmonary history, results of lung function tests, and radiographic criteria. All subjects underwent phonopneumography during standardised breathing manoeuvres between 0.5 and 2 1 below total lung capacity with inspiratory and expiratory target airflows of 2 and 1 l/s respectively during 50 seconds. The synchronous measurements included airflow at the mouth and lung volume changes, and lung sounds at four locations on the right chest wall. For each microphone airflow dependent power spectra were computed by using fast Fourier transformation. Lung sound intensity was expressed as log power (in dB) at 200 Hz at inspiratory flow rates of 1 and 2 l/s and at an expiratory flow rate of 1 l/s. RESULTS: Lung sound intensity was well repeatable on two separate days, the intraclass correlation coefficient ranging from 0.77 to 0.94 between the four microphones. The intensity was strongly influenced by microphone location and airflow. There was, however, no significant difference in lung sound intensity at any flow rate between the normal and the emphysema group. CONCLUSION: Airflow standardised lung sound intensity does not differ between normal and emphysematous subjects. This suggests that the auscultatory finding of diminished breath sounds during the regular physical examination in patients with emphysema is due predominantly to airflow limitation. Images PMID:1440459

  7. Effects of airflow on body temperatures and sleep stages in a warm humid climate

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kazuyo; Okamoto-Mizuno, Kazue; Mizuno, Koh; Iwaki, Tatsuya

    2008-03-01

    Airflow is an effective way to increase heat loss—an ongoing process during sleep and wakefulness in daily life. However, it is unclear whether airflow stimulates cutaneous sensation and disturbs sleep or reduces the heat load and facilitates sleep. In this study, 17 male subjects wearing short pyjamas slept on a bed with a cotton blanket under two of the following conditions: (1) air temperature (Ta) 26°C, relative humidity (RH) 50%, and air velocity (V) 0.2 m s-1; (2) Ta 32°C, RH 80%, V 1.7 m s-1; (3) Ta 32°C; RH 80%, V 0.2 m s-1 (hereafter referred to as 26/50, 32/80 with airflow, and 32/80 with still air, respectively). Electroencephalograms, electrooculograms, and mental electromyograms were obtained for all subjects. Rectal (Tre) and skin (Ts) temperatures were recorded continuously during the sleep session, and body-mass was measured before and after the sleep session. No significant differences were observed in the duration of sleep stages between subjects under the 26/50 and 32/80 with airflow conditions; however, the total duration of wakefulness decreased significantly in subjects under the 32/80 with airflow condition compared to that in subjects under the 32/80 with still air condition ( P < 0.05). Tre, Tsk, Ts, and body-mass loss under the 32/80 with airflow condition were significantly higher compared to those under the 26/50 condition, and significantly lower than those under the 32/80 with still air condition ( P < 0.05). An alleviated heat load due to increased airflow was considered to exist between the 32/80 with still air and the 26/50 conditions. Airflow reduces the duration of wakefulness by decreasing Tre, Tsk, Ts, and body-mass loss in a warm humid condition.

  8. The Impact of Smoking on Airflow Limitation in Subjects with History of Asthma and Inactive Tuberculosis

    PubMed Central

    Kim, Hyun Jung; Baek, Seunghee; Kim, Hee Jin; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2015-01-01

    Background Although smoking is the most important and modifiable cause of chronic obstructive pulmonary disease (COPD), other risk factors including asthma and tuberculosis (TB) are also associated. It is common for COPD patients to have more than one of these risk factors. The aims of this study were to determine the prevalence of airflow limitation (FEV1/FVC<0.7) according to the risk factors and to investigate their impact and interaction in airflow limitation. Methods From the Korean National Health and Nutrition Examination Survey between 2008 and 2012, we analyzed participants over 40 years of age by spirometry, chest radiograph and questionnaire about asthma and smoking history. Results Of 12,631 participants, 1,548 (12.3%) had airflow limitation. The prevalence of airflow limitation in smokers (≥10 pack-year), asthmatics, and those with inactive TB was 23.9%, 32.1%, and 33.6%. The prevalence increased with the number of risk factors: 86.1% had airflow limitation if they had all three risk factors. Impacts of inactive TB and asthma on airflow limitation were equivalent to 47 and 69 pack-years of smoking, respectively. Airflow limitation resulted from lower levels of smoking in those with inactive TB and asthma. A potential interaction between smoking and inactive tuberculosis in the development of airflow limitation was identified (p = 0.054). Conclusions Asthma and inactive TB lesions increase susceptibility to smoking in the development of airflow limitation. People with these risk factors should be seen as a major target population for anti-smoking campaigns to prevent COPD. PMID:25915938

  9. What is normal nasal airflow? A computational study of 22 healthy adults

    PubMed Central

    Zhao, Kai; Jiang, Jianbo

    2014-01-01

    Objective Nasal airflow is essential for functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related variations. Methods Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. Results Common features across subjects included: >50% total pressure-drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r=-0.65, p<0.01). This middle flow percentage combined with peak post-vestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r=0.53, p<0.01). Conclusion Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications. PMID:24664528

  10. Relationships among Smoking Habits, Airflow Limitations, and Metabolic Abnormalities in School Workers

    PubMed Central

    Horie, Masafumi; Noguchi, Satoshi; Tanaka, Wakae; Goto, Yasushi; Yoshihara, Hisanao; Kawakami, Masaki; Suzuki, Masaru; Sakamoto, Yoshio

    2013-01-01

    Background Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality. Objective We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities. Methods Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history. Results Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012–1.018; p<0.0001) and low high-density-lipoprotein cholesterolemia (1.013; 1.010–1.016; p<0.0001) in men. Length of smoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975–0.994; p = 0.007). Conclusions Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities. PMID:24312268

  11. The Risk Factors and Clinical Course of Asthma with Fixed Airflow Limitation.

    PubMed

    Pothirat, Chaicharn; Chaiwong, Warawut; Liwsrisakun, Chalerm; Bumroongkit, Chaiwat; Deesomchok, Athavudh; Theerakittikul, Theerakorn; Limsukon, Atikun; Phetsuk, Nittaya

    2016-07-01

    To identify risk factors and clinical course of asthma with fixed airflow limitation. A retrospective case-control study of asthma patients was conducted over a 15-month period. Asthma with fixed airflow limitation patients were defined as chronic asthmatics who had both post-bronchodilator (BD) and on-treatment ratio of forced expiratory in first second (FEV1)/forced vital capacity (FVC) persistently less than 0.7, whereas usual chronic asthma patients had post-BD and/or on-treatment ratio of FEV1/FVC more than 0.7. Serial asthma control tests (ACT), medication used, exacerbations were assessed. The risk factors were analyzed using logistic regression. Clinical characteristics between groups were compared using Student’s t-test and Fisher’s exact test. One hundred twenty from 142 eligible subjects were enrolled. They had asthma with fixed airflow limitation (n = 40) and usual chronic asthma (n = 80). Potential risk factors of asthma with fixed airflow limitation included early disease onset (age <15 years) [(adjusted odd ratio (OR) = 3.9, 95% confidence interval (CI) 1.9-8.3)] with longer disease duration (adjusted OR = 8.4, 95% CI 4.6-15.4 for >30 years). Asthma with fixed airflow limitation patients had lower ACT scores (p<0.001), lower level of asthma control (p<0.001), required more asthma medications (p = 0.002), and higher rates of hospitalization (p = 0.001) than usual chronic asthma. The potential risk factors of asthma with fixed airflow limitation were earlier disease onset and longer disease duration. They had poorer asthma control, more medications needed, and higher rates of exacerbation than usual chronic asthma.

  12. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  13. Usability Evaluation of a Flight-Deck Airflow Hazard Visualization System

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground, such as vortices, downdrafts, low level wind shear, microbursts, or turbulence from surrounding vegetation or structures near the landing site. These hazards can be dangerous even to airliners; there have been hundreds of fatalities in the United States in the last two decades attributable to airliner encounters with microbursts and low level wind shear alone. However, helicopters are especially vulnerable to airflow hazards because they often have to operate in confined spaces and under operationally stressful conditions (such as emergency search and rescue, military or shipboard operations). Providing helicopter pilots with an augmented-reality display visualizing local airflow hazards may be of significant benefit. However, the form such a visualization might take, and whether it does indeed provide a benefit, had not been studied before our experiment. We recruited experienced military and civilian helicopter pilots for a preliminary usability study to evaluate a prototype augmented-reality visualization system. The study had two goals: first, to assess the efficacy of presenting airflow data in flight; and second, to obtain expert feedback on sample presentations of hazard indicators to refine our design choices. The study addressed the optimal way to provide critical safety information to the pilot, what level of detail to provide, whether to display specific aerodynamic causes or potential effects only, and how to safely and effectively shift the locus of attention during a high-workload task. Three-dimensional visual cues, with varying shape, color, transparency, texture, depth cueing, and use of motion, depicting regions of hazardous airflow, were developed and presented to the pilots. The study results indicated that such a visualization system could be of significant value in improving safety during critical takeoff and landing operations, and also

  14. Ethmoidectomy combined with superior meatus enlargement increases olfactory airflow

    PubMed Central

    Kondo, Kenji; Nomura, Tsutomu; Yamasoba, Tatsuya

    2017-01-01

    Objectives The relationship between a particular surgical technique in endoscopic sinus surgery (ESS) and airflow changes in the post‐operative olfactory region has not been assessed. The present study aimed to compare olfactory airflow after ESS between conventional ethmoidectomy and ethmoidectomy with superior meatus enlargement, using virtual ESS and computational fluid dynamics (CFD) analysis. Study Design Prospective computational study. Materials and Methods Nasal computed tomography images of four adult subjects were used to generate models of the nasal airway. The original preoperative model was digitally edited as virtual ESS by performing uncinectomy, ethmoidectomy, antrostomy, and frontal sinusotomy. The following two post‐operative models were prepared: conventional ethmoidectomy with normal superior meatus (ESS model) and ethmoidectomy with superior meatus enlargement (ESS‐SM model). The calculated three‐dimensional nasal geometries were confirmed using virtual endoscopy to ensure that they corresponded to the post‐operative anatomy observed in the clinical setting. Steady‐state, laminar, inspiratory airflow was simulated, and the velocity, streamline, and mass flow rate in the olfactory region were compared among the preoperative and two postoperative models. Results The mean velocity in the olfactory region, number of streamlines bound to the olfactory region, and mass flow rate were higher in the ESS‐SM model than in the other models. Conclusion We successfully used an innovative approach involving virtual ESS, virtual endoscopy, and CFD to assess postoperative outcomes after ESS. It is hypothesized that the increased airflow to the olfactory fossa achieved with ESS‐SM may lead to improved olfactory function; however, further studies are required. Level of Evidence NA. PMID:28894833

  15. Estimating subglottal pressure via airflow interruption with auditory masking.

    PubMed

    Hoffman, Matthew R; Jiang, Jack J

    2009-11-01

    Current noninvasive measurement of subglottal pressure using airflow interruption often produces inconsistent results due to the elicitation of audio-laryngeal reflexes. Auditory feedback could be considered as a means of ensuring measurement accuracy and precision. The purpose of this study was to determine if auditory masking could be used with the airflow interruption system to improve intrasubject consistency. A prerecorded sample of subject phonation was played on a loop over headphones during the trials with auditory masking. This provided subjects with a target pitch and blocked out distracting ambient noise created by the airflow interrupter. Subglottal pressure was noninvasively measured using the airflow interruption system. Thirty subjects, divided into two equal groups, performed 10 trials without auditory masking and 10 trials with auditory masking. Group one performed the normal trials first, followed by the trials with auditory masking. Group two performed the auditory masking trials first, followed by the normal trials. Intrasubject consistency was improved by adding auditory masking, resulting in a decrease in average intrasubject standard deviation from 0.93+/-0.51 to 0.47+/-0.22 cm H(2)O (P < 0.001). Auditory masking can be used effectively to combat audio-laryngeal reflexes and aid subjects in maintaining constant glottal configuration and frequency, thereby increasing intrasubject consistency when measuring subglottal pressure. By considering auditory feedback, a more reliable method of measurement was developed. This method could be used by clinicians, as reliable, immediately available values of subglottal pressure are useful in evaluating laryngeal health and monitoring treatment progress.

  16. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Damage detection of civil infrastructures with piezoelectric oscillator sensors

    NASA Astrophysics Data System (ADS)

    Roh, Y. R.; Kim, D. Y.; Park, S. H.; Yun, C. B.

    2006-03-01

    Many researches have been reported on the condition monitoring of civil infrastructures by means of piezoelectric sensors. Most of them made use of the impedance change of the piezoelectric device in relation to the creation of internal damages to the structure. The impedance measurement is a well accepted method in the piezoelectric sensor area, and has been proved by many authors to be useful for civil structure diagnosis. However, the impedance measurement normally requires sophisticated equipment and analysis technology. For more general and wide application of the piezoelectric diagnosis tool, a new methodology is desired to overcome the limitations of the impedance measurement. This paper presents the feasibility of a piezoelectric oscillator sensor to detect the damages in civil infrastructures. The oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric thickness mode vibrator to be attached to the structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of the resonant frequency of the structure. The oscillator sensors can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified in this work with a sample aluminum plate where artificial cracks of different depth were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of the plate with cracks. Performance of the oscillator sensor was also compared with that of its conventional counterpart, i.e. impedance measurement, to manifest the superiority of the oscillator sensor.

  18. Stability of an oscillating boundary layer

    NASA Technical Reports Server (NTRS)

    Levchenko, V. Y.; Solovyev, A. S.

    1985-01-01

    Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.

  19. Vortex Dynamics of Asymmetric Heave Plates

    NASA Astrophysics Data System (ADS)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  20. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.

    PubMed

    Plummer, Emily Megan; Goller, Franz

    2008-01-01

    Song of the zebra finch (Taeniopygia guttata) is a complex temporal sequence generated by a drastic change to the regular oscillations of the normal respiratory pattern. It is not known how respiratory functions, such as supply of air volume and gas exchange, are controlled during song. To understand the integration between respiration and song, we manipulated respiration during song by injecting inert dental medium into the air sacs. Increased respiratory rate after injections indicates that the reduction of air affected quiet respiration and that birds compensated for the reduced air volume. During song, air sac pressure, tracheal airflow and sound amplitude decreased substantially with each injection. This decrease was consistently present during each expiratory pulse of the song motif irrespective of the air volume used. Few changes to the temporal pattern of song were noted, such as the increased duration of a minibreath in one bird and the decrease in duration of a long syllable in another bird. Despite the drastic reduction in air sac pressure, airflow and sound amplitude, no increase in abdominal muscle activity was seen. This suggests that during song, birds do not compensate for the reduced physiological or acoustic parameters. Neither somatosensory nor auditory feedback mechanisms appear to effect a correction in expiratory effort to compensate for reduced air sac pressure and sound amplitude.

  1. MHD Flow and Heat Transfer of a Generalized Burgers’ Fluid due to a Periodic Oscillating and Periodic Heating Plate

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jiang, Yue-Hua; Zhang, Yan; Zhao, Hao-Jie

    2017-10-01

    This paper investigates the MHD flow and heat transfer of the incompressible generalized Burgers’ fluid due to a periodic oscillating plate with the effects of the second order slip and periodic heating plate. The momentum equation is formulated with multi-term fractional derivatives, and by means of viscous dissipation, the fractional derivative is considered in the energy equation. A finite difference scheme is established based on the G1-algorithm, whose convergence is confirmed by the comparison with the analytical solution in an example. Meanwhile the numerical solutions of velocity, temperature and shear stress are obtained. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Increasing the fractional derivative parameter α, the velocity and temperature have a decreasing trend, while the influences of fractional derivative parameter β on the velocity and temperature behave conversely. Increasing the absolute value of the first order slip parameter and the second order slip parameter both cause a decrease of velocity. Furthermore, with the decreasing of the magnetic parameter, the shear stress decreases. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603 and the BUCEA Post Graduate Innovation Project (PG2017032)

  2. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  3. Study on airflow characteristics in the semi-closed irregular narrow flow channel

    NASA Astrophysics Data System (ADS)

    Jin, Yuzhen; Hu, Xiaodong; Zhu, Linhang; Hu, Xudong; Jin, Yingzi

    2016-04-01

    The air-jet loom is widely used in the textile industry. The interaction mechanism of airflow and yarn is not clear in such a narrow flow channel, the gas consumption is relatively large, the yarn motion is unstable and the weft insertion is often interrupted during the operation. In order to study the characteristics of the semi-closed flow field in profiled dents, the momentum conservation equation is modified and the model parameters and boundary conditions are set. Compared with the different r, the ratio of profiled dent's thickness and gap, the results show that the smaller the r is, the smaller the velocity fluctuations of the airflow is. When the angle of profiled dents α is close to zero, the diffusion of the airflow will be less. The experiment is also conducted to verify the result of the simulation with a high-speed camera and pressure sensor in profiled dents. The airflow characteristics in the semi-closed irregular narrow flow channel in the paper would provide the theoretical basis for optimizing the weft insertion process of the air-jet loom.

  4. Aerodynamic tricks for pitching oscillation and visual stabilization in a hovering bird

    NASA Astrophysics Data System (ADS)

    Su, Jian-Yuan; Ting, Shang-Chieh; Yang, Jing-Tang

    2010-11-01

    We experimentally investigate how small birds attain a stabilized vision and body posture during hovering. Wing-beats of finches and passerines executing asymmetrical hovering provide lift merely during the downstroke. The downstroke lift is significantly greater than the bird weight, thereby causing a pitch-up swing of the bird body. A hovering bird skillfully and unceasingly tunes the position and orientation of lift force to stabilize its vision, so that the eye displacement is approximately one-tenth less than the tail, causing an illusion that the bird body is rotating about the eye. The hovering birds also spread and fold periodically their tail with an evident phase relationship with respect to the beating wings. We found that hovering birds use their tail to intercept the strong downward air-flow induced by the downstroking wings, and sophisticatedly spread their tail upon the arrival of the downward air-flow, rendering a pitch-up moment that effectively counteracts the pitch-down body rotation. Hence during hovering the bird essentially undergoes a dynamically-stable pitching oscillation, and concurrently attains a stabilized vision.

  5. Effects of mass airflow rate through an open-circuit gas quantification system when measuring carbon emissions.

    PubMed

    Gunter, Stacey A; Bradford, James A; Moffet, Corey A

    2017-01-01

    Methane (CH) and carbon dioxide (CO) represent 11 and 81%, respectively, of all anthropogenic greenhouse gas emissions. Agricultural CH emissions account for approximately 43% of all anthropogenic CH emissions. Most agricultural CH emissions are attributed to enteric fermentation within ruminant livestock; hence, the heightened interest in quantifying and mitigating this source. The automated, open-circuit gas quantification system (GQS; GreenFeed, C-Lock, Inc., Rapid City, SD) evaluated here can be placed in a pasture with grazing cattle and can measure their CH and CO emissions with spot sampling. However, improper management of the GQS can have an erroneous effect on emission estimates. One factor affecting the quality of emission estimates is the airflow rates through the GQS to ensure a complete capture of the breath cloud emitted by the animal. It is hypothesized that at lower airflow rates this cloud will be incompletely captured. To evaluate the effect of airflow rate through the GQS on emission estimates, a data set was evaluated with 758 CO and CH emission estimates with a range in airflows of 10.7 to 36.6 L/s. When airflow through the GQS was between 26.0 and 36.6 L/s, CO and CH emission estimates were not affected ( = 0.14 and 0.05, respectively). When airflow rates were less than 26.0 L/s, CO and CH emission estimates were lower and decreased as airflow rate decreased ( < 0.0001). We hypothesize that when airflow through the GQS decreases below 26 L/s, breath capture was incomplete and CO and CH emissions are underestimated. Maintaining mass airflow through a GQS at rates greater than 26 L/s is important for producing high quality CO and CH emission estimates.

  6. Thermal sensation and comfort during exposure to local airflow to face or legs.

    PubMed

    Yamashita, Kazuaki; Matsuo, Juntaro; Tochihara, Yutaka; Kondo, Youichiro; Takayama, Shizuka; Nagayama, Hiroki

    2005-01-01

    The present study examined the contribution of local airflow temperature to thermal sensation and comfort in humans. Eight healthy male students were exposed to local airflow to their faces (summer condition) or legs (winter condition) for 30 minutes. Local airflow temperature (Tf) was maintained at 18 degrees C to 36 degrees C, and ambient temperature (Ta) was maintained at 17.4 degrees C to 31.4 degrees C. Each subject was exposed to 16 conditions chosen from the combination of Tf and Ta. Based on the results of multiple regression analysis, the standardized partial regression coefficient of Tf and Ta were determined to be 0.93 and 0.13 in the summer condition, and 0.71 and 0.36 in the winter condition at the end of the exposure. Also, thermal comfort was observed to depend closely on the interrelation between Tf and Ta. The present data suggested that local airflow temperature is an important thermal factor regarding thermal sensation and comfort.

  7. Airflow dispersion in unsaturated soil.

    PubMed

    Gidda, T; Cann, D; Stiver, W H; Zytner, R G

    2006-01-05

    Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied.

  8. Resistance to airflow through bedding materials used in infancy.

    PubMed Central

    Hatch, D J; Helms, P; Matthew, D J; Skinner, D

    1982-01-01

    Various bedding materials used in infancy, including duvets (or continental quilts), were tested for airflow using the British Standards Institution tests for pillows or fabrics. Resistance was also measured when the items were placed on a dummy infant face. Measurements were made on washed and unwashed garments, which were tested both dry and wet. Results suggest that all the bedding materials tested are safe for use even in the newborn period. The duvets produced slightly lower resistance to breathing than conventional blankets and sheets. In view of the wide variety of infant bedding fabrics it seems desirable for standard airflow performance requirements to be introduced. PMID:7092309

  9. Proportion and clinical characteristics of non-asthmatic non-smokers among adults with airflow obstruction.

    PubMed

    Takiguchi, Hiroto; Takeuchi, Tomoe; Niimi, Kyoko; Tomomatsu, Hiromi; Tomomatsu, Katsuyoshi; Hayama, Naoki; Oguma, Tsuyoshi; Aoki, Takuya; Urano, Tetsuya; Asai, Satomi; Miyachi, Hayato; Asano, Koichiro

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) mainly develops after long-term exposure to cigarette or biomass fuel smoke, but also occurs in non-smokers with or without a history of asthma. We investigated the proportion and clinical characteristics of non-smokers among middle-aged to elderly subjects with airflow obstruction. We retrospectively analyzed 1,892 subjects aged 40-89 years who underwent routine preoperative spirometry at a tertiary university hospital in Japan. Airflow obstruction was defined as a forced expiratory volume in 1 second (FEV1)/forced vital capacity < 0.7 or as the lower limit of the normal. Among 323 patients presenting with FEV1/forced vital capacity < 0.7, 43 had asthma and 280 did not. Among the non-asthmatic patients with airflow obstruction, 94 (34%) were non-smokers. A larger number of women than men with airflow obstruction had asthma (26% vs. 7.6%, p < 0.001), or were non-smokers among non-asthmatics (72% vs. 20%, p < 0.001). Non-asthmatic non-smokers, rather than non-asthmatic smokers, asthmatic non-smokers, and asthmatic smokers, exhibited better pulmonary function (median FEV1: 79% of predicted FEV1 vs. 73%, 69%, and 66%, respectively, p = 0.005) and less dyspnea on exertion (1% vs. 12%, 12%, and 28%, respectively, p = 0.001). Pulmonary emphysema on thoracic computed tomography was less common in non-smokers (p < 0.001). Using the lower limit of the normal to define airflow obstruction yielded similar results. There are a substantial number of non-smokers with airflow obstruction compatible with COPD in Japan. In this study, airflow obstruction in non-smokers was more common in women and likelier to result in mild functional and pathological abnormalities than in smokers. Further studies are warranted to investigate the long-term prognosis and appropriate management of this population in developed countries, especially in women.

  10. Scoliosis associated with airflow obstruction due to endothoracic vertebral hump.

    PubMed

    Ito, Kenyu; Kawakami, Noriaki; Miyasaka, Kazuyoshi; Tsuji, Taichi; Ohara, Tetsuya; Nohara, Ayato

    2012-12-01

    A retrospective clinical study of scoliosis-associated airflow obstruction due to endothoracic vertebral hump. The purpose of this study was to evaluate and present anatomical features of patients with scoliosis who showed airflow obstruction caused by endothoracic vertebral hump. It is well known that severe scoliosis causes airflow restriction due to thoracic cage deformity. There have been few reports of clinical data and anatomical features on scoliosis associated with airflow obstruction due to endothoracic vertebral hump. The subjects were 6 patients. The diagnoses were idiopathic scoliosis in 3 patients, symptomatic scoliosis in 2 patients, and thoracogenic scoliosis in 1 patient. The radiological outcome, comorbidities, pre- and postoperative respiratory function, and surgical complication were analyzed. Four patients had preoperative atelectasis on the convex side of the lower lobe and improved after the operations. All patients showed main thoracic curves and their apex was located at T7-T9. All patients had lordoscoliosis except 1, who demonstrated kyphosing scoliosis. The correction rate was 78% (62.8%-83.5%). Preoperative thoracic lordosis within the range of -5° to -47° was postoperatively corrected to a substantially normal kyphosis within the range of 9° to 24°. The average vital capacity, percent VC improved from 0.72 L (0.33-1.17 L) to 1.21 L (0.82-1.71 L) and 45.5% (37.3%- 50.8%) to 63.7% (41.0%-88.6%) relatively. Spine Penetration Index improved from 23% (18%-35%) to 16% (13%-19%). Endothoracic hump ratio improved from 1.34 (0.98-1.93) to 1.12 (0.86-1.28). Each patient with symptomatic scoliosis and thoracogenic scoliosis required relatively long periods of respiration management. Patients having lordoscoliosis with an apex located between T7 and T9 may develop airflow obstruction due to an endothoracic vertebral hump. Correction of lordoscoliosis through anterior and posterior approaches successfully improved endothoracic hump ratio and

  11. Oscillation effects upon film boiling from a sphere.

    NASA Technical Reports Server (NTRS)

    Schmidt, W. E.; Witte, L. C.

    1972-01-01

    Heat transfer rates from a silver-plated copper sphere, 0.75 in. in diameter, were studied by high speed photography during oscillations of the sphere in saturated liquid nitrogen and Freon-11. The oscillation frequencies ranged from zero to 13 Hz, and the amplitude-to-diameter ratio varied from zero to 2.67. The sphere was supported by a thin-walled stainless steel tube and carried a thermocouple attached near the lower stagnation point. A Fastax WF-3 16mm movie camera was used at about 2000 frames/sec. The differences in the vapor removal process at lower and higher oscillation frequencies are discussed.

  12. Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules.

    PubMed

    Sugiura, Shinji; Oda, Tatsuya; Aoyagi, Yasuyuki; Matsuo, Ryota; Enomoto, Tsuyoshi; Matsumoto, Kunio; Nakamura, Toshikazu; Satake, Mitsuo; Ochiai, Atsushi; Ohkohchi, Nobuhiro; Nakajima, Mitsutoshi

    2007-02-01

    Microencapsulation of genetically engineered cells has attracted much attention as an alternative nonviral strategy to gene therapy. Though smaller microcapsules (i.e. less than 300 microm) theoretically have various advantages, technical limitations made it difficult to prove this notion. We have developed a novel microfabricated device, namely a micro-airflow-nozzle (MAN), to produce 100 to 300 microm alginate microcapsules with a narrow size distribution. The MAN is composed of a nozzle with a 60 microm internal diameter for an alginate solution channel and airflow channels next to the nozzle. An alginate solution extruded through the nozzle was sheared by the airflow. The resulting alginate droplets fell directly into a CaCl2 solution, and calcium alginate beads were formed. The device enabled us to successfully encapsulate living cells into 150 microm microcapsules, as well as control microcapsule size by simply changing the airflow rate. The encapsulated cells had a higher growth rate and greater secretion activity of marker protein in 150 microm microcapsules compared to larger microcapsules prepared by conventional methods because of their high diffusion efficiency and effective scaffold surface area. The advantages of smaller microcapsules offer new prospects for the advancement of microencapsulation technology.

  13. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity

    PubMed Central

    Nguyen, Chinh D.; Wellman, Andrew; Jordan, Amy S.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Methods: Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. Results: During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV2, P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV2, P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV2, P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Conclusion: Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). Citation: Nguyen CD, Wellman A, Jordan AS, Eckert DJ. Mild airflow limitation during N2 sleep increases k-complex frequency and slows

  14. A new Strategy to Improve Drug Delivery to the Maxillary Sinuses: The Frequency Sweep Acoustic Airflow.

    PubMed

    El Merhie, Amira; Navarro, Laurent; Delavenne, Xavier; Leclerc, Lara; Pourchez, Jérémie

    2016-05-01

    Enhancement of intranasal sinus deposition involves nebulization of a drug superimposed by an acoustic airflow. We investigated the impact of fixed frequency versus frequency sweep acoustic airflow on the improvement of aerosolized drug penetration into maxillary sinuses. Fixed frequency and frequency sweep acoustic airflow were generated using a nebulizing system of variable frequency. The effect of sweep cycle and intensity variation was studied on the intranasal sinus deposition. We used a nasal replica created from CT scans using 3D printing. Sodium fluoride and gentamicin were chosen as markers. Studies performed using fixed frequency acoustic airflow showed that each of maxillary sinuses of the nasal replica required specific frequency for the optimal aerosol deposition. Intranasal sinus drug deposition experiments under the effect of the frequency sweep acoustic airflow showed an optimal aerosol deposition into both maxillary sinus of the nasal replica. Studies on the effect of the duration of the sweep cycle showed that the shorter the cycle the better the deposition. We demonstrate the benefit of frequency sweep acoustic airflow on drug deposition into maxillary sinuses. However further in vivo studies have to be conducted since delivery rates cannot be obviously determined from a nasal replica.

  15. Difference in airflow obstruction between Hispanic and non-Hispanic White female smokers.

    PubMed

    Sood, Akshay; Stidley, Christine A; Picchi, Maria A; Celedón, Juan C; Gilliland, Frank; Crowell, Richard E; Belinsky, Steven A; Tesfaigzi, Yohannes

    2008-10-01

    Smoking-related respiratory diseases are a major cause of morbidity and mortality. However, the relationship between smoking and respiratory disease has not been well-studied among ethnic minorities in general and among women in particular. The objective of this cross-sectional study was to evaluate the risk of airflow obstruction and to assess lung function among Hispanic and non-Hispanic White (NHW) female smokers in a New Mexico cohort. Participants completed a questionnaire detailing smoking history and underwent spirometry testing. Outcomes studied included airflow obstruction, selected lung function parameters, and chronic mucus hyper-secretion. Chi square, logistic, and linear regression techniques were utilized. Of the 1,433 eligible women participants, 248 (17.3%) were Hispanic; and 319 had airflow obstruction (22.3%). Hispanic smokers were more likely to be current smokers, and report lower pack-years of smoking, compared to NHW smokers (p < 0.05 for all analyses). Further, Hispanic smokers were at a reduced risk of airflow obstruction compared to NHW smokers, with an O.R. of 0.51, 95% C.I. 0.34, 0.78 (p = 0.002) after adjustment for age, BMI, pack-years and duration of smoking, and current smoking status. Following adjustment for covariates, Hispanic smokers also had a higher mean absolute and percent predicted post-bronchodilator FEV(1)/FVC ratio, as well as higher mean percent predicted FEV(1) (p < 0.05 for all analyses). Hispanic female smokers in this New Mexico-based cohort had lower risk of airflow obstruction and better lung function than NHW female smokers. Further, smoking history did not completely explain these associations.

  16. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  17. Cryopreservation on a cryo-plate of Arundina graminifolia protocorms, dehydrated with silica gel and drying beads.

    PubMed

    Cordova, L B; Thammasiri, K

    2016-01-01

    There are various methods for the cryopreservation of plant material, with each biological specimen potentially requiring protocol optimization to maximize success. The aim of this study is to compare droplet-vitrification, encapsulation-dehydration, and the cryo-plate method for cryopreservation of protocorms of the orchid Arundina graminifolia, using silica gel and drying beads as the desiccation materials. The cryo-plate method included preculture of protocorms, developed from seeds, placed on aluminium cryo-plates and embedded in alginate gel. Cryo-plates were surface dried using sterile filter paper, placed in Petri dishes containing 50 g silica gel or 30 g drying beads in a laminar air-flow cabinet. Specimens on cryo-plates were dehydrated to 25 % moisture content, placed into 2 mL cryotubes and plunged directly into liquid nitrogen for 1 d. For cryopreservation, the cryo-plate method, involving dehydration with 30 g drying beads gave the highest regrowth (77 %), followed by the encapsulation-dehydration method with 30 g drying beads (64 % regrowth) and the droplet-vitrification method, following exposure to PVS2 solution for 20 min (33 % regrowth). Regrowth of cryopreserved protocorms using the cryo-plate method was rapid with the highest survival and regrowth.

  18. Air trapping and airflow obstruction in newborn cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Michalski, Andrew S; Bauer, Christian; Abou Alaiwa, Mahmoud H; Gross, Thomas J; Awadalla, Maged S; Bouzek, Drake C; Gansemer, Nicholas D; Taft, Peter J; Hoegger, Mark J; Diwakar, Amit; Ochs, Matthias; Reinhardt, Joseph M; Hoffman, Eric A; Beichel, Reinhard R; Meyerholz, David K; Stoltz, David A

    2013-12-15

    Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.

