Sample records for oscillating viscous vortex

  1. Numerical simulation of unsteady viscous flows

    NASA Technical Reports Server (NTRS)

    Hankey, Wilbur L.

    1987-01-01

    Most unsteady viscous flows may be grouped into two categories, i.e., forced and self-sustained oscillations. Examples of forced oscillations occur in turbomachinery and in internal combustion engines while self-sustained oscillations prevail in vortex shedding, inlet buzz, and wing flutter. Numerical simulation of these phenomena was achieved due to the advancement of vector processor computers. Recent progress in the simulation of unsteady viscous flows is addressed.

  2. Experimental study of oscillating plates in viscous fluids: Qualitative and quantitative analysis of the flow physics and hydrodynamic forces

    NASA Astrophysics Data System (ADS)

    Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo

    2018-01-01

    In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.

  3. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  4. Ignition dynamics of a laminar diffusion flame in the field of a vortex embedded in a shear flow

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1994-01-01

    The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small Mach number. An idealized model is employed to describe the interaction process. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow. It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscillations which increase in magnitude with shear strength. These oscillations give rise to regions of strong temperature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis is placed on the ignition time and structure as a function of vortex and shear strength.

  5. Dynamic Deformation of Vortex Lattice in the Hollow Superconducting YBaCuO Cylinder

    NASA Astrophysics Data System (ADS)

    Babayan, V. H.; Ayvazyan, M. T.; Kteyan, A. A.; Vardanyan, R. A.

    The elastic and viscous properties of vortex lattice in ceramic YBaCuO are studied by the measurements of ac response U in the cavity of the hollow cylinder placed in the magnetic field H aligned along the cylinder's axis. It is observed that the U(H) dependence is reaching saturation with increase of magnetic field. We interpret this effect by nonlocality of the vortex lattice elastic constants. Based on the analysis of the response dependence on excitation frequency, we conclude that vortex lattice deformation vector decreases at higher frequencies. The amplitude-frequency characteristics of the response indicate that vortices perform overdamped oscillations. The estimated damping coefficient value exceeds the evaluation by Bardeen-Stephen theory.

  6. Prediction of unsteady separated flows on oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  7. Modelling of propagation and scintillation of a laser beam through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Shugaev, Fedor V.; Shtemenko, Ludmila S.; Dokukina, Olga I.; Nikolaeva, Oxana A.; Suhareva, Natalia A.; Cherkasov, Dmitri Y.

    2017-09-01

    The investigation was fulfilled on the basis of the Navier-Stokes equations for viscous heat-conducting gas. The Helmholtz decomposition of the velocity field into a potential part and a solenoidal one was used. We considered initial vorticity to be small. So the results refer only to weak turbulence. The solution has been represented in the form of power series over the initial vorticity, the coefficients being multiple integrals. In such a manner the system of the Navier- Stokes equations was reduced to a parabolic system with constant coefficients at high derivatives. The first terms of the series are the main ones that determine the properties of acoustic radiation at small vorticity. We modelled turbulence with the aid of an ensemble of vortical structures (vortical rings). Two problems have been considered : (i) density oscillations (and therefore the oscillations of the refractive index) in the case of a single vortex ring; (ii) oscillations in the case of an ensemble of vortex rings (ten in number). We considered vortex rings with helicity, too. The calculations were fulfilled for a wide range of vortex sizes (radii from 0.1 mm to several cm). As shown, density oscillations arise. High-frequency oscillations are modulated by a low-frequency signal. The value of the high frequency remains constant during the whole process excluding its final stage. The amplitude of the low-frequency oscillations grows with time as compared to the high-frequency ones. The low frequency lies within the spectrum of atmospheric turbulent fluctuations, if the radius of the vortex ring is equal to several cm. The value of the high frequency oscillations corresponds satisfactorily to experimental data. The results of the calculations may be used for the modelling of the Gaussian beam propagation through turbulence (including beam distortion, scintillation, beam wandering). A method is set forth which describes the propagation of non-paraxial beams. The method admits generalization to the case of inhomogeneous medium.

  8. Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio

    2012-06-01

    In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.

  9. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Ciovati, G.

    2008-03-01

    We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

  10. Assessment of viscous energy loss and the association with three-dimensional vortex ring formation in left ventricular inflow: In vivo evaluation using four-dimensional flow MRI.

    PubMed

    Elbaz, Mohammed S M; van der Geest, Rob J; Calkoen, Emmeline E; de Roos, Albert; Lelieveldt, Boudewijn P F; Roest, Arno A W; Westenberg, Jos J M

    2017-02-01

    To evaluate viscous energy loss and the association with three-dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as unnatural mitral valve morphology and inflow are common in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was identified in LV blood flow at peak early (E)-filling and late (A)-filling and characterized by its presence/absence, orientation, and position from the lateral wall. Viscous energy loss was computed over E-filling, A-filling, and complete diastole using the Navier-Stokes energy equations. Compared with healthy volunteers, viscous energy loss was significantly elevated in patients with disturbed vortex ring formation as characterized by a significantly inclined orientation and/or position closer to the lateral wall. Highest viscous energy loss was found in patients without a ring-shaped vortex during E-filling (on average more than double compared with patients with ring-shape vortex, P < 0.003). Altered A-filling vortex ring formation was associated with significant increase in total viscous energy loss over diastole even in the presence of normal E-filling vortex ring. Altered vortex ring formation during LV filling is associated with increased viscous energy loss. Magn Reson Med 77:794-805, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Assessment of viscous energy loss and the association with three‐dimensional vortex ring formation in left ventricular inflow: In vivo evaluation using four‐dimensional flow MRI

    PubMed Central

    van der Geest, Rob J.; Calkoen, Emmeline E.; de Roos, Albert; Lelieveldt, Boudewijn P.F.; Roest, Arno A.W.; Westenberg, Jos J.M.

    2016-01-01

    Purpose To evaluate viscous energy loss and the association with three‐dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Theory and Methods Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as unnatural mitral valve morphology and inflow are common in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was identified in LV blood flow at peak early (E)‐filling and late (A)‐filling and characterized by its presence/absence, orientation, and position from the lateral wall. Viscous energy loss was computed over E‐filling, A‐filling, and complete diastole using the Navier‐Stokes energy equations. Results Compared with healthy volunteers, viscous energy loss was significantly elevated in patients with disturbed vortex ring formation as characterized by a significantly inclined orientation and/or position closer to the lateral wall. Highest viscous energy loss was found in patients without a ring‐shaped vortex during E‐filling (on average more than double compared with patients with ring‐shape vortex, P < 0.003). Altered A‐filling vortex ring formation was associated with significant increase in total viscous energy loss over diastole even in the presence of normal E‐filling vortex ring. Conclusion Altered vortex ring formation during LV filling is associated with increased viscous energy loss. Magn Reson Med 77:794–805, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:26924448

  12. Viscous theory of surface noise interaction phenomena

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1980-01-01

    A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.

  13. Dynamic stall: An example of strong interaction between viscous and inviscid flows

    NASA Technical Reports Server (NTRS)

    Philippe, J. J.

    1978-01-01

    A study was done of the phenomena concerning profiles in dynamic stall configuration, and more specially those related to pitch oscillations. The most characteristic experimental results on flow separations with a vortex character, and their repercussions on local pressures and total forces were analyzed. Some aspects of the methods for predicting flows with the presence (or not) of boundary layer separation are examined, as well as the main simplified methods available to date for the calculation of total forces in such configurations.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M., E-mail: chengm@ihpc.a-star.edu.sg; Lou, J.; Lim, T. T.

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with themore » aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.« less

  15. Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Ben Jacob, Eshel; Aranson, Igor S.

    2008-04-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 °C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  16. Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, M.; Basaran, M. E.; Porfiri, M.

    2012-03-01

    In this paper, we study flexural vibrations of a cantilever beam with thin rectangular cross section submerged in a quiescent viscous fluid and undergoing oscillations whose amplitude is comparable with its width. The structure is modeled using Euler-Bernoulli beam theory and the distributed hydrodynamic loading is described by a single complex-valued hydrodynamic function which accounts for added mass and fluid damping experienced by the structure. We perform a parametric 2D computational fluid dynamics analysis of an oscillating rigid lamina, representative of a generic beam cross section, to understand the dependence of the hydrodynamic function on the governing flow parameters. We find that increasing the frequency and amplitude of the vibration elicits vortex shedding and convection phenomena which are, in turn, responsible for nonlinear hydrodynamic damping. We establish a manageable nonlinear correction to the classical hydrodynamic function developed for small amplitude vibration and we derive a computationally efficient reduced order modal model for the beam nonlinear oscillations. Numerical and theoretical results are validated by comparison with ad hoc designed experiments on tapered beams and multimodal vibrations and with data available in the literature. Findings from this work are expected to find applications in the design of slender structures of interest in marine applications, such as biomimetic propulsion systems and energy harvesting devices.

  17. Theoretical and Numerical Studies of a Vortex - Interaction Problem

    NASA Astrophysics Data System (ADS)

    Hsu, To-Ming

    The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.

  18. The generation of two-dimensional vortices by transverse oscillation of a soap film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.

    1998-02-01

    An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20{endash}200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, {hor_ellipsis}, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parametermore » space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. {copyright} {ital 1998 American Institute of Physics.}« less

  19. An assessment of viscous effects in computational simulation of benign and burst vortex flows on generic fighter wind-tunnel models using TEAM code

    NASA Technical Reports Server (NTRS)

    Kinard, Tim A.; Harris, Brenda W.; Raj, Pradeep

    1995-01-01

    Vortex flows on a twin-tail and a single-tail modular transonic vortex interaction (MTVI) model, representative of a generic fighter configuration, are computationally simulated in this study using the Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM). The primary objective is to provide an assessment of viscous effects on benign (10 deg angle of attack) and burst (35 deg angle of attack) vortex flow solutions. This study was conducted in support of a NASA project aimed at assessing the viability of using Euler technology to predict aerodynamic characteristics of aircraft configurations at moderate-to-high angles of attack in a preliminary design environment. The TEAM code solves the Euler and Reynolds-average Navier-Stokes equations on patched multiblock structured grids. Its algorithm is based on a cell-centered finite-volume formulation with multistage time-stepping scheme. Viscous effects are assessed by comparing the computed inviscid and viscous solutions with each other and experimental data. Also, results of Euler solution sensitivity to grid density and numerical dissipation are presented for the twin-tail model. The results show that proper accounting of viscous effects is necessary for detailed design and optimization but Euler solutions can provide meaningful guidelines for preliminary design of flight vehicles which exhibit vortex flows in parts of their flight envelope.

  20. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  1. Viscous instabilities in the q-vortex at large swirl numbers

    NASA Astrophysics Data System (ADS)

    Fabre, David; Jacquin, Laurent

    2002-11-01

    This comunication deals with the temporal stability of the q-vortex trailing line vortex model. We describe a family of viscous instabilities existing in a range of parameters which is usually assumed to be stable, namely large swirl parameters (q>1.5) and large Reynolds numbers. These instabilities affect negative azimuthal wavenumbers (m < 0) and take the form of centre-modes (i.e. with a structure concentrated along the vortex centerline). They are related to a family of viscous modes described by Stewartson, Ng & Brown (1988) in swirling Poiseuille flow, and are the temporal counterparts of weakly amplified spatial modes recently computed by Olendraru & Sellier (2002). These instabilities are studied numerically using an original and highly accurate Chebyshev collocation method, which allows a mapping of the unstable regions up to Rey 10^6 and q 7. Our results indicate that in the limit of very large Reynolds numbers, trailing vortices are affected by this kind of instabilities whatever the value of the swirl number.

  2. The Influence of Low-frequency Oscillation Propagation of the Tibetan Plateau Vortex on Rainstorm Downstream

    NASA Astrophysics Data System (ADS)

    Xiao, Tiangui; Wang, Chao; La, Jia; Du, Jun; Zhang, Kairong

    2017-04-01

    Based on Tibetan Plateau vortex data, ERA-Interim and NCEP/NCAR reanalysis data, the characteristics of Tibetan Plateau vortex and the relationship with Low-Frequency Oscillation (LFO) from 2003 to 2012 were investigated. The heavy rainstorm occurred in Sichuan from June 29th to July 2nd in 2013, caused by the LFO, was studied. Besides, the signal of LFO, energy transmission and those influence to rainstorm were also investigate. The main conclusions are as follows: (1)Most of Tibetan Plateau vortex generate in eastern plateau, located at Tanggula Mountains, Zaduo, Dege, Qumalai and Qaidam. The moving-out Tibetan Plateau vortex mainly generate in Qumalai and most vortex occurrences during April to September. There are three directions of moving-out vortex paths: northeast, southeast and east. The areas which plateau vortex moving into are mainly distributed in Gansu, Sichuan, Shaanxi and Ningxia. (2)The zonal wind at 500hPa in plateau key region has a significant main 10-30d oscillation, with the secondly significant oscillation in 30-50d and the third in 70-90d. The relative vorticity at 500hPa in plateau key region has a significant main 30-50d oscillations, with the secondly significant oscillation in 10-30d. The 30-50d oscillation phase zone with weak westerly oscillation zone of 500hPa, and the 10-30d oscillation positive phase zone with weak oscillation zone of 500hPa are benefit to vortex generation. The 30-50d oscillation of zonal wind at 500hPa provides necessary circulation background for generation of plateau vortex, and positive phase region of 10-30d oscillation of relative vorticity at 500hPa provide necessary dynamic background conditions for it. (3) Comparing with the high frequency oscillation vortex, 10-25d low-frequency vortex is not significant at 500hPa before merging into the basin vortex. However, after merging into the basin vortex, there is a significant relationship between low-frequency vortex and the process of development, weakening and disappearance during the basin rainstorm. A typical heavy rainstorm occurred in Sichuan was studied. In the horizontal direction,atmospheric disturbance energy transmit from the west Sichuan plateau to heavy rainfall areas in basin, that is indicating the low-frequency atmospheric disturbance energy transmission. In the vertical direction, the disturbance energy transfer to the downstream is probably the major reason caused this heavy rainstorm. The value of wave packet and disturbance energy indicates the difference stages of rainstorm. Key words: the tibetan plateau; plateau vortex; FLO; rainstorm; wave-packet Acknowledgements This study was supported by National Natural Science Foundation of China Fund Project (91337215, 41575066), National Key Basic Research Program (2013CB733206), Special Fund for Meteorological Research in the Public Interest (GYHY201406015), and Risk Assessment System of Significant Climate Events in Tibet (14H046).

  3. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensionalmore » acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.« less

  4. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  5. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  6. Drift due to viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  7. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    PubMed

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  8. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE PAGES

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; ...

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir 20Mn 80/Fe 20Ni 80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet,more » which leads to unexpected asymmetries in the annihilation and nucleation fields. Lastly, these results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  9. The effects of viscosity on the stability of a trailing-line vortex in compressible flow

    NASA Technical Reports Server (NTRS)

    Stott, Jillian A. K.; Duck, Peter W.

    1994-01-01

    We consider the effects of viscosity on the inviscid stability of the Batchelor vortex in a compressible flow. The problem is tackled asymptotically, in the limit of large (streamwise and azimuthal) wavenumbers, together with large Mach numbers. Previous studies, with viscous effects neglected, found that the nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumber. This structure persists when viscous effects are included in the analysis. In the present study the mode present in the incompressible case ceases to be unstable at high Mach numbers and a center mode forms, whose stability characteristics are determined primarily by conditions close to the vortex axis. We find generally that viscosity has a stabilizing influence on the flow, while in the case of center modes, viscous effects become important at much larger Reynolds numbers than for the first class of disturbance.

  10. Development of Predictive Wake Vortex Transport Model for Terminal Area Wake Vortex Avoidance

    DOT National Transportation Integrated Search

    1976-05-01

    The wake vortex transport program has been expanded to include viscous effects and the influence of initial roll-up, atmospheric turbulence, and wind shear on the persistence and motion of wake vortices in terminal areas. Analysis of wake characteris...

  11. The influence of pressure relaxation on the structure of an axial vortex

    NASA Astrophysics Data System (ADS)

    Ash, Robert L.; Zardadkhan, Irfan; Zuckerwar, Allan J.

    2011-07-01

    Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Benard-von Karman vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.

  13. Characteristics of a wingtip vortex from an oscillating winglet

    NASA Astrophysics Data System (ADS)

    Guha, T. K.; Kumar, R.

    2017-01-01

    Initial perturbations in the wingtip vortices can potentially lead to instabilities that significantly reduce their lifetime in the wake of an aircraft. An active winglet capable of oscillating about its point of attachment to the main wing-section is developed using piezoelectric macro fiber composite, to actively perturb the vortex at its onset. Resonance characteristics of the actuated winglet oscillations are evaluated at different excitation levels and aerodynamic loading. Mean near-field characteristics of the vortex, developing from a stationary and an oscillating winglet, are investigated with the help of stereoscopic particle image velocimetry. Results show that the amplitude of winglet oscillations increases linearly with input excitation, to a highest attainable value of nearly four times the airfoil thickness at the winglet tip. The vortex developing from a winglet is stretched along its axis, having an elliptical core with non-uniform vorticity distribution. Actuation leads to spatial oscillations of the vortex core together with a reduction in the mean peak vorticity levels. The amplitude of the actuated core oscillations remains constant in the investigated region of the wake.

  14. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  15. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  16. Large Hysteresis effect in Synchronization of Nanocontact Vortex Oscillators by Microwave Fields

    PubMed Central

    Perna, S.; Lopez-Diaz, L.; d’Aquino, M.; Serpico, C.

    2016-01-01

    Current-induced vortex oscillations in an extended thin-film with point-contact geometry are considered. The synchronization of these oscillations with a microwave external magnetic field is investigated by a reduced order model that takes into account the dynamical effects associated with the significant deformation of the vortex structure produced by the current, which cannot be taken care of by using the standard rigid vortex theory. The complete phase diagram of the vortex oscillation dynamics is derived and it is shown that strong hysteretic behavior occurs in the synchronization with the external field. The complex nonlinear nature of the synchronization manifests itself also through the appearance of asymmetry in the locking frequency bands for moderate microwave field amplitudes. Predictions from the reduced order model are confirmed by full micromagnetic simulations. PMID:27538476

  17. Combined action of transverse oscillations and uniform cross-flow on vortex formation and pattern of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.; Hu, J. C.

    2010-07-01

    This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.

  18. The impact of intraglottal vortices on vocal fold dynamics

    NASA Astrophysics Data System (ADS)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean

    2016-11-01

    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  19. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  1. Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator

    NASA Astrophysics Data System (ADS)

    Araki, Shungo; Suzuki, Kensuke; Nishida, Shigeki; Mamuti, Roukuya; Miyamoto, Katsuhiko; Omatsu, Takashige

    2017-10-01

    We demonstrate an ultra-broadband (>2-octave band) tunable optical vortex laser comprising an optical-vortex-pumped optical parametric oscillator by employing a nanosecond pulse (˜10 ns) green laser and cascaded non-critical phase-matching LiB3O5 crystals (45 mm long each). With this system, an optical vortex output was produced over an extremely wide wavelength range of 0.67-2.57 µm.

  2. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

  3. Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids

    NASA Astrophysics Data System (ADS)

    Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.

    2017-01-01

    We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.

  4. User's manual for PEPSIG NASA tip vortex version

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. This document is the user's manual. The analysis and a series of test cases are presented in NASA-CR-182179.

  5. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  6. Viscous Effects on Wave Forces on A Submerged Horizontal Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Teng, Bin; Mao, Hong-Fei; Lu, Lin

    2018-06-01

    Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.

  7. External vortex pumping by oscillating plate arrays of mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Sensenig, Andrew; Kiger, Ken; Shultz, Jeffrey

    2009-11-01

    Mayfly nymphs are aquatic insects, many of which can generate ventilation currents by beating two linear arrays of external plate-like gills. The oscillation Reynolds number associated with the gill motion changes with animal size, varying from Re ˜ 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontogenetic changes in pumping mechanisms associated with transitions from a more viscous- to inertia-dominated flow. Observation of the 3-D kinematics of the gill motion of the species C. triangulifer reveal that the mayfly makes a transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Time-resolved PIV measurements within the inter-gill space reveal the basic elements of the flow consist of vortex rings generated by the strokes of the individual gills. For the larger Re case, the phasing of the plate motion generates a complex array of small vortices that interact to produce an intermittent dorsally directed jet. For Re<5, distinct vortices are still observed, but increased diffusion creates vortices that simultaneously envelope several gills, forcing a new flow pattern to emerge and preventing the effective use of the high Re stroke kinematics. Thus we argue the transition in the kinematics is a reflection of a single mechanism adapted over the traversed Re range, rather than a shift to a completely new mechanism. This work is supported by the NSF under grant CBET-0730907.

  8. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  9. Tip vortex computer code SRATIP. User's guide

    NASA Technical Reports Server (NTRS)

    Levy, R.; Lin, S. J.

    1985-01-01

    This User's Guide applies to the three dimensional viscous flow forward marching analysis, PEPSIG, as used for the calculation of the helicopter tip vortex flow field. The guide presents a discussion of the program flow and subroutines, as well as a list of sample input and output.

  10. The calculation of rotor/fuselage interaction for two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1990-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces have a significant influence on the aerodynamic performance of the helicopter, ride quality, and vibration. A Computational Fluid Dynamic (CFD) method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary 2-D bodies was developed to address this helicopter problem. The vorticity and flow field velocities are calculated on a body-fitted computational mesh using an uncoupled iterative solution. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a simulated rotor wake with the flow about 2-D bodies, representing cross sections of fuselage components, was calculated to address the vortex interaction problem. The vortex interaction was calculated for the flow about a circular and an elliptic cylinder at 45 and 90 degrees incidence. The results demonstrate the significant variation in lift and drag on the 2-D bodies during the vortex interaction.

  11. Damping of drop oscillations by surfactants and surface viscosity

    NASA Technical Reports Server (NTRS)

    Rush, Brian M.; Nadim, Ali

    1999-01-01

    An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.

  12. Numerical Capture of Wing-tip Vortex Using Vorticity Confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard

    2012-11-01

    Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.

  13. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given asmore » examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.« less

  14. Determination of Interfacial Rheological Properties through Microgravity Oscillations of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Nadim, Ali; Rush, Brian M.

    2000-01-01

    This report summarizes our derivations of analytical expressions for the frequencies and damping constants for small-amplitude axisymmetric shape oscillations of a liquid drop suspended in an immiscible fluid host in microgravity. In particular, this work addresses large Reynolds number shape oscillations and focuses on the surface rheological effects that arise from the presence of insoluble surfactants at the interface. Parameters characterizing viscous effects from the bulk phases, surface viscous effects, Marangoni effects from the surface advection and diffusion of surfactants, and the Gibbs elasticity are all considered and analyzed to determine the relative importance of each contribution. Supplementing the analytical treatment for small-amplitude oscillations, a numerical boundary integral equation formulation is developed for the study of large-amplittide axisymmetric oscillations of a drop in vacuum. The boundary integral formulation is an extension of classical potential flow theory and approximately accounts for viscous effects in the bulk fluid as well as the surface viscous and Marangoni effects resulting from an insoluble surfactant contaminating the interface. Theoretical and numerical results are presented for four distinct cases. These, range from the case when the effects of the surfactants are 'negligible' to 'large' when compared to the viscous effects in the bulk phases. The feasibility of the non-contact measurement of the surface parameters, using experimental observations for the oscillation frequencies and damping constants of drops and bubbles, is discussed.

  15. Translational velocity oscillations of piston generated vortex rings

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.

    1995-11-01

    Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.

  16. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  17. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.

  18. An investigation of unsteady 3D effects on trailing edge flaps

    NASA Astrophysics Data System (ADS)

    Jost, E.; Fischer, A.; Lutz, T.; Krämer, E.

    2016-09-01

    The present study investigates the impact of unsteady and viscous three-dimensional aerodynamic effects on a wind turbine blade with trailing edge flap by means of CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a flap of 10% chord extent ranging from 70% to 80% blade radius. The deflection frequency is varied in the range between 1p and 6p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations. A significant influence of trailing and shed vortex structures has been found which leads to a reduction of the lift amplitude and hysteresis effects in the lift response with regard to the flap deflection. In the 3D rotor results greater amplitude reductions and less hystereses have been found compared to the 2D airfoil simulations.

  19. Guiding principles for vortex flow controls

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1991-01-01

    In the practice of vortex flow controls, the most important factor is that the persistency and obstinacy of a concentrated vortex depend on its stability and dissipation. In this paper, the modern nonlinear stability theory for circulation-preserving flows is summarized, and the dissipation for general viscous flows is analyzed in terms of the evolution of total enstrophy. These analyses provide a theoretical base for understanding relevant physics of vortex flows, and lead to some guiding principles and methods for their controls. Case studies taken from various theoretical and/or experimental works of vortex controls, due to the present authors as well as others, confirm the feasibility of the recommended principles and methods.

  20. Unsteady Separated Flows: Vorticity and Turbulence.

    DTIC Science & Technology

    1982-10-01

    investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c

  1. Visualization of vortex structures and analysis of frequency of PVC

    NASA Astrophysics Data System (ADS)

    Gesheva, E. S.; Shtork, S. I.; Alekseenko, S. V.

    2018-03-01

    The paper presents the results of the study of large-scale vortex structures in a model chamber. Methods of forming quasi-stationary vortices of various shapes by changing the geometric parameters of the chamber have been proposed. In the model chamber with a tangential swirl of the flow, a rectilinear vortex, single helical and double helical vortices were obtained. The double helical structure of the vortex is unique due to its immovability around the axis of the chamber. The resulting structures slowly oscillate around their own axes, which is called the vortex core precession; while the oscillation frequency depends linearly on the liquid flow rate. The use of stationary vortex structures in power plants will increase the efficiency of combustion chambers and reduce slagging.

  2. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

  3. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    NASA Astrophysics Data System (ADS)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  4. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  5. Beating motion of a circular cylinder in vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  6. The phenomenon of dynamic stall. [vortex shedding phenomenon on oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1981-01-01

    The general features of dynamic stall on oscillating airfoils are explained in terms of the vortex shedding phenomenon, and the important differences between static stall, light dynamic stall, and deep stall are described. An overview of experimentation and prediction techniques is given.

  7. Airfoil gust response and the sound produced by airifoil-vortex interaction

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1986-01-01

    This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.

  8. Long-wavelength asymptotics of unstable crossflow modes, including the effect of surface curvature

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    Stationary vortex instabilities with wavelengths significantly larger than the thickness of the underlying three-dimensional boundary layer are studied with asymptotic methods. The long-wavelength Rayleigh modes are locally neutral and are aligned with the direction of the local inviscid streamline. For a spanwise wave number Beta much less than 1, the spatial growth rate of these vortices is O(Beta(exp 3/2)). When Beta becomes O(R(exp -1/7)), the viscous correction associated with a thin sublayer near the surface modifies the inviscid growth rate to the leading order. As Beta is further decreased through this regime, viscous effects assume greater significance and dominate the growth-rate behavior. The spatial growth rate becomes comparable to the real part of the wave number when Beta = O(R(exp -1/4)). At this stage, the disturbance structure becomes fully viscous-inviscid interactive and is described by the triple-deck theory. For even smaller values of Beta, the vortex modes become nearly neutral again and align themselves with the direction of the wall-shear stress. Thus, the study explains the progression of the crossflow-vortex structure from the inflectional upper branch mode to nearly neutral long-wavelength modes that are aligned with the wall-shear direction.

  9. NERNST Vortex Potential Of A Genetic Oscillator

    NASA Astrophysics Data System (ADS)

    Garnett, Merrill; Jones, Bill

    The vortex is a dynamic spiral. In molecular biology these have not been reported. We report a vortex compound, with oscillating energy. Toroglobulin (1) transfers 416 mv. to histone. This histone reductase enriches charge in the chromosome in spool proteins around which DNA is coiled. Controlling chromosome charge introduces energetics to gene compression. Impedance spectroscopy shows symmetric oscillations. Specific frequencies show amplitude increases. The Mott-Schottky scans show frequency bands. Histone bands are electronically reduced by Toroglobulin by 416 mv. The Nernst potentials of chemical systems correlate electric gradient to concentration gradients of charged particles. Charge polarization refers to laminar alignment. In formation of the Toroglobulin Ginzburg-Landau vortex, the polarization follows filament curvatures which spiral back on themselves. The magnetic dipoles achieve interactive resonance (esr). This spiral resonator with magnetic interfaces produces the measured Nernst potential.

  10. Size dependence of vortex-type spin torque oscillation in a Co2Fe0.4Mn0.6Si Heusler alloy disk

    NASA Astrophysics Data System (ADS)

    Seki, T.; Kubota, T.; Yamamoto, T.; Takanashi, K.

    2018-02-01

    This paper reports the systematic investigation of vortex-type spin torque oscillation in circular disks of highly spin-polarized Co2Fe0.4Mn0.6Si (CFMS) Heusler alloys. We fabricated the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with various disk diameters (D) using the layer stack of CFMS/Ag3Mg/CFMS. The gyrotropic motion of the vortex core was successfully excited for the CFMS circular disks with 0.2 µm  ⩽  D  ⩽  0.3 µm. The CPP-GMR device with D  =  0.2 µm exhibited the Q factor of more than 5000 and the large output power of 0.4 nW owing to the high coherency of vortex dynamics and the high spin-polarization of CFMS. However, the Q factor was remarkably decreased as D was reduced from 0.2 µm to 0.14 µm. The comparison with the calculated resonance frequencies suggested that this degradation of the Q factor was due to the transition of the oscillation mode from the vortex mode to other modes such as the low-coherent out-of-plane precession mode. The present experimental results also suggest that there exists an adequate disk size for the enhanced Q factor of the vortex-type spin torque oscillation.

  11. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  12. Compressible viscous flows generated by oscillating flexible cylinders

    NASA Astrophysics Data System (ADS)

    Van Eysden, Cornelis A.; Sader, John E.

    2009-01-01

    The fluid dynamics of oscillating elastic beams underpin the operation of many modern technological devices ranging from micromechanical sensors to the atomic force microscope. While viscous effects are widely acknowledged to have a strong influence on these dynamics, fluid compressibility is commonly neglected. Here, we theoretically study the three-dimensional flow fields that are generated by the motion of flexible cylinders immersed in viscous compressible fluids and discuss the implications of compressibility in practice. We consider cylinders of circular cross section and flat blades of zero thickness that are executing flexural and torsional oscillations of arbitrary wave number. Exact analytical solutions are derived for these flow fields and their resulting hydrodynamic loads.

