Initial Results in Using a Self-Coherence Method for Detecting Sustained Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Dagle, Jeffery E.
2015-01-01
This paper develops a self-coherence method for detecting sustained oscillations using phasor measurement unit (PMU) data. Sustained oscillations decrease system performance and introduce potential reliability issues. Timely detection of the oscillations at an early stage provides the opportunity for taking remedial reaction. Using high-speed time-synchronized PMU data, this paper details a self-coherence method for detecting sustained oscillation, even when the oscillation amplitude is lower than ambient noise. Simulation and field measurement data are used to evaluate the proposed method’s performance. It is shown that the proposed method can detect sustained oscillations and estimate oscillation frequencies with a low signal-to-noise ratio.more » Comparison with a power spectral density method also shows that the proposed self-coherence method performs better. Index Terms—coherence, power spectral density, phasor measurement unit (PMU), oscillations, power system dynamics« less
Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong
2018-03-01
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).
Detection of forced oscillations in power systems with multichannel methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, James D.
2015-09-30
The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Makingmore » use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.« less
A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, James D.; Tuffner, Francis K.
2016-11-14
Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpartmore » and is suitable for real-world applications.« less
Weak photoacoustic signal detection based on the differential duffing oscillator
NASA Astrophysics Data System (ADS)
Li, Chenjing; Xu, Xuemei; Ding, Yipeng; Yin, Linzi; Dou, Beibei
2018-04-01
In view of photoacoustic spectroscopy theory, the relationship between weak photoacoustic signal and gas concentration is described. The studies, on the principle of Duffing oscillator for identifying state transition as well as determining the threshold value, have proven the feasibility of applying the Duffing oscillator in weak signal detection. An improved differential Duffing oscillator is proposed to identify weak signals with any frequency and ameliorate the signal-to-noise ratio. The analytical methods and numerical experiments of the novel model are introduced in detail to confirm its superiority. Then the signal detection system of weak photoacoustic based on differential Duffing oscillator is constructed, it is the first time that the weak signal detection method with differential Duffing oscillator is applied triumphantly in photoacoustic spectroscopy gas monitoring technology.
Method and apparatus for detecting timing errors in a system oscillator
Gliebe, Ronald J.; Kramer, William R.
1993-01-01
A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.
NASA Astrophysics Data System (ADS)
Deng, Ke; Zhang, Lu; Luo, Mao-Kang
2010-03-01
The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.
Early Oscillation Detection for Hybrid DC/DC Converter Fault Diagnosis
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
This paper describes a novel fault detection technique for hybrid DC/DC converter oscillation diagnosis. The technique is based on principles of feedback control loop oscillation and RF signal modulations, and Is realized by using signal spectral analysis. Real-circuit simulation and analytical study reveal critical factors of the oscillation and indicate significant correlations between the spectral analysis method and the gain/phase margin method. A stability diagnosis index (SDI) is developed as a quantitative measure to accurately assign a degree of stability to the DC/DC converter. This technique Is capable of detecting oscillation at an early stage without interfering with DC/DC converter's normal operation and without limitations of probing to the converter.
Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection
NASA Astrophysics Data System (ADS)
Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi
2016-04-01
The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yanmei; Li, Xinli; Bai, Yan
The measurement of multiphase flow parameters is of great importance in a wide range of industries. In the measurement of multiphase, the signals from the sensors are extremely weak and often buried in strong background noise. It is thus desirable to develop effective signal processing techniques that can detect the weak signal from the sensor outputs. In this paper, two methods, i.e., lock-in-amplifier (LIA) and improved Duffing chaotic oscillator are compared to detect and process the weak signal. For sinusoidal signal buried in noise, the correlation detection with sinusoidal reference signal is simulated by using LIA. The improved Duffing chaoticmore » oscillator method, which based on the Wigner transformation, can restore the signal waveform and detect the frequency. Two methods are combined to detect and extract the weak signal. Simulation results show the effectiveness and accuracy of the proposed improved method. The comparative analysis shows that the improved Duffing chaotic oscillator method can restrain noise strongly since it is sensitive to initial conditions.« less
Chu, Catherine. J.; Chan, Arthur; Song, Dan; Staley, Kevin J.; Stufflebeam, Steven M.; Kramer, Mark A.
2017-01-01
Summary Background High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. New Method The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. Results We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. Comparison with Existing Method The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Conclusions Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. PMID:27988323
Chu, Catherine J; Chan, Arthur; Song, Dan; Staley, Kevin J; Stufflebeam, Steven M; Kramer, Mark A
2017-02-01
High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. Copyright © 2016 Elsevier B.V. All rights reserved.
Homodyne detection of short-range Doppler radar using a forced oscillator model
NASA Astrophysics Data System (ADS)
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-03-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.
Predicting chaos in memristive oscillator via harmonic balance method.
Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai
2012-12-01
This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.
Homodyne detection of short-range Doppler radar using a forced oscillator model
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-01-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000
Time Series Decomposition into Oscillation Components and Phase Estimation.
Matsuda, Takeru; Komaki, Fumiyasu
2017-02-01
Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.
Early Oscillation Detection Technique for Hybrid DC/DC Converters
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s normal operation. This technique eliminates the probing problem of a gain/phase margin method by connecting the power input to a spectral analyzer. Therefore, it is able to evaluate stability for all kinds of hybrid DC/DC converters with or without remote sense pins, and is suitable for real-time and in-circuit testing. This frequency-domain technique is more sensitive to detect oscillation at early stage than the time-domain method using an oscilloscope.
Location identification of closed crack based on Duffing oscillator transient transition
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning
2018-02-01
The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.
Bodenstein, Marc; Boehme, Stefan; Wang, Hemei; Duenges, Bastian; Markstaller, Klaus
2014-11-01
Detection of cyclical recruitment of atelectasis after induction of lavage (LAV) or oleic acid injury (OAI) in mechanically ventilated pigs. Primary hypothesis is that oxygen oscillations within the respiratory cycle can be detected by SpO₂ recordings (direct hint). SpO₂ oscillations reflect shunt oscillations that can only be explained by cyclical recruitment of atelectasis. Secondary hypothesis is that electrical impedance tomography (EIT) depicts specific regional changes of lung aeration and of pulmonary mechanical properties (indirect hint). Three groups (each n = 7) of mechanically ventilated pigs were investigated applying above mentioned methods before and repeatedly after induction of lung injury: (1) sham treated animals (SHAM), (2) LAV, and (3) OAI. Early oxygen oscillations occurred in the LAV group (mean calculated amplitude: 73.8 mmHg reflecting shunt oscillation of 11.2% in mean). In the OAI group oxygen oscillations occurred hours after induction of lung injury (mean calculated amplitude: 57.1 mmHg reflecting shunt oscillations of 8.4% in mean). The SHAM group had no relevant oxygen oscillations (<30 mmHg, shunt oscillations < 1.5%). Synchronously to oxygen oscillations, EIT depicted (1) a decrease of ventilation in dorsal areas, (2) an increase in ventral areas, (3) a decrease of especially dependent expiratory impedance, 3) an increase in late inspiratory flow especially in the dependant areas, (4) an increase in the speed of peak expiratory flow (PEF), and (5) a decrease of dorsal late expiratory flow. SpO2 and EIT recordings detect events that are interpreted as cyclical recruitment of atelectasis.
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.
2018-05-01
In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.
Simulation of human decision making
Forsythe, J Chris [Sandia Park, NM; Speed, Ann E [Albuquerque, NM; Jordan, Sabina E [Albuquerque, NM; Xavier, Patrick G [Albuquerque, NM
2008-05-06
A method for computer emulation of human decision making defines a plurality of concepts related to a domain and a plurality of situations related to the domain, where each situation is a combination of at least two of the concepts. Each concept and situation is represented in the computer as an oscillator output, and each situation and concept oscillator output is distinguishable from all other oscillator outputs. Information is input to the computer representative of detected concepts, and the computer compares the detected concepts with the stored situations to determine if a situation has occurred.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2004-05-01
In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.
Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.
2011-01-01
An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804
Advances in SAW gas sensors based on the condensate-adsorption effect.
Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang
2011-01-01
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
NASA Astrophysics Data System (ADS)
Balovnev, A. V.; Vizgalov, I. V.; Salahutdinov, G. H.
2016-01-01
In this paper we studied the non-self mode of the auto-oscillation secondary- emission discharge (ASED) in a longitudinal magnetic field with autonomous electron gun to ignite the primary beam-plasma discharge (PPD).
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
NASA Astrophysics Data System (ADS)
Lu, Jia; Zhang, Xiaoxing; Xiong, Hao
The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.
NASA Astrophysics Data System (ADS)
Li, J.; Santos, J. T.; Sillanpää, M. A.
2018-02-01
A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below 10^{-13} m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.
NASA Astrophysics Data System (ADS)
Li, J.; Santos, J. T.; Sillanpää, M. A.
2018-06-01
A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below 10^{-13} m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.
Transfer of non-Gaussian quantum states of mechanical oscillator to light
NASA Astrophysics Data System (ADS)
Filip, Radim; Rakhubovsky, Andrey A.
2015-11-01
Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.
Chemical sensor with oscillating cantilevered probe
Adams, Jesse D
2013-02-05
The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.
Power system distributed oscilation detection based on Synchrophasor data
NASA Astrophysics Data System (ADS)
Ning, Jiawei
Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed methods could achieve faster and more reliable results. Subsequently, this claim is tested and approved by test results of IEEE Two-area simulation test system and real power system historian synchrophasor data case studies.
Forced oscillations of cracked beam under the stochastic cyclic loading
NASA Astrophysics Data System (ADS)
Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.
2018-05-01
An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen F; Moore, James A
Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.
Modulation and detection of single neuron activity using spin transfer nano-oscillators
NASA Astrophysics Data System (ADS)
Algarin, Jose Miguel; Ramaswamy, Bharath; Venuti, Lucy; Swierzbinski, Matthew; Villar, Pablo; Chen, Yu-Jin; Krivorotov, Ilya; Weinberg, Irving N.; Herberholz, Jens; Araneda, Ricardo; Shapiro, Benjamin; Waks, Edo
2017-09-01
The brain is a complex network of interconnected circuits that exchange electrical signals with each other. These electrical signals provide insight on how neural circuits code information, and give rise to sensations, thoughts, emotions and actions. Currents methods to detect and modulate these electrical signals use implanted electrodes or optical fields with light sensitive dyes in the brain. These techniques require complex surgeries or suffer low resolution. In this talk we explore a new method to both image and stimulate single neurons using spintronics. We propose using a Spin Transfer Nano-Oscillators (STNOs) as a nanoscale sensor that converts neuronal action potentials to microwave field oscillations that can be detected wirelessly by magnetic induction. We will describe our recent proof-of-concept demonstration of both detection and wireless modulation of neuronal activity using STNOs. For detection we use electrodes to connect a STNO to a lateral giant crayfish neuron. When we stimulate the neuron, the STNO responds to the neuronal activity with a corresponding microwave signal. For modulation, we stimulate the STNOs wirelessly using an inductively coupled solenoid. The STNO rectifies the induced microwave signal to produce a direct voltage. This direct voltage from the STNO, when applied in the vicinity of a mammalian neuron, changes the frequency of electrical signals produced by the neuron.
Self-seeded single-frequency laser peening method
Dane, C Brent [Livermore, CA; Hackel, Lloyd [Livermore, CA; Harris, Fritz B [Rocklin, CA
2009-08-11
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
Self-seeded single-frequency laser peening method
DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B
2012-06-26
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
Hetrick, Vaughn L.; Berke, Joshua D.
2017-01-01
The capacity for using external cues to guide behavior (“cue detection”) constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta–gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding (“cue detection”) is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to this process; however, the relationship between these neuronal mechanisms is not well understood. Using a combination of in vivo neurochemistry, neurophysiology, and pharmacological methods, we demonstrate that cue-evoked acetylcholine release, through distinct actions at both nicotinic and muscarinic receptors, triggers a procession of neural oscillations that map onto the multiple stages of cue detection. Our data offer new insights into cholinergic function by revealing the temporally orchestrated changes in prefrontal network synchrony modulated by acetylcholine release during cue detection. PMID:28213446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.
2010-07-31
Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper developed a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detect ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliablymore » and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis.« less
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas
2014-08-26
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G; Tringe, Joseph W
2014-12-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
2016-08-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
NASA Astrophysics Data System (ADS)
Skokos, C.; Bountis, T.; Antonopoulos, C.
2008-12-01
The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi-dimensional Hamiltonian systems. We propose an efficient computation of the GALIk indices, which represent volume elements of k randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long-time behavior in the case of regular orbits lying on low-dimensional tori. The GALIk indices are applied to rapidly detect chaotic oscillations, identify low-dimensional tori of Fermi-Pasta-Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.
NASA Astrophysics Data System (ADS)
Van Reeth, T.; Tkachenko, A.; Aerts, C.; Pápics, P. I.; Degroote, P.; Debosscher, J.; Zwintz, K.; Bloemen, S.; De Smedt, K.; Hrudkova, M.; Raskin, G.; Van Winckel, H.
2015-02-01
Context. The analysis of stellar oscillations is one of the most reliable ways to probe stellar interiors. Recent space missions such as Kepler have provided us with an opportunity to study these oscillations with unprecedented detail. For many multi-periodic pulsators such as γ Doradus stars, this led to the detection of dozens to hundreds of oscillation frequencies that could not be found from ground-based observations. Aims: We aim to detect non-uniform period spacings in the Fourier spectra of a sample of γ Doradus stars observed by Kepler. Such detection is complicated by both the large number of significant frequencies in the space photometry and by overlapping non-equidistant rotationally split multiplets. Methods: Guided by theoretical properties of gravity-mode oscillation of γ Doradus stars, we developed a period-spacing detection method and applied it to Kepler observations of a few stars, after having tested the performance from simulations. Results: The application of the technique resulted in the clear detection of non-uniform period spacing series for three out of the five treated Kepler targets. Disadvantages of the technique are also discussed, and include the disability to distinguish between different values of the spherical degree and azimuthal order of the oscillation modes without additional theoretical modelling. Conclusions: Despite the shortcomings, the method is shown to allow solid detections of period spacings for γ Doradus stars, which will allow future asteroseismic analyses of these stars. Based on data gathered with the NASA Discovery mission Kepler and the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany.Table A.1 is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A17
Generation of a CW local oscillator signal using a stabilized injection locked semiconductor laser
NASA Astrophysics Data System (ADS)
Pezeshki, Jonah Massih
In high speed-communications, it is desirable to be able to detect small signals while maintaining a low bit-error rate. Conventional receivers for high-speed fiber optic networks are Amplified Direct Detectors (ADDs) that use erbium-doped fiber amplifiers (EDFAs) before the detector to achieve a suitable sensitivity. In principle, a better method for obtaining the maximum possible signal to noise ratio is through the use of homodyne detection. The major difficulty in implementing a homodyne detection system is the generation of a suitable local oscillator signal. This local oscillator signal must be at the same frequency as the received data signal, as well as be phase coherent with it. To accomplish this, a variety of synchronization techniques have been explored, including Optical Phase-Lock Loops (OPLL), Optical Injection Locking (OIL) with both Fabry-Perot and DFB lasers, and an Optical Injection Phase-Lock Loop (OIPLL). For this project I have implemented a method for regenerating a local oscillator from a portion of the received optical signal. This regenerated local oscillator is at the same frequency, and is phase coherent with, the received optical signal. In addition, we show that the injection locking process can be electronically stabilized by using the modulation transfer ratio of the slave laser as a monitor, given either a DFB or Fabry-Perot slave laser. We show that this stabilization technique maintains injection lock (given a locking range of ˜1GHz) for laser drift much greater than what is expected in a typical transmission system. In addition, we explore the quality of the output of the slave laser, and analyze its suitability as a local oscillator signal for a homodyne receiver.
Damage detection of civil infrastructures with piezoelectric oscillator sensors
NASA Astrophysics Data System (ADS)
Roh, Y. R.; Kim, D. Y.; Park, S. H.; Yun, C. B.
2006-03-01
Many researches have been reported on the condition monitoring of civil infrastructures by means of piezoelectric sensors. Most of them made use of the impedance change of the piezoelectric device in relation to the creation of internal damages to the structure. The impedance measurement is a well accepted method in the piezoelectric sensor area, and has been proved by many authors to be useful for civil structure diagnosis. However, the impedance measurement normally requires sophisticated equipment and analysis technology. For more general and wide application of the piezoelectric diagnosis tool, a new methodology is desired to overcome the limitations of the impedance measurement. This paper presents the feasibility of a piezoelectric oscillator sensor to detect the damages in civil infrastructures. The oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric thickness mode vibrator to be attached to the structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of the resonant frequency of the structure. The oscillator sensors can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified in this work with a sample aluminum plate where artificial cracks of different depth were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of the plate with cracks. Performance of the oscillator sensor was also compared with that of its conventional counterpart, i.e. impedance measurement, to manifest the superiority of the oscillator sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.
2010-02-28
Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliablymore » and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.« less
NASA Astrophysics Data System (ADS)
Robles, Francisco E.; Zhu, Yizheng; Lee, Jin; Sharma, Sheela; Wax, Adam
2011-03-01
We present Fourier domain low coherence interferometry (fLCI) applied to the detection of preneoplastic changes in the colon using the ex-vivo azoxymethane (AOM) rat carcinogenesis model. fLCI measures depth resolved spectral oscillations, also known as local oscillations, resulting from coherent fields induced by the scattering of cell nuclei. The depth resolution of fLCI permits nuclear morphology measurements within thick tissues, making the technique sensitive to the earliest stages of precancerous development. To achieve depth resolved spectroscopic analysis, we use the dual window method, which obtains simultaneously high spectral and depth resolution and yields access to the local oscillations. The results show highly statistically significant differences between the AOM-treated and control group samples. Further, the results suggest that fLCI may be used to detect the field effect of carcinogenesis, in addition to identifying specific areas where more advanced neoplastic development has occurred.
Water-absorbing capacitor system for measuring relative humidity
NASA Technical Reports Server (NTRS)
Laue, Eric G. (Inventor)
1987-01-01
A method and apparatus using a known water-absorbent polymer as a capacitor which is operated at a dc voltage for measuring relative humidity is presented. When formed as a layer between porous electrically-conductive electrodes and operated in an RC oscillator circuit, the oscillator frequency varies inversely with the partial pressure of the moisture to be measured. In a preferred embodiment, the capacitor is formed from Nafion and is operated at a low dc voltage with a resistor as an RC circuit in an RC oscillator. At the low voltage, the leakage current is proper for oscillation over a satisfactory range. The frequency of oscillation varies in an essentially linear fashion with relative humidity which is represented by the moisture being absorbed into the Nafion. The oscillation frequency is detected by a frequency detector.
Mobile/android application for QRS detection using zero cross method
NASA Astrophysics Data System (ADS)
Rizqyawan, M. I.; Simbolon, A. I.; Suhendra, M. A.; Amri, M. F.; Kusumandari, D. E.
2018-03-01
In automatic ECG signal processing, one of the main topics of research is QRS complex detection. Detecting correct QRS complex or R peak is important since it is used to measure several other ECG metrics. One of the robust methods for QRS detection is Zero Cross method. This method uses an addition of high-frequency signal and zero crossing count to detect QRS complex which has a low-frequency oscillation. This paper presents an application of QRS detection using Zero Cross algorithm in the Android-based system. The performance of the algorithm in the mobile environment is measured. The result shows that this method is suitable for real-time QRS detection in a mobile application.
Fleyer, Michael; Horowitz, Moshe
2018-04-02
We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.
Detecting scaling in the period dynamics of multimodal signals: Application to Parkinsonian tremor
NASA Astrophysics Data System (ADS)
Sapir, Nir; Karasik, Roman; Havlin, Shlomo; Simon, Ely; Hausdorff, Jeffrey M.
2003-03-01
Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spectrum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical processes. In general, this type of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear oscillation or a superposition of (multiple) independent modes of oscillation. A broad peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the correlation (scaling) properties in the period dynamics of multimodal oscillations, in order to distinguish between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not be simple harmonics, as might be initially assumed.
Howe, William M; Gritton, Howard J; Lusk, Nicholas A; Roberts, Erik A; Hetrick, Vaughn L; Berke, Joshua D; Sarter, Martin
2017-03-22
The capacity for using external cues to guide behavior ("cue detection") constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta-gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding ("cue detection") is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to this process; however, the relationship between these neuronal mechanisms is not well understood. Using a combination of in vivo neurochemistry, neurophysiology, and pharmacological methods, we demonstrate that cue-evoked acetylcholine release, through distinct actions at both nicotinic and muscarinic receptors, triggers a procession of neural oscillations that map onto the multiple stages of cue detection. Our data offer new insights into cholinergic function by revealing the temporally orchestrated changes in prefrontal network synchrony modulated by acetylcholine release during cue detection. Copyright © 2017 the authors 0270-6474/17/373215-16$15.00/0.
Detection of the secondary meridional circulation associated with the quasi-biennial oscillation
NASA Astrophysics Data System (ADS)
Ribera, P.; PeñA-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; HernáNdez, E.
2004-09-01
The quasi-biennial oscillation (QBO) signal in stratospheric zonal and meridional wind, temperature, and geopotential height fields is analyzed based on the use of the National Centers for Environmental Prediction (NCEP) reanalysis (1958-2001). The multitaper method-singular value decomposition (MTM-SVD), a multivariate frequency domain analysis method, is used to detect significant and spatially coherent narrowband oscillations. The QBO is found as the most intense signal in the stratospheric zonal wind. Then, the MTM-SVD method is used to determine the patterns induced by the QBO at every stratospheric level and data field. The secondary meridional circulation associated with the QBO is identified in the obtained patterns. This circulation can be characterized by negative (positive) temperature anomalies associated with adiabatic rising (sinking) motions over zones of easterly (westerly) wind shear and over the subtropics and midlatitudes, while meridional convergence and divergence levels are found separated by a level of maximum zonal wind shear. These vertical and meridional motions form quasi-symmetric circulation cells over both hemispheres, though less intense in the Southern Hemisphere.
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN
2011-02-01
Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.
1979-11-01
infrared detectors produce signals which are proportional to the detected reflected radia- tion at the wavelengths k, and A,. A processing channel is con...instrument including an oscillator for sup- T___ plying AC energy to a transducer. The oscillator is keyed on /I by a multvibrator which produces clock pulses... includes dams including such units when installed, and methods of damming water flow. o- 3.786.640 .MEANS AND METHOD FOR PRODUCING STEPPED CONCRETE SLOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kevin J.; Parke, Stephen J.
Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's mattermore » density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.« less
A ‘reader’ unit of the chemical computer
Smelov, Pavel S.
2018-01-01
We suggest the main principals and functional units of the parallel chemical computer, namely, (i) a generator (which is a network of coupled oscillators) of oscillatory dynamic modes, (ii) a unit which is able to recognize these modes (a ‘reader’) and (iii) a decision-making unit, which analyses the current mode, compares it with the external signal and sends a command to the mode generator to switch it to the other dynamical regime. Three main methods of the functioning of the reader unit are suggested and tested computationally: (a) the polychronization method, which explores the differences between the phases of the generator oscillators; (b) the amplitude method which detects clusters of the generator and (c) the resonance method which is based on the resonances between the frequencies of the generator modes and the internal frequencies of the damped oscillations of the reader cells. Pro and contra of these methods have been analysed. PMID:29410852
Kepler observations of the asteroseismic binary HD 176465
NASA Astrophysics Data System (ADS)
White, T. R.; Benomar, O.; Silva Aguirre, V.; Ball, W. H.; Bedding, T. R.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Garcia, R. A.; Gizon, L.; Stello, D.; Aigrain, S.; Antia, H. M.; Appourchaux, T.; Bazot, M.; Campante, T. L.; Creevey, O. L.; Davies, G. R.; Elsworth, Y. P.; Gaulme, P.; Handberg, R.; Hekker, S.; Houdek, G.; Howe, R.; Huber, D.; Karoff, C.; Marques, J. P.; Mathur, S.; McQuillan, A.; Metcalfe, T. S.; Mosser, B.; Nielsen, M. B.; Régulo, C.; Salabert, D.; Stahn, T.
2017-05-01
Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler. We carefully analysed the system's power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementaryparameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0 ± 0.5 Gyr old. The two components of HD 176465 are young physically-similar oscillating solar analogues, the first such system to be found, and provide important constraints for stellar evolution and asteroseismology.
Accelerator-based neutrino oscillation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Deborah A.; /Fermilab
2007-12-01
Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use,more » or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.« less
Detecting Solar-like Oscillations in Red Giants with Deep Learning
NASA Astrophysics Data System (ADS)
Hon, Marc; Stello, Dennis; Zinn, Joel C.
2018-05-01
Time-resolved photometry of tens of thousands of red giant stars from space missions like Kepler and K2 has created the need for automated asteroseismic analysis methods. The first and most fundamental step in such analysis is to identify which stars show oscillations. It is critical that this step be performed with no, or little, detection bias, particularly when performing subsequent ensemble analyses that aim to compare the properties of observed stellar populations with those from galactic models. However, an efficient, automated solution to this initial detection step still has not been found, meaning that expert visual inspection of data from each star is required to obtain the highest level of detections. Hence, to mimic how an expert eye analyzes the data, we use supervised deep learning to not only detect oscillations in red giants, but also to predict the location of the frequency at maximum power, ν max, by observing features in 2D images of power spectra. By training on Kepler data, we benchmark our deep-learning classifier against K2 data that are given detections by the expert eye, achieving a detection accuracy of 98% on K2 Campaign 6 stars and a detection accuracy of 99% on K2 Campaign 3 stars. We further find that the estimated uncertainty of our deep-learning-based ν max predictions is about 5%. This is comparable to human-level performance using visual inspection. When examining outliers, we find that the deep-learning results are more likely to provide robust ν max estimates than the classical model-fitting method.
The eclipsing binary star RZ Cas: accretion-driven variability of the multimode oscillation spectrum
NASA Astrophysics Data System (ADS)
Mkrtichian, D. E.; Lehmann, H.; Rodríguez, E.; Olson, E.; Kim, S.-L.; Kusakin, A. V.; Lee, J. W.; Youn, J.-H.; Kwon, S.-G.; López-González, M. J.; Janiashvili, E.; Tiwari, S. K.; Joshi, Santosh; Lampens, P.; Van Cauteren, P.; Glazunova, L.; Gamarova, A.; Grankin, K. N.; Rovithis-Livaniou, E.; Svoboda, P.; Uhlar, R.; Tsymbal, V.; Kokumbaeva, R.; Urushadze, T.; Kuratov, K.; Shin, H.-C.; Kang, Y.-W.; Soonthornthum, B.
2018-04-01
We analysed photometric time series of the active, semidetached Algol-type system RZ Cas obtained in 1999-2009, in order to search for seasonal and short-term variations in the oscillation spectrum of RZ Cas A. The orbital period shows ±1 s cyclic variations on time-scales of 6-9 years. We detected six low-degree p-mode oscillations with periods between 22.3 and 26.22 min and obtained safe mode identifications using the periodic spatial filter method. The amplitudes and frequencies of all modes vary.
A straightforward method to compute average stochastic oscillations from data samples.
Júlvez, Jorge
2015-10-19
Many biological systems exhibit sustained stochastic oscillations in their steady state. Assessing these oscillations is usually a challenging task due to the potential variability of the amplitude and frequency of the oscillations over time. As a result of this variability, when several stochastic replications are averaged, the oscillations are flattened and can be overlooked. This can easily lead to the erroneous conclusion that the system reaches a constant steady state. This paper proposes a straightforward method to detect and asses stochastic oscillations. The basis of the method is in the use of polar coordinates for systems with two species, and cylindrical coordinates for systems with more than two species. By slightly modifying these coordinate systems, it is possible to compute the total angular distance run by the system and the average Euclidean distance to a reference point. This allows us to compute confidence intervals, both for the average angular speed and for the distance to a reference point, from a set of replications. The use of polar (or cylindrical) coordinates provides a new perspective of the system dynamics. The mean trajectory that can be obtained by averaging the usual cartesian coordinates of the samples informs about the trajectory of the center of mass of the replications. In contrast to such a mean cartesian trajectory, the mean polar trajectory can be used to compute the average circular motion of those replications, and therefore, can yield evidence about sustained steady state oscillations. Both, the coordinate transformation and the computation of confidence intervals, can be carried out efficiently. This results in an efficient method to evaluate stochastic oscillations.
Multimodality language mapping in patients with left-hemispheric language dominance on Wada test
Kojima, Katsuaki; Brown, Erik C.; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi
2012-01-01
Objective We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. Methods We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Results Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. Conclusions Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. Significance Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. PMID:22503906
NASA Astrophysics Data System (ADS)
Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens
2016-08-01
We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.
Radar analysis of free oscillations of rail for diagnostics defects
NASA Astrophysics Data System (ADS)
Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.
2018-05-01
One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.
Imaging of neural oscillations with embedded inferential and group prevalence statistics.
Donhauser, Peter W; Florin, Esther; Baillet, Sylvain
2018-02-01
Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience.
Imaging of neural oscillations with embedded inferential and group prevalence statistics
2018-01-01
Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience. PMID:29408902
Maximum Temperature Detection System for Integrated Circuits
NASA Astrophysics Data System (ADS)
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
NASA Astrophysics Data System (ADS)
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
Apparatus and method for gas turbine active combustion control system
NASA Technical Reports Server (NTRS)
Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)
2011-01-01
An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.
Integration of a Self-Coherence Algorithm into DISAT for Forced Oscillation Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, James D.; Tuffner, Francis K.; Amidan, Brett G.
2015-03-03
With the increasing number of phasor measurement units on the power system, behaviors typically not observable on the power system are becoming more apparent. Oscillatory behavior on the power system, notably forced oscillations, are one such behavior. However, the large amounts of data coming from the PMUs makes manually detecting and locating these oscillations difficult. To automate portions of the process, an oscillation detection routine was coded into the Data Integrity and Situational Awareness Tool (DISAT) framework. Integration into the DISAT framework allows forced oscillations to be detected and information about the event provided to operational engineers. The oscillation detectionmore » algorithm integrates with the data handling and atypical data detecting capabilities of DISAT, building off of a standard library of functions. This report details that integration with information on the algorithm, some implementation issues, and some sample results from the western United States’ power grid.« less
Han, Liang; Ding, Yongjie; Wei, Liqiu; Yu, Daren
2014-06-01
This paper provides a method to measure the amplitude of low frequency oscillation under the on-track working condition, and realizes the sampling by means of adding the circuit design of sampling, low pass filtering by 3 dB at 48.2 kHz, detection and integrating in the filtering unit. The experimental results prove that the measuring device of merely 0.8 g can quantitatively reflect the amplitude of low frequency oscillation in Hall thruster and the maximum deviation of experiment data and theory data is 10% FS.