  19. The use of combined thermal/pressure polyvinylidene fluoride film airflow sensor in polysomnography.

    PubMed

    Kryger, Meir; Eiken, Todd; Qin, Li

    2013-12-01

    The technologies recommended by the American Academy of Sleep Medicine (AASM) to monitor airflow in polysomnography (PSG) include the simultaneous monitoring of two physical variables: air temperature (for thermal airflow) and air pressure (for nasal pressure). To comply with airflow monitoring standards in the sleep lab setting thus often requires the patient to wear two sensors under the nose during testing. We hypothesized that a single combined thermal/pressure sensor using polyvinylidene fluoride (PVDF) film responsive to both airflow temperature and pressure would be effective in documenting abnormal breathing events during sleep. Sixty patients undergoing routine PSG testing to rule out obstructive sleep apnea at two different sleep laboratories were asked to wear a third PVDF airflow sensor in addition to the traditional thermal sensor and pressure sensor. Apnea and hypopnea events were scored by the sleep lab technologists using the AASM guidelines (CMS option) using the thermal sensor for apnea and the pressure sensor for hypopnea (scorer 1). The digital PSG data were also forwarded to an outside registered polysomnographic technologist for scoring of respiratory events detected in the PVDF airflow channels (scorer 2). The Pearson correlation coefficient, r, between apnea and hypopnea indices obtained using the AASM sensors and the combined PVDF sensor was almost unity for the four calculated indices: apnea-hypopnea index (0.990), obstructive apnea index (0.992), hypopnea index (0.958), and central apnea index (1.0). The slope of the four relationships was virtually unity and the coefficient of determination (r (2)) was also close to 1. The results of intraclass correlation coefficients (>0.95) and Bland-Altman plots also provide excellent agreement between the combined PVDF sensor and the AASM sensors. The indices used to calculate apnea severity obtained with the combined PVDF thermal and pressure sensor were equivalent to those obtained using AASM

  20. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  1. Numerical simulation of airflow around the evaporator in the closed space

    NASA Astrophysics Data System (ADS)

    Puchor, Tomáš; Banovčan, Roman; Lenhard, Richard

    2018-06-01

    The article deals with a numerical simulation of the forced airflow around a evaporator with the finned tubes in the electrotechnical box, by finite volume method in the program ANSYS Workbench. The work contains an analysis of the impact of forced airflow on the evaporator with the various seated the electrical components. The aim of the work is to find out the most effective way of heat dissipation by forced convection from the electrical components in the closed space with lowest pressure loss.

  2. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity.

    PubMed

    Nguyen, Chinh D; Wellman, Andrew; Jordan, Amy S; Eckert, Danny J

    2016-03-01

    To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV(2), P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV(2), P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV(2), P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). © 2016 Associated Professional Sleep Societies, LLC.

  3. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.

    PubMed

    Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders

    2018-05-01

    Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.

  4. Numerical Investigation of an Oscillating Flat Plate Airfoil

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  5. Prevalence of asthma with airflow limitation, COPD, and COPD with variable airflow limitation in older subjects in a general Japanese population: the Hisayama Study.

    PubMed

    Matsumoto, Koichiro; Seki, Nanae; Fukuyama, Satoru; Moriwaki, Atsushi; Kan-o, Keiko; Matsunaga, Yuko; Noda, Naotaka; Yoshida, Makoto; Koto, Hiroshi; Takata, Shohei; Nakanishi, Yoichi; Kiyohara, Yutaka; Inoue, Hiromasa

    2015-01-01

    Elucidating the prevalence of asthma and chronic obstructive pulmonary disease (COPD) is important for designing a public health strategy. Recent studies have discriminated a phenotype of COPD with variable airflow limitation (COPD-VAL) associated with asthma-COPD overlap syndrome. Its prevalence remains uncertain. The age and occupational distributions in the town of Hisayama and in Japan are nearly identical. Each disease's prevalence was estimated for the town's residents. In 2008, town residents (≥ 40 years) were solicited to participate in a health checkup. Individuals with abnormal spirometry (forced expiratory volume in 1s/forced vital capacity [FEV1/FVC]<70% and/or %FVC<80%) were recommended for further evaluations. Two pulmonologists in a blinded fashion reviewed their medical records, including bronchodilator reversibility. Individuals with airflow limitation were classified as having asthma, COPD, COPD-VAL, or other diseases. The prevalence of each disease was then estimated. A total of 2100 residents (43.4% of residents in the age group) completed spirometry. In 455 residents with abnormal spirometry, 190 residents had further evaluations, and the medical records of 174 residents were reviewed. The prevalence of asthma with airflow limitation, COPD, and COPD-VAL, were 2.0%, 8.4%, and 0.9%, respectively. The prevalence of COPD and COPD-VAL were higher in men and smokers than in women and never-smokers. The prevalence of COPD, but not COPD-VAL or asthma, increased with age. The prevalence of asthma with airflow limitation, COPD, and COPD-VAL were estimated in a population of residents (≥ 40 years) in Hisayama. Copyright © 2014 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  6. Proportion and clinical characteristics of non-asthmatic non-smokers among adults with airflow obstruction

    PubMed Central

    Takiguchi, Hiroto; Takeuchi, Tomoe; Niimi, Kyoko; Tomomatsu, Hiromi; Tomomatsu, Katsuyoshi; Hayama, Naoki; Oguma, Tsuyoshi; Urano, Tetsuya; Asai, Satomi; Miyachi, Hayato; Asano, Koichiro

    2018-01-01

    Background and objectives Chronic obstructive pulmonary disease (COPD) mainly develops after long-term exposure to cigarette or biomass fuel smoke, but also occurs in non-smokers with or without a history of asthma. We investigated the proportion and clinical characteristics of non-smokers among middle-aged to elderly subjects with airflow obstruction. Methods We retrospectively analyzed 1,892 subjects aged 40–89 years who underwent routine preoperative spirometry at a tertiary university hospital in Japan. Airflow obstruction was defined as a forced expiratory volume in 1 second (FEV1)/forced vital capacity < 0.7 or as the lower limit of the normal. Results Among 323 patients presenting with FEV1/forced vital capacity < 0.7, 43 had asthma and 280 did not. Among the non-asthmatic patients with airflow obstruction, 94 (34%) were non-smokers. A larger number of women than men with airflow obstruction had asthma (26% vs. 7.6%, p < 0.001), or were non-smokers among non-asthmatics (72% vs. 20%, p < 0.001). Non-asthmatic non-smokers, rather than non-asthmatic smokers, asthmatic non-smokers, and asthmatic smokers, exhibited better pulmonary function (median FEV1: 79% of predicted FEV1 vs. 73%, 69%, and 66%, respectively, p = 0.005) and less dyspnea on exertion (1% vs. 12%, 12%, and 28%, respectively, p = 0.001). Pulmonary emphysema on thoracic computed tomography was less common in non-smokers (p < 0.001). Using the lower limit of the normal to define airflow obstruction yielded similar results. Conclusions There are a substantial number of non-smokers with airflow obstruction compatible with COPD in Japan. In this study, airflow obstruction in non-smokers was more common in women and likelier to result in mild functional and pathological abnormalities than in smokers. Further studies are warranted to investigate the long-term prognosis and appropriate management of this population in developed countries, especially in women. PMID:29742176

  7. Computational and experimental study of airflow around a fan powered UVGI lamp

    NASA Astrophysics Data System (ADS)

    Kaligotla, Srikar; Tavakoli, Behtash; Glauser, Mark; Ahmadi, Goodarz

    2011-11-01

    The quality of indoor air environment is very important for improving the health of occupants and reducing personal exposure to hazardous pollutants. An effective way of controlling air quality is by eliminating the airborne bacteria and viruses or by reducing their emissions. Ultraviolet Germicidal Irradiation (UVGI) lamps can effectively reduce these bio-contaminants in an indoor environment, but the efficiency of these systems depends on airflow in and around the device. UVGI lamps would not be as effective in stagnant environments as they would be when the moving air brings the bio-contaminant in their irradiation region. Introducing a fan into the UVGI system would augment the efficiency of the system's kill rate. Airflows in ventilated spaces are quite complex due to the vast range of length and velocity scales. The purpose of this research is to study these complex airflows using CFD techniques and validate computational model with airflow measurements around the device using Particle Image Velocimetry measurements. The experimental results including mean velocities, length scales and RMS values of fluctuating velocities are used in the CFD validation. Comparison of these data at different locations around the device with the CFD model predictions are performed and good agreement was observed.

  8. Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depend on the Type 3 Adenylyl Cyclase

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2012-01-01

    Cilia of olfactory sensory neurons (OSN) are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3−/− mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing. PMID:23136416

  9. Theoretical analysis of terahertz generation from a compact optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Wang, Silei; Wang, Mengtao; Yuan, Bin; Wang, Weishu

    2017-10-01

    Terahertz (THz) generation by difference frequency generation (DFG) processes with dual signal waves is theoretically analyzed. The dual signal waves are generated by an optical parametric oscillator (OPO) with periodically inverted KTiOPO4 (KTP) plates based on adhesive-free-bonded (AFB) technology. The phase-matching conditions in a same AFB KTP composite for the OPO generating signals and idlers and for the DFG generating THz wave can be simultaneously satisfied by selecting the thickness of each KTP plate. Moreover, 4-order cascaded DFG processes can be realized in the same AFB KTP composite. The cascaded Stokes interaction processes generating THz photons and the cascaded anti-Stokes interaction processes consuming THz photons are investigated from coupled wave equations. Take an example of 3.106 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 3.106 THz in 4-order cascaded DFG processes increase to 5.56 times. When the pump intensity equals 20 MW mm-2, the quantum conversion efficiency of 259% in 4-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.

  10. Optimum Energy Extraction from Coherent Vortex Rings Passing Tangentially Over Flexible Plates

    NASA Astrophysics Data System (ADS)

    Pirnia, Alireza; Browning, Emily A.; Peterson, Sean D.; Erath, Byron D.

    2017-11-01

    Coherent vortical structures can incite self-sustained oscillations in flexible membranes. This concept has recently gained interest for energy extraction from ambient environments. In this study the special case of a vortex ring passing tangentially over a cantilevered flexible plate is investigated. This problem is governed by the Kirchhoff-Love plate equation, which can be expressed in terms of a non-dimensional mass parameter of the plate, non-dimensional pressure loading induced by the vortex ring, and a Strouhal (St) number which expresses the duration of pressure loading relative to the period of plate oscillation. For a plate with a fixed mass parameter immersed in a fluid environment, the St number specifies the beam dynamics and the energy exchange process. The aim of this study is to identify the St number corresponding to maximum energy exchange between plates and vortex rings. The energy exchange process between the vortex ring and the plate is investigated over a range of 0.3 plate distances. The optimum value of St number that maximizes energy transfer is reported in each case and an empirical correlation is provided for predictive purposes. Supported by the National Science Foundation (NSF) under Grant No. CBET-1511761, and the Natural Sciences and Engineering Research Council of Canada (NSERC), under Grant No. 05778-2015.

  11. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    PubMed Central

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  12. Formation of vortex wakes at flow separation from plate

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.; Govorova, A. I.

    2017-05-01

    The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.

  13. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  14. Clinically remitted childhood asthma is associated with airflow obstruction in middle-aged adults.

    PubMed

    Omori, Keitaro; Iwamoto, Hiroshi; Yamane, Takashi; Nakashima, Taku; Haruta, Yoshinori; Hattori, Noboru; Yokoyama, Akihito; Kohno, Nobuoki

    2017-01-01

    While adult asthma has been shown to be a risk factor for COPD, the effect of remitted childhood asthma on adult lung function has not been clarified. The aim of this study was to examine whether remitted childhood asthma is a risk factor for airflow obstruction in a middle-aged general population. A total of 9896 participants (range: 35-60 years) from five healthcare centres were included in the study. The participants were classified into four categories based on the presence or absence of physician-diagnosed childhood/adulthood asthma and asthma symptoms as follows: healthy controls (n = 9154), remitted childhood asthma (n = 287), adulthood-onset asthma (n = 354) and childhood-adulthood asthma (n = 101). The prevalence of respiratory symptoms was similar in both the participants with remitted childhood asthma and healthy controls. The prevalence of airflow obstruction (forced expiratory volume in 1 s (FEV 1 )/forced vital capacity (FVC) < 0.7) was significantly higher in the participants with remitted childhood asthma, those with adult-onset asthma and those with childhood-adulthood asthma (5.2%, 14.4% and 16.8%, respectively) compared with healthy controls (2.2%). Multivariate logistic regression showed that remitted childhood asthma was independently associated with airflow obstruction. Among the participants with remitted childhood asthma, ever-smokers had significantly lower FEV 1 /FVC than never-smokers. Clinically remitted childhood asthma is associated with airflow obstruction in middle-aged adults. Smoking and remitted childhood asthma may be additive factors for the development of airflow obstruction. © 2016 Asian Pacific Society of Respirology.

  15. Hydrodynamics of a three-dimensional self-propelled flexible plate

    NASA Astrophysics Data System (ADS)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  16. Is there any relationship between right and left hand dominance and right and left nasal airflow dominance?

    PubMed

    Price, A; Eccles, R

    2017-10-01

    Left- or right-handedness is a common human trait, and it has been previously reported that human nasal airflow dominance correlates with hand dominance. Any relationship between hand dominance and nasal airflow dominance would be unusual. This study aimed to measure nasal airflow and look for any relationship to handedness. The modified Glatzel mirror was used to record the dominant nasal passage at 15-minute intervals over a 6-hour period in 29 healthy participants consisting of 15 left-handers and 14 right-handers. In left-handers, the percentage of time that the left nasal passage was dominant ranged from 0 to 100 per cent. In right-handers, the percentage of time that the right nasal passage was dominant ranged from 4.2 to 95.8 per cent. No correlation between nasal airflow dominance and hand dominance was identified. The results do not support the hypothesis that nasal airflow and handedness are related.

  17. Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators

    NASA Astrophysics Data System (ADS)

    Ma, Jiangang; Sheng, Meiping; Guo, Zhiwei; Qin, Qi

    2018-06-01

    A periodic vibration suppressor with multiple secondary oscillators is examined in this paper to reduce the low-frequency vibration. The band-gap properties of infinite periodic structure and vibration transmission properties of finite periodic structure attached with secondary oscillators with arbitrary degree of freedom are thoroughly analyzed by the plane-wave-expansion method. A simply supported plate with a periodic rectangular array of vibration suppressors is considered. The dynamic model of this periodic structure is established and the equation of harmonic vibration response is theoretically derived and numerically examined. Compared with the simply supported plate without attached suppressors, the proposed plate can obtain better vibration control, and the vibration response can be effectively reduced in several frequency bands owing to the multiple band-gap property. By analyzing the modal properties of the periodic vibration suppressors, the relationship between modal frequencies and the parameters of spring stiffness and mass is established. With the numerical results, the design guidance of the locally resonant structure with multiple secondary oscillators is proposed to provide practical guidance for application. Finally, a practical periodic specimen is designed and fabricated, and then an experiment is carried out to validate the effectiveness of periodic suppressors in the reality. The results show that the experimental band gaps have a good coincidence with those in the theoretical model, and the low-frequency vibration of the plate with periodic suppressors can be effectively reduced in the tuned band gaps. Both the theoretical results and experimental results prove that the design method is effective and the structure with periodic suppressors has a promising application in engineering.

  18. Comparison between a Single-Channel Nasal Airflow Device and Oximetry for the Diagnosis of Obstructive Sleep Apnea

    PubMed Central

    Rofail, Lydia Makarie; Wong, Keith K.H.; Unger, Gunnar; Marks, Guy B.; Grunstein, Ronald R.

    2010-01-01

    Rationale: The most common single channel devices used for obstructive sleep apnea (OSA) screening are nasal airflow and oximetry. No studies have directly compared their role in diagnosing OSA at home. Study Objectives: To prospectively compare the diagnostic utility of home-based nasal airflow and oximetry to attended polysomnography (PSG) and to assess the diagnostic value of adding oximetry to nasal airflow for OSA. Design: Cross-sectional study Setting: Laboratory and home Participants: Sleep clinic patients with suspected OSA. Interventions: All patients had laboratory PSG and 2 sets of 3 consecutive nights on each device; nasal airflow (Flow Wizard, DiagnoseIT, Australia) and oximetry (Radical Set, Masimo, USA) at home in random order. Results: Ninety-eight of the 105 patients enrolled completed home monitoring. The accuracy of nasal airflow respiratory disturbance index (NF RDI) was not different from oximetry (ODI 3%) for diagnosing OSA (area under the ROC curve (AUC) difference, 0.04; 95% CI of difference −0.05 to 0.12; P = 0.43) over 3 nights of at-home recording. The accuracy of NF RDI was higher after 3 nights compared to one night (AUC difference, 0.05; 95% CI of difference, 0.01 to 0.08; P = 0.04). Addition of oximetry to nasal airflow did not increase the accuracy for predicting OSA compared to nasal airflow alone (P > 0.1). Conclusions: Nasal flow and oximetry have equivalent accuracy for diagnosing OSA in the home setting. Choice of device for home screening of sleep apnea may depend on logistical and service delivery issues. Citation: Makarie Rofail L; Wong KKH; Unger G; Marks GB; Grunstein RR. Comparison between a single-channel nasal airflow device and oximetry for the diagnosis of obstructive sleep apnea. SLEEP 2010;33(8):1106-1114. PMID:20815194

  19. Response of Metal Core Piezoelectric Fibers to Unsteady Airflows

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Ji, H. L.; Zhu, K. J.; Park, M. J.

    In the previous study, possible applications of metal core piezoelectric fibers with a diameter of 200 to 250 µm as bionic airflow sensors mimicking the flow sensitive receptor hairs of crickets have been proposed. This study aims to investigate the dynamic responses of the metal core piezoelectric fibers to unsteady airflow. The metal core piezoelectric fiber is half coated on the outer surface and is used in the bending mode. Wind tunnel tests were carried out and the output voltage of the fiber under the excitation of the unsteady aerodynamic force during flow acceleration and deceleration was measured when the wind tunnel was suddenly closed or opened by a shutter. The relationship between the maximum voltage and the steady-state velocity and that between the voltage and the acceleration of flow were also obtained.

  20. Effect of isolator plates on telecom shelter

    NASA Astrophysics Data System (ADS)

    Drid, M. Mebrouk; Dokkar, Boubekeur; Dokkar, Abdelghani; Settou, Noureddine; Chennouf, Nasreddine

    2018-05-01

    Passive ventilation systems are being increasingly proposed as an alternate to mechanical ventilation systems. This tendency is due to their potential benefits in terms of operational cost, energy requirement and carbon dioxide emission. In the present work, fresh flow is introduced under external isolator plates in order to reduce indoor temperature of telecom shelter located at neighboring of Ouargla city (south of Algeria). The metallic plates play two roles; the first one is to protect shelter from sun rays and the second is to operate as solar chimney. This chimney creates upward airflow which operates as passive cooling for the microwave relay. During the whole year, Shelter audit energy has been examined using Trnsys 16 software. Then, CFD code (Fluent 6.3) is used to predict thermal performance and fluid flow in two-dimensional computational domain for solar chimneys. The obtained results show that flow increase at shelter inlet causes a marked improvement in shelter cooling. This improvement indicates that shelter can be designed with small conventional air conditioning which leads to significant energy consumption fall. Indeed, with this technique, indoor temperature reduction can reach about 30°K without any electrical energy dispenses.

  1. Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems

    NASA Astrophysics Data System (ADS)

    Badriev, I. B.; Paimuhin, V. N.

    2018-01-01

    The coupled problem of planar acoustic wave propagation through a composite plate covered with a second damping layer with a large logarithmic decrement of oscillations is formulated. The aerohydrodynamic interaction of a plate with external acoustic environment is described by three-dimensional wave equations and the mechanical behavior of a two-layer plate by the classical Kirchhoff-Love model. An exact analytic solution of the problem is found for the case of hinged support of the edges of a plate. On the basis of this, the parameters of the covering damping layer were found, under which it is possible to achieve a practically complete damping of the plate vibration under resonant modes of its acoustic loading.

  2. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  3. COMIS -- an international multizone air-flow and contaminant transport model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less

  4. Preliminary investigation on the effects of primary airflow to coal particle distribution in coal-fired boilers

    NASA Astrophysics Data System (ADS)

    Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.

    2017-04-01

    This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.

  5. Wind tunnel wall effects in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1991-01-01

    Experiments in a linear oscillating cascade reveal that the wind tunnel walls enclosing the airfoils have, in some cases, a detrimental effect on the oscillating cascade aerodynamics. In a subsonic flow field, biconvex airfoils are driven simultaneously in harmonic, torsion-mode oscillations for a range of interblade phase angle values. It is found that the cascade dynamic periodicity - the airfoil to airfoil variation in unsteady surface pressure - is good for some values of interblade phase angle but poor for others. Correlation of the unsteady pressure data with oscillating flat plate cascade predictions is generally good for conditions where the periodicity is good and poor where the periodicity is poor. Calculations based upon linearized unsteady aerodynamic theory indicate that pressure waves reflected from the wind tunnel walls are responsible for the cases where there is poor periodicity and poor correlation with the predictions.

  6. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    NASA Astrophysics Data System (ADS)

    Liang, Z.; Willatzen, M.; Christensen, J.

    2015-10-01

    We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled by the geometry as opposed to the material alone. The linear surface wave dispersion is modulated by the crystal filling fraction such that the degree of confinement can be engineered without relying on narrow-band resonances but on effective stiffness moduli. In the same context, we provide a theoretical recipe for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena.

  7. Detection of Mouse Cough Based on Sound Monitoring and Respiratory Airflow Waveforms

    PubMed Central

    Chen, Liyan; Lai, Kefang; Lomask, Joseph Mark; Jiang, Bert; Zhong, Nanshan

    2013-01-01

    Detection for cough in mice has never yielded clearly audible sounds, so there is still a great deal of debates as to whether mice can cough in response to tussive stimuli. Here we introduce an approach for detection of mouse cough based on sound monitoring and airflow signals. 40 Female BALB/c mice were pretreated with normal saline, codeine, capasazepine or desensitized with capsaicin. Single mouse was put in a plethysmograph, exposed to aerosolized 100 µmol/L capsaicin for 3 min, followed by continuous observation for 3 min. Airflow signals of total 6 min were recorded and analyzed to detect coughs. Simultaneously, mouse cough sounds were sensed by a mini-microphone, monitored manually by an operator. When manual and automatic detection coincided, the cough was positively identified. Sound and sound waveforms were also recorded and filtered for further analysis. Body movements were observed by operator. Manual versus automated counts were compared. Seven types of airflow signals were identified by integrating manual and automated monitoring. Observation of mouse movements and analysis of sound waveforms alone did not produce meaningful data. Mouse cough numbers decreased significantly after all above drugs treatment. The Bland-Altman and consistency analysis between automatic and manual counts was 0.968 and 0.956. The study suggests that the mouse is able to present with cough, which could be detected by sound monitoring and respiratory airflow waveform changes. PMID:23555643

  8. Risk factors for persistent airflow limitation: Analysis of 306 patients with asthma.

    PubMed

    Wang, Lingcheng; Gao, Shuncui; Zhu, Wei; Su, Jun

    2014-01-01

    Objectives : To determine the risk factors associated with persistent airflow limitation in patients with asthma. Method s: This study was designed and carried out in the department of respiratory medicine, fourth People's Hospital of Jinan City, Shandong province, China between Jan 2012 and Dec 2012. Three hundred and six asthma patients participating in the study were divided into persistent airflow limitation group (PAFL) and no persistent airflow limitation group (NPAFL). The patients participated in pulmonary function tests and sputum induction examination. The clinical data including age, gender, onset age, disease course, smoking history, family history, regular corticosteroid inhalation, hospitalization history and presence of atopy were collected. Results : In 306 patients, 128 (40.5%) were included in PAFL group and 178(59.5%) in NPAFL group. Multivariate analysis demonstrated smoking (≥10 pack-years; OR, 7.1; 95% CI, 1.8 to 31.2), longer asthma duration (≥ 20years) (OR, 6.3; 95% CI, 1.7 to 28.5), absence of regular corticosteroid inhalation (OR, 3.5; 95% CI, 1.1 to 14.5) and neutrophil in induced sputum≥65% (OR, 1.8; 95% CI, 1.0 to 2.8) were independent risk factors for PAFL. Conclusions : Smoking, longer asthma duration and increased neutrophil in induced sputum are risk factors for PAFL, while regular corticosteroid inhalation is protective factor. Smoking cessation and regular corticosteroid inhalation may play an important role in preventing the occurrence of persistent airflow limitation group (PAFL).

  9. Majority of never-smokers with airflow limitation do not have asthma: the Copenhagen General Population Study.

    PubMed

    Çolak, Yunus; Afzal, Shoaib; Nordestgaard, Børge G; Lange, Peter

    2016-07-01

    A substantial proportion of individuals with airflow limitation are never-smokers. However, whether never-smokers with airflow limitation have undiagnosed asthma is unknown. We hypothesised that the majority of never-smokers with respiratory symptoms and airflow limitation but without known asthma have undiagnosed asthma by comparing characteristics and prognosis in never-smokers with airflow limitation and asthma (NS+AFL+A) with never-smokers with airflow limitation but without asthma (NS+AFL-A). Among 94 079 participants aged 20-100 years from the general population, 39 102 (42%) were never-smokers. In this group, 13 719 (35%) reported to have respiratory symptoms of whom 1610 (12%) had airflow limitation. We investigated characteristics and risk of complications (asthma or COPD exacerbations, pneumonias and all-cause mortality) and comorbidities (lung cancer, ischaemic heart disease, myocardial infarction, deep venous thrombosis and PE) during 4.5 years median follow-up. NS+AFL-A compared with NS+AFL+A reported less allergy and respiratory symptoms, and had higher FEV1 and lower levels of eosinophils and IgE in peripheral blood. NS+AFL+A had increased risk of asthma and COPD exacerbations, but not of pneumonias; adjusted HRs in NS+AFL+A compared with NS+AFL-A were 16 (95% CI 3.7 to 73) for asthma exacerbations and 15 (2.8 to 80) for COPD exacerbations. Still, NS+AFL-A had increased risk of COPD exacerbations and pneumonias, but not of asthma exacerbations; adjusted HRs in NS+AFL-A compared with never-smokers without airflow limitation or asthma (NS-AFL-A) were 7.7 (2.8 to 21) for COPD exacerbations and 1.7 (1.3 to 2.3) for pneumonias. Risk of comorbidities or all-cause mortality was not increased in NS+AFL-A or NS+AFL+A compared with NS-AFL-A. Majority of NS+AFL-A do not seem to have undiagnosed asthma and may instead have airflow limitation caused by other risk factors. Published by the BMJ Publishing Group Limited. For permission to use (where not

  10. Clinical characterization of children with resistant airflow obstruction, a multicenter study.

    PubMed

    Krishnan, Sankaran; Dozor, Allen J; Bacharier, Leonard; Lang, Jason E; Irvin, Charles G; Kaminsky, David; Farber, Harold J; Gerald, Lynn; Brown, Mark; Holbrook, Janet T; Wise, Robert A; Ryu, Julie; Bose, Sonali; Yasin, Razan; Saams, Joy; Henderson, Robert J; Teague, William G

    2018-05-17

    To characterize a cohort of children with airflow limitation resistant to bronchodilator (BD) therapy. Pulmonary function tests performed in children 6-17 years of age at 15 centers in a clinical research consortium were screened for resistant airflow limitation, defined as a post-BD FEV 1 and/or an FEV 1 /FVC less than the lower limits of normal. Demographic and clinical data were analyzed for associations with pulmonary function. 582 children were identified. Median age was 13 years (IQR: 11, 16), 60% were males; 62% were Caucasian, 28% were African-American; 19% were obese; 32% were born prematurely and 21% exposed to second hand smoke. Pulmonary diagnoses included asthma (93%), prior significant pneumonia (28%), and bronchiectasis (5%). 65% reported allergic rhinitis, and 11% chronic sinusitis. Subjects without a history of asthma had significantly lower post-BD FEV 1 % predicted (p = 0.008). Subjects without allergic rhinitis had lower post-BD FEV 1 % predicted (p = 0.003). Children with allergic rhinitis, male sex, obesity and Black race had better pulmonary function post-BD. There was lower pulmonary function in children after age 11 years without a history of allergic rhinitis, as compared to those with a history of allergic rhinitis. The most prevalent diagnosis in children with BD-resistant airflow limitation is asthma. Allergic rhinitis and premature birth are common co-morbidities. Children without a history of asthma, as well as those with asthma but no allergic rhinitis, had lower pulmonary function. Children with BD-resistant airflow limitation may represent a sub-group of children with persistent obstruction and high risk for life-long airway disease.

  11. Experimental and modelling study of the effect of airflow orientation with respect to strip electrode on ozone production of surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Mikeš, J.; Pekárek, S.; Soukup, I.

    2016-11-01

    This study examines the effect of airflow orientation with respect to the strip active electrode on concentration of ozone and nitrogen dioxide produced in a planar generator based on the surface dielectric barrier discharge. The orientation of the airflow was tested in parallel and perpendicular with respect to the strips. It was found that in the investigated range of average discharge power, the ozone concentration increases approximately by 25% when airflow was oriented in parallel with respect to the strips in comparison with perpendicular orientation of the airflow. Similarly the increase of nitrogen dioxide concentration was observed for parallel orientation of the airflow with respect to the strips in comparison with the perpendicular orientation of the airflow. Within the range of wavelengths from 250 to 1100 nm, the changes of intensities of spectral lines associated with airflow orientation have been observed. A 3D numerical model describing ion trajectories and airflow patterns have also been developed.

  12. A Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow

    PubMed Central

    Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung

    2017-01-01

    This work proposes the first hot-polymer fiber Fabry–Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry–Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer’s steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W. PMID:28869510

  13. A computational study of the respiratory airflow characteristics in normal and obstructed human airways.

    PubMed

    Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet

    2014-09-01

    Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally. Published by Elsevier Ltd.

  14. Wave energy trapping and localization in a plate with a delamination

    NASA Astrophysics Data System (ADS)

    Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail V.; Moll, Jochen; Fritzen, Claus-Peter

    2012-12-01

    The research aims at an experimental approval of the trapping mode effect theoretically predicted for an elastic plate-like structure with a horizontal crack. The effect is featured by a sharp capture of incident wave energy at certain resonance frequencies with its localization between the crack and plate surfaces in the form of energy vortices yielding long-enduring standing waves. The trapping modes are eigensolutions of the related diffraction problem associated with nearly real complex points of its discrete frequency spectrum. To detect such resonance motion, a laser vibrometer based system has been employed for the acquisition and appropriate visualization of piezoelectrically actuated out-of-plane surface motion of a two-layer aluminum plate with an artificial strip-like delamination. The measurements at resonance and off-resonance frequencies have revealed a time-harmonic oscillation of good quality above the delamination in the resonance case. It lasts for a long time after the scattered waves have left that area. The measured frequency of the trapped standing-wave oscillation is in a good agreement with that predicted using the integral equation based mathematical model.

  15. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia

    PubMed Central

    Craven, Brent A.; Paterson, Eric G.; Settles, Gary S.

    2010-01-01

    The canine nasal cavity contains hundreds of millions of sensory neurons, located in the olfactory epithelium that lines convoluted nasal turbinates recessed in the rear of the nose. Traditional explanations for canine olfactory acuity, which include large sensory organ size and receptor gene repertoire, overlook the fluid dynamics of odorant transport during sniffing. But odorant transport to the sensory part of the nose is the first critical step in olfaction. Here we report new experimental data on canine sniffing and demonstrate allometric scaling of sniff frequency, inspiratory airflow rate and tidal volume with body mass. Next, a computational fluid dynamics simulation of airflow in an anatomically accurate three-dimensional model of the canine nasal cavity, reconstructed from high-resolution magnetic resonance imaging scans, reveals that, during sniffing, spatially separate odour samples are acquired by each nostril that may be used for bilateral stimulus intensity comparison and odour source localization. Inside the nose, the computation shows that a unique nasal airflow pattern develops during sniffing, which is optimized for odorant transport to the olfactory part of the nose. These results contrast sharply with nasal airflow in the human. We propose that mammalian olfactory function and acuity may largely depend on odorant transport by nasal airflow patterns resulting from either the presence of a highly developed olfactory recess (in macrosmats such as the canine) or the lack of one (in microsmats including humans). PMID:20007171

  16. Bayesian Modeling of Exposure and Airflow Using Two-Zone Models

    PubMed Central

    Zhang, Yufen; Banerjee, Sudipto; Yang, Rui; Lungu, Claudiu; Ramachandran, Gurumurthy

    2009-01-01

    Mathematical modeling is being increasingly used as a means for assessing occupational exposures. However, predicting exposure in real settings is constrained by lack of quantitative knowledge of exposure determinants. Validation of models in occupational settings is, therefore, a challenge. Not only do the model parameters need to be known, the models also need to predict the output with some degree of accuracy. In this paper, a Bayesian statistical framework is used for estimating model parameters and exposure concentrations for a two-zone model. The model predicts concentrations in a zone near the source and far away from the source as functions of the toluene generation rate, air ventilation rate through the chamber, and the airflow between near and far fields. The framework combines prior or expert information on the physical model along with the observed data. The framework is applied to simulated data as well as data obtained from the experiments conducted in a chamber. Toluene vapors are generated from a source under different conditions of airflow direction, the presence of a mannequin, and simulated body heat of the mannequin. The Bayesian framework accounts for uncertainty in measurement as well as in the unknown rate of airflow between the near and far fields. The results show that estimates of the interzonal airflow are always close to the estimated equilibrium solutions, which implies that the method works efficiently. The predictions of near-field concentration for both the simulated and real data show nice concordance with the true values, indicating that the two-zone model assumptions agree with the reality to a large extent and the model is suitable for predicting the contaminant concentration. Comparison of the estimated model and its margin of error with the experimental data thus enables validation of the physical model assumptions. The approach illustrates how exposure models and information on model parameters together with the knowledge of

  17. Damped Mechanical Oscillator: Experiment and Detailed Energy Analysis

    NASA Astrophysics Data System (ADS)

    Corridoni, Tommaso; D'Anna, Michele; Fuchs, Hans

    2014-02-01

    The damped oscillator is discussed in every high school textbook or introductory physics course, and a large number of papers are devoted to it in physics didactics journals. Papers typically focus on kinematic and dynamic aspects and less often on energy. Among the latter, some are devoted to the peculiar decreasing behavior of energy characterized by ripples, which can easily be demonstrated by using a dynamic modeling approach.8 In this note we consider an oscillator consisting of a cart running on a horizontal track, two springs, and a damping device created with magnets and a metal plate attached to the cart (Fig. 1). Using sensors and data-acquisition software,9 we measure kinematic quantities and three forces: those of the springs on the cart and, separately, the force between magnets and the plate. A detailed analysis of the energy exchanges between the cart and the interacting parts is obtained. In particular, we show that only the energy exchanges with the magnets are affected by dissipative processes while over a suitable time interval the net energy exchanged between cart and springs equals zero.