  13. Finiteness of corner vortices

    NASA Astrophysics Data System (ADS)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  14. Numerical simulations of flying and swimming of biological systems with the viscous vortex particle method

    NASA Astrophysics Data System (ADS)

    Eldredge, Jeff

    2005-11-01

    Many biological mechanisms of locomotion involve the interaction of a fluid with a deformable surface undergoing large unsteady motion. Analysis of such problems poses a significant challenge to conventional grid-based computational approaches. Particularly in the moderate Reynolds number regime where many insects and fish function, viscous and inertial processes are both important, and vorticity serves a crucial role. In this work, the viscous vortex particle method is shown to provide an efficient, intuitive simulation approach for investigation of these biological systems. In contrast with a grid-based approach, the method solves the Navier--Stokes equations by tracking computational particles that carry smooth blobs of vorticity and exchange strength with one another to account for viscous diffusion. Thus, computational resources are focused on the physically relevant features of the flow, and there is no need for artificial boundary conditions. Building from previously-developed techniques for the creation of vorticity to enforce no-throughflow and no-slip conditions, the present method is extended to problems of coupled fluid--body dynamics by enforcement of global conservation of momenta. The application to several two-dimensional model problems is demonstrated, including single and multiple flapping wings and free swimming of a three-linkage fish.

  15. A study of the temporal stability of multiple cell vortices

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.

    1989-01-01

    The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.

  16. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.

  17. Numerical methods in laminar and turbulent flow; Proceedings of the 7th International Conference, Stanford Univ., CA, July 15-19, 1991. Vol. 7, pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)

    1991-01-01

    Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.

  18. Quantum oscillations in vortex-liquids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit

    2012-02-01

    Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).

  19. Vortex modeling for rotor aerodynamics - The 1991 Alexander A. Nikolsky Lecture

    NASA Technical Reports Server (NTRS)

    Gray, Robin B.

    1992-01-01

    The efforts toward realistic vortex modeling for rotary wings which began under the guidance of professor A. A. Nikolsky of Princeton University in 1955-1956 are discussed. Attention is given to Nikolsky's flow-visualization studies and major theoretical considerations for vortex modeling. More recent efforts by other researchers have led to models of increasing complexity. The neglect of compressibility and viscous effects in the classical approach is noted to be a major limiting factor in full-scale rotor applications of the classical vortex theory; it has nevertheless been valuable for the delineation of problem areas and the guiding of both experimental and theoretical investigations.

  20. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.

  1. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid

    2018-02-01

    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  2. Rotor Vortex Filaments: Living on the Slipstream's Edge

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  3. Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  4. SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong-Jae; Hyung, Siek; Chattopadhyay, Indranil

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as inmore » the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.« less

  5. Evolution of hairpin vortices in a shear flow

    NASA Technical Reports Server (NTRS)

    Hon, T.-L.; Walker, J. D. A.

    1988-01-01

    Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations.

  6. High order accurate solutions of viscous problems

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli

    1993-01-01

    We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.

  7. Three-dimensional simulation of the free shear layer using the vortex-in-cell method

    NASA Technical Reports Server (NTRS)

    Couet, B.; Buneman, O.; Leonard, A.

    1979-01-01

    We present numerical simulations of the evolution of a mixing layer from an initial state of uniform vorticity with simple two- and three-dimensional small perturbations. A new method for tracing a large number of three-dimensional vortex filaments is used in the simulations. Vortex tracing by Biot-Savart interaction originally implied ideal (non-viscous) flow, but we use a 3-d mesh, Fourier transforms and filtering for vortex tracing, which implies 'modeling' of subgrid scale motion and hence some viscosity. Streamwise perturbations lead to the usual roll-up of vortex patterns with spanwise uniformity maintained. Remarkably, spanwise perturbations generate streamwise distortions of the vortex filaments and the combination of both perturbations leads to patterns with interesting features discernable in the movies and in the records of enstrophy and energy for the three components of the flow.

  8. Vorticity filaments in two-dimensional turbulence: creation, stability and effect

    NASA Astrophysics Data System (ADS)

    Kevlahan, N. K.-R.; Farge, M.

    1997-09-01

    Vorticity filaments are characteristic structures of two-dimensional turbulence. The formation, persistence and effect of vorticity filaments are examined using a high-resolution direct numerical simulation (DNS) of the merging of two positive Gaussian vortices pushed together by a weaker negative vortex. Many intense spiral vorticity filaments are created during this interaction and it is shown using a wavelet packet decomposition that, as has been suggested, the coherent vortex stabilizes the filaments. This result is confirmed by a linear stability analysis at the edge of the vortex and by a calculation of the straining induced by the spiral structure of the filament in the vortex core. The time-averaged energy spectra for simulations using hyper-viscosity and Newtonian viscosity have slopes of [minus sign]3 and [minus sign]4 respectively. Apart from a much higher effective Reynolds number (which accounts for the difference in energy spectra), the hyper-viscous simulation has the same dynamics as the Newtonian viscosity simulation. A wavelet packet decomposition of the hyper-viscous simulation reveals that after the merger the energy spectra of the filamentary and coherent parts of the vorticity field have slopes of [minus sign]2 and [minus sign]6 respectively. An asymptotic analysis and DNS for weak external strain shows that a circular filament at a distance R from the vortex centre always reduces the deformation of a Lamb's (Gaussian) vortex in the region r[gt-or-equal, slanted]R. In the region r

  9. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  10. The development of a mixing layer under the action of weak streamwise vortices

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Mathew, Joseph

    1993-01-01

    The action of weak, streamwise vortices on a plane, incompressible, steady mixing layer is examined in the large Reynolds-number limit. The outer, inviscid region is bounded by a vortex sheet to which the viscous region is confined. It is shown that the local linear analysis becomes invalid at streamwise distances O(epsilon(sup -1)), where epsilon is much less than 1 is the cross flow amplitude, and a new nonlinear analysis is constructed for this region. Numerical solutions of the nonlinear problem show that the vortex sheet undergoes an O(1) change in position and that the solution is ultimately terminated by the appearance of a singularity. The corresponding viscous layer shows downstream thickening, but appears to remain well behaved up to the singular location.

  11. The development of a mixing layer under the action of weak streamwise vortices

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Mathew, Joseph

    1993-01-01

    The action of weak, streamwise vortices on a plane, incompressible, steady mixing layer is examined in the large Reynolds number limit. The outer, inviscid region is bounded by a vortex sheet to which the viscous region is confined. It is shown that the local linear analysis becomes invalid at streamwise distances O(epsilon sup -1), where (epsilon much less than 1) is the crossflow amplitude, and a new nonlinear analysis is constructed for this region. Numerical solutions of the nonlinear problem show that the vortex sheet undergoes an O(1) change in position and that the solution is ultimately terminated by a breakdown in the numerical procedure. The corresponding viscous layer shows downstream thickening, but appears to remain well behaved up to the terminal location.

  12. The strong nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flow

    NASA Technical Reports Server (NTRS)

    Bennett, J.; Hall, P.; Smith, F. T.

    1988-01-01

    Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.

  13. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  14. Vortex Dynamics

    DTIC Science & Technology

    1989-08-07

    One class (I. discussed in §4) of bifurcating flows is again coiumnar. so there are no axial varations: a second class Il1. §6) consists of solitary...34Amplitude Expansion for Viscous Rotating Pipe Flow Near a Degenerate Bifurcation Point ( A . Mahalov & S. Leibovich) American Physical Society Division of...Fluid Mechanics, Buffalo, NY, November 22, 1988. "Fully Nonlinear Waves on Vortices" ( A . Kribus & S. Leibovich) Seminars "Static bifurcations of vortex

  15. Planar, free oscillations of a cylindrical fluid filament

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ratul; Farsoiya, Palas Kumar

    2017-11-01

    A viscous cylindrical fluid filament of infinite axial extent is immersed in another viscous fluid at rest. We perturb the circular cross section of the filament with an azimuthal Fourier mode (exp(imθ) with wavenumber m real). Under/over damped free oscillations occur due to surface tension and we study these theoretically and through DNS. In the invisicd, irrotational approximation the dispersion relation for these oscillations was first obtained by Rayleigh (Proc. Roy. Soc. Lond., 29, 71, 1879) ignoring the inertia of the ambient fluid. Fyfe et al.. (J. Comp. Phys., 76, 349-384, 1988) subsequently included the inertia of the ambient fluid to the dispersion relation. We study the viscous correction to this relation, including viscosity of both the fluids. Unlike the inviscid dispersion relation which is an algebraic equation, the viscous dispersion relation turns out to be a transcendental equation. We study the roots of this equation on the complex frequency plane. In addition to the discrete spectrum, the viscous problem also has a continuous spectrum. The solution to the initial value problem which includes both, will be presented. Comparisons of analytical results with DNS results obtained from an in house developed VOF code, will be discussed.

  16. Computation of viscous flows over airfoils, including separation, with a coupling approach

    NASA Technical Reports Server (NTRS)

    Leballeur, J. C.

    1983-01-01

    Viscous incompressible flows over single or multiple airfoils, with or without separation, were computed using an inviscid flow calculation, with modified boundary conditions, and by a method providing calculation and coupling for boundary layers and wakes, within conditions of strong viscous interaction. The inviscid flow is calculated with a method of singularities, the numerics of which were improved by using both source and vortex distributions over profiles, associated with regularity conditions for the fictitious flows inside of the airfoils. The viscous calculation estimates the difference between viscous flow and inviscid interacting flow, with a direct or inverse integral method, laminar or turbulent, with or without reverse flow. The numerical method for coupling determines iteratively the boundary conditions for the inviscid flow. For attached viscous layers regions, an underrelaxation is locally calculated to insure stability. For separated or separating regions, a special semi-inverse algorithm is used. Comparisons with experiments are presented.

  17. Numerical analysis of three-dimensional viscous internal flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Yokota, Jeffrey W.

    1988-01-01

    A 3-D Navier-Stokes code has been developed for analysis of turbomachinery blade rows and other internal flows. The Navier-Stokes equations are written in a Cartesian coordinate system rotating about the x-axis, and then mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected using the thin-layer assumption, and turbulence effects are modeled using the Baldwin-Lomax turbulence model. The equations are discretized using finite differences on stacked C-type grids and are solved using a multistage Runge-Kutta algorithm with a spatially-varying time step and implicit residual smoothing. Calculations have been made of a horseshoe vortex formed in front of a flat plate with a round leading edge standing in a turbulent endwall boundary layer. Comparisons are made with experimental data taken by Eckerle and Langston for a circular cylinder under similar conditions. Computer and measured results are compared in terms of endwall flow visualization pictures and total pressure loss contours and vector plots on the symmetry plane. Calculated details of the primary vortex show excellent agreement with the experimental data. The calculations also show a small secondary vortex not seen experimentally.

  18. Motion of a curved vortex filament with decaying vortical core and axial velocity

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Ting, L.

    1978-01-01

    The motion and decay of a curved vortex filament having large axial and circumferential velocity components in a three-dimensional stream are analyzed by using the method of matched asymptotic expansions of the incompressible Navier-Stokes equations. The small parameter is the square root of the ratio of the kinematic viscosity to the circulation. The outer region is analyzed by the classical Biot-Savart law, and its solution is matched to that of the inner region, where viscous effects are important. Equations describing the coupling between the inner vortex structure and the motion of the vortex filament as well as the time evolution of the inner vortex structure are obtained. Equations are derived for the motion of the vortex filament and for the change and decay in time and space of the leading-order circumferential and axial velocity and vorticity components. Solutions are constructed for these components in terms of initial data.

  19. On the Boundary Conditions at an Oscillating Contact Line: A Physical/Numerical Experimental Program

    NASA Technical Reports Server (NTRS)

    Perlin, Marc; Schultz, William W.

    1996-01-01

    We will pursue an improved physical understanding and mathematical model for the boundary condition at an oscillating contact line at high Reynolds number. We expect that the body force is locally unimportant for earth-based systems, and that the local behavior may dominate the mechanics of partially-filled reservoirs in the microgravity environment. One important space-based application for this contact-line study is for Faraday-waves. Oscillations in the direction of gravity (or acceleration) can dominate the fluid motion during take-off and reentry with large steady-state accelerations and in orbit, where fluctuations on the order of 10(exp -4)g occur about a zero mean. Our experience with Faraday waves has shown them to be 'cleaner' than those produced by vertical or horizontal oscillation of walls. They are easier to model analytically or computationally, and they do not have strong vortex formation at the bottom of the plate. Hence many, if not most, of the experiments will be performed in this manner. The importance of contact lines in the microgravity environment is well established. We will compare high resolution measurements of the velocity field (lO micro-m resolution) using particle-tracking and particle-image velocimetry as the fluid/fluid interface is approached from the lower fluid. The spatial gradients in the deviation provide additional means to determine an improved boundary condition and a measure of the slip region. Dissipation, the size of the eddy near the contact line, and hysteresis will be measured and compare to linear and nonlinear models of viscous and irrotational but dissipative models.

  20. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  1. Atmospheric study of the impact of Borneo vortex and Madden-Julian oscillation over Western Indonesian maritime area

    NASA Astrophysics Data System (ADS)

    Saragih, R. M.; Fajarianti, R.; Winarso, P. A.

    2018-03-01

    During the Asian winter Monsoon (November-March), the Indonesia Maritime Continent is an area of deep convection. In that period, there is a synoptic scale disturbance over Northwest of Borneo Island called Borneo vortex. In addition to the impact of Asian Winter Monsoon, Madden-Julian Oscillation (MJO) also have an impact on deep convection during an active period. This study aims to study the impact of interaction Borneo vortex and MJO (during MJO active period in phase 3, 4 and 5) and rainfall condition over the western part of Indonesia Maritime Continent using compositing technique in the period of November-March 2015/2016. The parameters used to identify the incidence of Borneo vortex, MJO, and its interaction is vertical velocity. When MJO is active, Borneo vortex occurs most often in phase 5 and at least in phase 3. However, Borneo vortex occurs most often when the MJO is inactive. The interaction between Borneo vortex and MJO seems may affect not so much rainfall occurrence in the western part of IMC.

  2. Tip leakage vortex dynamics and inception

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David

    2002-11-01

    The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.

  3. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  4. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  5. Modeling the quasi-biennial oscillation's effect on the winter stratospheric circulation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Donal; Young, Richard E.

    1992-01-01

    The influence of the equatorial quasi-biennial oscillation (QBO) on the winter middle atmosphere is modeled with a mechanistic global primitive equation model. The model's polar vortex evolution is sensitive to the lower stratosphere's tropical winds, with the polar vortex becoming more (less) disturbed as the lower stratospheric winds are more easterly (westerly). This agrees with the observed relationship between wintertime polar circulation strength and the phase of the QBO in the lower stratosphere. In these experiments it is the extratropical planetary Rossby waves that provide the tropical-extratropical coupling mechanism. More easterly tropical winds in the lower stratosphere act to confine the extratropical Rossby waves farther north and closer to the vortex at the QBO altitudes, weakening the vortex relative to the case of westerly QBO phase. While the QBO winds occur in the lower stratosphere, the anomaly in the polar vortex strength is strongest at higher levels.

  6. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.

    1987-01-01

    In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.

  7. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  8. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  9. Vortex dynamics and heat transfer behind self-oscillating inverted flags of various lengths in channel flow

    NASA Astrophysics Data System (ADS)

    Yu, Yuelong; Liu, Yingzheng; Chen, Yujia

    2018-04-01

    The influence of an inverted flag's length-to-channel-width ratio (C* = L/W) on its oscillating behavior in a channel flow and the resultant vortex dynamics and heat transfer are determined experimentally. Three systems with C* values of 0.125, 0.250, and 0.375 were chosen for comparison. The interaction of highly unsteady flow with the inverted flag is measured with time-resolved particle image velocimetry. Variations in the underlying flow physics are discussed in terms of the statistical flow quantities, flag displacement, phase-averaged flow field, and vortex dynamics. The results show that the increase in C* shifts the occurrence of the flapping regime at high dimensionless bending stiffness. With the flag in the flapping region, three distinct vortex dynamics—the von Kármán vortex street, the G mode, and the singular mode—are identified at C* values of 0.375, 0.250, and 0.125, respectively. Finally, the heat transfer enhancement from the self-oscillating inverted flag is measured to serve as complementary information to quantify the cause-and-effect relationship between vortex dynamics and wall heat transfer. The increase in C* strongly promotes wall heat removal because disruption of the boundary layer by the energetic vortices is substantially intensified. Among all systems, wall heat transfer removal is most efficient at the intermediate C* value of 0.250.

  10. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  11. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  12. World Encircling Tectonic Vortex Street - Geostreams Revisited: The Southern Ring Current EM Plasma-Tectonic Coupling in the Western Pacific Rim

    NASA Astrophysics Data System (ADS)

    Leybourne, Bruce; Smoot, Christian; Longhinos, Biju

    2014-05-01

    Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.

  13. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    NASA Astrophysics Data System (ADS)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  14. Cavitation and Wake Structure of Unsteady Tip Vortex Flows

    DTIC Science & Technology

    1992-12-10

    wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex

  15. The thermal-vortex equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1987-01-01

    The Boussinesq approximation is extended so as to explicitly account for the transfer of fluid energy through viscous action into thermal energy. Ideal and dissipative integral invariants are discussed, in addition to the general equations for thermal-fluid motion.

  16. On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation

    NASA Astrophysics Data System (ADS)

    Feng, Lin; Liang, Shuzhang; Zhou, Xiangcong; Yang, Jianlei; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito

    2017-11-01

    The importance of cell manipulation and cultivation is increasing rapidly in various fields, such as drug discovery, regenerative medicine, and investigation of new energy sources. This paper presents a method to transport cells in a microfluidic chip without contact. A local vortex was generated when high-frequency oscillation of a microtool was induced in a microfluidic chip. The vortex was controlled by tuning the tool's oscillation parameters, such as the oscillation amplitude and frequency. The cells were then transported in the chip based on the direction of the tool's movement, and their position, posture, and trajectories were controlled. Bovine oocyte manipulations, that is, transportation and rotation, were conducted to demonstrate the capability of the proposed method, without any contact by the microrobot with high-frequency oscillation.

  17. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  18. A note on the effects of viscosity on the stability of a trailing-line vortex

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Khorrami, Mehdi R.

    1992-01-01

    The linear stability of the Batchelor (1964) vortex is examined with emphasis on new viscous modes recently found numerically by Khorrami (1991). Unlike the previously reported inviscid modes of instability, these modes are destabilized by viscosity and exhibit small growth rates at large Reynolds numbers. The analysis presented here uses a combination of asymptotic and numerical techniques. The results confirm the existence of the additional modes of instability due to viscosity.

  19. Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    2003-01-01

    An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.

  20. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  1. A Theoretical Investigation of Longitudinal Stability of Airplanes with Free Controls Including Effect of Friction in Control System

    NASA Technical Reports Server (NTRS)

    Greenberg, Harry; Sternfield, Leonard

    1944-01-01

    The relation between the elevator hinge moment parameters and the control forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance. The stability of the short period oscillations is shown as a series of boundaries giving the limits of the stable regions in terms of the elevator hinge moment parameters. The effects of static stability, elevator moment of inertia, elevator mass unbalance, and airplane density are also considered. Dynamic instability is likely to occur if there is mass unbalance of the elevator control system combined with a small restoring tendency (high aerodynamic balance). This instability can be prevented by a rearrangement of the unbalancing weights which, however, involves an increase of the amount of weight necessary. It can also be prevented by the addition of viscous friction to the elevator control system provided the airplane center of gravity is not behind a certain critical position. For high values of the density parameter, which correspond to high altitudes of flight, the addition of moderate amounts of viscous friction may be destabilizing even when the airplane is statically stable. In this case, increasing the viscous friction makes the oscillation stable again. The condition in which viscous friction causes dynamic instability of a statically stable airplane is limited to a definite range of hinge moment parameters. It is shown that, when viscous friction causes increasing oscillations, solid friction will produce steady oscillations having an amplitude proportional to the amount of friction.

  2. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows

    PubMed Central

    Boghosian, M. E.; Cassel, K. W.

    2016-01-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM. PMID:27795617

  3. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows.

    PubMed

    Boghosian, M E; Cassel, K W

    2016-12-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.

  4. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  5. On simulation of no-slip condition in the method of discrete vortices

    NASA Astrophysics Data System (ADS)

    Shmagunov, O. A.

    2017-10-01

    When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.

  6. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papari, G. P.; Glatz, A.; Carillo, F.

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  7. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE PAGES

    Papari, G. P.; Glatz, A.; Carillo, F.; ...

    2016-12-23

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  8. Poincare oscillations and geostrophic adjustment in a rotating paraboloid

    NASA Astrophysics Data System (ADS)

    Kalashnik, M.; Kakhiani, V.; Patarashvili, K.; Tsakadze, S.

    2009-10-01

    Free liquid oscillations (Poincare oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained. Address: alex_gaina@yahoo.com Database: phy

  9. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  10. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  11. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  12. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  13. Stability of a dragged viscous thread: Onset of ``stitching'' in a fluid-mechanical ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny

    2006-12-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  14. Numerical investigation of a vortex ring impinging on a coaxial aperture

    NASA Astrophysics Data System (ADS)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr < 0.9) exhibits the classical unsteady boundary layer interaction in a vortex ring-wall collision. The vortex ring is able to slip past the aperture when Rr >= 0.9 , and an increase in the vortex ring impulse is observed for 1.0 <= Rr <= 1.3 due to fluid entrainment. Furthermore, pressure loadings are also compared to elucidate an optimal energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  15. Vortex-Induced Vibration of an Airfoil Used in Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Benner, Bridget; Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2017-11-01

    In Vertical-axis wind turbines (VAWTs), when the blades are placed at high angles of attack with respect to the incoming flow, they could experience flow-induced oscillations. A series of experiments in a re-circulating water tunnel was conducted to study the possible Vortex-Induced Vibration (VIV) of a fully-submerged, flexibly-mounted NACA 0021 airfoil, which is used in some designs of VAWTs. The airfoil was free to oscillate in the crossflow direction, and the tests were conducted in a Reynolds number range of 600

  16. Density engineering of an oscillating soliton/vortex ring in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Levy, Shahar; Shomroni, Itay; Lahoud, Elias; Steinhauer, Jeff

    2008-05-01

    We study solitons in a Bose-Einstein condensate by engineering a density minimum on the healing length scale, using a far off-resonant laser beam. This results in a pair of counterpropagating solitons, which is the low collisional energy version of the celebrated matter wave interference pattern [M. R. Andrews et al., Science 275, 637 (1997)]. The solitons subsequently evolve into a pair of periodic soliton/vortex rings. We image the vortex rings and solitons in-situ on the healing length scale. This stable periodic evolution is in sharp contrast to the behavior of previous experiments in which the solitons decay irreversibly into vortex rings via the snake instability. The periodic oscillation between two qualitatively different forms seems to be a rare phenomenon in nature. We explain this phenomenon in terms of conservation of mass and energy in a narrow condensate.

  17. Computation of supersonic laminar viscous flow past a pointed cone at angle of attack in spinning and coning motion

    NASA Technical Reports Server (NTRS)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.

  18. Hawkmoth flight stability in turbulent vortex streets.

    PubMed

    Ortega-Jimenez, Victor Manuel; Greeter, Jeremy S M; Mittal, Rajat; Hedrick, Tyson L

    2013-12-15

    Shedding of vortices is a common phenomenon in the atmosphere over a wide range of spatial and temporal scales. However, it is unclear how these vortices of varying scales affect the flight performance of flying animals. In order to examine these interactions, we trained seven hawkmoths (Manduca sexta) (wingspan ~9 cm) to fly and feed in a wind tunnel under steady flow (controls) and in the von Kármán vortex street of vertically oriented cylinders (two different cylinders with diameters of 10 and 5 cm) at speeds of 0.5, 1 and 2 m s(-1). Cylinders were placed at distances of 5, 25 and 100 cm upstream of the moths. Moths exhibited large amplitude yaw oscillations coupled with modest oscillations in roll and pitch, and slight increases in wingbeat frequency when flying in both the near (recirculating) and middle (vortex dominated) wake regions. Wingbeat amplitude did not vary among treatments, except at 1 m s(-1) for the large cylinder. Yaw and roll oscillations were synchronized with the vortex shedding frequencies in moths flying in the wake of the large cylinder at all speeds. In contrast, yaw and pitch were synchronized with the shedding frequency of small vortices at speeds ≤1 m s(-1). Oscillations in body orientation were also substantially smaller in the small cylinder treatment when compared with the large cylinder, regardless of temporal or non-dimensional spatial scale. Moths flying in steady conditions reached a higher air speed than those flying into cylinder wakes. In general, flight effects produced by the cylinder wakes were qualitatively similar among the recirculating and vortex-dominated wake regions; the magnitude of those effects, however, declined gradually with downstream distance.

  19. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  20. Generation of 2 µm Laguerre-Gaussian mode in a Tm:LuYAG solid-state laser

    NASA Astrophysics Data System (ADS)

    Liu, Qiyao; Ding, Manman; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan

    2018-04-01

    In this article, we discuss the first vortex laser in the 2 µm spectral range directly generated from a Tm:LuYAG oscillator, in which a pump beam with annular intensity distribution is employed in line with Laguerre-Gaussian modes. Laser thresholds of different-order Laguerre-Gaussian modes are theoretically analyzed and discussed. Vortex lasers with orbital angular momentum of ħ and  -ħ were experimentally produced with corresponding output powers of 1.75 W and 1.64 W, respectively. This directly emitted vortex laser generated in the ~2 µm region from a compact and robust Tm:LuYAG oscillator has potential applications in the areas of molecular spectroscopy and organic material processing amongst others.

  1. Investigate the shock focusing under a single vortex disturbance using 2D Saint-Venant equations with a shock-capturing scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaquan; Li, Renfu; Wu, Haiyan

    2018-02-01

    In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.

  2. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  3. Analysis of helicopter blade vortex structure by laser velocimetry

    NASA Astrophysics Data System (ADS)

    Boutier, A.; Lefèvre, J.; Micheli, F.

    1996-05-01

    In descent flight, helicopter external noise is mainly generated by the Blade Vortex Interaction (BVI). To under-stand the dynamics of this phenomenon, the vortex must be characterized before its interaction with the blade, which means that its viscous core radius, its strength and its distance to the blade have to be determined by non-intrusive measurement techniques. As part of the HART program (Higher Harmonic Control Aeroacoustic Rotor Test, jointly conducted by US Army, NASA, DLR, DNW and ONERA), a series of tests have been made in the German Dutch Wind Tunnel (DNW) on a helicopter rotor with 2 m long blades, rotating at 1040 rpm; several flight configurations, with an advance ratio of 0.15 and a shaft angle of 5.3°, have been studied with different higher harmonic blade pitch angles superposed on the conventional one (corresponding to the baseline case). The flow on the retreating side has been analyzed with an especially designed 3D laser velocimeter, and, simultaneously, the blade tip attitude has been determined in order to get the blade-vortex miss distance, which is a crucial parameter in the noise reduction. A 3D laser velocimeter, in backscatter mode with a working distance of 5 m, was installed on a platform 9 m high, and flow seeding with submicron incense smoke was achieved in the settling chamber using a remotely controlled displacement device. Acquisition of instantaneous velocity vectors by an IFA 750 yielded mean velocity and turbulence maps across the vortex as well as the vortex position, intensity and viscous radius. The blade tip attitude (altitude, jitter, angle of incidence) was recorded by the TART method (Target Attitude in Real Time) which makes use of a CCD camera on which is formed the image of two retroreflecting targets attached to the blade tip and lighted by a flash lamp. In addition to the mean values of the aforementioned quantities, spectra of their fluctuations have been established up to 8 Hz.

  4. A numerical study of viscous vortex rings using a spectral method

    NASA Technical Reports Server (NTRS)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.

    1988-01-01

    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.

  5. Quantum oscillations in a biaxial pair density wave state.

    PubMed

    Norman, M R; Davis, J C Séamus

    2018-05-22

    There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic-field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state. Copyright © 2018 the Author(s). Published by PNAS.

  6. Propulsion of the Water Flea, Daphnia magna: Experiments, Scaling, and Modelling

    NASA Astrophysics Data System (ADS)

    Skipper, A. N.; Murphy, D.; Webster, D. R.; Yen, J.

    2016-02-01

    The freshwater crustacean Daphnia magna is a widely studied zooplankton in relation to food webs, predator-prey interactions, and other biological/ecological considerations; however, their locomotion is poorly quantified and understood. These water fleas utilize a hop-and-sink mechanism that consists of making quick, impulsive jumps by beating their antennae to propel themselves forward ( 1 body length). The animals then sink for a period, during which they stretch out their antennae to increase drag and thereby reduce their sinking velocity. Time-resolved three-dimensional flow fields surrounding the animals were quantified with a unique infrared tomographic particle image velocity (tomo-PIV) system. Three-dimensional kinematics data were also extracted from the image sequences. In the current work, we compared body kinematics and flow disturbance among organisms of size in the range of 1.3 to 2.8 mm. The stroke cycle averaged 150 ms in duration, ranging from 100 to 180 ms; this period is generally evenly split between the power and recovery strokes. The range of peak hop velocity was 27.2 to 32.5 mm/s, and peak acceleration was in the range of 0.68 to 1.8 m/s2. The results showed a distinct relationship between peak hop speed (Vmax 14 BL/s) and body size; these data collapsed onto a single time-record curve during the power stroke when properly non-dimensionalized. The fluid flow induced by each antennae consisted of a viscous vortex ring that demonstrated a slow decay in the wake. The strength, size, and decay of the induced viscous vortex rings were compared as a function of organism size. Finally, the viscous vortex rings were analyzed in the context of a double Stokeslet model that consisted of two impulsively applied point forces separated by the animal width.

  7. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Patel, D. K.

    1974-01-01

    A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.

  8. Evaluation of a doubly-swept blade tip for rotorcraft noise reduction

    NASA Technical Reports Server (NTRS)

    Wake, Brian E.; Egolf, T. Alan

    1992-01-01

    A computational study was performed for a doubly-swept rotor blade tip to determine its benefit for high-speed impulsive (HSI) and blade-vortex interaction (BVI) noise. This design consists of aft and forward sweep. For the HSI-noise computations, unsteady Euler calculations were performed for several variations to a rotor blade geometry. A doubly-swept planform was predicted to increase the delocalizing Mach number to 0.94 (representative of a 200+ kt helicopter). For the BVI-noise problem, it had been hypothesized that the doubly-swept blade tip, by producing a leading-edge vortex, would reduce the tip-vortex effect on BVI noise. A procedure was used in which the tip vortex velocity profile computed by a Navier-Stokes solver was used to compute the inflow associated with BVI. This inflow was used by a Euler solver to compute the unsteady pressures for an acoustic analysis. The results of this study were inconclusive due to the difficulty in accurately predicting the viscous tip vortex downstream of the blade. Also, for the condition studied, no leading-edge vortex formed at the tip.

  9. Arcjet thruster research and technology, phase 1

    NASA Technical Reports Server (NTRS)

    Knowles, Steven C.

    1987-01-01

    The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.