Estimation of the breaking of rigor mortis by myotonometry.
Vain, A; Kauppila, R; Vuori, E
1996-05-31
Myotonometry was used to detect breaking of rigor mortis. The myotonometer is a new instrument which measures the decaying oscillations of a muscle after a brief mechanical impact. The method gives two numerical parameters for rigor mortis, namely the period and decrement of the oscillations, both of which depend on the time period elapsed after death. In the case of breaking the rigor mortis by muscle lengthening, both the oscillation period and decrement decreased, whereas, shortening the muscle caused the opposite changes. Fourteen h after breaking the stiffness characteristics of the right and left m. biceps brachii, or oscillation periods, were assimilated. However, the values for decrement of the muscle, reflecting the dissipation of mechanical energy, maintained their differences.
NASA Astrophysics Data System (ADS)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less
Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E
2007-03-01
A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc
Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention
NASA Technical Reports Server (NTRS)
Christie, R. J.; Hartwig, J. W.
2014-01-01
Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.
Lateral position detection and control for friction stir systems
Fleming, Paul [Boulder, CO; Lammlein, David H [Houston, TX; Cook, George E [Brentwood, TN; Wilkes, Don Mitchell [Nashville, TN; Strauss, Alvin M [Nashville, TN; Delapp, David R [Ashland City, TN; Hartman, Daniel A [Fairhope, AL
2011-11-08
Friction stir methods are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.
Decay-less kink oscillations in coronal loops
NASA Astrophysics Data System (ADS)
Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.
2013-12-01
Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org
Self-seeded single-frequency solid-state ring laser and system using same
Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.
2007-02-20
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
NASA Astrophysics Data System (ADS)
Vedruccio, Clarbruno; Ricci Vedruccio, Carla
2011-12-01
A new paper by Pokorny, Vedruccio, Cifra, Kucera, titled Cancer physics: Diagnostics based on damped cellular elasto-electrical vibrations in microtubules, recently available on Eur. Biophys. J., discloses the mechanism of active grown cancer tissues interaction with a Non- Linear Resonance Interaction (NLRI) Bioscanner Trimprob diagnostic device that is certified and ready to be used to investigate suspected cases of disease and cancer. This technology spreads early capabilities of cancer detection by means of low level radiofrequency oscillations in UHF band. The system is based on an unique and extremely innovative non- linear radiofrequency oscillator working on 462-465 MHz plus the harmonics. The diseased tissues suspected of cancer, are irradiated by means of a handy probe near field emission, while a spectrum analyzer placed in the far field detects by means of a small antenna, the oscillator interaction within the tissues. The Bioscanner is characterized by a high dynamic range, in the order of 30 or more decibel, and is useful for detection of small cancer agglomerates, if used by a well trained operator. At the resonance, the free running oscillator locks-in on the specific interaction frequency, in a sharp frequency window centered on 462 MHz; the resulting effect is evidenced by a deep decrease of the 462 MHz spectral line propagation in the far field around the oscillator probe. The NLRI provides a selective characterization, like a sort of a electronic biopsy response of biologic tissues in support of modern imaging diagnostics. Further to existing literature describing methods for cancer detections by means of electromagnetic fields this paper shows this innovative in vivo medical diagnostic equipment and some clinical applications.
Automated asteroseismic peak detections
NASA Astrophysics Data System (ADS)
García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.
2018-05-01
Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.
Fast fMRI can detect oscillatory neural activity in humans.
Lewis, Laura D; Setsompop, Kawin; Rosen, Bruce R; Polimeni, Jonathan R
2016-10-25
Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG-fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less
Impact of the North Atlantic Oscillation on winter precipitation totals in Slovakia
NASA Astrophysics Data System (ADS)
Leskova, Livia; Stastny, Pavel
2013-04-01
The North Atlantic Oscillation (NAO) is the most important circulation mode in the Northern Hemisphere, which impacts climate in Europe in various ways. The strongest impacts of oscillation on air temperature and precipitation regime are detected in Scandinavia and Mediterranean region, but impacts have opposite effect. Therefore, assessment of the relation between NAO and precipitation totals seems to be interesting in Slovakia, because of the country location in the centre between above mentioned regions. Our former research detected only the relation between NAO and a winter precipitation totals in Slovakia. More detailed aspects of this relation is analysed in this paper. A correlation method was used at two resolution levels, which detected opposite spatial impact of NAO on above mentioned seasonal precipitation. The first generalised level was based on the precipitation regions, which were distinguished on the base of characteristic precipitation regime of individual regions. The second level was more detailed and the correlation method was applied on data of every individual rain gauge station from the set of 202 rain gauge stations with complete data for period 1901 - 2010 in Slovakia. In the northern part of the country (Orava and Kysuce regions), there was found the positive correlation. Increase in the winter precipitation totals was recorded in the same regions and general precipitation trend in this area was similar to the trend in used Hurrell oscillation index. It means, following the increasing trend in oscillation course, we can also expect the increase in precipitation totals in these regions in the near future. In a southward direction, this correlation changed to the negative values and the most negative correlation coefficients were reached in the lowland regions (Podunajská and Východoslovenská nížina) and in the region of Juhoslovenská kotlina. This last mentioned region is located in multiple precipitation shadow of Carpathians, whereas the precipitation shadow is lower in other regions. Therefore, we suppose, the impact of NAO is strongly influenced by barrier effect of Carpathian Mountains. It can also be expected the important impact of Mediterranean oscillation in the last mentioned regions. ACKNOWLEDGEMENT The article was prepared with the support of grant VEGA 1/1155/12.
An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble
Liu, Yuan; Yuan, Baohong
2013-01-01
As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677
Coherent Detection of High-Rate Optical PPM Signals
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Fernandez, Michela Munoz
2006-01-01
A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to overcome thermal noise in the receiver circuits: this is what makes it possible to achieve near-quantum-limited detection in the presence of strong background. Following quantum-limited coherent detection, the outputs of the individual photodetectors are automatically aligned in phase by use of one or more adaptive array compensation algorithms [e.g., the least-mean-square (LMS) algorithm]. Then the outputs are combined and the resulting signal is processed to extract the high-rate information, as though the PPM signal were received by a single photodetector. In a continuing series of experiments to test this method (see Fig. 1), the local oscillator has a wavelength of 1,064 nm, and another laser is used as a signal transmitter at a slightly different wavelength to establish an IF of about 6 MHz. There are 16 photodetectors in a 4 4 focal-plane array; the detector outputs are digitized at a sampling rate of 25 MHz, and the signals in digital form are combined by use of the LMS algorithm. Convergence of the adaptive combining algorithm in the presence of simulated atmospheric turbulence for optical PPM signals has already been demonstrated in the laboratory; the combined output is shown in Fig. 2(a), and Fig. 2(b) shows the behavior of the phase of the combining weights as a function of time (or samples). We observe that the phase of the weights has a sawtooth shape due to the continuously changing phase in the down-converted output, which is not exactly at zero frequency. Detailed performance analysis of this coherent free-space optical communication system in the presence of simulated atmospheric turbulence is currently under way.
Convection of tin in a Bridgman system. II - An electrochemical method for detecting flow regimes
NASA Technical Reports Server (NTRS)
Sears, B.; Fripp, A. L.; Debnam, W. J., Jr.; Woodell, G. A.; Anderson, T. J.; Narayanan, R.
1992-01-01
An ampoule was designed in order to obtain local flow behavior of the flow fields for convection of tin in a vertical Bridgman configuration. Multiple electrochemical cells were located along the periphery of the ampoule. Oxygen was titrated into the ampoule at one of the cell locations using a potentiostat and the concentration of oxygen was monitored at the other cell locations by operating the cells in a galvanic mode. Onset of oscillations were detected by means of thermocouples. We conclude that the flows are generally three dimensional for an aspect ratio of 5. Results on oscillations concurred with those of earlier workers. Suggestions for improved designs were made.
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
Neutrino oscillation processes in a quantum-field-theoretical approach
NASA Astrophysics Data System (ADS)
Egorov, Vadim O.; Volobuev, Igor P.
2018-05-01
It is shown that neutrino oscillation processes can be consistently described in the framework of quantum field theory using only the plane wave states of the particles. Namely, the oscillating electron survival probabilities in experiments with neutrino detection by charged-current and neutral-current interactions are calculated in the quantum field-theoretical approach to neutrino oscillations based on a modification of the Feynman propagator in the momentum representation. The approach is most similar to the standard Feynman diagram technique. It is found that the oscillating distance-dependent probabilities of detecting an electron in experiments with neutrino detection by charged-current and neutral-current interactions exactly coincide with the corresponding probabilities calculated in the standard approach.
Preparation of a second station for the measurement of solar oscillations of low degree 'l'
NASA Technical Reports Server (NTRS)
Cacciani, A.; Fabbri, F.; Ricci, D.; Rosati, P.; Marquedant, R.; Smith, E.
1990-01-01
An observing station to detect low-degree global solar oscillations is already operational at the Jet Propulsion Laboratory. A second station for continuative measurements of such oscillations has recently been installed and successfully tested in Rome. The high transmission and stability of the magneto-optical filter (MOF) coupled with the lock-in amplifier technique allow analog and real-time detection of oscillation modes with a noise level of only a few cm/s. Observing runs and estimates of the signal-to-noise ratio are shown in time and frequency domains. Routine observations will establish whether the MOF sensitivity and stability are suitable for the detection of stellar oscillations.
The Karmen2 quest for νμ → νe oscillations
NASA Astrophysics Data System (ADS)
Steidl, M.; Karmen Collaboration
2002-07-01
Neutrino oscillations are a sensitive method to probe neutrinos for masses. The neutrino experiment K ARMEN is searching for νμ → νe oscillations at the neutron spallation source ISIS by using νμ from the decay at rest μ + → e + + ν e + νμ. The appearance of an electron-antineurino νe is detected via the inverse beta reaction p ( νe, e+) n on the free protons of the detector, which is basically a segmented tank with a volume of 65 m3, filled with liquid scintillator. Analyzing the data set recorded from Feb.1997 up to March 2000 the search of νe appearance yields no hints for neutrino oscillations. Applying a likelihood method to the measured event sample of 11 events (background expectation 12.3 events), we deduce an upper limit of sin 2(2Θ) < 1.3 · 10 -3 for large δ m2 > 100 eV 2 and δ m2 ″ 0.049 eV 2 for sin 2(2Θ)=1. Due to these results the parameter space of the claim νμ → νe oscillations by the LSND experiment is strongly restricted and thus the LSND result is not confirmed.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.
1987-01-01
Eye movements and subjective detection of acceleration were measured on human experimental subjects during vestibular sled acceleration during the D1 Spacelab Mission. Methods and results are reported on the time to detection of small acceleration steps, the threshold for detection of linear acceleration, perceived motion path, and CLOAT. A consistently shorter time to detection of small acceleration steps is found. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth.
Room-temperature quantum noise limited spectrometry and methods of the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sensemore » a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.« less
Epochs of phase coherence between El Niño/Southern Oscillation and Indian monsoon
NASA Astrophysics Data System (ADS)
Maraun, D.; Kurths, J.
2005-08-01
We present a modern method used in nonlinear time series analysis to investigate the relation of two oscillating systems with respect to their phases, independently of their amplitudes. We study the difference of the phase dynamics between El Niño/Southern Oscillation (ENSO) and the Indian Monsoon on inter-annual time scales. We identify distinct epochs, especially two intervals of phase coherence, 1886-1908 and 1964-1980, corroborating earlier findings from a new point of view. A significance test shows that the coherence is very unlikely to be the result of stochastic fluctuations. We also detect so far unknown periods of coupling which are invisible to linear methods. These findings suggest that the decreasing correlation during the last decades might be a typical epoch of the ENSO/Monsoon system having occurred repeatedly. The high time resolution of the method enables us to present an interpretation of how volcanic radiative forcing could cause the coupling.
Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; ...
2015-10-22
To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two ν μ → ν μ disappearance experiments operating inmore » different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.
Lateral position detection and control for friction stir systems
Fleming, Paul; Lammlein, David H.; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David R.; Hartman, Daniel A.
2012-06-05
An apparatus and computer program are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.
Multimodality language mapping in patients with left-hemispheric language dominance on Wada test.
Kojima, Katsuaki; Brown, Erik C; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi
2012-10-01
We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.
2017-04-01
Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.
Determination of linear optics functions from turn-by-turn data
NASA Astrophysics Data System (ADS)
Alexahin, Y.; Gianfelice-Wendt, E.
2011-10-01
A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.
Limits to detection of generalized synchronization in delay-coupled chaotic oscillators.
Kato, Hideyuki; Soriano, Miguel C; Pereda, Ernesto; Fischer, Ingo; Mirasso, Claudio R
2013-12-01
We study how reliably generalized synchronization can be detected and characterized from time-series analysis. To that end, we analyze synchronization in a generalized sense of delay-coupled chaotic oscillators in unidirectional ring configurations. The generalized synchronization condition can be verified via the auxiliary system approach; however, in practice, this might not always be possible. Therefore, in this study, widely used indicators to directly quantify generalized and phase synchronization from noise-free time series of two oscillators are employed complementarily to the auxiliary system approach. In our analysis, none of the indices provide the consistent results of the auxiliary system approach. Our findings indicate that it is a major challenge to directly detect synchronization in a generalized sense between two oscillators that are connected via a chain of other oscillators, even if the oscillators are identical. This has major consequences for the interpretation of the dynamics of coupled systems and applications thereof.
g-Mode Pulsators along the Horizontal Branch
NASA Astrophysics Data System (ADS)
O'Toole, S. J.
2012-03-01
Kepler has been a boon for asteroseismology, detecting oscillations in many different stars across the HR diagram. High precision data over long timescales has allowed us to detect many g-mode oscillations in sdB stars in particular, but also in other Horizontal Branch stars. Here I point out the very similar g-mode period spacings detected in sdB and Red Clump stars, and discuss what we can learn by comparing oscillations in these objects.
Chen, Gong; Qi, Peng; Guo, Zhao; Yu, Haoyong
2017-06-01
In the field of gait rehabilitation robotics, achieving human-robot synchronization is very important. In this paper, a novel human-robot synchronization method using gait event information is proposed. This method includes two steps. First, seven gait events in one gait cycle are detected in real time with a hidden Markov model; second, an adaptive oscillator is utilized to estimate the stride percentage of human gait using any one of the gait events. Synchronous reference trajectories for the robot are then generated with the estimated stride percentage. This method is based on a bioinspired adaptive oscillator, which is a mathematical tool, first proposed to explain the phenomenon of synchronous flashing among fireflies. The proposed synchronization method is implemented in a portable knee-ankle-foot robot and tested in 15 healthy subjects. This method has the advantages of simple structure, flexible selection of gait events, and fast adaptation. Gait event is the only information needed, and hence the performance of synchronization holds when an abnormal gait pattern is involved. The results of the experiments reveal that our approach is efficient in achieving human-robot synchronization and feasible for rehabilitation robotics application.
Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing
NASA Astrophysics Data System (ADS)
Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.
2018-01-01
The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.
Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing.
Pontin, A; Lang, J E; Chowdhury, A; Vezio, P; Marino, F; Morana, B; Serra, E; Marin, F; Monteiro, T S
2018-01-12
The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.
Feedback control of persistent-current oscillation based on the atomic-clock technique
NASA Astrophysics Data System (ADS)
Yu, Deshui; Dumke, Rainer
2018-05-01
We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.
Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals
NASA Astrophysics Data System (ADS)
Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko
2017-12-01
The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.
NASA Technical Reports Server (NTRS)
Zhou, Wei
1993-01-01
In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.
Chaotic system detection of weak seismic signals
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, B. J.; Badal, J.; Zhao, X. P.; Lin, H. B.; Li, R. L.
2009-09-01
When the signal-to-noise (S/N) ratio is less than -3 dB or even 0 dB, seismic events are generally difficult to identify from a common shot record. To overcome this type of problem we present a method to detect weak seismic signals based on the oscillations described by a chaotic dynamic system in phase space. The basic idea is that a non-linear chaotic oscillator is strongly immune to noise. Such a dynamic system is less influenced by noise, but it is more sensitive to periodic signals, changing from a chaotic state to a large-scale periodic phase state when excited by a weak signal. With the purpose of checking the possible contamination of the signal by noise, we have performed a numerical experiment with an oscillator controlled by the Duffing-Holmes equation, taking a distorted Ricker wavelet sequence as input signal. In doing so, we prove that the oscillator system is able to reach a large-scale periodic phase state in a strong noise environment. In the case of a common shot record with low S/N ratio, the onsets reflected from a same interface are similar to one other and can be put on a single trace with a common reference time and the periodicity of the so-generated signal follows as a consequence of moveout at a particular scanning velocity. This operation, which is called `horizontal dynamic correction' and leads to a nearly periodic signal, is implemented on synthetic wavelet sequences taking various sampling arrival times and scanning velocities. Thereafter, two tests, both in a noisy ambient of -3.7 dB, are done using a chaotic oscillator: the first demonstrates the capability of the method to really detect a weak seismic signal; the second takes care of the fundamental weakness of the dynamic correction coming from the use of a particular scanning velocity, which is investigated from the effect caused by near-surface lateral velocity variation on the periodicity of the reconstructed seismic signal. Finally, we have developed an application of the method to real data acquired in seismic prospecting and then converted into pseudo-periodic signals, which has allowed us to discriminate fuzzy waveforms as multiples, thus illustrating in practice the performance of our working scheme.
Real-Time Hand-Held Magnetometer Array
2016-04-01
54 7.2.4 Detection : Probe Laser...oscillations in the F=4 hyperfine ground state and the probe beam is used to detect the oscillations. ............ 50 Figure 52. Sensor Larmor signal...level detectable by the magnetometer with a signal to noise ratio of 1:1
Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone
Ren, Liankun; Kucewicz, Michal T.; Cimbalnik, Jan; Matsumoto, Joseph Y.; Brinkmann, Benjamin H.; Hu, Wei; Marsh, W. Richard; Meyer, Fredric B.; Stead, S. Matthew
2015-01-01
Objective: To investigate the generation, spectral characteristics, and potential clinical significance of brain activity preceding interictal epileptiform spike discharges (IEDs) recorded with intracranial EEG. Methods: Seventeen adult patients with drug-resistant temporal lobe epilepsy were implanted with intracranial electrodes as part of their evaluation for epilepsy surgery. IEDs detected on clinical macro- and research microelectrodes were analyzed using time-frequency spectral analysis. Results: Gamma frequency oscillations (30–100 Hz) often preceded IEDs in spatially confined brain areas. The gamma-IEDs were consistently observed 35 to 190 milliseconds before the epileptiform spike waveforms on individual macro- and microelectrodes. The gamma oscillations associated with IEDs had longer duration (p < 0.001) and slightly higher frequency (p = 0.045) when recorded on microelectrodes compared with clinical macroelectrodes. Although gamma-IEDs comprised only a subset of IEDs, they were strongly associated with electrodes in the seizure onset zone (SOZ) compared with the surrounding brain regions (p = 0.004), in sharp contrast to IEDs without preceding gamma oscillations that were often also detected outside of the SOZ. Similar to prior studies, isolated pathologic high-frequency oscillations in the gamma (30–100 Hz) and higher (100–600 Hz) frequency range, not associated with an IED, were also found to be associated with SOZ. Conclusions: The occurrence of locally generated gamma oscillations preceding IEDs suggests a mechanistic role for gamma in pathologic network activity generating IEDs. The results show a strong association between SOZ and gamma-IEDs. The potential clinical application of gamma-IEDs for mapping pathologic brain regions is intriguing, but will require future prospective studies. PMID:25589669
Spindle Oscillations in Sleep Disorders: A Systematic Review
Weiner, Oren M.
2016-01-01
Measurement of sleep microarchitecture and neural oscillations is an increasingly popular technique for quantifying EEG sleep activity. Many studies have examined sleep spindle oscillations in sleep-disordered adults; however reviews of this literature are scarce. As such, our overarching aim was to critically review experimental studies examining sleep spindle activity between adults with and without different sleep disorders. Articles were obtained using a systematic methodology with a priori criteria. Thirty-seven studies meeting final inclusion criteria were reviewed, with studies grouped across three categories: insomnia, hypersomnias, and sleep-related movement disorders (including parasomnias). Studies of patients with insomnia and sleep-disordered breathing were more abundant relative to other diagnoses. All studies were cross-sectional. Studies were largely inconsistent regarding spindle activity differences between clinical and nonclinical groups, with some reporting greater or less activity, while many others reported no group differences. Stark inconsistencies in sample characteristics (e.g., age range and diagnostic criteria) and methods of analysis (e.g., spindle bandwidth selection, visual detection versus digital filtering, absolute versus relative spectral power, and NREM2 versus NREM3) suggest a need for greater use of event-based detection methods and increased research standardization. Hypotheses regarding the clinical and empirical implications of these findings, and suggestions for potential future studies, are also discussed. PMID:27034850
Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Morrison, R. A.
1972-01-01
Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.
Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
Mall, Susmita; Chakraverty, S
2016-08-01
Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.
Investigating the Control of Ocean-Atmospheric Oscillations on Global Terrestrial Evaporation
NASA Astrophysics Data System (ADS)
Martens, B.; Waegeman, W.; Dorigo, W.; Verhoest, N.; Miralles, D. G.
2017-12-01
Intra-annual and multi-decadal variability in Earth's climate is strongly driven by periodic oscillations in the coupled state of our atmosphere and ocean. These oscillations do not only impact climate in nearby regions, but can also have an effect on the climate in remote areas, a phenomenon that is often referred to as teleconnection. Because changes in local climate immediately affect terrestrial ecosystems through a series of complex processes, ocean-atmospheric oscillations are expected to influence land evaporation; i.e. the return flux of water from land into the atmosphere. In this presentation, the effects of ocean-atmospheric oscillations on global terrestrial evaporation are analysed. We use multi-decadal, satellite-based observations of different climate variables (air temperature, radiation, precipitation) in combination with a simple supervised learning method - the Least Absolute Shrinkage and Selection Operator - to detect the impact of sixteen leading ocean-atmospheric oscillations on terrestrial evaporation. The latter is retrieved using the Global Land Evaporation Amsterdam Model (GLEAM). The analysis reveals hotspot regions in which more than 30% of the inter-annual variability in terrestrial evaporation can be explained by ocean-atmospheric oscillations. The impact is different per region and season, and can typically be attributed to a small subset of oscillations. For instance, the dynamics in terrestrial evaporation over eastern Australia are substantially impacted by both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) during Austral spring. Using the same learning method, but targeting terrestrial evaporation based on its local climatic drivers (air temperature, precipitation, and radiation), shows the dominant control of precipitation on terrestrial evaporation in Australia, suggesting that both ENSO and IOD affect the precipitation, in his turn influencing evaporation. The latter is confirmed by regressing precipitation to the ocean-atmospheric oscillations. The results of our study allow for a better understanding of the link between ocean-atmosphere dynamics and terrestrial bio-geochemical cycles, and may help improve the prediction of future changes in the water cycle over the continents.
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroaki; Gotoda, Hiroshi; Tachibana, Shigeru; Yoshida, Seiji
2017-12-01
We conduct an experimental study using time series analysis based on symbolic dynamics to detect a precursor of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor. With increasing amount of the main fuel, a significant shift in the dominant frequency-mode occurs in noisy periodic dynamics, leading to a notable increase in oscillation amplitudes. The sustainment of noisy periodic dynamics during thermoacoustic combustion oscillations is clearly shown by the multiscale complexity-entropy causality plane in terms of statistical complexity. A modified version of the permutation entropy allows us to detect a precursor of the frequency-mode-shift before the amplification of pressure fluctuations.
Automatic detection and visualisation of MEG ripple oscillations in epilepsy.
van Klink, Nicole; van Rosmalen, Frank; Nenonen, Jukka; Burnos, Sergey; Helle, Liisa; Taulu, Samu; Furlong, Paul Lawrence; Zijlmans, Maeike; Hillebrand, Arjan
2017-01-01
High frequency oscillations (HFOs, 80-500 Hz) in invasive EEG are a biomarker for the epileptic focus. Ripples (80-250 Hz) have also been identified in non-invasive MEG, yet detection is impeded by noise, their low occurrence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through noise reduction, beamforming and automatic detection with minimal user effort. We analysed 15 min of presurgical resting-state interictal MEG data of 25 patients with epilepsy. The MEG signal-to-noise was improved by using a cross-validation signal space separation method, and by calculating ~ 2400 beamformer-based virtual sensors in the grey matter. Ripples in these sensors were automatically detected by an algorithm optimized for MEG. A small subset of the identified ripples was visually checked. Ripple locations were compared with MEG spike dipole locations and the resection area if available. Running the automatic detection algorithm resulted in on average 905 ripples per patient, of which on average 148 ripples were visually reviewed. Reviewing took approximately 5 min per patient, and identified ripples in 16 out of 25 patients. In 14 patients the ripple locations showed good or moderate concordance with the MEG spikes. For six out of eight patients who had surgery, the ripple locations showed concordance with the resection area: 4/5 with good outcome and 2/3 with poor outcome. Automatic ripple detection in beamformer-based virtual sensors is a feasible non-invasive tool for the identification of ripples in MEG. Our method requires minimal user effort and is easily applicable in a clinical setting.
Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Hartwig, Jason W.
2014-01-01
The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.
Apparatus and method for microwave processing of materials
Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.
1996-05-28
Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.
NASA Astrophysics Data System (ADS)
Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey
Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition, we can obtain temporal dynamics (mpeg- files) of the main oscillation characteristics: amplitude, power and phase as a spatial-temporal coordinates. For periodogram mapping of data cubes as a method for the pre-analysis, we developed preparation of the color maps where the pixel's colour corresponds to the frequency of the power spectrum maximum. The computer system based on applications ION-scripts, algorithmic languages IDL and PHP, and Apache WEB server. The IDL ION-scripts use for preparation and configuration of network requests at the central data server with subsequent connection to IDL run-unit software and graphic output on FTP-server and screen. Web page is constructed using PHP language.
Chapter 5: Modulation Excitation Spectroscopy with Phase-Sensitive Detection for Surface Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulda, Sarah; Richards, Ryan M.
Advancements in in situ spectroscopic techniques have led to significant progress being made in elucidating heterogeneous reaction mechanisms. The potential of these progressive methods is often limited only by the complexity of the system and noise in the data. Short-lived intermediates can be challenging, if not impossible, to identify with conventional spectra analysis means. Often equally difficult is separating signals that arise from active and inactive species. Modulation excitation spectroscopy combined with phase-sensitive detection analysis is a powerful tool for removing noise from the data while simultaneously revealing the underlying kinetics of the reaction. A stimulus is applied at amore » constant frequency to the reaction system, for example, a reactant cycled with an inert phase. Through mathematical manipulation of the data, any signal contributing to the overall spectra but not oscillating with the same frequency as the stimulus will be dampened or removed. With phase-sensitive detection, signals oscillating with the stimulus frequency but with various lag times are amplified providing valuable kinetic information. In this chapter, some examples are provided from the literature that have successfully used modulation excitation spectroscopy with phase-sensitive detection to uncover previously unobserved reaction intermediates and kinetics. Examples from a broad range of spectroscopic methods are included to provide perspective to the reader.« less
Smart, Otis; Maus, Douglas; Marsh, Eric; Dlugos, Dennis; Litt, Brian; Meador, Kimford
2012-01-01
Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30–100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain. PMID:23105174
Spin and mass of the supermassive black hole in the Galactic Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru
2015-12-15
A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for themore » present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.« less
Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach.
Pham, Thuy T; Thamrin, Cindy; Robinson, Paul D; McEwan, Alistair L; Leong, Philip H W
2017-08-01
Respiratory artefact removal for the forced oscillation technique can be treated as an anomaly detection problem. Manual removal is currently considered the gold standard, but this approach is laborious and subjective. Most existing automated techniques used simple statistics and/or rejected anomalous data points. Unfortunately, simple statistics are insensitive to numerous artefacts, leading to low reproducibility of results. Furthermore, rejecting anomalous data points causes an imbalance between the inspiratory and expiratory contributions. From a machine learning perspective, such methods are unsupervised and can be considered simple feature extraction. We hypothesize that supervised techniques can be used to find improved features that are more discriminative and more highly correlated with the desired output. Features thus found are then used for anomaly detection by applying quartile thresholding, which rejects complete breaths if one of its features is out of range. The thresholds are determined by both saliency and performance metrics rather than qualitative assumptions as in previous works. Feature ranking indicates that our new landmark features are among the highest scoring candidates regardless of age across saliency criteria. F1-scores, receiver operating characteristic, and variability of the mean resistance metrics show that the proposed scheme outperforms previous simple feature extraction approaches. Our subject-independent detector, 1IQR-SU, demonstrated approval rates of 80.6% for adults and 98% for children, higher than existing methods. Our new features are more relevant. Our removal is objective and comparable to the manual method. This is a critical work to automate forced oscillation technique quality control.
Measuring the speed of light with baryon acoustic oscillations.
Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth
2015-03-13
In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.
[Development and application of electroanalytical methods in biomedical fields].
Kusu, Fumiyo
2015-01-01
To summarize our electroanalytical research in the biomedical field over the past 43 years, this review describes studies on specular reflection measurement, redox potential determination, amperometric acid sensing, HPLC with electrochemical detection, and potential oscillation across a liquid membrane. The specular reflection method was used for clarifying the adsorption of neurotransmitters and their related drugs onto a gold electrode and the interaction between dental alloys and compound iodine glycerin. A voltammetric screening test using a redox potential for the antioxidative effect of flavonoids was proposed. Amperometric acid sensing based on the measurement of the reduction prepeak current of 2-methyl-1,4-naphthoquinone (VK3) or 3,5-di-tert-buty1-1,2-benzoquinone (DBBQ) was applied to determine acid values of fats and oils, titrable acidity of coffee, and enzyme activity of lipase, free fatty acids (FFAs) in serum, short-chain fatty acids in feces, etc. The electrode reactions of phenothiazines, catechins, and cholesterol were applied to biomedical analysis using HPLC with electrochemical detection. A three-channel electrochemical detection system was utilized for the sensitive determination of redox compounds in Chinese herbal medicines. The behavior of barbituric acid derivatives was examined based on potential oscillation measurements.