  18. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan

    2017-11-01

    Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.

  19. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    NASA Astrophysics Data System (ADS)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  20. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living

    PubMed Central

    Shepard, Emily L. C.

    2016-01-01

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528784

  1. Room airflow studies using sonic anemometry.

    PubMed

    Wasiolek, P T; Whicker, J J; Gong, H; Rodgers, J C

    1999-06-01

    To ensure prompt response by real-time air monitors to an accidental release of toxic aerosols in a workplace, safety professionals should understand airflow patterns. This understanding can be achieved with validated computational fluid dynamics (CFD) computer simulations, or with experimental techniques, such as measurements with smoke, neutrally buoyant markers, trace gases, or trace aerosol particles. As a supplementary technique to quantify airflows, the use of a state-of-the art, three-dimensional sonic anemometer was explored. This instrument allows for the precise measurements of the air-velocity vector components in the range of a few centimeters per second, which is common in many indoor work environments. Measurements of air velocities and directions at selected locations were made for the purpose of providing data for characterizing fundamental aspects of indoor air movement in two ventilated rooms and for comparison to CFD model predictions. One room was a mockup of a plutonium workroom, and the other was an actual functioning plutonium workroom. In the mockup room, air-velocity vector components were measured at 19 locations at three heights (60, 120 and 180 cm) with average velocities varying from 1.4 cm s-1 to 9.7 cm s-1. There were complex flow patterns observed with turbulence intensities from 39% up to 108%. In the plutonium workroom, measurements were made at the breathing-zone height, recording average velocities ranging from 9.9 cm s-1 to 35.5 cm s-1 with turbulence intensities from 33% to 108%.

  2. Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production.

    PubMed

    Williams, Monique; Talbot, Prue

    2011-12-01

    This study investigated the performance of electronic cigarettes (e-cigarettes), compared different models within a brand, compared identical copies of the same model within a brand, and examined performance using different protocols. Airflow rate required to generate aerosol, pressure drop across e-cigarettes, and aerosol density were examined using three different protocols. First 10 puff protocol: The airflow rate required to produce aerosol and aerosol density varied among brands, while pressure drop varied among brands and between the same model within a brand. Total air hole area correlated with pressure drop for some brands. Smoke-out protocol: E-cigarettes within a brand generally performed similarly when puffed to exhaustion; however, there was considerable variation between brands in pressure drop, airflow rate required to produce aerosol, and the total number of puffs produced. With this protocol, aerosol density varied significantly between puffs and gradually declined. CONSECUTIVE TRIAL PROTOCOL: Two copies of one model were subjected to 11 puffs in three consecutive trials with breaks between trials. One copy performed similarly in each trial, while the second copy of the same model produced little aerosol during the third trial. The different performance properties of the two units were attributed to the atomizers. There was significant variability between and within brands in the airflow rate required to produce aerosol, pressure drop, length of time cartridges lasted, and production of aerosol. Variation in performance properties within brands suggests a need for better quality control during e-cigarette manufacture.

  3. Do surgeons and surgical facilities disturb the clean air distribution close to a surgical patient in an orthopedic operating room with laminar airflow?

    PubMed

    Cao, Guangyu; Storås, Madeleine C A; Aganovic, Amar; Stenstad, Liv-Inger; Skogås, Jan Gunnar

    2018-05-04

    Airflow distribution in the operating room plays an important role in ensuring a clean operating microenvironment and preventing surgical site infections (SSIs) caused by airborne contaminations. The objective of this study was to characterize the airflow distribution in proximity to a patient in an orthopedic operating room. Experimental measurements were conducted in a real operating room at St. Olav's Hospital, Norway, with a laminar airflow system. Omnidirectional anemometers were used to investigate the air distribution in the operating zone, and 4 different cases were examined with a real person and a thermal manikin. This study showed that the downward airflow from the laminar airflow system varies in each case with different surgical arrangement, such as the position of the operating lamp. The results indicate that the interaction of thermal plumes from a patient and the downward laminar airflow may dominate the operating microenvironment. The airflow distribution in proximity to a patient is influenced by both the surgical facility and the presence of medical staff. A thermal manikin may be an economical and practical way to study the interaction of thermal plumes and downward laminar airflow. The provision of higher clean airflow rate in the operating microenvironment may be an effective way to prevent the development of SSIs caused by indoor airborne contamination. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?

    PubMed Central

    Zhang, Baihua; Li, Jianhua; Yue, Yong; Qian, Wei

    2017-01-01

    Using computational fluid dynamics (CFD) method, the feasibility of simulating transient airflow in a CT-based airway tree with more than 100 outlets for a whole respiratory period is studied, and the influence of truncations of terminal bronchi on CFD characteristics is investigated. After an airway model with 122 outlets is extracted from CT images, the transient airflow is simulated. Spatial and temporal variations of flow velocity, wall pressure, and wall shear stress are presented; the flow pattern and lobar distribution of air are gotten as well. All results are compared with those of a truncated model with 22 outlets. It is found that the flow pattern shows lobar heterogeneity that the near-wall air in the trachea is inhaled into the upper lobe while the center flow enters the other lobes, and the lobar distribution of air is significantly correlated with the outlet area ratio. The truncation decreases airflow to right and left upper lobes and increases the deviation of airflow distributions between inspiration and expiration. Simulating the transient airflow in an airway tree model with 122 bronchi using CFD is feasible. The model with more terminal bronchi decreases the difference between the lobar distributions at inspiration and at expiration. PMID:29333194

  5. The Granite Mountain Atmospheric Sciences Testbed (GMAST): A Facility for Long Term Complex Terrain Airflow Studies

    NASA Astrophysics Data System (ADS)

    Zajic, D.; Pace, J. C.; Whiteman, C. D.; Hoch, S.

    2011-12-01

    This presentation describes a new facility at Dugway Proving Ground (DPG), Utah that can be used to study airflow over complex terrain, and to evaluate how airflow over a mountain barrier affects wind patterns over adjacent flatter terrain. DPG's primary mission is to conduct testing, training, and operational assessments of chemical and biological weapon systems. These operations require very precise weather forecasts. Most test operations at DPG are conducted on fairly flat test ranges having uniform surface cover, where airflow patterns are generally well-understood. However, the DPG test ranges are located alongside large, isolated mountains, most notably Granite Mountain, Camelback Mountain, and the Cedar Mountains. Airflows generated over, or influenced by, these mountains can affect wind patterns on the test ranges. The new facility, the Granite Mountain Atmospheric Sciences Testbed, or GMAST, is designed to facilitate studies of airflow interactions with topography. This facility will benefit DPG by improving understanding of how mountain airflows interact with the test range conditions. A core infrastructure of weather sensors around and on Granite Mountain has been developed including instrumented towers and remote sensors, along with automated data collection and archival systems. GMAST is expected to be in operation for a number of years and will provide a reference domain for mountain meteorology studies, with data useful for analysts, modelers and theoreticians. Visiting scientists are encouraged to collaborate with DPG personnel to utilize this valuable scientific resource and to add further equipment and scientific designs for both short-term and long-term atmospheric studies. Several of the upcoming MATERHORN (MountAin TERrain atmospHeric mOdeling and obseRvatioNs) project field tests will be conducted at DPG, giving an example of GMAST utilization and collaboration between DPG and visiting scientists.

  6. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats

    PubMed Central

    Eiting, Thomas P.; Perot, J. Blair; Dumont, Elizabeth R.

    2015-01-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. PMID:25520358

  7. Hair sensor using a photoelectronic principle for sensing airflow and its direction

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Yuh; Huang, Chien-Tai

    2011-01-01

    Many organisms have diverse hair cells to instantaneously perceive the change of surroundings so that they can keep away from threats. These organs can precisely detect the tiny variations of airflow, water flow, sound, or pressure, and also resolve their affecting directions. Through this brilliant inspiration by the insects' cilia, we decided to design and develop a hair sensor for detecting two-dimensional airflow and pressure waves by using photoelectronic principles. The hair sensor inherently consists of an artificial cilium supported by an elastic membrane. A light-emitting diode and a quadrant photodiode are used as the photoelectronic sensor. The airflow or pressure wave directly stimulates the cilium to sway, and this motion contributes to let the projected light beam shift over the quadrant photodiode, whose four photodiodes produce then corresponding output signals. Because of dynamic and high-sensitive properties of the photoelectronic sensor, the hair sensor we developed possesses a high measurement resolution to be able to detect very tiny stimulation and its affecting direction. According to its multifaceted characteristics and simple structure, the hair sensor can be applied in numerous potential application fields, such as intrusion alarm system, noise detection system, as well as a tactile sensor.

  8. Childhood-Onset Asthma in Smokers. Association between CT Measures of Airway Size, Lung Function, and Chronic Airflow Obstruction

    PubMed Central

    Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.

    2014-01-01

    Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268

  9. Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.

    PubMed

    Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R

    2014-11-01

    Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  10. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction.

    PubMed

    Kimbell, J S; Frank, D O; Laud, Purushottam; Garcia, G J M; Rhee, J S

    2013-10-18

    Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning. © 2013 Elsevier Ltd. All rights reserved.

  11. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    DTIC Science & Technology

    1943-04-01

    ft) \\ axp <— b) Tha solution with the positiv « exponent must bo Ignored as it is Infinite at y • ». As the outor boundary con- dition, then, 0...34’.»*•* *’"**’ "• .F *- ^’•--i»-v 40 When quantitative work was attempted, It became ap- parent that the complicated sound field In the tunnel wae a decided...gradients decreased ampllfica damping) of .the oscillations while pos creased amplification. A quantitative this effect was therefore undertaken w

  12. Inflammatory Biomarkers Predict Airflow Obstruction After Exposure to World Trade Center Dust

    PubMed Central

    Nolan, Anna; Naveed, Bushra; Comfort, Ashley L.; Ferrier, Natalia; Hall, Charles B.; Kwon, Sophia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Zeig-Owens, Rachel; Glaser, Michelle S.; Webber, Mayris P.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Background: The World Trade Center (WTC) collapse on September 11, 2001, produced airflow obstruction in a majority of firefighters receiving subspecialty pulmonary evaluation (SPE) within 6.5 years post-September 11, 2001. Methods: In a cohort of 801 never smokers with normal pre-September 11, 2001, FEV1, we correlated inflammatory biomarkers and CBC counts at monitoring entry within 6 months of September 11, 2001, with a median FEV1 at SPE (34 months; interquartile range, 25-57). Cases of airflow obstruction had FEV1 less than the lower limit of normal (LLN) (100 of 801; 70 of 100 had serum), whereas control subjects had FEV1 greater than or equal to LLN (153 of 801; 124 of 153 had serum). Results: From monitoring entry to SPE years later, FEV1 declined 12% in cases and increased 3% in control subjects. Case subjects had elevated serum macrophage derived chemokine (MDC), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor, and interferon inducible protein-10 levels. Elevated GM-CSF and MDC increased the risk for subsequent FEV1 less than LLN by 2.5-fold (95% CI, 1.2-5.3) and 3.0-fold (95% CI, 1.4-6.1) in a logistic model adjusted for exposure, BMI, age on September 11, 2001, and polymorphonuclear neutrophils. The model had sensitivity of 38% (95% CI, 27-51) and specificity of 88% (95% CI, 80-93). Conclusions: Inflammatory biomarkers can be risk factors for airflow obstruction following dust and smoke exposure. Elevated serum GM-CSF and MDC levels soon after WTC exposure were associated with increased risk of airflow obstruction in subsequent years. Biomarkers of inflammation may help identify pathways producing obstruction after irritant exposure. PMID:21998260

  13. Airflow, gas deposition, and lesion distribution in the nasal passages.

    PubMed Central

    Morgan, K T; Monticello, T M

    1990-01-01

    The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and blood and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials. Images FIGURE 4. FIGURE 6. FIGURE 7. PMID:2200663

  14. Human-Mediated Dispersal of Seeds by the Airflow of Vehicles

    PubMed Central

    von der Lippe, Moritz; Bullock, James M.; Kowarik, Ingo; Knopp, Tatjana; Wichmann, Matthias

    2013-01-01

    Human-mediated dispersal is known as an important driver of long-distance dispersal for plants but underlying mechanisms have rarely been assessed. Road corridors function as routes of secondary dispersal for many plant species but the extent to which vehicles support this process remains unclear. In this paper we quantify dispersal distances and seed deposition of plant species moved over the ground by the slipstream of passing cars. We exposed marked seeds of four species on a section of road and drove a car along the road at a speed of 48 km/h. By tracking seeds we quantified movement parallel as well as lateral to the road, resulting dispersal kernels, and the effect of repeated vehicle passes. Median distances travelled by seeds along the road were about eight meters for species with wind dispersal morphologies and one meter for species without such adaptations. Airflow created by the car lifted seeds and resulted in longitudinal dispersal. Single seeds reached our maximum measuring distance of 45 m and for some species exceeded distances under primary dispersal. Mathematical models were fit to dispersal kernels. The incremental effect of passing vehicles on longitudinal dispersal decreased with increasing number of passes as seeds accumulated at road verges. We conclude that dispersal by vehicle airflow facilitates seed movement along roads and accumulation of seeds in roadside habitats. Dispersal by vehicle airflow can aid the spread of plant species and thus has wide implications for roadside ecology, invasion biology and nature conservation. PMID:23320077

  15. Control of nasal vasculature and airflow resistance in the dog.

    PubMed Central

    Lung, M A; Phipps, R J; Wang, J C; Widdicombe, J G

    1984-01-01

    Nasal vascular and airflow resistances have been measured in dogs, simultaneously on both sides separately. Vascular resistance was measured either by constant flow perfusion of the terminal branch of the maxillary artery (which supplies, via the sphenopalatine artery, the nasal septum, most of the turbinates and the nasal sinuses) or by measuring blood flow through this artery, maintained by the dog's own blood pressure. Airflow resistance was assessed by inserting balloon-tipped endotracheal catheters into the back of each nasal cavity via the nasopharynx, and measuring transnasal pressure at constant airflow through each side of the nose simultaneously. Preliminary experiments indicated that there was 5-10% collateral anastomosis between the two sides. Close-arterial injection of drugs showed different patterns of response. Adrenaline, phenylephrine, chlorpheniramine and low doses of prostaglandin F2 alpha increased vascular resistance and lowered airway resistance. Salbutamol, methacholine and histamine lowered vascular resistance and increased airway resistance. Dobutamine decreased airway resistance with a small increase in vascular resistance. Prostaglandins E1, E2 and F2 alpha (high dose) decreased both vascular and airway resistances. Substance P, eledoisin-related peptide and vasoactive intestinal polypeptide lowered vascular resistance with little change in airway resistance. The results are interpreted in terms of possible drug actions on precapillary resistance vessels, sinusoids and venules, and arteriovenous anastomoses. It is concluded that nasal airway resistance cannot be correlated with vascular resistance or blood flow, since the latter has a complex and ill-defined relationship with nasal vascular blood volume. PMID:6204040

  16. Control of nasal vasculature and airflow resistance in the dog.

    PubMed

    Lung, M A; Phipps, R J; Wang, J C; Widdicombe, J G

    1984-04-01

    Nasal vascular and airflow resistances have been measured in dogs, simultaneously on both sides separately. Vascular resistance was measured either by constant flow perfusion of the terminal branch of the maxillary artery (which supplies, via the sphenopalatine artery, the nasal septum, most of the turbinates and the nasal sinuses) or by measuring blood flow through this artery, maintained by the dog's own blood pressure. Airflow resistance was assessed by inserting balloon-tipped endotracheal catheters into the back of each nasal cavity via the nasopharynx, and measuring transnasal pressure at constant airflow through each side of the nose simultaneously. Preliminary experiments indicated that there was 5-10% collateral anastomosis between the two sides. Close-arterial injection of drugs showed different patterns of response. Adrenaline, phenylephrine, chlorpheniramine and low doses of prostaglandin F2 alpha increased vascular resistance and lowered airway resistance. Salbutamol, methacholine and histamine lowered vascular resistance and increased airway resistance. Dobutamine decreased airway resistance with a small increase in vascular resistance. Prostaglandins E1, E2 and F2 alpha (high dose) decreased both vascular and airway resistances. Substance P, eledoisin-related peptide and vasoactive intestinal polypeptide lowered vascular resistance with little change in airway resistance. The results are interpreted in terms of possible drug actions on precapillary resistance vessels, sinusoids and venules, and arteriovenous anastomoses. It is concluded that nasal airway resistance cannot be correlated with vascular resistance or blood flow, since the latter has a complex and ill-defined relationship with nasal vascular blood volume.

  17. Self-interference between forward and backward propagating parts of a single acoustic plate mode

    NASA Astrophysics Data System (ADS)

    Germano, M.; Alippi, A.; Angelici, M.; Bettucci, A.

    2002-04-01

    Near and far fields of a particular (S1) Lamb mode, generated on a steel plate by means of a wedge transducer, are investigated. These show an oscillating behavior of the radial profile of the acoustic field amplitude that can be interpreted and modelled as interference phenomenon between forward and backward propagating parts of the Lamb mode, simultaneously generated at the interface between transducer and plate.

  18. Self-interference between forward and backward propagating parts of a single acoustic plate mode.

    PubMed

    Germano, M; Alippi, A; Angelici, M; Bettucci, A

    2002-04-01

    Near and far fields of a particular (S(1)) Lamb mode, generated on a steel plate by means of a wedge transducer, are investigated. These show an oscillating behavior of the radial profile of the acoustic field amplitude that can be interpreted and modelled as interference phenomenon between forward and backward propagating parts of the Lamb mode, simultaneously generated at the interface between transducer and plate.

  19. Determining the Strength of an Electromagnet through Damped Oscillations

    ERIC Educational Resources Information Center

    Thompson, Michael; Leung, Chi Fan

    2011-01-01

    This article describes a project designed to extend sixth-form pupils looking to further their knowledge and skill base in physics. This project involves a quantitative analysis of the decaying amplitude of a metal plate oscillating in a strong magnetic field; the decay of the amplitude is used to make estimates of the strength of the magnetic…

  20. Airflow and thrust calibration of an F100 engine, S/N P680059, at selected flight conditions

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Lee, D.; Rodriguez, J. R.

    1978-01-01

    An airflow and thrust calibration of an F100 engine, S/N P680059, was conducted to study airframe propulsion system integration losses in turbofan-powered high-performance aircraft. The tests were conducted with and without thrust augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. The resulting corrected airflow data generalized into one curve with corrected fan speed while corrected gross thrust increased as simulated flight conditions increased. Overall agreement between measured data and computed results was 1 percent for corrected airflow and -1 1/2 percent for gross thrust. The results of an uncertainty analysis are presented for both parameters at each simulated flight condition.

  1. Spectral analysis of airflow sounds in patent versus occluded tracheostomy tubes: a pilot study in tracheostomized adult patients.

    PubMed

    Rao, A J; Niwa, H; Watanabe, Y; Fukuta, S; Yanagita, N

    1990-05-01

    Cannula occlusion is a life-threatening postoperative complication of tracheostomy. Current management largely relies on nursing care for prevention of fatalities because no proven mechanical, machine-based support monitoring exists. The objective of this paper was to address the problem of monitoring the state of cannula patency, based on analysis of airflow acoustic spectral patterns in tracheostomized adult patients in the patent and partially occluded cannula. Tracheal airflow sounds were picked up via a condenser microphone air-coupled to the skin just below the tracheal stoma. Signal output from Mic was amplified, high-pass filtered, digital tape-recorded, and analyzed on a mainframe computer. Although airflow frequencies for patient cannulae were predominantly low-pitched (0.1 to 0.3 kHz), occluded tubes had discrete high-pitched spectral peaks (1.3 to 1.6 kHz). These results suggest that frequency analysis of airflow sounds can identify a change in the status of cannula patency.

  2. Study of Airflow Out of the Mouth During Speech.

    ERIC Educational Resources Information Center

    Catford, J.C.; And Others

    Airflow outside the mouth is diagnostic of articulatory activities in the vocal tract, both total volume-velocity and the distribution of particle velocities over the flow-front being useful for this purpose. A system for recording and displaying both these types of information is described. This consists of a matrix of l6 hot-wire anemometer flow…

  3. Evaluation of respiratory system mechanics in mice using the forced oscillation technique.

    PubMed

    McGovern, Toby K; Robichaud, Annette; Fereydoonzad, Liah; Schuessler, Thomas F; Martin, James G

    2013-05-15

    The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.

  4. Estimation of the site of wheezes in pulmonary emphysema: airflow simulation study by the use of A 4D lung model.

    PubMed

    Kitaoka, Hiroko; Cok, Salim

    2013-01-01

    Adventitious lung sounds in pulmonary emphysema, wheezes, are continuous musical sounds during expiration with 400 Hz or more. The textbook tells that expiratory airflow limitation in emphysema occurs at the peripheral airways and that wheezes are generated there. We have recently proposed a novel hypothesis based on image analysis and theoretical consideration that expiratory airflow limitation in emphysema occurs at the intra-mediastinal airway (trachea, main bronchi, and right lobar bronchi) due to compression by overinflated lungs. We performed expiratory airflow simulation by the use of a 4D finite element lung model, and found periodical vortex release with 300-900 Hz at the end of protrusion of the the tracheal posterior wall. Relationship between the peak frequency of pressure fluctuation and airflow velocity was in agreement with Strahal's law either in normal or emphysematous condition. Contrarily, airflow simulation in a small bronchus (1.5 mm in diameter) indicated no apparent periodic vortex release.

  5. Relationship between Pulmonary Airflow and Resistance in Patients with Airway Narrowing Using An 1-D Network Resistance and Compliance Model

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.

  6. Toward smart Nebulization: Engineering acoustic airflow to penetrate maxillary sinuses in chronic rhinosinusitis.

    PubMed

    Moghadam, Shima Jowhari; Navarro, Laurent; Leclerc, Lara; Hodin, Sophie; Pourchez, Jérémie

    2018-07-30

    Treating chronic rhinosinusitis (CRS) by nebulization requires an airflow capable to deliver medication to deep target sites beyond the nasal valve. Fixed frequency acoustic airflow technology is currently available, mainly as post-surgical therapy, but still have not been able to realize the full potential of direct nose to paranasal sinuses delivery. Reported herein are the application of frequency sweep acoustic airflow and the optimization of its frequency range, sweep cycle duration and intensity. The resonant frequencies of the model's maxillary sinuses can be estimated using the Helmholtz resonator theory. Results indicated a resonant frequency of 479 Hz for the right maxillary sinus and one of 849 Hz for the left maxillary sinus. The highest intrasinus deposition within the experiments are from sweep cycle duration of 1 s, intensity of 80 dB, and frequency range of 100-850 Hz. The optimal range of frequency determined from experiments is in good agreement with the corresponding frequency range obtained from the Helmholtz resonator theory. Results reveal a significantly enhanced maxillary sinus drug deposition. This technique affords the potential of treating CRS. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Swafford, Timothy W.; Reddy, T. S. R.

    1991-01-01

    A compressible flow code that can predict the nonlinear unsteady aerodynamics associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions, although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior.

  8. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines.

    PubMed

    Zhou, L; Goodman, G; Martikainen, A

    2013-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines.

  9. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    PubMed

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate.

    PubMed

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L C C

    2017-03-15

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  11. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    NASA Astrophysics Data System (ADS)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-03-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  12. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    PubMed Central

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-01-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186

  13. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  14. Thermal performance characterization of residential wall systems using a calibrated hot box with airflow induced by differential pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D.C.; Ober, D.G.; Goodrow, J.T.

    1995-09-01

    ASTM E 283 ad ASTM E 1424 in conjunction with ASTM C 976 were used to study the effect of airflow on thermal performance of the wall. A typical residential 2 {times} 4 stud wall was constructed and placed on top of a subfloor, making a 2.44 {times} 2.74 m (8 by 9 ft) test specimen. This base wall assembly was then covered with two types of XPS sheathing, various housewraps, a 15{number_sign} felt, and a polyethylene vapor retarder film in 40 different configurations and tested individually per ASTM E 283 and per ASTM C 976. For 24 of themore » 40 C 976 tests, a differential pressure was induced across the test wall as per and ASTM E 1424. Airflows ranged from undetectable airflow at 0 {center_dot} Pa {Delta}P to 1.63 L/s {center_dot} m{sup 2} for the base wall assembly alone. Difference in airflow resistance performance between the ASTM E 283 and ASTM E 1424 test methods were noted. Thermal testing results incorporating both ASTM C 976 and ASTM E 1424 for tests 1--28 produced apparent thermal conductances (C-values) in the range of 0.40 W/m{sup 2} {center_dot} K for a nondetectable airflow level to 1.81 W/m{sup 2} {center_dot} K for an airflow of 1.53 L/s {center_dot} m{sup 2} for the base wall assembly alone with a 20-Pa {Delta}P. The calculated C-value for this base wall assembly was 0.40 W/m{sup 2} {center_dot} K. Test results reveal that airflow rates as low as 0.2 L/s {center_dot} m{sup 2} could produce a 46% increase in apparent C-value. Similar thermal performance differences were revealed when thicker shiplap XPS sheathing was used. Tests were also conducted using an Air-Tight Drywall configuration showing the effect of wind washing on thermal performance. By sealing the gypsum drywall on the base wall assembly tested, the apparent C-value, when exposed to a 12.5 Pa wind pressure, was found to be equivalent to a base wall assembly configuration which allows 0.15 L/s {center_dot} m{sup 2} airflow to penetrate completely through.« less

  15. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model

    EPA Science Inventory

    In order to achieve both manageable simulation and local accuracy of airflow and nanoparticle deposition in a representative human tracheobronchial (TB) region, the complex airway network was decomposed into adjustable triple-bifurcation units, spreading axially and laterally. Gi...

  16. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  17. Sensing fluctuating airflow with spider silk

    PubMed Central

    2017-01-01

    The ultimate aim of flow sensing is to represent the perturbations of the medium perfectly. Hundreds of millions of years of evolution resulted in hair-based flow sensors in terrestrial arthropods that stand out among the most sensitive biological sensors known, even better than photoreceptors which can detect a single photon (10−18–10−19 J) of visible light. These tiny sensory hairs can move with a velocity close to that of the surrounding air at frequencies near their mechanical resonance, despite the low viscosity and low density of air. No man-made technology to date demonstrates comparable efficiency. Here we show that nanodimensional spider silk captures fluctuating airflow with maximum physical efficiency (Vsilk/Vair ∼ 1) from 1 Hz to 50 kHz, providing an effective means for miniaturized flow sensing. Our mathematical model shows excellent agreement with experimental results for silk with various diameters: 500 nm, 1.6 µm, and 3 µm. When a fiber is sufficiently thin, it can move with the medium flow perfectly due to the domination of forces applied to it by the medium over those associated with its mechanical properties. These results suggest that the aerodynamic property of silk can provide an airborne acoustic signal to a spider directly, in addition to the well-known substrate-borne information. By modifying a spider silk to be conductive and transducing its motion using electromagnetic induction, we demonstrate a miniature, directional, broadband, passive, low-cost approach to detect airflow with full fidelity over a frequency bandwidth that easily spans the full range of human hearing, as well as that of many other mammals. PMID:29087323

  18. [Bronchiolitis with airflow obstruction in adults].

    PubMed

    Fournier, M; Marceau, A; Dauriat, G; Camuset, J; Groussard, O

    2004-04-01

    The purpose of this paper is twofold: to describe the clinical and anatomical characteristics of bronchiolitis associated with airflow obstruction in adults; to present through a clinical approach, a classification of the main aetiologies or pathological frames associated with that entity. The constrictive bronchiolitis type is the most frequently encountered. On clinical grounds, cough, crackles, and a progressive dyspnea develop usually within a few weeks. Radiological signs of bronchiolar abnormalities are best visualized on high resolution expiratory CT scan. The decrease in maximal airflows and oxygen tension is of limited amplitude and poorly reversible with bronchodilators. Diagnosis is easily performed when a causative event, or the clinical context, can be delineated: inhalation of toxic fumes, diffuse bronchiectasis, rheumatoid arthritis, lung or bone marrow transplantation. Delayed formation of bronchiectasis in the central airways is common. The treatment is not standardized; corticosteroids are usually prescribed as a first line therapy; the benefit of the addition of, or substitution with immunosuppressive drugs has not been adequately evaluated, but is, on the mean, of limited amplitude. Recent advances in the identification of inhaled agents toxic for the distal airways help in establishing appropriate measures of prevention. When the aetiology of the bronchiolitis cannot be suspected, extensive search of a causative agent should be performed, including microbial and mineral analysis of bronchoalveolar products. Negative results should lead to perform a surgical lung biopsy. The study of chronic rejection processes in animal models of lung transplantation, the identification of inhibitory factors of bronchiolar fibrogenesis, and the efficacy of some anti-cytokines on inflammatory processes could result in new therapeutic approaches.

  19. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  20. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies.

    PubMed

    Miranda-Fuentes, Antonio; Rodríguez-Lizana, Antonio; Gil, Emilio; Agüera-Vega, J; Gil-Ribes, Jesús A

    2015-12-15

    Olive is a key crop in Europe, especially in countries around the Mediterranean Basin. Optimising the parameters of a spray is essential for sustainable pesticide use, especially in high-input systems, such as the super-intensive hedgerow system. Parameters may be optimised by adjusting the applied volume and airflow rate of sprays, in addition to the liquid to air proportion and the relationship between air velocity and airflow rate. Two spray experiments using a commercial airblast sprayer were conducted in a super-intensive orchard to study how varying the liquid volume rate (testing volumes of 182, 619, and 1603 l ha(-1)) and volumetric airflow rate (with flow rates of 11.93, 8.90, and 6.15 m(3) s(-1)) influences the coverage parameters and the amount and distribution of deposits in different zones of the canopy.. Our results showed that an increase in the application volume raised the mean deposit and percentage coverage, but decreased the application efficiency, spray penetration, and deposit homogeneity. Furthermore, we found that the volumetric airflow rate had a lower influence on the studied parameters than the liquid volume; however, an increase in the airflow rate improved the application efficiency and homogeneity to a certain threshold, after which the spray quality decreased. This decrease was observed in the high-flow treatment. Our results demonstrate that intermediate liquid volume rates and volumetric airflow rates are required for the optimal spraying of pesticides on super-intensive olive crops, and would reduce current pollution levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Implications of Airflow Dynamics and Soft-Tissue Reconstructions for the Heat Exchange Potential of Dinosaur Nasal Passages

    NASA Astrophysics Data System (ADS)

    Bourke, Jason Michael

    This study seeks to restore the internal anatomy within the nasal passages of dinosaurs via the use of comparative anatomical methods along with computational fluid dynamic simulations. Nasal airway descriptions and airflow simulations are described for extant birds, crocodylians, and lizards. These descriptions served as a baseline for airflow within the nasal passages of diapsids. The presence of shared airflow and soft-tissue properties found in the nasal passages of extant diapsids, were used to restore soft tissues within the airways of dinosaurs under the assumption that biologically unfeasible airflow patterns (e.g., lack of air movement in olfactory recess) can serve as signals for missing soft tissues. This methodology was tested on several dinosaur taxa. Restored airways in some taxa revealed the potential presence and likely shape of nasal turbinates. Heat transfer efficiency was tested in two dinosaur species with elaborated nasal passages. Results of that analysis revealed that dinosaur noses were efficient heat exchangers that likely played an integral role in maintaining cephalic thermoregulation. Brain cooling via nasal expansion appears to have been necessary for dinosaurs to have achieved their immense body sizes without overheating their brains.