  10. Computational approaches to computational aero-acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1996-01-01

    The various techniques by which the goal of computational aeroacoustics (the calculation and noise prediction of a fluctuating fluid flow) may be achieved are reviewed. The governing equations for compressible fluid flow are presented. The direct numerical simulation approach is shown to be computationally intensive for high Reynolds number viscous flows. Therefore, other approaches, such as the acoustic analogy, vortex models and various perturbation techniques that aim to break the analysis into a viscous part and an acoustic part are presented. The choice of the approach is shown to be problem dependent.

  11. Inviscid to turbulent transition of trailing vortices

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1974-01-01

    The characteristics of the plateau region in the vortex system which trails from a lifting wing are discussed. The decay of the vortex due to viscous or turbulent shear is very slow in the plateau so that the maximum tangential speed in the vortices remains nearly constant for some distance downstream of roll-up and then begins to decrease, becoming inversely proportional to the square root of the distance downstream. Mathematical models are developed to analyze the structure of the plateau area. Solutions are obtained for both constant and variable eddy viscosity models.

  12. Vortex dipolar structures in a rigid model of the larynx at flow onset

    NASA Astrophysics Data System (ADS)

    Chisari, N. E.; Artana, G.; Sciamarella, D.

    2011-02-01

    Starting jet airflow is investigated in a channel with a pair of consecutive slitted constrictions approximating the true and false vocal folds in the human larynx. The flow is visualized using the Schlieren optical technique and simulated by solving the Navier-Stokes equations for an incompressible two-dimensional viscous flow. Laboratory and numerical experiments show the spontaneous formation of three different classes of vortex dipolar structures in several regions of the laryngeal profile under conditions that may be assimilated to those of voice onset.

  13. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    NASA Astrophysics Data System (ADS)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  14. Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model

    NASA Astrophysics Data System (ADS)

    Rule, John Allen

    1997-08-01

    The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.

  15. BOOK REVIEW: Vortex Methods: Theory and Practice

    NASA Astrophysics Data System (ADS)

    Cottet, G.-H.; Koumoutsakos, P. D.

    2001-03-01

    The book Vortex Methods: Theory and Practice presents a comprehensive account of the numerical technique for solving fluid flow problems. It provides a very nice balance between the theoretical development and analysis of the various techniques and their practical implementation. In fact, the presentation of the rigorous mathematical analysis of these methods instills confidence in their implementation. The book goes into some detail on the more recent developments that attempt to account for viscous effects, in particular the presence of viscous boundary layers in some flows of interest. The presentation is very readable, with most points illustrated with well-chosen examples, some quite sophisticated. It is a very worthy reference book that should appeal to a large body of readers, from those interested in the mathematical analysis of the methods to practitioners of computational fluid dynamics. The use of the book as a text is compromised by its lack of exercises for students, but it could form the basis of a graduate special topics course. Juan Lopez

  16. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.

  17. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  18. Numerical study of turbulent secondary flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Hur, N.; Thangam, S.; Speziale, C. G.

    1990-01-01

    The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight and curved ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.

  19. Numerical study of turbulent secondary flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Hur, N.; Thangam, S.; Speziale, C. G.

    1989-01-01

    The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square cross-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.

  20. Vortex breakdown incipience: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  1. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.

  2. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    NASA Astrophysics Data System (ADS)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  3. Active shunt capacitance cancelling oscillator circuit

    DOEpatents

    Wessendorf, Kurt O.

    2003-09-23

    An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.

  4. An investigation of the vortex method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Jr., Duaine Wright

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. Thismore » is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.« less

  5. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  6. Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois

    2012-11-01

    Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.

  7. Oscillatory vortex formation behind a movable plat

    NASA Astrophysics Data System (ADS)

    Vukicevic, Marija; Pedrizzetti, Gianni

    2010-11-01

    INTRODUCTION: A wide spectra of application, from industrial to environmental and biological, involve fluid-structure interaction (FSI) at a fundamental level. We investigate a 2D FSI problem for a rigid structure hinged on a wall, freely rotating by the action of an oscillatory fluid flow. METHODS: The Navier-Stokes equations are solved simultaneously with the body dynamics. An accurate numerical solution is developed on the conformal map of the time-varying physical domain. RESULTS: The FSI is primarily influenced by the vortex formation process and by the interaction between vortices generated during the sequential flow oscillations. The emerging bodies can be arranged into a three main groups. The first, made of heavy bodies, terminates the motion during the first few oscillations with the impact of the body on the wall. On the other extreme, the third group made of relatively light bodies presents a flow-driven motion that oscillates periodically in time. In a wide intermediate range, the body oscillates in time presenting non periodic features. CONCLUSIONS: The process of oscillatory vortex formation in presence of fluid-structure interaction shows the emergence of various phenomena that were analyzed in details. In this specific application the results demonstrate that the FSI range from linear to chaotic interaction and finite-time collapse.

  8. Coherent structures in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.

    2017-02-01

    We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3

  9. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  10. On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats

    DTIC Science & Technology

    2007-05-16

    15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave

  11. A fluid-mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Lister, John; Chiu-Webster, Sunny

    2004-11-01

    It is a breakfast-table experience that when a viscous fluid thread falls a sufficient height onto a stationary horizontal surface the thread is undergoes a coiling instability. We describe experimental observations of a viscous thread falling onto a steadily moving horizontal belt. Low (or zero) belt speeds produce coiling as expected. High belt speeds produce a steady thread, whose shape is well-predicted by theory for a stretching catenary with surface tension and inertia. Intermediate belt speeds show various modes of oscillation, which produce a variety of `stitching' patterns on the belt. The onset of oscillations is predicted theoretically.

  12. Optimum Energy Extraction from Coherent Vortex Rings Passing Tangentially Over Flexible Plates

    NASA Astrophysics Data System (ADS)

    Pirnia, Alireza; Browning, Emily A.; Peterson, Sean D.; Erath, Byron D.

    2017-11-01

    Coherent vortical structures can incite self-sustained oscillations in flexible membranes. This concept has recently gained interest for energy extraction from ambient environments. In this study the special case of a vortex ring passing tangentially over a cantilevered flexible plate is investigated. This problem is governed by the Kirchhoff-Love plate equation, which can be expressed in terms of a non-dimensional mass parameter of the plate, non-dimensional pressure loading induced by the vortex ring, and a Strouhal (St) number which expresses the duration of pressure loading relative to the period of plate oscillation. For a plate with a fixed mass parameter immersed in a fluid environment, the St number specifies the beam dynamics and the energy exchange process. The aim of this study is to identify the St number corresponding to maximum energy exchange between plates and vortex rings. The energy exchange process between the vortex ring and the plate is investigated over a range of 0.3

  13. Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew; Hall, Philip

    1990-01-01

    The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.

  14. The inviscid pressure field on the tip of a semi-infinite wing and its application to the formation of a tip vortex

    NASA Technical Reports Server (NTRS)

    Hall, G. F.; Shamroth, S. J.; Mcdonald, H.; Briley, W. R.

    1976-01-01

    A method was developed for determining the aerodynamic loads on the tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of attack which is operating subsonically in an inviscid medium and is subjected to a sinusoidal gust. Under the assumption of linearized aerodynamics, the loads on the tip are obtained by superposition of the steady aerodynamic results for angle of attack and camber, and the unsteady results for the response to the sinusoidal gust. The near field disturbance pressures in the fluid surrounding the tip are obtained by assuming a dipole representation for the loading on the tip and calculating the pressures accordingly. The near field pressures are used to drive a reduced form of the Navier-Stokes equations which yield the tip vortex formation. The combined viscid-inviscid analysis is applied to determining the pressures and examining the vortex rollup in the vicinity of an unswept, uncambered wing moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. The viscous tip flow calculation shows features expected in the tip flow such as the qualitatively proper development of boundary layers on both the upper and lower airfoil surfaces. In addition, application of the viscous solution leads to the generation of a circular type flow pattern above the airfoil suction surface.

  15. Symmetry breaking motion of a vortex pair in a driven cavity

    NASA Astrophysics Data System (ADS)

    McHugh, John; Osman, Kahar; Farias, Jason

    2002-11-01

    The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.

  16. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations

    NASA Astrophysics Data System (ADS)

    Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy

    2016-09-01

    This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection physics of two vortices should be similar regardless of their spatial arrangement.

  17. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  18. The singing vortex.

    PubMed

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  19. The singing vortex

    PubMed Central

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  20. Optical vortex generation from a diode-pumped alexandrite laser

    NASA Astrophysics Data System (ADS)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  1. Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/Without Vortex Generators

    NASA Technical Reports Server (NTRS)

    Cho, Soo-Yong; Greber, Isaac

    1994-01-01

    Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.

  2. Fast Multipole Methods for Three-Dimensional N-body Problems

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.

    1995-01-01

    We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR scheme in two dimensions for vector computer architectures allowing for simulations of bluff body flows using millions of particles. Winckelmans presented three-dimensional, viscous simulations of interacting vortex rings, using vortons and an implementation of a BH scheme for parallel computer architectures. Bhatt presented a vortex filament method to perform inviscid vortex ring interactions, with an alternative implementation of a BH scheme for a Connection Machine parallel computer architecture.

  3. Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1996-01-01

    A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.

  4. Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes

    NASA Astrophysics Data System (ADS)

    Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.

    2018-04-01

    We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.

  5. High-power, continuous-wave, tunable mid-IR, higher-order vortex beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Sharma, Varun; Samanta, G. K.

    2018-05-01

    We report on a novel experimental scheme to generate continuous-wave (cw), high power, and higher-order optical vortices tunable across mid-IR wavelength range. Using cw, two-crystal, singly resonant optical parametric oscillator (T-SRO) and pumping one of the crystals with Gaussian beam and the other crystal with optical vortices of orders, lp = 1 to 6, we have directly transferred the vortices at near-IR to the mid-IR wavelength range. The idler vortices of orders, li = 1 to 6, are tunable across 2276-3576 nm with a maximum output power of 6.8 W at order of, li = 1, for the pump power of 25 W corresponding to a near-IR vortex to mid-IR vortex conversion efficiency as high as 27.2%. Unlike the SROs generating optical vortices restricted to lower orders due to the elevated operation threshold with pump vortex orders, here, the coherent energy coupling between the resonant signals of the crystals of T-SRO facilitates the transfer of pump vortex of any order to the idler wavelength without stringent operation threshold condition. The generic experimental scheme can be used in any wavelength range across the electromagnetic spectrum and in all time scales from cw to ultrafast regime.

  6. Numerical studies of incompressible flow around delta and double-delta wings

    NASA Technical Reports Server (NTRS)

    Krause, E.; Liu, C. H.

    1989-01-01

    The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.

  7. The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Susan-Resiga, Romeo

    2016-11-01

    The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.

  8. Classical black holes: the nonlinear dynamics of curved spacetime.

    PubMed

    Thorne, Kip S

    2012-08-03

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  9. Classical Black Holes: The Nonlinear Dynamics of Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Thorne, Kip S.

    2012-08-01

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  10. Dynamic control of metastable remanent states in mesoscale magnetic elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, J.; Jain, S.; Pearson, J. E.

    2015-05-07

    The formation of the vortex-antivortex-vortex (v-av-v) metastable remanent states in elongated magnetic elements have been systematically investigated using micromagnetic modeling. It is demonstrated that the v-av-v magnetization pattern can be effectively stabilized by exciting the single vortex state with an external RF field. Furthermore, we show that a set of different polarity combinations of the vortex cores can be achieved by adjusting the frequency and amplitude of the excitation field. The corresponding dynamic response in time- and frequency-domain has also been presented. Owing to the diversity of the collective modes with different vortex-antivortex combinations, this system may open promising perspectivesmore » in the area of spin transfer torque oscillators.« less

  11. Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-11-01

    Employing nano-particle planar laser scattering and particle image velocimetry technology, underexpanded jet in supersonic crossflow with laminar boundary layer is experimental investigated in a low noise wind tunnel. Instantaneous flow structures and average velocity distribution of jet plume are captured in experimental images. Horseshoe vortex system is dominated by oscillating and coalescing regime, contributing to vortex generation of jet shear layer. The "tilting-stretching-tearing" mechanism dominating in near field raises average fractal dimension. But vortex structures generated on the windward side of jet plume scatter in jet plume and dissipate gradually, which makes the vortexes break up from outside in near field and break down into small turbulence completely in far field.

  12. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  13. QBO Influence on Polar Stratospheric Variability in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Oman, L. D.; Li, F.; Slong, I.-S.; Newman, P. A.; Nielsen, J. E.

    2010-01-01

    The quasi-biennial oscillation modulates the strength of both the Arctic and Antarctic stratospheric vortices. Model and observational studies have found that the phase and characteristics of the quasi-biennial oscillation (QBO) contribute to the high degree of variability in the Arctic stratosphere in winter. While the Antarctic stratosphere is less variable, recent work has shown that Southern Hemisphere planetary wave driving increases in response to "warm pool" El Nino events that are coincident with the easterly phase of the QBO. These events hasten the breakup of the Antarctic polar vortex. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is now capable of generating a realistic QBO, due a new parameterization of gravity wave drag. In this presentation, we will use this new model capability to assess the influence of the QBO on polar stratospheric variability. Using simulations of the recent past, we will compare the modeled relationship between QBO phase and mid-winter vortex strength with the observed Holton-Tan relation, in both hemispheres. We will use simulations of the 21 St century to estimate future trends in the relationship between QBO phase and vortex strength. In addition, we will evaluate the combined influence of the QBO and El Nino/Southern Oscillation (ENSO) on the timing of the breakup of the polar stratospheric vortices in the GEOS CCM. We will compare the influence of these two natural phenomena with trends in the vortex breakup associated with ozone recovery and increasing greenhouse gas concentrations.

  14. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  15. Aerodynamics of yacht sails: viscous flow features and surface pressure distributions

    NASA Astrophysics Data System (ADS)

    Viola, Ignazio Maria

    2014-11-01

    The present paper presents the first Detached Eddy Simulation (DES) on a yacht sails. Wind tunnel experiments on a 1:15th model-scale sailing yacht with an asymmetric spinnaker (fore sail) and a mainsails (aft sail) were modelled using several time and grid resolutions. Also the Reynolds-average Navier-Stokes (RANS) equations were solved for comparison with DES. The computed forces and surface pressure distributions were compared with those measured with both flexible and rigid sails in the wind tunnel and good agreement was found. For the first time it was possible to recognise the coherent and steady nature of the leading edge vortex that develops on the leeward side of the asymmetric spinnaker and which significantly contributes to the overall drive force. The leading edge vortex increases in diameter from the foot to the head of the sail, where it becomes the tip vortex and convects downstream in the direction of the far field velocity. The tip vortex from the head of the mainsail rolls around the one of the spinnaker. The spanwise twist of the spinnaker leads to a mid-span helicoidal vortex, which has never been reported by previous authors, with an horizontal axis and rotating in the same direction of the tip vortex.

  16. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  17. Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 2

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R. (Compiler)

    1989-01-01

    This two part document contains copies of the text and figures for the papers presented at the symposium held at NASA Langley on 20 to 22 May, 1987. The papers are grouped in five subject areas. The areas covered by this part includes the following: Methods for vortex and viscous flows; Aeroelastic applications, and Experimental results and cascade flows.

  18. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model the impact of the saturation changes in the system over the pressure difference between the wetting and non wetting phase. We show that the so-called dynamic effects referred in the hydrology literature of experimentally measured capillary pressure curves might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase and pressure changes caused by viscous effects. A detailed study of the structure optically followed shows that the geometry of the invader is self-similar with two different behaviors at small and large scales: the structure corresponds to the ones of invasion percolation models at small scales (capillary fingering structures with fractal dimension D=1.83), whereas at large scales, viscous pressure drops dominate over the capillary threshold variations, and the structures are self-similar fingering structures with a fractal dimension corresponding to Dielectric Breakdown Models (variants of the DLA model), with D ≠ƒ 1.5. The cross-over scale is set by the scale at which capillary fluctuations are of the order of the viscous pressure drops. This leads physically to the fact that cross-over scale between the two fingering dimensions, goes like the inverse of the capillary number. This study utilizes these geometrical characteristics of the viscous fingers forming in dynamic drainage, to obtain a meaningfull scaling law for the saturation-pressure curve at finite speed, i.e. the so-called dynamic capillary pressure relations. We thus show how the micromechanical interplay between viscous and capillary forces leads to some pattern formation, which results in a general form of dynamic capillary pressure relations. By combining these detailed informations on the displacement structure with global measures of pressure, saturation and controlling the capillary number Ca, a scaling relation relating pressure, saturation, system size and capillary number is developed. By applying this scaling relation, pressure-saturation curves for a wide range of capillary numbers can be collapsed. Effects of pressure oscillations on drainage in an elastic porous medium: The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non-wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. [1] Tallakstad, K.T., H.A. Knudsen, T. Ramstad, G. Løvoll, K.J. Maløy, R. Toussaint and E.G. Flekkøy , Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502 (2009). doi:10.1103/PhysRevLett.102.074502 [2] Løvoll, G., M. Jankov, K.J. Maløy, R. Toussaint, J. Schmittbuhl, G. Schaefer and Y. Ḿ eheust, Influence of viscous fingering on dynamic saturation-pressure curves in porous media, submitted to Transport In Porous Media, (2010) [3] Jankov, M., G. Løvoll, H.A. Knudsen, K.J. Maløy, R. Planet, R. Toussaint and E.G. Flekkøy; Effects of pressure oscillations on drainage in an elastic porous medium, Transport In Porous Media, in press (2010).

  19. Aerodynamic interaction between vortical wakes and the viscous flow about a circular cylinder

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1985-01-01

    In the design analysis of conventional aircraft configurations, the prediction of the strong interaction between vortical wakes and the viscous flow field about bodies is of considerable importance. Interactions between vortical wakes and aircraft components are even more common on rotorcraft and configurations with lifting surfaces forward of the wing. An accurate analysis of the vortex-wake interaction with aircraft components is needed for the optimization of the payload and the reduction of vibratory loads. However, the three-dimensional flow field beneath the rotor disk and the interaction of the rotor wake with solid bodies in the flow field are highly complex. The present paper has the objective to provide a basis for the considered interactions by studying a simpler problem. This problem involves the two-dimensional interaction of external wakes with the viscous flow about a circular cylinder.

  20. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  1. Vortex coupling in trailing vortex-wing interactions

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  2. A Vortex Particle-Mesh method for subsonic compressible flows

    NASA Astrophysics Data System (ADS)

    Parmentier, Philippe; Winckelmans, Grégoire; Chatelain, Philippe

    2018-02-01

    This paper presents the implementation and validation of a remeshed Vortex Particle-Mesh (VPM) method capable of simulating complex compressible and viscous flows. It is supplemented with a radiation boundary condition in order for the method to accommodate the radiating quantities of the flow. The efficiency of the methodology relies on the use of an underlying grid; it allows the use of a FFT-based Poisson solver to calculate the velocity field, and the use of high-order isotropic finite differences to evaluate the non-advective terms in the Lagrangian form of the conservation equations. The Möhring analogy is then also used to further obtain the far-field sound produced by two co-rotating Gaussian vortices. It is demonstrated that the method is in excellent quantitative agreement with reference results that were obtained using a high-order Eulerian method and using a high-order remeshed Vortex Particle (VP) method.

  3. Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalsa, Guru, E-mail: guru.khalsa@nist.gov; Stiles, M. D.; Grollier, J.

    2015-06-15

    Based on theoretical models, the dynamics of spin-torque nano-oscillators can be substantially modified by re-injecting the emitted signal to the input of the oscillator after some delay. Numerical simulations for vortex magnetic tunnel junctions show that with reasonable parameters this approach can decrease critical currents as much as 25% and linewidths by a factor of 4. Analytical calculations, which agree well with simulations, demonstrate that these results can be generalized to any kind of spin-torque oscillator.

  4. Vortex methods and vortex statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorin, A.J.

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well asmore » in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.« less

  5. On the nonlinear three dimensional instability of Stokes layers and other shear layers to pairs of oblique waves

    NASA Technical Reports Server (NTRS)

    Wu, Xuesong; Lee, Sang Soo; Cowley, Stephen J.

    1992-01-01

    The nonlinear evolution of a pair of initially oblique waves in a high Reynolds Number Stokes layer is studied. Attention is focused on times when disturbances of amplitude epsilon have O(epsilon(exp 1/3)R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects. Viscous effects are included by studying the distinguished scaling epsilon = O(R(exp -1)). This leads to a complicated modification of the kernel function in the integro-differential amplitude equation. When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be introduced by nonlinear effects; we suggest that such explosive growth can lead to the bursts observed in experiments. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave vortex approach is identified.

  6. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  7. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-07-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7mm × 70mm and resonates at 92.5Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  8. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  9. Alternating currents and shear waves in viscous electronics

    NASA Astrophysics Data System (ADS)

    Semenyakin, M.; Falkovich, G.

    2018-02-01

    Strong interaction among charge carriers can make them move like viscous fluid. Here we explore alternating current (ac) effects in viscous electronics. In the Ohmic case, incompressible current distribution in a sample adjusts fast to a time-dependent voltage on the electrodes, while in the viscous case, momentum diffusion makes for retardation and for the possibility of propagating slow shear waves. We focus on specific geometries that showcase interesting aspects of such waves: current parallel to a one-dimensional defect and current applied across a long strip. We find that the phase velocity of the wave propagating along the strip respectively increases/decreases with the frequency for no-slip/no-stress boundary conditions. This is so because when the frequency or strip width goes to zero (alternatively, viscosity go to infinity), the wavelength of the current pattern tends to infinity in the no-stress case and to a finite value in a general case. We also show that for dc current across a strip with a no-stress boundary, there are only one pair of vortices, while there is an infinite vortex chain for all other types of boundary conditions.

  10. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    PubMed

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  11. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.

  12. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.

    PubMed

    Lin, Shiji; Zhao, Binyu; Zou, Song; Guo, Jianwei; Wei, Zheng; Chen, Longquan

    2018-04-15

    In this paper, we experimentally investigated the impact dynamics of different viscous droplets on solid surfaces with diverse wettabilities. We show that the outcome of an impinging droplet is dependent on the physical property of the droplet and the wettability of the surface. Whereas only deposition was observed on lyophilic surfaces, more impact phenomena were identified on lyophobic and superlyophobic surfaces. It was found that none of the existing theoretical models can well describe the maximum spreading factor, revealing the complexity of the droplet impact dynamics and suggesting that more factors need to be considered in the theory. By using the modified capillary-inertial time, which considers the effects of liquid viscosity and surface wettability on droplet spreading, a universal scaling law describing the spreading time was obtained. Finally, we analyzed the post-impact droplet oscillation with the theory for damped harmonic oscillators and interpreted the effects of liquid viscosity and surface wettability on the oscillation by simple scaling analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of the properties of soft collective spin wave modes on the magnetization reversal in finite arrays of dipolarly coupled magnetic dots

    NASA Astrophysics Data System (ADS)

    Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei

    2015-06-01

    Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.

  14. The cosmic web and microwave background fossilize the first turbulent combustion

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris

    2016-10-01

    Collisional fluid mechanics theory predicts a turbulent hot big bang at Planck conditions from large, negative, turbulence stresses below the Fortov-Kerr limit (< -10113 Pa). Big bang turbulence fossilized when quarks formed, extracting the mass energy of the universe by extreme negative viscous stresses of inflation, expanding to length scales larger than the horizon scale ct. Viscous-gravitational structure formation by fragmentation was triggered at big bang fossil vorticity turbulence vortex lines during the plasma epoch, as observed by the Planck space telescope. A cosmic web of protogalaxies, protogalaxyclusters, and protogalaxysuperclusters that formed in turbulent boundary layers of the spinning voids are hereby identified as expanding turbulence fossils that falsify CDMHC cosmology.

  15. Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Lamanna, Grazia; Holten, A. P. C.; van Dongen, M. E. H.

    Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and experimentally. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of experiment are carried out in such a tube. First, the phase transition in a strong unsteady expansion wave is investigated to demonstrate the mutual interaction between the unsteady flow and the condensation process and also the formation of condensation-induced shock waves. The role of condensation-induced shocks in the gradual transition from a frozen initial structure to an equilibrium structure is explained. Second, the condensing flow in a slender supersonic nozzle G2 is considered. Particular attention is given to condensation-induced oscillations and to the transition from symmetrical mode-1 oscillations to asymmetrical mode-2 oscillations in a starting nozzle flow, as first observed by Adam & Schnerr. The transition is also found numerically, but the amplitude, frequency and transition time are not yet well predicted. Third, a sharp-edged obstacle is placed in the tube to generate a starting vortex. Condensation in the vortex is found. Owing to the release of latent heat of condensation, an increase in the pressure and temperature in the vortex core is observed. Condensation-induced shock waves are found, for a sufficiently high initial saturation ratio, which interact with the starting vortex, resulting in a very complex flow. As time proceeds, a subsonic or transonic free jet is formed downstream of the sharp-edged obstacle, which becomes oscillatory for a relatively high main-flow velocity and for a sufficiently high humidity.

  16. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.

  17. Quantum turbulence in superfluids with wall-clamped normal component.

    PubMed

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-03-25

    In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.

  18. Noncontact manipulation using a transversely magnetized rolling robot

    NASA Astrophysics Data System (ADS)

    Tung, Hsi-Wen; Peyer, Kathrin E.; Sargent, David F.; Nelson, Bradley J.

    2013-09-01

    A type of magnetic, wireless microrobot has been designed for non-contact manipulation of micro-objects in liquids. The agent, named the RodBot, has typical dimensions of 300 μm × 60 μm × 50 μm. The RodBot is transversely magnetized and rolls around its long axis on a surface in a rotating external magnetic field. In liquid environments, the RodBot generates a rising flow in front of it and a vortex above its body. The flow and vortex are efficient for picking-up and trapping micro-objects of sizes ranging from microns to one millimeter. In viscous solutions, a RodBot can transport objects many times its own size and weight.

  19. Quantum turbulence in superfluids with wall-clamped normal component

    PubMed Central

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-01-01

    In Fermi superfluids, such as superfluid 3He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures. PMID:24704879

  20. Quantum calculus of classical vortex images, integrable models and quantum states

    NASA Astrophysics Data System (ADS)

    Pashaev, Oktay K.

    2016-10-01

    From two circle theorem described in terms of q-periodic functions, in the limit q→1 we have derived the strip theorem and the stream function for N vortex problem. For regular N-vortex polygon we find compact expression for the velocity of uniform rotation and show that it represents a nonlinear oscillator. We describe q-dispersive extensions of the linear and nonlinear Schrodinger equations, as well as the q-semiclassical expansions in terms of Bernoulli and Euler polynomials. Different kind of q-analytic functions are introduced, including the pq-analytic and the golden analytic functions.

  1. Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa.

    PubMed

    Chan, R W; Titze, I R

    1999-07-01

    To measure the viscoelastic shear properties of hyaluronic acid, with and without fibronectin, and to compare them with those of the human vocal fold mucosa and other phonosurgical biomaterials. Viscoelastic shear properties of various implantable biomaterials (Teflon, gelatin, collagen, fat, hyaluronic acid, and hyaluronic acid with fibronectin) were measured with a parallel-plate rotational rheometer. Elastic and viscous shear properties were quantified as a function of oscillation frequency (0.01-15 Hz) at 37 degrees C. The shear properties of hyaluronic acid were relatively close to those of human vocal fold mucosal tissues reported previously. Hyaluronic acid at specific concentrations (0.5%-1%), with or without fibronectin, was found to exhibit viscous shear properties (viscous shear modulus and dynamic viscosity) similar to those of the average male and female vocal fold mucosa. According to a theory that establishes the effects of tissue shear properties on vocal fold oscillation, phonation threshold pressure (a measure of the ease of phonation) is directly related to the viscous shear modulus of the vibrating vocal fold mucosa. Therefore, our findings suggest that hyaluronic acid, either by itself or mixed with fibronectin, may be a potentially optimal bioimplant for the surgical management of vocal fold mucosal defects and lamina propria deficiencies (e.g., scarring) from a biomechanical standpoint.

  2. Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Cherentsov, D. A.; Gulyaev, B. A.

    2016-10-01

    The article presents justification for improving vibration protection of pressure gauges used in the oil and gas industry. A mathematical model of manometric tubular spring oscillations in a viscous medium is viewed. By the developed model, the authors have determined the impact of manometric spring geometric characteristics and damping fluid viscosity on oscillation attenuation parameters, as well as provided evaluation of the impact of the cross-sectional shape on the oscillation attenuation rate.

  3. Cut-and-connect of two antiparallel vortex tubes

    NASA Technical Reports Server (NTRS)

    Melander, Mogens V.; Hussain, Fazle

    1988-01-01

    Motivated by an early conjecture that vortex cut-and-connect plays a key role in mixing and production of turbulence, helicity and aerodynamic noise, the cross-linking of two antiparallel viscous vortex tubes via direct numerical simulation is studied. The Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 64 cubed grid points in a periodic domain for initial Reynolds numbers Re up to 1000. The vortex tubes are given an initial sinusoidal perturbation to induce a collision and keep the two tubes pressed against each other as annihilation continues. Cross-sectional and wire plots of various properties depict three stages of evolution: (1) Inviscid induction causing vortex cores to first approach and form a contact zone with a dipole cross-section, and then to flatten and stretch; (2) Vorticity annihilation in the contact zone accompanied by bridging between the two vortices at both ends of the contact zone due to a collection of cross-linked vortex lines, now orthogonal to the initial vortex tubes. The direction of dipole advection in the contact zone reverses; and (3) Threading of the remnants of the original vortices in between the bridges as they pull apart. The crucial stage 2 is shown to be a simple consequence of vorticity annihilation in the contact zone, link-up of the un-annihilated parts of vortex lines, and stretching and advection by the vortex tube swirl of the cross-linked lines, which accumulate at stagnation points in front of the annihilating vortex dipole. It is claimed that bridging is the essence of any vorticity cross-linking and that annihilation is sustained by stretching of the dipole by the bridges. Vortex reconnection details are found to be insensitive to asymmetry. Modeling of the reconnection process is briefly examined. The 3D spatial details of scalar transport (at unity Schmidt number), enstrophy production, dissipation and helicity are also examined.

  4. Vortical Flow Structures in the Near-Wake of a Heaving Airfoil with Passively Actuated Leading and Trailing Flaps.

    NASA Astrophysics Data System (ADS)

    Siala, Firas; Totpal, Alexander; Liburdy, James

    2015-11-01

    The flow physics of flying animals has recently received significant attention, mostly in the context of developing bio-inspired micro air vehicles and oscillating flow energy harvesters. Of particular interest is the understanding of the impact of airfoil flexibility on the flow physics. Research efforts showed that some degree of surface flexibility enhanced the strength and size of the leading edge vortex. In this study, the influence of flexibility on the near-wake dynamics and flow structures is investigated using 2D PIV measurements. The experiments are conducted in a wind tunnel at a Reynolds number of 30,000 and a range of reduced frequencies from 0.09 to 0.2. The flexibility is attained using a torsion rod forming a hinge between the flap and the main wing. Vortex flow structures are visualized using large eddy scale decomposition technique and quantified using swirling strength analysis. It is found that trailing edge flexibility increases the vortex swirling strength compared to a rigid airfoil, whereas leading edge flexibility decreases the swirling strength. Furthermore, the integral length scale determined from the autocorrelation of the velocity fluctuations is found to be approximately equal to the actual vortex size. The vortex convective velocity is shown to be independent of flexibility and oscillation frequency, and it is represented by a trimodal distribution, with peak values at 0.8, 0.95 and 1 times the free stream velocity. Oregon State University.