Wavelet analysis of interannual LOD, AAM, and ENSO: 1997-98 El Niño and 1998-99 La Niña signals
NASA Astrophysics Data System (ADS)
Zhou, Y. H.; Zheng, D. W.; Liao, X. H.
2001-05-01
On the basis of the data series of the length of day (LOD), the atmospheric angular momentum (AAM) and the Southern Oscillation Index (SOI) for January 1970-June 1999, the relationship among Interannual LOD, AAM, and the EL Niño/Southern Oscillation (ENSO) is analyzed by the wavelet transform method. The results suggest that they have similar time-varying spectral structures. The signals of 1997-98 El Niño and 1998-99 La Niña events can be detected from the LOD or AAM data.
Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen
2015-08-28
The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum.
The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Watts, Anna L.
2006-01-01
We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements
Resonant micro and nanoelectromechanical systems: Actuation and biological sensing studies
NASA Astrophysics Data System (ADS)
Ilic, Bojan
This thesis explores various actuation mechanisms of resonant nanoelectro-mechanical systems (NEMS) with emphasis directed towards detection of biomolecules. Arrays of bulk and surface micromachined devices, made using conventional thin film fabrication methods, are used to explore the mass loading effects of selective molecular immobilization on the surface of the NEMS resonators. Experimentally measured shift in the first eigenfrequency is correlated to the amount of mass loading from the binding events and verified using theoretical constructs. Under ambient conditions where considerable damping occurs, immunospecific detection of single Escherichia coli O157:H7 cells is demonstrated by measuring the out of plane vibrational resonant mode using an optical deflection system with thermal noise as an excitation mechanism. Further sensitivity enhancement utilizing vacuum encapsulation in conjunction with piezoelectric actuation and tailoring of the cantilever dimensions is demonstrated by measuring mass loading of a nonpathogenic insect baculovirus, single Aminopropyltriethoxysilane (APTS), Hexamethyldisilazane (HMDS) and Octade-cyltrichlorosilane (OTS) monolayers. To highlight the lower detectable mass limit, surface machined NEMS oscillators with integrated circular Au contacts and sub-attogram mass detection sensitivity are used for selective immobilization of dinitrophenyl poly(ethylene glycol) undecanthiol based molecules. Experimental and theoretical elucidation of optical actuation of NEMS cantilevers at large distances from the clamped end is presented. These observations are considered within the theoretical framework of heat transfer and used to measure binding events of single double-stranded deoxyribonucleic acid (dsDNA) molecules to localized gold nanodots near the free end of a NEMS oscillator. Because this method allows direct coupling of energy into the device layer, several modes of in-plane vibrations are observed and employed in shaking off spherical latex particles. Finally, this thesis describes studies of dynamic detection of vibrational characteristics of suspended NEMS oscillators through direct coupling with a micromechanical probe. Changes in the dynamic amplitude and phase of the probe allow the measurement of the mechanical quality factor. Measured spectral response of the NEMS is in good agreement with optical characterization and modelling results.
A statistical study of decaying kink oscillations detected using SDO/AIA
NASA Astrophysics Data System (ADS)
Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.
2016-01-01
Context. Despite intensive studies of kink oscillations of coronal loops in the last decade, a large-scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). Aims: We carry out a statistical study of kink oscillations using extreme ultraviolet imaging data from a previously compiled catalogue. Methods: We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) on board SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Results: Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck = (1330 ± 50) km s-1. The main body of the data corresponds to kink speeds in the range Ck = (800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 21 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles rather than a purely exponential damping envelope. There are nine additional cases where the profile appears to be purely non-exponential and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.
Detection of bifurcations in noisy coupled systems from multiple time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Mark S., E-mail: m.s.williamson@exeter.ac.uk; Lenton, Timothy M.
We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, themore » possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.« less
Detection of bifurcations in noisy coupled systems from multiple time series
NASA Astrophysics Data System (ADS)
Williamson, Mark S.; Lenton, Timothy M.
2015-03-01
We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.
THz-wave parametric source and its imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-08-01
Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Oscillations in the wake of a flare blast wave
NASA Astrophysics Data System (ADS)
Tothova, D.; Innes, D. E.; Stenborg, G.
2011-04-01
Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif
Strong quantum squeezing near the pull-in instability of a nonlinear beam
Passian, Ali; Siopsis, George
2016-08-04
Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less
Computer Modelling of Functional Aspects of Noise in Endogenously Oscillating Neurons
NASA Astrophysics Data System (ADS)
Huber, M. T.; Dewald, M.; Voigt, K.; Braun, H. A.; Moss, F.
1998-03-01
Membrane potential oscillations are a widespread feature of neuronal activity. When such oscillations operate close to the spike-triggering threshold, noise can become an essential property of spike-generation. According to that, we developed a minimal Hodgkin-Huxley-type computer model which includes a noise term. This model accounts for experimental data from quite different cells ranging from mammalian cortical neurons to fish electroreceptors. With slight modifications of the parameters, the model's behavior can be tuned to bursting activity, which additionally allows it to mimick temperature encoding in peripheral cold receptors including transitions to apparently chaotic dynamics as indicated by methods for the detection of unstable periodic orbits. Under all conditions, cooperative effects between noise and nonlinear dynamics can be shown which, beyond stochastic resonance, might be of functional significance for stimulus encoding and neuromodulation.
NASA Astrophysics Data System (ADS)
Di Matteo, Simone; Villante, Umberto
2016-04-01
The possible occurrence of oscillations at discrete frequencies in the solar wind and their possible correspondence with magnetospheric field oscillations represent an interesting aspect of the solar wind/magnetopheric research. We analyze a large set of high velocity streams following interplanetary shocks in order to ascertain the possible occurrence of preferential sets of discrete frequencies in the oscillations of the solar wind pressure in such structures. We evaluate, for each event, the power spectrum of the dynamic pressure by means of two methods (Welch and multitaper windowing) and accept the common spectral peaks that also pass a harmonic F-test at the 95% confidence level. We compare these frequencies with those detected at geosynchronous orbit in the magnetospheric field components soon after the manifestation of the corresponding Sudden Impulses.
Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.
Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie
2018-06-13
Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.
NASA Astrophysics Data System (ADS)
Schaefli, B.; Maraun, D.; Holschneider, M.
2007-12-01
Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.
Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.
Park, Jonghoo; Kim, Hyunseok; Blick, Robert H
2012-04-21
Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.
Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X
2013-02-25
Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses.
Fast island phase identification for tearing mode feedback control on J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, B., E-mail: borao@hust.edu.cn; Li, D.; Hu, F. R.
A new method to control the tearing mode (TM) in tokamaks has been proposed [Q. Hu and Q. Yu, Nucl. Fusion 56, 034001 (5pp.) (2016)], according to which, the external resonant magnetic perturbation needs to be applied in certain magnetic island phase regions. Therefore, it is very important to identify the helical phase of magnetic islands in real time. The TM in tokamak plasmas is normally rotating and carries magnetic oscillations, which are known as Mirnov oscillations and can be detected by Mirnov probes. When the O-point or X-point of the magnetic island passes through the probe, the signal willmore » experience a zero-crossing. A poloidal Mirnov probe array and a corresponding island phase identification method are presented. A field-programmable gate array is used to provide the magnetic island helical phase in real time by using multichannel zero crossing detection. This system has been developed on the J-TEXT tokamak and works well. This paper introduces the establishment of the fast magnetic island phase identifying system.« less
Apparatus and method for microwave processing of materials
Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.
1996-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
A mechanical nanomembrane detector for time-of-flight mass spectrometry.
Park, Jonghoo; Qin, Hua; Scalf, Mark; Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H
2011-09-14
We describe here a new principle for ion detection in time-of-flight (TOF) mass spectrometry in which an impinging ion packet excites mechanical vibrations in a silicon nitride (Si(3)N(4)) nanomembrane. The nanomembrane oscillations are detected by means of time-varying field emission of electrons from the mechanically oscillating nanomembrane. Ion detection is demonstrated in the MALDI-TOF analysis of proteins varying in mass from 5729 (insulin) to 150,000 (Immunoglobulin G) daltons. The detector response agrees well with the predictions of a thermomechanical model in which the impinging ion packet causes a nonuniform temperature distribution in the nanomembrane, exciting both fundamental and higher order oscillations.
Canpolat, Murat; Mourant, Judith R.
2003-12-09
Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.
An investigation of ground-based observations of solar oscillations at Stanford
NASA Technical Reports Server (NTRS)
Henning, Harald M. J.
1987-01-01
Data obtained in the last 8 years of solar differential Doppler observations at Stanford were considered. The four best time series of data were examined in detail. The sources of error in the data were investigated and removed where possible. In particular, the contribution resulting from transparency variations in the sky was examined. Detection method applicable to data with low signal to noise ratio and low filling factor were developed and utilized for the investigation of global solar modes of oscillations in the data. The frequencies of p-modes were measured and identified. The presence of g-modes were also determined in the Stanford data.
NASA Astrophysics Data System (ADS)
Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel
2016-11-01
A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.
Detection of atomic force microscopy cantilever displacement with a transmitted electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.; Woehl, T. J.; Keller, R. R.
2016-07-25
The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstratemore » detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.« less
Impact of Measurement Error on Synchrophasor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less
Swift does not detect a source near H 1743-322
NASA Astrophysics Data System (ADS)
Motta, S.; Belloni, T.; Campana, S.; Munoz-Darias, T.
2011-04-01
A low-frequency oscillation with a period of approximately 91 s was visible in the RXTE/PCA light curve of the black-hole candidate H1743-322 (ATel #3277), in outburst since April 6, 2011 (ATel #32763) and currently in hard state. The oscillation was detected only in the first RXTE observation (performed 16:05:01 (UTC) on April 12, 2011). The hypothesis that the oscillations are due to a second active source in the PCA field of view was put forward.
Formenti, F.; Chen, R.; McPeak, H.; Murison, P. J.; Matejovic, M.; Hahn, C. E. W.; Farmery, A. D.
2015-01-01
Background There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking Po2 changes dynamically when it varies rapidly. For example, arterial Po2 (PaO2) can vary within the respiratory cycle in cyclical atelectasis (CA), where PaO2 is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these PaO2 oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). Methods We developed a fibreoptic Po2 sensor (<200 µm diameter), suitable for human use, that has a fast response time, and can measure Po2 continuously in blood. By altering the inspired fraction of oxygen (FIO2) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of PaO2 values in vivo. We also hypothesized that the sensor could measure rapid intra-breath PaO2 oscillations in a large animal model of ARDS. Results In the healthy animal models, PaO2 responses to changes in FIO2 were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of PaO2 values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected PaO2 oscillations, also at clinically relevant PaO2 levels close to 9 kPa. Conclusions We conclude that these fibreoptic PaO2 sensors have the potential to become a diagnostic tool for CA in ARDS. PMID:25631471
The K2 Galactic Archaeology Program Data Release. I. Asteroseismic Results from Campaign 1
NASA Astrophysics Data System (ADS)
Stello, Dennis; Zinn, Joel; Elsworth, Yvonne; Garcia, Rafael A.; Kallinger, Thomas; Mathur, Savita; Mosser, Benoit; Sharma, Sanjib; Chaplin, William J.; Davies, Guy; Huber, Daniel; Jones, Caitlin D.; Miglio, Andrea; Silva Aguirre, Victor
2017-01-01
NASA's K2 mission is observing tens of thousands of stars along the ecliptic, providing data suitable for large-scale asteroseismic analyses to inform galactic archaeology studies. Its first campaign covered a field near the north Galactic cap, a region never covered before by large asteroseismic-ensemble investigations, and was therefore of particular interest for exploring this part of our Galaxy. Here we report the asteroseismic analysis of all stars selected by the K2 Galactic Archaeology Program during the mission's “north Galactic cap” campaign 1. Our consolidated analysis uses six independent methods to measure the global seismic properties, in particular the large frequency separation and the frequency of maximum power. From the full target sample of 8630 stars we find about 1200 oscillating red giants, a number comparable with estimates from galactic synthesis modeling. Thus, as a valuable by-product we find roughly 7500 stars to be dwarfs, which provide a sample well suited for galactic exoplanet occurrence studies because they originate from our simple and easily reproducible selection function. In addition, to facilitate the full potential of the data set for galactic archaeology, we assess the detection completeness of our sample of oscillating red giants. We find that the sample is at least nearly complete for stars with 40 ≲ {ν }\\max /μHz ≲ 270 and {ν }\\max ,{detect}< 2.6× {10}6\\cdot {2}-{\\text{Kp}} μHz. There is a detection bias against helium core burning stars with {ν }\\max ˜ 30 μHz, affecting the number of measurements of {{Δ }}ν and possibly also {ν }\\max . Although we can detect oscillations down to {\\text{Kp}} = 15, our campaign 1 sample lacks enough faint giants to assess the detection completeness for stars fainter than {\\text{Kp}} ˜ 14.5.
NASA Technical Reports Server (NTRS)
Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.
1991-01-01
The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.
Airey, M W; Harrison, R G; Nicoll, K A; Williams, P D; Marlton, G J
2017-08-01
A lightweight and low power oscillating microbalance for in situ sampling of atmospheric ice and volcanic ash is described for airborne platforms. Using a freely exposed collecting wire fixed at only one end to a piezo transducer, the instrument collects airborne materials. Accumulated mass is determined from the change in natural frequency of the wire. The piezo transducer is used in a dual mode to both drive and detect the oscillation. Three independent frequency measurement techniques are implemented with an on-board microcontroller: a frequency sweep, a Fourier spectral method, and a phase-locked loop. These showed agreement to ±0.3 Hz for a 0.5 mm diameter collecting wire of 120 mm long, flown to 19 km altitude on a weather balloon. The instrument is well suited to disposable use with meteorological radiosondes, to provide high resolution vertical profiles of mass concentration.
Neutrino oscillation studies with IceCube-DeepCore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle andmore » performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.« less
Neutrino oscillation studies with IceCube-DeepCore
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2016-03-30
IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle andmore » performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-03-01
Optical Rabi oscillations are coherent population oscillations of a two-level system coupled by an electric dipole transition when driven by a strong nearly resonant optical field. In quantum dot structures, these measurements have typically been performed as a function of the total pulse area ∫Ω0(t)dt where the pulse area varies as a function of Rabi frequency. Here, we report direct detection of the time-resolved coherent transient response of the resonance fluorescence to measure the time evolution of the optical Rabi oscillations in a single charged InAs quantum dot. We extract a decoherence rate consistent with the limit from the excited state lifetime.
Alvarado-Rojas, Catalina; Le Van Quyen, Michel; Valderrama, Mario
2016-01-01
High Frequency Oscillations (HFOs) in the brain have been associated with different physiological and pathological processes. In epilepsy, HFOs might reflect a mechanism of epileptic phenomena, serving as a biomarker of epileptogenesis and epileptogenicity. Despite the valuable information provided by HFOs, their correct identification is a challenging task. A comprehensive application, RIPPLELAB, was developed to facilitate the analysis of HFOs. RIPPLELAB provides a wide range of tools for HFOs manual and automatic detection and visual validation; all of them are accessible from an intuitive graphical user interface. Four methods for automated detection—as well as several options for visualization and validation of detected events—were implemented and integrated in the application. Analysis of multiple files and channels is possible, and new options can be added by users. All features and capabilities implemented in RIPPLELAB for automatic detection were tested through the analysis of simulated signals and intracranial EEG recordings from epileptic patients (n = 16; 3,471 analyzed hours). Visual validation was also tested, and detected events were classified into different categories. Unlike other available software packages for EEG analysis, RIPPLELAB uniquely provides the appropriate graphical and algorithmic environment for HFOs detection (visual and automatic) and validation, in such a way that the power of elaborated detection methods are available to a wide range of users (experts and non-experts) through the use of this application. We believe that this open-source tool will facilitate and promote the collaboration between clinical and research centers working on the HFOs field. The tool is available under public license and is accessible through a dedicated web site. PMID:27341033
Perturbation of a radially oscillating single-bubble by a micron-sized object.
Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F
2017-03-01
A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.
Neurofeedback training of gamma band oscillations improves perceptual processing.
Salari, Neda; Büchel, Christian; Rose, Michael
2014-10-01
In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.
Congo red modulates ACh-induced Ca2+ oscillations in single pancreatic acinar cells of mice
Huang, Ze-bing; Wang, Hai-yan; Sun, Na-na; Wang, Jing-ke; Zhao, Meng-qin; Shen, Jian-xin; Gao, Ming; Hammer, Ronald P; Fan, Xue-gong; Wu, Jie
2014-01-01
Aim: Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca2+ oscillations in mouse pancreatic acinar cells in vitro. Methods: Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca2+ oscillations were monitored by whole-cell recording of Ca2+-activated Cl− currents and by using confocal Ca2+ imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established. Results: Bath application of ACh (10 nmol/L) induced typical Ca2+ oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca2+ oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca2+ oscillations induced by ACh (10–30 nmol/L), but did not alter the Ca2+ oscillations induced by ACh (100–10000 nmol/L). Congo red also enhanced the Ca2+ oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca2+ oscillations. Conclusion: Congo red significantly modulates intracellular Ca2+ signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug. PMID:25345744
Orbital dynamics of multi-planet systems with eccentricity diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Stephen R.; Raymond, Sean N., E-mail: skane@sfsu.edu
2014-04-01
Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals.more » We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.« less
NASA Astrophysics Data System (ADS)
Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.
2016-06-01
This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.
Generation and coherent detection of QPSK signal using a novel method of digital signal processing
NASA Astrophysics Data System (ADS)
Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui
2018-02-01
We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Method and means for measuring acoustic emissions
Renken, Jr., Claus J.
1976-01-06
The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.
Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune
NASA Astrophysics Data System (ADS)
Gaulme, Patrick
2017-10-01
For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are the clear detection of the well-known differential rotation of Neptune, measured for the first time through the rotational modulation of its photometry, and the detection of the Sun's oscillations, for the first time in an indirect way in intensity measurements.
A Distant Mirror: Solar Oscillations Observed on Neptune by the Kepler K2 Mission
NASA Technical Reports Server (NTRS)
Gaulme, P.; Rowe, J. F.; Bedding, T. R.; Benomar, O.; Corsaro, E.; Davies, G. R.; Hale, S. J.; Howe, R.; Garcia, R. A.; Huber, D.;
2016-01-01
Starting in 2014 December, Kepler (K2) observed Neptune continuously for 49 days at a 1-minute cadence. The goals consisted of studying its atmospheric dynamics, detecting its global acoustic oscillations, and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude max velocity and the mean frequency separation between mode overtones delta velocity, is surprising as the max velocity measured from Neptune photometry is larger than the accepted value. Compared to the usual reference max velocity of the sun equal to 3100 microhertz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 plus or minus 5.8 percent and 4.3 plus or minus 1.9 percent, respectively. The higher max velocity is caused by a combination of the value of max velocity of the sun, being larger at the time of observations than the usual reference from SOHO/VIRGO/SPM (Variability of solar IRradiance and Gravity Oscillations / on board SOHO (Solar and Heliospheric Observatory) / Sun PhotoMeters) data (3160 plus or minus 10 microhertz), and the noise level of the K2 time series, being 10 times larger than VIRGO's. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (S/N), we model 10 overtones for degrees iota equal 0, 1, 2. We compare the K2 data with simultaneous SOHO/VIRGO/SPM photometry and Bison (Birmingham Solar-Oscillations Network) velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 sigma, except for the few peaks with the lowest S/N.
Sensitive Technique For Detecting Alignment Of Seed Laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
1994-01-01
Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.
Coherent detection of position errors in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu
2007-09-01
Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.
Expandable and reconfigurable instrument node arrays
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)
2012-01-01
An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.
Detecting Friedel oscillations in ultracold Fermi gases
NASA Astrophysics Data System (ADS)
Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-09-01
Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.
NASA Astrophysics Data System (ADS)
Diep, P. N.; Phuong, N. T.; Darriulat, P.; Nhung, P. T.; Anh, P. T.; Dong, P. N.; Hoai, D. T.; Thao, N. T.
2014-07-01
A multipath mechanism similar to that used in Australia sixty years ago by the Sea-cliff Interferometer is shown to generate correlations between the periods of oscillations observed by two distant radio telescopes pointed to the Sun. The oscillations are the result of interferences between the direct wave detected in the main antenna lobe and its reflection on ground detected in a side lobe. A model is made of such oscillations in the case of two observatories located at equal longitudes and opposite tropical latitudes, respectively in Ha Noi (Viet Nam) and Learmonth (Australia), where similar radio telescopes are operated at 1.4 GHz. Simple specular reflection from ground is found to give a good description of the observed oscillations and to explain correlations that had been previously observed and for which no satisfactory interpretation, instrumental or other, had been found.
NASA Astrophysics Data System (ADS)
Wang, Chenggen; Zhou, Qian; Gao, Shuning; Luo, Jia; Diao, Junchao; Zhao, Haoran; Bu, Jing
2018-04-01
This paper reviews the recent studies of Sub-Synchronous Oscillation(SSO) in wind farms. Mechanisms and analysis methods are the main concerns of this article. A classification method including new types of oscillation occurred between wind farms and HVDC systems and oscillation caused by Permanent Magnet Synchronous Generators(PMSG) is proposed. Characteristics of oscillation analysis techniques are summarized.
García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau
2011-01-01
This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.
NASA Astrophysics Data System (ADS)
Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg
2016-06-01
In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865-1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields.
Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji
2015-06-01
Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.
2017-03-01
The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hui; He, Jiansen; Young, Peter R.
An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s{sup −1} and a derived electron density of at least 5.4 × 10{sup 10} cm{sup −3}, the observed short-period oscillation is most likely the global fast sausage mode ofmore » a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.« less
Greenhouse Effect Detection Experiment (GEDEX). Selected data sets
NASA Technical Reports Server (NTRS)
Olsen, Lola M.; Warnock, Archibald, III
1992-01-01
This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.
Ghosh, Sourav K; Ostanin, Victor P; Johnson, Christian L; Lowe, Christopher R; Seshia, Ashwin A
2011-11-15
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. Copyright © 2011 Elsevier B.V. All rights reserved.
2-COLOR Pupil Imaging Method to Detect Stellar Oscillations
NASA Astrophysics Data System (ADS)
Costantino, Sigismondi; Alessandro, Cacciani; Mauro, Dolci; Stuart, Jeffries; Eric, Fossat; Ludovico, Cesario; Paolo, Rapex; Luca, Bertello; Ferenc, Varadi; Wolfgang, Finsterle
Stellar intensity oscillations from the ground are strongly affected by atmospheric noise. For solar-type stars even Antarctic scintillation noise is still overwhelming. We proposed and tested a differential method that images on the same CCD detector two-color pupils of the telescope in order to compensate for intensity sky fluctuations guiding and saturation problems. SOHO data reveal that our method has an efficiency of 70% respect to the absolute amplitude variations. Using two instruments at Dome C and South Pole we can further minimize atmospheric color noise with cross-spectrum methods. This way we also decrease the likelihood of gaps in the data string due to bad weather. Observationally while waiting for the South Pole/Dome-C sites we are carrying on tests from available telescopes and Big Bear Mt. Wilson Teramo Milano. On the data analysis side we use the Random Lag Singular Cross-Spectrum Analysis which eliminates noise from the observed signal better than traditional Fourier transform. This method is also well-suited for extracting common oscillatory components from two or more observations including their relative phases as we are planning to do
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulewicz, Lukasz; Sokol, Maria; Michnik, Anna
2006-11-01
Purpose: The aim of this study was to detect the non-neoplastic white-matter changes vs. time after irradiation using {sup 1}H nuclear magnetic resonance (NMR) spectroscopy in vivo. Methods and Materials: A total of 394 {sup 1}H MR spectra were acquired from 100 patients (age 19-74 years; mean and median age, 43 years) before and during 2 years after radiation therapy (the mean absorbed doses calculated for the averaged spectroscopy voxels are similar and close to 20 Gy). Results: Ocilations were observed in choline-containing compounds (Cho)/creatine and phosphocreatine (Cr), Cho/N-acetylaspartate (NAA), and center of gravity (CG) of the lipid band inmore » the range of 0.7-1.5 ppm changes over time reveal oscillations. The parameters have the same 8-month cycle period; however the CG changes precede the other by 2 months. Conclusions: The results indicate the oscillative nature of the brain response to irradiation, which may be caused by the blood-brain barrier disruption and repair processes. These oscillations may influence the NMR results, depending on the cycle phase in which the NMR measurements are performed in. The earliest manifestation of radiation injury detected by magnetic resonance spectroscopy is the CG shift.« less
NASA Astrophysics Data System (ADS)
Knezek, Nicholas; Buffett, Bruce
2017-04-01
A low density stratified layer at the top of Earth's core has been proposed by many authors on the basis of chemical and thermodynamic arguments and has implications for Earth's thermal history, core energetics, and core-mantle interactions. Past studies claiming to detect a layer using perturbations in seismic wave speeds are contentious due to the extremely small magnitude of the detected signal. Recently, several studies have instead argued for the existence of a stratified layer by hypothesizing that oscillations in the observed geomagnetic field arise from waves propagating in the layer. In particular, 60 year oscillations in dipole strength have been attributed to global MAC waves, and 8 year oscillations of secular acceleration have been attributed to equatorially-trapped waves. We use a new hybrid finite-volume and Fourier numerical method we developed to model magnetohydrodynamic waves in a thin layer and show that a thin, strongly buoyant layer can produce equatorially-trapped waves with similar structures and periods to the observed 8 year signal. Using these simulated wave structures, we provide additional evidence for the existence of several propagating wave modes and place constraints on estimates for the wave periods, stratified layer thickness, and strength of buoyancy within the layer.
The effect of Jupiter oscillations on Juno gravity measurements
NASA Astrophysics Data System (ADS)
Durante, Daniele; Guillot, Tristan; Iess, Luciano
2017-01-01
Seismology represents a unique method to probe the interiors of giant planets. Recently, Saturn's f-modes have been indirectly observed in its rings, and there is strong evidence for the detection of Jupiter global modes by means of ground-based, spatially-resolved, velocimetry measurements. We propose to exploit Juno's extremely accurate radio science data by looking at the gravity perturbations that Jupiter's acoustic modes would produce. We evaluate the perturbation to Jupiter's gravitational field using the oscillation spectrum of a polytrope with index 1 and the corresponding radial eigenfunctions. We show that Juno will be most sensitive to the fundamental mode (n = 0), unless its amplitude is smaller than 0.5 cm/s, i.e. 100 times weaker than the n ∼ 4 - 11 modes detected by spatially-resolved velocimetry. The oscillations yield contributions to Juno's measured gravitational coefficients similar to or larger than those expected from shallow zonal winds (extending to depths less than 300 km). In the case of a strong f-mode (radial velocity ∼ 30 cm/s), these contributions would become of the same order as those expected from deep zonal winds (extending to 3000 km), especially on the low degree zonal harmonics, therefore requiring a new approach to the analysis of Juno data.
Methods of Viscosity Measurements in Sealed Ampoules
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
1999-01-01
Viscosity of semiconductor and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviated. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution (0.05 arc.sec) angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and non intrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield the viscosity of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods (oscillating cup, transient torque, and resonance) is presented along with the initial test results of the constructed apparatus. Advantages of each of the method are discussed.
Taking the temperature of the interiors of magnetically heated nanoparticles.
Dong, Juyao; Zink, Jeffrey I
2014-05-27
The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.
Thundat, Thomas G.; Wachter, Eric A.
1998-01-01
An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.
Thundat, T.G.; Wachter, E.A.
1998-02-17
An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.
NASA Astrophysics Data System (ADS)
Luna, M.; Su, Y.; Schmieder, B.; Chandra, R.; Kucera, T. A.
2017-12-01
We follow the eruption of two related intermediate filaments observed in Hα (from GONG) and EUV (from Solar Dynamics Observatory SDO/Atmospheric Imaging assembly AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In Hα, the period decreases with time and exhibits strong damping. The analysis of 171 Å images shows that the oscillation has two phases: an initial long-period phase and a subsequent oscillation with a shorter period. In this wavelength, the damping appears weaker than in Hα. The velocity is the largest ever detected in a prominence oscillation, approximately 100 {km} {{{s}}}-1. Using SDO/HMI magnetograms, we reconstruct the magnetic field of the filaments, modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques, we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75-120 Mm, in agreement with the reconstructed field. In addition, we infer a field strength of ≥7 to 30 Gauss, depending on the electron density assumed, that is also in agreement with the values from the reconstruction (8-20 Gauss). The poloidal flux is zero and the axis flux is on the order of 1020 to 1021 Mx, confirming the high shear existing even in a non-active filament.
Design of coherent receiver optical front end for unamplified applications.
Zhang, Bo; Malouin, Christian; Schmidt, Theodore J
2012-01-30
Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.
OBIST methodology incorporating modified sensitivity of pulses for active analogue filter components
NASA Astrophysics Data System (ADS)
Khade, R. H.; Chaudhari, D. S.
2018-03-01
In this paper, oscillation-based built-in self-test method is used to diagnose catastrophic and parametric faults in integrated circuits. Sallen-Key low pass filter and high pass filter circuits with different gains are used to investigate defects. Variation in seven parameters of operational amplifier (OP-AMP) like gain, input impedance, output impedance, slew rate, input bias current, input offset current, input offset voltage and catastrophic as well as parametric defects in components outside OP-AMP are introduced in the circuit and simulation results are analysed. Oscillator output signal is converted to pulses which are used to generate a signature of the circuit. The signature and pulse count changes with the type of fault present in the circuit under test (CUT). The change in oscillation frequency is observed for fault detection. Designer has flexibility to predefine tolerance band of cut-off frequency and range of pulses for which circuit should be accepted. The fault coverage depends upon the required tolerance band of the CUT. We propose a modification of sensitivity of parameter (pulses) to avoid test escape and enhance yield. Result shows that the method provides 100% fault coverage for catastrophic faults.
Temporal structure of neuronal population oscillations with empirical model decomposition
NASA Astrophysics Data System (ADS)
Li, Xiaoli
2006-08-01
Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation.
High order filtering methods for approximating hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1991-01-01
The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.