  2. Airflow in Tracheobronchial Tree of Subjects with Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method.

    PubMed

    Qi, Shouliang; Zhang, Baihua; Yue, Yong; Shen, Jing; Teng, Yueyang; Qian, Wei; Wu, Jianlin

    2018-03-01

    Tracheal Bronchus (TB) is a rare congenital anomaly characterized by the presence of an abnormal bronchus originating from the trachea or main bronchi and directed toward the upper lobe. The airflow pattern in tracheobronchial trees of TB subjects is critical, but has not been systemically studied. This study proposes to simulate the airflow using CT image based models and the computational fluid dynamics (CFD) method. Six TB subjects and three health controls (HC) are included. After the geometric model of tracheobronchial tree is extracted from CT images, the spatial distribution of velocity, wall pressure, wall shear stress (WSS) is obtained through CFD simulation, and the lobar distribution of air, flow pattern and global pressure drop are investigated. Compared with HC subjects, the main bronchus angle of TB subjects and the variation of volume are large, while the cross-sectional growth rate is small. High airflow velocity, wall pressure, and WSS are observed locally at the tracheal bronchus, but the global patterns of these measures are still similar to those of HC. The ratio of airflow into the tracheal bronchus accounts for 6.6-15.6% of the inhaled airflow, decreasing the ratio to the right upper lobe from 15.7-21.4% (HC) to 4.9-13.6%. The air into tracheal bronchus originates from the right dorsal near-wall region of the trachea. Tracheal bronchus does not change the global pressure drop which is dependent on multiple variables. Though the tracheobronchial trees of TB subjects present individualized features, several commonalities on the structural and airflow characteristics can be revealed. The observed local alternations might provide new insight into the reason of recurrent local infections, cough and acute respiratory distress related to TB.

  3. Application of Shark Skin Flow Control Techniques to Airflow

    NASA Astrophysics Data System (ADS)

    Morris, Jackson Alexander

    Due to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark's body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air. To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.

  4. Determinants of airflow obstruction in severe alpha‐1‐antitrypsin deficiency

    PubMed Central

    DeMeo, Dawn L; Sandhaus, Robert A; Barker, Alan F; Brantly, Mark L; Eden, Edward; McElvaney, N Gerard; Rennard, Stephen; Burchard, Esteban; Stocks, James M; Stoller, James K; Strange, Charlie; Turino, Gerard M; Campbell, Edward J; Silverman, Edwin K

    2007-01-01

    Background Severe α1‐antitrypsin (AAT) deficiency is an autosomal recessive genetic condition associated with an increased but variable risk for chronic obstructive pulmonary disease (COPD). A study was undertaken to assess the impact of chronic bronchitis, pneumonia, asthma and sex on the development of COPD in individuals with severe AAT deficiency. Methods The AAT Genetic Modifier Study is a multicentre family‐based cohort study designed to study the genetic and epidemiological determinants of COPD in AAT deficiency. 378 individuals (age range 33–80 years), confirmed to be homozygous for the SERPINA1 Z mutation, were included in the analyses. The primary outcomes of interest were a quantitative outcome, forced expiratory volume in 1 s (FEV1) percentage predicted, and a qualitative outcome, severe airflow obstruction (FEV1 <50% predicted). Results In multivariate analysis of the overall cohort, cigarette smoking, sex, asthma, chronic bronchitis and pneumonia were risk factors for reduced FEV1 percentage predicted and severe airflow obstruction (p<0.01). Index cases had lower FEV1 values, higher smoking histories and more reports of adult asthma, pneumonia and asthma before age 16 than non‐index cases (p<0.01). Men had lower pre‐ and post‐bronchodilator FEV1 percentage predicted than women (p<0.0001); the lowest FEV1 values were observed in men reporting a history of childhood asthma (26.9%). This trend for more severe obstruction in men remained when index and non‐index groups were examined separately, with men representing the majority of non‐index individuals with airflow obstruction (71%). Chronic bronchitis (OR 3.8, CI 1.8 to 12.0) and a physician's report of asthma (OR 4.2, CI 1.4 to 13.1) were predictors of severe airflow obstruction in multivariate analysis of non‐index men but not women. Conclusion In individuals with severe AAT deficiency, sex, asthma, chronic bronchitis and pneumonia are risk factors for severe COPD, in addition

  5. Carrier-envelope phase control by a composite plate.

    PubMed

    Ell, Richard; Birge, Jonathan R; Araghchini, Mohammad; Kärtner, Franz X

    2006-06-12

    We demonstrate a new concept to vary the carrier-envelope phase of a mode-locked laser by a composite plate while keeping all other pulse parameters practically unaltered. The effect is verified externally in an interferometric autocorrelator, as well as inside the cavity of an octave-spanning femtosecond oscillator. The carrier-envelope frequency can be shifted by half the repetition rate with negligible impact on pulse spectrum and energy.

  6. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.

    PubMed

    Cheng, Y; Lin, Z

    2016-04-01

    Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet-dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Influence of airflow rate and substrate nature on heterogeneous struvite precipitation.

    PubMed

    Saidou, H; Ben Moussa, S; Ben Amor, M

    2009-01-01

    In wastewater treatment plants a hard scale consisting of struvite crystals can be formed, in pipes and recirculation pumps, during anaerobic digestion of wastewater. This study was conducted to evaluate the effect of airflow rate and substrate nature on nucleation type, induction period and supersaturation coefficient during struvite precipitation. A crystallization reactor similar to that designed for calcium carbonate precipitation was used. The pH of synthetic wastewater solution was increased by air bubbling. Experimental results indicated that the airflow increased heterogeneous precipitation of struvite. The susceptibility to scale formation was more important on polyamide and polyvinyl chloride than on stainless steel. In all cases, X-ray diffraction and infrared spectroscopy showed that the precipitated solid phase was solely struvite. No difference in crystal morphology was observed. However, at similar experimental conditions, the particle size of struvite was higher for stainless-steel material than that for plastic materials.

  8. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines

    PubMed Central

    Zhou, L.; Goodman, G.; Martikainen, A.

    2015-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines. PMID:26388684

  9. Self-sustained oscillations of a sinusoidally-deformed plate

    NASA Astrophysics Data System (ADS)

    Muriel, Diego F.; Cowen, Edwin A.

    2015-11-01

    Motivated by energy harvesting, the oscillatory motion of a deformed elastic material with aspect ratio Length/Width=2, immerse in an incompressible flow is studied experimentally. To induce the wave-like deformation a polycarbonate sheet is placed under longitudinal compression with external forcing provided by equispaced tension lines anchored in a frame. No additional constrains are placed in the material. Based on quantitative image-based edge detection, ADV, and PIV measurements, we document the existence of three natural states of motion. Bellow a critical velocity, a stable state presents a sinusoidal-like deformation with weak small perturbations. Above a critical velocity, instability appears in the form of a traveling wave with predictable dominant frequency accompanied by higher-order harmonics. As the flow velocity increases the instability converges faster to its limit cycle in the phase plane (e.g., vertical velocity and position), until the stable oscillatory mode transitions to chaos showing a broad energy spectrum and unstable limit cycle. The underlying objective is to induce the onset of the instability at lower critical velocities for higher bending rigidities, promoting possible energy extraction and increasing the range at which stable oscillations appear.

  10. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.

    2010-02-01

    This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.

  11. Grading Severity of Productive Cough Based on Symptoms and Airflow Obstruction.

    PubMed

    Vazquez Guillamet, Rodrigo; Petersen, Hans; Meek, Paula; Sood, Akshay; Tesfaigzi, Yohannes

    2018-04-26

    The binary approach to the diagnosis of Chronic Bronchitis (CB) is a major barrier to the study of the disease. We investigated whether severity of productive cough can be graded using symptoms and presence of fixed airflow obstruction (FAO), and whether the severity correlates with health status, exposures injurious to the lung, biomarkers of inflammation, and measures of airway wall thickening. Findings from a cross-sectional sample of 1,422 participants from the Lovelace Smokers Cohort (LSC) were validated in 4,488 participants from the COPDGene cohort (COPDGene). Health status was based on the St. George's Respiratory Questionnaire, and Medical Outcomes Study 36-Item Short Form Health Survey. Circulating CC16 levels were quantified by ELISA (LSC), and airway wall thickening was measured using computed tomography (COPDGene). FAO was defined as postbronchodilator FEV 1 /FVC <0.7. The presence and duration of productive cough and presence of FAO or wheeze were graded into Healthy Smokers, Productive Cough (PC), Chronic PC, PC with Signs of Airflow Obstruction, and Chronic PC with Signs of Airflow Obstruction. In both cohorts, higher grade of severity correlated with lower health status, greater frequency of injurious exposures, greater airway wall thickening, and lower circulating CC16 levels. Further, longitudinal follow-up suggested that disease resolution can occur at every grade of severity but is more common in groups of lower severity and least common once airway remodeling develops. Therefore, severity of productive cough can be graded based on symptoms and FAO and early intervention may benefit patients by changing the natural history of disease.

  12. Airflow and temperature distribution inside the maxillary sinus: a computational fluid dynamics simulation.

    PubMed

    Zang, Hongrui; Liu, Yingxi; Han, Demin; Zhang, Luo; Wang, Tong; Sun, Xiuzhen; Li, Lifeng

    2012-06-01

    The airflow velocity and flux in maxillary sinuses were much lower than those in the nasal cavity, and the temperature in maxillary sinuses was much higher than the temperature in the middle meatus. With the increase of maximum diameter of the ostium, the above indices changed little. The purpose of the paper was to investigate, first, the flow and temperature distribution inside normal maxillary sinus in inspiration, and second, flow and temperature alteration with the increase of maximum ostium diameter. Three-dimensional models with nasal cavities and bilateral maxillary sinuses were constructed for computational fluid dynamics analysis. Virtual surgeries were implemented for the maxillary ostium, the maximum diameters of which were 8, 10, 12, and 15 mm, respectively. The finite volume method was used for numerical simulation. The indices of velocity, pressure, vector, and temperature were processed and compared between models. The airflow velocity in maxillary sinuses (average velocity 0.062 m/s) was much lower than that in the middle meatus (average velocity 3.26 m/s). With the increase of ostium diameter, airflow characteristics distributed in the maxillary sinuses changed little. The normal temperature in the maxillary sinus remained almost constant at 34°C and changed little with the increase of ostium diameter.

  13. An In Silico Subject-Variability Study of Upper Airway Morphological Influence on the Airflow Regime in a Tracheobronchial Tree

    PubMed Central

    Chen, Xiaole; Lin, Jiang

    2017-01-01

    Determining the impact of inter-subject variability on airflow pattern and nanoparticle deposition in the human respiratory system is necessary to generate population-representative models, useful for several biomedical engineering applications. Thus, the overall research objective is to quantitatively correlate geometric parameters and coupled transport characteristics of air, vapor, and nanoparticles. Focusing on identifying morphological parameters that significantly influence airflow field and nanoparticle transport, an experimentally validated computational fluid-particle dynamics (CFPD) model was employed to simulate airflow pattern in three human lung-airway configurations. The numerical results will be used to generate guidelines to construct a representative geometry of the human respiratory system. PMID:29144436

  14. Differentiating between adductor and abductor spasmodic dysphonia using airflow interruption

    PubMed Central

    Hoffman, Matthew R.; Jiang, Jack J.; Rieves, Adam L.; McElveen, Kelsey A.B.; Ford, Charles N.

    2009-01-01

    Objective To measure the laryngeal resistance (RL), subglottal pressure (Ps), and mean flow rate (MFR) of adductor (ADSD) and abductor (ABSD) spasmodic dysphonia patients using the airflow interrupter. Methods The RL of six ABSD and seven ADSD patients was measured using the airflow interrupter, a noninvasive device designed to measure MFR and Ps via mechanical balloon valve interruption. Subjects performed ten trials at each of two intensity levels, with each trial consisting of a sustained /a/ during which phonation was interrupted for 500 ms. Laryngeal resistance was calculated as subglottal pressure divided by airflow. Results Mean RL for the ADSD and ABSD subtypes at 65 dB were 24.78 cmH2O/l/s and 14.51 cmH2O/l/s, respectively (p = 0.04). Mean RL at 70 dB were 40.02 cmH2O/l/s and 15.84 cmH2O/l/s (p = 0.014). Ps for the ADSD and ABSD subtypes at 65 dB were 10.23 cmH2O and 8.32 cmH2O, respectively (p = 0.582). At the 70 dB level, Ps were 12.39 cmH2O and 11.78 cmH2O (p = 0.886). MFR for the ADSD and ABSD subtypes at 65 dB were 435 ml/s and 746 ml/s (p = 0.205). Mean MFR at 70 dB were 518 ml/s and 848 ml/s (p = 0.198). Conclusion Noninvasive measurements of RL may be useful for differentiating between ADSD and ABSD. This simple objective test which produces a quantitative output could be used to evaluate laryngeal function in patients with spasmodic dysphonia. PMID:19554636

  15. Respiration and heartbeat signal detection from airflow at airway in rat by catheter flow sensor with temperature compensation function

    NASA Astrophysics Data System (ADS)

    Hasegawa, Y.; Kawaoka, H.; Yamada, T.; Matsushima, M.; Kawabe, T.; Shikida, M.

    2017-12-01

    We previously proposed an evaluation method for detecting both respiration and heartbeat signals from the airflow at the mouth (Kawaoka et al 201518th Int. Conf. on Solid-State Sensors, Actuators and Microsystems; Kawaoka et al 2015 IEEE Sensors; Kawaoka et al 2016 Technical Digest IEEE Micro Electro Mechanical Systems Conf.). In the current study, we developed a catheter flow sensor with temperature compensation that uses MEMS technologies and used it to directly detect the breathing airflow in the airway of a rat. The temperature sensors were integrated with the catheter flow sensor. Heaters working as airflow and temperature sensors were produced on polymer film by using the same fabrication process so that the temperature coefficients of their resistances would coincide. As a result, the variation in sensor outputs due to the airflow temperature changes ranging from 20 °C to 34 °C was suppressed to less than 2.5%. The developed catheter flow sensor was inserted into the airway of a rat to detect both respiration and heartbeat signals. The accuracy of the breathing airflow measurements was improved thanks to the temperature compensation. The tidal volume variations between the expired and inspired air were suppressed to within 5%. Heartbeat signal information was extracted from the measured breathing waveforms by applying a discrete Fourier transform.

  16. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  17. Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Traylen, Stephen

    2000-03-01

    .6 to 1.0 Ma along the entire plate boundary, followed by a resumption of trench-normal subduction along the southern half of the Rivera-North America plate boundary after 1.0 Ma. Motion of the Rivera plate relative to the underlying mantle since 10 Ma has oscillated between periods of landward motion and seaward motion. The evidence suggests that the torque exerted by slab pull on this young and hot oceanic plate is either minimal or is effectively counterbalanced by forces that resist its motion.

  18. The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: Implications on the composting process.

    PubMed

    Mejias, Laura; Komilis, Dimitrios; Gea, Teresa; Sánchez, Antoni

    2017-07-01

    The aim of this study was to assess the effect of the airflow and of the aeration mode on the composting process of non-urban organic wastes that are found in large quantities worldwide, namely: (i) a fresh, non-digested, sewage sludge (FSS), (ii) an anaerobically digested sewage sludge (ADSS), (iii) cow manure (CM) and (iv) pig sludge (PS). This assessment was done using respirometric indices. Two aeration modes were tested, namely: (a) a constant air flowrate set at three different initial fixed airflow rates, and (b) an oxygen uptake rate (OUR)-controlled airflow rate. The four wastes displayed the same behaviour namely a limited biological activity at low aeration, while, beyond a threshold value, the increase of the airflow did not significantly increase the dynamic respiration indices (DRI 1 max , DRI 24 max and AT 4 ). The threshold airflow rate varied among wastes and ranged from 42NL air kg -1 DMh -1 for CM and from 67 to 77NL air kg -1 DMh -1 for FSS, ADSS and PS. Comparing the two aeration modes tested (constant air flow, OUR controlled air flow), no statistically significant differences were calculated between the respiration activity indices obtained at those two aeration modes. The results can be considered representative for urban and non-urban organic wastes and establish a general procedure to measure the respiration activity without limitations by airflow. This will permit other researchers to provide consistent results during the measurement of the respiration activity. Results indicate that high airflows are not required to establish the maximum respiration activity. This can result in energy savings and the prevention of off-gas treatment problems due to the excessive aeration rate in full scale composting plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. FEV1/FVC and FEV1 for the assessment of chronic airflow obstruction in prevalence studies: do prediction equations need revision?

    PubMed

    Roche, Nicolas; Dalmay, François; Perez, Thierry; Kuntz, Claude; Vergnenègre, Alain; Neukirch, Françoise; Giordanella, Jean-Pierre; Huchon, Gérard

    2008-11-01

    Little is known on the long-term validity of reference equations used in the calculation of FEV(1) and FEV(1)/FVC predicted values. This survey assessed the prevalence of chronic airflow obstruction in a population-based sample and how it is influenced by: (i) the definition of airflow obstruction; and (ii) equations used to calculate predicted values. Subjects aged 45 or more were recruited in health prevention centers, performed spirometry and fulfilled a standardized ECRHS-derived questionnaire. Previously diagnosed cases and risk factors were identified. Prevalence of airflow obstruction was calculated using: (i) ATS-GOLD definition (FEV(1)/FVC<0.70); and (ii) ERS definition (FEV(1)/FVCairflow obstruction was 8.71% with ATS-GOLD definition and 6.40% with ERS definition and ECCS predicted values. The ERS definition with predicted values derived from the studied population provided a 7.96% prevalence. Severity distribution of airflow obstruction was also influenced by the equation used to calculate predicted values of FEV(1). Prevalence and severity of chronic airflow obstruction are influenced not only by the definition used but also by equations used to calculate predicted FEV(1)/FVC and FEV(1) values. These equations likely need to be periodically revised.

  20. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models.

    PubMed

    Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H

    2009-05-01

    The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.

  1. Parameter design considerations for an oscillator IR-FEL

    NASA Astrophysics Data System (ADS)

    Jia, Qi-Ka

    2017-01-01

    An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)

  2. Risk factors associated with persistent airflow limitation in severe or difficult-to-treat asthma: insights from the TENOR study.

    PubMed

    Lee, June H; Haselkorn, Tmirah; Borish, Larry; Rasouliyan, Lawrence; Chipps, Bradley E; Wenzel, Sally E

    2007-12-01

    The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens study is among the largest to assess persistent airflow limitation and the first to evaluate a wide range of potential risk factors in high-risk patients with severe or difficult-to-treat asthma. A better understanding is needed regarding factors associated with persistent airway obstruction; this study was performed to determine demographic and clinical characteristics associated with persistent airflow limitation. Data from adult patients (>or= 18 years old) with severe or difficult-to-treat asthma were evaluated. Patients with COPD, obesity with a restrictive respiratory pattern, or a >or= 30 pack-year history of smoking were excluded. Patients with persistent airflow limitation (postbronchodilator FEV1/FVC ratio airflow limitation. Of 1,017 patients, 612 patients (60%) showed evidence of persistent airflow limitation. Risk factors were as follows: older age (odds ratio [OR] per 10 years, 1.4; 95% confidence interval [CI], 1.3 to 1.6); male gender (OR, 4.5; 95% CI, 2.3 to 8.5); black ethnicity (OR, 2.2; 95% CI, 1.3 to 3.8); current or past smoking (OR, 3.9; 95% CI, 1.8 to 8.6; and OR, 1.6; 95% CI, 1.2 to 2.3, respectively); aspirin sensitivity (OR, 1.5; 95% CI, 1.0 to 2.4); and longer asthma duration (OR per 10 years, 1.6; 95% CI, 1.4 to 1.8). Protective factors were Hispanic ethnicity, higher education, family history of atopic dermatitis, pet(s) in the home, and dust sensitivity. Persistent airflow limitation is prevalent in patients with severe or difficult-to-treat asthma and is associated with identifiable clinical and demographic characteristics.

  3. Changes in Peak Airflow Measurement During Maximal Cough After Vocal Fold Augmentation in Patients With Glottic Insufficiency.

    PubMed

    Dion, Gregory R; Achlatis, Efstratios; Teng, Stephanie; Fang, Yixin; Persky, Michael; Branski, Ryan C; Amin, Milan R

    2017-11-01

    Compromised cough effectiveness is correlated with dysphagia and aspiration. Glottic insufficiency likely yields decreased cough strength and effectiveness. Although vocal fold augmentation favorably affects voice and likely improves cough strength, few data exist to support this hypothesis. To assess whether vocal fold augmentation improves peak airflow measurements during maximal-effort cough following augmentation. This case series study was conducted in a tertiary, academic laryngology clinic. Participants included 14 consecutive individuals with glottic insufficiency due to vocal fold paralysis, which was diagnosed via videostrobolaryngoscopy as a component of routine clinical examination. All participants who chose to proceed with augmentation were considered for the study whether office-based or operative augmentation was planned. Postaugmentation data were collected only at the first follow-up visit, which was targeted for 14 days after augmentation but varied on the basis of participant availability. Data were collected from June 5, 2014, to October 1, 2015. Data analysis took place between October 2, 2015, and March 3, 2017. Peak airflow during maximal volitional cough was quantified before and after vocal fold augmentation. Participants performed maximal coughs, and peak expiratory flow during the maximal cough was captured according to American Thoracic Society guidelines. Among the 14 participants (7 men and 7 women), the mean (SD) age was 62 (18) years. Three types of injectable material were used for vocal fold augmentation: carboxymethylcellulose in 5 patients, hyaluronic acid in 5, and calcium hydroxylapatite in 4. Following augmentation, cough strength increased in 11 participants and decreased cough strength was observed in 3. Peak airflow measurements during maximal cough varied from a decrease of 40 L/min to an increase of 150 L/min following augmentation. When preaugmentation and postaugmentation peak airflow measurements were compared, the

  4. Vapor-Generator Wand Helps To Reveal Airflow Patterns

    NASA Technical Reports Server (NTRS)

    Robelen, David B.

    1993-01-01

    In vapor-generator wand, liquid propylene glycol flows into electrically heated stainless-steel tube. Liquid boils in heated tube, and emerging vapor forms dense, smoke-like fog used to make airflow patterns visible. Built in variety of sizes, suitable for uses ranging from tabletop demonstrations to research in wind tunnels. For best viewing, plume illuminated by bright, focused incandescent spotlight at right angle to viewing direction. Viewing further enhanced by coating walls of test chamber with flat, dark color to minimize reflections and increase contrast.

  5. Periodontitis is related to lung volumes and airflow limitation: a cross-sectional study.

    PubMed

    Holtfreter, Birte; Richter, Stefanie; Kocher, Thomas; Dörr, Marcus; Völzke, Henry; Ittermann, Till; Obst, Anne; Schäper, Christoph; John, Ulrich; Meisel, Peter; Grotevendt, Anne; Felix, Stephan B; Ewert, Ralf; Gläser, Sven

    2013-12-01

    This study aimed to assess the potential association of periodontal diseases with lung volumes and airflow limitation in a general adult population. Based on a representative population sample of the Study of Health in Pomerania (SHIP), 1463 subjects aged 25-86 years were included. Periodontal status was assessed by clinical attachment loss (CAL), probing depth and number of missing teeth. Lung function was measured using spirometry, body plethysmography and diffusing capacity of the lung for carbon monoxide. Linear regression models using fractional polynomials were used to assess associations between periodontal disease and lung function. Fibrinogen and high-sensitivity C-reactive protein (hs-CRP) were evaluated as potential intermediate factors. After full adjustment for potential confounders mean CAL was significantly associated with variables of mobile dynamic and static lung volumes, airflow limitation and hyperinflation (p<0.05). Including fibrinogen and hs-CRP did not change coefficients of mean CAL; associations remained statistically significant. Mean CAL was not associated with total lung capacity and diffusing capacity of the lung for carbon monoxide. Associations were confirmed for mean probing depth, extent measures of CAL/probing depth and number of missing teeth. Periodontal disease was significantly associated with reduced lung volumes and airflow limitation in this general adult population sample. Systemic inflammation did not provide a mechanism linking both diseases.

  6. Airflow resistance and CO2 rebreathing properties of anti-asphyxia pillows designed for epilepsy.

    PubMed

    Catcheside, Peter G; Mohtar, Aaron A; Reynolds, Karen J

    2014-06-01

    Seizure related unconscious face-down positioning could contribute to sudden unexpected death in epilepsy via asphyxia. Low airflow resistance lattice foam pillows have been advocated for this group. However, data to support this approach remain lacking, and low airflow resistance per se may not negate asphyxia risk from expired gas rebreathing. This study was designed to compare the airflow resistance and CO2 rebreathing properties of lattice vs conventional pillows. Airflow resistance and inspired CO2 levels during replicate 10 min periods of simulated adult ventilation and CO2 rebreathing were compared between cotton, latex and two lattice pillows designed for use in epilepsy (one commercially available, one prototype). Kaplan-Meier and Cox regression analyses were used to examine the hazard of exceeding 10% inspired CO2 within 10-min of rebreathing. Inspiratory resistance was significantly lower in the commercially available and prototype lattice compared to cotton and latex pillows (mean±SD; 3.2±0.8, 2.6±0.4, 26.1±3.5, 4.6±0.4 cm H2O l(-1)s respectively at 0.2l s(-1)). During simulated rebreathing, inspired CO2 exceeded 10% within 2 min with cotton and latex pillows, compared to an upper asymptote around 8-9% at 10 min with lattice pillows. The hazard of exceeding 10% inspired CO2 was therefore markedly reduced with lattice compared to cotton and latex pillows (hazard ratio vs cotton pillow; commercial 0.04 [0.01-0.18], prototype 0.08 [0.02-0.26], latex 0.79 [0.33-1.87]). Conventional pillows can rapidly accumulate potentially life-threatening CO2 levels during simulated rebreathing. Lattice pillows appear to reduce asphyxia risk but accumulated CO2 may still reach levels threatening to health and survival. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    NASA Astrophysics Data System (ADS)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  8. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  9. A Role of Base Plate Jerk Feedback Scheme for Suppression of the Self Vibration in a Pneumatic Positioning Stage

    NASA Astrophysics Data System (ADS)

    Wali, Mohebullah; Nakamura, Yukinori; Wakui, Shinji

    In this study, a positioning stage is considered, which is actuated by four pneumatic cylinders and vertically supported by four coil-type spring isolators. Previously, we realized the base plate jerk feedback (BPJFB) to be analogues to a Master-Slave system which can synchronize the motion of the stage as a Slave to the motion of the base plate as a Master. However, in the case of real positioning, the stage had slightly self oscillation with higher frequency due to the higher gains set to the outer feedback loop controller besides its oscillation due to the natural vibration of the base plate. The self oscillation of stage was misunderstood to be the natural vibration of base plate due to the reaction force. However, according to the experimental results, the BPJFB scheme was able to control both of the mentioned vibrations. Suppression of the self vibration of stage is an interesting phenomenon, which should be experimentally investigated. Therefore, the current study focuses on the suppression of the self vibration of stage by using the BPJFB scheme. The experimental results show that besides operating as a Master-Slave synchronizing system, the PBJFB scheme is able to increase the damping ratio and stiffness of stage against its self vibration. This newly recognized phenomenon contributes to further increase the proportional gain of the outer feedback loop controller. As a result, the positioning speed and stability can be improved.

  10. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function

    PubMed Central

    Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.

    2016-01-01

    for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. PMID:27927961

  11. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.

    PubMed

    Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A

    2016-12-07

    of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. Copyright © 2016 the authors 0270-6474/16/3612448-20$15.00/0.

  12. Numerical Simulation of the Self-Oscillations of the Vocal Folds and of the Resulting Acoustic Phenomena in the Vocal Tract

    NASA Astrophysics Data System (ADS)

    Švancara, P.; Horáček, J.; Švec, J. G.

    The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.

  13. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  14. Dyssynchronous breathing during arm but not leg exercise in patients with chronic airflow obstruction.

    PubMed

    Celli, B R; Rassulo, J; Make, B J

    1986-06-05

    Some patients with chronic airflow obstruction experience dyspnea with mild arm exercise but not with more-intense leg exercise. To investigate why these patients have limited endurance during arm exertion, we studied ventilatory responses to exercise with unsupported arms in 12 patients with chronic airflow obstruction (mean [+/- SD] forced expiratory volume in one second, 0.68 +/- 0.28 liters). Unloaded leg cycling was also studied for comparison. In the five patients who had the most severe airflow obstruction, arm exercise was limited by dyspnea after 3.3 +/- 0.7 minutes, and dyssynchronous thoracoabdominal breathing developed. In the other seven patients, arm exercise was limited by the sensation of muscle fatigue after 6.1 +/- 2.0 minutes (P less than 0.05), and dyssynchronous breathing did not occur. None of the 12 patients had dyssynchronous breathing during unloaded leg cycling. Maximal transdiaphragmatic pressure, a measure of diaphragmatic fatigue, declined similarly after arm and leg exercise in both groups. During unsupported arm work, the accessory muscles of inspiration help position the torso and arms. We hypothesize that the extra demand placed on these muscles during arm exertion leads to early fatigue, an increased load on the diaphragm, and dyssynchronous thoracoabdominal inspirations. This sequence may contribute to dyspnea and limited endurance during upper-extremity exercise.

  15. Response characteristics for thermal and pressure devices commonly used for monitoring nasal and oral airflow during sleep studies.

    PubMed

    Gehring, J M; Cho, J-G; Wheatley, J R; Amis, T C

    2014-03-01

    We examined thermocouple and pressure cannulae responses to oral and nasal airflow using a polyester model of a human face, with patent nasal and oral orifices instrumented with a dual thermocouple (F-ONT2A, Grass) or a dual cannula (0588, Braebon) pressure transducer (± 10 cm H2O, Celesco) system. Tidal airflow was generated using a dual compartment facemask with pneumotachographs (Fleisch 2) connected to the model orifices. During nasal breathing: thermocouple amplitude = 0.38 Ln [pneumotachograph amplitude] + 1.31 and pressure cannula amplitude = 0.93 [pneumotachograph amplitude](2.15); during oral breathing: thermocouple amplitude = 0.44 Ln [pneumotachograph amplitude] + 1.07 and pressure cannula amplitude = 0.33 [pneumotachograph amplitude](1.72); (all range ∼ 0.1-∼ 4.0 L s(-1); r(2) > 0.7). For pneumotachograph amplitudes <1 L s(-1) (linear model) change in thermocouple amplitude/unit change in pneumotachograph amplitude was similar for nasal and oral airflow, whereas nasal pressure cannula amplitude/unit change in pneumotachograph amplitude was almost four times that for oral. Increasing oral orifice area from 0.33 cm(2) to 2.15 cm(2) increased oral thermocouple amplitude/unit change in pneumotachograph amplitude by ∼ 58% but decreased pressure cannula amplitude/unit change in pneumotachograph amplitude by 49%. For pneumotachograph amplitudes up to 1 L s(-1), alterations in inspiratory/expiratory ratios or total respiratory time did not affect the sensitivity of either nasal or oral pressure cannulae or the nasal thermocouple, but the oral thermocouple sensitivity was influenced by respiratory cycle time. Different nasal and oral responses influence the ability of these systems to quantitatively assess nasal and oral airflow and oro-nasal airflow partitioning.

  16. Radiation hydrodynamic effects in two beryllium plates with an idealized aluminum joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkov, S.A.; Mkhitarian, L.S.; Vinokurov, O.A.