  5. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  6. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  7. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.

    PubMed

    Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun

    2015-07-16

    Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  9. Vortex Shedding Inside a Baffled Air Duct

    NASA Technical Reports Server (NTRS)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  10. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  11. Flow speed has little impact on propulsive characteristics of oscillating foils

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Wei, N.; Smits, A. J.

    2018-01-01

    Experiments are reported on the performance of a pitching and heaving two-dimensional foil in a water channel in either continuous or intermittent motion. We find that the thrust and power are independent of the mean free-stream velocity for twofold changes in the mean velocity (fourfold in the dynamic pressure) and for oscillations in the velocity up to 38% of the mean, where the oscillations are intended to mimic those of freely swimming motions where the thrust varies during the flapping cycle. We demonstrate that the correct velocity scale is not the flow velocity but the mean velocity of the trailing edge. We also find little or no impact of streamwise velocity change on the wake characteristics such as vortex organization, vortex strength, and time-averaged velocity profile development—the wake is both qualitatively and quantitatively unchanged. Our results suggest that constant velocity studies can be used to make robust conclusions about swimming performance without a need to explore the free-swimming condition.

  12. Progress and supercomputing in computational fluid dynamics; Proceedings of U.S.-Israel Workshop, Jerusalem, Israel, December 1984

    NASA Technical Reports Server (NTRS)

    Murman, E. M. (Editor); Abarbanel, S. S. (Editor)

    1985-01-01

    Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.

  13. Fluids and vortex from constrained fluctuations around C-metric black holes

    NASA Astrophysics Data System (ADS)

    Hao, Xin; Wu, Bin; Zhao, Liu

    2017-08-01

    By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic initial data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary initial hypersurface. Then by perturbing the initial data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the compressible Navier-Stokes equation which describe the momentum transport in non-relativistic viscous fluid on a flat Newtonian space. It turns out that the flat space fluid behaves as a pure vortex and the viscosity to entropy ratio is subjected to the black hole acceleration.

  14. Dissipative soliton vortices and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chefranov, S. G.; Chefranov, A. G.

    2017-10-01

    We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.

  15. A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number

    NASA Astrophysics Data System (ADS)

    Gao, Xi-feng; Xie, Wu-de; Xu, Wan-hai; Bai, Yu-chuan; Zhu, Hai-tao

    2018-04-01

    It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.

  16. Resonant Formation and Control of m-Fold Symmetric V-States

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Shagalov, Arkadi

    2000-10-01

    Magnetized, pure electron plasmas trapped in a Malmberg-Penning trap can be modeled (in the drift approximation) by two-dimensional Euler equations of ideal fluids. The plasma density in this approximation is analogous to vorticity, while the radial electric field potential to the stream function of the fluid velocity field. For instance, electron plasma cylinder aligned with the magnetic field is analogous to a circular vortex patch solution of an ideal fluid. We shall show that by starting in such a circular equilibrium one can drive an m-fold symmetric interface (vortex) waves in two dimensions (V-states, discovered by Deem and Zabusky [1] nearly 20 years ago)into a highly nonlinear excitation by applying a weak external oscillating potential of appropriate symmetry and slowly varying the frequency of these oscillations. The phenomenon is due to autoresonance [2,3] in the system as the excited plasma (vortex) boundary preserves its functional form despite the drive, but self-adjusts the aspect ratio to synchronize with the driving potential oscillations. A similar approach can be used in controlling interface dynamics subject to global constraints in many other fields of physics. Work supported by Israel Science Foundation grant 607-97 and INTAS grant 99-1068. [1] G. Deem and N. Zabusky, Phys. Rev. Lett. 40, 859 (1978). [2] L. Friedland, Phys. Rev. E, 4106 (1999). [3] J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett. 82, 4444 (1999).

  17. Experimental development of a Nusselt correlation for forced reciprocating oscillated vertical annular glycerol flow through a porous domain

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    2017-07-01

    The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.

  18. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  19. Modulation of the Polar Vortex by Energetic Particle Precipitation and Quasi-Biennial Oscillation via Ozone Loss

    NASA Astrophysics Data System (ADS)

    Asikainen, T.; Salminen, A.; Maliniemi, V.; Mursula, K.

    2017-12-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  20. How robust is the Holton-Tan relationship?

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kerzenmacher, Tobias

    2017-04-01

    The Holton-Tan relationship explains a possible link between tropical and extratropical variability (foremost in the northern hemisphere). The idea can be rationalised using simple linear wave theory. The quasi-biennial oscillation in the tropical lower stratosphere can be regarded as a kind of switch that influences the propagation of planetary waves. In a westerly phase of the QBO planetary waves in the stratosphere can propagate more equatorward and the polar vortex remains strong and undisturbed. In an easterly phase of the QBO the propagation is more poleward and the polar vortex is weaker and more disturbed. However, the robustness of this relationship depends on the precise definition of the QBO phase and the criteria used to define the polar vortex strength. Here, we will revisit the basic Holton-Tan relationship and will explore how other factors (including the state of the El Nino-Southern Oscillation) modify the relationship. Using reanalysis data and idealised model experiments a possible range for robust manifestations of the Holton-Tan relationship is determined, thus providing an improved framework for a better understanding of teleconnections between tropical and polar latitudes.

  1. Modulation of the polar vortex by energetic particle precipitation and Quasi-Biennial Oscillation via ozone loss

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Asikainen, Timo; Maliniemi, Ville; Mursula, Kalevi

    2017-04-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  2. Forebody vortex control for suppressing wing rock on a highly-swept wing configuration

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Ayers, Bert; Malcolm, Gerald N.

    1992-01-01

    Free-to-roll tests were conducted in a wind tunnel with a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. A limit cycle oscillation was observed for angles of attack between 22 and 30 deg. In general, the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. Various blowing techniques were evaluated as means of wing rock suppression. Blowing tangentially aft from leeward side nozzles near the forebody tip can damp the roll motion at low blowing rates and stop it completely at higher blowing rates. At the high rates, significant vortex asymmetries are created, causing the model to stop at a non-zero roll angle. Forward blowing and alternating right/left pulsed blowing appear to be more efficient techniques for suppressing wing rock. The oscillations can be damped almost completely at lower blowing coefficients, and, apparently, no major vortex asymmetries are induced. Good agreement is observed between this study and previous water tunnel tests on the same configuration.

  3. Multiple steady solutions in a driven cavity

    NASA Astrophysics Data System (ADS)

    Osman, Kahar; McHugh, John

    2004-11-01

    The symmetric driven cavity (Farias and McHugh, Phys. Fluids, 2002) in two and three dimensions is considered. Results are obtained via numerical computations of the Navier-Stokes equations, assuming constant density. The numerical algorithm is a splitting method, using finite differences. The forcing at the top is sinusoidal, and the forcing wavelength is allowed to vary in subsequent trials. The two dimensional results with 2, 4, and 6 oscillations in the forcing show a subcritical bifurcation to an asymmetric solution, with the Reynolds number as the important parameter. The symmetric solution is found to have vortex flow with streamlines that conform to the boundary shape. The asymmetric solution has vortex flow with streamlines that are approximately circular near the vortex center. Two dimensional results with 8 or more oscillations in the forcing show a supercritical bifurcation to an asymmetric solution. Three dimensional simulations show that the length ratios play a critical role, and the depth of the cavity must be large compared to the height in order to acheive the same subcritical bifurcation as with two dimensions.

  4. A rigorous solution of the Navier-Stokes equations for unsteady viscous flow at high Reynolds numbers around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Aksu, H.; Spehert, T.

    1975-01-01

    A method based on the Navier-Stokes equations was developed for analyzing the unsteady incompressible viscous flow around oscillating airfoils at high Reynolds numbers. The Navier-Stokes equations have been integrated in their classical Helmholtz vorticity transport equation form, and the instantaneous velocity field at each time step was determined by the solution of Poisson's equation. A refined finite element was utilized to allow for a conformable solution of the stream function and its first space derivatives at the element interfaces. A corresponding set of accurate boundary conditions was applied; thus obtaining a rigorous solution for the velocity field. The details of the computational procedure and examples of computed results describing the unsteady flow characteristics around the airfoil are presented.

  5. Spatiotemporal characterization of ultrashort optical vortex pulses

    NASA Astrophysics Data System (ADS)

    Miranda, Miguel; Kotur, Marija; Rudawski, Piotr; Guo, Chen; Harth, Anne; L'Huillier, Anne; Arnold, Cord L.

    2017-12-01

    We use a spiral phase plate to generate few-cycle optical vortices from an ultrafast titanium:sapphire oscillator and characterize them in the spatiotemporal domain with a recently introduced technique based on spatially resolved Fourier transform spectrometry. The performance of this simple approach to the generation of optical vortices is analysed from a wavelength-dependent perspective as well as in the spatiotemporal domain, allowing us to characterize ultrashort vortex pulses in space, frequency and time.

  6. Unsteady Separated Flows: Vorticity and Turbulence.

    DTIC Science & Technology

    1987-04-06

    plate, the results are somewhat different . A vortex initiated before : max is obtained in the oscillation cycle yielded convection velocities not...in flat plate m resulted in a 6.25% advance in the cycle where the leading edge vortex was initiated; a value close to that measured using the NACA...three-dimensional model we have used to initiate the three- dimensional study of unsteady flows is a symmetric airfoil (NACA 0015) section fitted witL, a

  7. Cyclone–anticyclone vortex asymmetry mechanism and linear Ekman friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefranov, S. G., E-mail: schefranov@mail.ru

    2016-04-15

    Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω{sub 0} over some threshold value determined by the fluid eigenfrequency ω (i.e., ω{sub 0} > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid abovemore » a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω{sub 0}.« less

  8. Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids

    NASA Astrophysics Data System (ADS)

    Tallapragada, P.; Kelly, S. D.

    2015-11-01

    Diverse mechanisms for animal locomotion in fluids rely on vortex shedding to generate propulsive forces. This is a complex phenomenon that depends essentially on fluid viscosity, but its influence can be modeled in an inviscid setting by introducing localized velocity constraints to systems comprising solid bodies interacting with ideal fluids. In the present paper, we invoke an unsteady version of the Kutta condition from inviscid airfoil theory and a more primitive stagnation condition to model vortex shedding from a geometrically contrasting pair of free planar bodies representing idealizations of swimming animals or robotic vehicles. We demonstrate with simulations that these constraints are sufficient to enable both bodies to propel themselves with very limited actuation. The solitary actuator in each case is a momentum wheel internal to the body, underscoring the symmetry-breaking role played by vortex shedding in converting periodic variations in a generic swimmer's angular momentum to forward locomotion. The velocity constraints are imposed discretely in time, resulting in the shedding of discrete vortices; we observe the roll-up of these vortices into distinctive wake structures observed in viscous models and physical experiments.

  9. A combined analytical and numerical analysis of the flow-acoustic coupling in a cavity-pipe system

    NASA Astrophysics Data System (ADS)

    Langthjem, Mikael A.; Nakano, Masami

    2018-05-01

    The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.

  10. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  11. Radial Mixing in Turbomachines.

    DTIC Science & Technology

    1988-02-01

    boundary layers. In a different approach (see 2.7), the flow is considered as a superposition of (1) a main inviscid primary flow, and (ii) viscous boundary...considered as the ’ primary flow’. The secondary flow due to an eventual non-free vortex behaviour is next computed from passage averaged vorticity and...continuity equations. The obtained velocities are superposed on the primary flow and therefore affect the subsequent steps. The end-wall boundary

  12. Destabilization of a viscous film flowing down in the form of a vertical cylindrical curtain.

    PubMed

    Pirat, Christophe; Mathis, Christian; Mishra, Manoranjan; Maïssa, Philippe

    2006-11-03

    In this Letter, we study experimentally a viscous liquid curtain in an annular geometry. Gap and median radius can be varied in such a way that the base of the initially stationary cylindrical curtain is led to oscillate by decreasing the flow rate. Standing and traveling waves in the plane of the annulus are observed and a nontrivial expression linking pulsation to flow rate per surface unit and viscosity can be defined.

  13. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  14. Investigation of Periodic Pitching through the Static Stall Angle of Attack.

    DTIC Science & Technology

    1987-03-01

    been completed to characterize and predict the dynamic stall process. In 1968 Ham (Ref 11) completed a study to explain the torsional oscillation of...peak values of l.:t and moment could be predicted accurately, but the model did not predict when the peaks would occur. Another problem with the...model was that it required input from experimental results to tell when leading edge vortex separation occurred. The prediction of when vortex shedding

  15. Calculation of viscous effects on transonic flow for oscillating airfoils and comparisons with experiment

    NASA Technical Reports Server (NTRS)

    Howlett, James T.; Bland, Samuel R.

    1987-01-01

    A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.

  16. Reynolds number influence on the formation of vortical structures on a pitching flat plate.

    PubMed

    Widmann, Alexander; Tropea, Cameron

    2017-02-06

    The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.

  17. Ancrage des vortex dans les supraconducteurs Description phénoménologique de la réponse linéaire d'un de vortex ancré

    NASA Astrophysics Data System (ADS)

    Lütke-Entrup, N.; Plaçais, B.; Mathieu, P.; Simon, Y.

    Vortices pinning in supraconductors In this article we report on the investigation of the dynamics of vortices based on the high frequency linear response. We present a serie of measurements of the complex penetration depth in the mixed state in a variety of samples, including conventional materials (Nb, V, PbIn), the non-conventional heavy fermion UPt3, and the high-T_c cuprate YBaCuO. We have explored a large frequency range (1 kHz 10 MHz) so as to cover the cross-over from the quasi-static response, which is dominated by elastic interactions between vortices and sample defects, to the high-frequency regime, which is governed by viscous damping due to vortex friction against the host crystal. For a quantitative description of the frequency spectrum we start from a phenomenological theory which makes a rigorous distinction between vortex lines, along a vortex field omega, and magnetic field lines B. It predicts a second electrodynamical mode, which is linked to the vortex line tension and has a rather short range. We show that, in the limit of small vortex oscillations, amplitude and phase of the linear response are governed by an additional boundary condition for the vortex lattice at the sample surface ; it takes the form of a slipping condition with a characteristic length that depends on the surface roughness. The frequency spectrum deduced from this mechanism is clearly different from the Campbell spectrum, which is the common signature of all bulk pinning mechanisms. Our results on samples of PbIn, Nb, V, and YBaCuO entirely confirm our model, including some non-intuitive size effects which appear at low frequency when the sample becomes transparent to the flux flow mode. However, our measurements in the B and C phases of UPt3 reveal and important contribution of the bulk to the vortex pinning. Ce travail porte sur l'étude de l'ancrage des vortex par la réponse linéaire haute fréquence. Nous présentons une série de mesures de la profondeur de pénétration complexe dans l'état mixte sur une variété d'échantillons qui va des supraconducteurs classiques (Nb, V, PbIn), aux composés de fermions lourds non-conventionnels (UPt3), en passant par les cuprates à haute température critique (YBaCuO). La large gamme des fréquences explorées (1 kHz 10 MHz) permet de couvrir le changement de régime entre la réponse quasistatique dominée par l'interaction élastique des vortex avec les défauts, et la réponse haute fréquence amortie par la friction visqueuse du réseau de vortex au cristal ionique. Pour décrire quantitativement le spectre de fréquence, nous nous appuyons sur une théorie phénoménologique qui fait une distinction explicite et rigoureuse entre lignes de vortex, décrites par un champ omega, et lignes de champ magnétique B. On prédit ainsi l'existence d'un second mode électrodynamique, évanescent et de courte portée, lié à la tension de ligne des vortex. On montre que la réponse aux petits mouvements, amplitude et phase, est réglée par une condition limite supplémentaire sur le réseau de vortex à la surface ; elle prend la forme d'une condition de glissement avec une longueur phénoménologique contrôlée par la rugosité de l'échantillon. Le spectre de fréquence associé à ce mécanisme se distingue nettement du spectre de Campbell, générique des modèles d'ancrage en volume. Nos mesures sur des échantillons PbIn, Nb, V et YBaCuO confirment entièrement notre modèle, y compris des effets de taille peu intuitifs qui se produisent à basse fréquence quand l'échantillon devient transparent au mode flux flow. En revanche, l'étude des vortex dans les phases B et C d'UPt3 montre une contribution importante du volume à l'ancrage des vortex.

  18. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    PubMed

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  19. Vortex shedding from obstacles: theoretical frequency prediction

    NASA Astrophysics Data System (ADS)

    Pier, Benoît

    2001-11-01

    The existence of self-sustained oscillations in spatially developing systems is closely related to the presence of a locally absolutely unstable region. A recent investigation of a ``synthetic wake'' (a wake with no solid obstacle and no reverse flow region) has proved [Pier and Huerre, J. Fluid Mech. 435, 145 (2001)] that the observed Kármán vortex street is a nonlinear elephant global mode. The same criterion is now shown to hold for real obstacles. Local properties are derived from the unperturbed basic flow computed by enforcing a symmetry condition on the central line. Application of the theoretical criterion then yields the expected Strouhal vortex shedding frequency. The thus predicted frequency is in excellent agreement with direct numerical simulations of the complete flow. The use of the frequency selection mechanism to control the vortex shedding will also be discussed.

  20. The Arctic Vortex in March 2011: A Dynamical Perspective

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  1. Scaling laws and vortex profiles in two-dimensional decaying turbulence.

    PubMed

    Laval, J P; Chavanis, P H; Dubrulle, B; Sire, C

    2001-06-01

    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevale et al., Phys. Rev. Lett. 66, 2735 (1991), and it is observed that viscous effects spoil this scaling regime. The exponent controlling the decay of the number of vortices shows some trends toward xi=1, in agreement with a recent theory based on the Kirchhoff model [C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000)]. In terms of scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribution.

  2. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S’/S superconducting weak links

    PubMed Central

    Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.

    2016-01-01

    Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137

  3. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  4. On the electron vortex beam wavefunction within a crystal.

    PubMed

    Mendis, B G

    2015-10-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  6. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  7. Flux splitting algorithms for two-dimensional viscous flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Liou, Meng-Sing

    1989-01-01

    The Roe flux difference splitting method was extended to treat 2-D viscous flows with nonequilibrium chemistry. The derivations have avoided unnecessary assumptions or approximations. For spatial discretization, the second-order Roe upwind differencing is used for the convective terms and central differencing for the viscous terms. An upwind-based TVD scheme is applied to eliminate oscillations and obtain a sharp representation of discontinuities. A two-state Runge-Kutta method is used to time integrate the discretized Navier-Stokes and species transport equations for the asymptotic steady solutions. The present method is then applied to two types of flows: the shock wave/boundary layer interaction problems and the jet in cross flows.

  8. Flux splitting algorithms for two-dimensional viscous flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Liou, Meng-Sing

    1989-01-01

    The Roe flux-difference splitting method has been extended to treat two-dimensional viscous flows with nonequilibrium chemistry. The derivations have avoided unnecessary assumptions or approximations. For spatial discretization, the second-order Roe upwind differencing is used for the convective terms and central differencing for the viscous terms. An upwind-based TVD scheme is applied to eliminate oscillations and obtain a sharp representation of discontinuities. A two-stage Runge-Kutta method is used to time integrate the discretized Navier-Stokes and species transport equations for the asymptotic steady solutions. The present method is then applied to two types of flows: the shock wave/boundary layer interaction problems and the jet in cross flows.

  9. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  10. Navier-Stokes solutions of unsteady separation induced by a vortex: Comparison with theory and influence of a moving wall

    NASA Astrophysics Data System (ADS)

    Obabko, Aleksandr Vladimirovich

    Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.

  11. Helical solutions of the bidirectional vortex in a cylindrical cyclone: Beltramian and Trkalian motions

    NASA Astrophysics Data System (ADS)

    Majdalani, Joseph

    2012-10-01

    In this work, two families of helical motions are investigated as prospective candidates for describing the bidirectional vortex field in a right-cylindrical chamber. These basic solutions are relevant to cyclone separators and to idealized representations of vortex-fired liquid and hybrid rocket engines in which bidirectional vortex motion is established. To begin, the bulk fluid motion is taken to be isentropic along streamlines, with no concern for reactions, heat transfer, viscosity, compressibility or unsteadiness. Then using the Bragg-Hawthorne equation for steady, inviscid, axisymmetric motion, two families of Euler solutions are derived. Among the characteristics of the newly developed solutions one may note the axial dependence of the swirl velocity, the Trkalian and Beltramian types of the helical motions, the sensitivity of the solutions to the outlet radius, the alternate locations of the mantle, and the increased axial and radial velocity magnitudes, including the rate of mass transfer across the mantle, for which explicit approximations are obtained. Our results are compared to an existing, complex lamellar model of the bidirectional vortex in which the swirl velocity reduces to a free vortex. In this vein, we find the strictly Beltramian flows to share virtually identical pressure variations and radial pressure gradients with those associated with the complex lamellar motion. Furthermore, both families warrant an asymptotic treatment to overcome their endpoint limitations caused by their omission of viscous stresses. From a broader perspective, the work delineates a logical framework through which self-similar, axisymmetric solutions to bidirectional and multidirectional vortex motions may be pursued. It also illustrates the manner through which different formulations may be arrived at depending on the types of wall boundary conditions. For example, both the slip condition at the sidewall and the inlet flow pattern at the headwall may be enforced or relaxed.

  12. High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow

    NASA Astrophysics Data System (ADS)

    Savel'ev, A. D.

    2018-02-01

    On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.

  13. Investigation of Student Reasoning about Harmonic Motions

    NASA Astrophysics Data System (ADS)

    Tongnopparat, N.; Poonyawatpornkul, J.; Wattanakasiwich, P.

    This study aimed to investigate student reasoning about harmonic oscillations. We conducted a semi-structured interview based on three situations of harmonic motions—(1) a mass attaching to spring and horizontally oscillating without damping, (2) the same situation but vertically oscillating and (3) a mass attaching to spring and oscillating in viscous liquid. Forty-five second-year students taking a vibrations and wave course at Chiang Mai University, Thailand participated in a fifteen-minute interview, which was video-recorded. The videos were transcribed and analyzed by three physics instructors. As results, we found that most students had misconceptions about angular frequency and energy mostly in the second and third situations.

  14. A hydromagnetic vortex seen by ISEE-1 and 2

    NASA Technical Reports Server (NTRS)

    Saunders, M. A.; Southwood, D. J.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    Magnetometer and plasma data from the dual ISEE spacecraft are combined in a study of the initial plasma vortex event reported by Hones et al. (1978) in the dawn plasma sheet. The event is a transient hydromagnetic wave of two cycles duration with a six minute period. Large amplitude compressional and transverse magnetic components were present. Particle and magnetic pressure oscillations were in strict antiphase, but did not balance. When combined with the plasma velocity data these properties show that substantial Earthward field-aligned flows of electromagnetic energy and heat flux occurred during the vortex. The net energy flow perpendicular to B was in the antisolar direction. This event possesses hydromagnetic features unique to a hot plasma environment.

  15. Computational Investigation of a Pitch Oscillating Canard on Lift Enhancement and Tip Vortex Mitigation

    DTIC Science & Technology

    2017-04-01

    dimensional canard and computational domain ..........................4 Fig. 3 Prescribed dynamic ramp motion for the 2-D airfoil at k2 = 0.5 (a) and...airfoil as a function of equivalent mean angle of attack, unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b...filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 1.0 (c–d), M∞ = 0.5 .....10 Fig. 6 Lift coefficient of dynamic canard

  16. Magnetization reversal in circular vortex dots of small radius.

    PubMed

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  17. Injection dynamics of gelled propellants

    NASA Astrophysics Data System (ADS)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow, unsteady and asymmetric flow structures are revealed as a series of vortices generated from the unstable vena contracta. Here, flows are characterized by an orifice design, manifold/core injection velocity ratio, Reynolds number and rheology. A significant decrease of discharge coefficients is noted with increasing the manifold flow. As the manifold crossflow increases, stronger friction losses are exerted on the leeward, and lead to larger hydraulic losses across the injector. In addition, calculations show that discharge coefficients decrease and the unsteadiness is mitigated as the viscosity increases by fluid rheology variations. A larger and more distinct horseshoe vortex is observed, and pulsation magnitude and viscosity fluctuations are mitigated with increasing viscosity. The oscillation frequency, however, remains unchanged even though the viscosity curves at the high shear rate are modified. All these observations confirm the conclusion that the role of viscous damping and flow resistance is more critical in cross-fed injection conditions than in axially-fed one.

  18. Generation of Hermite-Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser.

    PubMed

    Kong, Weipeng; Sugita, Atsushi; Taira, Takunori

    2012-07-01

    We have demonstrated high-order Hermite-Gaussian (HG) mode generation based on 2D gain distribution control edge-pumped, composite all-ceramic Yb:YAG/YAG microchip lasers using a V-type cavity. Several hundred milliwatts to several watts HG(mn) modes are achieved. We also generated different kinds of vortex arrays directly from the oscillator with the same power level. In addition, a more than 7 W doughnut-shape mode can be generated in the same cavity.

  19. Nonlinear vortex dynamics in open nonequilibrium systems with bulk mass loss and a generation mechanism for tornadoes and typhoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.u

    2010-06-15

    Based on a general model of nonlinear vortex dynamics in open thermodynamically nonequilibrium systems with bulk or surface mass losses, an analysis is presented of the mechanism of generation of violent atmospheric vortices (tornadoes, typhoons, cyclones) associated with the formation of deep cloud systems by intense condensation of water vapor from moist air cooled below the dew point. Simple particular solutions to the Navier-Stokes equations are found that describe both axisymmetric and nonaxisymmetric incompressible vortex motions involving radial and vertical flows with viscous dissipation vanishing identically everywhere except for a thin shear layer at the boundary of the condensation region.more » It is shown that the nonlinear convective and local Coriolis forces generated by radial inflow in the presence of a background vorticity due to a global Coriolis force (the Earth's rotation) accelerate the solid-body rotation in the vortex core either exponentially or in a nonlinear regime of finite-time blow-up. Due to updrafts, such a vortex is characterized by a strong helicity. This mechanism explains a number of observed properties and characteristics of the structure and evolution of tornadoes and typhoons. Upper estimates are found for the kinetic energies of violent atmospheric vortices. It is shown that increase in rotational kinetic energy of atmospheric vortices with constant vortex-core radii is consistent with energy and momentum conservation, because radial inflow continually supplies the required amount of rotational kinetic energy drawn from the ambient atmosphere to an open system.« less

  20. Effect of slotted exit orifice on performance of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-03-01

    This study experimentally investigates the influence of exit orifice shape on the performance characteristics of a three-electrode plasma synthetic jet actuator. High-speed Schlieren imaging system and phase-locked two-component PIV measurements are used for flowfield characterisation in quiescent conditions. Two actuator configurations with the same exit area but different exit orifice shape (round orifice and slot orifice) are studied. Results indicate a close correspondence between the shapes of the starting vortex ring with the shapes of the respective exit orifices. For the slot orifice, the elongated starting vortex ring gradually expands during propagation, while its ends become warped. A distinct K-H instability structure is observed, inducing continuous oscillation of the high-speed jet. Compared with the jet from the round orifice, the slot jet has a higher entrainment rate of surrounding air, thus resulting in a lower propagation velocity of the jet front. The exit velocity of PSJA within one period initially shows a rapid increase, then persists at a relatively high level (100-130 m/s), and finally drops with some small-scale oscillations. The oscillation amplitude is less than 10 m/s, and the oscillation period is approximately 600 µs. Under conditions of same exit area, orifice shape has little influence on the variation of the exit velocity.

  1. Dynamics of coherent flow structures of a pulsating unsteady glottal jet in human phonation.

    NASA Astrophysics Data System (ADS)

    Neubauer, Juergen; Miraghaie, Reza; Berry, David

    2004-11-01

    The primary sound source for human voice is oscillation of the vocal folds in the larynx. Phonation is the self-sustained oscillation of the viscoelastic vocal fold tissue driven by the air flow from the lung. It is due to the flow-induced Hopf instability of the biomechanical-aerodynamic system of vocal folds coupled to the aeroacoustic driving air flow. The aim of this study is to provide insight to the aero-acoustic part of the primary sound source of human voice. A physical rubber model of vocal folds with air flow conditions typical for human phonation was used. This model exhibits self-sustained oscillations similar to those in human phonation. The oscillating physical model can be regarded as a dynamic slit-like orifice that discharges a pulsating unsteady jet. A left-right flapping of the glottal jet axis was detected using hotwire anemometer measurements of the unsteady glottal jet. Flow visualization experiments revealed the detachment of the glottal jet from the physical model folds during the accelerating and decelerating phase of the jet pulsation. Roll-up of large-scale vortex rings as well as secondary vortex shedding in the form of Von Karman street due to shear layer instability were found downstream of the physical model.

  2. Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: Monitoring flips between reaction and textural softening and hardening

    NASA Astrophysics Data System (ADS)

    Wintsch, Robert P.; Yeh, Meng-Wan

    2013-03-01

    Microstructures associated with cataclasites and mylonites in the Red River shear zone in the Diancang Shan block, Yunnan Province, China show evidence for both reaction hardening and softening at lower greenschist facies metamorphic conditions. The earliest fault-rocks derived from Triassic porphyritic orthogneiss protoliths are cataclasites. Brittle fractures and crushed grains are cemented by newly precipitated quartz. These cataclasites are subsequently overprinted by mylonitic fabrics. Truncations and embayments of relic feldspars and biotites show that these protolith minerals have been dissolved and incompletely replaced by muscovite, chlorite, and quartz. Both K-feldspar and plagioclase porphyroclasts are truncated by muscovite alone, suggesting locally metasomatic reactions of the form: 3K-feldspar + 2H+ = muscovite + 6SiO2(aq) + 2K+. Such reactions produce muscovite folia and fish, and quartz bands and ribbons. Muscovite and quartz are much weaker than the reactant feldspars and these reactions result in reaction softening. Moreover, the muscovite tends to align in contiguous bands that constitute textural softening. These mineral and textural modifications occurred at constant temperature and drove the transition from brittle to viscous deformation and the shift in deformation mechanism from cataclasis to dissolution-precipitation and reaction creep. These mylonitic rocks so produced are cut by K-feldspar veins that interrupt the mylonitic fabric. The veins add K-feldspar to the assemblage and these structures constitute both reaction and textural hardening. Finally these veins are boudinaged by continued viscous deformation in the mylonitic matrix, thus defining a late ductile strain event. Together these overprinting textures and microstructures demonstrate several oscillations between brittle and viscous deformation, all at lower greenschist facies conditions where only frictional behavior is predicted by experiments. The overlap of the depths of greenschist facies conditions with the base of the crustal seismic zone suggests that the implied oscillations in strain rate may have been related to the earthquake cycle.