Monte Carlo Simulation of a Segmented Detector for Low-Energy Electron Antineutrinos
NASA Astrophysics Data System (ADS)
Qomi, H. Akhtari; Safari, M. J.; Davani, F. Abbasi
2017-11-01
Detection of low-energy electron antineutrinos is of importance for several purposes, such as ex-vessel reactor monitoring, neutrino oscillation studies, etc. The inverse beta decay (IBD) is the interaction that is responsible for detection mechanism in (organic) plastic scintillation detectors. Here, a detailed study will be presented dealing with the radiation and optical transport simulation of a typical segmented antineutrino detector withMonte Carlo method using MCNPX and FLUKA codes. This study shows different aspects of the detector, benefiting from inherent capabilities of the Monte Carlo simulation codes.
Permeability determination through NMR detection of acoustically induced fluid oscillation.
Looyestijn, Wim J; Smits, Robert M M; Abu-Shiekah, Issa; Kuvshinov, Boris; Hofman, Jan P; Schwing, Alex
2006-11-01
We present a novel approach for directly measuring the permeability of reservoir rocks by an instrument lowered in a well bore. The measurement is made by creating an oscillatory motion of fluids in the pores by acoustic stimulation and by detecting the amplitude response as a phase shift on a nuclear magnetic resonance relaxation signal. A full theoretical description is given. The feasibility of the method has been verified in the laboratory on a set of sandstone and carbonate samples spanning the entire range of practical interest.
NASA Astrophysics Data System (ADS)
Puy, Martin; Vialard, J.; Lengaigne, M.; Guilyardi, E.
2016-04-01
Synoptic wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. This paper characterizes the spatio-temporal distribution of Easterly (EWEs) and Westerly Wind Events (WWEs) and quantifies their relationship with intraseasonal and interannual large-scale climate variability. We unambiguously demonstrate that the Madden-Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) modulate both WWEs and EWEs occurrence probability. 86 % of WWEs occur within convective MJO and/or CRW phases and 83 % of EWEs occur within the suppressed phase of MJO and/or CRW. 41 % of WWEs and 26 % of EWEs are in particular associated with the combined occurrence of a CRW/MJO, far more than what would be expected from a random distribution (3 %). Wind events embedded within MJO phases also have a stronger impact on the ocean, due to a tendency to have a larger amplitude, zonal extent and longer duration. These findings are robust irrespective of the wind events and MJO/CRW detection methods. While WWEs and EWEs behave rather symmetrically with respect to MJO/CRW activity, the impact of ENSO on wind events is asymmetrical. The WWEs occurrence probability indeed increases when the warm pool is displaced eastward during El Niño events, an increase that can partly be related to interannual modulation of the MJO/CRW activity in the western Pacific. On the other hand, the EWEs modulation by ENSO is less robust, and strongly depends on the wind event detection method. The consequences of these results for ENSO predictability are discussed.
[The mechanism and function of hippocampal neural oscillation].
Lu, Ning; Xing, Dan-Qin; Sheng, Tao; Lu, Wei
2017-10-25
Neural oscillation is rhythmic or repetitive neural activity in the central nervous system that is usually generated by oscillatory activity of neuronal ensembles, reflecting regular and synchronized activities within these cell populations. According to several oscillatory bands covering frequencies from approximately 0.5 Hz to >100 Hz, neural oscillations are usually classified as delta oscillation (0.5-3 Hz), theta oscillation (4-12 Hz), beta oscillation (12-30 Hz), gamma oscillation (30-100 Hz) and sharp-wave ripples (>100 Hz ripples superimposed on 0.01-3 Hz sharp waves). Neural oscillation in different frequencies can be detected in different brain regions of human and animal during perception, motion and sleep, and plays an essential role in cognition, learning and memory process. In this review, we summarize recent findings on neural oscillations in hippocampus, as well as the mechanism and function of hippocampal theta oscillation, gamma oscillation and sharp-wave ripples. This review may yield new insights into the functions of neural oscillation in general.
System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.
Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae
2017-11-18
Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.
A coherent detection technique via optically biased field for broadband terahertz radiation.
Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu
2017-09-01
We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.
NASA Astrophysics Data System (ADS)
Wirthmann, André; McCombe, Bruce D.; Heitmann, Detlef; Holland, Steffen; Friedland, Klaus-Jürgen; Hu, Can-Ming
2007-11-01
We report on photoresistance and magnetotransport measurements in a moderate mobility two-dimensional electron system subject to far-infrared (terahertz) radiation. The photoresistance shows radiation induced 1/B -periodic oscillations, which we identify as the terahertz analog of microwave-induced resistance oscillations (MIROs). The MIRO-analog oscillations show a sign reversal in the low-field, high current regime. We simultaneously observe magnetoplasmons and MIRO-analog oscillations with no apparent coupling between them. Using a meandering Hall-bar geometry allows us to greatly enhance sensitivity and detect these oscillations even at elevated temperatures and moderate mobilities.
OpenMC In Situ Source Convergence Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldrich, Garrett Allen; Dutta, Soumya; Woodring, Jonathan Lee
2016-05-07
We designed and implemented an in situ version of particle source convergence for the OpenMC particle transport simulator. OpenMC is a Monte Carlo based-particle simulator for neutron criticality calculations. For the transport simulation to be accurate, source particles must converge on a spatial distribution. Typically, convergence is obtained by iterating the simulation by a user-settable, fixed number of steps, and it is assumed that convergence is achieved. We instead implement a method to detect convergence, using the stochastic oscillator for identifying convergence of source particles based on their accumulated Shannon Entropy. Using our in situ convergence detection, we are ablemore » to detect and begin tallying results for the full simulation once the proper source distribution has been confirmed. Our method ensures that the simulation is not started too early, by a user setting too optimistic parameters, or too late, by setting too conservative a parameter.« less
Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.
Beach, James M; Uertz, James L; Eckhardt, Lori G
2015-10-01
A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.
Onojima, Takayuki; Goto, Takahiro; Mizuhara, Hiroaki; Aoyagi, Toshio
2018-01-01
Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results.
Nephron blood flow dynamics measured by laser speckle contrast imaging
Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V.; Pavlov, Alexey N.; Cupples, William A.; Sorensen, Charlotte Mehlin
2011-01-01
Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. PMID:21048025
Surface oscillation of levitated liquid droplets under microgravity
NASA Astrophysics Data System (ADS)
Watanabe, Masahito; Hibiya, Taketoshi; Ozawa, Shumpei; Mizuno, Akitoshi
2012-07-01
Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are now planning the thermophysical properties, the surface tension, viscosity, density and etc., measurements of liquid alloys using the electromagnetic levitator named MSL-EML (Materials Science Laboratory Electromagnetic Levitator), which ahs been developed by the European Space Agency (ESA), installed in the International Space Station (ISS). The surface tension and the viscosity of liquid samples by the oscillating drop method are obtained from the surface oscillation frequency and damping time of surface oscillation respectively. However, analysis of oscillating drop method in EML must be improved even in the microgravity conditions, because on the EML conditions the electromagnetic force (EMF) cannot generate the surface oscillation with discretely oscillation mode. Since under microgravity the levitated droplet shape is completely spherical, the surface oscillation frequency with different oscillation modes degenerates into the single frequency. Therefore, surface tension will be not affected the EML condition under microgravity, but viscosity will be affected on the different oscillation mode of surface oscillations. Because dumping time of surface oscillation of liquid droplets depends on the oscillation modes, the case of surface oscillation including multi oscillation modes the viscosity values obtained from dumping time will be modified from the correct viscosity. Therefore, we investigate the dumping time of surface oscillation of levitated droplets with different oscillation modes and also with including multi oscillation modes using the electrostatic levitation (ESL) on ground and EML under microgravity conditions by the parabolic flight of airplane. The ESL can discretely generate the surface oscillation with different oscillation modes by the change of generation frequency of surface oscillation, so we can obtain dumping time of surface oscillation with discrete oscillation mode. We repot the results of the damping time of the surface oscillation of levitated liquid droplet by ESL and EML experiment with numerical simulation of the damped oscillation model.
Autonomous strange nonchaotic oscillations in a system of mechanical rotators
NASA Astrophysics Data System (ADS)
Jalnine, Alexey Yu.; Kuznetsov, Sergey P.
2017-05-01
We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.
NASA Astrophysics Data System (ADS)
Syvokon, V. E.; Sharapova, I. V.
2018-05-01
The spectrum of coupled electron-ripplon oscillations in a Wigner crystal on the surface of superfluid helium at various temperatures and excitation voltages, leading to spectrum distortion, was studied experimentally. It was shown that at all temperatures, increasing excitation voltage leads to the appearance of non-axisymmetric vibrational modes, which indicates distortions of the crystal lattice. The possibility of excitation of the non-axisymmetric modes in a cell was demonstrated by modeling electronic crystal oscillations using the molecular dynamics method. At several fixed frequencies, the amplitudes of the response of the electronic crystal to external excitation were measured as a function of the magnitude of excitation voltage, and jumps were detected at certain critical voltages. Using the Lindemann criterion, a correlation was found between the critical stress and stability limit of the crystal lattice. It was concluded that when the critical voltage is reached, dynamic melting of the electronic crystal occurs.
Waldman, Zachary J.; Shimamoto, Shoichi; Song, Inkyung; Orosz, Iren; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sperling, Michael R.; Weiss, Shennan A.
2018-01-01
Objective To develop a reliable software method using a topographic analysis of time-frequency plots to distinguish ripple (80–200 Hz) oscillations that are often associated with EEG sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond with digital filtering of sharp transients contained in the wide bandwidth EEG. Methods A custom algorithm distinguished true from false ripples in one second intracranial EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and categorizing these contours into sets of open or closed loop groups. The spectral and temporal features of candidate groups were used to classify the ripple, and determine its duration, frequency, and power. Verification of detector accuracy was performed on the basis of simulations, and visual inspection of the original and band-pass filtered signals. Results The detector could distinguish simulated true from false ripple on spikes (RonS). Among 2934 visually verified trials of iEEG recordings and spectrograms exhibiting RonS the accuracy of the detector was 88.5% with a sensitivity of 81.8% and a specificity of 95.2%. The precision was 94.5% and the negative predictive value was 84.0% (N = 12). Among, 1,370 trials of iEEG recording exhibiting RonS that were reviewed blindly without spectrograms the accuracy of the detector was 68.0%, with kappa equal to 0.01 ± 0.03. The detector successfully distinguished ripple from high spectral frequency ‘fast ripple’ oscillations (200–600 Hz), and characterize ripple duration and spectral frequency and power. The detector was confounded by brief bursts of gamma (30–80 Hz) activity in 7.31 ± 6.09% of trials, and in 30.2 ± 14.4% of the true RonS detections ripple duration was underestimated. Conclusions Characterizing the topographic features of a time-frequency plot generated by wavelet convolution is useful for distinguishing true oscillations from false oscillations generated by filter ringing. Significance Categorizing ripple oscillations and characterizing their properties can improve the clinical utility of the biomarker. PMID:29122445
Weak Perturbations of Biochemical Oscillators
NASA Astrophysics Data System (ADS)
Gailey, Paul
2001-03-01
Biochemical oscillators may play important roles in gene regulation, circadian rhythms, physiological signaling, and sensory processes. These oscillations typically occur inside cells where the small numbers of reacting molecules result in fluctuations in the oscillation period. Some oscillation mechanisms have been reported that resist fluctuations and produce more stable oscillations. In this paper, we consider the use of biochemical oscillators as sensors by comparing inherent fluctuations with the effects of weak perturbations to one of the reactants. Such systems could be used to produce graded responses to weak stimuli. For example, a leading hypothesis to explain geomagnetic navigation in migrating birds and other animals is based on magnetochemical reactions. Because the magnitude of magnetochemical effects is small at geomagnetic field strengths, a sensitive, noise resistant detection scheme would be required.
Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming
NASA Astrophysics Data System (ADS)
Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.
Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions
Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun
2014-01-01
Background Phase-amplitude coupling (PAC) – the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm – has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. New method To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques – such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. Comparison with existing methods We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Conclusions Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. PMID:24452055
Qin, Zhen; Zhang, Bin; Hu, Liang; Zhuang, Liujing; Hu, Ning; Wang, Ping
2016-04-15
Animals' gustatory system has been widely acknowledged as one of the most sensitive chemosensing systems, especially for its ability to detect bitterness. Since bitterness usually symbolizes inedibility, the potential to use rodent's gustatory system is investigated to detect bitter compounds. In this work, the extracellular potentials of a group of neurons are recorded by chronically coupling microelectrode array to rat's gustatory cortex with brain-machine interface (BMI) technology. Local field potentials (LFPs), which represent the electrophysiological activity of neural networks, are chosen as target signals due to stable response patterns across trials and are further divided into different oscillations. As a result, different taste qualities yield quality-specific LFPs in time domain which suggests the selectivity of this in vivo bioelectronic tongue. Meanwhile, more quantitative study in frequency domain indicates that the post-stimulation power of beta and low gamma oscillations shows dependence with concentrations of denatonium benzoate, a prototypical bitter compound, and the limit of detection is deduced to be 0.076 μM, which is two orders lower than previous in vitro bioelectronic tongues and conventional electronic tongues. According to the results, this in vivo bioelectronic tongue in combination with BMI presents a promising method in highly sensitive bitterness detection and is supposed to provide new platform in measuring bitterness degree. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabinovich, Emmanuel M.
2004-05-01
We present an overview of research, conducted and published by the author and colleagues during the preceding decade, with self-oscillating dynamic systems. Special attention has been addressed to sensor type applications that allow one to design a new type of sensors of different physical parameters as well as using system for chemical and biosensors. Many detection methods exploit self-oscillating systems, such as lasers and RF or microwave oscillators, and use changes introduced into a feedback mechanism (for instance laser inter-cavity spectroscopy) for evaluation of different physical parameters such as refractive indices or absorption coefficients. Typically, that approach is very efficient, is easy to implement, and gives high sensitivity. We have demonstrated that a similar method can be used in the case of an RF optoelectronic self-oscillating system (OSOS) with a fiber-optic feedback line. Using fiber as an element of a positive feedback line allows one to design a new family of fiber-optic sensors each of which can be integrated into a fiber-optic feedback line. Changes introduced into the feedback line of an OSOS typically cause an RF frequency shift that can be measured very precisely with an RF frequency counter or spectrum analyzer. For some types of sensors an OSOS can easily incorporate and utilize advantages of well-developed modern inexpensive light sources (VCSELs, LEDs) and opto-electronic components that have been designed for communication purposes. A single closed loop OSOS can be easily duplicated for sensor array measurement via the use of parallel fiber-optics (for example VCSEL arrays and fiber ribbon cables) that have been well developed for telecommunication systems.
NASA Astrophysics Data System (ADS)
Huett, Marc-Thorsten
2003-05-01
We formulate mathematical tools for analyzing spatiotemporal data sets. The tools are based on nearest-neighbor considerations similar to cellular automata. One of the analysis tools allows for reconstructing the noise intensity in a data set and is an appropriate method for detecting a variety of noise-induced phenomena in spatiotemporal data. The functioning of these methods is illustrated on sample data generated with the forest fire model and with networks of nonlinear oscillators. It is seen that these methods allow the characterization of spatiotemporal stochastic resonance (STSR) in experimental data. Application of these tools to biological spatiotemporal patterns is discussed. For one specific example, the slime mold Dictyostelium discoideum, it is seen, how transitions between different patterns are clearly marked by changes in the spatiotemporal observables.
Mapping brain activity in gradient-echo functional MRI using principal component analysis
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Singh, Manbir; Don, Manuel
1997-05-01
The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.
NASA Astrophysics Data System (ADS)
Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.
2018-03-01
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.
NASA Astrophysics Data System (ADS)
Xiong, J. P.; Zhang, A. L.; Ji, K. F.; Feng, S.; Deng, H.; Yang, Y. F.
2016-01-01
Photospheric bright points (PBPs) are tiny and short-lived phenomena which can be seen within dark inter-granular lanes. In this paper, we develop a new method to identify and track the PBPs in the three-dimensional data cube. Different from the previous way such as Detection-Before-Tracking, this method is based on the Tracking-While-Detection. Using this method, the whole lifetime of a PBP can be accurately measured while this PBP is possibly separated into several with Laplacian and morphological dilation (LMD) method due to its weak intensity sometimes. With consideration of the G-band PBPs observed by Hinode/SOT (Solar Optical Telescope) for more than two hours, we find that the isolated PBPs have an average lifetime of 3 minutes, and the longest one is up to 27 minutes, which are greater than the values detected by the previous LMD method. Furthermore, we also find that the mean intensity of PBPs is 1.02 times of the mean photospheric intensity, which is less than the values detected by LMD method, and the intensity of PBPs presents a period of oscillation with 2-3 minutes during the whole lifetime.
Double-Paddle Oscillators as Probes of Quantum Turbulence in the Zero Temperature Limit
NASA Astrophysics Data System (ADS)
Schmoranzer, David; Jackson, Martin; Zemma, Elisa; Luzuriaga, Javier
2017-06-01
We present a technical report on our tests of a double-paddle oscillator as a detector of quantum turbulence in superfluid 4He at low temperatures ranging from 20 to 1100 mK. The device, known to operate well in the two-fluid regime (Zemma and Luzuriaga in J Low Temp Phys 166:171-181, 2012), is also capable of detecting quantum turbulence in the zero temperature limit. The oscillator demonstrated Lorentzian responses with quality factors of order 10^5 in vacuum, and displayed negative-Duffing resonances in liquid, even at moderate drives. In superfluid He-II at low temperatures, its sensitivity was adversely affected by acoustic damping at higher harmonics. While it successfully created and detected the quantum turbulence, its overall performance does not compare favourably with other oscillators such as tuning forks.
Electron beam detection of a Nanotube Scanning Force Microscope.
Siria, Alessandro; Niguès, Antoine
2017-09-14
Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.
Transverse kink oscillations in the presence of twist
NASA Astrophysics Data System (ADS)
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
NASA Astrophysics Data System (ADS)
Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie
2018-02-01
We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at discovering stellar (planetary) companions around pulsating stars using timing methods, as both require very stable pulsation modes.
NASA Astrophysics Data System (ADS)
Stello, Dennis; Huber, Daniel; Sharma, Sanjib; Johnson, Jennifer; Lund, Mikkel N.; Handberg, Rasmus; Buzasi, Derek L.; Silva Aguirre, Victor; Chaplin, William J.; Miglio, Andrea; Pinsonneault, Marc; Basu, Sarbani; Bedding, Tim R.; Bland-Hawthorn, Joss; Casagrande, Luca; Davies, Guy; Elsworth, Yvonne; Garcia, Rafael A.; Mathur, Savita; Di Mauro, Maria Pia; Mosser, Benoit; Schneider, Donald P.; Serenelli, Aldo; Valentini, Marica
2015-08-01
NASA’s re-purposed Kepler mission—dubbed K2—has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2's capabilities, in particular its 360° ecliptic field of view, is galactic archaeology—the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass, and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed toward the north galactic gap, during the mission’s first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the {log}g range ˜1.9-3.2. Our detection is complete down to {\\text{Kp}} ˜ 14.5, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.
Discovery of the Neutron Star Spin Frequency in EXO 0748-676
NASA Technical Reports Server (NTRS)
Villarreal, Adam R.; Strohmayer, Tod E.
2004-01-01
We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.
Dynamics of a multi-thermal loop in the solar corona
NASA Astrophysics Data System (ADS)
Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.
2014-10-01
Context. We present an observation of a long-living multi-thermal coronal loop, visible in different extreme ultra-violet wavebands of SDO/AIA in a quiet-Sun region close to the western solar limb. Aims: Analysis of persistent kink displacements of the loop seen in different bandpasses that correspond to different temperatures of the plasma allows sub-resolution structuring of the loop to be revealed. Methods: A vertically oriented slit is taken at the loop top, and time-distance maps are made from it. Loop displacements in time-distance maps are automatically tracked with the Gaussian fitting technique and fitted with a sinusoidal function that is "guessed". Wavelet transforms are further used in order to quantify the periodicity variation in time of the kink oscillations. Results: The loop strands are found to oscillate with the periods ranging between 3 and 15 min. The oscillations are observed in intermittent regime with temporal changes in the period and amplitude. The oscillations are different at three analysed wavelengths. Conclusions: This finding suggests that the loop-like threads seen at different wavelengths are not co-spatial, hence that the loop consists of several multi-thermal strands. The detected irregularity of the oscillations can be associated with a stochastic driver acting at the footpoints of the loop. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org
2014-01-01
Background Neurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods. Methods Electroencephalogram/event-related potential (EEG/ERP) responses were measured during visual processing (NF1 n = 17; controls n = 19) and idle periods with eyes closed and eyes open (NF1 n = 12; controls n = 14). Visual stimulation was chosen to bias activation of the three detection mechanisms: achromatic, red-green and blue-yellow. Results We found significant differences between the groups for late chromatic VEPs and a specific enhancement in the amplitude of the parieto-occipital alpha amplitude both during visual stimulation and idle periods. Alpha modulation and the negative influence of alpha oscillations in visual performance were found in both groups. Conclusions Our findings suggest abnormal later stages of visual processing and enhanced amplitude of alpha oscillations supporting the existence of deficits in basic sensory processing in NF1. Given the link between alpha oscillations, visual perception and attention, these results indicate a neural mechanism that might underlie the visual sensitivity deficits and increased lapses of attention observed in individuals with NF1. PMID:24559228
Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes
ERIC Educational Resources Information Center
Gauthier, N.
2004-01-01
An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…
NASA Technical Reports Server (NTRS)
Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)
2014-01-01
An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.
NASA Astrophysics Data System (ADS)
Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Göllnitz, C.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Rokujo, H.; Roganova, T.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strauss, T.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Zghiche, A.
2014-08-01
The OPERA experiment, designed to perform the first observation of oscillations in appearance mode through the detection of the leptons produced in charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect particle decays, occurring over distances of the order of from the neutrino interaction point, is described in detail and applied to the search for charmed hadrons, showing similar decay topologies as the lepton. In the analysed sample, 50 charm decay candidate events are observed while are expected, proving that the detector performance and the analysis chain applied to neutrino events are well reproduced by the OPERA simulation and thus validating the methods for appearance detection.
NASA Technical Reports Server (NTRS)
Bgattacharyya, Sudip; Strohmayer, E.
2005-01-01
We report on a study of the evolution of burst oscillation properties during the rising phase of X-ray bursts from 4U 1636-536 observed with the proportional counter array (PCA) on board the Rossi X-Ray Timing Explorer (RXTE) . We present evidence for significant harmonic structure of burst oscillation pulses during the early rising phases of bursts. This is the first such detection in burst rise oscillations, and is very important for constraining neutron star structure parameters and the equation of state models of matter at the core of a neutron star. The detection of harmonic content only during the initial portions of the burst rise is consistent with the theoretical expectation that with time the thermonuclear burning region becomes larger, and hence the fundamental and harmonic amplitudes both diminish. We also find, for the first time from this source, strong evidence of oscillation frequency increase during the burst rise. The timing behavior of harmonic content, amplitude, and frequency of burst rise oscillations may be important in understanding the spreading of thermonuclear flames under the extreme physical conditions on neutron star surfaces.
Detecting ultralight axion dark matter wind with laser interferometers
NASA Astrophysics Data System (ADS)
Aoki, Arata; Soda, Jiro
The ultralight axion with mass around 10-22eV is known as a candidate of dark matter. A peculiar feature of the ultralight axion is oscillating pressure in time, which produces oscillation of gravitational potentials. Since the solar system moves through the dark matter halo at the velocity of about v ˜ 300km/s = 10-3, there exists axion wind, which looks like scalar gravitational waves for us. Hence, there is a chance to detect ultralight axion dark matter with a wide mass range by using laser interferometer detectors. We calculate the detector signal induced by the oscillating pressure of the ultralight axion field, which would be detected by future laser interferometer experiments. We also argue that the detector signal can be enhanced due to the resonance in modified gravity theory explaining the dark energy.
Brunetti, Enzo; Maldonado, Pedro E; Aboitiz, Francisco
2013-01-01
During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on "kept in mind" rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Background Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Methods Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Results Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Conclusion Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. PMID:27010929
Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie
2017-01-01
Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.
Goto, Takahiro; Aoyagi, Toshio
2018-01-01
Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results. PMID:29337999
NASA Astrophysics Data System (ADS)
Zhang, B.; Hou, Y. J.; Zhang, J.
2018-03-01
Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org
Dispersive detection of radio-frequency-dressed states
NASA Astrophysics Data System (ADS)
Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas
2018-04-01
We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-07-17
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-01-01
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283
Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan
2017-07-01
This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.
NASA Astrophysics Data System (ADS)
Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.
2015-12-01
Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.
WGM-Based Photonic Local Oscillators and Modulators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy
2007-01-01
Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below those of other optical-signal-generation devices.
NASA Astrophysics Data System (ADS)
Zaitsev, F. S.; Gorelenkov, N. N.; Petrov, M. P.; Afanasyev, V. I.; Mironov, M. I.
2018-03-01
ITER plasma with parameters close to those with the inductive scenario is considered. The distribution functions of fast ions of deuterium D and tritium T are calculated while taking into account the elastic nuclear collisions with alpha particles 4He using the code FPP-3D. The D and T energy spectra detected by the neutral-particle analyzer (NPA) are determined. The plasma mixing effect on these spectra during sawtooth oscillations is studied. It is shown that the NPA makes it possible to detect sawtooth plasma oscillations in ITER and determine the percentage composition of the D‒T mixture in it both with the presence of instabilities and without them. A conclusion is drawn on the prospects of using NPA data in automatic controllers of thermonuclear fuel isotopic composition control and plasma oscillation regulation in ITER.
Transiting Planet Search in the Kepler Pipeline
NASA Technical Reports Server (NTRS)
Jenkins, Jon M.; Chandrasekaran, Hema; McCauliff, Sean D.; Caldwell, Douglas A.; Tenebaum, Peter; Li, Jie; Klaus, Todd C.; Cote, Mile T.; Middour, Christopher
2010-01-01
The Kepler Mission simultaneously measures the brightness of more than 160,000 stars every 29.4 minutes over a 3.5-year mission to search for transiting planets. Detecting transits is a signal-detection problem where the signal of interest is a periodic pulse train and the predominant noise source is non-white, non-stationary (1/f) type process of stellar variability. Many stars also exhibit coherent or quasi-coherent oscillations. The detection algorithm first identifies and removes strong oscillations followed by an adaptive, wavelet-based matched filter. We discuss how we obtain super-resolution detection statistics and the effectiveness of the algorithm for Kepler flight data.
Comparison of νμ->νe Oscillation calculations with matter effects
NASA Astrophysics Data System (ADS)
Gordon, Michael; Toki, Walter
2013-04-01
An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for νμ->νe oscillations in matter. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitely the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method developed by Arafune, Koike, and Sato uses an alternate method to find an approximation of the evolution operator. These methods are compared to each other using parameters from both the T2K and LBNE experiments.
Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R; Dick, Thomas E; Jacono, Frank J; Galán, Roberto F
2013-02-01
Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. E 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. E 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.
Maestri, Roberto; La Rovere, Maria Teresa; Robbi, Elena; Pinna, Gian Domenico
2010-06-01
The physiological mechanisms responsible for periodic breathing (PB) in heart failure (HF) patients are still debated. A role for rhythmic shifts in the level of wakefulness has been suggested, but their existence has never been proven. In this study we investigated the existence of an oscillation in EEG activity during PB in these patients and assessed its relationship with the ventilatory oscillation. EEG activity was measured by the fractal dimension (FD) and by a spectral technique (weighted mean frequency, WMF) in 17 stable HF patients (mean age +/- SD: 57+/-10 yrs, NYHA class: 2.6 +/- 0.4, LVEF: 24 +/- 6%), with sustained PB during supine rest. The relationship between minute ventilation (MV) signal and FD and WMF was assessed by coherence analysis. Most patients (10/17) showed a well defined oscillation in FD and WMF at the frequency of PB closely linked (coherence > 0.7) with the oscillation of MV. In the remaining patients, neither FD nor WMF showed a clear oscillatory pattern synchronous with MV. Overall, the two EEG-derived parameters showed the same coherence with the ventilatory oscillation (mean coherence +/- SD: 0.65 +/- 0.25 vs 0.66 +/- 0.23, for FD and WMF respectively, p = 0.44). Our results provide evidence that during PB in HF patients, EEG activity often, but not always, fluctuates synchronously with the ventilatory oscillation. These fluctuations can be effectively detected by the fractal dimension, but classical spectral methods provide substantially the same information. Other mechanisms, particularly chemical instability in the respiratory control system, are likely to play a role in the genesis of PB.
Anatomical and functional assemblies of brain BOLD oscillations
Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania
2011-01-01
Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505
The quantum limit for gravitational-wave detectors and methods of circumventing it
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Caves, C. M.; Sandberg, V. D.; Zimmermann, M.; Drever, R. W. P.
1979-01-01
The Heisenberg uncertainty principle prevents the monitoring of the complex amplitude of a mechanical oscillator more accurately than a certain limit value. This 'quantum limit' is a serious obstacle to the achievement of a 10 to the -21st gravitational-wave detection sensitivity. This paper examines the principles of the back-action evasion technique and finds that this technique may be able to overcome the problem of the quantum limit. Back-action evasion does not solve, however, other problems of detection, such as weak coupling, large amplifier noise, and large Nyquist noise.
Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin
2017-01-01
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815
New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion
2012-11-01
IR Faraday Rotational Spectroscopy Method to quantify HO2 29 30 Brian Brumfield, Wenting Sun, Gerard Wysock, and Yinguang Ju, submitted...to JACS, 2012 7.1 μm Mid infra-red Faraday Rotation Spectroscopy (FRS), 1396 cm-1 Quantitative HO2 Measurement (very challenging!): 2L + 1...paramagnetic species Polarization rotation detection Linearly-polarized laser light 610 Hz oscillating magnetic field 125 Gauss rms Sub-ppm level
Demonstration of Detection and Ranging Using Solvable Chaos
NASA Technical Reports Server (NTRS)
Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.
2013-01-01
Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.
Lai, Zhi-Hui; Leng, Yong-Gang
2015-08-28
A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.
Fast and sensitive detection of an oscillating charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, X.; Hasko, D. G.; Milne, W. I.