    A beryllium capsule formed from two hemispherical shells with a thin bond is one possible ignition target for the National Ignition Facility [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)] Nonuniformities in density, opacity, and interface position at the joint between these hemishells will initiate two-dimensional (2-D) perturbations of the shock wave and material behind the shock as the shock passes through the shell perpendicular to the joint width. Rarefaction of material flow behind the shock front can cause the interface between the shell and joint material to oscillate in position. The amplitude of thesemore » oscillations may be comparable to the joint width. The evolution of these perturbations is studied by numerically simulating shock passage through flat beryllium plates containing aluminum joints. Using the MIMOSA-ND code [D. Sofronov {ital et al.}, Vopr. At. Nauki Tekh., Ser: Mat. modelirovanie fizicheskih processov {bold 2}, 3 (1990)] two different cases are calculated{emdash}a wide (10 {mu}m) and a narrow (1 {mu}m) joint of aluminum between two 150 {mu}m long semiinfinite beryllium plates. Both cases showed good agreement with an analytic representation of the oscillation behavior. For the narrow joint, a special technique allows the calculation of mixing between the joint and surrounding material caused by the Kelvin{endash}Helmholtz instability. {copyright} {ital 1999 American Institute of Physics.}« less

  17. Voluntary Cough Airflow Differentiates Safe versus Unsafe Swallowing in Amyotrophic Lateral Sclerosis

    PubMed Central

    Plowman, Emily K.; Watts, Stephanie A.; Robison, Raele; Tabor, Lauren; Dion, Charles; Gaziano, Joy; Vu, Tuan; Gooch, Clifton

    2016-01-01

    Dysphagia and aspiration are prevalent in amyotrophic lateral sclerosis (ALS) and contribute to malnutrition, aspiration pneumonia and death. Early detection of at risk individuals is critical to ensure maintenance of safe oral intake and optimal pulmonary function. We therefore aimed to determine the discriminant ability of voluntary cough airflow measures in detecting penetration/aspiration status in ALS patients. Seventy individuals with ALS (El-Escorial criteria) completed voluntary cough spirometry testing and underwent a standardized videofluoroscopic swallowing evaluation (VFSE). A rater blinded to aspiration status derived six objective measures of voluntary cough airflow and evaluated airway safety using the Penetration Aspiration Scale (PAS). A between groups ANOVA (safe vs. unsafe swallowers) was conducted and sensitivity, specificity, area under the curve (AUC) and likelihood ratios were calculated. VFSE analysis revealed 24 penetrator/aspirators (PAS ≥3) and 46 non-penetrator/aspirators (PAS ≤2). Cough volume acceleration (CVA), peak expiratory flow rise time (PEFRT), and peak expiratory flow rate (PEFR) were significantly different between airway safety groups (p <0.05) and demonstrated significant discriminant ability to detect the presence of penetration/aspiration with AUC values of: 0.85, 0.81, and 0.78 respectively. CVA < 45.28L/s/s, PEFR <3.97L/s, and PEFRT > 76ms had sensitivities of 91.3%, 82.6% and 73.9% respectively and specificities of 82.2%, 73.9%, and 78.3% for identifying ALS penetrator/aspirators. Voluntary cough airflow measures identified ALS patients at risk for penetration/aspiration and may be a valuable screening tool with high clinical utility. PMID:26803772

  18. Application of a novel bone osteotomy plate leads to reduction in heat-induced bone tissue necrosis in sheep.

    PubMed

    Bekić, Marijo; Davila, Slavko; Hrskanović, Mato; Bekić, Marijana; Seiwerth, Sven; Erdeljić, Viktorija; Capak, Darko; Butković, Vladimir

    2008-12-01

    Previous studies have shown substantial effect thermal damage can have on new bone formation following osteotomy. In this study we evaluated the extent of thermal damage which occurs in four different methods of osteotomy and the effects it can have on bone healing. We further wanted to test whether a special osteotomy plate we constructed can lead to diminished heat generation during osteotomy and enhanced bone healing. The four methods evaluated included osteotomy performed by chisel, a newly constructed osteotomy plate, Gigly and oscillating saw. Twelve adult sheep underwent osteotomy performed on both tibiae. Bone fragments were stabilized using a fixation plate. Callus size was assessed using standard radiographs. Densitometry and histological evaluation were performed at 8 weeks following osteotomy. Temperature measurements were performed both in vivo during the operation, and ex vivo on explanted tibiae. The defects healed without complications and showed typical course of secondary fracture healing with callus ingrowth into the osteotomy gap. Radiographic examination of bone healing showed a tendency towards more callus formation in bones osteotomized using Gigly and oscillating saw, but this difference lacked significance. Use of Gigly and oscillating saw elicited much higher temperatures at the bone cortex surface, which subsequently lead to slightly impaired bone healing according to histological analysis. BMD was equal among all bones. In conclusion, the time required for complete healing of the defect differed depended greatly on the instruments used. The newly constructed osteotomy plate showed best results based on histological findings of capillary and osteoblast density.

  19. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    NASA Astrophysics Data System (ADS)

    Gaylord, David R.; Dawson, Paul J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (<20°) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  20. Distributed porous throat stability bypass to increase the stable airflow range of a Mach 2.5 inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The results of an experimental investigation to increase the stable airflow operating range of a supersonic, mixed-compression inlet with 60-percent internal contraction are presented. Various distributed-porous, throat stability-bypass entrance configurations were tested. In terms of diffuser-exit corrected airflow, a large inlet stable airflow range of about 25 percent was obtained with the optimum configuration if a constant pressure was maintained in the by-pass plenum. The location of the centerbody bleed region had a decided effect on the overall inlet performance. Limited unstart angle-of-attack data are presented.

  1. A smart, intermittent driven particle sensor with an airflow change trigger using a lead zirconate titanate (PZT) cantilever

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Tomimatsu, Yutaka; Kobayashi, Takeshi; Isozaki, Akihiro; Itoh, Toshihiro; Maeda, Ryutaro; Matsumoto, Kiyoshi; Shimoyama, Isao

    2014-02-01

    This paper reports on a smart, intermittent driven particle sensor with an airflow trigger. A lead zirconate titanate cantilever functions as the trigger, which detects an airflow change without requiring a power supply to drive the sensing element. Because an airflow change indicates that the particle concentration has changed, the trigger switches the optical particle counter from sleep mode to active mode only when the particle concentration surrounding the sensor changes. The sensor power consumption in sleep mode is 100 times less than that in the active mode. Thus, this intermittent driven method significantly reduces the total power consumption of the particle sensor. In this paper, we fabricate a prototype of the particle sensor and demonstrate that the optical particle counter can be switched on by the fabricated trigger and thus that the particle concentration can be measured.

  2. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    PubMed

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Impacts of Fluid Dynamics Simulation in Study of Nasal Airflow Physiology and Pathophysiology in Realistic Human Three-Dimensional Nose Models

    PubMed Central

    Lee, Heow Peuh; Gordon, Bruce R.

    2012-01-01

    During the past decades, numerous computational fluid dynamics (CFD) studies, constructed from CT or MRI images, have simulated human nasal models. As compared to rhinomanometry and acoustic rhinometry, which provide quantitative information only of nasal airflow, resistance, and cross sectional areas, CFD enables additional measurements of airflow passing through the nasal cavity that help visualize the physiologic impact of alterations in intranasal structures. Therefore, it becomes possible to quantitatively measure, and visually appreciate, the airflow pattern (laminar or turbulent), velocity, pressure, wall shear stress, particle deposition, and temperature changes at different flow rates, in different parts of the nasal cavity. The effects of both existing anatomical factors, as well as post-operative changes, can be assessed. With recent improvements in CFD technology and computing power, there is a promising future for CFD to become a useful tool in planning, predicting, and evaluating outcomes of nasal surgery. This review discusses the possibilities and potential impacts, as well as technical limitations, of using CFD simulation to better understand nasal airflow physiology. PMID:23205221

  4. The effects of a hot drink on nasal airflow and symptoms of common cold and flu.

    PubMed

    Sanu, A; Eccles, R

    2008-12-01

    Hot drinks are a common treatment for common cold and flu but there are no studies reported in the scientific and clinical literature on this mode of treatment. This study investigated the effects of a hot fruit drink on objective and subjective measures of nasal airflow, and on subjective scores for common cold/flu symptoms in 30 subjects suffering from common cold/flu. The results demonstrate that the hot drink had no effect on objective measurement of nasal airflow but it did cause a significant improvement in subjective measures of nasal airflow. The hot drink provided immediate and sustained relief from symptoms of runny nose, cough, sneezing, sore throat, chilliness and tiredness, whereas the same drink at room temperature only provided relief from symptoms of runny nose, cough and sneezing. The effects of the drinks are discussed in terms of a placebo effect and physiological effects on salivation and airway secretions. In conclusion the results support the folklore that a hot tasty drink is a beneficial treatment for relief of most symptoms of common cold and flu.

  5. On orbital stability of planar oscillations of a satellite in a circular orbit on the boundary of the parametric resonance

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Chekina, E. A.

    2018-05-01

    We consider the motion of a satellite about its center of mass in a circular orbit. We study the problem of orbital stability for planar pendulum-like oscillations of the satellite. It is supposed that the satellite is a rigid body whose mass geometry is that of a plate. For the unperturbed motion the plane of the satellite-plate is perpendicular to the plane of the orbit. We perform a nonlinear analysis of the orbital stability of planar pendulum-like oscillations for previously unexplored parameter values corresponding to the combination resonance. It appears that in this case both formal orbital stability and instability can take place. The results of stability study are shown in stability diagrams.

  6. Study on airflow characteristics of rear wing of F1 car

    NASA Astrophysics Data System (ADS)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  7. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  8. Multipactor saturation in parallel-plate waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less

  9. Flow over a traveling wavy foil with a passively flapping flat plate

    NASA Astrophysics Data System (ADS)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  10. Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    NASA Technical Reports Server (NTRS)

    Gray, R. B.; Pierce, G. A.

    1972-01-01

    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity.

  11. Pneumonia risk with inhaled fluticasone furoate and vilanterol in COPD patients with moderate airflow limitation: The SUMMIT trial.

    PubMed

    Crim, Courtney; Calverley, Peter M A; Anderson, Julie A; Holmes, Andrew P; Kilbride, Sally; Martinez, Fernando J; Brook, Robert D; Newby, David E; Yates, Julie C; Celli, Bartolomé R; Vestbo, Jørgen

    2017-10-01

    Pneumonia risk with inhaled corticosteroid use in chronic obstructive pulmonary disease (COPD) has not been thoroughly assessed in patients with moderate airflow limitation. To determine the incidence of pneumonia and risk factors in COPD patients with moderate airflow limitation who had, or were at high risk for cardiovascular disease. In the Study to Understand Mortality and MorbidITy in COPD (SUMMIT), 16,590 subjects with moderate airflow limitation (50% ≤ FEV 1  ≤ 70% predicted) and heightened cardiovascular risk were randomized double-blind 1:1:1:1 to inhaled once-daily vilanterol 25 μg (VI), fluticasone furoate 100 μg (FF), vilanterol 25 μg combined with 100 μg fluticasone furoate (FF/VI), or matched placebo. In a pre-specified analysis, we assessed investigator-reported adverse pneumonia events, and independently-adjudicated fatal events. The safety population comprised 16,568 subjects who actually received study medication. There were 1017 pneumonia events reported from 842 subjects. For placebo, FF, VI and FF/VI, reported pneumonia incidence was 5%, 5%, 4% and 6%, respectively. When adjusted for time on treatment, event rates were similar in the placebo, FF and FF/VI containing arms (3.84, 4.24 and 3.95/100 treatment years, respectively) but lower in the VI group (2.77/100 treatment years). Risk factors for pneumonia risk included: greater degree of airflow limitation (i.e. FEV 1 <60% predicted), prior exacerbation history, and BMI <25 kg/m 2 . In contrast to previous studies in patients with severe disease, increased pneumonia risk with inhaled corticosteroid use was not evident in COPD subjects with moderate airflow limitation and heightened cardiovascular risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research - a consensus document from six scientific societies.

    PubMed

    Rossi, Andrea; Butorac-Petanjek, Bojana; Chilosi, Marco; Cosío, Borja G; Flezar, Matjaz; Koulouris, Nikolaos; Marin, José; Miculinic, Neven; Polese, Guido; Samaržija, Miroslav; Skrgat, Sabina; Vassilakopoulos, Theodoros; Vukić-Dugac, Andrea; Zakynthinos, Spyridon; Miravitlles, Marc

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity worldwide, with high and growing prevalence. Its underdiagnosis and hence under-treatment is a general feature across all countries. This is particularly true for the mild or early stages of the disease, when symptoms do not yet interfere with daily living activities and both patients and doctors are likely to underestimate the presence of the disease. A diagnosis of COPD requires spirometry in subjects with a history of exposure to known risk factors and symptoms. Postbronchodilator forced expiratory volume in 1 second (FEV 1 )/forced vital capacity <0.7 or less than the lower limit of normal confirms the presence of airflow limitation, the severity of which can be measured by FEV 1 % predicted: stage 1 defines COPD with mild airflow limitation, which means postbronchodilator FEV 1 ≥80% predicted. In recent years, an elegant series of studies has shown that "exclusive reliance on spirometry, in patients with mild airflow limitation, may result in underestimation of clinically important physiologic impairment". In fact, exercise tolerance, diffusing capacity, and gas exchange can be impaired in subjects at a mild stage of airflow limitation. Furthermore, growing evidence indicates that smokers without overt abnormal spirometry have respiratory symptoms and undergo therapy. This is an essential issue in COPD. In fact, on one hand, airflow limitation, even mild, can unduly limit the patient's physical activity, with deleterious consequences on quality of life and even survival; on the other hand, particularly in younger subjects, mild airflow limitation might coincide with the early stage of the disease. Therefore, we thought that it was worthwhile to analyze further and discuss this stage of "mild COPD". To this end, representatives of scientific societies from five European countries have met and developed this document to stimulate the attention of the scientific community

  13. Experimental study of the influence of low frequency flow modulation on the whistling behavior of a corrugated pipe.

    PubMed

    Kristiansen, Ulf R; Mattei, Pierre-Olivier; Pinhede, Cedric; Amielh, Muriel

    2011-10-01

    It is well known that airflow in a corrugated pipe can excite whistling at the frequencies of the pipe's longitudinal acoustic modes. This short contribution reports on the results of experiments where a low frequency, oscillating flow with velocity magnitudes of the same order as the airflow has been added. Depending on the oscillation strength, it has been found that this flow may silence the pipe or move the whistling to higher harmonics. It is also shown that the low frequency oscillation itself may excite higher frequency whistling sounds in the pipe. © 2011 Acoustical Society of America

  14. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    NASA Astrophysics Data System (ADS)

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  15. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    NASA Astrophysics Data System (ADS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  16. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less

  17. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements.

    PubMed

    Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  18. Acoustic impact on the laminated plates placed between barriers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Gazizullin, R. K.; Fedotenkov, G. V.

    2016-11-01

    On the basis of previously derived equations, analytical solutions are established on the forced vibrations of two-layer and three-layers rectangular plates hinged in an opening of absolutely rigid walls during the transmission of monoharmonic sound waves. It is assumed that the partition wall is situated between two absolutely rigid barriers, one of them by harmonic oscillation with a given displacements amplitude on the plate forms the incident sound wave, and the other is stationary and has a coating of deformable energy absorbing material with high damping properties. The behavior of acoustic environments in the spaces between the deformable plate and the barriers described by classical wave equation based on the ideal compressible fluid model. To describe the process of dynamic deformation of the energy absorbing coating of fixed barrier, two-dimensional equations of motion based on the use of models transversely soft layer are derived with a linear approximation of the displacement field in the thickness direction of the coating and taking into account the damping properties of the material and the hysteresis model for it. The influence of the physical and mechanical properties of the concerned mechanical system and the frequency of the incident sound wave on the parameters of its insulation properties of the plate, as well as on the parameters of the stress-strain state of the plate has been analyzed.

  19. Mechanical excitation of rodlike particles by a vibrating plate.

    PubMed

    Trittel, Torsten; Harth, Kirsten; Stannarius, Ralf

    2017-06-01

    The experimental realization and investigation of granular gases usually require an initial or permanent excitation of ensembles of particles, either mechanically or electromagnetically. One typical method is the energy supply by a vibrating plate or container wall. We study the efficiency of such an excitation of cylindrical particles by a sinusoidally oscillating wall and characterize the distribution of kinetic energies of excited particles over their degrees of freedom. The influences of excitation frequency and amplitude are analyzed.

  20. Test-Retest Reliability of Respiratory Resistance Measured with the Airflow Perturbation Device

    ERIC Educational Resources Information Center

    Gallena, Sally K.; Solomon, Nancy Pearl; Johnson, Arthur T.; Vossoughi, Jafar; Tian, Wei

    2014-01-01

    Purpose: In this study, the authors aimed to determine reliability of the airflow perturbation device (APD) to measure respiratory resistance within and across sessions during resting tidal (RTB) and postexercise breathing in healthy athletes, and during RTB across trials within a session in athletes with paradoxical vocal fold motion (PVFM)…

  1. Laminar-airflow equipment certification: what the pharmacist needs to know.

    PubMed

    Bryan, D; Marback, R C

    1984-07-01

    The basic information pharmacy practitioners need to determine the suitability and applicability of laminar-airflow equipment test standards and procedures is presented. The operative guideline for any laminar-flow clean bench (LFCB) certification is the cleanroom and work station requirements for controlled environments as defined by the federal government under Federal Standard 209b (FS 209b). FS 209b outlines the tests, test procedures, and acceptable performance ranges for all LFCB equipment. National Sanitation Foundation Standard Number 49 (NSF 49) is used in the certification of biological-safety cabinets (BSCs). NSF 49 covers those aspects of safety, maintenance, performance, and testing that are unique BSCs. To monitor certification properly, practitioners should be familiar with these standards and the air-velocity profile, high-efficiency particulate air filter performance, noise output, light, and electrical test procedures. A review of the requisite knowledge, experience, and reputation of certifying agents is presented, along with an outline of all the necessary procedures, equipment, and documentation to be used in the process. A thorough test report should be issued upon unit certification. As pharmacy practitioners are responsible for all other aspects of quality assurance, they should also be capable of auditing these certifications to ensure the aseptic quality of products compounded in the laminar-airflow environment.

  2. Large amplitude vibrations of laminated hybrid composite plates

    NASA Astrophysics Data System (ADS)

    Sarma, M. S.; Venkateshwar Rao, A.; Pillai, S. R. R.; Nageswara Rao, B.

    1992-12-01

    A general equation of motion for the nonlinear vibration of a rectangular plate is formulated using Kirchhoff's hypothesis and von Karman type strain-displacement relations. The formulation includes in-plane deformations and neglects the corresponding inertia terms. The amplitudes are written under assumption that mode shapes are approximately the fundamental modes which satisfy the boundary conditions of the problem. It is shown that the method can be used to easily calculate an excellent aproximation to the periodic solutions of the nonlinear antisymmetric quadratic oscillator.

  3. Effect of Phase Lag on Fluid Flow and Particle Dispersion in a Single Human Alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2007-11-01

    The human lung can be divided into (1) the conducting airways, and (2) the acini. The acini are responsible for gas exchange and consist of alveoli and bronchioles. The acini are useful delivery sites for inhaled therapeutic aerosols. In normal lung function the alveolus expands and contracts in phase with the bronchiole airflow oscillation. Lung diseases such as emphysema compromise the elasticity of the lung. Consequently, the alveolus may not oscillate in-phase with the oscillating bronchiole airflow. We have previously studied flow and particle transport in an alveolus for in-phase flow. The current work focuses on measuring out-of-phase airflow patterns and particle transport in an in-vitro model of a single expanding/contracting human alveolus. The model consists of a transparent, elastic, oscillating alveolus (represented by a 5/6th hemisphere) attached to a rigid circular tube. Realistic tidal breathing conditions were achieved by matching Reynolds and Womersley numbers. Flow patterns were measured using PIV; these velocity maps were subsequently used to calculate particle transport and deposition on the alveolar wall.

  4. Porous silver nanosheets: a novel sensing material for nanoscale and microscale airflow sensors

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Ehsan; Zhao, Boxin; Zhou, Norman Y.

    2015-11-01

    Fabrication of nanoscale and microscale machines and devices is one of the goals of nanotechnology. For this purpose, different materials, methods, and devices should be developed. Among them, various types of miniaturized sensors are required to build the nanoscale and microscale systems. In this research, we introduce a new nanoscale sensing material, silver nanosheets, for applications such as nanoscale and microscale gas flow sensors. The silver nanosheets were synthesized through the reduction of silver ions by ascorbic acid in the presence of poly(methacrylic acid) as a capping agent, followed by the growth of silver in the shape of hexagonal and triangular nanoplates, and self-assembly and nanojoining of these structural blocks. At the end of this process, the synthesized nanosheets were floated on the solution. Then, their electrical and thermal stability was demonstrated at 120 °C, and their atmospheric corrosion resistance was clarified at the same temperature range by thermogravimetric analysis. We employed the silver nanosheets in fabricating airflow sensors by scooping out the nanosheets by means of a sensor substrate, drying them at room temperature, and then annealing them at 300 °C for one hour. The fabricated sensors were tested for their ability to measure airflow in the range of 1 to 5 ml min-1, which resulted in a linear response to the airflow with a response and recovery time around 2 s. Moreover, continuous dynamic testing demonstrated that the response of the sensors was stable and hence the sensors can be used for a long time without detectable drift in their response.

  5. Effects of thermoacoustic oscillations on spray combustion dynamics with implications for lean direct injection systems

    NASA Astrophysics Data System (ADS)

    Chishty, Wajid Ali

    between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.

  6. Studying aeroelastic oscillations with tensoresistor and Arduino

    NASA Astrophysics Data System (ADS)

    Demenkov, Maxim

    2018-05-01

    We describe a modification of the Flexy device, originally developed at the Slovak University of Technology. With our version of it, constructed at the Institute of Control Sciences, one can study aeroelastic oscillations (flutter) using cheap and freely available components. Flex sensor (tensoresistor) changes its electrical resistance proportionally to its bending. The lightweight plastic plate (attached to the resistor) plays the role of a wing in the flow generated by a small fan. Both fan and tensoresistor are connected to an Arduino microcontroller and it is possible to obtain and analyze experimental data from the device on a personal computer.

  7. Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research – a consensus document from six scientific societies

    PubMed Central

    Rossi, Andrea; Butorac-Petanjek, Bojana; Chilosi, Marco; Cosío, Borja G; Flezar, Matjaz; Koulouris, Nikolaos; Marin, José; Miculinic, Neven; Polese, Guido; Samaržija, Miroslav; Skrgat, Sabina; Vassilakopoulos, Theodoros; Vukić-Dugac, Andrea; Zakynthinos, Spyridon; Miravitlles, Marc

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity worldwide, with high and growing prevalence. Its underdiagnosis and hence under-treatment is a general feature across all countries. This is particularly true for the mild or early stages of the disease, when symptoms do not yet interfere with daily living activities and both patients and doctors are likely to underestimate the presence of the disease. A diagnosis of COPD requires spirometry in subjects with a history of exposure to known risk factors and symptoms. Postbronchodilator forced expiratory volume in 1 second (FEV1)/forced vital capacity <0.7 or less than the lower limit of normal confirms the presence of airflow limitation, the severity of which can be measured by FEV1% predicted: stage 1 defines COPD with mild airflow limitation, which means postbronchodilator FEV1 ≥80% predicted. In recent years, an elegant series of studies has shown that “exclusive reliance on spirometry, in patients with mild airflow limitation, may result in underestimation of clinically important physiologic impairment”. In fact, exercise tolerance, diffusing capacity, and gas exchange can be impaired in subjects at a mild stage of airflow limitation. Furthermore, growing evidence indicates that smokers without overt abnormal spirometry have respiratory symptoms and undergo therapy. This is an essential issue in COPD. In fact, on one hand, airflow limitation, even mild, can unduly limit the patient’s physical activity, with deleterious consequences on quality of life and even survival; on the other hand, particularly in younger subjects, mild airflow limitation might coincide with the early stage of the disease. Therefore, we thought that it was worthwhile to analyze further and discuss this stage of “mild COPD”. To this end, representatives of scientific societies from five European countries have met and developed this document to stimulate the attention of the scientific

  8. Airflow reduction during cold weather operation of residential heat recovery ventilators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs,more » were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.« less

  9. Experimental study of thermoacoustic effects on a single plate Part I: Temperature fields

    NASA Astrophysics Data System (ADS)

    Wetzel, M.; Herman, C.

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions.

  10. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems.

    PubMed

    Fischer, Sebastian; Thieves, Martin; Hirsch, Tobias; Fischer, Klaus-Dieter; Hubert, Helmine; Beppler, Steffen; Seipp, Hans-Martin

    2015-08-13

    Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1-3 with the first 138 surgeries in ORs 7 and 8. Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (p<0.01). Accordingly, peak values decreased to 0.9 CFU/h and 1.0 CFU/h in ORs 7 and 8, respectively (p<0.01). Airborne bacterial burden increased linearly with surgery duration in ORs 1-3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (<3 CFU/h). A comparison of the last 138 surgeries before with the first 138 surgeries after changing ORs revealed a 94% reduction in average airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, p<0.01). The unidirectional displacement airflow, which fulfills the requirements of standard DIN-1946-4 annex D of 2008, is an effective ventilation system that reduces airborne bacterial burden under real clinical conditions by more than 90

  11. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose.

    PubMed

    Zhao, Kai; Dalton, Pamela; Yang, Geoffery C; Scherer, Peter W

    2006-02-01

    Human sniffing behavior usually involves bouts of short, high flow rate inhalation (>300 ml/s through each nostril) with mostly turbulent airflow. This has often been characterized as a factor enabling higher amounts of odorant to deposit onto olfactory mucosa than for laminar airflow and thereby aid in olfactory detection. Using computational fluid dynamics human nasal cavity models, however, we found essentially no difference in predicted olfactory odorant flux (g/cm2 s) for turbulent versus laminar flow for total nasal flow rates between 300 and 1000 ml/s and for odorants of quite different mucosal solubility. This lack of difference was shown to be due to the much higher resistance to lateral odorant mass transport in the mucosal nasal airway wall than in the air phase. The simulation also revealed that the increase in airflow rate during sniffing can increase odorant uptake flux to the nasal/olfactory mucosa but lower the cumulative total uptake in the olfactory region when the inspired air/odorant volume was held fixed, which is consistent with the observation that sniff duration may be more important than sniff strength for optimizing olfactory detection. In contrast, in rats, sniffing involves high-frequency bouts of both inhalation and exhalation with laminar airflow. In rat nose odorant uptake simulations, it was observed that odorant deposition was highly dependent on solubility and correlated with the locations of different types of receptors.

  12. A Theory of Oscillating Edge Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Zhang, Yi

    1999-01-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the

  13. Reviving oscillations in coupled nonlinear oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Zhan, Meng; Kurths, Jürgen

    2013-07-05

    By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This processing delay-induced phenomenon occurs both with and without the propagation delay. Further this effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit AD, and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.

  14. DESI focal plate mechanical integration and cooling

    NASA Astrophysics Data System (ADS)

    Lambert, A. R.; Besuner, R. W.; Claybaugh, T. M.; Silber, J. H.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique[1]. The spectra of 40 million galaxies over 14000 sq. deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. This paper describes the mechanical integration of the DESI focal plate and the thermal system design. The DESI focal plate is comprised of ten identical petal assemblies. Each petal contains 500 robotic fiber positioners. Each petal is a complete, self-contained unit, independent from the others, with integrated power supply, controllers, fiber routing, and cooling services. The major advantages of this scheme are: (1) supports installation and removal of complete petal assemblies in-situ, without disturbing the others, (2) component production, assembly stations, and test procedures are repeated and parallelizable, (3) a complete, full-scale prototype can be built and tested at an early date, (4) each production petal can be surveyed and tested as a complete unit, prior to integration, from the fiber tip at the focal surface to the fiber slit at the spectrograph. The ten petal assemblies will be installed in a single integration ring, which is mounted to the DESI corrector. The aluminum integration ring attaches to the steel corrector barrel via a flexured steel adapter, isolating the focal plate from differential thermal expansions. The plate scale will be kept stable by conductive cooling of the petal assembly. The guider and wavefront sensors (one per petal) will be convectively cooled by forced flow of air. Heat will be removed from the system at ten liquid-cooled cold plates, one per petal, operating at ambient temperature. The entire focal plate structure is enclosed in an insulating shroud, which serves as a thermal barrier

  15. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  16. Methane emissions and airflow patterns along longwall faces and through bleeder ventilation systems

    PubMed Central

    Schatzel, Steven J.; Dougherty, Heather N.

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of longwall face and bleeder ventilation systems using tracer gas experiments and computer network ventilation. The condition of gateroad entries, along with the caved material’s permeability and porosity changes as the longwall face advances, determine the resistance of the airflow pathways within the longwall’s worked-out area of the bleeder system. A series of field evaluations were conducted on a four-panel longwall district. Tracer gas was released at the mouth of the longwall section or on the longwall face and sampled at various locations in the gateroads inby the shield line. Measurements of arrival times and concentrations defined airflow/gas movements for the active/completed panels and the bleeder system, providing real field data to delineate these pathways. Results showed a sustained ability of the bleeder system to ventilate the longwall tailgate corner as the panels retreated. PMID:26925166

  17. Breathing life into dinosaurs: tackling challenges of soft-tissue restoration and nasal airflow in extinct species.

    PubMed

    Bourke, Jason M; Porter, W M Ruger; Ridgely, Ryan C; Lyson, Tyler R; Schachner, Emma R; Bell, Phil R; Witmer, Lawrence M

    2014-11-01

    The nasal region plays a key role in sensory, thermal, and respiratory physiology, but exploring its evolution is hampered by a lack of preservation of soft-tissue structures in extinct vertebrates. As a test case, we investigated members of the "bony-headed" ornithischian dinosaur clade Pachycephalosauridae (particularly Stegoceras validum) because of their small body size (which mitigated allometric concerns) and their tendency to preserve nasal soft tissues within their hypermineralized skulls. Hypermineralization directly preserved portions of the olfactory turbinates along with an internal nasal ridge that we regard as potentially an osteological correlate for respiratory conchae. Fossil specimens were CT-scanned, and nasal cavities were segmented and restored. Soft-tissue reconstruction of the nasal capsule was functionally tested in a virtual environment using computational fluid dynamics by running air through multiple models differing in nasal soft-tissue conformation: a bony-bounded model (i.e., skull without soft tissue) and then models with soft tissues added, such as a paranasal septum, a scrolled concha, a branched concha, and a model combining the paranasal septum with a concha. Deviations in fluid flow in comparison to a phylogenetically constrained sample of extant diapsids were used as indicators of missing soft tissue. Models that restored aspects of airflow found in extant diapsids, such as appreciable airflow in the olfactory chamber, were judged as more likely. The model with a branched concha produced airflow patterns closest to those of extant diapsids. These results from both paleontological observation and airflow modeling indicate that S. validum and other pachycephalosaurids could have had both olfactory and respiratory conchae. Although respiratory conchae have been linked to endothermy, such conclusions require caution in that our re-evaluation of the reptilian nasal apparatus indicates that respiratory conchae may be more widespread

  18. The Evolution of Unidirectional Pulmonary Airflow.

    PubMed

    Farmer, C G

    2015-07-01

    Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting

  19. Contam airflow models of three large buildings: Model descriptions and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Douglas R.; Price, Phillip N.

    2009-09-30

    Airflow and pollutant transport models are useful for several reasons, including protection from or response to biological terrorism. In recent years they have been used for deciding how many biological agent samplers are needed in a given building to detect the release of an agent; to figure out where those samplers should be located; to predict the number of people at risk in the event of a release of a given size and location; to devise response strategies in the event of a release; to determine optimal trade-offs between sampler characteristics (such as detection limit and response time); and somore » on. For some of these purposes it is necessary to model a specific building of interest: if you are trying to determine optimal sampling locations, you must have a model of your building and not some different building. But for many purposes generic or 'prototypical' building models would suffice. For example, for determining trade-offs between sampler characteristics, results from one building will carry over other, similar buildings. Prototypical building models are also useful for comparing or testing different algorithms or computational pproaches: different researchers can use the same models, thus allowing direct comparison of results in a way that is not otherwise possible. This document discusses prototypical building models developed by the Airflow and Pollutant Transport Group at Lawrence Berkeley National Laboratory. The models are implemented in the Contam v2.4c modeling program, available from the National Institutes for Standards and Technology. We present Contam airflow models of three virtual buildings: a convention center, an airport terminal, and a multi-story office building. All of the models are based to some extent on specific real buildings. Our goal is to produce models that are realistic, in terms of approximate magnitudes, directions, and speeds of airflow and pollutant transport. The three models vary substantially in detail. The

  20. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    NASA Technical Reports Server (NTRS)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  1. Natural convection enhancement by a discrete vibrating plate and a cross-flow opening: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Florio, L. A.; Harnoy, A.

    2011-06-01

    In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.

  2. Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet. [Lewis 10- by 10-ft. supersonic wind tunnel test

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.

    1980-01-01

    The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with large, porous bleed areas to provide a stability bypass system that would allow a large, stable airflow range. Exhaust-nozzle, secondary-airflow pumping was used as the exit control for the stability bypass airflow. Propulsion system response and stability bypass performance were obtained for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area, as well as compressor stall. Nozzle secondary pumping as a stability bypass exit control can provide the inlet with a large stability margin with no adverse effects on propulsion system performance.

  3. Cessation of oscillations in a chemo-mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit

    2018-06-01

    In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.

  4. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the

  5. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will

  6. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A.

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimesmore » are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.« less

  7. Effects of Airflow and Changing Humidity on the Aerosolization of Respirable Fungal Fragments and Conidia of Botrytis cinerea

    PubMed Central

    2012-01-01

    The purpose of this study was to investigate the aerosolization of particles (micro- and macroconidia and fragments) from Botrytis cinerea cultures in relation to potential human inhalation in indoor environments. The influence of the following factors on the aerosolization of B. cinerea particles was studied: exposure to airflow, relative humidity (rh), changing rh, and plant or building materials. The aerodynamic diameter (da) and the respirable fraction of the aerosolized particles were determined. Conidia and fragments of B. cinerea were not aerosolized as a response to a decrease in the rh. In contrast, both micro- and macroconidia and fungal fragments were aerosolized when exposed to an airflow of 1.5 m s−1 or 0.5 m s−1. Significantly more particles of microconidial size and fragment size were aerosolized at a low rh (18 to 40% rh) than at a higher rh (60 to 80% rh) when cultures were exposed to airflow. The size of the respirable fraction of the aerosolized particles was dependent on the rh but not on the growth material. At high rh, about 30% of the aerosolized particles were of respirable size, while at low rh, about 70% were of respirable size. During low rh, more fungal (1→3)-β-d-glucan and chitinase were aerosolized than during high rh. In conclusion, exposure to external physical forces such as airflow is necessary for the aerosolization of particles from B. cinerea. The amount and size distribution are highly affected by the rh, and more particles of respirable sizes were aerosolized at low rh than at high rh. PMID:22447608

  8. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.