  3. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  4. Visualization of vortex flow field around a flat plate with noncircular hole

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.

    2018-02-01

    In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.

  5. A Mathematical Proof of the Vortex Shedding Mechanism

    NASA Astrophysics Data System (ADS)

    Boghosian, Michael; Cassel, Kevin

    2015-11-01

    A novel mechanism leading to vortex splitting and subsequent shedding that is valid for both inviscid or viscous flows and external, internal, or wall-bounded flows is described. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Previous simulations of various flows have demonstrated the VSM numerically. Here, we present a mathematical proof of the VSM that is shown to be both a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The proof includes relating the positive divergence of the net force, condition (2) above, with the second invariant of the velocity gradient tensor, i.e. the Q-criterion. It is shown that the Q-criterion is identical to the determinant of the Hessian matrix for the streamfunction. As a result, the second-partial-derivative test on this Hessian matrix can provide a qualitative description on the behavior of the streamfunction, and thus vortices or recirculation regions, near critical points. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  6. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    NASA Astrophysics Data System (ADS)

    Menshawy, S.; Jenkins, A. S.; Merazzo, K. J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ebels, U.; Bortolotti, P.; Kermorvant, J.; Cros, V.

    2017-05-01

    Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf) detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs). In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  7. Dynamics of levitated objects in acoustic vortex fields.

    PubMed

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  8. Vortex knots in tangled quantum eigenfunctions

    PubMed Central

    Taylor, Alexander J.; Dennis, Mark R.

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801

  9. Transonic Navier-Stokes computations of strake-generated vortex interactions for a fighter-like configuration

    NASA Technical Reports Server (NTRS)

    Reznick, Steve

    1988-01-01

    Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.

  10. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  11. Helicity conservation by flow across scales in reconnecting vortex links and knots

    PubMed Central

    Scheeler, Martin W.; Kleckner, Dustin; Kindlmann, Gordon L.; Irvine, William T. M.

    2014-01-01

    The conjecture that helicity (or knottedness) is a fundamental conserved quantity has a rich history in fluid mechanics, but the nature of this conservation in the presence of dissipation has proven difficult to resolve. Making use of recent advances, we create vortex knots and links in viscous fluids and simulated superfluids and track their geometry through topology-changing reconnections. We find that the reassociation of vortex lines through a reconnection enables the transfer of helicity from links and knots to helical coils. This process is remarkably efficient, owing to the antiparallel orientation spontaneously adopted by the reconnecting vortices. Using a new method for quantifying the spatial helicity spectrum, we find that the reconnection process can be viewed as transferring helicity between scales, rather than dissipating it. We also infer the presence of geometric deformations that convert helical coils into even smaller scale twist, where it may ultimately be dissipated. Our results suggest that helicity conservation plays an important role in fluids and related fields, even in the presence of dissipation. PMID:25326419

  12. Unsteady viscous effects in the flow over an oscillating surface. [mathematical model

    NASA Technical Reports Server (NTRS)

    Lerner, J. I.

    1972-01-01

    A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.

  13. Third-order accurate conservative method on unstructured meshes for gasdynamic simulations

    NASA Astrophysics Data System (ADS)

    Shirobokov, D. A.

    2017-04-01

    A third-order accurate finite-volume method on unstructured meshes is proposed for solving viscous gasdynamic problems. The method is described as applied to the advection equation. The accuracy of the method is verified by computing the evolution of a vortex on meshes of various degrees of detail with variously shaped cells. Additionally, unsteady flows around a cylinder and a symmetric airfoil are computed. The numerical results are presented in the form of plots and tables.

  14. A Study of the Flow Structure of Tip Vortices on a Hydrofoil

    DTIC Science & Technology

    1986-11-28

    as measured from the flow visualization imager. . . 0 . . . 61 III.10 The vertical location of the tip vortex center as measured from the flow...pressure gra- dients of opposite sign exist on both sides of an airfoil . These gradients induce an inward lateral flow on the suc- tion side and an...And most recently, Cebeci et al. (1986) developed a viscous/inviscid interaction method to calculate the flow around airfoils , emphasizing the

  15. Air Force Academy Aeronautics Digest - Fall/Winter 1980.

    DTIC Science & Technology

    1981-05-01

    Crandall # _2EXAMINING A RULE OF THUMB FOR THE RELATION BETWEEN CAMBER AND 21 ZERO -LIFT ANGLE OF ATTACK,S----E.J. Jumper / EXPERIMENTAL AERODYNAMIC...slow- ing the fluid velocity to zero without loss. Static pressure is the pressure exerted on an aerodynamic surface parallel to the free stream...it is zero at the vor- tex center. Figure 2 shows the velocity distribution of a vortex with a viscous core 0. rt r Figure 2. Fluid Velocity Versus

  16. The Production of Turbulence in Boundary Layers -- The Role of Microscale Coherent Motions.

    DTIC Science & Technology

    1987-06-01

    unstable and it breaks up as it moves away from the wall. The wall layer must be thin and vortex stretching, due to inviscid image effects, dominate...how a Typical eddy ultimately creates the long streaks is not clear. It is entirely possible that the viscous image of the rolled up vorticity forms...clarified, especially the formation of the long streaky structure, and secondary hairpin vorticity. It appears that the outer region microscale coherent

  17. Nonlinear Dynamics of Multi-Component Bose-Einstein Condensates ---Anti-Gravity Transport and Vortex Chaos---

    NASA Astrophysics Data System (ADS)

    Nakamura, K.

    Bose-Einstein condensate(BEC) provides a nice stage when the nonlinearSchrödinger equation plays a vital role. We study the dynamics of multi-component repulsive BEC in 2 dimensions with harmonic traps by using the nonlinear Schrödinger (or Gross-Pitaevskii) equation. Firstly we consider a driven two-component BEC with each component trapped in different vertical positions. The appropriate tuning of the oscillation frequency of the magnetic field leads to a striking anti-gravity transport of BEC. This phenomenon is a manifestation of macroscopic non-adiabatic tunneling in a system with two internal(electronic) degrees of freedom. The dynamics splits into a fast complex spatio-temporal oscillation of each condensate wavefunctions together with a slow levitation of the total center of mass. Secondly, we examine the three-component repulsive BEC in 2 dimensions in a harmonic trap in the absence of magnetic field, and construct a model of conservative chaos based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three vortex cores, which represents three charged particles under the uniform magnetic field with the repulsive inter-particle potential quadratic in the inter-vortex distance r_{ij} on short scale and logarithmic in r_{ij} on large scale. The vortices here acquire the inertia in marked contrast to the standard theory of point vortices since Onsager. We then explore ``the chaos in the three-body problem" in the context of vortices with inertia.

  18. DNS, Enstrophy Balance, and the Dissipation Equation in a Separated Turbulent Channel Flow

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Rubinstein, Robert; Rumsey, Christopher L.

    2013-01-01

    The turbulent flows through a plane channel and a channel with a constriction (2-D hill) are numerically simulated using DNS and RANS calculations. The Navier-Stokes equations in the DNS are solved using a higher order kinetic energy preserving central schemes and a fifth order accurate upwind biased WENO scheme for the space discretization. RANS calculations are performed using the NASA code CFL3D with the komega SST two-equation model and a full Reynolds stress model. Using DNS, the magnitudes of different terms that appear in the enstrophy equation are evaluated. The results show that the dissipation and the diffusion terms reach large values at the wall. All the vortex stretching terms have similar magnitudes within the buffer region. Beyond that the triple correlation among the vorticity and strain rate fluctuations becomes the important kinematic term in the enstrophy equation. This term is balanced by the viscous dissipation. In the separated flow, the triple correlation term and the viscous dissipation term peak locally and balance each other near the separated shear layer region. These findings concur with the analysis of Tennekes and Lumley, confirming that the energy transfer terms associated with the small-scale dissipation and the fluctuations of the vortex stretching essentially cancel each other, leaving an equation for the dissipation that is governed by the large-scale motion.

  19. On the nonlinear development of the most unstable Goertler vortex mode

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip

    1991-01-01

    The nonlinear development of the most unstable Gortler vortex mode in boundary layer flows over curved walls is investigated. The most unstable Gortler mode is confined to a viscous wall layer of thickness O(G -1/5) and has spanwise wavelength O(G 11/5); it is, of course, most relevant to flow situations where the Gortler number G is much greater than 1. The nonlinear equations covering the evolution of this mode over an O(G -3/5) streamwise lengthscale are derived and are found to be of a fully nonparallel nature. The solution of these equations is achieved by making use of the numerical scheme used by Hall (1988) for the numerical solution of the nonlinear Gortler equations valid for O(1) Gortler numbers. Thus, the spanwise dependence of the flow is described by a Fourier expansion, whereas the streamwise and normal variations of the flow are dealt with by employing a suitable finite difference discretization of the governing equations. Our calculations demonstrate that, given a suitable initial disturbance, after a brief interval of decay, the energy in all the higher harmonics grows until a singularity is encountered at some downstream position. The structure of the flowfield as this singularity is approached suggests that the singularity is responsible for the vortices, which are initially confined to the thin viscous wall layer, moving away from the wall and into the core of the boundary layer.

  20. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  1. Numerical Simulation of the ``Fluid Mechanical Sewing Machine''

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2011-11-01

    A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.

  2. Handedness helps homing in swimming and flying animals.

    PubMed

    Bandyopadhyay, Promode R; Leinhos, Henry A; Hellum, Aren M

    2013-01-01

    Swimming and flying animals rely on their ability to home on mobile targets. In some fish, physiological handedness and homing correlate, and dolphins exhibit handedness in their listening response. Here, we explore theoretically whether the actuators, sensors, and controllers in these animals follow similar laws of self-regulation, and how handedness affects homing. We find that the acoustic sensor (combined hydrophone-accelerometer) response maps are similar to fin force maps-modeled by Stuart-Landau oscillators-allowing localization by transitional vortex-propelled animals. The planar trajectories of bats in a room filled with obstacles are approximately reproduced by the states of a pair of strong and weak olivo-cerebellar oscillators. The stereoscopy of handedness reduces ambiguity near a mobile target, resulting in accelerated homing compared to even-handedness. Our results demonstrate how vortex-propelled animals may be localizing each other and circumventing obstacles in changing environments. Handedness could be useful in time-critical robot-assisted rescues in hazardous environments.

  3. Quasi-Biennial Oscillation and Solar Cycle Influences over the Winter Arctic Simulated by the WACCM4 Model

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Limpasuvan, T. L.; Limpasuvan, V.; Tung, K. K.; Yung, Y. L.

    2017-12-01

    Observations show that the quasi-biennial oscillation (QBO) and the 11-year solar cycle perturb the polar vortex via planetary wave convergence at high latitudes, a mechanism first proposed by Holton and Tan in 1980. Their perturbations lead to increases of stratospheric sudden warming events, and hence observable increases in temperature and ozone abundance in the polar vortex, during the easterly phase of QBO and the solar maximum. Here we simulate the changes in the polar atmosphere using the Whole Atmosphere Community Climate Model 4 (WACCM4) with the prescribed QBO and 11-year solar cycle forcing. The simulation is diagnosed in four groups: westerly QBO phase and solar minimum, westerly QBO phase and solar maximum, easterly QBO phase and solar minimum, and easterly QBO phase and solar maximum. The simulated changes in temperature and ozone are compared with satellite observations.

  4. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  5. A numerical study of the laminar necklace vortex system and its effect on the wake for a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2012-07-01

    Large eddy simulation (LES) is used to investigate the structure of the laminar horseshoe vortex (HV) system and the dynamics of the necklace vortices as they fold around the base of a circular cylinder mounted on the flat bed of an open channel for Reynolds numbers defined with the cylinder diameter, D, smaller than 4460. The study concentrates on the analysis of the structure of the HV system in the periodic breakaway sub-regime, which is characterized by the formation of three main necklace vortices. Over one oscillation cycle of the previously observed breakaway sub-regime, the corner vortex and the primary vortex merge (amalgamate) and a developing vortex separates from the incoming laminar boundary layer (BL) to become the new primary vortex. Results show that while the classical breakaway sub-regime, in which one amalgamation event occurs per oscillation cycle, is present when the nondimensional displacement thickness of the incoming BL at the location of the cylinder is relatively large (δ*/D > 0.1), a new type of breakaway sub-regime is present for low values of δ*/D. This sub-regime, which we call the double-breakaway sub-regime, is characterized by the occurrence of two amalgamation events over one full oscillation cycle. LES results show that when the HV system is in one of the breakaway sub-regimes, the interactions between the highly coherent necklace vortices and the eddies shed inside the separated shear layers (SSLs) are very strong. For the relatively shallow flow conditions considered in this study (H/D ≅ 1, H is the channel depth), at times, the disturbances induced by the legs of the necklace vortices do not allow the SSLs on the two sides of the cylinder to interact in a way that allows the vorticity redistribution mechanism to lead to the formation of a new wake roller. As a result, the shedding of large-scale rollers in the turbulent wake is suppressed for relatively large periods of time. Simulation results show that the wake structure changes randomly between time intervals when large-scale rollers are forming and are convected in the wake (von Karman regime), and time intervals when the rollers do not form. When the wake is in the von Karman regime, the shedding frequency of the rollers is close to that observed for flow past infinitely long cylinders.

  6. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid

    PubMed Central

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M.; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M.; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H.; Sanvitto, Daniele

    2015-01-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings. PMID:26665174

  7. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  8. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  9. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    PubMed

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  10. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  11. A Cold Jovian Arctic Polar Vortex: Evidence from Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fisher, B. M.; Baines, K. H.; Momary, T.; Fox, O.

    2002-12-01

    A prominent cold arctic airmass in Jupiter is revealed by thermal images taken at NASA's Infrared Telescope Facility (IRTF) during Jupiter's northern summer in 1999. This cold airmass is well defined by a sharp 4-degree thermal gradient in both the stratosphere and the upper troposphere and tropopause regions. The latitude boundary of the cold airmass oscillates in longitude with principal wavenumber 5--6. This longitudinal oscillation is coincident with the oscillation of the boundary of the thick polar hood that is detectable in reflected sunlight that is sensitive to particles around Jupiter's tropopause (~100 mbar pressure), using IRTF 2.3-μm and HST WFPC2 890-nm images. The sinusoidal boundaries slowly rotate prograde with respect to the interior. The proximity and similarity of the thermal and particle boundaries suggests that the phenomenon is a classical polar vortex of the same type as seen in the Earth's antarctic. Testing of possible gaseous entrainment within the vortex' area would verify or refute similarities with polar vortices in the Earth, Venus, Mars and possibly Titan. This phenomenon is relevant to studies of terrestrial meteorology by measuring the extent to which stratospheric phenomena can drive tropospheric properties. Detailed studies of Jupiter's polar regions might be most easily accomplished from appropriate remote sensing instrumentation on a polar orbiter mission as a result of optimized spatial resolution. The work reported here was supported by funds from NASA to the Jet Propulsion Laboratory, California Institute of Technology. Ori Fox was supported by the Undergraduate Student Researcher Program (USRP).

  12. Mathematical modeling of vortex induced vibrations of an elastic rod under air flow influence

    NASA Astrophysics Data System (ADS)

    Pogudalina, S. V.; Fedorova, N. N.

    2018-03-01

    The results of simulations of the oscillations of an elastic rod placed normally to the external air flow and rigidly fixed on a substrate are presented. The computations were carried out in ANSYS using the technology of two-way fluid-structure interaction (2FSI). Calculations of the problem were performed for various flow velocities, geometric parameters and properties of the rod material. The frequencies, amplitudes and shapes of vortex induced vibration were studied including those that are close to the lock-in mode.

  13. Vortex-induced vibration for an isolated circular cylinder under the wake interference of an oscillating airfoil: Part II. Single degree of freedom

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; Ji, L. C.; Hu, X.

    2017-04-01

    The vortex-induced vibration behind an isolated cylinder under the wake interference of an oscillating airfoil at different oscillating frequencies and amplitudes have been studied numerically. Our previous research [11] mainly focused on the two degree of freedom vibration problem, several types of the phase portraits of the displacement have been newly found, including the "half -8″ and "cone-net" types as reduced velocity increases. At present, we have continued the research to the single degree of freedom vibration, the corresponding results had been found that under the wake of the free steady flow, as the reduced velocity increases, the phase portraits displacements of the single degree of freedom vibrating cylinder will begin to rotate counterclockwise from the first and third quadrants to the second and fourth quadrants in a Cartesian coordinate system. Under the wake of the oscillating airfoil, the single bending curve and the single closed orbit (double "8-shape" like) of the displacements are newly found in the drag and thrust producing cases respectively. Except this, the two triplets of vortices have also been newly found in the pair and single plus pair wakes at each cycle. The vorticity dynamics behind the vibrating cylinder together with the corresponding force variations have also been obtained computationally and analyzed in details.

  14. Aerodynamic studies of the beam bridge

    NASA Astrophysics Data System (ADS)

    Salenko, S. D.; Obukhovskiy, A. D.; Gosteev, Yu. A.

    2017-10-01

    The paper investigates the aeroelastic oscillations in the wind flow of the span structure (SS) of the beam bridge at the stage of mounting. Experiments with the SS sectional model and numerical calculations showed that at the stage of mounting the structure can be subject to two types of aeroelastic vibrations: vortex induced vibration and galloping. The main contribution to the excitation of oscillations is made by the section of the SS without cantilever plates. For this section site, the dominant frequency of the vortex shedding corresponds to the Strouhal number Sh≈0,067. In the process of wind tunnel simulation of dynamically similar model, its bending vibrations with an amplitude of about 1.5 m were observed in terms of the full-scale conditions, and the zones of wind resonance and galloping were closed. The ambiguity of the effect on the SS aeroelastic oscillations of the flow sideslip angle is found. To eliminate the aeroelastic vibrations which are a characteristic of this SS, several variants of dampers in the form of deflectors and flat step plate were investigated. As a result of optimization of the damper parameters, the amplitude of the aeroelastic oscillations of the full-scale SS has been reduced to values less than ˜ 0.1 m in the entire range of possible wind speeds up to 24 m/s at all stages of mounting.

  15. Acoustic Methods Remove Bubbles From Liquids

    NASA Technical Reports Server (NTRS)

    Trinh, E.; Elleman, D. D.; Wang, T. G.

    1983-01-01

    Two acoustic methods applied to molten glass or other viscous liquids to remove bubbles. Bubbles are either absorbed or brought to surface by applying high-intensity Sonic field at resonant frequency. Sonic oscillation increases surface area of bubbles and causes them to dissipate.

  16. Self-oscillations of a two-dimensional shear flow with forcing and dissipation

    NASA Astrophysics Data System (ADS)

    López Zazueta, A.; Zavala Sansón, L.

    2018-04-01

    Two-dimensional shear flows continuously forced in the presence of dissipative effects are studied by means of numerical simulations. In contrast with most previous studies, the forcing is confined in a finite region, so the behavior of the system is characterized by the long-term evolution of the global kinetic energy. We consider regimes with 1 < Reλ << Re, where Reλ is the Reynolds number associated with an external friction (such as bottom friction in quasi-two-dimensional flows), and Re is the traditional Reynolds number associated with Laplacian viscosity. Depending on Reλ, the flow may develop Kelvin-Helmholtz instabilities that exhibit either regular or irregular oscillations. The results are discussed in two parts. First, the flow is limited to develop only one vortical instability by choosing an appropriate width of the forcing band. The most relevant regime is found for Reλ > 36, in which the energy maintains a regular oscillation around a reference value. The flow configuration is an elliptical vortex tilted with respect to the forcing axis, which oscillates steadily also. Second, the flow is allowed to develop two Kelvin-Helmholtz billows and eventually more complicated structures. The regimes of the one-vortex case are observed again, except for Reλ > 135. At these values, the energy oscillates chaotically as the two vortices merge, form dipolar structures, and split again, with irregular periodicity. The self-oscillations are explained as a result of the alternate competition between forcing and dissipation, which is verified by calculating the budget terms in the energy equation. The relevance of the forcing-vs.-dissipation competition is discussed for more general flow systems.

  17. Efficient swimming of a plunging elastic plate in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Alexeev, Alexander

    2014-03-01

    We use three dimensional computer simulations to examine the combined hydrodynamics and structural response of a plunging elastic plate submerged in a viscous fluid with Reynolds number of 250. The plate is actuated at the root with a prescribed vertical sinusoidal displacement and a zero slope (clamped) boundary condition. We explore the steady state swimming velocity and the associated input power as a function of driving frequency, added mass, and aspect ratio. We find a universal bending pattern independent of geometry and added mass that maximizes the distance traveled per unit applied work. This bending pattern is associated with minimizing center of mass oscillations normal to the direction of travel. Subsequently, the flow around the sides of the swimmer, which does not aid in propulsion, is minimized, thereby reducing viscous losses.

  18. Relaxation Oscillations in the Nearly Inviscid Faraday System

    NASA Astrophysics Data System (ADS)

    Knobloch, Edgar; Higuera, Maria

    2004-11-01

    The amplitude equations for nearly inviscid Faraday waves couple to a streaming flow driven by oscillatory viscous boundary layers at the rigid walls and the free surface produced by the waves. This flow is driven most efficiently by mixed mode oscillations created in secondary bifurcations from standing waves, and these occur at small amplitude in containers that are almost symmetric.(M. Higuera, J.M. Vega and E. Knobloch. J. Nonlin. Sci. 12, 505, 2002.) Among the new dynamical behavior that results are relaxation oscillations involving abrupt transitions between standing and mixed mode oscillations. Such oscillations are present both in almost circular and in almost square containers. The origin of these oscillations will be explained and the results related to experiments.(F. Simonelli and J. P. Gollub, J. Fluid Mech. 199, 471, 1989.)footnote[3]Z.C. Feng and P.R. Sethna, J. Fluid Mech. 199, 495, 1989.

  19. Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional navier-stokes equations and Newton's laws of motion

    PubMed

    Carling; Williams; Bowtell

    1998-12-01

    Anguilliform swimming has been investigated by using a computational model combining the dynamics of both the creature's movement and the two-dimensional fluid flow of the surrounding water. The model creature is self-propelled; it follows a path determined by the forces acting upon it, as generated by its prescribed changing shape. The numerical solution has been obtained by applying coordinate transformations and then using finite difference methods. Results are presented showing the flow around the creature as it accelerates from rest in an enclosed tank. The kinematics and dynamics associated with the creature's centre of mass are also shown. For a particular set of body shape parameters, the final mean swimming speed is found to be 0.77 times the speed of the backward-travelling wave. The corresponding movement amplitude envelope is shown. The magnitude of oscillation in the net forward force has been shown to be approximately twice that in the lateral force. The importance of allowing for acceleration and deceleration of the creature's body (rather than imposing a constant swimming speed) has been demonstrated. The calculations of rotational movement of the body and the associated moment of forces about the centre of mass have also been included in the model. The important role of viscous forces along and around the creature's body and in the growth and dissolution of the vortex structures has been illustrated.

  20. Inter- and intraplane softening of the vortex structure in Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ: a two-step transition

    NASA Astrophysics Data System (ADS)

    Yazyi, J.; Arribére, A.; Durán, C.; de la Cruz, F.; Mitzi, D. B.; Kapitulnik, A.

    1991-12-01

    High Q mechanical oscillator and AC susceptibility techniques have been used to study vortex dynamics in high quality single crystals of Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ over a wide range of magnetic fields and different relative orientations between the magnetic field and the crystalline c-axis. Our results confirm the existence of two transitions in the vortex response. We show that the transition at lower temperatures is associated to currents flowing across the Cu-O planes and the other one to currents in the planes. This means that the reversible region of the phase diagram is reached in two steps when increasing temperature.

  1. Formation of vortex wakes at flow separation from plate

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.; Govorova, A. I.

    2017-05-01

    The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.

  2. Comparison between firing tests and numerical simulation of vortex shedding in a 2-D test solid motor

    NASA Astrophysics Data System (ADS)

    Lupoglazoff, N.; Vuillot, F.

    Some comparisons between firing tests and numerical simulations of vortex shedding via a simple test case called 'C1experimental' are presented. These experiments are performed to validate further numerical simulations, as well as to serve as a tool for facilitating interpretation. At ignition time, spectra of pressure are more complex: it is the effect of vortex pairings. For 6.5-mm burnt, the second longitudinal mode dominates. For 8-mm burnt, the first longitudinal mode dominates. For 11.5-mm burnt, there is only the first longitudinal mode, with a slight shift of the frequency value. Tables are presented which give the pressure oscillation amplitudes of 'C1experimental' with operating pressures, and these amplitudes relative to the corresponding operating pressure.

  3. On the basically single-type excitation source of resonance in the wind tunnel and in the hydroturbine channel of a hydraulic power plant

    NASA Astrophysics Data System (ADS)

    Karavosov, R. K.; Prozorov, A. G.

    2012-01-01

    We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.

  4. Phase locking of vortex cores in two coupled magnetic nanopillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. Thismore » work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.« less

  5. On the Hydrogranular Dynamics of Magmatic Gravity Currents

    NASA Astrophysics Data System (ADS)

    McIntire, M. Z.; Bergantz, G. W.; Schleicher, J.; Burgisser, A.

    2016-12-01

    Magmatic processes are generally governed by multi-phase interactions of silicate liquid, crystals, and bubbles. However, the modes of dissipation and the manner that stress is transmitted are poorly understood. We use a model of a simple but widely applicable gravity current as a means to exemplify the hydrogranular dynamics in crystal-rich magmas. Viscous and lubrication forces are of special interest because they have a dual role in dispersal and mixing in a crystal-rich gravity current. For example, lubrication forces provide an initial apparent yield strength by inducing a negative pore pressure as crystals move apart. However, once the gravity current is underway, lubrication forces reduce the dissipation due to collision and frictional contact.The gravity current is initiated by a combination of toppling and sliding along a well-defined granular fault. This produces three distinct regimes: a quasi-static base, an overlying particle hump that translates in a quasi-plastic fashion by grain-passing and rolling until the angle of repose is reached, and a viscous particle current. The current initially forms a leading vortex at the head, but the loss of crystals by sedimentation-assisted granular capture by an upward growing particle front drains energy from the flow. The vortex is soon abandoned, but persists in the reservoir as a fossil feature of orphaned crystals in a smear of previous intercumulate fluid. The kinetic energy of the most active crystals decays in a dual fashion, initially linearly, then parabolically with a near symmetrical increase and loss of kinetic energy.There is very little entrainment and mixing between intercumulate and reservoir fluids from magmatic gravity currents. Only a thin seam of reservoir melt is captured by the base of the flow as it descends across the floor. Hence magmatic gravity currents, while producing modest amounts of crystal sorting, are not effective agents of mixing as lubrication and viscous forces inhibit interpenetration of reservoir fluid.

  6. A New Dark Vortex

    NASA Astrophysics Data System (ADS)

    Wong, Michael

    2015-10-01

    A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.

  7. Experimental study of vortex breakdown in a cylindrical, swirling flow

    NASA Technical Reports Server (NTRS)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  8. Calculation of three dimensional viscous flows in annular cascades using parabolized Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Lawerenz, M.

    Numerical algorithms for describing the endwall boundary layers and secondary flows in high turning turbine cascades are described. Partially-parabolic methods which cover three-dimensional viscous flow effects are outlined. Introduction of tip-clearance models and modifications of no-slip conditions without the use of wall functions expand the range of application and improve accuracy. Simultaneous computation of the profile boundary layers by refinement of the mesh size in the circumferential direction makes it possible to describe the boundary layer interaction in the corners formed by the bladings and the endwalls. The partially-parabolic method means that the streamwise elliptic coupling is well represented by the given pressure field and that separation does not occur, but it is not possible to describe the separation of the endwall boundary layer near the leading edge and the horse-shoe vortex there properly.

  9. Helical vortices: viscous dynamics and instability

    NASA Astrophysics Data System (ADS)

    Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team

    2014-11-01

    Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.

  10. Status and prospects of computational fluid dynamics for unsteady transonic viscous flows

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.; Kutler, P.; Bridgeman, J. O.

    1984-01-01

    Applications of computational aerodynamics to aeronautical research, design, and analysis have increased rapidly over the past decade, and these applications offer significant benefits to aeroelasticians. The past developments are traced by means of a number of specific examples, and the trends are projected over the next several years. The crucial factors that limit the present capabilities for unsteady analyses are identified; they include computer speed and memory, algorithm and solution methods, grid generation, turbulence modeling, vortex modeling, data processing, and coupling of the aerodynamic and structural dynamic analyses. The prospects for overcoming these limitations are presented, and many improvements appear to be readily attainable. If so, a complete and reliable numerical simulation of the unsteady, transonic viscous flow around a realistic fighter aircraft configuration could become possible within the next decade. The possibilities of using artificial intelligence concepts to hasten the achievement of this goal are also discussed.

  11. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  12. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  13. Coupling temporal and spatial gradient information in high-density unstructured Lagrangian measurements

    NASA Astrophysics Data System (ADS)

    Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.

    2017-10-01

    Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.

  14. On the failure of the quasicylindrical approximation and the connection to vortex breakdown in turbulent swirling flow

    NASA Astrophysics Data System (ADS)

    Gyllenram, W.; Nilsson, H.; Davidson, L.

    2007-04-01

    This paper analyzes the properties of viscous swirling flow in a pipe. The analysis is based on the time-averaged quasicylindrical Navier-Stokes equations and is applicable to steady, unsteady, and turbulent swirling flow. A method is developed to determine the critical level of swirl (vortex breakdown) for an arbitrary vortex. The method can also be used for an estimation of the radial velocity profile if the other components are given or measured along a single radial line. The quasicylindrical equations are rearranged to yield a single ordinary differential equation for the radial distribution of the radial velocity component. The equation is singular for certain levels of swirl. It is shown that the lowest swirl level at which the equation is singular corresponds exactly to the sufficient condition for axisymmetric vortex breakdown as derived by Wang and Rusak [J. Fluid Mech. 340, 177 (1997)] and Rusak et al. [AIAA J. 36, 1848 (1998)]. In narrow regions around the critical levels of swirl, the solution violates the quasicylindrical assumptions and the flow must undergo a drastic change of structure. The critical swirl level is determined by the sign change of the smallest eigenvalue of the discrete linear operator which relates the radial velocities to effects of viscosity and turbulence. It is shown that neither viscosity nor turbulence directly alters the critical level of swirl.