We investigate the high-frequency operation of a percolation field effect transistor to monitor microwave excited single trapped charge. Readout is accomplished by measuring the effect of the polarization field associated with the oscillating charge on the AC signal generated in the channel due to charge pumping. This approach is sensitive to the relative phase between the polarization field and the pumped current, which is different from the conventional approach relying on the amplitude only. Therefore, despite the very small influence of the single oscillating trapped electron, a large signal can be detected. Experimental results show large improvement in both signal-to-noisemore » ratio and measurement bandwidth.« less
Leao, Richardson N; Leao, Fabricio N; Walmsley, Bruce
2005-01-01
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem. PMID:16271982
On the exploitation of seismic resonances for cavity detection
NASA Astrophysics Data System (ADS)
Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz
2017-04-01
We study the interaction of a seismic wave-field with a spherical acoustic gas- or fluid-filled cavity. The intention of this study is to clarify whether seismic resonances can be expected, a characteristic feature, which may help detecting cavities in the subsurface. This is important for many applications, as in particular the detection of underground nuclear explosions which are to be prohibited by the Comprehensive-Test-Ban-Treaty (CTBT). On-Site Inspections (OSI) should assure possible violation of the CTBT to be convicted after detection of a suspicious event from a nuclear explosion by the international monitoring system (IMS). One primary structural target for the field team during an OSI is the detection of cavities created by underground nuclear explosions. The application of seismic resonances of the cavity for its detection has been proposed in the CTBT by mentioning "resonance seismometry" as possible technique during OSIs. In order to calculate the full seismic wave-field from an incident plane wave that interacts with the cavity, we considered an analytic formulation of the problem. The wave-field interaction consists of elastic scattering and the wave-field interaction between the acoustic and elastic media. Acoustic resonant modes, caused by internal reflections in the acoustic cavity, show up as spectral peaks in the frequency domain. The resonant peaks are in close correlation to the eigenfrequencies of the undamped system described by the particular acoustic medium bounded in a sphere with stiff walls. The filling of the cavity could thus be determined by the observation of spectral peaks from acoustic resonances. By energy transmission from the internal oscillations back into the elastic domain and intrisic attenuation, the oscillations experience damping, resulting in a frequency shift and a limitation of the resonance amplitudes. In case of a gas-filled cavity the impedance contrast is high resulting in very narrow, high-amplitude resonances. In synthetic seismograms calculated in the surrounding elastic domain, the acoustic resonances of gas-filled cavities show up as persisting oscillations. However, due to the weak acoustic-elastic coupling in this case the amplitudes of the oscillations are very low. Due to a lower impedance contrast, a fluid-filled cavity has a stronger acoustic-elastic coupling, which results in wide spectral peaks of lower amplitudes. In the synthetic seismograms derived in the surrounding medium of fluid-filled cavities, acoustic resonances show up as strong but fast decaying reverberations. Based on the analytical modeling methods for exploitation of these resonance features are developed and discussed.
On precise phase difference measurement approach using border stability of detection resolution.
Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan
2015-01-01
For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.
Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles
2013-01-01
Brain activity often consists of interactions between internal—or on-going—and external—or sensory—activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal’s on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5 ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40 Hz. Our software’s architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system “StimOMatic” is available freely as open-source. PMID:23473800
Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations
Horschig, Jörn M.; Zumer, Johanna M.; Bahramisharif, Ali
2014-01-01
Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works. PMID:25018706
NASA Astrophysics Data System (ADS)
Samanta, T.; Singh, J.; Sindhuja, G.; Banerjee, D.
2016-01-01
During the total solar eclipse of 11 July 2010, multi-slit spectroscopic observations of the solar corona were performed from Easter Island, Chile. To search for high-frequency waves, observations were taken at a high cadence in the green line at 5303 Å that is due to [Fe xiv] and the red line at 6374 Å that is due to [Fe x]. The data were analyzed to study the periodic variations in intensity, Doppler velocity, and line width using wavelet analysis. The data with high spectral and temporal resolution enabled us to study the rapid dynamical changes within coronal structures. We find that at certain locations, each parameter shows significant oscillation with periods ranging from 6 - 25 s. For the first time, we were able to detect damping of high-frequency oscillations with periods of about 10 s. If the observed damped oscillations are due to magnetohydrodynamic waves, then they can contribute significantly to the heating of the corona. From a statistical study we try to characterize the nature of the observed oscillations while considering the distribution of power in different line parameters.
An exploratory study of a finite difference method for calculating unsteady transonic potential flow
NASA Technical Reports Server (NTRS)
Bennett, R. M.; Bland, S. R.
1979-01-01
A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, B.; Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu
We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.
2018-04-01
A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.
Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback
NASA Astrophysics Data System (ADS)
Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro
2016-10-01
This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.
Santos, José Pedro; Fernández, Maria Jesús; Fontecha, José Luis; Matatagui, Daniel; Sayago, Isabel; Horrillo, Maria Carmen; Gracia, Isabel
2014-12-16
A new method of depositing tin dioxide nanofibers in order to develop chemical sensors is presented. It involves an electrospinning process with in-plane electrostatic focusing over micromechanized substrates. It is a fast and reproducible method. After an annealing process, which can be performed by the substrate heaters, it is observed that the fibers are intertwined forming porous networks that are randomly distributed on the substrate. The fiber diameters oscillate from 100 nm to 200 nm and fiber lengths reach several tens of microns. Each fiber has a polycrystalline structure with multiple nano-grains. The sensors have been tested for the detection of acetone and hydrogen peroxide (precursors of the explosive triacetone triperoxide, TATP) in air in the ppm range. High and fast responses to these gases have been obtained.
Bifurcation to large period oscillations in physical systems controlled by delay
NASA Astrophysics Data System (ADS)
Erneux, Thomas; Walther, Hans-Otto
2005-12-01
An unusual bifurcation to time-periodic oscillations of a class of delay differential equations is investigated. As we approach the bifurcation point, both the amplitude and the frequency of the oscillations go to zero. The class of delay differential equations is a nonlinear extension of a nonevasive control method and is motivated by a recent study of the foreign exchange rate oscillations. By using asymptotic methods, we determine the bifurcation scaling laws for the amplitude and the period of the oscillations.
NASA Astrophysics Data System (ADS)
Serra, Roger; Lopez, Lautaro
2018-05-01
Different approaches on the detection of damages based on dynamic measurement of structures have appeared in the last decades. They were based, amongst others, on changes in natural frequencies, modal curvatures, strain energy or flexibility. Wavelet analysis has also been used to detect the abnormalities on modal shapes induced by damages. However the majority of previous work was made with non-corrupted by noise signals. Moreover, the damage influence for each mode shape was studied separately. This paper proposes a new methodology based on combined modal wavelet transform strategy to cope with noisy signals, while at the same time, able to extract the relevant information from each mode shape. The proposed methodology will be then compared with the most frequently used and wide-studied methods from the bibliography. To evaluate the performance of each method, their capacity to detect and localize damage will be analyzed in different cases. The comparison will be done by simulating the oscillations of a cantilever steel beam with and without defect as a numerical case. The proposed methodology proved to outperform classical methods in terms of noisy signals.
Femtogram Mass Biosensor Using Self-Sensing Cantilever for Allergy Check
NASA Astrophysics Data System (ADS)
Sone, Hayato; Ikeuchi, Ayumi; Izumi, Takashi; Okano, Haruki; Hosaka, Sumio
2006-03-01
A self-sensing mass biosensor with a femtogram mass sensitivity has been developed using a piezoresistive microcantilever. The mass change due to antigen and antibody adsorption on the cantilever in water was detected by the resonance frequency shift of the cantilever. We constructed a prototype harmonic vibration sensor using a commercial piezoresistive cantilever, Wheatstone bridge circuits, a positive feedback controller, an exciting piezoactuator and a phase-locked loop (PLL) demodulator. As experimental results, a mass sensitivity of about 190 fg/Hz, and a mass resolution of about 500 fg were obtained in water. The mass sensitivity is 100 times higher than that of a quartz crystal oscillation method. We demonstrated that the sensor can detect the reaction between an antibody of immunoglobulin (IgG) and an antigen of egg albumen (OVA). We confirmed that the binding ratio between the antibody and the antigen was about 1 : 2. The detection method is available for allergy check because the measured reaction ratio occurring on the cantilever concurs with the theoretical method.
Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.
Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir
2013-06-10
A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.
NASA Astrophysics Data System (ADS)
Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik
2017-01-01
In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection sensitivity, and it can be seen that this shift is affected by the temperature change and the amount of electrostatic force. The thermal effects on the mass detection sensitivity are intensified in the linear oscillation regime and increase with increasing CNT length; this intensification can either improve or worsen the detection sensitivity.
The stratospheric QBO signal in the NCEP reanalysis, 1958-2001
NASA Astrophysics Data System (ADS)
Ribera, Pedro; Gallego, David; Peña-Ortiz, Cristina; Gimeno, Luis; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Calvo, Natalia
2003-07-01
The spatiotemporal evolution of the zonal wind in the stratosphere is analyzed based on the use of the NCEP reanalysis (1958-2001). MultiTaper Method-Singular Value Decomposition (MTM-SVD), a frequency-domain analysis method, is applied to isolate significant spatially-coherent variability with narrowband oscillatory character. A quasibiennial oscillation is detected as the most intense coherent signal in the stratosphere, the signal being less intense in the lower levels. There is a clear downward propagation of the signal with time at low latitudes, not evident at mid and high latitudes. There are differences in the behavior of the signal over both hemispheres, being much weaker over the SH. In the NH an anomaly in the zonal wind field, in phase with the equatorial signal, is detected at approximately 60°N. Two different areas at subtropical latitudes are detected to be characterized by wind anomalies opposed to that of the equator.
Sleep spindle detection using deep learning: A validation study based on crowdsourcing.
Dakun Tan; Rui Zhao; Jinbo Sun; Wei Qin
2015-08-01
Sleep spindles are significant transient oscillations observed on the electroencephalogram (EEG) in stage 2 of non-rapid eye movement sleep. Deep belief network (DBN) gaining great successes in images and speech is still a novel method to develop sleep spindle detection system. In this paper, crowdsourcing replacing gold standard was applied to generate three different labeled samples and constructed three classes of datasets with a combination of these samples. An F1-score measure was estimated to compare the performance of DBN to other three classifiers on classifying these samples, with the DBN obtaining an result of 92.78%. Then a comparison of two feature extraction methods based on power spectrum density was made on same dataset using DBN. In addition, the DBN trained in dataset was applied to detect sleep spindle from raw EEG recordings and performed a comparable capacity to expert group consensus.
Noise Sources in Photometry and Radial Velocities
NASA Astrophysics Data System (ADS)
Oshagh, Mahmoudreza
The quest for Earth-like, extrasolar planets (exoplanets), especially those located inside the habitable zone of their host stars, requires techniques sensitive enough to detect the faint signals produced by those planets. The radial velocity (RV) and photometric transit methods are the most widely used and also the most efficient methods for detecting and characterizing exoplanets. However, presence of astrophysical "noise" makes it difficult to detect and accurately characterize exoplanets. It is important to note that the amplitude of such astrophysical noise is larger than both the signal of Earth-like exoplanets and state-of-the-art instrumentation limit precision, making this a pressing topic that needs to be addressed. In this chapter, I present a general review of the main sources of noise in photometric and RV observations, namely, stellar oscillations, granulation, and magnetic activity. Moreover, for each noise source I discuss the techniques and observational strategies which allow us to mitigate their impact.
Continuous-wave optical parametric oscillators on their way to the terahertz range
NASA Astrophysics Data System (ADS)
Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten
2010-02-01
Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.
Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants
NASA Astrophysics Data System (ADS)
Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia
2018-05-01
We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.
Observation of Kilohertz Quasiperiodic Oscillations from the Atoll Source 4U 1702-429 by RXTE
NASA Technical Reports Server (NTRS)
Markwardt, C. B.; Strohmayer, Tod E.; Swank, Jean H.
1998-01-01
We present results of Rossi X-Ray Timing Explorer (RXTE) observations of the atoll source 4U 1702-429 in the middle of its luminosity range. Kilohertz-range quasiperiodic oscillations (QPOS) were observed first as a narrow (FWHM approximately 7 Hz) peak near 900 Hz, and later as a pair consisting of a narrow peak in the range 625 825 Hz and a faint broad (FWHM 91 Hz) peak. When the two peaks appeared simultaneously the separation was 333 +/- 5 Hz. Six type I thermonuclear bursts were detected, of which five exhibited almost coherent oscillations near 330 Hz, which makes 4U 1702-429 only the second source to show burst oscillations very close to the kilohertz QPO separation frequency. The energy spectrum and color-color diagram indicate that the source executed variations in the range between the "island" and "lower banana" atoll states. In addition to the kilohertz variability, oscillations at approximately 10, approximately 35, and 80 Hz were also detected at various times, superimposed on a red noise continuum. The centroid of the approximately 35 Hz QPO tracks the frequency of the kilohertz oscillation when they were both present. A Lense-Thirring gravitomagnetic precession interpretation appears more plausible in this case, compared to other atoll sources with low frequency QPOs.
A novel method for determining the phase-noise behavior of resonator-oscillators
NASA Astrophysics Data System (ADS)
Hoffmann, Michael H. W.
2005-05-01
A novel approach to the theory of phase-noise in resonator-oscillators will be given that is based on a combination of a large-signal-small-signal method, harmonic balance, and a modified Rice-model of signals plus noise. The method will be explained using a simple example. Since the type of oscillator under consideration not only de-attenuates eigen-oscillations but also noise in the spectral vicinity of the eigen-frequency, a signal is generated that is quasi-harmonic, and that might be described by means of a pseudo-Fourier-series expansion. Due to the specific description of the internal noise-sources, it is possible to use a time-domain description that at the same time reveals information about the spectral components of the signal. By comparison of these components, the spectrum of the oscillation might be determined. Relations between the spectrum of internal noise sources and the generated oscillator-signal will be recognized. The novel method will thus enable the designer to predict the phase-noise behavior of a specific oscillator-design.
Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.
Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard
2007-10-30
We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.
Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets
Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard
2007-01-01
We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434
Barbés, Benigno; Azcona, Juan Diego; Prieto, Elena; de Foronda, José Manuel; García, Marina; Burguete, Javier
2015-09-08
A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET.
Wachter, Eric A.; Thundat, Thomas G.
1995-01-01
A mass microsensor is fabricated with a microcantilever oscillated by a piezoelectric transducer. A chemical coating having absorptive or adsorptive affinity for a specifically targeted chemical or compound is applied to the microcantilever for oscillation in the monitored atmosphere. Molecules of the targeted chemical attach to the microcantilever coating resulting in an oscillating mass increase which influences the resonant frequency of the microcantilever oscillation. The rate at which the coated microcantilever accumulates the target chemical is functional of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change is related to the concentration of the target chemical within the monitored atmosphere. Such oscillation frequency changes are detected by a center-crossing photodiode which responds to a laser diode beam reflected from the microcantilever surface resulting in an output frequency from the photodiode that is synchronous with the microcantilever frequency.
Multipole expansion method for supernova neutrino oscillations
Duan, Huaiyu; Shalgar, Shashank
2014-10-31
Here, we demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.
Method of forming calthrate ice
Hino, T.; Gorski, A.J.
1985-09-30
A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.
Method of forming clathrate ice
Hino, Toshiyuki; Gorski, Anthony J.
1987-01-01
A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.
Mutual 3:1 subharmonic synchronization in a micromachined silicon disk resonator
NASA Astrophysics Data System (ADS)
Taheri-Tehrani, Parsa; Guerrieri, Andrea; Defoort, Martial; Frangi, Attilio; Horsley, David A.
2017-10-01
We demonstrate synchronization between two intrinsically coupled oscillators that are created from two distinct vibration modes of a single micromachined disk resonator. The modes have a 3:1 subharmonic frequency relationship and cubic, non-dissipative electromechanical coupling between the modes enables their two frequencies to synchronize. Our experimental implementation allows the frequency of the lower frequency oscillator to be independently controlled from that of the higher frequency oscillator, enabling study of the synchronization dynamics. We find close quantitative agreement between the experimental behavior and an analytical coupled-oscillator model as a function of the energy in the two oscillators. We demonstrate that the synchronization range increases when the lower frequency oscillator is strongly driven and when the higher frequency oscillator is weakly driven. This result suggests that synchronization can be applied to the frequency-selective detection of weak signals and other mechanical signal processing functions.
Lai, Zhi-Hui; Leng, Yong-Gang
2015-01-01
A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671
Surface effects on the red giant branch
NASA Astrophysics Data System (ADS)
Ball, W. H.; Themeßl, N.; Hekker, S.
2018-05-01
Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.
NASA Astrophysics Data System (ADS)
Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing
2017-08-01
We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Bond, Emilia
2005-09-01
Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.
High-frequency sediment-level oscillations in the swash zone
Sallenger, A.H.; Richmond, B.M.
1984-01-01
Sediment-level oscillations with heights of about 6 cm and shore-normal lengths of order 10 m have been measured in the swash zone of a high-energy, coarse-sand beach. Crests of oscillations were shore parallel and continuous alongshore. The oscillations were of such low steepness (height-to-length ratio approximately 0.006) that they were difficult to detect visually. The period of oscillation ranged between 6 and 15 min and decreased landward across the swash zone. The sediment-level oscillations were progressive landward with an average migration rate in the middle to upper swash zone of 0.8 m min-1. Migration was caused mostly by erosion on the seaward flank of the crest of an oscillation during a period of net seaward sediment transport. Thus, the observed migration was a form migration landward rather than a migration involving net landward sediment transport. The observed sediment-level oscillations were different than sand waves or other swash-zone bedforms previously described. ?? 1984.
Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V
2018-01-01
There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.
Phase computations and phase models for discrete molecular oscillators.
Suvak, Onder; Demir, Alper
2012-06-11
Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.
Phase computations and phase models for discrete molecular oscillators
2012-01-01
Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330
NASA Astrophysics Data System (ADS)
Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Dick, Thomas E.; Jacono, Frank J.; Galán, Roberto F.
2013-02-01
Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.65.041909 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.64.045202 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.
The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.
Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh
2015-07-01
Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.
Resolving the vacuum fluctuations of an optomechanical system using an artificial atom
NASA Astrophysics Data System (ADS)
Lecocq, F.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.
2015-08-01
Heisenberg’s uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However, direct energy detection of the oscillator in its ground state makes it seem motionless, and in linear position measurements detector noise can masquerade as mechanical fluctuations. Thus, how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. We monitor the photon/phonon-number distributions using a superconducting qubit, allowing us to resolve the quantum vacuum fluctuations of the macroscopic oscillator’s motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.
Optical heterodyne detection for cavity ring-down spectroscopy
Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.
2000-07-25
A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.
Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy
Vogel, Manuel; Quint, Wolfgang; Nörtershäuser, Wilfried
2010-01-01
The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state life-times. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain. PMID:22294921
Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams
NASA Technical Reports Server (NTRS)
Steely, Sidney L.
1993-01-01
The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.
Proposal for Axion Dark Matter Detection Using an L C Circuit
Sikivie, P.; Sullivan, N.; Tanner, D. B.
2014-03-01
Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B → 0 produces a small magnetic field B → a. We propose to amplify and detect B → a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10 –7 to 10 –9 eV mass range.
Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force
NASA Astrophysics Data System (ADS)
Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki
2012-07-01
We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.
NASA Astrophysics Data System (ADS)
Gálvez-Coyt, Gonzalo; Muñoz-Diosdado, Alejandro; Peralta, José; Balderas-López, José; Angulo-Brown, Fernando
2012-06-01
Higuchi's method is a procedure that, if applied appropriately, can determine in a reliable way the fractal dimension D of time series; this fractal dimension permits to characterize the degree of correlation of the series. However, when analyzing some time series with Higuchi's method, there are oscillations at the right-hand side of the graph, which can cause a mistaken determination of the fractal dimension. In this work, an appropriate explanation is given to this type of behaviour. Using the seismogram as a time series and the properties of the P and S waves, it is possible to use the properties of Higuchi's method to previously detect the arrival of the earthquake shacking stage, some seconds in advance, approximately 30-35 s in the case of Mexico City. Thus, we propose the Higuchi's method to characterize and detect the P waves in order to estimate the strength of the forthcoming S waves.
NASA Astrophysics Data System (ADS)
Zavrazhina, T. V.
2007-10-01
A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ℝ2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.
Minute Temperature Fluctuations Detected in Eta Bootis
NASA Astrophysics Data System (ADS)
1994-11-01
A group of astronomers from the Aarhus University (Denmark) and the European Southern Observatory (2) have for the first time succeeded in detecting solar-type oscillations in another star. They observed the temperature of the bright northern star Eta Bootis during six nights with the 2.5-metre Nordic Optical Telescope at the Roque de los Muchachos observatory on the island of La Palma (Canary Islands) and were able to show that it varies periodically by a few hundredths of a degree. These changes are caused by pressure waves in the star and are directly dependent on its inner structure. A detailed analysis by the astronomers has shown that the observed effects are in good agreement with current stellar models. This is a most important, independent test of stellar theory. The Sun is an Oscillating Star About twenty years ago, it was discovered that the nearest star, our Sun, oscillates like the ringing of a bell with a period of about 5 minutes. The same phenomenon is known in the Earth, which begins to vibrate after earthquakes; in this way seismologists have been able to discern a layered structure in the Earth's interior. The recent impacts of a comet on Jupiter most likely had a similar effect on that planet. The observed solar oscillations concern the entire gaseous body of the Sun, but we can of course only observe them on its surface. It has been found that each mode moves the surface up and down by less than 25 metres; the combined motion is very complicated, because there are many different, simultaneous modes, each of which has a slightly different period. The exact values of these periods are sensitive to the speed of sound in the Sun's interior, which in turn depends on the density of the material there. Thus, by measuring the periods of solar oscillations, we may probe the internal structure of the Sun, that is otherwise inaccessible to observations. Why does the Sun oscillate and what is the cause of these oscillations ? We do not know yet, but it is thought that the driving force is convective motion in the interior. For a better understanding of this basic phenomenon, we may compare the Sun with a pot of boiling water on the stove. The "bubbles" in the pot, known as solar convection cells, rise upwards towards the surface and jostle the Sun from the inside. This causes it to oscillate, although we still do not know the details of how these oscillations are triggered. We can just be grateful they exist, and by measuring their periods we obtain important information about the inside of the Sun. A great deal of progress has recently been made in this way. Do Other Stars Oscillate Like the Sun? The Sun is a normal star. It oscillates, and we would therefore expect that other, similar stars also do. Indeed, large-amplitude stellar oscillations have been known for centuries to manifest themselves as significant changes in the observed brightness of some "variable stars". However, in most cases, for example in the so-called Cepheid and RR Lyrae variable stars, only one or two periods have been detected. What distinguishes solar-type oscillations is the large number of observed periods, that potentially gives a great deal of information about the stellar interiors, as well as their much smaller amplitudes. During the past decade, astronomers have been trying to detect this type of oscillations in stars other than the Sun, but with little success. Such oscillations are much more difficult to detect, because the stars are much further away and therefore fainter than the Sun. Most observational attempts have tried to detect the movement of the stellar surface directly, by measuring velocity (Doppler) shifts in the stellar spectra, cf. the Appendix. Due to the up-down motion of less than 1 metre/sec, the spectral lines should shift backwards and forwards by about 1 part in 300,000,000, or less than 0.00002 nanometres in red light, a minuscule shift that is very difficult to measure with current astronomical instrumentation, even in the very brightest stars. Faced with this problem, the Danish/ESO group came up with an entirely new method. It relies on the fact that the oscillations are sound waves which deposit energy in the various stellar layers and therefore intermittently heat the star very slightly. For example, each mode changes the temperature on the surface of the Sun by about 0.005 degrees during the oscillation. But how to measure such small temperature changes? It turns out that this is possible by recording the strengths of the spectral lines, specifically, the absorption lines due to hydrogen. Their strengths change slightly with the changes in temperature (see Appendix). Although this is still a very small effect, it should be easier to measure than the velocity shifts. Yes, Eta Bootis does! To test their method, the astronomers used the ESO 3.5-metre New Technology Telescope (NTT) with the ESO Multi-Mode Instrument (EMMI) to observe a bright star for a few hours. This was too short to detect actual oscillations, but it did show that the technique works: it was in principle possible to measure the temperature accurately enough. The target for the real observations was the 2.68-magnitude, naked-eye star Eta Bootis (Greek letter "eta"). It has the common name of Muphrid and is located just north of the celestial equator in Bootes, one of the oldest constellation names still in use (it was mentioned already in the Odyssey). This particular star is somewhat more evolved and bigger than the Sun and, according to stellar theory, should have stronger oscillations than the Sun, hence increasing the chance that they could be detected. The observations were performed with the 2.5-metre Nordic Optical Telescope (NOT) during six, mostly clear nights in April 1994. A careful data analysis has now shown that the temperature of Eta Bootis is indeed changing periodically, around a mean value of about 6000 K. It seems to be oscillating in at least ten different modes simultaneously, with periods around 20 minutes. These periods are longer than those of the Sun, as expected for a star that is larger and heavier than the Sun. The figure accompanying this Press Release shows these oscillations in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. Most of the highest peaks correspond to the real oscillations in the star. The changes (fluctuations) of the temperature of Eta Bootis vary with the oscillation mode and, at the time of these observations, were mostly between 0.03 and 0.08 degrees. This diagramme provides the first strong evidence ever for solar-type oscillations in a star other than the Sun. An article with the detailed results will soon appear in the "Astronomical Journal". Agreement with Stellar Theory The measured periods of the main oscillation modes give important information about the interior of Eta Bootis. Theoretical models of the star have now been compared with these observations and the astronomers were pleased to find that the agreement is excellent, implying that current stellar theory is remarkably good. This shows that we apparently understand stars quite well, but there is of course still much to be learned. Future observations of this kind, with ground-based telescopes and possibly in a more distant future also from space, promise to open up a new and exciting way of studying stars. From now on, we will be able "to look inside" stars in great detail. Appendix: Spectral Analysis Dark spectral lines were first seen in the solar spectrum by the German physicist Johann Fraunhofer in 1814. Later, in the mid-nineteenth century, such lines were also seen in the spectra of other stars. It is now known that they are due to the upper, cooler layers in the solar and stellar atmospheres, whose atoms and molecules absorb the radiation from the hotter, deeper layers at specific wavelengths. These wavelengths serve as "footprints" of these atoms and molecules and allow astronomers to determine which chemical elements are present in the Sun and the stars. The exact position of a dark line in the spectrum (its wavelength) depends on the velocity along the line of sight of the corresponding atoms or molecules. If they move in our direction, the wavelength of the line becomes slightly shorter; if they move away from us, it will be a little longer. This is referred to as the Doppler effect and is well known also from sound waves, cf. the sound of a passing ambulance. Moreover, at a given stellar surface temperature, the "strengths" of these lines (a measure of how dark and broad they are) permit to measure directly the quantities present of the individual elements and hence the chemical composition. Conversely, observed changes in the line-strengths of the spectra of certain peculiar types of stars indicate changes in the composition, or of the ambient temperature. Until now, all observed temperature changes in stars have been much larger than those caused by solar-type oscillations as now observed in Eta Bootis, and of different nature. (1) This is a joint Press Release of ESO and the Institute of Physics and Astronomy, Aarhus University, Denmark (IFA). (2) The group consists of Hans Kjeldsen, Michael Viskum and Soren Frandsen (IFA), Jorgen Christensen-Dalsgaard (IFA; and Theoretical Astrophysics Center, Danish National Research Foundation), and Tim Bedding (ESO). Hans Kjeldsen was supported by a grant from the Carlsberg Foundation. Figure Caption This figure shows the oscillations now observed in the star Eta Bootis, in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. See the text of the Press Release for more details.
Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji
2013-01-01
We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.
Multiplex coherent raman spectroscopy detector and method
NASA Technical Reports Server (NTRS)
Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Chen, Peter (Inventor); Guyer, Dean R. (Inventor)
2004-01-01
A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.
Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles
2013-09-23
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.
Multiplex coherent raman spectroscopy detector and method
Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.
2004-06-08
A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.
Sequence of eruptive events in the Vesuvio area recorded in shallow-water Ionian Sea sediments
NASA Astrophysics Data System (ADS)
Taricco, C.; Alessio, S.; Vivaldo, G.
2008-01-01
The dating of the cores we drilled from the Gallipoli terrace in the Gulf of Taranto (Ionian Sea), previously obtained by tephroanalysis, is checked by applying a method to objectively recognize volcanic events. This automatic statistical procedure allows identifying pulse-like features in a series and evaluating quantitatively the confidence level at which the significant peaks are detected. We applied it to the 2000-years-long pyroxenes series of the GT89-3 core, on which the dating is based. The method confirms the dating previously performed by detecting at a high confidence level the peaks originally used and indicates a few possible undocumented eruptions. Moreover, a spectral analysis, focussed on the long-term variability of the pyroxenes series and performed by several advanced methods, reveals that the volcanic pulses are superimposed to a millennial trend and a 400 years oscillation.
Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis
NASA Astrophysics Data System (ADS)
Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.
2011-01-01
A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.
Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints
NASA Astrophysics Data System (ADS)
Kapranov, Boris I.; Sutorikhin, Vladimir A.
2017-10-01
An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1-5 nm, 6-30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.
Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi
2005-06-01
A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.
Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO
NASA Astrophysics Data System (ADS)
MACRO Collaboration; Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2003-07-01
The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the /4σ level, in favour of neutrino oscillations.
Numerical simulation of seismic wave propagation from land-excited large volume air-gun source
NASA Astrophysics Data System (ADS)
Cao, W.; Zhang, W.
2017-12-01
The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of the characteristics of land-excited large volume air-gun can help to better use of the air-gun source.