  9. Non-atopic males with adult onset asthma are at risk of persistent airflow limitation.

    PubMed

    Amelink, M; de Nijs, S B; Berger, M; Weersink, E J; ten Brinke, A; Sterk, P J; Bel, E H

    2012-05-01

    Patients with asthma have on average a more rapid decline in FEV (1) as compared with the general population. Recent cluster analysis has revealed different asthma phenotypes that can be distinguished by age of onset and reversibility of airflow limitation. This study aimed at detecting risk factors associated with persistent airflow limitation in patients with the adult onset asthma phenotype. We recruited 88 patients with adult onset (≥ 18 years) asthma from an academic pulmonary outpatient clinic in the Netherlands. The associations of age, age of asthma onset, asthma duration, gender, race, atopy, smoking pack-years, BMI, use of oral corticosteroids with post-bronchodilator FEV (1) /FVC were investigated. Multiple linear regression analysis showed an association of absence of atopy (r = -0.27, B = -0.26, P = 0.01) and male gender (r = 0.31, B = 0.30, P = 0.004) with post-bronchodilator FEV (1) /FVC. Multiple logistic regression analysis showed that male patients were 10.8 (CI: 2.6-45.2) times the odds than women to have an FEV (1) /FVC < 0.7, and non-atopic patients were 5.2 (CI: 1.3-20.3) times the odds to have an FEV (1) /FVC < 0.7 than atopic patients. We conclude that in patients with adult onset asthma, male gender and absence of atopy are associated with persistent airflow limitation. This might suggest that amongst patients with adult onset asthma, non-atopic male patients are at increased risk of accelerated decline in lung function. © 2012 Blackwell Publishing Ltd.

  10. Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wei; Sevilla, Thomas Alonso; Zuo, Wangda

    Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. Thismore » paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.« less

  11. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  12. Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.

    1980-01-01

    The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with a poppet-valve-controlled stability bypass system that was designed to provide a large, stable airflow range. Propulsion system response and stability bypass performance were determined for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area as well as compressor stall. For reference, data are also included for a conventional, fixed-exit bleed system. The poppet valves greatly increased inlet stability and had no adverse effects on propulsion system performance. Limited unstarted-inlet bleed performance data are presented.

  13. Association of incidental emphysema with annual lung function decline and future development of airflow limitation

    PubMed Central

    Koo, Hyeon-Kyoung; Jin, Kwang Nam; Kim, Deog Kyeom; Chung, Hee Soon; Lee, Chang-Hoon

    2016-01-01

    Objectives Emphysema is one of the prognostic factors for rapid lung function decline in patients with COPD, but the impact of incidentally detected emphysema on population without spirometric abnormalities has not been evaluated. This study aimed to determine whether emphysema detected upon computed tomography (CT) screening would accelerate the rate of lung function decline and influence the possibility of future development of airflow limitation in a population without spirometric abnormalities. Materials and methods Subjects who participated in a routine screening for health checkup and follow-up pulmonary function tests for at least 3 years between 2004 and 2010 were retrospectively enrolled. The percentage of low-attenuation area below −950 Hounsfield units (%LAA−950) was calculated automatically. A calculated value of %LAA−950 that exceeded 10% was defined as emphysema. Adjusted annual lung function decline was analyzed using random-slope, random-intercept mixed linear regression models. Results A total of 628 healthy subjects within the normal range of spriometric values were included. Multivariable analysis showed that the emphysema group exhibited a faster decline in forced vital capacity (−33.9 versus −18.8 mL/year; P=0.02). Emphysema was not associated with the development of airflow limitation during follow-up. Conclusion Incidental emphysema quantified using CT scan was significantly associated with a more rapid decline in forced vital capacity in the population with normative spirometric values. However, an association between emphysema and future development of airflow limitation was not observed. PMID:26893550

  14. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    PubMed

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  15. Location identification of closed crack based on Duffing oscillator transient transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  16. Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction

    PubMed Central

    Shrine, Nick R. G.; Loehr, Laura R.; Zhao, Jing Hua; Manichaikul, Ani; Lopez, Lorna M.; Smith, Albert Vernon; Heckbert, Susan R.; Smolonska, Joanna; Tang, Wenbo; Loth, Daan W.; Curjuric, Ivan; Hui, Jennie; Latourelle, Jeanne C.; Henry, Amanda P.; Aldrich, Melinda; Bakke, Per; Beaty, Terri H.; Bentley, Amy R.; Borecki, Ingrid B.; Brusselle, Guy G.; Burkart, Kristin M.; Chen, Ting-hsu; Couper, David; Crapo, James D.; Davies, Gail; Dupuis, Josée; Franceschini, Nora; Gulsvik, Amund; Hancock, Dana B.; Harris, Tamara B.; Hofman, Albert; Imboden, Medea; James, Alan L.; Khaw, Kay-Tee; Lahousse, Lies; Launer, Lenore J.; Litonjua, Augusto; Liu, Yongmei; Lohman, Kurt K.; Lomas, David A.; Lumley, Thomas; Marciante, Kristin D.; McArdle, Wendy L.; Meibohm, Bernd; Morrison, Alanna C.; Musk, Arthur W.; Myers, Richard H.; North, Kari E.; Postma, Dirkje S.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Rochat, Thierry; Rotter, Jerome I.; Artigas, María Soler; Starr, John M.; Uitterlinden, André G.; Wareham, Nicholas J.; Wijmenga, Cisca; Zanen, Pieter; Province, Michael A.; Silverman, Edwin K.; Deary, Ian J.; Palmer, Lyle J.; Cassano, Patricia A.; Gudnason, Vilmundur; Barr, R. Graham; Loos, Ruth J. F.; Strachan, David P.; London, Stephanie J.; Boezen, H. Marike; Probst-Hensch, Nicole; Gharib, Sina A.; Hall, Ian P.; O’Connor, George T.; Tobin, Martin D.; Stricker, Bruno H.

    2012-01-01

    Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations. Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction. PMID:22837378

  17. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  18. Self-oscillation

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  19. Shocks in oscillated granular layers

    NASA Astrophysics Data System (ADS)

    Bougie, J.; Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2001-11-01

    We study shock formation in vertically oscillated granular layers, where shock waves form with each collision between the layer and the bottom plate of the container. We use both three-dimensional numerical solutions of continuum equations developed by Jenkins and Richman (J.T. Jenkins and M.W. Richman, Arch. Rat. Mech. Anal. 87), 355 (1985) for smooth and nearly elastic hard spheres, and previously validated molecular dynamics (MD) simulations (C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), 57 (1998). Both methods capture the shock formation, and the two methods agree quantitatively for small dissipation. We also investigate the effect of inelasticity on shock formation, and use both smooth and rough hard-sphere MD simulations to investigate the effect of friction in this system.

  20. Dust control by air-blocking shelves and dust collector-to-bailing airflow ratios for a surface mine drill shroud

    PubMed Central

    Zheng, Y.; Reed, W.R.; Potts, J.D.; Li, M.; Rider, J.P.

    2018-01-01

    The National Institute for Occupational Safety and Health (NIOSH) recently developed a series of validated models utilizing computational fluid dynamics (CFD) to study the effects of air-blocking shelves on airflows and respirable dust distribution associated with medium-sized surface blasthole drill shrouds as part of a dry dust collector system. Using validated CFD models, three different air-blocking shelves were included in the present study: a 15.2-cm (6-in.)-wide shelf; a 7.6-cm (3-in.)-wide shelf; and a 7.6-cm (3-in.)-wide shelf at four different shelf heights. In addition, the dust-collector-to-bailing airflow ratios of 1.75:1, 1.5:1, 1.25:1 and 1:1 were evaluated for the 15.2-cm (6-in.)-wide air-blocking shelf. This paper describes the methodology used to develop the CFD models. The effects of air-blocking shelves and dust collector-to-bailing airflow ratios were identified by the study, and problem regions were revealed under certain conditions.

  1. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  2. Efficient swimming of a plunging elastic plate in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Alexeev, Alexander

    2014-03-01

    We use three dimensional computer simulations to examine the combined hydrodynamics and structural response of a plunging elastic plate submerged in a viscous fluid with Reynolds number of 250. The plate is actuated at the root with a prescribed vertical sinusoidal displacement and a zero slope (clamped) boundary condition. We explore the steady state swimming velocity and the associated input power as a function of driving frequency, added mass, and aspect ratio. We find a universal bending pattern independent of geometry and added mass that maximizes the distance traveled per unit applied work. This bending pattern is associated with minimizing center of mass oscillations normal to the direction of travel. Subsequently, the flow around the sides of the swimmer, which does not aid in propulsion, is minimized, thereby reducing viscous losses.

  3. Impact of excitation waveform on the frequency stability of electrostatically-actuated micro-electromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Juillard, J.; Brenes, A.

    2018-05-01

    In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.

  4. Field measurements of mean and turbulent airflow over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Weaver, Corinne M.; Wiggs, Giles F. S.

    2011-05-01

    Advances in our knowledge of the aeolian processes governing sand dune dynamics have been restricted by a reliance on measures of time-averaged airflow, such as shear velocity ( u*). It has become clear that such measures are incapable of explaining the complete dynamics of sediment transport across dune surfaces. Past evidence from wind tunnel and modelling studies has suggested that in some regions on a dune's surface the sediment transport might be better explained through investigations of the turbulent nature of the airflow. However, to date there have been no field studies providing data on the turbulent characteristics of the airflow around dunes with which to support or refute such hypotheses. The field investigation presented here provides mean and turbulent airflow measurements across the centre-line of a barchan sand dune in Namibia. Data were collected using arrays of sonic anemometers and were compared with sand flux data measured using wedge-shaped traps. Results support previously published data derived from wind tunnels and numerical models. The decline in mean wind velocity at the upwind toe of the dune is shown to coincide with a rise in turbulence, whilst mean velocity acceleration on the upper slope corresponds with a general decline in measured turbulence. Analysis of the components of Reynold shear stress ( -u'¯w'¯) and normal stresses ( u¯ and w2 ¯) supports the notion that the development of flow turbulence along the dune centre-line is likely to be associated with the interplay between streamline curvature and mean flow deceleration/acceleration. It is suggested that, due to the nature of its calculation, turbulence intensity is a measure of less practical use than direct assessments of the individual components of Reynolds stress, particularly the instantaneous horizontal streamwise component ( u2 ¯) and shear stress ( -uw¯). Whilst, increases in Reynolds shear stress and the horizontal streamwise component of stress in the toe

  5. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults

    PubMed Central

    Brandimore, Alexandra E.; Troche, Michelle S.; Huber, Jessica E.; Hegland, Karen W.

    2015-01-01

    Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms. PMID:26500560

  6. Improved Wavelengths and Oscillator Strengths of Doubly Ionized Iron Group Elements

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Smillie, D. G.; Pickering, J. C.; Nave, G.; Blackwell-Whitehead, R. J.

    2007-05-01

    Improvements in the resolution, accuracy, and range of astrophysical spectra obtained by state-of-the-art space-and ground-based spectrographs have highlighted the need for corresponding improvements in the atomic data. Transition wavelengths with uncertainties of 1 part in 10^7 and oscillator strengths with uncertainties of 10 to 15% are needed to accurately interpret modern astrophysical spectra. The spectra of hot (B-type) stars are dominated by the doubly ionized spectra of the iron group elements. We present new measurements of Cr III, Fe III, and Co III made with a Fourier transform spectrometer (FTS) and a Penning discharge source. The FTS at Imperial College [J. C. Pickering, Vibrational Spectrosc., 29, pp.27-43 (2002)] covers a spectral range from the visible to the VUV (down to 140 nm) with a typical wavenumber uncertainty of a few parts in 10^8. Additional measurements were carried out at the US National Institute of Standards & Technology using their FTS and the Normal Incidence Vacuum (grating) Spectrograph (NIVS). The NIVS spectra were recorded beyond the FTS wavelength cut-off using phosphor image plates, which have the advantage over conventional photographic plates of a linear intensity response over a wide dynamic range, thus allowing branching ratios, and hence oscillator strengths, to be determined. Intensity- and wavelength-calibrated line lists have been produced, and term analyses are underway. Measured lines are, in many cases, an order of magnitude more accurate than previous measurements and the energy level uncertainty established is typically improved by a factor or 3 more. Work is also underway to establish new measured oscillator strengths for Fe III. This work is supported in part by NASA Grant NAG5-12,668, NASA inter-agency agreement W-10,255, PPARC, the Royal Society of the UK, and by the Leverhulme Trust.

  7. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  8. The effect of airflow on thermographically determined temperature of the distal forelimb of the horse.

    PubMed

    Westermann, S; Stanek, C; Schramel, J P; Ion, A; Buchner, H H F

    2013-09-01

    Current literature suggests that thermographic imaging of horses should be performed in a draught-free room. However, studies on the effect of airflow on determined temperature have not been published. To investigate effects of airflow on thermographically determined temperature of horses' forelimbs; to assess the relationship of wind velocity, rectal temperature, ambient temperature and humidity. Thermographic images were obtained for the forelimbs of 6 horses in a draught-free room. Three replicates (R) with defined wind velocities (R1, 0.5-1.0 m/s; R2, 1.3-2.6 m/s; and R3, 3.0-4.0 m/s) were conducted. Each replicate consisted of a baseline image, a 15 min phase with the wind on and a 15 min phase with the wind off. We exposed only the right leg to airflow and determined the temperature by thermography with the wind on and wind off. Temperature differences between baseline and wind on, between wind on and wind off and between different wind velocities were analysed by a general linear model, Student's paired t test and ANOVA. After the onset of wind, the temperature on the right forelimb decreased within 1-3 min (by approximately 0.6°C at R1, 1.5°C at R2 and 2.1°C at R3). With the wind off, the temperature increased within 3 min (by approximately 1.2°C at R1, 1.7°C at R2 and 2.1°C at R3). With increasing wind velocity, the temperature differences between baseline and wind on and between wind on and wind off increased significantly. Barely noticeable wind velocities caused a decrease in thermographically determined temperatures of the forelimbs of the horse. Further research is required to assess the influence of airflow on other parts of the body and at different ambient temperatures, as well as the effect on horses with inflammatory lesions, especially of the distal limbs. It is essential for practitioners to perform thermography on horses in a draught-free environment in order to avoid false-positive or -negative diagnoses. © 2012 EVJ Ltd.

  9. An examination of elicitation method on fundamental frequency and repeatability of average airflow measures in children age 4:0-5:11 years.

    PubMed

    Brehm, Susan Baker; Weinrich, Barbara D; Sprouse, Dana C; May, Shelley K; Hughes, Michael R

    2012-11-01

    The purpose of this study was to determine the effect of task type on fundamental frequency (F(0)) and the short-term repeatability of average airflow values in preschool/kindergarten-age children. Prospective, experimental. Thirty healthy children (age 4.0-5.11 years) were included in this study. Participants completed three tasks (sustained vowel, counting, and storytelling) used to elicit measurements of F(0). With a 10-minute interval, participants also completed two trials of sustained /a/ at a comfortable pitch and loudness level for the measurement of average airflow rate. F(0) and intensity of the vowel production were recorded for both trials. A repeated measures analysis of variance revealed a significant main effect for task type elicitation on F(0) values (P=0.0003). A significant difference between elicitation tasks for F(0) was observed in the comparison of the counting and storytelling task (P<0.0001). A paired t test revealed no significant difference in average airflow rate across two trials (P=0.872). The change in F(0) and intensity was measured across the trials, and separate analyses of covariance revealed that these changes did not significantly influence average airflow values, (P=0.809) and (P=0.365), respectively. The results of this study demonstrated that F(0) may be influenced by task type in young children. Average airflow values appear to be stable over a short time period. This information is important in determining methods of evaluation and the reliability of instrumental measures in young children with voice disorders. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Inspiratory High Frequency Airway Oscillation Attenuates Resistive Loaded Dyspnea and Modulates Respiratory Function in Young Healthy Individuals

    PubMed Central

    Morris, Theresa; Sumners, David Paul; Green, David Andrew

    2014-01-01

    Direct chest-wall percussion can reduce breathlessness in Chronic Obstructive Pulmonary Disease and respiratory function may be improved, in health and disease, by respiratory muscle training (RMT). We tested whether high-frequency airway oscillation (HFAO), a novel form of airflow oscillation generation can modulate induced dyspnoea and respiratory strength and/or patterns following 5 weeks of HFAO training (n = 20) compared to a SHAM-RMT (conventional flow-resistive RMT) device (n = 15) in healthy volunteers (13 males; aged 20–36 yrs). HFAO causes oscillations with peak-to-peak amplitude of 1 cm H2O, whereas the SHAM-RMT device was identical but created no pressure oscillation. Respiratory function, dyspnoea and ventilation during 3 minutes of spontaneous resting ventilation, 1 minute of maximal voluntary hyperventilation and 1 minute breathing against a moderate inspiratory resistance, were compared PRE and POST 5-weeks of training (2×30 breaths at 70% peak flow, 5 days a week). Training significantly reduced NRS dyspnoea scores during resistive loaded ventilation, both in the HFAO (p = 0.003) and SHAM-RMT (p = 0.005) groups. Maximum inspiratory static pressure (cm H2O) was significantly increased by HFAO training (vs. PRE; p<0.001). Maximum inspiratory dynamic pressure was increased by training in both the HFAO (vs. PRE; p<0.001) and SHAM-RMT (vs. PRE; p = 0.021) groups. Peak inspiratory flow rate (L.s−1) achieved during the maximum inspiratory dynamic pressure manoeuvre increased significantly POST (vs. PRE; p = 0.001) in the HFAO group only. HFAO reduced inspiratory resistive loading–induced dyspnoea and augments static and dynamic maximal respiratory manoeuvre performance in excess of flow-resistive IMT (SHAM-RMT) in healthy individuals without the respiratory discomfort associated with RMT. PMID:24651392

  11. Advanced Ignition in Supersonic Airflow by Tunable Plasma System

    NASA Astrophysics Data System (ADS)

    Firsov, A. A.; Dolgov, E. V.; Leonov, S. B.; Yarantsev, D. A.

    2017-10-01

    The plasma-based technique was studied for ignition and flameholding in a supersonic airflow in different laboratories for a long time. It was shown that flameholding of gaseous and liquid hydrocarbon fuel is feasible by means of surface DC discharge without employing mechanical flameholders in a supersonic combustion chamber. However, a high power consumption may limit application of this method in a real apparatus. This experimental and computational work explores a distributed plasma system, which allows reducing the total energy consumption and extending the life cycle of the electrode system. Due to the circuit flexibility, this approach may be potentially enriched with feedbacks for design of a close loop control system.

  12. A Numerical Model of Viscoelastic Layer Entrainment by Airflow in Cough

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin M.

    2008-07-01

    Coughing is an alternative mode of ensuring mucus clearance in the lung when normal cilia induced flow breaks down. A numerical model of this process is presented with the following aspects. (1) A portion of the airway comprising the first three bronchus generations is modeled as radially reinforced elastic tubes. Elasticity equations are solved to predict airway deformation under effect of airway pressure. (2) The compressible, turbulent flow induced by rapid lung contraction is modeled by direct numerical simulation for Reynolds numbers in the range 5,000-10,000 and by Large Eddy Simulation for Reynolds numbers in the range 5,000-40,000. (3) A two-layer model of the airway surface liquid (ASL) covering the airway epithelial layer is used. The periciliary liquid (PCL) in direct contact with the epithelial layer is considered to be a Newtonian fluid. Forces modeling cilia beating can act upon this layer. The mucus layer between the PCL and the interior airflow is modeled as an Oldroyd-B fluid. The overall computation is a fluid-structure interaction simulation that tracks changes in ASL thickness and airway diameters that result from impulsive airflow boundary conditions imposed at bronchi ends. In particular, the amount of mucus that is evacuated from the system is computed as a function of cough intensity and mucus rheological properties.

  13. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  14. Deflection and trapping of a counter-rotating vortex pair by a flat plate

    NASA Astrophysics Data System (ADS)

    Nitsche, Monika

    2017-12-01

    The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.

  15. Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 1, Experimentation and correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Y.; Besant, R.W.; Chen, H.

    1999-07-01

    An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth datamore » taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.« less

  16. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  17. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  18. Collective odor source estimation and search in time-variant airflow environments using mobile robots.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.

  19. Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots

    PubMed Central

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650

  20. Reconstructing atmospheric circulation over southern New Zealand: Establishment of modern westerly airflow 5500 years ago and implications for Southern Hemisphere Holocene climate change

    NASA Astrophysics Data System (ADS)

    Turney, C. S. M.; Wilmshurst, J. M.; Jones, R. T.; Wood, J. R.; Palmer, J. G.; Hogg, A. G.; Fenwick, P.; Crowley, S. F.; Privat, K.; Thomas, Z.

    2017-03-01

    Late-twentieth century changes in the intensity and migration of Southern Hemisphere westerly winds have been implicated in spatially complex variability in atmospheric and ocean circulation, and ice-sheet dynamics, across the mid- to high-latitudes. A major uncertainty, however, is whether present day hemispheric-wide symmetrical airflow is representative of past behaviour. Here we report a multi-proxy study from Stewart Island and southern Fiordland, New Zealand (46-47°S) reconstructing Holocene changes at the northern limit of westerly airflow. Increased minerogenic input and a pronounced shift in cool-loving vegetation around 5500 years ago is consistent with the establishment of westerly airflow at this latitude in the southwest Pacific. In marked contrast, stronger winds are reported further south over the subantarctic Auckland (50°S) and Campbell (52°S) Islands from 8000 years ago. Intriguingly, reconstructions from the east Pacific suggest a weakening of core westerly airflow after 8500 years ago, but an expansion along the northern limits sometime after 5500 years ago. Our results suggest similar atmospheric circulation changes have been experienced in the Pacific since 5500 years ago, but indicate an expanded network of sites is needed to comprehensively test the driver(s) and impact(s) of Holocene mid-latitude westerly winds across the Southern Hemisphere.

  1. Response of hot element flush wall gauges in oscillating laminar flow

    NASA Technical Reports Server (NTRS)

    Giddings, T. A.; Cook, W. J.

    1986-01-01

    The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.

  2. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells

    PubMed Central

    Kim, Tae-Jin; Seong, Jihye; Ouyang, Mingxing; Sun, Jie; Lu, Shaoying; Hong, Jun Pyu; Wang, Ning; Wang, Yingxiao

    2008-01-01

    Substrate rigidity plays crucial roles in regulating cellular functions, such as cell spreading, traction forces, and stem cell differentiation. However, it is not clear how substrate rigidity influences early cell signaling events such as calcium in living cells. Using highly-sensitive Ca2+ biosensors based on fluorescence resonance energy transfer (FRET), we investigated the molecular mechanism by which substrate rigidity affects calcium signaling in human mesenchymal stem cells (HMSCs). Spontaneous Ca2+ oscillations were observed inside the cytoplasm and the endoplasmic reticulum (ER) using the FRET biosensors targeted at subcellular locations in cells plated on rigid dishes. Lowering the substrate stiffness to 1 kPa significantly inhibited both the magnitudes and frequencies of the cytoplasmic Ca2+ oscillation in comparison to stiffer or rigid substrate. This Ca2+ oscillation was shown to be dependent on ROCK, a downstream effector molecule of RhoA, but independent of actin filaments, microtubules, myosin light chain kinase, or myosin activity. Lysophosphatidic acid, which activates RhoA, also inhibited the frequency of the Ca2+ oscillation. Consistently, either a constitutive active mutant of RhoA (RhoA-V14) or a dominant negative mutant of RhoA (RhoA-N19) inhibited the Ca2+ oscillation. Further experiments revealed that HMSCs cultured on gels with low elastic moduli displayed low RhoA activities. Therefore, our results demonstrate that RhoA and its downstream molecule ROCK may mediate the substrate rigidity-regulated Ca2+ oscillation, which determines the physiological functions of HMSCs. PMID:18844232

  3. Oscillating flow and heat transfer in a channel with sudden cross section change

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Hashim, Waqar

    1993-01-01

    We have computationally examined oscillating flow (zero mean) between two parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The cases studied cover wide ranges of Re(sub max) (from 187.5 to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A(sub r) (2 and 4). Also, three different geometric cases were discussed: (1) asymmetric expansion/contraction; (2) symmetric expansion/contraction; and (3) symmetric blunt body. For these oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden contraction inthe other half. The instantaneous friction factor, for some ranges of Re(sub max) and Va, deviated substantially from the steady-state friction factor for the same flow parameters. A region has been identified below which the flow is laminar quasi-steady. A videotape showing computer simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing information on the transient hydraulic phenomena.

  4. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  5. Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo

    2003-08-01

    A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.

  6. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. 84.1149 Section 84.1149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  7. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. 84.1149 Section 84.1149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  8. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. 84.1149 Section 84.1149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  9. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. 84.1149 Section 84.1149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  10. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. 84.1149 Section 84.1149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  12. Hydrodynamics of a flexible plate between pitching rigid plates

    NASA Astrophysics Data System (ADS)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  13. Chemical oscillator as a generalized Rayleigh oscillator.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2013-10-28

    We derive the conditions under which a set of arbitrary two dimensional autonomous kinetic equations can be reduced to the form of a generalized Rayleigh oscillator which admits of limit cycle solution. This is based on a linear transformation of field variables which can be found by inspection of the kinetic equations. We illustrate the scheme with the help of several chemical and bio-chemical oscillator models to show how they can be cast as a generalized Rayleigh oscillator.

  14. Observations of instability, hysteresis, and oscillation in low-Reynolds-number flow past polymer gels.

    PubMed

    Eggert, Matthew D; Kumar, Satish

    2004-10-01

    We perform a set of experiments to study the nonlinear nature of an instability that arises in low-Reynolds-number flow past polymer gels. A layer of a viscous liquid is placed on a polydimethylsiloxane (PDMS) gel in a parallel-plate rheometer which is operated in stress-controlled mode. As the shear stress on the top plate increases, the apparent viscosity stays relatively constant until a transition stress where it sharply increases. If the stress is held at a level slightly above the transition stress, the apparent viscosity oscillates with time. If the stress is increased to a value above the transition stress and then decreased back to zero, the apparent viscosity shows hysteretic behavior. If the stress is instead decreased to a constant value and held there, the apparent viscosity is different from its pretransition value and exhibits sustained oscillations. This can happen even if the stress is held at values below the transition stress. Our observations suggest that the instability studied here is subcritical and leads to a flow that is oscillatory and far from viscometric. The phenomena reported here may be useful in applications such as microfluidics, membrane separations, and polymer processing. They may also provide insight into the rheological behavior of complex fluids that undergo flow-induced gelation.

  15. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  16. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...

  17. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...

  18. Numerical Simulation of Airway Dimension Effects on Airflow Patterns and Odorant Deposition Patterns in the Rat Nasal Cavity

    PubMed Central

    Wei, Zehong; Xu, Zhixiang; Li, Bo; Xu, Fuqiang

    2013-01-01

    The sense of smell is largely dependent on the airflow and odorant transport in the nasal cavity, which in turn depends on the anatomical structure of the nose. In order to evaluate the effect of airway dimension on rat nasal airflow patterns and odorant deposition patterns, we constructed two 3-dimensional, anatomically accurate models of the left nasal cavity of a Sprague-Dawley rat: one was based on high-resolution MRI images with relatively narrow airways and the other was based on artificially-widening airways of the MRI images by referencing the section images with relatively wide airways. Airflow and odorant transport, in the two models, were determined using the method of computational fluid dynamics with finite volume method. The results demonstrated that an increase of 34 µm in nasal airway dimension significantly decreased the average velocity in the whole nasal cavity by about 10% and in the olfactory region by about 12% and increased the volumetric flow into the olfactory region by about 3%. Odorant deposition was affected to a larger extent, especially in the olfactory region, where the maximum odorant deposition difference reached one order of magnitude. The results suggest that a more accurate nasal cavity model is necessary in order to more precisely study the olfactory function of the nose when using the rat. PMID:24204875

  19. Severity of airflow limitation, co-morbidities and management of chronic obstructive pulmonary disease patients acutely admitted to hospital.

    PubMed

    Au, L H; Chan, H S

    2013-12-01

    To assess the disease spectrum, severity of airflow limitation, admission pattern, co-morbidities, and management of patients admitted for acute exacerbations of chronic obstructive pulmonary disease. Case series. An acute regional hospital in Hong Kong. Adult subjects admitted during January 2010 to December 2010 with the principal discharge diagnosis of chronic obstructive pulmonary disease. In all, the records of 253 patients with physician-diagnosed chronic obstructive pulmonary disease were analysed. The majority were old (mean age, 78 years). The median number of admissions per patient for this condition in 2010 was two. About two thirds (64%) had had spirometry at least once. Mean forced expiratory volume in one second predicted was 55%. Almost 90% had moderate-to-very severe airflow limitation by spirometry. Overall, long-acting bronchodilators (beta agonists and/or antimuscarinics) were being prescribed for only 21% of the patients. Most of the patients admitted to hospital for acute exacerbations of chronic obstructive pulmonary disease were old, had multiple co-morbidities, and the majority had moderate-to-severe airflow limitation by spirometry. Almost half of them (around 46%) had two or more admissions in 2010. Adherence to the latest treatment guidelines seemed inadequate, there being a low prescription rate of long-acting bronchodilators. Chronic obstructive pulmonary disease patients warranting emergency admissions are at risk of future exacerbations and mortality. Management by a designated multidisciplinary team is recommended.

  20. Respiratory symptoms and airflow limitation in asphalt workers

    PubMed Central

    Randem, B; Ulvestad, B; Burstyn, I; Kongerud, J

    2004-01-01

    Aims: To assess the occurrence of respiratory symptoms and signs of airflow limitations in a group of asphalt workers. Methods: All 64 asphalt workers and a reference group of 195 outdoor construction workers from the same company participated in a cross-sectional study. Spirometric tests and a questionnaire on respiratory symptoms and smoking habits were administered. Respiratory symptoms and lung function were adjusted for age and smoking. Results: The FEV1/FVC% ratio was significantly lower in the asphalt workers than in the referents. Symptoms of eye irritation, chest tightness, shortness of breath on exertion, chest wheezing, physician diagnosed asthma, and chronic obstructive pulmonary disease (COPD) were all significantly more prevalent among the asphalt workers. Conclusion: In asphalt workers there is an increased risk of respiratory symptoms, lung function decline, and COPD compared to other construction workers. PMID:15031397

  1. Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center.

    PubMed

    Erichsen Andersson, Annette; Petzold, Max; Bergh, Ingrid; Karlsson, Jón; Eriksson, Bengt I; Nilsson, Kerstin

    2014-06-01

    The importance of laminar airflow systems in operating rooms as protection from surgical site infections has been questioned. The aim of our study was to explore the differences in air contamination rates between displacement ventilation and laminar airflow systems during planned and acute orthopedic implant surgery. A second aim was to compare the influence of the number of people present, the reasons for traffic flow, and the door-opening rates between the 2 systems. Active air sampling and observations were made during 63 orthopedic implant operations. The laminar airflow system resulted in a reduction of 89% in colony forming units in comparison with the displacement system (P < .001). The air samples taken in the preparation rooms showed high levels of bacterial growth (≈ 40 CFU/m(3)). Our study shows that laminar airflow-ventilated operating rooms offer high-quality air during surgery, with very low levels of colony forming units close to the surgical wound. The continuous maintenance of laminar air flow and other technical systems are crucial, because minor failures in complex systems like those in operating rooms can result in a detrimental effect on air quality and jeopardize the safety of patients. The technical ventilation solutions are important, but they do not guarantee clean air, because many other factors, such as the organization of the work and staff behavior, influence air cleanliness. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  3. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  4. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall not... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE...

  5. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  6. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  7. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  8. Functional results in airflow improvement using a "flip-flap" alar technique: our experience.

    PubMed

    Di Stadio, Arianna; Macro, Carlo

    Pinched nasal point can be arising as congenital malformation or as results of unsuccessfully surgery. The nasal valve alteration due to this problem is not only an esthetic problem but also a functional one because can modify the nasal airflow. Several surgical techniques were proposed in literature, we proposed our. The purpose of the study is the evaluation of nose airway flow using our flip-flap technique for correction of pinched nasal tip. This is a retrospective study conducted on twelve patients. Tip cartilages were remodeled by means of autologous alar cartilage grafting. The patients underwent a rhinomanometry pre and post-surgery to evaluate the results, and they performed a self-survey to evaluate their degree of satisfaction in term of airflow sensation improvement. Rhinomanometry showed improved nasal air flow (range from 25% to 75%) in all patients. No significant differences were showed between unilateral and bilateral alar malformation (p=0.49). Patient's satisfaction reached the 87.5%. Our analysis on the combined results (rhinomanometry and surveys) showed that this technique leads to improvement of nasal flow in patients affected by pinched nasal tip in all cases. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Performance analysis of air conditioning system and airflow simulation in an operating theater

    NASA Astrophysics Data System (ADS)

    Alhamid, Muhammad Idrus; Budihardjo, Rahmat

    2018-02-01

    The importance of maintaining performance of a hospital operating theater is to establish an adequate circulation of clean air within the room. The parameter of air distribution in a space should be based on Air Changes per Hour (ACH) to maintain a positive room pressure. The dispersion of airborne particles in the operating theater was governed by regulating the air distribution so that the operating theater meets clean room standards ie ISO 14664 and ASHRAE 170. Here, we introduced several input parameters in a simulation environment to observe the pressure distribution in the room. Input parameters were air temperature, air velocity and volumetric flow rate entering and leaving room for existing and designed condition. In the existing operating theatre, several observations were found. It was found that the outlet air velocity at the HEPA filter above the operating table was too high thus causing a turbulent airflow pattern. Moreover, the setting temperature at 19°C was found to be too low. The supply of air into the room was observed at lower than 20 ACH which is under the standard requirement. Our simulation using FloVent 8.2™ program showed that not only airflow turbulence could be reduced but also the amount of particle contamination could also be minimized.