  15. Helical vortices: Quasiequilibrium states and their time evolution

    NASA Astrophysics Data System (ADS)

    Selçuk, Can; Delbende, Ivan; Rossi, Maurice

    2017-08-01

    The time evolution of a viscous helical vortex is investigated by direct numerical simulations of the Navier-Stokes equations where helical symmetry is enforced. Using conservation laws in the framework of helical symmetry, we elaborate an initial condition consisting in a finite core vortex, the time evolution of which leads to a generic quasiequilibrium state independent of the initial core size. Numerical results at different helical pitch values provide an accurate characterization in time for such helical states, for which specific techniques have been introduced: helix radius, angular velocity, stream function-velocity-vorticity relationships, and core properties (size, self-similarity, and ellipticity). Viscosity is shown to be at the origin of a small helical velocity component, which we relate to the helical vorticity component. Finally, changes in time of the flow topology are studied using the helical stream function and three-dimensional Lagrangian orbits.

  16. High-performance sailboat hydrofoil optimization using vortex lattice methods, and the effects of free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Meneghello, Gianluca; Beyhaghi, Pooriya; Bewley, Thomas

    2016-11-01

    The identification of an optimized hydrofoil shape depends on an accurate characterization of both its geometry and the incoming, turbulent, free-stream flow. We analyze this dependence using the computationally inexpensive vortex lattice model implemented in AVL, coupled with the recently developed global, derivative-free optimization algorithm implemented in Δ - DOGS . Particular attention will be given to the effect of the free-stream turbulence level - as modeled by a change in the viscous drag coefficients - on the optimized values of the parameters describing the three dimensional shape of the foil. Because the simplicity of AVL, when contrasted with more complex and computationally expensive LES or RANS models, may cast doubts on its usefulness, its validity and limitations will be discussed by comparison with water tank measurement, and again taking into account the effect of the uncertainty in the free-stream characterization.

  17. Evolution of Lamb Vector as a Vortex Breaking into Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Lu, X. Y.

    1996-11-01

    In an incompressible flow, either laminar or turbulent, the Lamb vector is solely responsible to nonlinear interactions. While its longitudinal part is balanced by stagnation enthalpy, its transverse part is the unique source (as an external forcing in spectral space) that causes the flow to evolve. Moreover, in Reynolds-averaged flows the turbulent force can be derived exclusively from the Lamb vector instead of the full Reynolds stress tensor. Therefore, studying the evolution of the Lamb vector itself (both longitudinal and transverse parts) is of great interest. We have numerically examined this problem, taking the nonlinear distabilization of a viscous vortex as an example. In the later stage of this evolution we introduced a forcing to keep a statistically steady state, and observed the Lamb vector behavior in the resulting fine turbulence. The result is presented in both physical and spectral spaces.

  18. Unsteady, Transonic Flow Around Delta Wings Undergoing Coupled and Natural Modes Response: A Multidisciplinary Problem

    NASA Technical Reports Server (NTRS)

    Menzies, Margaret Anne

    1996-01-01

    The unsteady, three-dimensional Navier-Stokes equations coupled with the Euler equations of rigid-body dynamics are sequentially solved to simulate and analyze the aerodynamic response of a high angle of attack delta wing undergoing oscillatory motion. The governing equations of fluid flow and dynamics of the multidisciplinary problem are solved using a time-accurate solution of the laminar, unsteady, compressible, full Navier- Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The primary model under consideration consists of a 65 deg swept, sharp-edged, cropped delta wing of zero thickness at 20 deg angle of attack. In a freestream of Mach 0.85 and Reynolds number of 3.23 x 10(exp 6), the flow over the upper surface of the wing develops a complex shock system which interacts with the leading-edge primary vortices producing vortex breakdown. The effect of the oscillatory motion of the wing on the vortex breakdown and overall aerodynamic response is detailed to provide insight to the complicated physics associated with unsteady flows and the phenomenon of wing rock. Forced sinusoidal single and coupled mode rolling and pitching motion is presented for the wing in a transonic freestream. The Reynolds number, frequency of oscillation, and the phase angle are varied. Comparison between the single and coupled mode forced rolling and pitching oscillation cases illustrate the effects of coupling the motion. This investigation shows that even when coupled, forced rolling oscillation at a reduced frequency of 2(pi) eliminates the vortex breakdown which results in an increase in lift. The coupling effect for in phase forced oscillations show that the lift coefficient of the pitching-alone case and the rolling-moment coefficient of the rolling-alone case dominate the resulting response. However, with a phase lead in the pitching motion, the coupled motion results in a non-periodic response of the rolling moment. The second class of problems involve releasing the wing in roll to respond to the flowfield. Two models of sharp-edged delta wings, the previous 65 deg swept model and an 80 deg swept, sharp-edged delta wing, are used to observe the aerodynamic response of a wing free to roll in a transonic and subsonic freestream, respectively. These cases demonstrate damped oscillations, self-sustained limit cycle oscillations, and divergent rolling oscillations. Ultimately, an active control model using a mass injection system was applied on the surface of the wing to suppress the self-sustained limit cycle oscillation known as wing rock. Comparisons with experimental investigations complete this study, validating the analysis and illustrating the complex details afforded by computational investigations.

  19. Stability and nonlinear adjustment of vortices in Keplerian flows

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Tevzadze, A.; Chagelishvili, G.; Mignone, A.; Rossi, P.; Ferrari, A.

    2007-11-01

    Aims:We investigate the stability, nonlinear development and equilibrium structure of vortices in a background shearing Keplerian flow Methods: We make use of high-resolution global two-dimensional compressible hydrodynamic simulations. We introduce the concept of nonlinear adjustment to describe the transition of unbalanced vortical fields to a long-lived configuration. Results: We discuss the conditions under which vortical perturbations evolve into long-lived persistent structures and we describe the properties of these equilibrium vortices. The properties of equilibrium vortices appear to be independent from the initial conditions and depend only on the local disk parameters. In particular we find that the ratio of the vortex size to the local disk scale height increases with the decrease of the sound speed, reaching values well above the unity. The process of spiral density wave generation by the vortex, discussed in our previous work, appear to maintain its efficiency also at nonlinear amplitudes and we observe the formation of spiral shocks attached to the vortex. The shocks may have important consequences on the long term vortex evolution and possibly on the global disk dynamics. Conclusions: Our study strengthens the arguments in favor of anticyclonic vortices as the candidates for the promotion of planetary formation. Hydrodynamic shocks that are an intrinsic property of persistent vortices in compressible Keplerian flows are an important contributor to the overall balance. These shocks support vortices against viscous dissipation by generating local potential vorticity and should be responsible for the eventual fate of the persistent anticyclonic vortices. Numerical codes have be able to resolve shock waves to describe the vortex dynamics correctly.

  20. The effects of micro-vortex generators on normal shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Herges, Thomas G.

    Shock wave/boundary-layer interactions (SWBLIs) are complex flow phenomena that are important in the design and performance of internal supersonic and transonic flow fields such as engine inlets. This investigation was undertaken to study the effects of passive flow control devices on normal shock wave/boundary layer interactions in an effort to gain insight into the physics that govern these complex interactions. The work concentrates on analyzing the effects of vortex generators (VGs) as a flow control method by contributing a greater understanding of the flowfield generated by these devices and characterizing their effects on the SWBLI. The vortex generators are utilized with the goal of improving boundary layer health (i.e., reducing/increasing the boundary-layer incompressible shape factor/skin friction coefficient) through a SWBLI, increasing pressure recovery, and reducing flow distortion at the aerodynamic interface plane while adding minimal drag to the system. The investigation encompasses experiments in both small-scale and large-scale inlet testing, allowing multiple test beds for improving the characterization and understanding of vortex generators. Small-scale facility experiments implemented instantaneous schlieren photography, surface oil-flow visualization, pressure-sensitive paint, and particle image velocimetry to characterize the effects of an array of microramps on a normal shock wave/boundary-layer interaction. These diagnostics measured the time-averaged and instantaneous flow organization in the vicinity of the microramps and SWBLI. The results reveal that a microramp produces a complex vortex structure in its wake with two primary counter-rotating vortices surrounded by a train of Kelvin- Helmholtz (K-H) vortices. A streamwise velocity deficit is observed in the region of the primary vortices in addition to an induced upwash/downwash which persists through the normal shock with reduced strength. The microramp flow control also increased the spanwise-averaged skin-friction coefficient and reduced the spanwise-averaged incompressible shape factor, thereby improving the health of the boundary layer. The velocity in the near-wall region appears to be the best indicator of microramp effectiveness at controlling SWBLIs. Continued analysis of additional micro-vortex generator designs in the small-scale facility revealed reduced separation within a subsonic diffuser downstream of the normal shock wave/boundary layer interaction. The resulting attached flow within the diffuser from the micro-vortex generator control devices reduces shock wave position and pressure RMS fluctuations within the diffuser along with increased pressure recovery through the shock and at the entrance of the diffuser. The largest effect was observed by the micro-vortex generators that produce the strongest streamwise vortices. High-speed pressure measurements also indicated that the vortex generators shift the energy of the pressure fluctuations to higher frequencies. Implementation of micro-vortex generators into a large-scale, supersonic, axisymmetric, relaxed-compression inlet have been investigated with the use of a unique and novel flow-visualization measurement system designed and successfully used for the analysis of both upstream micro-VGs (MVGs) and downstream VGs utilizing surface oil-flow visualization and pressure-sensitive paint measurements. The inlet centerbody and downstream diffuser vortex-generator regions were imaged during wind-tunnel testing internally through the inlet cowl with the diagnostic system attached to the cowl. Surface-flow visualization revealed separated regions along the inlet centerbody for large mass-flow rates without vortex generators. Upstream vortex generators did reduce separation in the subsonic diffuser, and a unique perspective of the flowfield produced by the downstream vortex generators was obtained. In addition, pressure distributions on the inlet centerbody and vortex generators were measured with pressure-sensitive paint. At low mass-flow ratios the onset of buzz occurs in the large-scale low-boom inlet. Inlet buzz and how it is affected by vortex generators was characterized using shock tracking through high-speed schlieren imaging and pressure fluctuation measurements. The analysis revealed a dominant low frequency oscillation at 21.0 Hz for the single-stream inlet, corresponding with the duration of one buzz cycle. Pressure oscillations prior to the onset of buzz were not detected, leaving the location where the shock wave triggers large separation on the compression spike as the best indicator for the onset of buzz. The driving mechanism for a buzz cycle has been confirmed as the rate of depressurization and repressurization of the inlet as the buzz cycle fluctuates between an effectively unstarted (blocked) inlet and supercritical operation (choked flow), respectively. High-frequency shock position oscillations/pulsations (spike buzz) were also observed throughout portions of the inlet buzz cycle. The primary effect of the VGs was to trigger buzz at a higher mass-flow ratio.

  1. Numerical assessment of pulsating water jet in the conical diffusers

    NASA Astrophysics Data System (ADS)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  2. Vortex Dynamics of Asymmetric Heave Plates

    NASA Astrophysics Data System (ADS)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  3. Sedimentation and fluttering of a cylinder in a confined liquid

    NASA Astrophysics Data System (ADS)

    D'Angelo, Maria Veronica; Cachile, Mario; Hulin, Jean-Pierre; Auradou, Harold

    2017-10-01

    The sedimentation and fluttering (angular oscillation of the axis) of straight cylinders are studied in a viscous fluid at rest filling a vertical Hele-Shaw cell for different density contrasts ρs-ρf and fluid viscosities μf and for two cylinder densities ρs and diameters D . The influence of confinement in the cell is studied by comparing the present results to those of the literature for nonconfined fluids. While the confinement and the cylinder length L both influence strongly the mean sedimentation velocity Vs, the characteristics of the fluttering instability are much more similar in the confined and nonconfined cases. While the drag coefficient is nearly constant in a nonconfined fluid, it is larger here and depends both on L (due to flow blockage) and on the Reynolds number ReD=VsD ρf/μf ; the inertial and viscous drag components have equal magnitudes for ReD≃40 . For fluttering, instead, the key parameter is the Froude number Fr=Vs/Vg [Vg=√{(ρs-ρf) g L /ρf }] , and the fluttering oscillations vanish below Fr˜0.07 for all cylinders and fluids investigated. Above this threshold, the angular amplitude increases with Fr up to a plateau value, while that of the horizontal oscillations is, at first, very large and then decreases; both amplitudes are reduced when the viscous drag is dominant, but, if inertial drag is dominant, all data points follow a common trend. For all fluids and cylinders, too, the fluttering frequency varies as f =0.102 Vg/L . These features of fluttering are generally qualitatively similar to those reported in nonconfined fluids, but this instability is observable down to lower ReD values (≃24 instead of ˜200 ).

  4. Coupling of the quasi-biennial oscillation and the extratropical circulation in the stratosphere through planetary wave transport

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Donal; Salby, Murry L.

    1990-01-01

    The effects of tropical winds on the extratropical circulation are examined using calculations of eddy transport with tropical flow that is representative of the easterly and westerly phases of the quasi-biennial oscillation (QBO). A dependence of extratropical circulation on tropical winds and the QBO is shown to originate in planetary wave transport. Also, the effects of low latitude flow on high latitude circulation and the behavior of the vortex in opposite phases of the QBO are examined.

  5. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  6. Viscous versus inviscid exact coherent states in high Reynolds number wall flows

    NASA Astrophysics Data System (ADS)

    Montemuro, Brandon; Klewicki, Joe; White, Chris; Chini, Greg

    2017-11-01

    Streamwise-averaged motions consisting of streamwise-oriented streaks and vortices are key components of exact coherent states (ECS) arising in incompressible wall-bounded shear flows. These invariant solutions are believed to provide a scaffold in phase space for the turbulent dynamics realized at large Reynolds number Re . Nevertheless, many ECS, including upper-branch states, have a large- Re asymptotic structure in which the effective Reynolds number governing the streak and roll dynamics is order unity. Although these viscous ECS very likely play a role in the dynamics of the near-wall region, they cannot be relevant to the inertial layer, where the leading-order mean dynamics are known to be inviscid. In particular, viscous ECS cannot account for the observed regions of quasi-uniform streamwise momentum and interlaced internal shear layers (or `vortical fissures') within the inertial layer. In this work, a large- Re asymptotic analysis is performed to extend the existing self-sustaining-process/vortex-wave-interaction theory to account for largely inviscid ECS. The analysis highlights feedback mechanisms between the fissures and uniform momentum zones that can enable their self-sustenance at extreme Reynolds number. NSF CBET Award 1437851.

  7. Dynamics and control of hydrofoil wakes

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Morten; Wosnik, Martin; Arndt, Roger

    2008-11-01

    The problem of rotor-stator interaction (RSI) is an issue within the field of turbomachinery. The flow field entering the rotor cascade will depend on the stator blade to blade velocity distributions, and the viscous wake trailing cascade blades. This flow field is also dependent on the mode of operation, e.g by changing the angle of each blade in hydroturbines. Manipulating the stator viscous wakes is one method to minimize the problems associated RSI; i.e. noise and vibration. In order to explore this concept, a comprehensive experimental program was carried out in a high-speed water tunnel utilizing a series of NACA 0015 hydrofoils. Baseline wake data were collected with a hydraulically smooth foil and compared with two foils modified with two sizes of vortex generators (VG) positioned close to the leading edge of the foil. Not only was the effect of the modifications on wake spreading investigated but also the effect on wake dynamics such as vortex shedding was studied. A high frame-rate PIV system was used at recording rates of 1 and 10 kHz to map the near wake region, extending roughly 1 chord-length downstream the trailing edge, over a range of angles of attack and velocities. The results show that wake dynamics and wake characteristics, i.e. velocity deficit and width, scale with average drag. It was demonstrated that the use of VGs can improve both the dynamics and spreading characteristics of the wake.

  8. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  9. A Novel Approach for Reducing Rotor Tip-Clearance Induced Noise in Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Li, Fei; Choudhari, Meelan

    2001-01-01

    Rotor tip-clearance induced noise, both in the form of rotor self noise and rotor-stator interaction noise , constitutes a significant component of total fan noise. Innovative yet cost effective techniques to suppress rotor-generated noise are, therefore, of foremost importance for improving the noise signature of turbofan engines. To that end, the feasibility of a passive porous treatment strategy to positively modify the tip-clearance flow field is addressed. The present study is focused on accurate viscous flow calculations of the baseline and the treated rotor flow fields. Detailed comparison between the computed baseline solution and experimental measurements shows excellent agreement. Tip-vortex structure, trajectory, strength, and other relevant aerodynamic quantities are extracted from the computed database. Extensive comparison between the untreated and treated tip-clearance flow fields is performed. The effectiveness of the porous treatment for altering the rotor-tip vortex flow field in general and reducing the intensity of the tip vortex, in particular, is demonstrated. In addition, the simulated flow field for the treated tip clearly shows that substantial reduction in the intensity of both the shear layer roll-up and boundary layer separation on the wall is achieved.

  10. Numerical simulation of separated flows. Ph.D. Thesis - Stanford Univ., Calif.

    NASA Technical Reports Server (NTRS)

    Spalart, P. R.; Leonard, A.; Baganoff, D.

    1983-01-01

    A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced.

  11. Capillary descent.

    PubMed

    Delannoy, Joachim; de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2018-05-31

    A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.

  12. Unsteady translational motion of a slip sphere in a viscous fluid using the fractional Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Ashmawy, E. A.

    2017-03-01

    In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.

  13. From viscous to elastic sheets: Dynamics of smectic freely floating films

    NASA Astrophysics Data System (ADS)

    Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf

    2015-03-01

    Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.

  14. Water-tunnel experiments on an oscillating airfoil at RE equals 21,000

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Carr, L. W.

    1978-01-01

    Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to: (1) create a conveniently striated and well preserved set of inviscid flow markers; and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall. Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge, while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices.

  15. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    NASA Astrophysics Data System (ADS)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow component. The steady part can be an important contributor to wave steepening, a mechanism that is often observed during the onset of acoustic instability.

  16. Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)

    DTIC Science & Technology

    2009-11-01

    flow patterns for a) experiments of Mitchell et. al ., b) grid G9A4 fully 15-12 turbulent, c) grid G9A4 laminar to turbulent transition at 30% root...tourbillonnaires et en particulier les tourbillons de bord d’attaque subissent une désorganisation soudaine connue sous le nom de rupture du vortex. Ce...attack in the range of –10° to 36°, an amplitude of 5° to 26° and an oscillation frequency of 0.2 to 1.5 Hz. 8) TPI Test Case De Luca et al . tested a

  17. Analysis of vortex shedding by 2-D numerical simulation for a solid rocket motor and calculations of the nonstationary thrust

    NASA Astrophysics Data System (ADS)

    Lupoglazoff, N.; Vuillot, F.

    Periodic vortex shedding (VS) has been studied by 2-D numerical simulation for the C1 test case in the framework of the ASSM program concerning the stability of the Ariane-5 P230 solid rocket motor. The Flandro method is found to be unsuitable for the type of configuration considered here. The acoustic frequency of VS is a function of the configuration. Calculations of nonstationary thrust indicate that there is no direct relationship between the pressure oscillation amplitudes and the thrust. Secondary injection is found to have a stabilizing effect.

  18. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    NASA Astrophysics Data System (ADS)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the model results with experiments conducted in a owing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources.

  19. Flow Behavior in Side-View Plane of Pitching Delta Wing

    NASA Astrophysics Data System (ADS)

    Pektas, Mehmet Can; Tasci, Mehmet Oguz; Karasu, Ilyas; Sahin, Besir; Akilli, Huseyin

    2018-06-01

    In the present investigation, a delta wing which has 70° sweep angle, Λ was oscillated on its midcord according to the equation of α(t)=αm+α0sin(ωet). This study focused on understanding the effect of pitching and characterizing the interaction of vortex breakdown with oscillating leading edges under different yaw angles, β over a slender delta wing. The value of mean angle of attack, αm was taken as 25°. The yaw angle, β was varied with an interval of 4° over the range of 0°≤β≤ 16°. The delta wing was sinusoidally pitched within the range of period of time 5s≤Te≤60s and reduced frequency was set as K=0.16, 0.25, 0.49, 1.96 and lastly amplitude of pitching motion was arranged as α0=±5°.Formations and locations of vortex breakdown were investigated by using the dye visualization technique in side view plane.

  20. Flow around circular cylinder oscillating at low Keulegan-Carpenter number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunahara, Shunji; Kinoshita, Takeshi

    1994-12-31

    This paper shows experimental results of hydrodynamic forces acting on a vertical circular cylinder oscillating sinusoidally at low frequencies in the still water and results of the flow visualization, to examine the flow around a circular cylinder, particularly the lift forces at low Keulegan-Carpenter number Kc. The instability of streaked flow of which section is mushroom shape is observed by flow visualization, and the flows are asymmetrical in some cases. The asymmetrical streaked flow may have a close relationship to the lift force at low Kc, Kc {le} 4 or 5. Asymmetrical mushroom vortex ring is visible for Kc {le}more » 1. The mushroom vortex ring is symmetrical, or the streaks of the rings arrange themselves alternately for 1 {le} Kc {le} 1.5. A clear ring of mushroom vortices is not formed due to diffusion of dye sheets, though a flow streaked with mushroom vortices is visible for 1.5 {le} Kc {le} 2.5 and for Kc {ge} 2.5 the flow is almost turbulent.« less

  1. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  2. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits

    NASA Astrophysics Data System (ADS)

    Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.

    2017-05-01

    Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.

  3. Description, Usage, and Validation of the MVL-15 Modified Vortex Lattice Analysis Capability

    NASA Technical Reports Server (NTRS)

    Ozoroski, Thomas A.

    2015-01-01

    MVL-15 is the most recent version of the Modified Vortex-Lattice (MVL) code developed within the Aerodynamics Systems Analysis Branch (ASAB) at NASA LaRC. The term "modified" refers to the primary modification of the core vortex-lattice methodology: inclusion of viscous aerodynamics tables that are linked to the linear solution via iterative processes. The inclusion of the viscous aerodynamics inherently converts the MVL-15 from a purely analytic linearized method to a semi-empirical blend which retains the rapid execution speed of the linearized method while empirically characterizing the section aerodynamics at all spanwise lattice points. The modification provides a means to assess non-linear effects on lift that occur at angles of attack near stall, and provides a means to determine the drag associated with the application of design strategies for lift augmentation such as the use of flaps or blowing. The MVL-15 code is applicable to the analyses of aircraft aerodynamics during cruise, but it is most advantageously applied to the analysis of aircraft operating in various high-lift configurations. The MVL methodology has been previously conceived and implemented; the initial concept version was delivered to the ASAB in 2001 (van Dam, C.), subsequently revised (Gelhausen, P. and Ozoroski, T. 2002 / AVID Inc., Gelhausen, P., and Roberts, M. 2004), and then overhauled (Ozoroski, T., Hahn, A. 2008). The latest version, MVL-15 has been refined to provide analysis transparency and enhanced to meet the analysis requirements of the Environmentally Responsible Aviation (ERA) Project. Each revision has been implemented with reasonable success. Separate applications of the methodology are in use, including a similar in-house capability, developed by Olson, E. that is tailored for structural and acoustics analyses. A central premise of the methodology is that viscous aerodynamic data can be associated with analytic inviscid aerodynamic results at each spanwise wing section, thereby providing a pathway to map viscous data to the inviscid results. However, a number of factors can sidetrack the analysis consistency during various stages of this process. For example, it should be expected that the final airplane lift curve and drag polar results depend strongly on the geometry and aerodynamics of the airfoil section; however, flap deflections and flap chord extensions change the local reference geometry of the input airfoil, the airplane wing, the tabulated non-dimensional viscous aerodynamics, and the spanwise links between the linear and the viscous aerodynamics. These changes also affect the bound circulation and therefore, calculation and integration of the induced angle of attack and induced drag. MVL-15 is configured to ensure these types of challenges are properly addressed. This report is a comprehensive manual describing the theory, use, and validation of the MVL-15 analysis tool. Section 3 summarizes theoretical, procedural, and characteristic features of MVL-15, and includes a list of the files required to setup, execute, and summarize an analysis. Section 4, Section 5, Section 6, and Section 7 combine to comprise the User's Guide portions of this report. The MVL-15 input and output files are described in Section 4 and Section 5, respectively; the descriptions are supplemented with example files and information about the file formats, parameter definitions, and typical parameter values. Section 6 describes the Wing Geometry Setup Utility and the 2d-Variants Utility files that simplify and assist setting up a consistent set of MVL-15 geometry and aerodynamics input parameters and input files. Section 7 describes the use of the 3d-Results Presentation Utility file that can be used to automatically create summary tables and charts from the MVL-15 output files. Section 8 documents the Validation Results of an extensive and varied validation test matrix, including results of an airplane analysis representative of the ERA Program. A start-to-finish example of the airplane analysis procedure is described in Section 7.

  4. Numerical Investigation of an Oscillating Flat Plate Airfoil

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  5. Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Shomroni, I.; Lahoud, E.; Levy, S.; Steinhauer, J.

    2009-03-01

    When two Bose-Einstein condensates collide with high collisional energy, the celebrated matter-wave interference pattern appears. For lower collisional energies, the repulsive interaction energy becomes significant, and the interference pattern evolves into an array of grey solitons. But the lowest collisional energies, producing a single pair of solitons, have not been probed so far. Here, we report on experiments using density engineering on the healing length scale to produce such a pair of solitons. We see evidence that the solitons evolve periodically between vortex rings and solitons. The stable, periodic evolution is in sharp contrast to the behaviour seen in previous experiments in which the solitons decay irreversibly into vortex rings through the so-called snake instability. The evolution can be understood in terms of conservation of mass and energy in a narrow condensate.

  6. Numerical calculations of velocity and pressure distribution around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.; Kobiske, M.

    1974-01-01

    An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.

  7. Indentation analysis of active viscoelastic microplasmodia of P. polycephalum

    NASA Astrophysics Data System (ADS)

    Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther

    2018-01-01

    Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.

  8. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    NASA Astrophysics Data System (ADS)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  9. Stochastic Multiresonance for a Fractional Linear Oscillator with Quadratic Trichotomous Noise

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Qu; Jin, Wei-Dong; Zheng, Gao; Guo, Feng

    2017-11-01

    The stochastic multiresonance behavior for a fractional linear oscillator with random system frequency is investigated. The fluctuation of the system frequency is a quadratic trichotomous noise, the memory kernel of the fractional oscillator is modeled as a Mittag-Leffler function. Based on linear system theory, applying Laplace transform and the definition of fractional derivative, the expression of the system output amplitude (SPA) is obtained. Stochastic multiresonance phenomenon is found on the curves of SPA versus the memory time and the memory exponent of the fractional oscillator, as well as versus the trichotomous noise amplitude. The SPA depends non-monotonically on the stationary probability of the trichotomous noise, on the viscous damping coefficient and system characteristic frequency of the oscillator, as well as on the driving frequency of external force. Supported by National Natural Science Foundation of China under Grant No. 61134002

  10. Finite amplitude effects on drop levitation for material properties measurement

    NASA Astrophysics Data System (ADS)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  11. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    NASA Astrophysics Data System (ADS)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  12. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  13. Computational studies of an impulsively started viscous flow

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1988-01-01

    Progress in validating incompressible Navier-Stokes codes is described using a predictor/corrector scheme. The flow field under study is the impulsive start of a circular cylinder and the unsteady evolution of the separation bubble. In the current code, a uniform asymptotic expansion is used as an initial condition in order to correctly capture the initial growth of the vortex sheet. Volocity fields at selected instants of time are decomposed into vectorial representations of Navier-Stokes equations which are then used to analyze dominant contributions in the boundary-layer region.

  14. On the upper part load vortex rope in Francis turbine: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

  15. Asynchronous oscillations of rigid rods drive viscous fluid to swirl

    NASA Astrophysics Data System (ADS)

    Hayashi, Rintaro; Takagi, Daisuke

    2017-12-01

    We present a minimal system for generating flow at low Reynolds number by oscillating a pair of rigid rods in silicone oil. Experiments show that oscillating them in phase produces no net flow, but a phase difference alone can generate rich flow fields. Tracer particles follow complex trajectory patterns consisting of small orbital movements every cycle and then drifting or swirling in larger regions after many cycles. Observations are consistent with simulations performed using the method of regularized Stokeslets, which reveal complex three-dimensional flow structures emerging from simple oscillatory actuation. Our findings reveal the basic underlying flow structure around oscillatory protrusions such as hairs and legs as commonly featured on living and nonliving bodies.

  16. Magnetic actuation of hair cells

    NASA Astrophysics Data System (ADS)

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state.

  17. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    NASA Technical Reports Server (NTRS)

    Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.

    2016-01-01

    An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.

  18. Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors

    NASA Astrophysics Data System (ADS)

    Díaz-Durán, Adelaida; Serrano, Encarna; Ayarzagüena, Blanca; Abalos, Marta; de la Cámara, Alvaro

    2017-11-01

    The dynamical variability of the boreal stratospheric polar vortex has been usually analysed considering the extended winter as a whole or only focusing on December, January and February. Yet recent studies have found intra-seasonal differences in the boreal stratospheric dynamics. In this study, the intra-seasonal variability of anomalous wave activity preceding polar vortex extremes in the Northern Hemisphere is examined using ERA-Interim reanalysis data. Weak (WPV) and strong (SPV) polar vortex events are grouped into early, mid- or late winter sub-periods depending on the onset date. Overall, the strongest (weakest) wave-activity anomalies preceding polar vortex extremes are found in mid- (early) winter. Most of WPV (SPV) events in early winter occur under the influence of east (west) phase of the Quasi-Biennial Oscillation (QBO) and an enhancement (inhibition) of wavenumber-1 wave activity (WN1). Mid- and late winter WPV events are preceded by a strong vortex and an enhancement of WN1 and WN2, but the spatial structure of the anomalous wave activity and the phase of the QBO are different. Prior to mid-winter WPVs the enhancement of WN2 is related to the predominance of La Niña and linked to blockings over Siberia. Mid-winter SPV events show a negative phase of the Pacific-North America pattern that inhibits WN1 injected into the stratosphere. This study suggests that dynamical features preceding extreme polar vortex events in mid-winter should not be generalized to other winter sub-periods.

  19. Dynamics of circular arrangements of vorticity in two dimensions

    NASA Astrophysics Data System (ADS)

    Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama

    2016-07-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.

  20. Dynamics of a class of vortex rings. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.

    1989-01-01

    The contour dynamics method is extended to vortex rings with vorticity varying linearly from the symmetry axis. An elliptic core model is also developed to explain some of the basic physics. Passage and collisions of two identical rings are studied focusing on core deformation, sound generation and stirring of fluid elements. With respect to core deformation, not only the strain rate but how rapidly it varies is important and accounts for greater susceptibility to vortex tearing than in two dimensions. For slow strain, as a passage interaction is completed and the strain relaxes, the cores return to their original shape while permanent deformations remain for rapidly varying strain. For collisions, if the strain changes slowly the core shapes migrate through a known family of two-dimensional steady vortex pairs up to the limiting member of the family. Thereafter energy conservation does not allow the cores to maintain a constant shape. For rapidly varying strain, core deformation is severe and a head-tail structure in good agreement with experiments is formed. With respect to sound generation, good agreement with the measured acoustic signal for colliding rings is obtained and a feature previously thought to be due to viscous effects is shown to be an effect of inviscid core deformation alone. For passage interactions, a component of high frequency is present. Evidence for the importance of this noise source in jet noise spectra is provided. Finally, processes of fluid engulfment and rejection for an unsteady vortex ring are studied using the stable and unstable manifolds. The unstable manifold shows excellent agreement with flow visualization experiments for leapfrogging rings suggesting that it may be a good tool for numerical flow visualization in other time periodic flows.