Neptune as a Mirror for the Sun
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
How would the Kepler mission see a star like the Sun? We now know the answer to this question due to a creative approach: a new study has used the Kepler K2 mission to detect signals from the Sun reflected off of the surface of Neptune.Asteroseismology uses different oscillation modes of a star to probe its internal structure and properties. [Tosaka]Information in OscillationsKeplers most glamorous work is in discovering new planets around other stars. To successfully do this, however, the spacecraft is also quietly doing a lot of very useful work in the background, characterizing the many stars in our vicinity that planets might be found around.One of the ways Kepler gets information about these stars is from oscillations of the stars intensities. In asteroseismology, we look at oscillatory modes that are caused by convection-driven pressure changes on the inside of the star. All stars with near-surface convection oscillate like this including the Sun and by measuring the oscillations in intensity of these stars, we can make inferences about the stars properties.A Planetary MirrorWe do this by first understanding our Suns oscillations especially well (made easier by the fact that its nearby!). Then we use asteroseimic scaling relations determined empirically that relate characteristics like mass and radius of other stars to those of the Sun, based on the relation between the stars oscillation properties to the Suns.The trouble is, those oscillation properties are difficult to measure, and different instruments often measure different values. For this reason, wed like to measure the Suns oscillations with the same instrument we use to measure other stars oscillations: Kepler.Top panel: Kepler K2 49-day light curve of Neptune. Bottom panel: power density spectrum as a function of frequency (grey). Neptunes rotation frequencies and harmonics appear toward the left side (blue); the excess power due to the solar modes is visible toward the bottom right. The green curve shows the direct observations of solar oscillations simultaneously made by VIRGO/SPM. [Gaulme et al. 2016]A team led by Patrick Gaulme (New Mexico State University, New Mexico Institute of Mining and Technology, and Apache Point Observatory) have now done this but not with direct Kepler observations of the Sun. Instead, Kepler was pointed at Neptune for a total of 49 days, during which time it measured the reflection of the Suns oscillations off of the planets surface. These observations mark the first indirect detection of solar oscillations in intensity.Measuring Solar PropertiesThe success of this technique for observing solar oscillations represents a remarkable technical performance. The oscillations the team observed by Kepler in the reflection from Neptune are consistent with the solar oscillations that were measured directly with programs like the Birmingham Solar Oscillations Network (BiSON) and SOHO/VIRGO/SPM.What can we learn from the oscillations? The authors treated the detection of the Sun as though it were any other star being observed: they used the asteroseismic scaling relations to estimate the stars mass and radius. Based on the oscillations they measured, they found a mass for the Sun between 1.11 0.05 and 1.16 0.09 solar masses, and a radius between 1.04 0.02 and 1.05 0.03 solar radii.The fact that these values are a little high (roughly 13.8% too high for mass and 4.3% for the radius) illustrates the highly stochastic nature of stellar oscillations. Still, it provides a useful reference point, and it also gives us a valuable look at how Kepler would see a star like the Sun.CitationP. Gaulme et al 2016 ApJL 833 L13. doi:10.3847/2041-8213/833/1/L13
High-order synchronization of hair cell bundles
NASA Astrophysics Data System (ADS)
Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo; Bozovic, Dolores
2016-12-01
Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.
High-order synchronization of hair cell bundles
Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo; Bozovic, Dolores
2016-01-01
Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells. PMID:27974743
Ictal high frequency oscillations distinguish two types of seizure territories in humans
Weiss, Shennan A.; Banks, Garrett P.; McKhann, Guy M.; Goodman, Robert R.; Emerson, Ronald G.; Trevelyan, Andrew J.
2013-01-01
High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80–150 Hz) amplitude, phase-locked to the low-frequency (1–25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1–25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and provide a practical, efficient method for using them to identify the small ictal core regions. Our observations suggest that it may be possible to reduce substantially the extent of cortical resections in epilepsy surgery procedures without compromising seizure control. PMID:24176977
1981-10-07
new instrument (cf. Fig. 1) is simply a four - quadrant ring-diode multi- 5 plier (Fig. 2). The reference frequency (RF) and local oscillator (LO) inputs...movement, and scan speed of the corner-cube. Other Components. A rotating-sector chopper modulates the laser pulse train at a frequency of approximately 50...the cross-correlation experiment. In this application, the detection bandpass is simply displaced from DC to the chopper frequency; problems arising
Inverse Beta Decay Reconstruction in the Double Chooz Monte Carlo
NASA Astrophysics Data System (ADS)
Norrick, Anne
2010-02-01
The Double Chooz Experiment will search for neutrino oscillations using the ``Inverse Beta-Decay'' (IBD) interactions of electron antineutrinos from a nuclear reactor in Chooz, France. The experiment needs to isolate IBD events by detecting and reconstructing the positions and deposited energies of the outgoing positron and neutron. Methods for isolating this process will be described. In addition, results of simulation studies of two different reconstruction algorithms will be presented and their performances compared. )
Detecting, anticipating, and predicting critical transitions in spatially extended systems.
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Detecting, anticipating, and predicting critical transitions in spatially extended systems
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Methods and techniques in helioseismology
NASA Astrophysics Data System (ADS)
Cortés, Teodoro Roca
In the last two decades, the study of global solar oscillations has provided the only effective method to probe the structure of stars, and particularly that of our Sun. As will be seen throughout this short course, we now know the Sun much better than before thanks to Helioseismology. However, the detection of such normal modes of vibration of the Sun has only been possible recently due to the combination of two factors: first the signals to measure, although almost periodic, have very small amplitudes as compared to noise, and second, instrumental and observing techniques have not reached the required sensitivity until now.
Signal detection by active, noisy hair bundles
NASA Astrophysics Data System (ADS)
O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.
2018-05-01
Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.
Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo
2003-08-01
A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.
NASA Astrophysics Data System (ADS)
Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.
2015-09-01
Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We demonstrate a significant dependency of broadened Kα iron line profiles on the inclination of the distant observer. Conclusions: This study presents a further step towards the proper model of oscillating accretion tori producing HF QPOs. More realistic future simulations should be based on incorporating the resonant coupling of oscillation modes, the influence of torus opacity, and the pressure effects on the mode frequencies and the torus shape.
On controlling networks of limit-cycle oscillators
NASA Astrophysics Data System (ADS)
Skardal, Per Sebastian; Arenas, Alex
2016-09-01
The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.
Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory
NASA Astrophysics Data System (ADS)
Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing
2018-01-01
In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.
Enthalpy of sublimation as measured using a silicon oscillator
NASA Astrophysics Data System (ADS)
Shakeel, Hamza; Pomeroy, J. M.
In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.
A class of parametrically excited calcium oscillation detectors.
Izu, L T; Spangler, R A
1995-01-01
Intracellular Ca2+ oscillations are often a response to external signals such as hormones. Changes in the external signal can alter the frequency, amplitude, or form of the oscillations suggesting that information is encoded in the pattern of Ca2+ oscillations. How might a cell decode this signal? We show that an excitable system whose kinetic parameters are modulated by the Ca2+ concentration can function as a Ca2+ oscillation detector. Such systems have the following properties: (1) They are more sensitive to an oscillatory than to a steady Ca2+ signal. (2) Their response is largely independent of the signal amplitude. (3) They can extract information from a noisy signal. (4) Unlike other frequency sensitive detectors, they have a flat frequency response. These properties make a Ca(2+)-sensitive excitable system nearly ideal for detecting and decoding Ca2+ oscillations. We suggest that Ca2+ oscillations, in concert with these detectors, can act as cellular timekeepers to coordinate related biochemical reactions and enhance their overall efficiency. PMID:7787048
The occurrence of individual slow waves in sleep is predicted by heart rate
Mensen, Armand; Zhang, Zhongxing; Qi, Ming; Khatami, Ramin
2016-01-01
The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved. PMID:27445083
Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.
Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping
2017-02-08
Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.
Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun
2018-04-01
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors
Lee, Jeong-Yun; Kim, Jeong-Geun
2018-01-01
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. PMID:29614777
Discovery of νμ → ντ oscillations in the OPERA experiment
NASA Astrophysics Data System (ADS)
Vasina, S.
2017-11-01
The OPERA experiment was designed to search for νμ → ντ oscillations in appearance mode, i.e. by detecting the τ leptons produced in charge current ντ interactions. The experiment took data from 2008 to 2012 in the CNGS beam. Five observed ντ candidates together with low background 0.25 ± 0.05 allow to assess the discovery of νμ → ντ oscillations in appearance mode with significance larger than 5σ.
Development of Coriolis mass flowmeter with digital drive and signal processing technology.
Hou, Qi-Li; Xu, Ke-Jun; Fang, Min; Liu, Cui; Xiong, Wen-Jun
2013-09-01
Coriolis mass flowmeter (CMF) often suffers from two-phase flowrate which may cause flowtube stalling. To solve this problem, a digital drive method and a digital signal processing method of CMF is studied and implemented in this paper. A positive-negative step signal is used to initiate the flowtube oscillation without knowing the natural frequency of the flowtube. A digital zero-crossing detection method based on Lagrange interpolation is adopted to calculate the frequency and phase difference of the sensor output signals in order to synthesize the digital drive signal. The digital drive approach is implemented by a multiplying digital to analog converter (MDAC) and a direct digital synthesizer (DDS). A digital Coriolis mass flow transmitter is developed with a digital signal processor (DSP) to control the digital drive, and realize the signal processing. Water flow calibrations and gas-liquid two-phase flowrate experiments are conducted to examine the performance of the transmitter. The experimental results show that the transmitter shortens the start-up time and can maintain the oscillation of flowtube in two-phase flowrate condition. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P; Olsen, Lars F; Bagatolli, Luis A
2015-01-01
We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
NASA Technical Reports Server (NTRS)
Watts, Anna L.; Strohmayer, Tod E.
2005-01-01
The recent discovery of high frequency oscillations in giant flares from SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. Using timing data from RHESSI, we have confirmed the detection of a 92.5 Hz Quasi-Periodic Oscillation (QPO) in the tail of the SGR 1806-20 giant flare. We also find another, stronger, QPO at higher energies, at 626.5 Hz. Both QPOs are visible only at particular (but different) rotational phases, implying an association with a specific area of the neutron star surface or magnetosphere. At lower frequencies we confirm the detection of an 18 Hz QPO, at the same rotational phase as the 92.5 Hz QPO, and report the additional presence of a broad 26 Hz QPO. We are however unable to make a robust confirmation of the presence of a 30 Hz QPO, despite higher count rates. We discuss our results in the light of neutron star vibration models.
Joint quantum measurement using unbalanced array detection.
Beck, M; Dorrer, C; Walmsley, I A
2001-12-17
We have measured the joint Q-function of a highly multimode field using unbalanced heterodyne detection with a charge-coupled device array detector. We use spectral interferometry between a weak signal field and a strong, 100 fs duration local oscillator pulse to reconstruct the joint quadrature amplitude statistics of about 25 temporal modes. By adjusting the time delay between the signal and local oscillator pulses we are able to shift all the classical noise to modes distinct from the signal. This obviates the need to use a balanced detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, M.
2008-02-21
OPERA is a long base-line neutrino oscillation experiment to detect tau-neutrino appearance and to prove that the origin of the atmospheric muon neutrino deficit observed by Kamiokande is the neutrino oscillation. A Hybrid emulsion detector, of which weight is about 1.3 kton, has been installed in Gran Sasso laboratory. New muon neutrino beam line, CNGS, has been constructed at CERN to send neutrinos to Gran Sasso, 730 km apart from CERN. In 2006, first neutrinos were sent from CERN to LNGS and were detected by the OPERA detector successfully as planned.
Simple Optoelectronic Feedback in Microwave Oscillators
NASA Technical Reports Server (NTRS)
Maleki, Lute; Iltchenko, Vladimir
2009-01-01
A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.
Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves
NASA Astrophysics Data System (ADS)
Nina, A.; Čadež, V. M.
2013-09-01
We present a new method to study harmonic waves in the low ionosphere (60 - 90 km) by detecting their effects on reflection of very low frequency (VLF) radio waves. Our procedure is based on amplitude analysis of reflected VLF radio waves recorded in real time, which yields an insight into the dynamics of the ionosphere at heights where VLF radio waves are being reflected. The method was applied to perturbations induced by the solar terminator motions at sunrises and sunsets. The obtained results show that typical perturbation frequencies found to exist in higher regions of the atmosphere are also present in the lower ionosphere, which indicates a global nature of the considered oscillations. In our model atmosphere, they turn out to be the acoustic and gravity waves with comparatively short and long periods, respectively.
NASA Astrophysics Data System (ADS)
Phetchakul, Toempong; Phuvanatai, Pavaris
2017-07-01
The application of 18-crown-6 ether film for 2, 4, 6-trinitrotolurene (TNT) vapor detection by using quartz crystal microbalance (QCM) is studied. The film is coated on the quartz electrodes as sensitive material for capture TNT molecule. The parameters that are studied are concentration and mass or thickness of film. When the explosive adheres to surface of the crystal oscillator, the weight is changed and the resonance frequency of the crystal oscillator is shifted lower. The frequency shift (Δf) relates to concentration and mass or thickness. The high concentration and mass/thickness of film enhance the TNT detection.
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Yang, Chin-Lung; Zheng, Gou-Tsun
2015-11-20
This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.
Inferring phase equations from multivariate time series.
Tokuda, Isao T; Jain, Swati; Kiss, István Z; Hudson, John L
2007-08-10
An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.
An energy-efficient readout circuit for resonant sensors based on ring-down measurement
NASA Astrophysics Data System (ADS)
Zeng, Z.; Pertijs, M. A. P.; Karabacak, D. M.
2013-02-01
This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 μm CMOS technology, and consumes only 36 μA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.
Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Trzasko, Joshua D; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2018-05-01
Shear wave elastography methods are able to accurately measure tissue stiffness, allowing these techniques to monitor the progression of hepatic fibrosis. While many methods rely on acoustic radiation force to generate shear waves for 2-D imaging, probe oscillation shear wave elastography (PROSE) provides an alternative approach by generating shear waves through continuous vibration of the ultrasound probe while simultaneously detecting the resulting motion. The generated shear wave field in in vivo liver is complicated, and the amplitude and quality of these shear waves can be influenced by the placement of the vibrating probe. To address these challenges, a real-time shear wave visualization tool was implemented to provide instantaneous visual feedback to optimize probe placement. Even with the real-time display, it was not possible to fully suppress residual motion with established filtering methods. To solve this problem, the shear wave signal in each frame was decoupled from motion and other sources through the use of a parameter-free empirical mode decomposition before calculating shear wave speeds. This method was evaluated in a phantom as well as in in vivo livers from five volunteers. PROSE results in the phantom as well as in vivo liver correlated well with independent measurements using the commercial General Electric Logiq E9 scanner.
Identification of coupling direction: Application to cardiorespiratory interaction
NASA Astrophysics Data System (ADS)
Rosenblum, Michael G.; Cimponeriu, Laura; Bezerianos, Anastasios; Patzak, Andreas; Mrowka, Ralf
2002-04-01
We consider the problem of experimental detection of directionality of weak coupling between two self-sustained oscillators from bivariate data. We further develop the method introduced by Rosenblum and Pikovsky [Phys. Rev. E 64, 045202 (2001)], suggesting an alternative approach. Next, we consider another framework for identification of directionality, based on the idea of mutual predictability. Our algorithms provide directionality index that shows whether the coupling between the oscillators is unidirectional or bidirectional, and quantifies the asymmetry of bidirectional coupling. We demonstrate the efficiency of three different algorithms in determination of directionality index from short and noisy data. These techniques are then applied to analysis of cardiorespiratory interaction in healthy infants. The results reveal that the direction of coupling between cardiovascular and respiratory systems varies with the age within the first 6 months of life. We find a tendency to change from nearly symmetric bidirectional interaction to nearly unidirectional one (from respiration to the cardiovascular system).
High-speed imaging of traveling waves in a granular material during silo discharge.
Börzsönyi, Tamás; Kovács, Zsolt
2011-03-01
We report experimental observations of sound waves in a granular material during resonant silo discharge called silo music. The grain motion was tracked by high-speed imaging while the resonance of the silo was detected by accelerometers and acoustic methods. The grains do not oscillate in phase at neighboring vertical locations, but information propagates upward in this system in the form of sound waves. We show that the wave velocity is not constant throughout the silo but considerably increases toward the lower end of the system, suggesting increased pressure in this region, where the flow changes from cylindrical to converging flow. In the upper part of the silo the wave velocity matches the sound velocity measured in the same material when standing (in the absence of flow). Grain oscillations show a stick-slip character only in the upper part of the silo.
Tracking the allocation of attention using human pupillary oscillations
Naber, Marnix; Alvarez, George A.; Nakayama, Ken
2013-01-01
The muscles that control the pupil are richly innervated by the autonomic nervous system. While there are central pathways that drive pupil dilations in relation to arousal, there is no anatomical evidence that cortical centers involved with visual selective attention innervate the pupil. In this study, we show that such connections must exist. Specifically, we demonstrate a novel Pupil Frequency Tagging (PFT) method, where oscillatory changes in stimulus brightness over time are mirrored by pupil constrictions and dilations. We find that the luminance–induced pupil oscillations are enhanced when covert attention is directed to the flicker stimulus and when targets are correctly detected in an attentional tracking task. These results suggest that the amplitudes of pupil responses closely follow the allocation of focal visual attention and the encoding of stimuli. PFT provides a new opportunity to study top–down visual attention itself as well as identifying the pathways and mechanisms that support this unexpected phenomenon. PMID:24368904
NASA Astrophysics Data System (ADS)
Paik, Seoyoung; Lee, Sang-Yun; Boehme, Christoph
2011-03-01
Spin-dependent electronic transitions such as certain charge carrier recombination and transport processes in semiconductors are usually governed by the Pauli blockade within pairs of two paramagnetic centers. One implication of this is that the manipulation of spin states, e.g. by magnetic resonant excitation, can produce changes to electric currents of the given semiconductor material. If both spins are changed at the same time, quantum beat effects such as beat oscillation between resonantly induced spin Rabi nutation becomes detectable through current measurements. Here, we report on electrically detected spin Rabi beat oscillation caused by pairs of 31 P donor states and Pb interface defects at the phosphorous doped Si(111)/ Si O2 interface. Due to the g-factor anisotropy of the Pb center we can tune the intra pair Larmor frequency difference (so called Larmor separation) through orientation of the sample with regard to the external magnetic field. As the Larmor separation governs the spin Rabi beat oscillation, we show experimentally how the crystal orientation can influence the beat effect.
Commissioning Cornell OSTs for SRF cavity testing at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory
2011-07-01
Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.
Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A
2015-05-15
Rhythmic brain activity at low frequencies (<12Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Hong, Jun; Chen, Dongchu; Peng, Zhiqiang; Li, Zulin; Liu, Haibo; Guo, Jian
2018-05-01
A new method for measuring the alternating current (AC) half-wave voltage of a Mach-Zehnder modulator is proposed and verified by experiment in this paper. Based on the opto-electronic self-oscillation technology, the physical relationship between the saturation output power of the oscillating signal and the AC half-wave voltage is revealed, and the value of the AC half-wave voltage is solved by measuring the saturation output power of the oscillating signal. The experimental results show that the measured data of this new method involved are in agreement with a traditional method, and not only an external microwave signal source but also the calibration for different frequency measurements is not needed in our new method. The measuring process is simplified with this new method on the premise of ensuring the accuracy of measurement, and it owns good practical value.
Schütt, Atsuko; Ito, Iori; Rosso, Osvaldo A; Figliola, Alejandra
2003-10-30
Odorants evoke characteristic, but complex, local field potentials (LFPs) in the molluscan brain. Wavelet tools in combination with Fourier analysis can detect and characterize hitherto unknown discrete, slow potentials underlying the conspicuous oscillations. Ethanol was one of the odorants that we have extensively studied (J. Neurosci. Methods, 119 (2002) 89). To detect new features and to elucidate their functions, we tested the wavelet tools on the ethanol-evoked LFP responses of the slug (Limax) procerebrum. Recordings were made in vitro from the neuropile and the cell layer. The present study led to the following findings: (i) Mutual exclusion. Energy concentrated mainly in two ranges, (a) 0.1-0.4 Hz and (b) 1.56-12.5 Hz, and the sum of energy remained constant throughout experiments regardless of the condition. A redistribution of relative energy within this sum seemed to occur in the course of main, possible interactions between the two components excluding each other ('mutual exclusion'). (ii) Transient signal ordering and disordering. Ethanol stimulation alternatingly evoked periods of strongly time evolving oscillation dominated by the energy of 1.56-12.5 Hz (increase of entropy=disordered or complexly ordered state) and those of near-silence were predominated by the energy of 0.1-0.4 Hz (decrease of entropy=ordered state). (iii) About 0.1 Hz slow wave oscillation. It was robust. The dominant energy oscillation and the resulting large entropy fluctuation were negatively correlated to each other, and revealed strong frequency-tuning or synchronization at this frequency. Our findings suggest that discrete slow waves play functionally important roles in the invertebrate brain, as widely known in vertebrate EEG. Wavelet tools allow an easy interpretation of several minutes of frequency variations in a single display and give precise information on stimulus-evoked complex change of the neural system describing the new state 'more ordered' or 'non-ordered or more complexly ordered'.
Impact of environmental inputs on reverse-engineering approach to network structures.
Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng
2009-12-04
Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.
Shakeel, Hamza; Wei, Haoyan; Pomeroy, Joshua M
2018-03-01
We report precise experimental values of the enthalpy of sublimation (Δ H s ) of quenched condensed films of neon (Ne), nitrogen (N 2 ), oxygen (O 2 ), argon (Ar), carbon dioxide (CO 2 ), krypton (Kr), xenon (Xe), and water (H 2 O) vapor using a single consistent measurement platform. The experiments are performed well below the triple point temperature of each gas and fall in the temperature range where existing experimental data is very limited. A 6 cm 2 and 400 µm thick double paddle oscillator (DPO) with high quality factor (Q ≈ 4 × 10 5 at 298K) and high frequency stability (33 parts per billion) is utilized for the measurements. The enthalpies of sublimation are derived by measuring the rate of mass loss during temperature programmed desorption. The mass change is detected due to change in the resonance frequency of the self-tracking oscillator. Our measurements typically remain within 10% of the available literature, theory, and National Institute of Standards and Technology (NIST) Web Thermo Tables ( WTT ) values, but are performed using an internally consistent method across different gases.
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa
2005-07-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.
Bongers, Andre; Hau, Eric; Shen, Han
2018-01-04
To investigate a novel alternative diffusion-weighted imaging (DWI) approach using oscillating gradients preparation (OGSE) to obtain much shorter effective diffusion times (Δ eff ) for tumor response monitoring by apparent diffusion coefficient (ADC) mapping in a glioblastoma mouse model. Twenty-four BALB/c nude mice inoculated with U87 glioblastoma cells were randomized into a control group and an irradiation group, which underwent a 15-day fractioned radiation therapy (RT) course with 2 Gy/d. Therapy response was assessed by mapping of ADCs at 6 time points using an in-house implementation of a cos-OGSE DWI sequence with Δ eff = 1.25 ms and compared with a standard pulsed gradient DWI protocol (PGSE) with typical clinical diffusion time Δ eff = 18 ms. Longitudinal ADC changes in tumor and contralateral white matter (WM) were statistically assessed using repeated-measures analysis of variance and post hoc (Sidak) testing. On short Δ eff OGSE maps tumor ADC was generally 30%-50% higher than in surrounding WM. Areas correlated well with histology. Tumor identification was generally more difficult on PGSE maps owing to nonsignificant WM/tumor contrast. During RT, OGSE maps also showed significant tumor ADC increase (approximately 15%) in response to radiation, consistently seen after 14-Gy RT dose. The clinical reference (PGSE) showed lower sensitivity to radiation changes, and no significant response across the radiation group and time course could be detected. Our short Δ eff DWI method using OGSE better reflected histologically defined tumor areas and enabled more consistent and earlier detection of microstructural radiation changes than conventional methods. Oscillating gradients preparation offers significant potential as a robust microstructural RT response biomarker, potentially helping to shift important therapy decisions to earlier stages in the RT time course. Copyright © 2018 Elsevier Inc. All rights reserved.
An automatic P‐Phase arrival‐time picker
Kalkan, Erol
2016-01-01
Presented is a new approach for picking P‐phase arrival time in single‐component acceleration or broadband velocity records without requiring detection interval or threshold settings. The algorithm PPHASEPICKER transforms the signal into a response domain of a single‐degree‐of‐freedom (SDOF) oscillator with viscous damping and then tracks the rate of change of dissipated damping energy to pick P‐wave phases. The SDOF oscillator has a short natural period and a correspondingly high resonant frequency, which is higher than most frequencies in a seismic wave. It also has a high damping ratio (60% of critical). At this damping level, the frequency response approaches the Butterworth maximally flat magnitude filter, and phase angles are preserved. The relative input energy imparted to the oscillator by the input signal is converted to elastic strain energy and then dissipated by the damping element as damping energy. The damping energy yields a smooth envelope over time; it is zero in the beginning of the signal, zero or near zero before theP‐phase arrival, and builds up rapidly with the P wave. Because the damping energy function changes considerably at the onset of the P wave, it is used as a metric to track and pick the P‐phase arrival time. The PPHASEPICKER detects P‐phase onset using the histogram method. Its performance is compared with picking techniques using short‐term‐average to long‐term‐average ratio, and a picking method that finds the first P‐phase arrival time using the Akaike information criterion. A large set of records with various intensities and signal‐to‐noise ratios is used for testing the PPHASEPICKER, and it is demonstrated thatPPHASEPICKER is able to more accurately pick the onset of genuine signals against the background noise and to correctly distinguish between whether the first arrival is a P wave (emergent or impulsive) or whether the signal is from a faulty sensor.
ERIC Educational Resources Information Center
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
Continuous control of chaos based on the stability criterion.
Yu, Hong Jie; Liu, Yan Zhu; Peng, Jian Hua
2004-06-01
A method of chaos control based on stability criterion is proposed in the present paper. This method can stabilize chaotic systems onto a desired periodic orbit by a small time-continuous perturbation nonlinear feedback. This method does not require linearization of the system around the stabilized orbit and only an approximate location of the desired periodic orbit is required which can be automatically detected in the control process. The control can be started at any moment by choosing appropriate perturbation restriction condition. It seems that more flexibility and convenience are the main advantages of this method. The discussions on control of attitude motion of a spacecraft, Rössler system, and two coupled Duffing oscillators are given as numerical examples.
Note on the coupled oscillator model solutions in crystalline optical activity
NASA Astrophysics Data System (ADS)
Vyšín, I.; Ríha, J.; Svácková, K.
2006-06-01
Many methods have been used in the crystalline optical activity solution, among them the traditional method of coupled oscillators. The two coupled oscillator model was first solved by Chandrasekhar, and the most general dispersion relations for the crystalline optical activity can be obtained from its next extensions. However, the Chandrasekhar solution method seems to be based on a mistake in the computations. For this reason, the solution of a more complicated model of coupled oscillators which better corresponds to the structure of real crystals using the Condon relations is presented. This solution leads to the conclusion that, although it is possible to object to the Chandrasekhar solution method, the form of his final dispersion relations is correct. On the other hand, the dispersion relations following from the solution of more complicated coupled oscillator models are more convenient for the interpretation of the crystalline optical activity experimental data, which is demonstrated in examples of crystals of tellurium and benzil.
Buchli, Jonas; Righetti, Ludovic; Ijspeert, Auke Jan
2006-12-01
Periodic behavior is key to life and is observed in multiple instances and at multiple time scales in our metabolism, our natural environment, and our engineered environment. A natural way of modeling or generating periodic behavior is done by using oscillators, i.e., dynamical systems that exhibit limit cycle behavior. While there is extensive literature on methods to analyze such dynamical systems, much less work has been done on methods to synthesize an oscillator to exhibit some specific desired characteristics. The goal of this article is twofold: (1) to provide a framework for characterizing and designing oscillators and (2) to review how classes of well-known oscillators can be understood and related to this framework. The basis of the framework is to characterize oscillators in terms of their fundamental temporal and spatial behavior and in terms of properties that these two behaviors can be designed to exhibit. This focus on fundamental properties is important because it allows us to systematically compare a large variety of oscillators that might at first sight appear very different from each other. We identify several specifications that are useful for design, such as frequency-locking behavior, phase-locking behavior, and specific output signal shape. We also identify two classes of design methods by which these specifications can be met, namely offline methods and online methods. By relating these specifications to our framework and by presenting several examples of how oscillators have been designed in the literature, this article provides a useful methodology and toolbox for designing oscillators for a wide range of purposes. In particular, the focus on synthesis of limit cycle dynamical systems should be useful both for engineering and for computational modeling of physical or biological phenomena.
Prediction of unsteady separated flows on oscillating airfoils
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1978-01-01
Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.
The detectability of baryonic acoustic oscillations in future galaxy surveys
NASA Astrophysics Data System (ADS)
Angulo, R. E.; Baugh, C. M.; Frenk, C. S.; Lacey, C. G.
2008-01-01
We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of galaxies using ultralarge volume N-body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box (=2.41h-3Gpc3). We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, s, and, hence constrain the dark energy equation of state parameter, w (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of Δs/s = 0.5-0.7 per cent (corresponding to Δw ~ 2-3 per cent), which is competitive with the proposed WFMOS survey (Δs/s = 1 per cent Δw ~ 4 per cent). Achieving Δw <= 1 per cent using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.
Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu
2004-06-01
A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.
Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai
2011-10-28
The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Roberto F.; Urban, Nathaniel N.; Center for the Neural Basis of Cognition, Mellon Institute, Pittsburgh, Pennsylvania 15213
We have investigated the effect of the phase response curve on the dynamics of oscillators driven by noise in two limit cases that are especially relevant for neuroscience. Using the finite element method to solve the Fokker-Planck equation we have studied (i) the impact of noise on the regularity of the oscillations quantified as the coefficient of variation, (ii) stochastic synchronization of two uncoupled phase oscillators driven by correlated noise, and (iii) their cross-correlation function. We show that, in general, the limit of type II oscillators is more robust to noise and more efficient at synchronizing by correlated noise thanmore » type I.« less
Fock, Jeppe; Parmvi, Mattias; Strömberg, Mattias; Svedlindh, Peter; Donolato, Marco; Hansen, Mikkel Fougt
2017-02-15
There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field can be used to accelerate assay kinetics. We present the first study and comparison of the performance of magnetic susceptibility measurements and a newly proposed optomagnetic method. For the comparison we use the C-reactive protein (CRP) induced agglutination of identical samples of 100nm MNPs conjugated with CRP antibodies. Both methods detect agglutination as a shift to lower frequencies in measurements of the dynamics in response to an applied oscillating magnetic field. The magnetic susceptibility method probes the magnetic response whereas the optomagnetic technique probes the modulation of laser light transmitted through the sample. The two techniques provided highly correlated results upon agglutination when they measure the decrease of the signal from the individual MNPs (turn-off detection strategy), whereas the techniques provided different results, strongly depending on the read-out frequency, when detecting the signal due to MNP agglomerates (turn-on detection strategy). These observations are considered to be caused by differences in the volume-dependence of the magnetic and optical signals from agglomerates. The highest signal from agglomerates was found in the optomagnetic signal at low frequencies. Copyright © 2016 Elsevier B.V. All rights reserved.
Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao
2000-08-01
A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.
Combustor oscillating pressure stabilization and method
Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.
1998-08-11
High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.
Simpson, A J; Cunningham, M O; Baker, M R
2018-03-01
High frequency oscillations (HFOs) embedded within the somatosensory evoked potential (SEP) are not routinely recorded/measured as part of standard clinical SEPs. However, HFOs could provide important additional diagnostic/prognostic information in various patient groups in whom SEPs are tested routinely. One area is the management of patients with hypoxic ischaemic encephalopathy (HIE) in the intensive care unit (ICU). However, the sensitivity of standard clinical SEP recording techniques for detecting HFOs is unknown. SEPs were recorded using routine clinical methods in 17 healthy subjects (median nerve stimulation; 0.5 ms pulse width; 5 Hz; maximum 4000 stimuli) in an unshielded laboratory. Bipolar EEG recordings were acquired (gain 50 k; bandpass 3Hz-2 kHz; sampling rate 5 kHz; non-inverting electrode 2 cm anterior to C3/C4; inverting electrode 2 cm posterior to C3/C4). Data analysis was performed in MATLAB. SEP-HFOs were detected in 65% of controls using standard clinical recording techniques. In 3 controls without significant HFOs, experiments were repeated using a linear electrode array with higher spatial sampling frequency. SEP-HFOs were observed in all 3 subjects. Currently standard clinical methods of recording SEPs are not sufficiently sensitive to permit the inclusion of SEP-HFOs in routine clinical diagnostic/prognostic assessments. Whilst an increase in the number/density of EEG electrodes should improve the sensitivity for detecting SEP-HFOs, this requires confirmation. By improving and standardising clinical SEP recording protocols to permit the acquisition/analysis of SEP-HFOs, it should be possible to gain important insights into the pathophysiology of neurological disorders and refine the management of conditions such as HIE. Copyright © 2018. Published by Elsevier Inc.
Chen, Tzu Chieh; Lin, Yueh Ting; Lin, Chung Yi; Chen, W C; Chen, Meei Ru; Kao, Hui-Ling; Chyi, J I; Hsu, C H
2008-02-01
Epitaxial AlN films were prepared on GaN/sapphire using a helicon sputtering system at the low temperature of 300 degrees C. Surface acoustic wave (SAW) devices fabricated on AlN/GaN/sapphire exhibited superior characteristics compared with those made on GaN/sapphire. An oscillator using an AlN/GaN/sapphirebased SAW device is presented. The oscillation frequency decreased when the device was illuminated by ultraviolet (UV) radiation, and the downshift of the oscillation frequency increased with the illuminating UV power density. The results showed that the AlN/GaN/sapphire-layered structure SAW oscillators are suitable for visible blind UV detection and opened up the feasibility of developing remote UV sensors for different ranges of wavelengths on the III-nitrides.
Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P.; Olsen, Lars F.; Bagatolli, Luis A.
2015-01-01
We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process. PMID:25705902
Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N
2016-03-24
The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.
NASA Astrophysics Data System (ADS)
Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bodnarchuk, I.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Ljubicic, A.; Longhin, A.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Omura, T.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakirianova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladymyrov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.
2015-06-01
The OPERA experiment, exposed to the CERN to Gran Sasso ν μ beam, collected data from 2008 to 2012. Four oscillated ν τ Charged Current interaction candidates have been detected in appearance mode, which are consistent with ν μ → ν τ oscillations at the atmospheric Δ m 2 within the "standard" three-neutrino framework. In this paper, the OPERA ν τ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.
NASA Astrophysics Data System (ADS)
Mi, Jian; Wang, Jianli; Pfeiffer, Loren N.; West, Ken W.; Baldwin, Kirk W.; Zhang, Chi
In our high mobility p-type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B - periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5 - 40 GHz), the period is inversely proportional to the microwave frequency (f). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS).
Energy Expansion for the Period of Anharmonic Oscillators by the Method of Lindstedt-Poincare
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2004-01-01
A simple, straightforward and efficient method is proposed for the calculation of the period of anharmonic oscillators as an energy series. The approach is based on perturbation theory and the method of Lindstedt-Poincare.
Dynamically balanced fuel nozzle and method of operation
Richards, George A.; Janus, Michael C.; Robey, Edward H.
2000-01-01
An apparatus and method of operation designed to reduce undesirably high pressure oscillations in lean premix combustion systems burning hydrocarbon fuels are provided. Natural combustion and nozzle acoustics are employed to generate multiple fuel pockets which, when burned in the combustor, counteract the oscillations caused by variations in heat release in the combustor. A hybrid of active and passive control techniques, the apparatus and method eliminate combustion oscillations over a wide operating range, without the use of moving parts or electronics.
Active shunt capacitance cancelling oscillator circuit
Wessendorf, Kurt O.
2003-09-23
An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.
NASA Technical Reports Server (NTRS)
Wijnands, Rudy; Strohmayer, Tod; Franco, Lucia M.; White, Nicholas E. (Technical Monitor)
2001-01-01
We report the discovery of nearly coherent oscillations with a frequency of approximately 567 Hz during type I X-ray bursts from the X-ray transient and eclipsing binary X1658-298. If these oscillations are directly related to the neutron star rotation, then the spin period of the neutron star in X1658-298 is approximately 1.8 ms. The oscillations can be present during the rise or decay phase of the bursts. Oscillations during the decay phase of the bursts show an increase in frequency of approximately 0.5-1 Hz. However, in one particular burst the oscillations reappear at the end of the decay phase at about 571.5 Hz. This represents an increase in oscillation frequency of about 5 Hz, which is the largest frequency change seen so far in a burst oscillation. It is unclear if such a large change can be accommodated by present models used to explain the frequency evolution of the oscillations. The oscillations at 571.5 Hz are unusually soft compared to the oscillations found at 567 Hz. We also observed several bursts during which the oscillations are detected at much lower significance or not at all. Most of these bursts happen during periods of X-ray dipping behavior, suggesting that the X-ray dipping might decrease the amplitude of the oscillations (although several complications exist with this simple picture). We discuss our discovery in the framework of the neutron star spin interpretation.
Aerodynamics of a linear oscillating cascade
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1990-01-01
The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.
FLOWS AND WAVES IN BRAIDED SOLAR CORONAL MAGNETIC STRUCTURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pant, V.; Datta, A.; Banerjee, D., E-mail: vaibhav@iiap.res.in
We study the high frequency dynamics in the braided magnetic structure of an active region (AR 11520) moss as observed by the High-Resolution Coronal Imager (Hi-C). We detect quasi-periodic flows and waves in these structures. We search for high frequency dynamics while looking at power maps of the observed region. We find that shorter periodicities (30–60 s) are associated with small spatial scales which can be resolved by Hi-C only. We detect quasi-periodic flows with a wide range of velocities, from 13–185 km s{sup −1}, associated with braided regions. This can be interpreted as plasma outflows from reconnection sites. Wemore » also find short period and large amplitude transverse oscillations associated with the braided magnetic region. Such oscillations could be triggered by reconnection or such oscillations may trigger reconnection.« less
Structural health monitoring based on sensitivity vector fields and attractor morphing.
Yin, Shih-Hsun; Epureanu, Bogdan I
2006-09-15
The dynamic responses of a thermo-shielding panel forced by unsteady aerodynamic loads and a classical Duffing oscillator are investigated to detect structural damage. A nonlinear aeroelastic model is obtained for the panel by using third-order piston theory to model the unsteady supersonic flow, which interacts with the panel. To identify damage, we analyse the morphology (deformation and movement) of the attractor of the dynamics of the aeroelastic system and the Duffing oscillator. Damages of various locations, extents and levels are shown to be revealed by the attractor-based analysis. For the panel, the type of damage considered is a local reduction in the bending stiffness. For the Duffing oscillator, variations in the linear and nonlinear stiffnesses and damping are considered as damage. Present studies of such problems are based on linear theories. In contrast, the presented approach using nonlinear dynamics has the potential of enhancing accuracy and sensitivity of detection.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and background.
Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao
2017-01-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and background. PMID:27076352
Solar oscillation time delay measurement assisted celestial navigation method
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang
2017-05-01
Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.
Micropower RF material proximity sensor
McEwan, Thomas E.
1998-01-01
A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is of the sensor. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt's configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna.
Micropower RF material proximity sensor
McEwan, T.E.
1998-11-10
A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is disclosed. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt`s configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna. 5 figs.
Coronal magnetohydrodynamic waves and oscillations: observations and quests.
Aschwanden, Markus J
2006-02-15
Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.
Photo-Detectors Integrated with Resonant Tunneling Diodes
Romeira, Bruno; Pessoa, Luis M.; Salgado, Henrique M.; Ironside, Charles N.; Figueiredo, José M. L.
2013-01-01
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems. PMID:23881142
Photo-detectors integrated with resonant tunneling diodes.
Romeira, Bruno; Pessoa, Luis M; Salgado, Henrique M; Ironside, Charles N; Figueiredo, José M L
2013-07-22
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.
VERTICAL KINK OSCILLATION OF A MAGNETIC FLUX ROPE STRUCTURE IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Cho, K.-S.; Nakariakov, V. M., E-mail: sjkim@kasi.re.kr
2014-12-20
Vertical transverse oscillations of a coronal magnetic rope, observed simultaneously in the 171 Å and 304 Å bandpasses of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO), are detected. The oscillation period is about 700 s and the displacement amplitude is about 1 Mm. The oscillation amplitude remains constant during the observation. Simultaneous observation of the rope in the bandpasses corresponding to the coronal and chromospheric temperatures suggests that it has a multi-thermal structure. Oscillatory patterns in 171 Å and 304 Å are coherent, which indicates that the observed kink oscillation is collective, in which the ropemore » moves as a single entity. We interpret the oscillation as a fundamental standing vertically polarized kink mode of the rope, while the interpretation in terms of a perpendicular fast wave could not be entirely ruled out. In addition, the arcade situated above the rope and seen in the 171 Å bandpass shows an oscillatory motion with the period of about 1000 s.« less
Design of short-range terahertz wave passive detecting system
NASA Astrophysics Data System (ADS)
Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting
2016-09-01
Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.
Ren, Guo-Ping; Yan, Jia-Qing; Yu, Zhi-Xin; Wang, Dan; Li, Xiao-Nan; Mei, Shan-Shan; Dai, Jin-Dong; Li, Xiao-Li; Li, Yun-Lin; Wang, Xiao-Fei; Yang, Xiao-Feng
2018-02-01
High frequency oscillations (HFOs) are considered as biomarker for epileptogenicity. Reliable automation of HFOs detection is necessary for rapid and objective analysis, and is determined by accurate computation of the baseline. Although most existing automated detectors measure baseline accurately in channels with rare HFOs, they lose accuracy in channels with frequent HFOs. Here, we proposed a novel algorithm using the maximum distributed peak points method to improve baseline determination accuracy in channels with wide HFOs activity ranges and calculate a dynamic baseline. Interictal ripples (80-200[Formula: see text]Hz), fast ripples (FRs, 200-500[Formula: see text]Hz) and baselines in intracerebral EEGs from seven patients with intractable epilepsy were identified by experienced reviewers and by our computer-automated program, and the results were compared. We also compared the performance of our detector to four well-known detectors integrated in RIPPLELAB. The sensitivity and specificity of our detector were, respectively, 71% and 75% for ripples and 66% and 84% for FRs. Spearman's rank correlation coefficient comparing automated and manual detection was [Formula: see text] for ripples and [Formula: see text] for FRs ([Formula: see text]). In comparison to other detectors, our detector had a relatively higher sensitivity and specificity. In conclusion, our automated detector is able to accurately calculate a dynamic iEEG baseline in different HFO activity channels using the maximum distributed peak points method, resulting in higher sensitivity and specificity than other available HFO detectors.
One node driving synchronisation
NASA Astrophysics Data System (ADS)
Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.
2015-12-01
Abrupt changes of behaviour in complex networks can be triggered by a single node. This work describes the dynamical fundamentals of how the behaviour of one node affects the whole network formed by coupled phase-oscillators with heterogeneous coupling strengths. The synchronisation of phase-oscillators is independent of the distribution of the natural frequencies, weakly depends on the network size, but highly depends on only one key oscillator whose ratio between its natural frequency in a rotating frame and its coupling strength is maximum. This result is based on a novel method to calculate the critical coupling strength with which the phase-oscillators emerge into frequency synchronisation. In addition, we put forward an analytical method to approximately calculate the phase-angles for the synchronous oscillators.
One node driving synchronisation
Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.
2015-01-01
Abrupt changes of behaviour in complex networks can be triggered by a single node. This work describes the dynamical fundamentals of how the behaviour of one node affects the whole network formed by coupled phase-oscillators with heterogeneous coupling strengths. The synchronisation of phase-oscillators is independent of the distribution of the natural frequencies, weakly depends on the network size, but highly depends on only one key oscillator whose ratio between its natural frequency in a rotating frame and its coupling strength is maximum. This result is based on a novel method to calculate the critical coupling strength with which the phase-oscillators emerge into frequency synchronisation. In addition, we put forward an analytical method to approximately calculate the phase-angles for the synchronous oscillators. PMID:26656718
Oscillations in a Sunspot with Light Bridges
NASA Astrophysics Data System (ADS)
Yuan, Ding; Nakariakov, Valery M.; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin
2014-09-01
The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minute oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.
Oscillations in a sunspot with light bridges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ding; Su, Jiangtao; Yan, Yihua
2014-09-01
The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minutemore » oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.« less
Low-frequency oscillations in Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning
2015-05-01
In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).
Detection of Rotational Sequences for Global Oscillation Modes inside the Sun
NASA Technical Reports Server (NTRS)
Wolff, Charles L.; Niemann, Hasso B. (Technical Monitor)
2002-01-01
A very simple mathematical sequence is detected in a half century of thermal radio flux from the Sun. Since the only known physical cause of the sequence is global oscillations trapped in the nonconvecting solar interior, g-modes and probably r-modes are active. If so, their rotation frequencies are detected and some previously reported difference frequencies are confirmed with high confidence. All angular harmonics for 2 less than or = l less than or = 7 are detected as well as some others up to the limit l less than or = 14 resolvable by the observations (a Fourier spectrum of the 10.7 cm flux time series). The mean sidereal rotation of the nonconvecting interior is 428.2 nHz as averaged by g-modes and 429.8 nHz by the r-modes, indicating that g-mode energy is a bit more centrally concentrated. Helioseismology measures such rotation rates near 0.36R (R = solar radius), so the global modes would have about half their kinetic energy above and below that level. This, and the known log(r) energy dependence of most modes implies that these oscillations are significantly reflected near 0.18R, the same level at which sound speed measurements display a maximum departure from theoretical models.
An Overview of A Perturbation Analysis for Uni-directionally Coupled Vibratory Gyroscopes
NASA Astrophysics Data System (ADS)
Vu, Huy; Palacios, Antonio; In, Visarath; Longhini, Patrick; Neff, Joseph
2011-04-01
The complex behaviours of gyroscope systems have been scientifically researched and thoroughly studied for decades. Most of scientific research involving gyroscopes specifically concentrates on studying the designs and fabrications at the circuitry level. Although gaining a recent popularity with the low cost of MEMS device that offers an attractive approach for gyroscope fabrications, its performance is far from meeting the requirements for an inertial grade guidance system. To improve the performance, our current research is theoretically focusing upon investigating the dynamics of vibratory gyroscopes coupled in a ring configuration. Particularly, a certain topology of arrangements among coupled gyroscopes can be designed and studied to enhance robustness. The main operation depends mostly on an external source for a stable oscillation in the drive axis, while an oscillatory motion in the sense axis, which is used to detect an angular rate of rotation, is enabled through the transfers of energy from the drive via the Coriolis force. With the mathematical model depicted as Duffing oscillators, however, by adding a certain coupling among gyroscopes, a similar behavior to a Duffing oscillator is expected, only with more complicated dynamics at a higher dimension. A number of Perturbation methods have popularly been carried out, to seek for a general asymptotic solution of typical Duffing oscillators. In this work as an overview, the two-time scale Perturbation expansion is asymptotically applied on the uni-directionally coupled vibratory gyroscopes to find an analytical solution which is then compared to the numerical one.
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
NASA Astrophysics Data System (ADS)
Bick, Christian; Sebek, Michael; Kiss, István Z.
2017-10-01
We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
Disciplined rubidium oscillator with GPS selective availability
NASA Technical Reports Server (NTRS)
Dewey, Wayne P.
1993-01-01
A U.S. Department of Defense decision for continuous implementation of GPS Selective Availability (S/A) has made it necessary to modify Rubidium oscillator disciplining methods. One such method for reducing the effects of S/A on the oscillator disciplining process was developed which achieves results approaching pre-S/A GPS. The Satellite Hopping algorithm used in minimizing the effects of S/A on the oscillator disciplining process is described, and the results of using this process to those obtained prior to the implementation of S/A are compared. Test results are from a TrueTime Rubidium based Model GPS-DC timing receiver.
Detection of Nanosilver Agents in Antibacterial Textiles
NASA Astrophysics Data System (ADS)
Xu, Chengtao; Zhao, Jie; Wu, Jianjian; Nie, Jinmei; Cui, Chengmin; Xie, Weibin; Zhang, Yan
2018-01-01
The analytical techniques are needed to detect the nanosilver in textiles in direct contact with skin. In this paper, in order to discuss the extraction of nanosilver on the surface of textiles by human skin, we demonstrate the capability of constant temperature oscillation extraction method followed by Inductively Coupled Plasma Spectroscopy (ICP). The sweat and deionized water were selected as extraction solvent simulating the contact process of human skin with textiles. The SEM and TEM analysis shows the existence of nanosilver in the fabric and aqueous extract. ICP analysis shows accurately when analysing silver amounts in the range of 0.05∼1.2 mg/L with r2 values of 0.9997. The percent recoveries of all fabrics were all lower than 44 %.The results shows that the developed method of simulating of human sweat extraction was not very effective. So the nanosilver might not be transferred to human body effectively from the fabric.
Method and apparatus for detecting combustion instability in continuous combustion systems
Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.
2006-08-29
An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.
Using BiSON to detect solar internal g-modes
NASA Astrophysics Data System (ADS)
Kuszlewicz, J.; Davies, G. R.; Chaplin, W. J.
2015-09-01
The unambiguous detection of individual solar internal g modes continues to elude us. With the aid of new additions to calibration procedures, as well as updated methods to combine multi-site time series more effectively, the noise and signal detection threshold levels in the low-frequency domain (where the g modes are expected to be found) have been greatly improved. In the BiSON 23-year dataset these levels now rival those of GOLF, and with much greater frequency resolution available, due to the long time series, there is an opportunity to place more constraints on the upper limits of individual g mode amplitudes. Here we detail recent work dedicated to the challenges of observing low-frequency oscillations using a ground-based network, including the role of the window function as well as the effect of calibration on the low frequency domain.
A search for neutrino oscillations using the CHOOZ 1 km baseline reactor neutrino experiment
NASA Astrophysics Data System (ADS)
George, Jean
1999-10-01
Neutrino oscillation searches are an active field of research due to the implications their discovery may have for the solar neutrino anomaly as well as for the atmospheric neutrino anomaly. Their discovery may also have broad ramifications for the Standard Model of Particle Physics as a whole. Results from an oscillation search using the CHOOZ long baseline reactor neutrino experiment are presented in this thesis. These results are based on the data taken from June 1997 through April 1998 when the two reactors ran at combined thermal power levels ranging from zero power to their full power level of 8.5 GW. Electron flavored antineutrinos emanating from the reactors were detected through the inverse beta decay channel using a liquid scintillating calorimeter located at a distance of approximately 1 km from the reactor sources. The underground experimental site (300 MWE) provided natural shielding from the background of cosmic ray muons-leading to a background rate more than an order of magnitude lower than the full power signal rate. From the agreement between the detected and expected neutrino event rates no evidence for neutrino oscillations was found (at the 90% C.L.) for the oscillation parameter space governed by Δm 2 > 0.8 × 10-3 eV2 for maximal mixing and by sin2 2Θ > 0.18 for large values of Δm2.
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior
Henry, Molly J.; Obleser, Jonas
2012-01-01
The human ability to continuously track dynamic environmental stimuli, in particular speech, is proposed to profit from “entrainment” of endogenous neural oscillations, which involves phase reorganization such that “optimal” phase comes into line with temporally expected critical events, resulting in improved processing. The current experiment goes beyond previous work in this domain by addressing two thus far unanswered questions. First, how general is neural entrainment to environmental rhythms: Can neural oscillations be entrained by temporal dynamics of ongoing rhythmic stimuli without abrupt onsets? Second, does neural entrainment optimize performance of the perceptual system: Does human auditory perception benefit from neural phase reorganization? In a human electroencephalography study, listeners detected short gaps distributed uniformly with respect to the phase angle of a 3-Hz frequency-modulated stimulus. Listeners’ ability to detect gaps in the frequency-modulated sound was not uniformly distributed in time, but clustered in certain preferred phases of the modulation. Moreover, the optimal stimulus phase was individually determined by the neural delta oscillation entrained by the stimulus. Finally, delta phase predicted behavior better than stimulus phase or the event-related potential after the gap. This study demonstrates behavioral benefits of phase realignment in response to frequency-modulated auditory stimuli, overall suggesting that frequency fluctuations in natural environmental input provide a pacing signal for endogenous neural oscillations, thereby influencing perceptual processing. PMID:23151506
Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.
Allefeld, Carsten; Bialonski, Stephan
2007-12-01
Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.
NASA Technical Reports Server (NTRS)
Schlippe, B V
1936-01-01
Determination of the spontaneous oscillations of a wing or tail unit entail many difficulties, both the mathematical determination and the determination by static wing oscillation tests being far from successful and flight tests involving very great risks. The present paper gives a method developed at the Junkers Airplane Company by which the critical velocity with respect to spontaneous oscillations of increasing amplitude can be ascertained in flight tests without undue risks, the oscillation of the surface being obtained in the tests by the application of an external force.
NASA Astrophysics Data System (ADS)
Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan
2017-07-01
The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Burst Oscillation Probes of Neutron Stars and Nuclear Burning with LOFT
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2012-01-01
X-ray brightness oscillations during thermonuclear X-ray bursts--burst oscillations--have provided a new probe of neutron star spins as well as of the dependent nuclear burning processes. The frequency drift and amplitude evolution of the oscillations observed during bursts can in principle place constraints on the physics of thermonuclear flame spreading and the dynamics of the burning atmosphere. I use simulations appropriate to LOFT to explore the precision with which the time dependence of the oscillation frequency can be inferred. This can test, for example, different models for the frequency drift, such as up-lift versus geostrophic drift. I also explore the precision with which asymptotic frequencies can be constrained in order to estimate the capability for LOFT to detect the Doppler shifts induced by orbital motion of the neutron star from a sample of bursts at different orbital phases.
Calibration-free portable Young's-modulus tester with isolated langasite oscillator.
Ogi, Hirotsugu; Sakamoto, Yuto; Hirao, Masahiko
2014-09-01
A ballpoint-pen-type portable ultrasonic oscillator is developed for quantitative measurement of Young's modulus on a solid. It consists of an electrodeless rod-shaped langasite oscillator with a tungsten-carbide spherical-shaped tip at the end, permanent magnets for making a constant force at the contact interface, and antennas for exciting and detecting the longitudinal vibration contactlessly. The resonance frequency of the oscillator is changed by contact with the specimen, reflecting Young's modulus of the specimen at the contact area. The langasite oscillator is supported at the nodal points so that its acoustical contact occurs only at the specimen, making a calibration-free measurement realistic. Young's moduli of various specimens were evaluated within 15% error just by touching the specimens with the probe. The error becomes smaller than 10% for lower Young-modulus materials (<∼150 GPa). Copyright © 2014 Elsevier B.V. All rights reserved.
Synchronization of Spontaneous Active Motility of Hair Cell Bundles
Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores
2015-01-01
Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409
Phytoluminographic Detection of Dynamic Variations in Leaf Gaseous Conductivity 1
Ellenson, James L.
1985-01-01
Gas exchange and plant luminescence (delayed light emission) of a single red kidney bean leaf undergoing synchronous oscillations in gas exchange were recorded and analyzed. Introduction of 1.1 microliter per liter SO2 during these oscillations produced increases in plant luminescence that, when averaged over a portion of the leaf, oscillated in phase with the gas exchange oscillations. However, examination of a video record of the plant luminescence showed not only that luminescence intensities tended to be localized within discrete areas of the leaf, but that the time-dependence of luminescence intensities within these regions varied considerably from the period, amplitude, and often phase of the overall gas exchange oscillations. The video recording also showed that changes in luminescence intensities appeared to migrate across the leaf in wave-like patterns. These data are interpreted in terms of localized fluctuations in gaseous conductances of the leaf. Images Fig. 3 PMID:16664350
A cardioid oscillator with asymmetric time ratio for establishing CPG models.
Fu, Q; Wang, D H; Xu, L; Yuan, G
2018-01-13
Nonlinear oscillators are usually utilized by bionic scientists for establishing central pattern generator models for imitating rhythmic motions by bionic scientists. In the natural word, many rhythmic motions possess asymmetric time ratios, which means that the forward and the backward motions of an oscillating process sustain different times within one period. In order to model rhythmic motions with asymmetric time ratios, nonlinear oscillators with asymmetric forward and backward trajectories within one period should be studied. In this paper, based on the property of the invariant set, a method to design the closed curve in the phase plane of a dynamic system as its limit cycle is proposed. Utilizing the proposed method and considering that a cardioid curve is a kind of asymmetrical closed curves, a cardioid oscillator with asymmetric time ratios is proposed and realized. Through making the derivation of the closed curve in the phase plane of a dynamic system equal to zero, the closed curve is designed as its limit cycle. Utilizing the proposed limit cycle design method and according to the global invariant set theory, a cardioid oscillator applying a cardioid curve as its limit cycle is achieved. On these bases, the numerical simulations are conducted for analyzing the behaviors of the cardioid oscillator. The example utilizing the established cardioid oscillator to simulate rhythmic motions of the hip joint of a human body in the sagittal plane is presented. The results of the numerical simulations indicate that, whatever the initial condition is and without any outside input, the proposed cardioid oscillator possesses the following properties: (1) The proposed cardioid oscillator is able to generate a series of periodic and anti-interference self-exciting trajectories, (2) the generated trajectories possess an asymmetric time ratio, and (3) the time ratio can be regulated by adjusting the oscillator's parameters. Furthermore, the comparison between the simulated trajectories by the established cardioid oscillator and the measured angle trajectories of the hip angle of a human body show that the proposed cardioid oscillator is fit for imitating the rhythmic motions of the hip of a human body with asymmetric time ratios.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1995-01-01
This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.
The dynamics of a stabilised Wien bridge oscillator
NASA Astrophysics Data System (ADS)
Lerner, L.
2016-11-01
We present for the first time analytic solutions for the nonlinear dynamics of a Wien bridge oscillator stabilised by three common methods: an incandescent lamp, signal diodes, and the field effect transistor. The results can be used to optimise oscillator design, and agree well with measurements. The effect of operational amplifier marginal nonlinearity on oscillator performance at high frequencies is clarified. The oscillator circuits and their analysis can be used to demonstrate nonlinear dynamics in the undergraduate laboratory.
Dynamical inference: where phase synchronization and generalized synchronization meet.
Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2014-06-01
Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
On the Possibility to Construct Gravitational Eye
NASA Astrophysics Data System (ADS)
Chen, Ying-Tian
2007-05-01
The possibility of modifying a conventional Cavendish torsion pendulum into a half-armed pendulum oscillator to measure the horizontal gravitational acceleration is discussed. A new kind of gravitational detector, gravieye, as we named, can be made by a proper combination of such oscillators to ``see'' remote objects and to be used, e.g. to detect the movement of huge mass at a long distance.
Terahertz imaging system for stand-off detection of threats
NASA Astrophysics Data System (ADS)
Hübers, H.-W.; Semenov, A. D.; Richter, H.; Böttger, U.
2007-04-01
Suicide bombers and hidden bombs or explosives have become serious threats especially for mass transportation. Until now there exists no established system which can be used against these threats. Therefore new technologies especially for stand-off detection of threats are required. Terahertz (THz) rays offer an alternative inspection method, which can cope with these new challenges. Major advantages of THz radiation as compared to other spectral regions are the possibility to penetrate through clothes and that THz radiation is not harmful for human health. In this report the design and results of a THz stand-off detection system will be presented. The sensor is based on active illumination of the object and sensitive heterodyne detection of reflected and backscattered radiation. The system operates at about 0.8 THz. A THz laser is used for illumination and a superconducting hot-electron bolometric mixer for detection. The local oscillator required for heterodyne detection is a multiplied microwave source. The optical system is designed to allow for stand-off detection at 20 m with a spatial resolution less than 2 cm.
NASA Technical Reports Server (NTRS)
Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz
1995-01-01
Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.
Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes
Manning, Cerys; Rattray, Magnus
2017-01-01
Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5’ LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package. PMID:28493880
METHOD FOR STABILIZING KLYSTRONS
Magnuson, D.W.; Smith, D.F.
1959-04-14
High-frequency oscillators for the generation of microwaves, particularly a system for stabilizing frequency-modulated klystron oscillators of the reflex type, are described. The system takos advantage of the fact that a change in oscillator frequency will alter the normal phase displacement between the cavity and its modulator, creating an error voltage which is utilized to regulate the frequency of the oscillator and stabilize it.
Remote laser drilling and sampling system for the detection of concealed explosives
NASA Astrophysics Data System (ADS)
Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.
2017-05-01
The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.
Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.
Li, G; Hu, H; Wu, K; Wang, G; Wang, L J
2014-10-01
For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.
Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage
NASA Astrophysics Data System (ADS)
Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.
2014-10-01
For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.
On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation
NASA Astrophysics Data System (ADS)
Feng, Lin; Liang, Shuzhang; Zhou, Xiangcong; Yang, Jianlei; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito
2017-11-01
The importance of cell manipulation and cultivation is increasing rapidly in various fields, such as drug discovery, regenerative medicine, and investigation of new energy sources. This paper presents a method to transport cells in a microfluidic chip without contact. A local vortex was generated when high-frequency oscillation of a microtool was induced in a microfluidic chip. The vortex was controlled by tuning the tool's oscillation parameters, such as the oscillation amplitude and frequency. The cells were then transported in the chip based on the direction of the tool's movement, and their position, posture, and trajectories were controlled. Bovine oocyte manipulations, that is, transportation and rotation, were conducted to demonstrate the capability of the proposed method, without any contact by the microrobot with high-frequency oscillation.