  10. Investigation of Hot Cracking Behavior in Transverse Mechanically Arc Oscillated Autogenous AA2014 T6 TIG Welds

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    2012-09-01

    Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude = 0.9 mm and frequency = 0.5 Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.

  11. Numerical Modelling of Airflow and Temperature Distribution in a Living Room with Different Heat Exchange Conditions

    NASA Astrophysics Data System (ADS)

    Gendelis, S.; Jakovičs, A.

    2010-01-01

    Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.

  12. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  13. Reduction of physical activity in daily life and its determinants in smokers without airflow obstruction.

    PubMed

    Furlanetto, Karina Couto; Mantoani, Leandro Cruz; Bisca, Gianna; Morita, Andrea Akemi; Zabatiero, Juliana; Proença, Mahara; Kovelis, Demétria; Pitta, Fabio

    2014-04-01

    In smokers without airflow obstruction, detailed, objective and controlled quantification of the level of physical inactivity in daily life has never been performed. This study aimed to objectively assess the level of physical activity in daily life in adult smokers without airflow obstruction in comparison with matched non-smokers, and to investigate the determinants for daily physical activity in smokers. Sixty smokers (aged 50 (39-54) years) and 50 non-smokers (aged 48 (40-53) years) matched for gender, age, anthropometric characteristics, educational level, employment status and seasons of the year assessment period were cross-sectionally assessed regarding their daily physical activity with a step counter, besides assessment of lung function, functional exercise capacity, quality of life, anxiety, depression, self-reported comorbidities carbon monoxide level, nicotine dependence and smoking habits. When compared with non-smokers, smokers walked less in daily life (7923 ± 3558 vs 9553 ± 3637 steps/day, respectively), presented worse lung function, functional exercise capacity, quality of life, anxiety and depression. Multiple regression analyses identified functional exercise capacity, Borg fatigue, self-reported motivation/physical activity behaviour and cardiac disease as significant determinants of number of steps/day in smokers (partial r(2)  = 0.10, 0.12, 0.16 and 0.05; b = 15, -997, 1207 and -2330 steps/day, respectively; overall fit of the model R(2)  = 0.38; P < 0.001). Adult smokers without airflow obstruction presented reduced level of daily physical activity. Functional exercise capacity, extended fatigue sensation, aspects of motivation/physical activity behaviour and self-reported cardiac disease are significant determinants of physical activity in daily life in smokers. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

  14. Preparation of CNTs rope by electrostatic and airflow field carding with high speed rotor spinning

    NASA Astrophysics Data System (ADS)

    Dai, J. F.; Liu, J. F.; Zou, J. T.; Dai, Y. L.

    2015-12-01

    The large-scale preparation of disorderly CNTs with a length larger than 3 mm using CVD method were aligned in polymer monomer airflow fields in a quartz tube with an internal diameter of 200 μm and a length of 1.5 m. The airflow aligned CNTs at the output end of the pipe connects to a copper nozzle with an electrostatic field of applied voltage 5x105 V/m and space length of 0.03 m, which were further realigned using via electrostatic spinning. End to end spray into the high speed rotor twisted single-stranded carbon nanotubes threads via rotor spinning technology. The essential component of this technique was the use of carbon nanotubes at a high rotory speed (200000 r/min) combined with the double twisting of filaments that were twisted together to increase the radial friction of the entire section. SEM micrography showed that carbon nanotube thread has a uniform diameter of approximately 200 μm. Its tensile strength was tested up to 2.7 Gpa, with a length of several meters.

  15. Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Johnston, James D., Jr.

    1988-01-01

    Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.

  16. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at

  17. A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways

    DTIC Science & Technology

    2014-01-01

    normal and three different obstructed airway geometries, consisting of symmetric, asym- metric, and random obstructions. Fig. 2 shows the geometric ...normal and obstructed airways Airway resistance is a measure of the opposition to the airflow caused by geometric properties, such as airway obstruction...pressure drops. Resistance values were dependent on the degree and geometric distribution of the obstruction sites. In the symmetric obstruction model

  18. Dynamic evaluation of airflow rates for a variable air volume system serving an open-plan office.

    PubMed

    Mai, Horace K W; Chan, Daniel W T; Burnett, John

    2003-09-01

    In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems.

  19. Nasal lavage cellularity, grain dust, and airflow obstruction.

    PubMed

    Blaski, C A; Watt, J L; Quinn, T J; Thorne, P S; Schwartz, D A

    1996-04-01

    To evaluate the clinical utility of nasal lavage (NL), we performed post-work shift NL on 172 grain workers and 78 postal worker control subjects. The grain worker group included a higher percentage of current smokers (25.7% vs 16.7%) and a lower percentage of former smokers (21.15% vs 35.9%) compared with the postal workers. The control subjects included more female workers and were slightly older than the grain workers. Compared with the postal workers, the grain workers were exposed to significantly greater concentrations of total dust (0.1 +/- 0.0 vs 6.8 +/- 1.4 mg/m3; mean +/- SEM) and total endotoxin (4.3 +/- 0.8 vs 2,372.4 +/- 653.8 endotoxin units/m3). NL from gain workers showed a higher concentration of total cells (55,000 +/- 14,000 vs 25,000 +/- 5,000 cells per milliliter; p=0.03), a higher concentration of squamous epithelial cells (17,029.0 +/- 4,177 .0 vs 7,103.7 +/- 1,479.8 cells per milliliter; p=0.03), and a higher concentration of neutrophils (40,058.0 +/- 12,803.2 vs 17,891.0 +/- 3,822.3 cells per milliliter; p=0.10) compared with postal workers. Importantly, these differences in NL cellularity between grain workers and postal workers were observed within the three strata of smokers. To further assess the importance of total cells, squamous epithelial cells, and neutrophils in the NL fluid of grain workers, we investigated the relationship between these cell concentrations and (1) measures of dust and endotoxin exposure during the work shift. (2) spirometric measures of airflow obtained immediately before the NL, and (3) work-related respiratory symptoms. The concentration of total cells, the concentration of squamous epithelial cells, or the concentration of neutrophils in the NL was not associated with ambient levels of dust or endotoxin, with baseline or cross-shift changes in lung function, or with work-related respiratory symptoms. These findings suggest that increased NL cellularity may be seen in workers exposed to high dust levels

  20. Mechanics of airflow in the human nasal airways.

    PubMed

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  1. Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation.

    PubMed

    Cheng, Y; Lin, Z

    2015-12-01

    The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV. This study reports the unique profiles of flow, temperature, turbulence intensity, and power spectrum of stratum ventilation, which can have a number of implications for both knowledge and understanding of the flow characteristics in a stratum-ventilated room. With respect to the former, it expounds the fundamental characteristics of this air distribution method; and with respect to the latter, it reveals the mechanism of thermal comfort and energy saving under stratum ventilation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow.

    PubMed

    Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi; Oliveira Marques, Melania D; Genta, Pedro R; Edwards, Bradley A; Butler, James; White, David P; Wellman, Andrew

    2017-01-01

    Pharyngeal critical closing pressure (Pcrit) or collapsibility is a major determinant of obstructive sleep apnea (OSA) and may be used to predict the success/failure of non-continuous positive airway pressure (CPAP) therapies. Since its assessment involves overnight manipulation of CPAP, we sought to validate the peak inspiratory flow during natural sleep (without CPAP) as a simple surrogate measurement of collapsibility. Fourteen patients with OSA attended overnight polysomnography with pneumotachograph airflow. The middle third of the night (non-rapid eye movement sleep [NREM]) was dedicated to assessing Pcrit in passive and active states via abrupt and gradual CPAP pressure drops, respectively. Pcrit is the extrapolated CPAP pressure at which flow is zero. Peak and mid-inspiratory flow off CPAP was obtained from all breaths during sleep (excluding arousal) and compared with Pcrit. Active Pcrit, measured during NREM sleep, was strongly correlated with both peak and mid-inspiratory flow during NREM sleep (r = -0.71, p < .005 and r = -0.64, p < .05, respectively), indicating that active pharyngeal collapsibility can be reliably estimated from simple airflow measurements during polysomnography. However, there was no significant relationship between passive Pcrit, measured during NREM sleep, and peak or mid-inspiratory flow obtained from NREM sleep. Flow measurements during REM sleep were not significantly associated with active or passive Pcrit. Our study demonstrates the feasibility of estimating active Pcrit using flow measurements in patients with OSA. This method may enable clinicians to estimate pharyngeal collapsibility without sophisticated equipment and potentially aid in the selection of patients for non- positive airway pressure therapies. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Oscillating water column structural model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by amore » BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.« less

  4. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  5. A Treatise on Equivalent-Plate Stiffnesses for Stiffened Laminated-Composite Plates and Plate-Like Lattices

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2011-01-01

    A survey of studies conducted since 1914 on the use of equivalent-plate stiffnesses in modeling the overall, stiffness-critical response of stiffened plates and shells is presented. Two detailed, comprehensive derivations of first-approximation equivalent-plate stiffnesses are also presented that are based on the Reissner-Mindlin-type, first-order transverse-shear deformation theory for anisotropic plates. Equivalent-plate stiffness expressions, and a corresponding symbolic manipulation computer program, are also presented for several different stiffener configurations. These expressions are very general and exhibit the full range of anisotropies permitted by the Reissner-Mindlin-type, first-order transverse-shear deformation theory for anisotropic plates. The expressions presented in the present study were also compared with available, previously published results. For the most part, the previously published results are for special cases of the general expressions presented herein and are almost in complete agreement. Analysis is also presented that extends the use of the equivalent-plate stiffness expressions to sandwich plates.

  6. Effect of enzymatic pretreatment on the physical quality of plantain (Musa ssp., group AAB) employing airflow reversal drying.

    PubMed

    Rodríguez-Miranda, J; Martínez-Sánchez, C E; Hernández-Santos, B; Juárez-Barrientos, J M; Ventura-Báez, E G; Herman-Lara, E

    2018-01-01

    This work aimed to evaluate the effect of enzymatic pretreatment on the color and texture of plantain ( Musa ssp., group AAB) dried by airflow reversal drying. Plantain slices 1.0 cm thick were used. Pretreatment with two commercial enzymes, Pectinex Ultra SPL ( Aspergillus aculeatus ) and Pectinex 3XL ( Aspergillus niger ), was performed. Drying kinetics were determined with and without pretreatment at temperatures of 50, 65 and 80 °C using a fixed bed convective dryer. An air speed of 6 m/s, a bed height of 5 cm and either unidirectional flow or airflow reversal (every 15 min) were used for drying. Color and texture were analyzed, and consumer acceptance of the results of the best treatments was determined. Pretreatment with the enzyme A. niger and airflow reversal gave the best drying kinetics and showed the greatest reduction in drying time (59.0%) at 80 °C. The best hardness results were found at 80 °C with A. niger enzymatic pretreatment with both types of air flow. Brightness and hue angle showed that samples pretreated with enzymes and dried at 65 °C had a lighter yellow color compared to non-pretreated samples. Plantain samples enzymatically pretreated and dried at 65 and 80 °C were the most accepted by consumers. This kind of enzymatic pretreatment on plantain could allow the conservation of some physical properties and reduction of drying times relative to the current methodology.

  7. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets

    PubMed Central

    Mukhitov, Nikita; Roper, Michael G.; Bertram, Richard

    2016-01-01

    Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal’s ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion. PMID:27788129

  8. Airflow-aligned helical nanofilament (B4) phase in topographic confinement

    PubMed Central

    Gim, Min-Jun; Kim, Hanim; Chen, Dong; Shen, Yongqiang; Yi, Youngwoo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2016-01-01

    We investigated a controlled helical nanofilament (HNF: B4) phase under topographic confinement with airflow that can induce a shear force and temperature gradient on the sample. The resulting orientation and ordering of the B4 phase in this combinational effort was directly investigated using microscopy. The structural freedom of the complex B7 phase, which is a higher temperature phase than the B4 phase, can result in relatively complex microscopic arrangements of HNFs compared with the B4 phase generated from the simple layer structure of the B2 phase. This interesting chiral/polar nanofilament behaviour offers new opportunities for further exploration of the exotic physical properties of the B4 phase. PMID:27384747

  9. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  10. Cold plate

    DOEpatents

    Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  11. Coupled opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor); Maleki, Lute (Inventor)

    1999-01-01

    A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.

  12. Characterization and application of a broad bandwidth oscillator for the HELEN laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, J.E.; Stevenson, R.M.; Bett, T.H.

    1995-12-31

    Preliminary investigations of a potential broad band oscillator for the HELEN laser facility and its proposed upgrade are described. The reasons for the need of broad bandwidth and the choice of commercial technology to achieve it are discussed. The characterization of the device and the diagnostics used for the investigations are described. Small signal amplification of the bandwidth by a glass amplifier was also performed along with investigations of the effect of various bandwidths on the far field beam quality when using random phase plates.

  13. Blood Leukocyte Concentrations, FEV1 Decline, and Airflow Limitation. A 15-Year Longitudinal Study of World Trade Center-exposed Firefighters.

    PubMed

    Zeig-Owens, Rachel; Singh, Ankura; Aldrich, Thomas K; Hall, Charles B; Schwartz, Theresa; Webber, Mayris P; Cohen, Hillel W; Kelly, Kerry J; Nolan, Anna; Prezant, David J; Weiden, Michael D

    2018-02-01

    Rescue/recovery work at the World Trade Center disaster site (WTC) caused a proximate decline in lung function in Fire Department of the City of New York firefighters. A subset of this cohort experienced an accelerated rate of lung function decline over 15 years of post-September 11, 2001 (9/11) follow-up. To determine if early postexposure blood leukocyte concentrations are biomarkers for subsequent FEV 1 decline and incident airflow limitation. Individual rates of forced expiratory volume in 1 second (FEV 1 ) change were calculated for 9,434 firefighters using 88,709 spirometric measurements taken between September 11, 2001, and September 10, 2016. We categorized FEV 1 change rates into three trajectories: accelerated FEV 1 decline (FEV 1 loss >64 ml/yr), expected FEV 1 decline (FEV 1 loss between 0 and 64 ml/yr), and improved FEV 1 (positive rate of change >0 ml/yr). Occurrence of FEV 1 /FVC less than 0.70 after 9/11 defined incident airflow limitation. Using regression models, we assessed associations of post-9/11 blood eosinophil and neutrophil concentrations with subsequent FEV 1 decline and airflow limitation, adjusted for age, race, smoking, height, WTC exposure level, weight change, and baseline lung function. Accelerated FEV 1 decline occurred in 12.7% of participants (1,199 of 9,434), whereas post-9/11 FEV 1 improvement occurred in 8.3% (780 of 9,434). Higher blood eosinophil and neutrophil concentrations were each associated with accelerated FEV 1 decline after adjustment for covariates (odds ratio [OR], 1.10 per 100 eosinophils/μl; 95% confidence interval [CI], 1.05-1.15; and OR, 1.10 per 1,000 neutrophils/μl; 95% CI, 1.05-1.15, respectively). Multivariable-adjusted linear regression models showed that a higher blood neutrophil concentration was associated with a faster rate of FEV 1 decline (1.14 ml/yr decline per 1,000 neutrophils/μl; 95% CI, 0.69-1.60 ml/yr; P < 0.001). Higher blood eosinophil concentrations were associated with a faster rate

  14. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  15. Self-oscillation in spin torque oscillator stabilized by field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  16. Calibration for Thrust and Airflow Measurements in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Werner, Roger A.; Wolter, John D.

    2010-01-01

    CE-22 facility procedures and measurements for thrust and airflow calibration obtained with choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 sq. in.. Throat Reynolds number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. ASME nozzle calibrations need to be done before and after research model testing to achieve these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for throat areas between 20 and 30 sq. in.. Also presented are results for two of the ASME nozzles vectored at 10deg, a dead-weight check of the vertical (perpendicular to the jet axis) force measurement, a calibration of load cell forces for the effects of facility tank deflection with tank pressure, and the calibration of the metric-break labyrinth seal.

  17. Airflow reversal and alternating corkscrew vortices in foredune wake zones during perpendicular and oblique offshore winds

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Beyers, Meiring; Delgado-Fernandez, Irene; Baas, Andreas C. W.; Cooper, Andrew J.; Lynch, Kevin

    2013-04-01

    On all sandy coastlines fringed by dunes, understanding localised air flow allows us to examine the potential sand transfer between the beach and dunes by wind-blown (Aeolian) action. Traditional thinking into this phenomenon had previously included only onshore winds as effective drivers of this transfer. Recent research by the authors, however, has shown that offshore air-flow too can contribute significantly, through lee-side back eddies, to the overall windblown sediment budget to coastal dunes. Under rising sea levels and increased erosion scenarios, this is an important process in any post-storm recovery of sandy beaches. Until now though, full visualisation in 3D of this newly recognised mechanism in offshore flows has not been achieved. Here, we show for the first time, this return flow eddy system using 3D computational fluid dynamics modelling, and reveal the presence of complex corkscrew vortices and other phenomena. The work highlights the importance of relatively small surface undulations in the dune crest which act to induce the spatial patterns of airflow (and transport) found on the adjacent beach.

  18. Response of an oscillating superleak transducer to a pointlike heat source

    NASA Astrophysics Data System (ADS)

    Quadt, A.; Schröder, B.; Uhrmacher, M.; Weingarten, J.; Willenberg, B.; Vennekate, H.

    2012-03-01

    A new technique of superconducting cavity diagnostics has been introduced by D. L. Hartill at Cornell University, Ithaca, New York. It uses oscillating superleak transducers (OST) which detect the heat transferred from a cavity’s quench point via Second Sound through the superfluid He bath, needed to cool the superconducting cavity. The localization of the quench point is done by triangulation. The observed response of an OST is a nontrivial, but reproducible pattern of oscillations. A small helium evaporation cryostat was built which allows the investigation of the response of an OST in greater detail. The distance between a pointlike electrical heater and the OST can be varied. The OST can be mounted either parallel or perpendicular to the plate that houses the heat source. If the artificial quench point releases an amount of energy compatible to a real quench spot on a cavity’s surface, the OST signal starts with a negative pulse, which is usually strong enough to allow automatic detection. Furthermore, the reflection of the Second Sound on the wall is observed. A reflection coefficient R=0.39±0.05 of the glass wall is measured. This excludes a strong influence of multiple reflections in the complex OST response. Fourier analyses show three main frequencies, found in all OST spectra. They can be interpreted as modes of an oscillating circular membrane.

  19. Enhanced upper respiratory tract airflow and head fanning reduce brain temperature in brain-injured, mechanically ventilated patients: a randomized, crossover, factorial trial.

    PubMed

    Harris, B A; Andrews, P J D; Murray, G D

    2007-01-01

    Heat loss from the upper airways and through the skull are physiological mechanisms of brain cooling which have not been fully explored clinically. This randomized, crossover, factorial trial in 12 brain-injured, orally intubated patients investigated the effect of enhanced nasal airflow (high flow unhumidified air with 20 p.p.m. nitric oxide gas) and bilateral head fanning on frontal lobe brain temperature and selective brain cooling. After a 30 min baseline, each patient received the four possible combinations of the interventions--airflow, fanning, both together, no intervention--in randomized order. Each combination was delivered for 30 min and followed by a 30 min washout, the last 5 min of which provided the baseline for the next intervention. The difference in mean brain temperature over the last 5 min of the preceding washout minus the mean over the last 5 min of intervention, was 0.15 degrees C with nasal airflow (P=0.001, 95% CI 0.06-0.23 degrees C) and 0.26 degrees C with head fanning (P<0.001, 95% CI 0.17-0.34 degrees C). The estimate of the combined effect of airflow and fanning on brain temperature was 0.41 degrees C. Selective brain cooling did not occur. Physiologically, this study demonstrates that heat loss through the upper airways and through the skull can reduce parenchymal brain temperature in brain-injured humans and the onset of temperature reduction is rapid. Clinically, in ischaemic stroke, a temperature decrease of 0.27 degrees C may reduce the relative risk of poor outcome by 10-20%. Head fanning may have the potential to achieve a temperature decrease of this order.

  20. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy

    PubMed Central

    Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807

  1. Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrichs, H., E-mail: henning.ulrichs@uni-muenster.de; Demidov, V. E.; Demokritov, S. O.

    2014-01-27

    We present a numerical study of magnetization dynamics in a recently introduced spin torque nano-oscillator, whose operational principle relies on the spin-Hall effect—spin-Hall nano-oscillators. Our numerical results show good agreement with the experimentally observed behaviors and provide detailed information about the features of the primary auto-oscillation mode observed in the experiments. They also clarify the physical nature of the secondary auto-oscillation mode, which was experimentally observed under certain conditions only.

  2. Generalizing the transition from amplitude to oscillation death in coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Koseska, Aneta; Kurths, Jürgen

    2013-11-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching types in coupled nonlinear oscillators. The transition from AD to OD has been recently realized due to the interplay between heterogeneity and coupling strength [A. Koseska et al., Phys. Rev. Lett. 111, 024103 (2013)]. We identify here the transition from AD to OD in nonlinear oscillators with couplings of distinct natures. It is demonstrated that the presence of time delay in the coupling cannot induce such a transition in identical oscillators, but it can indeed facilitate its occurrence with a low degree of heterogeneity. Moreover, it is further shown that the AD to OD transition is reliably observed in identical oscillators with dynamic and conjugate couplings. The coexistence of AD and OD and rich stable OD configurations after the transition are revealed, which are of great significance for potential applications in physics, biology, and control studies.

  3. Composite and Component Plates, Plate Non-rigidity, and the Steadiness of Plate Motion From Marine Geophysical and Space Geodetic Data

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Argus, D. F.; DeMets, C.

    2017-12-01

    Plate tectonic theory has evolved since its birth 50 years ago. In particular, we now recognize that some of the originally proposed plates such as the Indo-Australia plate, the Africa plate, and the America plate are what we term "composite" plates—entities that contain no traditionally defined narrow plate boundaries, but are composed of multiple approximately rigid regions, which we term "component" plates, separated by diffuse plate boundaries. The best example of a composite plate is the Indo-Australia composite plate, which consists of the India, Capricorn, Australia, and Macquarie component plates and multiple intervening diffuse oceanic plate boundaries. The poles of relative rotation between component plates tend to lie in their mutual diffuse plate boundary. Outside of diffuse boundaries, plate rigidity has proven to be an excellent approximation, but the non-closure of some plate circuits indicates that stable plate interiors have a small but significant non-rigidity that may add up to 1 to 2 mm/a across any individual plate and may be partly due to horizontal thermal contraction of oceanic lithosphere. The greatest observational challenge to plate rigidity is posed by the Pacific-Cocos-Nazca plate circuit, which fails closure by 15 ±4 mm/a. The most rapid deformation of the plates observed with space geodesy is generated by solid Earth's viscous response to unloading of the late Pleistocene ice sheets. Differences between different realizations of global plate velocities from space geodesy appear in some cases to be due to differing assumptions about the motion of the geocenter, which affects estimated plate relative angular velocities and estimated vertical motion at geodetic sites. Comparison of space geodetic and marine geophysical plate motion rates and directions has demonstrated that plate motion is nearly steady, which allows plate boundary conditions to be applied to inter-seismic strain accumulation due to locking of specific faults. In

  4. Association between neutrophilic airway inflammation and airflow limitation in adults with asthma.

    PubMed

    Shaw, Dominick E; Berry, Michael A; Hargadon, Bev; McKenna, Susan; Shelley, Maria J; Green, Ruth H; Brightling, Christopher E; Wardlaw, Andrew J; Pavord, Ian D

    2007-12-01

    There is debate about the mechanisms of persistent airflow limitation in patients with asthma. Chronic inflammation is assumed to be important, although there is limited and contradictory information about the relationship between airway inflammation and postbronchodilator FEV1. We have assessed the cross-sectional relationship between prebronchodilator and postbronchodilator FEV1 and measures of airway inflammation after allowing for the effects of potential confounding factors. Multivariate analysis was performed on data collected from 1,197 consecutive patients with asthma seen at the respiratory outpatient clinic at Glenfield Hospital between 1997 and 2004. Relationships between induced sputum total neutrophil and differential eosinophil cell counts, and prebronchodilator and postbronchodilator lung function were examined. Sputum total neutrophil but not differential eosinophil count was associated with lower postbronchodilator FEV1. Both differential eosinophil and total neutrophil count were associated with lower prebronchodilator FEV1. These effects were independent after adjustment for age, smoking, ethnicity, asthma duration, and inhaled corticosteroid use. A 10-fold increase in neutrophil count was associated with a 92 mL reduction (95% confidence interval, 29 to 158; p = 0.007) in postbronchodilator FEV1. In this large heterogeneous population of adults with asthma, we have shown that prebronchodilator FEV1 is associated with neutrophilic and eosinophilic airway inflammation, whereas sputum total neutrophil counts alone are associated with postbronchodilator FEV1. This supports the hypothesis that neutrophilic airway inflammation has a role in the progression of persistent airflow limitation in asthma and raises the possibility that this progression and the development of COPD share a common mechanism.

  5. Attenuation of tachykinin-induced airflow obstruction and microvascular leakage in immature airways.

    PubMed Central

    Tokuyama, K.; Yokoyama, T.; Morikawa, A.; Mochizuki, H.; Kuroume, T.; Barnes, P. J.

    1993-01-01

    1. To study the effect of maturation on substance P (SP)- and neurokinin A (NKA)-induced airflow obstruction and airway microvascular leakage (MVL), we have measured changes in both lung resistance (RL) and extravasation of Evans blue dye in anaesthetized immature (aged 14 +/- 1 days) and adult guinea-pigs (aged 80 +/- 3 days). 2. RL and its recovery after hyperinflation at 5 min were measured for 6 min after i.v. SP (0.2, 1 and 30 nmol kg-1), NKA (1 and 10 nmol kg-1) or vehicle (0.9% NaCl). After measurement of RL, MVL in trachea, main bronchi and intrapulmonary airways was also examined. 3. The order of potency in inducing airflow obstruction did not change with age (NKA > SP) but immature animals required a larger dose of SP or NKA than adults to cause a significant increase in RL. 4. The order of potency in inducing airway microvascular leakage was SP > NKA in both immature and adult animals. The amount of extravasated dye after SP was significantly less in immature airways, especially in central airways. 5. Phosphoramidon (2.5 mg kg-1), a neutral endopeptidase (NEP) inhibitor, significantly increased RL after 0.2 nmol kg-1 SP only in adult airways. Phosphoramidon enhanced the dye extravasation after 0.2 nmol kg-1 SP in both immature and adult airways with a significantly greater amount of dye in adult animals, suggesting that mechanisms other than changes in NEP activity may be responsible for this age-related difference.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7679033

  6. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the

  7. Investigation on the effect of MR elastomer based adaptive vibration absorbers on the radiated sound from circular elastic plates

    NASA Astrophysics Data System (ADS)

    Hemmatian, M.; Sedaghati, R.

    2016-04-01

    This study aims to investigate the effect of using magnetorheological elastomer (MRE)-based adaptive tuned vibration absorbers (ATVA) on the sound transmission in an elastic plate. Sound transmission loss (STL) of an elastic circular thin plate is analytically studied. The plate is excited by a plane acoustic wave as an incident sound and the displacement of the plate is calculated using corresponding mode shapes of the system for clamped boundary condition. Rayleigh integral approach is used to express the transmitted sound pressure in terms of the plate's displacement modal amplitude. In order to increase sound transmission loss of the plate, the MRE-based ATVA is considered. The basic idea is to be able to change the stiffness of the ATVA by varying magnetic field in order to reduce the transmitted acoustic energy of the host structure in a wide frequency range. Here, a MRE-based ATVA under the shear mode consisting of an oscillator mass, magnetic conductor, coils and MRE is investigated. In order to predict the viscoelastic characteristics of the field-dependent MRE based on the applied magnetic field, the double pole model is used. Finally, MRE-based ATVAs are integrated with the plate to absorb the plate energy with the aim of decreasing the transmitted sound power. Results show that plate with integrated MRE-based ATVAs suppresses the axisymmetric vibration of the plate and thus considerably improves the STL. Parametric studies on the influence of the position of MRE-based ATVAs and the effects of applied current on their performance are also presented.

  8. Oscillator Noise Analysis

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2005-08-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, that exist in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter. These are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In noise analysis for oscillators, the key is figuring out how the various disturbances and noise sources in the oscillator end up as phase fluctuations. In doing so, one first computes transfer functions from the noise sources to the oscillator phase, or the sensitivity of the oscillator phase to these noise sources. In this paper, we first provide a discussion explaining the origins and the proper definition of this transfer or sensitivity function, followed by a critical review of the various numerical techniques for its computation that have been proposed by various authors over the past fifteen years.

  9. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease.

    PubMed

    Mohamad, N; Ubaidillah; Mazlan, S A; Imaduddin, F; Choi, Seung-Bok; Yazid, I I M

    2018-01-01

    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail.

  10. Detecting spatial defects in colored patterns using self-oscillating gels

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.

    2018-06-01

    With the growing demand for wearable computers, there is a need for material systems that can perform computational tasks without relying on external electrical power. Using theory and simulation, we design a material system that "computes" by integrating the inherent behavior of self-oscillating gels undergoing the Belousov-Zhabotinsky (BZ) reaction and piezoelectric (PZ) plates. These "BZ-PZ" units are connected electrically to form a coupled oscillator network, which displays specific modes of synchronization. We exploit this attribute in employing multiple BZ-PZ networks to perform pattern matching on complex multi-dimensional data, such as colored images. By decomposing a colored image into sets of binary vectors, we use each BZ-PZ network, or "channel," to store distinct information about the color and the shape of the image and perform the pattern matching operation. Our simulation results indicate that the multi-channel BZ-PZ device can detect subtle differences between the input and stored patterns, such as the color variation of one pixel or a small change in the shape of an object. To demonstrate a practical application, we utilize our system to process a colored Quick Response code and show its potential in cryptography and steganography.

  11. Aging effects on airflow dynamics and lung function in human bronchioles.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-01-01

    The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.

  12. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  13. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  14. Automatic Oscillating Turret.

    DTIC Science & Technology

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  15. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    PubMed

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  16. Relation of pulmonary vessel size to transfer factor in subjects with airflow obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, A.W.

    In a group of 61 consecutive patients undergoing assessment of airflow obstruction, a significant linear relation was demonstrated between measurements of the diameter of the midzonal pulmonary vessels on the plain chest radiographs and transfer factor (diffusing capacity for carbon monoxide) (r = 0.46, p < 0.001). Since reduction in transfer factor has been shown to relate to structural emphysema, reduction in midzone vessel caliber implies the same. However, in the individual patient neither the transfer factor nor structural emphysema can be reliably predicted from midzone vessel diameters alone.

  17. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 89 300 91 4.0 102 (c) The exhalation resistance shall not exceed 25 mm. (1 inch) of water-column... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE...

  18. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.

    PubMed

    Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen

    2016-04-01

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  19. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less

  20. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  1. Performance optimization of plate heat exchangers with chevron plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muley, A.; Manglik, R.M.

    1999-07-01

    The enhanced heat transfer performance of a chevron plate heat exchanger (PHE) is evaluated employing (1) energy-conservation based performance evaluation criteria (PECs), and (2) the second-law based minimization of entropy generation principle. Single-phase laminar and turbulent flow convection for three different chevron-plate arrangements are considered. The influence of plate surface corrugation characteristics and their stack arrangements on the heat exchanger's thermal-hydraulic performance is delineated. Based on the different figures of merit, the results show that the extent of heat transfer enhancement increases with flow Re and chevron angle {beta} in laminar flow, but it diminishes with increasing Re in turbulentmore » flows. With up to 2.9 times higher Q, 48% lower A, and entropy generation number N{sub s,a} {lt} 1, relative to an equivalent flat-plate pack, chevron plates are found to be especially suitable in the low to medium flow rates range (20 {le} Re {le} 2,000). Also, there appears to be no significant advantage of using a mixed-plate over a symmetric-plate arrangement.« less

  2. Effect of airflow on biodrying of gardening wastes in reactors.

    PubMed

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  3. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  4. Evaluation of finger plate and flat plate connection design.

    DOT National Transportation Integrated Search

    2016-01-01

    This project investigates the cause(s) of premature deterioration of MoDOT finger plate and flat plate expansion devices : under high traffic volumes and then uses that information to design new Load and Resistance Factor Design (LRFD) : finger plate...

  5. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers--due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation.

  6. Magnetically coupled magnet-spring oscillators

    NASA Astrophysics Data System (ADS)

    Donoso, G.; Ladera, C. L.; Martín, P.

    2010-05-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of mechanical, and easily adjustable by the experimenter. The coupling of this new coupled oscillator system is determined by the currents that the magnets induce in two coils connected in series, one to each magnet. It is an interesting case of mechanical oscillators with field-driven coupling, instead of mechanical coupling. Moreover, it is both a coupled and a damped oscillating system that lends itself to a detailed study and presentation of many properties and phenomena of such a system of oscillators. A set of experiments that validates the theoretical model of the oscillators is presented and discussed.