  1. Shear properties of vocal fold mucosal tissues and their effect on vocal fold oscillation

    NASA Astrophysics Data System (ADS)

    Chan, Roger Wai Kai

    Viscoelastic shear properties of vocal fold mucosal tissues and phonosurgical biomaterials were measured with a parallel-plate rotational rheometer. Elastic, viscous and damping properties were quantified as a function of frequency (0.01 Hz to 15 Hz) for human vocal fold mucosal tissues (N = 15), implantable biomaterials commonly used in the treatment of vocal fold paralysis (Teflon, gelatin, and collagen) (the non-mucosal group), and biomaterials currently or potentially useful in the treatment of vocal fold mucosal defects (adipose tissue or fat, hyaluronic acid, and fibronectin) (the mucosal group). It was found that intersubject differences as large as an order of magnitude were often observed for the shear properties of vocal fold mucosal tissues, part of which may be age- and gender-related. Shear properties of the non-mucosal group biomaterials were often much higher than those of the mucosal group biomaterials, which were relatively close to the shear properties of mucosal tissues. Viscoelastic and rheological modeling showed that shear properties of human vocal fold mucosa may be described by a quasi-linear viscoelastic theory and a statistical network theory, based upon which extrapolations to audio frequencies were possible. A theory of small-amplitude vocal fold oscillation was revisited to describe the effects of tissue shear properties on vocal fold oscillation and phonation threshold pressure, a measure of the 'ease' of phonation and an objective indication of vocal function. It was found that phonation threshold pressure is directly related to the viscous shear modulus or the 'effective damping modulus', a concept proposed to quantify the effective amount of damping in vocal fold oscillation. The mucosal group biomaterials were incorporated into the artificial vocal fold mucosa of a physical model in order to empirically assess their effects on phonation threshold pressure. Results showed that higher threshold pressures were consistently observed for higher concentrations of hyaluronic acid and for hyaluronic acid mixed with fibronectin, in correlation with their differences in viscous shear modulus and effective damping modulus. Implications for phonosurgery were discussed in terms of the choice of optimal biomaterials for the surgical management of vocal fold mucosal defects and lamina propria deficiencies.

  2. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  3. Defect chaos of oscillating hexagons in rotating convection

    PubMed

    Echebarria; Riecke

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.

  4. Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers.

    PubMed

    Alford, Mark G; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai

    2018-01-26

    Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

  5. Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai

    2018-01-01

    Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

  6. ΛCDM model with dissipative nonextensive viscous dark matter

    NASA Astrophysics Data System (ADS)

    Gimenes, H. S.; Viswanathan, G. M.; Silva, R.

    2018-03-01

    Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.

  7. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  8. Influence of collision on the flow through in-vitro rigid models of the vocal folds

    NASA Astrophysics Data System (ADS)

    Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.

    2003-12-01

    Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.

  9. The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’

    NASA Astrophysics Data System (ADS)

    Chiu-Webster, S.; Lister, J. R.

    2006-12-01

    A viscous thread falling onto a steadily moving horizontal belt shows a surprisingly complex range of behaviour in experiments. Low belt speeds produce coiling, as might be expected from the behaviour of a thread falling onto a stationary surface. High belt speeds produce a steady thread, whose shape is predicted well by theory developed to describe a stretching viscous catenary with surface tension and inertia. Intermediate belt speeds show several novel modes of oscillation, which lay down a wide variety of patterns on the belt. The patterns include meanders, side kicks, slanted loops, braiding, figures-of-eight, Ws, and also period-doubled versions of figures-of-eight, meanders and coiling. The experimental boundary between steady and unsteady behaviour occurs at a slightly lower belt speed than the loss of the steady solution for a stretching catenary.

  10. Onset of `stitching' in the fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Lister, John; Chiu-Webster, Sunny

    2006-11-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  11. Fundamental Processes of Atomization in Fluid-Fluid Flows

    NASA Technical Reports Server (NTRS)

    McCready, M. J.; Chang, H.-C.; Leighton, D. T.

    2001-01-01

    This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.

  12. Viscous pulsational instability of the transonic region of isothermal geometrically thin accretion discs. I - Analytical results

    NASA Astrophysics Data System (ADS)

    Kato, Shoji; Honma, Fumio; Matsumoto, Ryoji

    1988-03-01

    Viscous instability of the transonic region of the conventional geometrically thin alpha-type accretion disks is examined analytically. For simplicity, isothermal disks and isothermal perturbations are assumed. It is found that when the value of alpha is larger than a critical value the disk is unstable against two types of perturbations. One is local propagating perturbations of inertial acoustic waves. Results suggest the possibility that unstable perturbations develop to overstable global oscillations which are restricted only in the innermost region of the disk. The other is standing growing perturbations localized just at the transonic point. The cause of these instabilities is that the azimuthal component of the Lagrangian velocity variation associated with the perturbations becomes in phase with the variation of the viscous stress force. Because of this phase matching work is done on perturbations, and they are amplified.

  13. Characterization of Fluid Flow through a Simplified Heart Valve Model

    NASA Astrophysics Data System (ADS)

    Katija, Kakani

    2005-11-01

    Research has shown that the leading vortex of a starting jet makes a larger contribution to mass transport than a straight jet. Physical processes terminate growth of the leading vortex ring at a stroke ratio (L/D) between 3.5 and 4.5. This has enhanced the idea that biological systems optimize vortex formation for fluid transport. Of present interest is how fluid transport through a heart valve induces flutter of the valve leaflets. An attempt to characterize the fluid flow through a heart valve was made using a simplified cylinder-string system. Experiments were conducted in a water tank where a piston pushed fluid out of a cylinder (of diameter D) into surrounding fluid. A latex string was attached to the end of the cylinder to simulate a heart valve leaflet. The FFT of the string motion was computed to quantify the flutter behavior observed in the cylinder-string system. By increasing the stroke ratio, the amplitude of transverse oscillations for all string lengths increases. For the string length D/2, the occurrence of flutter coincides with the formation of the vortex ring trailing jet.

  14. Optical Rogue Waves in Vortex Turbulence.

    PubMed

    Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca

    2016-01-29

    We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

  15. Visualization and analysis of flow structures in an open cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng

    2018-05-01

    A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.

  16. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction

    PubMed Central

    Kim, Dong-Hyun; Rozhkova, Elena A.; Ulasov, Ilya V.; Bader, Samuel D.; Rajh, Tijana; Lesniak, Maciej S.; Novosad, Valentyn

    2009-01-01

    Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve ~90% cancer-cell destruction in vitro. PMID:19946279

  17. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme.

    PubMed

    Jenkins, A S; Lebrun, R; Grimaldi, E; Tsunegi, S; Bortolotti, P; Kubota, H; Yakushiji, K; Fukushima, A; de Loubens, G; Klein, O; Yuasa, S; Cros, V

    2016-04-01

    It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.

  18. A survey of oscillating flow in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Simon, Terrence W.; Seume, Jorge R.

    1988-01-01

    Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified.

  19. Quantum oscillations in the mixed state of d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Melikyan, Ashot; Vafek, Oskar

    2008-07-01

    We show that the low-energy density of quasiparticle states in the mixed state of ultraclean dx2-y2 -wave superconductors exhibits quantum oscillations even in the regime where the cyclotron frequency ℏωc≪Δ0 , the d -wave pairing gap. Such oscillations as a function of magnetic field B are argued to be due to the internodal scattering of the nodal quasiparticles near wave vectors (±kD,±kD) by the vortex lattice as well as their Zeeman coupling. While the nominal periodicity of the oscillations is set by the condition kD[hc/(eB)]1/2≡kD'[hc/(eB')]1/2(mod2π) , we find that there is additional structure within each period that grows in complexity as the Dirac node anisotropy increases.

  20. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  1. Numerical Solution of Incompressible Navier-Stokes Equations Using a Fractional-Step Approach

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    1999-01-01

    A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (3rd and 5th) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds Numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when 5th-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.

  2. The local stability of the magnetized advection-dominated discs with the radial viscous force

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, S. M.; Shadmehri, M.

    2018-06-01

    We study local stability of the advection-dominated optically thick (slim) and optically thin discs with purely toroidal magnetic field and the radial viscous force using a linear perturbation analysis. Our dispersion relation indicates that the presence of magnetic fields and radial viscous force cannot give rise to any new mode of the instability. We find, however, that growth rate of the thermal mode in the slim discs and that of the acoustic modes in the slim and optically thin discs are dramatically affected by the radial viscous force. This force tends to strongly decrease the growth rate of the outward-propagating acoustic mode (O-mode) in the short-wavelength limit, but it causes a slim disc to become thermally more unstable. This means that growth rate of the thermal mode increases in the presence of radial viscous force. This enhancement is more significant when the viscosity parameter is large. The growth rates of the thermal and acoustic modes depend on the magnetic field. Although the instability of O-mode for a stronger magnetic field case has a higher growth rate, the thermal mode of the slim discs can be suppressed when the magnetic field is strong. The inertial-acoustic instability of a magnetized disc may explain the quasi-periodic oscillations (QPOs) from the black holes.

  3. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    NASA Astrophysics Data System (ADS)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  4. On the survival of zombie vortices in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Lesur, Geoffroy R. J.; Latter, Henrik

    2016-11-01

    Recently it has been proposed that the zombie vortex instability (ZVI) could precipitate hydrodynamical activity and angular momentum transport in unmagnetized regions of protoplanetary discs, also known as `dead zones'. In this Letter we scrutinize, with high-resolution 3D spectral simulations, the onset and survival of this instability in the presence of viscous and thermal physics. First, we find that the ZVI is strongly dependent on the nature of the viscous operator. Although the ZVI is easily obtained with hyperdiffusion, it is difficult to sustain with physical (second order) diffusion operators up to Reynolds numbers as high as 107. This sensitivity is probably due to the ZVI's reliance on critical layers, whose characteristic length-scale, structure, and dynamics are controlled by viscous diffusion. Second, we observe that the ZVI is sensitive to radiative processes, and indeed only operates when the Peclet number is greater than a critical value ˜104, or when the cooling time is longer than ˜10Ω-1. As a consequence, the ZVI struggles to appear at R ≳ 0.3 au in standard 0.01 M⊙ T Tauri disc models, though younger more massive discs provide a more hospitable environment. Together these results question the prevalence of the ZVI in protoplanetary discs.

  5. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    PubMed

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto-fluidics would benefit from the results of the present investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan

    2017-11-01

    We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.

  7. The Influence of Drag on the Relation Between Swimming Number and Swimming Speed

    NASA Astrophysics Data System (ADS)

    Gross, David; Argentina, Mederic; Roux, Yann

    2017-11-01

    The choice of gait parameters used by swimmers has been the subject of considerable research. The recent work of Gazzola et al. (2014) showed that swimmers follow a relation between the viscosity, the input parameters of length, tailbeat frequency and amplitude by way of a new non-dimensional swimming number Sw and the resulting Reynolds number Re that they swim at. The momentum balance leads to a 4/3 power relation between Sw and Re at moderately high Reynolds number and a linear relation between Sw and Re in the turbulent regime. We performed numerical simulations of a swimmer submitted to an imposed deformation and a resolved rigid body motion. A 2D unsteady, inviscid vortex panel method with vortex particle wake approach is used to represent the swimmer and its wake. The method was validated against the analytic solution of an impulsively started foil and a purely heaving foil. The vortex panel method is inviscid by its nature, but with an added viscous drag equivalent to a flat plate yields excellent agreement with the scaling laws observed by Gazzola et al. and 2D URANS results in both flow regimes The influence of Re dependent and independent drag coefficients was studied along with the limit of zero added drag.

  8. Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Raghavan, V.; Duque, E. P. N.

    1991-01-01

    The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.

  9. Interaction of in-phase and out-of-phase flexible filament in fish schooling

    NASA Astrophysics Data System (ADS)

    Ud Din, Emad; Sung, Hyung

    2011-11-01

    Fish schooling is not merely a social behavior; schooling improves the efficiency of movement within the fluid environment. Inspired by the schooling from a hydrodynamic perspective, a group of aquatic animals is modeled as a collection of individuals arranged in a combination of tandem and side-by-side (diamond) formation. The downstream bodies are strongly influenced by the vortices shed by the upstream body shown by vortex-vortex and vortex-body interactions. Trailing fish takes advantage of this flow pattern for energy economy. To investigate the interactions between flexible bodies and vortices, in the present study three flexible flags in viscous flow are solved by numerical simulation using an improved version of the immersed boundary method for in-phase and out-of-phase filaments. The drag coefficient of the downstream filaments drops even below the value of a single flag. Such drag variations are influenced by the interactions between vortices shed by the upstream flexible body and vortices surrounding the downstream filaments. Interaction of the flexible flags is investigated as a function of the gap distance between flags and different bending coefficients, for in-phase and out-of-phase cases at intermediate Reynolds numbers. This study was supported by the Creative Research Initiatives of NRF/MEST (No. 2011-0000423) of Korea.

  10. Parallel Vortex Body Interaction Enabled by Active Flow Control

    NASA Astrophysics Data System (ADS)

    Weingaertner, Andre; Tewes, Philipp; Little, Jesse

    2017-11-01

    An experimental study was conducted to explore the flow physics of parallel vortex body interaction between two NACA 0012 airfoils. Experiments were carried out at chord Reynolds numbers of 740,000. Initially, the leading airfoil was characterized without the target one being installed. Results are in good agreement with thin airfoil theory and data provided in the literature. Afterward, the leading airfoil was fixed at 18° incidence and the target airfoil was installed 6 chord lengths downstream. Plasma actuation (ns-DBD), originating close to the leading edge, was used to control vortex shedding from the leading airfoil at various frequencies (0.04

  11. Investigations of possible states for coexistence of superconductivity and ferromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, T.E.

    1984-01-01

    Ginzburg-Landau theory is used to investigate states in which both superconductivity and ferromagnetism exist simultaneously in certain rare-earth ternary compounds. The spontaneous vortex state of Kuper, Revzen and Ron is reexamined and extended to include magnetic oscillations within each vortex cell and the existence of antiferromagnetically aligned vortices. The linearly polarized state of Greenside, Blount and Varma is reinvestigated in what appears to be a more physically acceptable range of parameters that are used in the Ginzburg-Landau free energy functional. The square antiferromagnetic vortex lattice state proposed by Hu and Ham is investigated here for the first time, energetically comparedmore » to the states proposed by Kuper, et al. and Greenside, et al., and used to model the observed coexistence state observed in ErRh/sub 4/B/sub 4/. The results show that this square antiferromagnetic vortex lattice state is energetically favored over the linearly polarized state in large parameter and temperature range. Such a lattice also appears to be a good model to explain many of the experimental observations made on ErRh/sub 4/B/sub 4/. Thus, it is felt that this vortex lattice is the best model, yet examined, to explain the coexistence state in ErRh/sub 4/B/sub 4/.« less

  12. Undulating fins produce off-axis thrust and flow structures.

    PubMed

    Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A

    2014-01-15

    While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin.

  13. FUN3D and CFL3D Computations for the First High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.

    2011-01-01

    Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.

  14. Direct numerical simulation of the sea flows around blunt bodies

    NASA Astrophysics Data System (ADS)

    Matyushin, Pavel V.; Gushchin, Valentin A.

    2015-11-01

    The aim of the present paper is the demonstration of the opportunities of the mathematical modeling of the separated flows of the sea water around blunt bodies on the basis of the Navier-Stokes equations (NSE) in the Boussinesq approximation. The 3D density stratified incompressible viscous fluid flows around a sphere have been investigated by means of the direct numerical simulation (DNS) on supercomputers and the visualization of the 3D vortex structures in the wake. For solving of NSE the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, capable for work in wide range of the Reynolds (Re) and the internal Froude (Fr) numbers and monotonous) has been developed and successfully applied. The different transitions in sphere wakes with increasing of Re (10 < Re < 500) and decreasing of Fr (0.005 < Fr < 100) have been investigated in details. Thus the classifications of the viscous fluid flow regimes around a sphere have been refined.

  15. Viscous diffusion of vorticity in unsteady wall layers using the diffusion velocity concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, J.H.; Kempka, S.N.; Wolfe, W.P.

    1995-03-01

    The primary purpose of this paper is to provide a careful evaluation of the diffusion velocity concept with regard to its ability to predict the diffusion of vorticity near a moving wall. A computer code BDIF has been written which simulates the evolution of the vorticity field near a wall of infinite length which is moving in an arbitrary fashion. The simulations generated by this code are found to give excellent results when compared to several exact solutions. We also outline a two-dimensional unsteady viscous boundary layer model which utilizes the diffusion velocity concept and is compatible with vortex methods.more » A primary goal of this boundary layer model is to minimize the number of vortices generated on the surface at each time step while achieving good resolution of the vorticity field near the wall. Preliminary results have been obtained for simulating a simple two-dimensional laminar boundary layer.« less

  16. Hydrodynamic aspects of thrust generation in gymnotiform swimming

    NASA Astrophysics Data System (ADS)

    Shirgaonkar, Anup A.; Curet, Oscar M.; Patankar, Neelesh A.; Maciver, Malcolm A.

    2008-11-01

    The primary propulsor in gymnotiform swimmers is a fin running along most of the ventral midline of the fish. The fish propagates traveling waves along this ribbon fin to generate thrust. This unique mode of thrust generation gives these weakly electric fish great maneuverability cluttered spaces. To understand the mechanical basis of gymnotiform propulsion, we investigated the hydrodynamics of a model ribbon-fin of an adult black ghost knifefish using high-resolution numerical experiments. We found that the principal mechanism of thrust generation is a central jet imparting momentum to the fluid with associated vortex rings near the free edge of the fin. The high-fidelity simulations also reveal secondary vortex rings potentially useful in rapid sideways maneuvers. We obtained the scaling of thrust with respect to the traveling wave kinematic parameters. Using a fin-plate model for a fish, we also discuss improvements to Lighthill's inviscid theory for gymnotiform and balistiform modes in terms of thrust magnitude, viscous drag on the body, and momentum enhancement.

  17. Viscosity measurements of metallic melts using the oscillating drop technique

    NASA Astrophysics Data System (ADS)

    Heintzmann, P.; Yang, F.; Schneider, S.; Lohöfer, G.; Meyer, A.

    2016-06-01

    By means of benchmarking reduced gravity experiments, we have verified the measured viscosity of binary Zr-Ni glass forming liquids utilizing the oscillating drop technique combined with ground-based electrostatic levitation (ESL). Reliable viscosity data can be obtained as long as internal viscous damping of a single oscillation mode of a levitated drop dominates external perturbations. This can be verified by the absence of a sample mass dependence of the results. Hence, ESL is an excellent tool for studying the viscosity of metallic glass forming melts in the range of about 10-250 mPa s, with sample masses below 100 mg. To this end, we show that, for binary Zr-Ni melts, the viscosity is qualitatively controlled by the packing density.

  18. Energetics and optimum motion of oscillating lifting surfaces of finite span

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1986-01-01

    In certain modes of animal propulsion in nature, such as bird flight and fish swimming, the efficiency compared to man-made vehicles is very high. In such cases, wing and tail motions are typically associated with relatively high Reynolds numbers, where viscous effects are confined to a thin boundary layer at the surface and a thin trailing wake. The propulsive forces, which are generated primarily by the inertial forces, can be calculated from potential-flow theory using linearized unsteady-wing theory (for small-amplitude oscillations). In the present study, a recently developed linearized, low-frequency, unsteady lifting-line theory is employed to calculate the (sectional and total) energetic quantities and optimum motion of an oscillating wing of finite span.

  19. Hidden Attractors in a Model of a Bubble Contrast Agent Oscillating Near an Elastic Wall

    NASA Astrophysics Data System (ADS)

    Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay

    2018-02-01

    A model describing the dynamics of a spherical gas bubble in a compressible viscous liquid is studied. The bubble is oscillating close to an elastic wall of finite thickness under the influence of an external pressure field which simulates a contrast agent oscillating close to a blood vessel wall. Here we investigate numerically the coexistence of chaotic and periodic attractors in this model. One of the tools applied for seeking coexisting attractors is the perpetual points method. This method can be helpful for localizing coexisting attractors, occurring in various physically realistic ranges of variation of the control parameters. We provide some examples of coexisting attractors to demonstrate the importance of the multistability problem for the applications.

  20. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  1. Phase-resolved and time-averaged puff motions of an excited stack-issued transverse jet

    NASA Astrophysics Data System (ADS)

    Hsu, C. M.; Huang, R. F.

    2013-07-01

    The dynamics of puff motions in an excited stack-issued transverse jet were studied experimentally in a wind tunnel. The temporal and spatial evolution processes of the puffs induced by acoustic excitation were examined using the smoke flow visualization method and high-speed particle image velocimetry. The temporal and spatial evolutions of the puffs were examined using phase-resolved ensemble-averaged velocity fields and the velocity, length scales, and vorticity characteristics of the puffs were studied. The time-averaged velocity fields were calculated to analyze the velocity distributions and vorticity contours. The results show that a puff consists of a pair of counter-rotating vortex rings. An initial vortex ring was formed due to a concentration of vorticity at the lee side of the issuing jet at the instant of the mid-oscillation cycle. A vortex ring rotating in the opposite direction to that of the initial vortex ring was subsequently formed at the upwind side of the issuing jet. These two counter-rotating vortex rings formed a "mushroom" vortex pair, which was deflected by the crossflow and traveled downstream along a time-averaged trajectory of zero vorticity. The trajectory was situated far above the time-averaged streamline evolving from the leading edge of the tube. The velocity magnitudes of the vortex rings at the upwind and the lee side decreased with time evolution as the puffs traveled downstream due to momentum dissipation and entrainment effects. The puffs traveling along the trajectory of zero vorticity caused large velocities to appear above the leading-edge streamline.

  2. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  3. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  4. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On the nozzle passage endwall surfaces the presence of strong pressure gradients and secondary flow limit the validity of the boundary layer code.

  5. Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.

    2018-05-01

    The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.

  6. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  7. Reentry vehicle aerodynamics and control at very high angle of attack

    NASA Astrophysics Data System (ADS)

    Merret, Jason Michael

    In recent flight tests the X-38 reentry test vehicle spins during the deployment of the drogue parachute. An experimental aerodynamic study has been conducted at the University of Illinois using a scale model of the X-38 to explore the cause of this problem. A six-component sting balance was used to measure the forces and moments on the 4.7% wind tunnel model at angles of attack from -7° to 95°. In addition, surface pressure taps and flow visualization techniques were utilized to determine the forebody pressures and surface flowfield on the model. The effect of Reynolds number and boundary-layer state were also examined. The investigation suggests that the spinning under the drogue parachute was caused by asymmetric vortex formation. At angles of attack between 75° and 90° vortex asymmetry developed in all of the cases without separation geometrically fixed. This flow asymmetry produced large side forces and yawing moments. The Reynolds number effect and the effect of the boundary-layer state were noticeable, but did not greatly change the side force and yawing moment characteristics of the model. The micro-geometry of the model had a large effect on the side force generated by the vortex positioning. The effects of forced oscillations were also examined and it was determined that the side forces were still present during the oscillations. Control of the vortices and side forces was obtained by applying strakes to the side of the forebody of the model.

  8. Numerical Simulations of Instabilities in Single-Hole Office Elements

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  9. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.

  10. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly on pitching kinematics. The cambered ellipse exhibits light reverse flow dynamic stall for a wide range of pitching kinematics. Deep dynamic stall over the cambered ellipse airfoil is observed for high mean pitch angles and pitch amplitudes. The detailed results and analysis in this work contributes to the development of a new generation of high-speed helicopters.

  11. Analysis of Drop Oscillations Excited by an Electrical Point Force in AC EWOD

    NASA Astrophysics Data System (ADS)

    Oh, Jung Min; Ko, Sung Hee; Kang, Kwan Hyoung

    2008-03-01

    Recently, a few researchers have reported the oscillation of a sessile drop in AC EWOD (electrowetting on dielectrics), and some of its consequences. The drop oscillation problem in AC EWOD is associated with various applications based on electrowetting such as LOC (lab-on-a-chip), liquid lens, and electronic display. However, no theoretical analysis of the problem has been attempted yet. In the present paper, we propose a theoretical model to analyze the oscillation by applying the conventional method to analyze the drop oscillation. The domain perturbation method is used to derive the shape mode equations under the assumptions of weak viscous flow and small deformation. The Maxwell stress is exerted on the three-phase contact line of the droplet like a point force. The force is regarded as a delta function, and is decomposed into the driving forces of each shape mode. The theoretical results on the shape and the frequency responses are compared with experiments, which shows a qualitative agreement.

  12. Negative Coulomb damping, limit cycles, and self-oscillation of the vocal folds

    NASA Astrophysics Data System (ADS)

    Fulcher, Lewis P.; Scherer, Ronald C.; Melnykov, Artem; Gateva, Vesela; Limes, Mark E.

    2006-05-01

    An effective one-mass model of phonation is developed. It borrows the salient features of the classic two-mass model of human speech developed by Ishizaka, Matsudaira, and Flanagan. Their model is based on the idea that the oscillating vocal folds maintain their motion by deriving energy from the flow of air through the glottis. We argue that the essence of the action of the aerodynamic forces on the vocal folds is captured by negative Coulomb damping, which acts on the oscillator to energize it. A viscous force is added to include the effects of tissue damping. The solutions to this single oscillator model show that when it is excited by negative Coulomb damping, it will reach a limit cycle. Displacements, phase portraits, and energy histories are presented for two underdamped linear oscillators. A nonlinear force is added so that the variations of the fundamental frequency and the open quotient with lung pressure are comparable to the behavior of the two-mass model.

  13. Resonance and streaming of armored microbubbles

    NASA Astrophysics Data System (ADS)

    Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric

    2015-11-01

    A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.

  14. Orbital motions of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  15. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  16. Human Factors Vehicle Displacement Analysis: Engineering In Motion

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David; Robertson, Clay

    2010-01-01

    While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.

  17. Gaseous Vortices in Barred Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    England, Martin N.; Hunter, James H., Jr.

    1995-01-01

    During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).

  18. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  19. Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Guo, Xiao-ling; Tang, Guo-qiang; Liu, Ming-ming; Chen, Chuan-qi; Xie, Zhi-hua

    2016-09-01

    Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the anti-symmetry breaking of the wake flow evolution. The resultant asymmetric mean pressure distribution on the splitter plate gives rise to the net lift force and the deviated moment on the assembly, leading to the offset mean position of splitter plate. The global vortex shedding is identified to be the classic 2S mode for both cases with and without the bifurcation, although the second vortex formation and the shedding pattern in the near wake for the bifurcate case are different from the non-bifurcate case with lower reduced velocities.

  20. Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents

    NASA Astrophysics Data System (ADS)

    Ageyeva, V. Yu.; Gruzdev, A. N.; Elokhov, A. S.; Mokhov, I. I.; Zueva, N. E.

    2017-09-01

    Statistical characteristics of major and minor sudden stratospheric warmings (SSWs) in the Northern Hemisphere (NH) for 1958-2015 are analyzed using data of NCEP-NCAR, ERA 40, and ERA-Interim reanalyses. Dependencies of the number of major SSWs with the displacement of the circumpolar stratospheric vortex and the number of minor SSWs on the phase of the quasi-biennial oscillation (QBO) of the equatorial stratospheric wind and on the level of solar activity (SA) in the 11-year solar cycle have been revealed. Major SSWs accompanied by a displacement of the polar vortex occur more often at a high level of SA and at the easterly phase of the QBO in the 50-40 hPa layer, while minor SSWs occur more often at a low SA level and at the westerly phase of the QBO. An analysis of spatiotemporal dynamics of the stratospheric polar vortex at major SSWs is performed. The most probable directions of vortex displacement caused by SSWs have been revealed. Influences of the major SSWs on the total contents of NO2 and ozone, as well as on stratosphere temperature, are analyzed.

  1. A Study of Dean Vortex Development and Structure in a Curved Rectangular Channel with Aspect Ratio of 40 at Dean Numbers up to 430

    NASA Technical Reports Server (NTRS)

    Ligrani, Phillip M.

    1994-01-01

    Flow in a curved channel with mild curvature, an aspect ratio of 40 to 1, and an inner to outer radius ratio of 0.979 is studied at Dean numbers De ranging from 35 to 430. For positions from the start of curvature ranging from 85 to 145 degrees, the sequence of transition events begins with curved channel Poiseuille flow at De less than 40-64. As the Dean number increases, observations show initial development of Dean vortex pairs, followed by symmetric vortex pairs which, when viewed in spanwise/radial planes, cover the entire channel height (De=90-100). At De from 40 to 125-130, the vortex pairs often develop intermittent waviness in the form of vortex undulations. Splitting and merging of vortex pairs is also observed over the same experimental conditions as well as at higher De. When Dean numbers range from 130 to 185-200, the undulating wavy mode is replaced by a twisting mode with higher amplitudes of oscillation and shorter wavelengths. The twisting wavy mode results in the development of regions where turbulence intensity is locally augmented at Dean numbers from 150 to 185-200, principally in the upwash regions between the two individual vortices which make up each vortex pair. These turbulent regions eventually increase in intensity and spatial extent as the Dean number increases further, until individual regions merge together so that the entire cross section of the channel contains chaotic turbulent motions. When Dean numbers then reach 400-435, spectra of velocity fluctuations then evidence fully turbulent flow.

  2. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  3. Magma wagging and whirling in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  4. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  5. Deformation of biological cells in the acoustic field of an oscillating bubble

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Allen, John S., III

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  6. Periodic forcing of a shock train in a scramjet inlet-isolator at overspeed condition

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren

    2018-02-01

    Unsteady viscous numerical simulations are performed to explore the response of a shock train to downstream backpressure forcing in a scramjet inlet-isolator at the overspeed condition. A sinusoidal dynamic backpressure is applied at the exit of the isolator, thus leading a forced shock train oscillation. The results show that the shock train travels along a different path for the upstream and downstream movements. There is a clear hysteresis loop during the shock train oscillation. Under the low forcing frequency, the shock train travels in a clockwise loop. While it travels in a counter-clockwise loop under the high forcing frequency. Moreover, there is a lag between the shock train oscillation and the fluctuating backpressure. Especially for the high forcing frequency, the phase of the shock train oscillation is opposite to the fluctuating backpressure. The effects of the amplitude and frequency of the periodic fluctuating backpressure on the oscillation range of the shock train are also investigated. With the amplitude of the fluctuating backpressure increasing, the oscillation range of the shock train increases. With the frequency of the fluctuating backpressure increasing, the oscillation range of the shock train increases first and then decreases under high frequency.