  7. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  8. Details: Elevation of Plate Typical Bay, SectionThrough Plate Typical Bay, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Details: Elevation of Plate Typical Bay, Section-Through Plate Typical Bay, Section-Through Plate Center Bay, Elevation of Plate Center Bay - Contoocook Covered Bridge, Spanning Contoocook River, Hopkinton, Merrimack County, NH

  9. Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade

    NASA Technical Reports Server (NTRS)

    Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.

    1985-01-01

    Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

  10. Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions

    Treesearch

    DaNa L. Carlis; Yi-Leng Chen; Vernon R. Morris

    2010-01-01

    The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during July–August 2005. The model forecasts are validated by surface observations with good agreement.

  11. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less

  12. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep

    PubMed Central

    Spilak, Michal P.; Sigsgaard, Torben; Takai, Hisamitsu; Zhang, Guoqiang

    2016-01-01

    People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject’s movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body. PMID:27898693

  13. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep.

    PubMed

    Spilak, Michal P; Sigsgaard, Torben; Takai, Hisamitsu; Zhang, Guoqiang

    2016-01-01

    People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject's movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body.

  14. Oscillating Permanent Magnets.

    ERIC Educational Resources Information Center

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  15. Oscillation Baselining and Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  16. Program budgeting and marginal analysis: a case study in chronic airflow limitation.

    PubMed

    Crockett, A; Cranston, J; Moss, J; Scown, P; Mooney, G; Alpers, J

    1999-01-01

    Program budgeting and marginal analysis is a method of priority-setting in health care. This article describes how this method was applied to the management of a disease-specific group, chronic airflow limitation. A sub-program flow chart clarified the major cost drivers. After assessment of the technical efficiency of the sub-programs and careful and detailed analysis, incremental and decremental wish lists of activities were established. Program budgeting and marginal analysis provides a framework for rational resource allocation. The nurturing of a vigorous program management group, with members representing all participants in the process (including patients/consumers), is the key to a successful outcome.

  17. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  18. Efficacy of confrontational counselling for smoking cessation in smokers with previously undiagnosed mild to moderate airflow limitation: study protocol of a randomized controlled trial.

    PubMed

    Kotz, Daniel; Wesseling, Geertjan; Huibers, Marcus J H; van Schayck, Onno C P

    2007-11-15

    The use of spirometry for early detection of chronic obstructive pulmonary disease (COPD) is still an issue of debate, particularly because of a lack of convincing evidence that spirometry has an added positive effect on smoking cessation. We hypothesise that early detection of COPD and confrontation with spirometry for smoking cessation may be effective when applying an approach we have termed "confrontational counselling"; a patient-centred approach which involves specific communication skills and elements of cognitive therapy. An important aspect is to confront the smoker with his/her airflow limitation during the counselling sessions. The primary objective of this study is to test the efficacy of confrontational counselling in comparison to regular health education and promotion for smoking cessation delivered by specialized respiratory nurses in current smokers with previously undiagnosed mild to moderate airflow limitation. The study design is a randomized controlled trial comparing confrontational counselling delivered by a respiratory nurse combined with nortriptyline for smoking cessation (experimental group), health education and promotion delivered by a respiratory nurse combined with nortriptyline for smoking cessation (control group 1), and "care as usual" delivered by the GP (control group 2). Early detection of smokers with mild to moderate airflow limitation is achieved by means of a telephone interview in combination with spirometry. Due to a comparable baseline risk of airflow limitation and motivation to quit smoking, and because of the standardization of number, duration, and scheduling of counselling sessions between the experimental group and control group 1, the study enables to assess the "net" effect of confrontational counselling. The study has been ethically approved and registered. Ethical as well as methodological considerations of the study are discussed in this protocol. A significant and relevant effect of confrontational counselling

  19. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.

    PubMed

    Stothard, David J M; Dunn, Malcolm H

    2010-01-18

    We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

  20. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  1. Plate mode velocities in graphite/epoxy plates

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Gorman, M. R.

    1994-01-01

    Measurements of the velocities of the extensional and flexural plate modes were made along three directions of propagation in four graphite/epoxy composite plates. The acoustic signals were generated by simulated acoustic emission events (pencil lead breaks or Hsu-Neilson sources) and detected by by broadband ultrasonic transducers. The first arrival of the extensional plate mode, which is nondispersive at low frequencies, was measured at a number of different distances from the source along the propagation direction of interest. The velocity was determined by plotting the distance versus arrival time and computing its slope. Because of the large dispersion of the flexural mode, a Fourier phase velocity technique was used to characterize this mode. The velocity was measured up to a frequency of 160 kHz. Theoretical predictions of the velocities of these modes were also made and compared with experimental observations. Classical plate theory yields good agreement with the measured extensional velocities. For predictions of the dispersion of the flexural mode, Mindlin plates theory, which includes the effects of shear deformation and rotatory inertia was shown to give better agreement with the experimental measurements.

  2. Paper microzone plates.

    PubMed

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  3. Slow oscillations orchestrating fast oscillations and memory consolidation.

    PubMed

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    PubMed

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  5. Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates

    NASA Astrophysics Data System (ADS)

    VeeraKrishna, M.; Subba Reddy, G.; Chamkha, A. J.

    2018-02-01

    The effects of radiation and Hall current on an unsteady magnetohydrodynamic free convective flow in a vertical channel filled with a porous medium have been studied. We consider an incompressible viscous and electrically conducting incompressible viscous second grade fluid bounded by a loosely packed porous medium. The fluid is driven by an oscillating pressure gradient parallel to the channel plates, and the entire flow field is subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of inclination α with the normal to the boundaries in the transverse xy-plane. The temperature of one of the plates varies periodically, and the temperature difference of the plates is high enough to induce the radiative heat transfer. The effects of various parameters on the velocity profiles, the skin friction, temperature field, rate of heat transfer in terms of their amplitude, and phase angles are shown graphically.

  6. Emergence of amplitude and oscillation death in identical coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Duan, Jinqiao; Kurths, Jürgen

    2014-09-01

    We deduce rigorous conditions for the onset of amplitude death (AD) and oscillation death (OD) in a system of identical coupled paradigmatic Stuart-Landau oscillators. A nonscalar coupling and high frequency are beneficial for the onset of AD. In strong contrast, scalar diffusive coupling and low intrinsic frequency are in favor of the emergence of OD. Our finding contributes to clearly distinguish intrinsic geneses for AD and OD, and further substantially corroborates that AD and OD are indeed two dynamically distinct oscillation quenching phenomena due to distinctly different mechanisms.

  7. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  8. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease

    PubMed Central

    Ubaidillah; Imaduddin, F.; Choi, Seung-Bok; Yazid, I. I. M.

    2018-01-01

    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail. PMID:29630595

  9. Nonlinear Oscillators in Space Physics

    NASA Technical Reports Server (NTRS)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  10. Mathematical model and stability analysis of fluttering and autorotation of an articulated plate into a flow

    NASA Astrophysics Data System (ADS)

    Rostami, Ali Bakhshandeh; Fernandes, Antonio Carlos

    2018-03-01

    This paper is dedicated to develop a mathematical model that can simulate nonlinear phenomena of a hinged plate which places into the fluid flow (1 DOF). These phenomena are fluttering (oscillation motion), autorotation (continuous rotation) and chaotic motion (combination of fluttering and autorotation). Two mathematical models are developed for 1 DOF problem using two eminent mathematical models which had been proposed for falling plates (3 DOF). The procedures of developing these models are elaborated and then these results are compared to experimental data. The best model in the simulation of the phenomena is chosen for stability and bifurcation analysis. Based on these analyses, this model shows a transcritical bifurcation and as a result, the stability diagram and threshold are presented. Moreover, an analytical expression is given for finding the boundary of bifurcation from the fluttering to the autorotation.

  11. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    PubMed

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.

  12. The Duffin-Kemmer-Petiau oscillator

    NASA Technical Reports Server (NTRS)

    Nedjadi, Youcef; Barrett, Roger

    1995-01-01

    In view of current interest in relativistic spin-one systems and the recent work on the Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the equation the DKP oscillator. This oscillator is a relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We show that it conserves total angular momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of the DKP oscillator in the spin 1 representation.

  13. Magnetically Coupled Magnet-Spring Oscillators

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  14. Different histological subtypes of peripheral lung cancer based on emphysema distribution in patients with both airflow limitation and CT-determined emphysema.

    PubMed

    Shin, Beomsu; Shin, Sumin; Chung, Myung Jin; Lee, Hyun; Koh, Won-Jung; Kim, Hojoong; Park, Hye Yun

    2017-02-01

    The histological subtypes by peripheral tumor location remain uncharacterized in COPD patients with emphysema. We investigated histologic subtypes of peripheral lung cancers based on the context of heterogeneous emphysema distribution in patients with airflow limitation and CT-determined emphysema. A retrospective, cross-sectional study was conducted using data from 754 patients with airflow limitation and newly-diagnosed primary lung cancers from February 2013 to February 2015. Of these, 230 patients had emphysema, as determined by computed tomography software designed to quantify emphysema. Among the 230 patients, the most common subtype in central lesions (n=84) was squamous cell carcinoma (SCC) (n=64/84, 76%). Adenocarcinoma (ADC) was more frequently observed in peripheral lesions (n=146) than central lesions (58/146 [40%] vs. 4/84 [5%], p<0.001). In peripheral lesions, ADC was more frequently seen in areas without emphysema than emphysema areas (43/74 [58%] vs. 15/72 [21%], p<0.001), while SCC was more frequently found in emphysema areas than areas without emphysema (44/72 [61%] vs. 13/74 [18%], p<0.001). These associations persisted with adjustments for age, sex, smoking status and forced expiratory volume in 1s. In patients with both airflow limitation and CT-determined emphysema, the main histological subtype of peripheral lung cancer was SCC in emphysema areas and ADC in areas without emphysema. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Patient specific CFD models of nasal airflow: overview of methods and challenges.

    PubMed

    Kim, Sung Kyun; Na, Yang; Kim, Jee-In; Chung, Seung-Kyu

    2013-01-18

    Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.

    1984-09-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the controlmore » group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation.« less

  17. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  18. Universal, computer facilitated, steady state oscillator, closed loop analysis theory and some applications to precision oscillators

    NASA Technical Reports Server (NTRS)

    Parzen, Benjamin

    1992-01-01

    The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.

  19. Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.

    1980-01-01

    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.

  20. Angular shear plate

    DOEpatents

    Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  1. Neutrino Oscillation Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far themore » most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.« less

  2. Numerical simulations of island effects on airflow and weather during the summer over the island of Oahu

    Treesearch

    Hiep Van Nguyen; Yie-Leng Chen; Francis Fujioka

    2010-01-01

    The high-resolution (1.5 km) nonhydrostatic fifth-generation Pennsylvania StateUniversity–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and an advanced land surface model (LSM) are used to study the island-induced airflow and weather for the island of Oahu, Hawaii, under summer trade wind conditions. Despite Oahu’s relatively small...

  3. Virtual Oscillator Controls | Grid Modernization | NREL

    Science.gov Websites

    Virtual Oscillator Controls Virtual Oscillator Controls NREL is developing virtual oscillator Santa-Barbara, and SunPower. Publications Synthesizing Virtual Oscillators To Control Islanded Inverters Synchronization of Parallel Single-Phase Inverters Using Virtual Oscillator Control, IEEE Transactions on Power

  4. Aging effects on airflow dynamics and lung function in human bronchioles

    PubMed Central

    Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.

    2017-01-01

    Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future

  5. Prominence oscillations

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo; Oliver, Ramón; Ballester, José Luis

    2018-04-01

    Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences) that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small and large amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.

  6. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidalmore » perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.« less

  7. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures.

    PubMed

    von Vogelsang, A-C; Förander, P; Arvidsson, M; Löwenhielm, P

    2018-03-24

    Surgical site infections (SSIs) after neurosurgery are potentially life-threatening and entail great costs. SSIs may occur from airborne bacteria in the operating room, and ultraclean air is desired during infection-prone cleaning procedures. Door openings and the number of persons present in the operating room affect the air quality. Mobile laminar airflow (MLAF) units, with horizontal laminar airflow, have previously been shown to reduce airborne bacterial contamination. To assess the effect of MLAF units on airborne bacterial contamination during neurosurgical procedures. In a quasi-experimental design, bacteria-carrying particles (colony-forming units: cfu) during neurosurgical procedures were measured with active air-sampling in operating rooms with conventional turbulent ventilation, and with additional MLAF units. The MLAF units were shifted between operating rooms monthly. Colony-forming unit count and bacterial species detection were conducted after incubation. Data was collected for a period of 18 months. A total of 233 samples were collected during 45 neurosurgical procedures. The use of MLAF units significantly reduced the numbers of cfu in the surgical site area (P < 0.001) and above the instrument table (P < 0.001). Logistic regression showed that the only significant predictor affecting cfu count was the use of MLAF units (odds ratio: 41.6; 95% confidence interval: 11.3-152.8; P < 0.001). The most frequently detected bacteria were coagulase-negative staphylococci. MLAF successfully reduces cfu during neurosurgery to ultraclean air levels. MLAF units are valuable when the main operating room ventilation system is unable to produce ultraclean air in infection-prone clean neurosurgery. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. A quasi-3D wire approach to model pulmonary airflow in human airways.

    PubMed

    Kannan, Ravishekar; Chen, Z J; Singh, Narender; Przekwas, Andrzej; Delvadia, Renishkumar; Tian, Geng; Walenga, Ross

    2017-07-01

    The models used for modeling the airflow in the human airways are either 0-dimensional compartmental or full 3-dimensional (3D) computational fluid dynamics (CFD) models. In the former, airways are treated as compartments, and the computations are performed with several assumptions, thereby generating a low-fidelity solution. The CFD method displays extremely high fidelity since the solution is obtained by solving the conservation equations in a physiologically consistent geometry. However, CFD models (1) require millions of degrees of freedom to accurately describe the geometry and to reduce the discretization errors, (2) have convergence problems, and (3) require several days to simulate a few breathing cycles. In this paper, we present a novel, fast-running, and robust quasi-3D wire model for modeling the airflow in the human lung airway. The wire mesh is obtained by contracting the high-fidelity lung airway surface mesh to a system of connected wires, with well-defined radii. The conservation equations are then solved in each wire. These wire meshes have around O(1000) degrees of freedom and hence are 3000 to 25 000 times faster than their CFD counterparts. The 3D spatial nature is also preserved since these wires are contracted out of the actual lung STL surface. The pressure readings between the 2 approaches showed minor difference (maximum error = 15%). In general, this formulation is fast and robust, allows geometric changes, and delivers high-fidelity solutions. Hence, this approach has great potential for more complicated problems including modeling of constricted/diseased lung sections and for calibrating the lung flow resistances through parameter inversion. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization

    PubMed Central

    2011-01-01

    Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032

  10. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  11. Anterior inferior plating versus superior plating for clavicle fracture: a meta-analysis.

    PubMed

    Ai, Jie; Kan, Shun-Li; Li, Hai-Liang; Xu, Hong; Liu, Yang; Ning, Guang-Zhi; Feng, Shi-Qing

    2017-04-18

    The position of plate fixation for clavicle fracture remains controversial. Our objective was to perform a comprehensive review of the literature and quantify the surgical parameters and clinical indexes between the anterior inferior plating and superior plating for clavicle fracture. PubMed, EMBASE, and the Cochrane Library were searched for randomized and non-randomized studies that compared the anterior inferior plating with the superior plating for clavicle fracture. The relative risk or standardized mean difference with 95% confidence interval was calculated using either a fixed- or random-effects model. Four randomized controlled trials and eight observational studies were identified to compare the surgical parameters and clinical indexes. For the surgical parameters, the anterior inferior plating group was better than the superior plating group in operation time and blood loss (P < 0.05). Furthermore, in terms of clinical indexes, the anterior inferior plating was superior to the superior plating in reducing the union time, and the two kinds of plate fixation methods were comparable in constant score, and the rate of infection, nonunion, and complications (P > 0.05). Based on the current evidence, the anterior inferior plating may reduce the blood loss, the operation and union time, but no differences were observed in constant score, and the rate of infection, nonunion, and complications between the two groups. Given that some of the studies have low quality, more randomized controlled trails with high quality should be conduct to further verify the findings.

  12. Weak Perturbations of Biochemical Oscillators

    NASA Astrophysics Data System (ADS)

    Gailey, Paul

    2001-03-01

    Biochemical oscillators may play important roles in gene regulation, circadian rhythms, physiological signaling, and sensory processes. These oscillations typically occur inside cells where the small numbers of reacting molecules result in fluctuations in the oscillation period. Some oscillation mechanisms have been reported that resist fluctuations and produce more stable oscillations. In this paper, we consider the use of biochemical oscillators as sensors by comparing inherent fluctuations with the effects of weak perturbations to one of the reactants. Such systems could be used to produce graded responses to weak stimuli. For example, a leading hypothesis to explain geomagnetic navigation in migrating birds and other animals is based on magnetochemical reactions. Because the magnitude of magnetochemical effects is small at geomagnetic field strengths, a sensitive, noise resistant detection scheme would be required.

  13. Investigation of the effects of miniscrew-assisted rapid palatal expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis

    PubMed Central

    Hur, Jae-Sik; Kim, Hyoung-Ho; Choi, Jin-Young; Suh, Sang-Ho

    2017-01-01

    Objective The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. Methods Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. Results The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. Conclusions MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS. PMID:29090123

  14. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  15. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    NASA Astrophysics Data System (ADS)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  16. Case identification of subjects with airflow limitations using the handheld spirometer "Hi-Checker™" : comparison against an electronic desktop spirometer.

    PubMed

    Nishimura, Koichi; Nakayasu, Kazuhito; Kobayashi, Atsuko; Mitsuma, Satoshi

    2011-12-01

    Systematic case identification has been proposed as a strategy to improve diagnosis rates and to enable the early detection of subjects with COPD. We hypothesized that case identification could be possible using the handheld spirometer Hi-Checker™. To determine how to modify the FEV(1)/FEV(6) values obtained using the Hi-Checker™ to screen for cases with airflow limitation. Spirometry was performed with both an electronic desktop spirometer and with the Hi-Checker™ in 312 male subjects. The average FEV(1) (mean ± SD) measured using a conventional spirometer and the Hi-Checker™ was 2.99 ± 0.56L and 3.07 ± 0.57L, respectively. These results were significantly different (P<0.001, paired t-test for both). This difference of -0.08 ± 0.13L (95% confidence interval: -0.094-0.066L) was normally distributed, and thought to be random. Statistically significant correlations were found for all measurements between the spirometer and the Hi-Checker™ ; the Pearson's correlation coefficient (R) between the FEV(1)/FVC and FEV(1)/FEV(6) values was 0.881. If one defines a FEV(1/)FVC smaller than 0.7 measured by the spirometer as airflow limitation, then a FEV(1)/FEV(6) smaller than 0.746 measured by the Hi-Checker™ best matches this definition, and Cohen's kappa coefficient was 0.672. Although the Hi-Checker™ estimates resembled those from conventional spirometry, it should be emphasized that the two methods did not produce identical results due to random measurement error. Although one must be careful about overinterpreting these results, since the Hi-Checker™ is small and inexpensive, it could make a significant contribution in facilitating the case selection of patients with airflow limitation.

  17. Airflow Actuation of Shortfin Mako Shark Denticles

    NASA Astrophysics Data System (ADS)

    Devey, Sean; Hubner, Paul; Lang, Amy

    2016-11-01

    The shortfin mako shark is covered in microscopic scales called denticles, which may act as a mechanism for passive flow control. Recent research has investigated the theory that reversing flow could passively bristle these denticles, which could delay flow separation. Water tunnel studies have supported this theory, yet a wind tunnel study at a greater dynamic pressure found no significant differences between an airfoil covered with mako skin and a smooth airfoil. A likely cause is that surface tension between denticles, which must be wet to retain flexibility, prevented bristling. This would not be an issue in water. To determine what reverse airflow characteristics cause denticle bristling in air, a benchtop study was conducted in which a jet of air was impinged upon a sample of wet mako skin in the reverse flow direction. A microscope and camera captured video of the denticles under the air jet, and image analysis techniques were used to detect bristling. Analysis shows sporadic bristling around 16 m/s (q = 150 Pa) but full bristling does not occur until above 35 m/s (q = 740 Pa). The free stream velocities required to achieve such reversal speeds are much higher. For this reason, mechanical analogues will be used rather than real skin in future studies of this mechanism. Funding from Boeing and NSF REU site Grant EEC 1358991 is greatly appreciated.

  18. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  19. Testing limits to airflow perturbation device (APD) measurements.

    PubMed

    Lopresti, Erika R; Johnson, Arthur T; Koh, Frank C; Scott, William H; Jamshidi, Shaya; Silverman, Nischom K

    2008-10-31

    The Airflow Perturbation Device (APD) is a lightweight, portable device that can be used to measure total respiratory resistance as well as inhalation and exhalation resistances. There is a need to determine limits to the accuracy of APD measurements for different conditions likely to occur: leaks around the mouthpiece, use of an oronasal mask, and the addition of resistance in the respiratory system. Also, there is a need for resistance measurements in patients who are ventilated. Ten subjects between the ages of 18 and 35 were tested for each station in the experiment. The first station involved testing the effects of leaks of known sizes on APD measurements. The second station tested the use of an oronasal mask used in conjunction with the APD during nose and mouth breathing. The third station tested the effects of two different resistances added in series with the APD mouthpiece. The fourth station tested the usage of a flexible ventilator tube in conjunction with the APD. All leaks reduced APD resistance measurement values. Leaks represented by two 3.2 mm diameter tubes reduced measured resistance by about 10% (4.2 cmH2O.sec/L for control and 3.9 cm H2O.sec/L for the leak). This was not statistically significant. Larger leaks given by 4.8 and 6.4 mm tubes reduced measurements significantly (3.4 and 3.0 cm cmH2O.sec/L, respectively). Mouth resistance measured with a cardboard mouthpiece gave an APD measurement of 4.2 cm H2O.sec/L and mouth resistance measured with an oronasal mask was 4.5 cm H2O.sec/L; the two were not significantly different. Nose resistance measured with the oronasal mask was 7.6 cm H2O.sec/L. Adding airflow resistances of 1.12 and 2.10 cm H2O.sec/L to the breathing circuit between the mouth and APD yielded respiratory resistance values higher than the control by 0.7 and 2.0 cm H2O.sec/L. Although breathing through a 52 cm length of flexible ventilator tubing reduced the APD measurement from 4.0 cm H2O.sec/L for the control to 3.6 cm H2O

  20. Comparison of Realistic and Idealized Breathing Patterns in Computational Models of Airflow and Vapor Dosimetry in the Rodent Upper Respiratory Tract

    PubMed Central

    Jacob, Richard E.; Kuprat, Andrew P.; Einstein, Daniel R.; Corley, Richard A.

    2016-01-01

    Context Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically-based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing, and combinations of both as flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory, and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration, and the time spent sniffing, the use of realistic breathing profiles—including sniffing—could become an important modulator for local tissue dose predictions. PMID:26986954

  1. A simplified building airflow model for agent concentration prediction.

    PubMed

    Jacques, David R; Smith, David A

    2010-11-01

    A simplified building airflow model is presented that can be used to predict the spread of a contaminant agent from a chemical or biological attack. If the dominant means of agent transport throughout the building is an air-handling system operating at steady-state, a linear time-invariant (LTI) model can be constructed to predict the concentration in any room of the building as a result of either an internal or external release. While the model does not capture weather-driven and other temperature-driven effects, it is suitable for concentration predictions under average daily conditions. The model is easily constructed using information that should be accessible to a building manager, supplemented with assumptions based on building codes and standard air-handling system design practices. The results of the model are compared with a popular multi-zone model for a simple building and are demonstrated for building examples containing one or more air-handling systems. The model can be used for rapid concentration prediction to support low-cost placement strategies for chemical and biological detection sensors.

  2. Brain Oscillations, Hypnosis, and Hypnotizability.

    PubMed

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  3. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H.

    2017-04-01

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude—especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  4. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.

    PubMed

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H

    2017-04-18

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude-especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  5. Geometry of the Cocos Plate Under North American Plate

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.

    2015-12-01

    The Cocos plate subducts under the North American plate with a complex geometry, and previous seismicity studies revealed some of this complexity. However, details of the geometry and the depth that the plate penetrates werelargely unknown. Since 2004, temporary experiments and the expansion of the permanent network of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service) have improved resolution of the plate geometry and have helped to map its descent into the upper mantle. Going from northwest to southeast, the Cocos plate appears to be fragmenting into north and south segments. The north segment subducts with an angle of ~30º and the south with an angle of ~10-15º. The transition is smooth near the trench and progresses to a tear at depth; this coincides with the projection of the Orozco Fracture Zone to depth. Also, this transition marks the limit of the presence to the south of an ultra slow velocity layer (USL) on top of the slab.South of this transition, the Cocos plate subducts horizontally , underplating the North American plate for a distance of ~140 to ~300 km from the trench. Along this horizontal region, silent slow events (SSE) and tectonic tremor (TT) have been observed. At a distance of 300 km from the trench (beneath central Mexico), the plate dives into the mantle with an angle of 76º to a depth of 500 km. This geometry changes abruptly to the south, marking the eastern limit of the USL. This change seems to be also characterized by a tear on the slab. Finally to the south, the Cocos plate subducts with a constant angle of 26º. This presentation summarizes the work of many contributors including A. Arciniega-Ceballos, M. Brudzinski, E. Cabral-Cano, T. Chen, R. Clayton,F. Cordoba-Montiel,P. Davis,S. Dougherty,F. Green, M. Gurnis, D. V. Helmberger, A. Husker,A. Iglesias, Y. Kim, V. Manea, D. Melgar, M. Rodríguez-Domínguez,S. K. Singh, T.-R. A. Song, C. M. Valdés-González, D. Valencia-Cabrera

  6. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    NASA Astrophysics Data System (ADS)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.

  7. Sub-Plate Overlap Code Documentation

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Bucciarelli, B.; Zarate, N.

    1997-01-01

    An expansion of the plate overlap method of astrometric data reduction to a single plate has been proposed and successfully tested. Each plate is (artificially) divided into sub-plates which can then be overlapped. This reduces the area of a 'plate' over which a plate model needs to accurately represent the relationship between measured coordinates and standard coordinates. Application is made to non-astrographic plates such as Schmidt plates and to wide-field astrographic plates. Indeed, the method is completely general and can be applied to any type of recording media.

  8. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  9. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  10. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    NASA Astrophysics Data System (ADS)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  11. Mass transfer from an oscillating microsphere.

    PubMed

    Zhu, Jiahua; Zheng, Feng; Laucks, Mary L; Davis, E James

    2002-05-15

    The enhancement of mass transfer from single oscillating aerocolloidal droplets having initial diameters approximately 40 microm has been measured using electrodynamic levitation to trap and oscillate a droplet evaporating in nitrogen gas. The frequency and amplitude of the oscillation were controlled by means of ac and dc fields applied to the ring electrodes of the electrodynamic balance (EDB). Elastic light scattering was used to size the droplet. It is shown that the mass transfer process for a colloidal or aerocolloidal particle oscillating in the Stokes flow regime is governed by a Peclet number for oscillation and a dimensionless oscillation parameter that represents the ratio of the diffusion time scale to the oscillation time scale. Evaporation rates are reported for stably oscillating droplets that are as much as five times the rate for evaporation in a stagnant gas. The enhancement is substantially larger than that predicted by quasi-steady-flow mass transfer.

  12. The Question of Spontaneous Wing Oscillations : Determination of Critical Velocity Through Flight-oscillation Tests

    NASA Technical Reports Server (NTRS)

    Schlippe, B V

    1936-01-01

    Determination of the spontaneous oscillations of a wing or tail unit entail many difficulties, both the mathematical determination and the determination by static wing oscillation tests being far from successful and flight tests involving very great risks. The present paper gives a method developed at the Junkers Airplane Company by which the critical velocity with respect to spontaneous oscillations of increasing amplitude can be ascertained in flight tests without undue risks, the oscillation of the surface being obtained in the tests by the application of an external force.

  13. Persistent lung oscillator response to CO2 after buccal oscillator inhibition in the adult frog.

    PubMed

    Leclère, Renaud; Straus, Christian; Similowski, Thomas; Bodineau, Laurence; Fiamma, Marie-Noëlle

    2012-08-15

    The automatic ventilatory drive in amphibians depends on two oscillators interacting with each other, the gill/buccal and lung oscillators. The lung oscillator would be homologous to the mammalian pre-Bötzinger complex and the gill/buccal oscillator homologous to the mammalian parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN). Dysfunction of the pFRG/RTN has been involved in the development of respiratory diseases associated to the loss of CO(2) chemosensitivity such as the congenital central hypoventilation syndrome. Here, on adult in vitro isolated frog brainstem, consequences of the buccal oscillator inhibition (by reducing Cl(-)) were evaluated on the respiratory rhythm developed by the lung oscillator under hypercapnic challenges. Our results show that under low Cl(-) concentration (i) the buccal oscillator is strongly inhibited and the lung burst frequency and amplitude decreased and (ii) it persists a powerful CO(2) chemosensitivity. In conclusion, in frog, the CO(2) chemosensitivity depends on cellular contingent(s) whose the functioning is independent of the concentration of Cl(-) and origin remains unknown. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  15. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.

    2007-10-01

    The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.

  16. Comparison of Respiratory Resistance Measurements Made with an Airflow Perturbation Device with Those from Impulse Oscillometry

    PubMed Central

    Pan, J.; Saltos, A.; Smith, D.; Johnson, A.; Vossoughi, J.

    2013-01-01

    The airflow perturbation device (APD) has been developed as a portable, easy to use, and a rapid response instrument for measuring respiratory resistance in humans. However, the APD has limited data validating it against the established techniques. This study used a mechanical system to simulate the normal range of human breathing to validate the APD with the clinically accepted impulse oscillometry (IOS) technique. The validation system consisted of a sinusoidal flow generator with ten standardized resistance configurations that were shown to represent a total range of resistances from 0.12 to 0.95 kPa·L−1 ·s (1.2–9.7 cm H2O·L−1 ·s). Impulse oscillometry measurements and APD measurements of the mechanical system were recorded and compared at a constant airflow of 0.15 L·s−1. Both the IOS and APD measurments were accurate in assessing nominal resistance. In addition, a strong linear relationship was observed between APD measurements and IOS measurements (R 2 = 0.999). A second series of measurements was made on ten human volunteers with external resistors added in their respiratory flow paths. Once calibrated with the mechanical system, the APD gave respiratory resistance measurements within 5% of IOS measurements. Because of their comparability to IOS measurements, APD measurements are shown to be valid representations of respiratory resistance. PMID:27006908

  17. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    PubMed

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  18. Nocturnal Oxygen Desaturation Index is Inversely Correlated with Airflow Limitation in Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Tamai, Koji; Matsuoka, Hirofumi; Suzuki, Yujiro; Yoshimatsu, Harukazu; Masuya, Daiki; Nakashima, Nariyasu; Okada, Nobuhiko; Oda, Nao; Inoue, Sayaka; Koma, Yasuko; Otsuka, Akiko

    2016-01-01

    The concurrent diagnosis of chronic obstructive pulmonary disease (COPD) and sleep apnoea-hypopnoea syndrome (SAHS) (overlap syndrome), can contribute to worsening respiratory symptoms, but whether the severity of COPD is associated with co-morbid SAHS is unknown. We investigated whether the severity of COPD is associated with the complication of SAHS by examination of nocturnal oximetry as an alternative to polysomnography. Patients with COPD concurrently completed nocturnal oximetry, pulmonary function tests, a COPD assessment test, an Epworth sleepiness scale and a hospital anxiety and depression scale to evaluate the severity of COPD and possible concurrent presence of SAHS. We retrospectively analysed the data to assess correlation between the oxygen desaturation index (ODI) and each clinical variables and evaluated the predictors of ODI ≥ 15. This study included 103 patients (91 males, 88%) with a mean age of 72 ± 8 years and body mass index of 22 ± 3 kg/m(2). ODI was positively correlated with FEV1, FEV1/FVC and FEV1% predicted, which meant that ODI was inversely correlated with airflow limitation. Univariate logistic regression analysis revealed that FEV1% predicted and FEV1/FVC were predictors of ODI ≥ 15. ODI is inversely correlated with airflow limitation and milder COPD patients may have co-morbid SAHS.

  19. Large deformation of self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Maeda, Shingo; Kato, Terukazu; Otsuka, Yuji; Hosoya, Naoki; Cianchetti, Matteo; Laschi, Cecilia

    2016-01-01

    A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N -isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ >0.5 ) and prestrained gel samples oscillate in a good solution (χ <0.5 ).

  20. Brain Oscillations, Hypnosis, and Hypnotizability

    PubMed Central

    Jensen, Mark P.; Adachi, Tomonori; Hakimian, Shahin

    2014-01-01

    In this article, we summarize the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, and are usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. Here we propose that it is this role that may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis; specifically that theta oscillations may facilitate, and that changes in gamma activity observed with hypnosis may underlie, some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis, and for enhancing response to hypnotic treatments. PMID:25792761