  7. Extension of a three-dimensional viscous wing flow analysis

    NASA Technical Reports Server (NTRS)

    Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

    1990-01-01

    Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.

  8. Surface Instability of Liquid Propellant under Vertical Oscillatory Forcing

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Fluid motion in a fuel tank produced during thrust oscillations can circulate sub-cooled hydrogen near the liquid-vapor interface resulting in increased condensation and ullage pressure collapse. The first objective of this study is to validate the capabilities of a Computational Fluid Dynamics (CFD) tool, CFD-ACE+, in modeling the fundamental interface transition physics occurring at the propellant surface. The second objective is to use the tool to assess the effects of thrust oscillations on surface dynamics. Our technical approach is to first verify the CFD code against known theoretical solutions, and then validate against existing experiments for small scale tanks and a range of transition regimes. A 2D axisymmetric, multi-phase model of gases, liquids, and solids is used to verify that CFD-ACE+ is capable of modeling fluid-structure interaction and system resonance in a typical thrust oscillation environment. Then, the 3D mode is studied with an assumed oscillatory body force to simulate the thrust oscillating effect. The study showed that CFD modeling can capture all of the transition physics from solid body motion to standing surface wave and to droplet ejection from liquid-gas interface. Unlike the analytical solutions established during the 1960 s, CFD modeling is not limited to the small amplitude regime. It can extend solutions to the nonlinear regime to determine the amplitude of surface waves after the onset of instability. The present simulation also demonstrated consistent trends from numerical experiments through variation of physical properties from low viscous fluid to high viscous fluids, and through variation of geometry and input forcing functions. A comparison of surface wave patterns under various forcing frequencies and amplitudes showed good agreement with experimental observations. It is concluded that thrust oscillations can cause droplet formation at the interface, which results in increased surface area and enhanced heat transfer between the liquid and gas phases as the ejected droplets travel well into the warmer gas region.

  9. Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history

    NASA Astrophysics Data System (ADS)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2017-09-01

    The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re=100 , considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as Ω -type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.

  10. Single and multiple vortex rings in three-dimensional Bose-Einstein condensates: Existence, stability, and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher

    In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less

  11. Single and multiple vortex rings in three-dimensional Bose-Einstein condensates: Existence, stability, and dynamics

    DOE PAGES

    Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher; ...

    2017-04-27

    In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less

  12. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over themore » Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.« less

  13. Investigation of corner shock boundary layer interactions to understand inlet unstart

    NASA Astrophysics Data System (ADS)

    Funderburk, Morgan

    2015-11-01

    Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.

  14. Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion: Intermediate rotation rates

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Ming; Ou, Yuh-Roung; Pearlstein, Arne J.

    1991-01-01

    The temporal development of two-dimensional viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = (omega x a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. The shedding process is; however, very different from that which gives rise to the usual Karman vortex street for alpha = 0. In particular, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate.

  15. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing

    NASA Astrophysics Data System (ADS)

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ (t ) and pressure p (t ) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Recturb=RecTDR≃(4.8 ±0.2 ) ×105 independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Recturb and RecTDR depending on polymer concentration ϕ . Both regimes differ by the values of Cf and Cp, by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998), 10.1063/1.869532; Phys. Rev. E 47, R28(R) (1993), 10.1103/PhysRevE.47.R28; and J. Phys.: Condens. Matter 17, S1195 (2005), 10.1088/0953-8984/17/14/008] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  16. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.

    PubMed

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  17. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.

    PubMed

    Chan, Roger W; Titze, Ingo R

    2006-04-01

    Analytical and computer simulation studies have shown that the acoustic impedance of the vocal tract as well as the viscoelastic properties of vocal fold tissues are critical for determining the dynamics and the energy transfer mechanism of vocal fold oscillation. In the present study, a linear, small-amplitude oscillation theory was revised by taking into account the propagation of a mucosal wave and the inertive reactance (inertance) of the supraglottal vocal tract as the major energy transfer mechanisms for flow-induced self-oscillation of the vocal fold. Specifically, analytical results predicted that phonation threshold pressure (Pth) increases with the viscous shear properties of the vocal fold, but decreases with vocal tract inertance. This theory was empirically tested using a physical model of the larynx, where biological materials (fat, hyaluronic acid, and fibronectin) were implanted into the vocal fold cover to investigate the effect of vocal fold tissue viscoelasticity on Pth. A uniform-tube supraglottal vocal tract was also introduced to examine the effect of vocal tract inertance on Pth. Results showed that Pth decreased with the inertive impedance of the vocal tract and increased with the viscous shear modulus (G") or dynamic viscosity (eta') of the vocal fold cover, consistent with theoretical predictions. These findings supported the potential biomechanical benefits of hyaluronic acid as a surgical bioimplant for repairing voice disorders involving the superficial layer of the lamina propria, such as scarring, sulcus vocalis, atrophy, and Reinke's edema.

  18. Study of tip clearance flow in a turbomachinery cascade using large eddy simulation

    NASA Astrophysics Data System (ADS)

    You, Donghyun

    In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.

  19. Flow characteristics of bounded self-organized dust vortex in a complex plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.

    2018-01-01

    Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.

  20. Pendulum Underwater--An Approach for Quantifying Viscosity

    ERIC Educational Resources Information Center

    Leme, José Costa; Oliveira, Agostinho

    2017-01-01

    The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long…

  1. From viscous to elastic sheets: Dynamics of smectic bubbles

    NASA Astrophysics Data System (ADS)

    Harth, Kirsten; Trittel, Torsten; van der Meer, Devaraj; Stannarius, Ralf

    2015-11-01

    Oscillations and rupture of bubbles composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties apart from surface tension are often neglected for fluids (e.g. soap bubbles), whereas they govern the dynamics in systems with a rigid membrane (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to-handle fluid films of immense aspect ratios. Only recently, freely floating bubbles detached from a support could be prepared. We analyze their relaxation from strongly non-spherical shapes and the rupture using high-speed video recordings. Peculiar dynamics intermediate between simple viscous fluid films and an elastic response are observed: Fast oscillations, slowed relaxation and even the reversible formation of wrinkles and extrusions. Bubble rupture deviates qualitatively from previously observed behavior of simple Newtonian and other complex fluids. It becomes retarded by at least two orders of magnitude compared to the predictions of Taylor and Culick. A transition between fluid-like and elastic behavior is seen with increasing thickness. We give experimental results, an intuitive explanation and a novel hydrodynamic description.

  2. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.

    PubMed

    Obabko, Aleksandr V; Cassel, Kevin W

    2005-05-15

    Numerical solutions of the flow induced by a thick-core vortex have been obtained using the unsteady, two-dimensional Navier-Stokes equations. The presence of the vortex causes an adverse pressure gradient along the surface, which leads to unsteady separation. The calculations by Brinckman and Walker for a similar flow identify a possible instability, purported to be an inviscid Rayleigh instability, in the region where ejection of near-wall vorticity occurs during the unsteady separation process. In results for a range of Reynolds numbers in the present investigation, the oscillations are also found to occur. However, they can be eliminated with increased grid resolution. Despite this behaviour, the instability may be physical but requires a sufficient amplitude of disturbances to be realized.

  3. Active Control of Vortex Induced Vibrations of a Tethered Sphere in a Uniform Air Flow

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Greenblatt, David; Zvi Katz, Amit

    2011-11-01

    VIV of two heavy tethered spheres (D = 40 mm, m* = msphere/ ρfVsphere = 21 and 67, L* = L / D = 2.50) were studied in a wind tunnel under uniform free stream velocities up to U* = U /fn D = 15.9, with and without acoustic control. Control was achieved using two speakers mounted on either side of the spheres and driven in-phase at f= 35Hz (f* = 22.3). In the non-controlled case, the bifurcation map of transverse sphere oscillation amplitude, Ay, showed stationary motion as well as periodic and non-stationary oscillations with increasing U*. For m* = 21, Aymax was about twice as large as for m* = 67. Acoustic control dampened Aymax in the periodic region (m* = 67) and increased Aymax in the non-stationary region for both spheres. Sphere boundary layer dynamics in the three different bifurcation regions were studied using time resolved PIV with a horizontal laser sheet positioned at the center of the sphere. The field of view was 55 × 55 mm2 containing one quarter of the sphere. Results will be presented on the vortex dynamics near the sphere's surface with and without acoustic control.

  4. Dynamical behavior of lean swirling premixed flame generated by change in gravitational orientation

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Miyano, Takaya; Shepherd, Ian

    2010-11-01

    The dynamic behavior of flame front instability in lean swirling premixed flame generated by the effect of gravitational orientation has been experimentally investigated in this work. When the gravitational direction is changed relative to the flame front, i.e., in inverted gravity, an unstably fluctuating flame (unstable flame) is formed in a limited domain of equivalence ratio and swirl number (Gotoda. H et al., Physical Review E, vol. 81, 026211, 2010). The time history of flame front fluctuations show that in the buoyancy-dominated region, chaotic irregular fluctuation with low frequencies is superimposed on the dominant periodic oscillation of the unstable flame. This periodic oscillation is produced by unstable large-scale vortex motion in combustion products generated by a change in the buoyancy/swirl interaction due to the inversion of gravitational orientation. As a result, the dynamic behavior of the unstable flame becomes low-dimensional deterministic chaos. Its dynamics maintains low-dimensional deterministic chaos even in the momentum-dominated region, in which vortex breakdown in the combustion products clearly occurs. These results were clearly demonstrated by the use of nonlinear time series analysis based on chaos theory, which has not been widely applied to the investigation of combustion phenomena.

  5. Viscous-enstrophy scaling law for Navier-Stokes reconnection

    NASA Astrophysics Data System (ADS)

    Kerr, Robert M.

    2017-11-01

    Simulations of perturbed, helical trefoil vortex knots and anti-parallel vortices find ν-independent collapse of temporally scaled (√{ ν} Z) - 1 / 2, Z enstrophy, between when the loops first touch at tΓ, and when reconnection ends at tx for the viscosity ν varying by 256. Due to mathematical bounds upon higher-order norms, this collapse requires that the domain increase as ν decreases, possibly to allow large-scale negative helicity to grow as compensation for small-scale positive helicity and enstrophy growth. This mechanism could be a step towards explaining how smooth solutions of the Navier-Stokes can generate finite-energy dissipation in a finite time as ν -> 0 .

  6. An analysis method for multi-component airfoils in separated flow

    NASA Technical Reports Server (NTRS)

    Rao, B. M.; Duorak, F. A.; Maskew, B.

    1980-01-01

    The multi-component airfoil program (Langley-MCARF) for attached flow is modified to accept the free vortex sheet separation-flow model program (Analytical Methods, Inc.-CLMAX). The viscous effects are incorporated into the calculation by representing the boundary layer displacement thickness with an appropriate source distribution. The separation flow model incorporated into MCARF was applied to single component airfoils. Calculated pressure distributions for angles of attack up to the stall are in close agreement with experimental measurements. Even at higher angles of attack beyond the stall, correct trends of separation, decrease in lift coefficients, and increase in pitching moment coefficients are predicted.

  7. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  8. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  9. Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo

    2017-11-01

    Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.

  10. Viscous Fingering on an Immiscible Reactive Interface with Variation of Interfacial Tension

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Reiko; Nagatsu, Yuichiro; Li, Qian; Chen, Ching-Yao

    2017-11-01

    The effects of chemical reaction, in which surfactants are produced on the interface of two immiscible fluids, on viscous fingering in a radial Hele-Shaw flow are numerically investigated. The presence of surfactants reduces interfacial tension, which is an important factor to the fingering pattern formation. In the present study, influences of reaction rate and dispersion of produced surfactants, represented respectively by dimensionless parameters of Damkohler number and Peclet number, are evaluated systematically. Secondary fingering instability, e.g., tip-splitting and side-branching, is triggered by chemical reactions. Weaker surface tension generally induces tip-splitting. For the case of high Damkohler number, because of the vortex pairs generated within each finger, surfactant tends to accumulate significantly on the side of finger, so that side-branching is preferred. Nevertheless, side-branching is suppressed in the cases associated with low Peclet number, in which strong dispersion reduces the local variation of surfactant concentration. Considering the coupled effects by Damkohler number and Peclet number, the patterns obtained by the simulations qualitatively agree with the observations in the experiments.

  11. Evaluation of aerodynamic forces acting on oscillating cantilever beams based on the study of the damped flexural vibration of aluminium test samples

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Nuriev, A. N.

    2018-05-01

    The paper is devoted to study of the aerodynamic forces acting on flat cantilever beams performing flexural vibrations in a viscous fluid. Original method for the force evaluation is presented based on analysis of experimental measurements of a logarithmic decrement of vibrations and relative variation in frequency of duralumin test specimens. The theoretical core of the method is based on the classical theory of bending beam oscillations and quasi-two dimensional model of interaction between a beam and a gas. Using the proposed method, extensive series of experiments for a wide range of oscillations parameters were carried out. The processing of the experimental data allowed to establish the global influence of the aerodynamic effects on beam oscillations and the local force characteristics of each cross-section of the beam in the form of universal functions of dimensionless amplitude and dimensionless frequency of oscillation. The obtained estimates of the drag and added mass forces showed a good correspondence with the available numerical and experimental data practically in the entire range of the investigated parameters.

  12. Orbital revolution of a pair of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Kou; Inamura, Takao

    2011-11-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging; the cyclic bubble oscillation was appeared to slow down by capturing images at the framing rate close to the forcing frequency. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along a circular orbit around the center of mass of the orbiting two bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force. The angular velocity of orbital revolution increases linearly with the increase in Bjerknes force.

  13. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  14. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips

    PubMed Central

    Hu, Haibao; Wen, Jun; Bao, Luyao; Jia, Laibing; Song, Dong; Song, Baowei; Pan, Guang; Scaraggi, Michele; Dini, Daniele; Xue, Qunji; Zhou, Feng

    2017-01-01

    Superhydrophobic surfaces have the potential to reduce the viscous drag of liquids by significantly decreasing friction at a solid-liquid interface due to the formation of air layers between solid walls and interacting liquids. However, the trapped air usually becomes unstable due to the finite nature of the domain over which it forms. We demonstrate for the first time that a large surface energy barrier can be formed to strongly pin the three-phase contact line of air/water/solid by covering the inner rotor of a Taylor-Couette flow apparatus with alternating superhydrophobic and hydrophilic circumferential strips. This prevents the disruption of the air layer, which forms stable and continuous air rings. The drag reduction measured at the inner rotor could be as much as 77.2%. Moreover, the air layers not only significantly reduce the strength of Taylor vortexes but also influence the number and position of the Taylor vortex pairs. This has strong implications in terms of energy efficiency maximization for marine applications and reduction of drag losses in, for example, fluid transport in pipelines and carriers. PMID:28879234

  15. High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Joseph

    Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.

  16. Optimizing gas transfer to improve growth rate of Haematococcus pluvialis in a raceway pond with chute and oscillating baffles.

    PubMed

    Yang, Zongbo; Cheng, Jun; Li, Ke; Zhou, Junhu; Cen, Kefa

    2016-08-01

    Up-down chute and oscillating (UCO) baffles were used to generate vortex and oscillating flow field to improve growth rate of Haematococcus pluvialis in a raceway pond. Effects of gas flow rate, solution velocity, and solution depth on solution mass transfer coefficient and mixing time were evaluated using online pH and dissolved oxygen probes. Mass transfer coefficient increased by 1.3 times and mixing time decreased by 33% when UCO baffles were used in the H. pluvialis solution, resulting in an 18% increase in biomass yield with 2% CO2. The H. pluvialis biomass yield further increased to 1.5g/L, and astaxanthin composition accumulated to 29.7mg/L under relatively higher light intensity and salinity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The construction and operation of a water tunnel in application to flow visualization studies of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Olsen, J. H.; Liu, H. T.

    1973-01-01

    The water tunnel which was constructed at the NASA Ames Research Center is described along with the flow field adjacent to an oscillating airfoil. The design and operational procedures of the tunnel are described in detail. Hydrogen bubble and thymol blue techniques are used to visualize the flow field. Results of the flow visualizations are presented in a series of still pictures and a high speed movie. These results show that time stall is more complicated than simple shedding from the leading edge or the trailing edge, particularly at relatively low frequency oscillations comparable to those of a helicopter blade. Therefore, any successful theory for predicting the stall loads on the helicopter blades must treat an irregular separated region rather than a discrete vortex passing over each blade surface.

  18. Steady and unsteady transonic pressure measurements on a clipped delta wing for pitching and control-surface oscillations

    NASA Technical Reports Server (NTRS)

    Hess, Robert W.; Cazier, F. W., Jr.; Wynne, Eleanor C.

    1986-01-01

    Steady and unsteady pressures were measured on a clipped delta wing with a 6-percent circular-arc airfoil section and a leading-edge sweep angle of 50.40 deg. The model was oscillated in pitch and had an oscillating trailing-edge control surface. Measurements were concentrated over a Mach number range from 0.88 to 0.94; less extensive measurements were made at Mach numbers of 0.40, 0.96, and 1.12. The Reynolds number based on mean chord was approximately 10 x 10 to the 6th power. The interaction of wing or control-surface deflection with the formation of shock waves and with a leading-edge vortex generated complex pressure distributions that were sensitive to frequency and to small changes in Mach number at transonic speeds.

  19. Reduction of turbulent skin-friction drag by oscillating discs

    NASA Astrophysics Data System (ADS)

    Wise, Daniel; Ricco, Pierre

    2013-11-01

    A new drag-reduction method, based on the active technique proposed by Ricco & Hahn (2013), i.e. steadily rotating flush-mounted discs, is studied by DNS. The effect of sinusoidally oscillating discs on the turbulent channel-flow drag is investigated at Reτ = 180 , based on the friction velocity of the stationary-wall case and the half channel height. A parametric investigation on the disc diameter, tip velocity and oscillation period yielded a maximum drag reduction of 18.5%. Regions of net power saved, calculated by considering the power spent to enforce the disc motion against the viscous resistance of the fluid, are found to reach up to 6.5% for low disc tip velocities. Significantly, the characteristic time-scale for the oscillating disc forcing is double that for the steadily rotating discs, representing a further step towards industrial implementation. The oscillating disc forcing, similar to the steadily rotating disc forcing, creates streamwise-elongated structures between the discs. These structures - largely unaffected by the periodic wall forcing and persisting throughout the entire period of the oscillation - are the main contributor to the additional Reynolds stresses term created by the disc forcing, and are important for the drag reduction mechanism.

  20. Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations

    NASA Astrophysics Data System (ADS)

    Zhu, Yimei

    2015-03-01

    Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with <5nm resolution and to reveal subtle changes of the gyrotropic motion as the vortex is driven through resonance. Further, in multilayer spin-valve disks, we probed the strongly coupled coaxial vortex motion in the dipolar- and indirect exchange-coupled regimes and unraveled the underlying coherence and modality. Our approach is complementary to X-ray magnetic circular dichroism and is of general interest to the magnetism community as it paves a way to study fundamental spin phenomena with unprecedented resolution and accuracy. Collaborations with S.D. Pollard, J.F. Pulecio, D.A. Arena and K.S. Buchanan are acknowledged. Work supported by DOE-BES, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.

  1. Vortex-induced vibration of two parallel risers: Experimental test and numerical simulation

    NASA Astrophysics Data System (ADS)

    Huang, Weiping; Zhou, Yang; Chen, Haiming

    2016-04-01

    The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys- CFX and model tests. The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers. CFX was used to study the single riser and two parallel risers in 2-8 D spacing considering the coupling effect. Because of the limited width of water channel, only three different riser spacings, 2 D, 3 D, and 4 D, were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation. The results indicate that the lift force changes significantly with the increase in spacing, and in the case of 3 D spacing, the lift force of the two parallel risers reaches the maximum. The vortex shedding of the risers in 3 D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area, thus equalizing the period of drag force to that of lift force. It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased. The phase difference of lift force between the two risers is also different as the spacing changes.

  2. Flow over a cylinder with a hinged-splitter plate

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate regime, the spectra of the oscillations become broadband, and are reminiscent of the change in character of the wake oscillations seen in the earlier fixed-rigid splitter plate case for L/D⩾5.0. In the present case of the hinged-splitter plate, the sudden transition seen as the splitter plate length (L/D) is increased from 3 to 4 may be attributed to the fact that the wake vortices are no longer able to synchronize with the plate motions for larger splitter plate lengths. Hence, as observed in other vortex-induced vibration problems, the oscillations become aperiodic and the amplitude reduces dramatically.

  3. Theoretical analysis of an oscillatory plane Poiseuille flow—A link to the design of vortex flow meter

    NASA Astrophysics Data System (ADS)

    Ma, Huai-Lung; Kuo, Cheng-Hsiung

    2017-05-01

    Theoretical analysis on an oscillatory plane Poiseuille flow is conducted in terms of a non-dimensional ratio (η) of the channel half-width to Stokes' layer thickness. The cyclic velocity profiles, the phase shifts and the magnitudes among the driving pressure gradient, the induced wall shear stress, and the volume flux are investigated. Also, the flow physics at a different ratio η is demonstrated. In this study, the mechanism of the driving pressure gradient and the oscillating volume flux is similar to and can be employed to demonstrate the slit flow in the application of the novel vortex flow meter using a slit cylinder as a shedder. When applied to the novel vortex flow meter, the non-dimensional ratio η can be expressed as the relation of the slit width ratio (S/D), the Strouhal number, and the Reynolds number. Finally, a range of η between 0.97 < η < 20 will be suggested for the vortex flow meter at the design stage. Large values of η are employed at a high Reynolds number, and small η is used for low Reynolds number applications. In the novel vortex flow meters, a cylinder with a normal axial slit of width (S) is employed as the shedder. Due to the primary lock-on, the process of vortex shedding synchronizes with the rhythm of slit flow leading to a stable shedding frequency. The value η is well correlated by the value of ηopt obtained by experiments and shows a one-to-one correspondence to the slit ratio at each Reynolds number. Once the design value of ηopt is determined, the optimal slit ratio can be estimated for a fixed applied Reynolds number at the design stage.

  4. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  5. Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO

    NASA Astrophysics Data System (ADS)

    Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian

    2018-05-01

    The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.

  6. A new method for analyzing the refill process and fabrication of a piezoelectric inkjet printing head for LCD color filter manufacturing

    NASA Astrophysics Data System (ADS)

    Moon, Kang Seok; Choi, Jung Hoon; Choi, Dong-June; Kim, Sun Ho; Hyo Ha, Man; Nam, Hyo-Jin; Kim, Min Soo

    2008-12-01

    This paper presents a method for analyzing the refill process of a piezoelectric inkjet printing head with a high firing frequency for color filter manufacturing. Theoretical and experimental studies on the equivalent length (Leq) versus jetting characteristics were performed. The new model has shown quantitatively the same result compared with a commercialized simulation code. Also it is identified that the refill time increases with the equivalent liquid length (Leq) because the viscous force increases. The inkjet printing head has been designed with a lumped model analysis and fabricated with a silicon wafer (1 0 0) by a MEMS process. To investigate how the equivalent length (Leq) influences the firing frequency, an experiment was conducted using a stroboscope. In the case of colorant ink, it is possible to eject an ink droplet up to 5 kHz with a 40 pl drop volume. On the other hand, the firing frequency calculated with the new model is about 3 kHz under the condition of the equivalent liquid length (Leq), 250 µm. The difference between the new model and experiment may be a result of a mismatch of initial meniscus position due to the meniscus oscillation. Experimentally the meniscus oscillation is observed through an optical measurement with a visualization apparatus and a transparent nozzle. Hence the efficiency of the new model may be enhanced in a high viscosity range. The methods for increasing the firing frequency are to reduce the equivalent length (Leq) and to modify the ink property. Because the former tends to decrease a viscous loss and the latter tends to increase a viscous damping, two parameters should be combined adequately within an allowable drop volume.

  7. Hydrodynamic coupling of two sharp-edged beams vibrating in a viscous fluid

    PubMed Central

    Intartaglia, Carmela; Soria, Leonardo; Porfiri, Maurizio

    2014-01-01

    In this paper, we study flexural vibrations of two thin beams that are coupled through an otherwise quiescent viscous fluid. While most of the research has focused on isolated beams immersed in placid fluids, inertial and viscous hydrodynamic coupling is ubiquitous across a multitude of engineering and natural systems comprising arrays of flexible structures. In these cases, the distributed hydrodynamic loading experienced by each oscillating structure is not only related to its absolute motion but is also influenced by its relative motion with respect to the neighbouring structures. Here, we focus on linear vibrations of two identical beams for low Knudsen, Keulegan–Carpenter and squeeze numbers. Thus, we describe the fluid flow using unsteady Stokes hydrodynamics and we propose a boundary integral formulation to compute pertinent hydrodynamic functions to study the fluid effect. We validate the proposed theoretical approach through experiments on centimetre-size compliant cantilevers that are subjected to underwater base-excitation. We consider different geometric arrangements, beam interdistances and excitation frequencies to ascertain the model accuracy in terms of the relevant non-dimensional parameters. PMID:24511249

  8. FAST TRACK COMMUNICATION: Gyration mode splitting in magnetostatically coupled magnetic vortices in an array

    NASA Astrophysics Data System (ADS)

    Barman, Anjan; Barman, Saswati; Kimura, T.; Fukuma, Y.; Otani, Y.

    2010-10-01

    We present the experimental observation of gyration mode splitting by the time-resolved magneto-optical Kerr effect in an array consisting of magnetostatically coupled Ni81Fe19 discs of 1 µm diameter, 50 nm thickness and inter-disc separations varying between 150 and 270 nm. A splitting of the vortex core gyration mode is observed when the inter-disc separation is 200 nm or less and the splitting is controllable by a bias magnetic field. The observed mode splitting is interpreted by micromagnetic simulations as the normal modes of the vortex cores analogous to the coupled classical oscillators. The splitting depends upon the strength of the inter-disc magnetostatic coupling mediated by magnetic side charges, which depends strongly on the magnetic ground states of the samples.

  9. Asymmetry of the velocity-matching steps in YBCO long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Revin, L. S.; Pankratov, A. L.; Chiginev, A. V.; Masterov, D. V.; Parafin, A. E.; Pavlov, S. A.

    2018-04-01

    We carry out experimental and theoretical investigations into the effect of the vortex chain propagation on the current-voltage characteristics of YBa2Cu3O7-δ (YBCO) long Josephson junctions. Samples of YBCO Josephson junctions, fabricated on 24° [001]-tilt bicrystal substrates, have been measured. The improved technology has allowed us to observe and study the asymmetry of the current-voltage characteristics with opposite magnetic fields (Revin et al 2012 J. Appl. Phys. 114 243903), which we believe occurs due to anisotropy of bicrystal substrates (Kupriyanov et al (2013 JETP Lett. 95 289)). Specifically, we examine the flux-flow resonant steps versus the external magnetic field, and study the differential resistance and its relation to oscillation power for opposite directions of vortex propagation.

  10. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver

    NASA Astrophysics Data System (ADS)

    Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2017-03-01

    This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.

  11. Mechanism of instabilities in turbulent combustion leading to flashback

    NASA Astrophysics Data System (ADS)

    Keller, J. O.; Vaneveld, L.; Ghoniem, A. F.; Daily, J. W.; Oppenheim, A. K.; Korschelt, D.; Hubbard, G. L.

    1981-01-01

    High-speed schlieren cinematography, combined with synchronized pressure transducer records, was used to investigate the mechanism of combustion instabilities leading to flashback. The combustion chamber had an oblong rectangular cross-section to model the essential features of planar flow, and was provided with a rearward facing step acting as a flameholder. As the rich limit was approached, three instability modes were observed: (1) humming - a significant increase in the amplitude of the vortex pattern; (2) buzzing - a large-scale oscillation of the flame; and (3) chucking - a cyclic reformation of the flame, which results in flashback. The mechanism of these phenomena is ascribed to the action of vortices in the recirculation zone and their interactions with the trailing vortex pattern of the turbulent mixing layer behind the step.

  12. Nonlinear Interaction of Waves in Rotating Spherical Layers

    NASA Astrophysics Data System (ADS)

    Zhilenko, D.; Krivonosova, O.; Gritsevich, M.

    2018-01-01

    Flows of a viscous incompressible fluid in a spherical layer that are due to rotational oscillations of its inner boundary at two frequencies with respect to the state of rest are numerically studied. It is found that an increase in the amplitude of oscillations of the boundary at the higher frequency can result in a significant enhancement of the low-frequency mode in a flow near the outer boundary. The direction of propagation of the low-frequency wave changes from radial to meridional, whereas the high-frequency wave propagates in the radial direction in a limited inner region of the spherical layer. The role of the meridional circulation in the energy exchange between spaced waves is demonstrated.

  13. Viscous cavity damping of a microlever in a simple fluid.

    PubMed

    Siria, A; Drezet, A; Marchi, F; Comin, F; Huant, S; Chevrier, J

    2009-06-26

    We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually approaches an infinite wall in parallel geometry. As the gap is decreased from 20 microm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- and nanoelectromechanical applications.

  14. Viscous driving of global oscillations in accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Miranda, Ryan; Horák, Jiří; Lai, Dong

    2015-01-01

    We examine the role played by viscosity in the excitation of global oscillation modes (both axisymmetric and non-axisymmetric) in accretion discs around black holes using two-dimensional hydrodynamic simulations. The turbulent viscosity is modelled by the α-ansatz, with different equations of state. We consider both discs with transonic radial inflows across the innermost stable circular orbit, and stationary discs truncated by a reflecting wall at their inner edge, representing a magnetosphere. In transonic discs, viscosity can excite several types of global oscillation modes. These modes are either axisymmetric with frequencies close to multiples of the maximum radial epicyclic frequency κmax, non-axisymmetric with frequencies close to multiples of the innermost stable orbit frequency ΩISCO, or hybrid modes whose frequencies are linear combinations of these two frequencies. Small values of the viscosity parameter α primarily produce non-axisymmetric modes, while axisymmetric modes become dominant for large α. The excitation of these modes may be related to an instability of the sonic point, at which the radial infall speed is equal to the sound speed of the gas. In discs with a reflective inner boundary, we explore the effect of viscosity on trapped p modes which are intrinsically overstable due to the corotation resonance effect. The effect of viscosity is either to reduce the growth rates of these modes, or to completely suppress them and excite a new class of higher frequency modes. The latter requires that the dynamic viscosity scales positively with the disc surface density, indicating that it is a result of the classic viscous overstability effect.

  15. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  16. Josephson oscillation and self-trapping in momentum space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Feng, Shiping; Yang, Shi-Jie

    2018-04-01

    The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.

  17. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  18. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  19. Pacemakers in large arrays of oscillators with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gabriela; Scheel, Arnd

    2016-02-01

    We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.

  20. Perfect and robust phase-locking of a spin transfer vortex nano-oscillator to an external microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O.

    2014-01-13

    We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-lockingmore » holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.« less

Top