WAMS measurements pre-processing for detecting low-frequency oscillations in power systems
NASA Astrophysics Data System (ADS)
Kovalenko, P. Y.
2017-07-01
Processing the data received from measurement systems implies the situation when one or more registered values stand apart from the sample collection. These values are referred to as “outliers”. The processing results may be influenced significantly by the presence of those in the data sample under consideration. In order to ensure the accuracy of low-frequency oscillations detection in power systems the corresponding algorithm has been developed for the outliers detection and elimination. The algorithm is based on the concept of the irregular component of measurement signal. This component comprises measurement errors and is assumed to be Gauss-distributed random. The median filtering is employed to detect the values lying outside the range of the normally distributed measurement error on the basis of a 3σ criterion. The algorithm has been validated involving simulated signals and WAMS data as well.
Detection and control of combustion instability based on the concept of dynamical system theory.
Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru
2014-02-01
We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.
Detection of phase synchronization from the data: Application to physiology
NASA Astrophysics Data System (ADS)
Rosenblum, Michael G.; Pikovsky, Arkady S.; Schäfer, Carsten; Tass, Peter; Kurths, Jürgen
2000-02-01
Synchronization of coupled oscillating systems means appearance of certain relations between their phases and frequencies. Here we use this concept in order to address the inverse problem and to reveal interaction between systems from experimental data. We discuss how the phases and frequencies can be estimated from time series and present the techniques for detection and quantification of synchronization. We apply our approach to multichannel magnetoencephalography data and records of muscle activity of a Parkinsonian patient, and also use it to analyze the cardiorespiratory interaction in humans. By means of these examples we demonstrate that our method is effective for the analysis of systems interrelation from noisy nonstationary bivariate data and provides other information than traditional correlation (spectral) techniques.
Detection and control of combustion instability based on the concept of dynamical system theory
NASA Astrophysics Data System (ADS)
Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru
2014-02-01
We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.
Arnau, Antonio
2008-01-01
From the first applications of AT-cut quartz crystals as sensors in solutions more than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor is becoming into a good alternative analytical method in a great deal of applications such as biosensors, analysis of biomolecular interactions, study of bacterial adhesion at specific interfaces, pathogen and microorganism detection, study of polymer film-biomolecule or cell-substrate interactions, immunosensors and an extensive use in fluids and polymer characterization and electrochemical applications among others. The appropriate evaluation of this analytical method requires recognizing the different steps involved and to be conscious of their importance and limitations. The first step involved in a QCM system is the accurate and appropriate characterization of the sensor in relation to the specific application. The use of the piezoelectric sensor in contact with solutions strongly affects its behavior and appropriate electronic interfaces must be used for an adequate sensor characterization. Systems based on different principles and techniques have been implemented during the last 25 years. The interface selection for the specific application is important and its limitations must be known to be conscious of its suitability, and for avoiding the possible error propagation in the interpretation of results. This article presents a comprehensive overview of the different techniques used for AT-cut quartz crystal microbalance in in-solution applications, which are based on the following principles: network or impedance analyzers, decay methods, oscillators and lock-in techniques. The electronic interfaces based on oscillators and phase-locked techniques are treated in detail, with the description of different configurations, since these techniques are the most used in applications for detection of analytes in solutions, and in those where a fast sensor response is necessary. PMID:27879713
Cessation of oscillations in a chemo-mechanical oscillator
NASA Astrophysics Data System (ADS)
Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit
2018-06-01
In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.
Direct observation of surface-state thermal oscillations in SmB6 oscillators
NASA Astrophysics Data System (ADS)
Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing
2018-01-01
SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.
Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators
NASA Astrophysics Data System (ADS)
You, Xiong; Zhang, Yonghui; Zhao, Jinxi
2011-07-01
In this paper, a new family of trigonometrically-fitted Scheifele two-step (TFSTS) methods for the numerical integration of perturbed oscillators is proposed and investigated. An essential feature of TFSTS methods is that they are exact in both the internal stages and the updates when solving the unperturbed harmonic oscillator y″ = -ω2 y for known frequency ω. Based on the linear operator theory, the necessary and sufficient conditions for TFSTS methods of up to order five are derived. Two specific TFSTS methods of orders four and five respectively are constructed and their stability and phase properties are examined. In the five numerical experiments carried out the new integrators are shown to be more efficient and competent than some well-known methods in the literature.
Results from the OPERA experiment
NASA Astrophysics Data System (ADS)
Crescenzo, A. Di
2017-12-01
The OPERA neutrino experiment was designed to perform a unique vτ appearance measurement in the vμ CNGS beam to confirm the oscillation mechanism in the atmospheric sector vμ → vτ. The detection of vτ leptons produced in vτ CC interactions and of their decays is accomplished exploiting the high spatial resolution of nuclear emulsions. Five vτ candidate events have been detected in the full data sample from 2008-2012 CNGS runs, with an expected background of 0.25 events. The background only hypothesis is rejected with a significance larger than 5 σ. The analysis of the tau neutrino sample in the framework of the 3+1 neutrino model is also presented. Furthermore OPERA good capabilities in detecting electron neutrino interactions allow setting limits on the vμ → ve oscillation channel.
Thermal acoustic oscillations, volume 2. [cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Sims, W. H.; Fan, C.
1975-01-01
A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.
Development of a sub-miniature rubidium oscillator for SEEKTALK application
NASA Technical Reports Server (NTRS)
Fruehauf, H.; Weidemann, W.; Jechart, E.
1981-01-01
Warm-up and size challenges to oscillator construction are presented as well as the problems involved in these tasks. The performance of M-100 military rubidium oscillator is compared to that of a subminiture rubididum oscillator (M-1000). Methods of achieving 1.5 minute warm-up are discussed as well as improvements in performance under adverse environmental conditions, including temperature, vibration, and magnetics. An attempt is made to construct an oscillator error budget under a set of arbitrary mission conditions.
Dynamical property analysis of fractionally damped van der pol oscillator and its application
NASA Astrophysics Data System (ADS)
Zhong, Qiuhui; Zhang, Chunrui
2012-01-01
In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.
Silicon nanowire field-effect transistors for the detection of proteins
NASA Astrophysics Data System (ADS)
Madler, Carsten
In this dissertation I present results on our efforts to increase the sensitivity and selectivity of silicon nanowire ion-sensitive field-effect transistors for the detection of biomarkers, as well as a novel method for wireless power transfer based on metamaterial rectennas for their potential use as implantable sensors. The sensing scheme is based on changes in the conductance of the semiconducting nanowires upon binding of charged entities to the surface, which induces a field-effect. Monitoring the differential conductance thus provides information of the selective binding of biological molecules of interest to previously covalently linked counterparts on the nanowire surface. In order to improve on the performance of the nanowire sensing, we devised and fabricated a nanowire Wheatstone bridge, which allows canceling out of signal drift due to thermal fluctuations and dynamics of fluid flow. We showed that balancing the bridge significantly improves the signal-to-noise ratio. Further, we demonstrated the sensing of novel melanoma biomarker TROY at clinically relevant concentrations and distinguished it from nonspecific binding by comparing the reaction kinetics. For increased sensitivity, an amplification method was employed using an enzyme which catalyzes a signal-generating reaction by changing the redox potential of a redox pair. In addition, we investigated the electric double layer, which forms around charges in an electrolytic solution. It causes electrostatic screening of the proteins of interest, which puts a fundamental limitation on the biomarker detection in solutions with high salt concentrations, such as blood. We solved the coupled Nernst-Planck and Poisson equations for the electrolyte under influence of an oscillating electric field and discovered oscillations of the counterion concentration at a characteristic frequency. In addition to exploring different methods for improved sensing capabilities, we studied an innovative method to supply power to implantable biosensors wirelessly, eliminating the need for batteries. A metamaterial split ring resonator is integrated with a rectifying circuit for efficient conversion of microwave radiation to direct electrical power. We studied the near-field behavior of this rectenna with respect to distance, polarization, power, and frequency. Using a 100 mW microwave power source, we demonstrated operating a simple silicon nanowire pH sensor with light indicator.
NASA Technical Reports Server (NTRS)
Edwards, John W.
1996-01-01
A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; Jackiewicz, J.; Rowe, J. F.
Starting in 2014 December, Kepler K 2 observed Neptune continuously for 49 days at a 1 minute cadence. The goals consisted of studying its atmospheric dynamics, detecting its global acoustic oscillations, and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude ν {sub max} and the mean frequency separation between mode overtones Δ ν ,more » is surprising as the ν {sub max} measured from Neptune photometry is larger than the accepted value. Compared to the usual reference ν {sub max,⊙} = 3100 μ Hz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 ± 5.8% and 4.3 ± 1.9%, respectively. The higher ν {sub max} is caused by a combination of the value of ν {sub max,⊙}, being larger at the time of observations than the usual reference from SOHO /VIRGO/SPM data (3160 ± 10 μ Hz), and the noise level of the K 2 time series, being 10 times larger than VIRGO’s. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (S/N), we model 10 overtones for degrees ℓ = 0, 1, 2. We compare the K 2 data with simultaneous SOHO /VIRGO/SPM photometry and BiSON velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 σ, except for the few peaks with the lowest S/N.« less
NASA Astrophysics Data System (ADS)
Niu, Haijing; Li, Lin; Bhave, Gauri S.; Lin, Zi-jing; Tian, Fenghua; Khosrow, Behbehani; Zhang, Rong; Liu, Hanli
2011-03-01
The goal for this study is to examine cerebral autoregulation in response to a repeated sit-stand maneuver using both diffuse functional Near Infrared spectroscopy (fNIRS) and Transcranial Doppler sonography (TCD). While fNIRS can provide transient changes in hemodynamic response to such a physical action, TCD is a noninvasive transcranial method to detect the flow velocities in the basal or middle cerebral arteries (MCA). The initial phase of this study was to measure fNIRS signals from the forehead of subjects during the repeated sit-stand protocol and to understand the corresponding meaning of the detected signals. Also, we acquired preliminary data from simultaneous measurements of fNIRS and TCD during the sit-stand protocol so as to explore the technical difficulty of such an approach. Specifically, ten healthy adult subjects were enrolled to perform the planned protocol, and the fNIRS array probes with 4 sources and 10 detectors were placed on the subject's forehead to detect hemodynamic signal changes from the prefrontal cortex. The fNIRS results show that the oscillations of hemoglobin concentration were spatially global and temporally dynamic across the entire region of subject's forehead. The oscillation patterns in both hemoglobin concentrations and blood flow velocity seemed to follow one another; changes in oxy-hemoglobin concentration were much larger than those in deoxyhemoglobin concentration. These preliminary findings provide us with evidence that fNIRS is an appropriate means readily for studying cerebral hemodynamics and autoregulation during sit-stand maneuvers.
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
Masuda, Naoki
2009-12-01
Selective attention is often accompanied by gamma oscillations in local field potentials and spike field coherence in brain areas related to visual, motor, and cognitive information processing. Gamma oscillations are implicated to play an important role in, for example, visual tasks including object search, shape perception, and speed detection. However, the mechanism by which gamma oscillations enhance cognitive and behavioral performance of attentive subjects is still elusive. Using feedforward fan-in networks composed of spiking neurons, we examine a possible role for gamma oscillations in selective attention and population rate coding of external stimuli. We implement the concept proposed by Fries ( 2005 ) that under dynamic stimuli, neural populations effectively communicate with each other only when there is a good phase relationship among associated gamma oscillations. We show that the downstream neural population selects a specific dynamic stimulus received by an upstream population and represents it by population rate coding. The encoded stimulus is the one for which gamma rhythm in the corresponding upstream population is resonant with the downstream gamma rhythm. The proposed role for gamma oscillations in stimulus selection is to enable top-down control, a neural version of time division multiple access used in communication engineering.
Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G
2014-09-01
The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.
Rocket Engine Oscillation Diagnostics
NASA Technical Reports Server (NTRS)
Nesman, Tom; Turner, James E. (Technical Monitor)
2002-01-01
Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.
EFFECT OF A SAUSAGE OSCILLATION ON RADIO ZEBRA-PATTERN STRUCTURES IN A SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sijie; Yan, Yihua; Nakariakov, V. M., E-mail: sjyu@nao.cas.cn
2016-07-20
Sausage modes that are axisymmetric fast magnetoacoustic oscillations of solar coronal loops are characterized by variation of the plasma density and magnetic field, and hence cause time variations of the electron plasma frequency and cyclotron frequency. The latter parameters determine the condition for the double plasma resonance (DPR), which is responsible for the appearance of zebra-pattern (ZP) structures in time spectra of solar type IV radio bursts. We perform numerical simulations of standing and propagating sausage oscillations in a coronal loop modeled as a straight, field-aligned plasma slab, and determine the time variation of the DPR layer locations. Instant valuesmore » of the plasma density and magnetic field at the DPR layers allowed us to construct skeletons of the time variation of ZP stripes in radio spectra. In the presence of a sausage oscillation, the ZP structures are shown to have characteristic wiggles with the time period prescribed by the sausage oscillation. Standing and propagating sausage oscillations are found to have different signatures in ZP patterns. We conclude that ZP wiggles can be used for the detection of short-period sausage oscillations and the exploitation of their seismological potential.« less
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification
Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-01-01
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference. PMID:29186075
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification.
Li, Fangmin; Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-11-29
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.
Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan
2015-12-17
The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.
Detection of solar gravity mode oscillations
NASA Technical Reports Server (NTRS)
Scherrer, P. H.
1984-01-01
The detection of g-mode oscillations in solar-velocity data obtained at Stanford Solar Observatory during 1977-1980 is reported, summarizing the results of Scherrer and Wilcox (1983) and Delache and Scherrer (1983). Spectra are shown, and the analysis results are presented in a table and graph. A total of 14 peaks are identified in the frequency range 45-105 microhertz, of which seven are assigned to a series with l = 1 and n = 6-10 and four are assigned to a series with l = 2 and n = 15-20; a peak at 59.52 microhertz can be identified as either l = 1, n = 10 or as l = 2, n = 17.
Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi
2012-03-05
The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.
Fast-sausage oscillations in coronal loops with smooth boundary
NASA Astrophysics Data System (ADS)
Lopin, I.; Nagorny, I.
2014-12-01
Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.
NASA Astrophysics Data System (ADS)
de Beurs, K.; Henebry, G. M.; Owsley, B.; Sokolik, I. N.
2016-12-01
Land surface phenology metrics allow for the summarization of long image time series into a set of annual observations that describe the vegetated growing season. These metrics have been shown to respond to both large scale climatic and anthropogenic impacts. In this study we assemble a time series (2001 - 2014) of Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance data and land surface temperature data at 0.05º spatial resolution. We then derive land surface phenology metrics focusing on the peak of the growing season by fitting quadratic regression models using NDVI and Accumulated Growing Degree-Days (AGDD) derived from land surface temperature. We link the annual information on the peak timing, the thermal time to peak and the maximum of the growing season with five of the most important large scale climate oscillations: NAO, AO, PDO, PNA and ENSO. We demonstrate several significant correlations between the climate oscillations and the land surface phenology peak metrics for a range of different bioclimatic regions in both dryland Central Asia and the northern Polar Regions. We will then link the correlation results with trends derived by the seasonal Mann-Kendall trend detection method applied to several satellite derived vegetation and albedo datasets.
NASA Astrophysics Data System (ADS)
Sánchez Úbeda, Juan Pedro; Calvache Quesada, María Luisa; Duque Calvache, Carlos; López Chicano, Manuel; Martín Rosales, Wenceslao
2013-04-01
The hydraulic properties of coastal aquifer are essential for any estimation of groundwater flow with simple calculations or modelling techniques. Usually the application of slug test or tracers test are the techniques selected for solving the uncertainties. Other methods are based on the information associated to the changes induced by tidal fluctuation in coastal zones. The Tidal Response Method is a simple technique based in two different factors, tidal efficiency factor and time lag of the tidal oscillation regarding to hydraulic head oscillation caused into the aquifer. This method was described for a homogeneous and isotropic confined aquifer; however, it's applicable to unconfined aquifers when the ratio of maximum water table fluctuation and the saturated aquifer thickness is less than 0.02. Moreover, the tidal equations assume that the tidal signal follows a sinusoidal wave, but actually, the tidal wave is a set of simple harmonic components. Due to this, another methods based in the Fourier series have been applied in earlier studies trying to describe the tidal wave. Nevertheless, the Tidal Response Method represents an acceptable and useful technique in the Motril-Salobreña coastal aquifer. From recently hydraulic head data sets at discharge zone of the Motril-Salobreña aquifer have been calculated transmissivity values using different methods based in the tidal fluctuations and its effects on the hydraulic head. The effects of the tidal oscillation are detected in two boreholes of 132 m and 38 m depth located 300 m to the coastline. The main difficulties for the application of the method were the consideration of a confined aquifer and the variation of the effect at different depths (that is not included into the tidal equations), but these troubles were solved. In one hand, the assumption that the storage coefficient (S) in this unconfined aquifer is close to confined aquifers values due to the hydrogeological conditions at high depth and without saturation changes. In the other hand, we have monitored hydraulic head fluctuations due to tidal oscillations in different shallow boreholes close to the shoreline, and comparing with the deep ones. The calculated values with the tidal efficiency factor in the deep boreholes are about one less order of magnitude regarding to the obtained results with time lag method. Nevertheless, the application of these calculation methods based on tidal response in unconfined aquifers provides knowledge about the characteristics of the discharge zone and groundwater flow patterns, and it may be an easy and profitable alternative to traditional pumping tests.
Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)
2002-01-01
Observations of thermonuclear (also called Type 1) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here we review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.
NASA Astrophysics Data System (ADS)
Ogino, Kota; Suzuki, Safumi; Asada, Masahiro
2017-12-01
Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.
Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Optogalvanic effect and laser-induced current oscillations in hollow-cathode lamps
NASA Astrophysics Data System (ADS)
Eldakli, Mohsan S. A.; Ivković, Saša S.; Obradović, Bratislav M.
2017-03-01
This paper presents a study of two commercial hollow-cathode lamps (HCLs) with the intention of demonstrating different phenomena in gas discharges. The optogalvanic effect in both HCLs is produced by a laser diode radiated at the wavelength that corresponds to neon transition 1s2-2p2 at 659.89 nm. The voltage-current characteristics of the lamps are explained using a classical theory of hollow-cathode discharge, while the optogalvanic signal is treated as a small perturbation of the discharge current. For certain values of voltage self-sustained current oscillations are observed in one of the HCLs. In the same HCL laser-induced optogalvanic dumped oscillations are detected. A phenomenological model that includes the effective circuit parameters of the discharge is used to explain the oscillation characteristics.
NASA Astrophysics Data System (ADS)
Custer, Jonathan R.; Kariuki, Michael; Beerntsen, Brenda T.; Viator, John A.
2010-02-01
Malaria is a blood borne infection affecting hundreds of millions of people worldwide2. The parasites reproduce within the blood cells, eventually causing their death and lysis. This process releases the parasites into the blood, continuing the cycle of infection. Usually, malaria is diagnosed only after a patient presents symptoms, including high fever, nausea, and, in advanced cases, coma and death. While invading the bloodstream of a host, malaria parasites convert hemoglobin into an insoluble crystal, known as hemozoin. These crystals, approximately several hundred nanometers in size, are contained within red blood cells and white blood cells that ingest free hemozoin in the blood. Thus, infected red blood cells and white blood cells contain a unique optical absorber that can be detected in blood samples using static photoacoustic detection methods. We separated the white blood cells from malaria infected blood and tested it in a photoacoustic set up using a tunable laser system consisting of an optical parametric oscillator pumped by an Nd:YAG laser with pulse duration of 5 ns. Our threshold of detection was 10 infected white blood cells per microliter, which is more sensitive than current diagnosis methods using microscopic analysis of blood.
Strauss, Charlie E.
1997-01-01
Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.
Strauss, C.E.
1997-11-18
Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.
Assessment of chamber pressure oscillations in the Shuttle SRB
NASA Technical Reports Server (NTRS)
Mathes, H. B.
1980-01-01
Combustion stability evaluations of the Shuttle solid propellant booster motor are reviewed. Measurement of the amplitude and frequency of low level chamber pressure oscillations which have been detected in motor firings, are discussed and a statistical analysis of the data is presented. Oscillatory data from three recent motor firings are shown and the results are compared with statistical predictions which are based on earlier motor firings.
Shell-Type Micromechanical Oscillator
2003-04-01
interferometric setup. A positive feedback loop was implemented by amplifying the red laser signal (related to the oscillator deflection) and using...resonator was actuated by a sharply focused, modulated Ar+ ion (blue) laser beam and detected by a red HeNe laser using an interferometric setup. A positive...top. Fig. 1 shows optical micrograph obtained by DIC (Differential Interference Contrast, known also as Nomarsky contrast). An array of three domes
Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.
2011-07-01
Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.
Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.N.
This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case themore » phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references.« less
Extending the capability of GYRE to calculate tidally forced stellar oscillations
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.
2016-01-01
Tidally forced oscillations have been observed in many eccentric binary systems, such as KOI-54 and many other 'heart beat stars'. The tidal response of the star can be calculated by solving a revised stellar oscillations equations.The open-source stellar oscillation code GYRE (Townsend & Teitler 2013) can be used to solve the free stellar oscillation equations in both adiabatic and non-adiabatic cases. It uses a novel matrix exponential method which avoids many difficulties of the classical shooting and relaxation method. The new version also includes the effect of rotation in traditional approximation.After showing the code flow of GYRE, we revise its subroutines and extend its capability to calculate tidallyforced oscillations in both adiabatic and non-adiabatic cases following the procedure in the CAFein code (Valsecchi et al. 2013). In the end, we compare the tidal eigenfunctions with those calculated from CAFein.More details of the revision and a simple version of the code in MATLAB can be obtained upon request.
NASA Technical Reports Server (NTRS)
Geissler, W.
1983-01-01
A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.
NASA Astrophysics Data System (ADS)
Mekhonoshina, E. V.; Modorskii, V. Ya.
2016-10-01
This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.
Low-pressure argon adsorption assessment of micropore connectivities in activated carbons.
Zimny, T; Villieras, F; Finqueneisel, G; Cossarutto, L; Weber, J V
2006-01-01
Low-pressure argon adsorption has been used to study the energetic distribution of microporous activated carbons differing by their burn-off. The collected isotherms were analyzed using the derivative isotherm summation method. Some oscillations on the experimental curves for very low partial pressures were detected. The results are analyzed and discussed according to the literature and could be attributed to local overheating caused by spontaneous mass transfer of argon through constrictions between former pores and the new opening pore or deadend pores. We used the dynamic character of the experimental method and mainly the discrepancy of the quasi-equilibrium state to deduce key parameters related to the porosity topology.
NASA Technical Reports Server (NTRS)
Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David
2015-01-01
The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles.
Development of a high-speed wavelength-agile CO2 local oscillator for heterodyne DIAL measurements
NASA Astrophysics Data System (ADS)
Senft, Daniel C.; Pierrottet, Diego F.
2002-06-01
A high repetition rate, wavelength agile CO2 laser has been developed at the Air Force Research Laboratory for use as a local oscillator in a heterodyne detection receiver. Fats wavelength selection is required for measurements of airborne chemical vapors using the differential absorption lidar (DIAL) technique. Acousto-optic modulator are used to tune between different wavelengths at high speeds without the need for moving mechanical parts. Other advantages obtained by the use of acousto-optic modulators are laser output power control per wavelength and rugged packaging for field applications. The local oscillator design is described, and the results from laboratory DIAL measurements are presented. The coherent remote optical sensor system is an internal research project being conducted by the Air Force Research Laboratory Directed Energy Directorate, Active Remote Sensing Branch. The objective of the project is to develop a new long-range standoff spectral sensor that takes advantage of the enhanced performance capabilities coherent detection can provide. Emphasis of the development is on a low cost, compact, and rugged active sensor exclusively designed for heterodyne detection using the differential absorption lidar technique. State of the art technologies in waveguide laser construction and acousto- optics make feasible the next generation of lasers capable of supporting coherent lidar system requirements. Issues addressed as part of the development include optoelectronic engineering of a low cost rugged system, and fast data throughput for real time chemical concentration measurements. All hardware used in this sensor are off-the- shelf items, so only minor hardware modifications were required for the system as it stands. This paper describes a high-speed heterodyne detection CO2 DIAL system that employs a wavelength agile, acousto-optically tuned local oscillator in the receiver. Sample experimental data collected in a controlled environment are presented as well. Chemical detection using 12 wavelengths at 200 pulses per second has been demonstrated. Initial progress on experiments to make a direct, simultaneous comparison of heterodyne and direct detection DIAL systems will also be described.
Tichy, Harald; Kallina, Wolfgang
2014-01-01
The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between –1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also according to their impact on behavior. PMID:24901985
Yokoyama, Hidekatsu
2012-01-01
Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power. Copyright © 2011 Elsevier Inc. All rights reserved.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
Ambient air contamination: Characterization and detection techniques
NASA Technical Reports Server (NTRS)
Nulton, C. P.; Silvus, H. S.
1985-01-01
Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.
Nonlinear ARMA models for the D(st) index and their physical interpretation
NASA Technical Reports Server (NTRS)
Vassiliadis, D.; Klimas, A. J.; Baker, D. N.
1996-01-01
Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.
Bramblett, Richard L.; Preskitt, Charles A.
1987-03-03
Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.
The Final Results from the Sudbury Neutrino Observatory
Bellerive, Alain
2017-12-15
The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Bian, Songhan
2017-05-01
In this paper, we apply the empirical mode decomposition (EMD) method to the recurrence plot (RP) and recurrence quantification analysis (RQA), to evaluate the frequency- and time-evolving dynamics of the traffic flow. Based on the cumulative intrinsic mode functions extracted by the EMD, the frequency-evolving RP regarding different oscillation of modes suggests that apparent dynamics of the data considered are mainly dominated by its components of medium- and low-frequencies while severely affected by fast oscillated noises contained in the signal. Noises are then eliminated to analyze the intrinsic dynamics and consequently, the denoised time-evolving RQA diversely characterizes the properties of the signal and marks crucial points more accurately where white bands in the RP occur, whereas a strongly qualitative agreement exists between all the non-denoised RQA measures. Generally, the EMD combining with the recurrence analysis sheds more reliable, abundant and inherent lights into the traffic flow, which is meaningful to the empirical analysis of complex systems.
Terahertz imaging system based on a backward-wave oscillator.
Dobroiu, Adrian; Yamashita, Masatsugu; Ohshima, Yuichi N; Morita, Yasuyuki; Otani, Chiko; Kawase, Kodo
2004-10-20
We present an imaging system designed for use in the terahertz range. As the radiation source a backward-wave oscillator was chosen for its special features such as high output power, good wave-front quality, good stability, and wavelength tunability from 520 to 710 GHz. Detection is achieved with a pyroelectric sensor operated at room temperature. The alignment procedure for the optical elements is described, and several methods to reduce the etalon effect that are inherent in monochromatic sources are discussed. The terahertz spot size in the sample plane is 550 microm (nearly the diffraction limit), and the signal-to-noise ratio is 10,000:1; other characteristics were also measured and are presented in detail. A number of preliminary applications are also shown that cover various areas: nondestructive real-time testing for plastic tubes and packaging seals; biological terahertz imaging of fresh, frozen, or freeze-dried samples; paraffin-embedded specimens of cancer tissue; and measurement of the absorption coefficient of water by use of a wedge-shaped cell.
Soavi, Giancarlo; Tempra, Iacopo; Pantano, Maria F; Cattoni, Andrea; Collin, Stéphane; Biagioni, Paolo; Pugno, Nicola M; Cerullo, Giulio
2016-02-23
Mechanical vibrational resonances in metal nanoparticles are intensively studied because they provide insight into nanoscale elasticity and for their potential application to ultrasensitive mass detection. In this paper, we use broadband femtosecond pump-probe spectroscopy to study the longitudinal acoustic phonons of arrays of gold nanorods with different aspect ratios, fabricated by electron beam lithography with very high size uniformity. We follow in real time the impulsively excited extensional oscillations of the nanorods by measuring the transient shift of the localized surface plasmon band. Broadband and high-sensitivity detection of the time-dependent extinction spectra enables one to develop a model that quantitatively describes the periodic variation of the plasmon extinction coefficient starting from the steady-state spectrum with only one additional free parameter. This model allows us to retrieve the time-dependent elongation of the nanorods with an ultrahigh sensitivity and to measure oscillation amplitudes of just a few picometers and plasmon energy shifts on the order of 10(-2) meV.
Correlated states of a quantum oscillator acted by short pulses
NASA Technical Reports Server (NTRS)
Manko, O. V.
1993-01-01
Correlated squeezed states for a quantum oscillator are constructed based on the method of quantum integrals of motion. The quantum oscillator is acted upon by short duration pulses. Three delta-kickings of frequency are used to model the pulses' dependence upon the time aspects of the frequency of the oscillator. Additionally, the correlation coefficient and quantum variances of operations of coordinates and momenta are written in explicit form.
High frequency oscillations are associated with cognitive processing in human recognition memory.
Kucewicz, Michal T; Cimbalnik, Jan; Matsumoto, Joseph Y; Brinkmann, Benjamin H; Bower, Mark R; Vasoli, Vincent; Sulc, Vlastimil; Meyer, Fred; Marsh, W R; Stead, S M; Worrell, Gregory A
2014-08-01
High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and generated along distributed cortical and limbic brain regions. These findings support an important role for fast network synchronization in human cognition and extend our understanding of normal physiological brain activity during memory processing. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lag and anticipating synchronization without time-delay coupling.
Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D
2005-06-01
We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator.
Transformer induced instability of the series resonant converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1983-01-01
It is shown that the common series resonant power converter is subject to a low frequency oscillation that can lead to the loss of cyclic stability. This oscillation is caused by a low frequency resonant circuit formed by the normal L and C components in series with the magnetizing inductance of the output transformer. Three methods for eliminating this oscillation are presented and analyzed. One of these methods requires a change in the circuit topology during the resonance cycle. This requires a new set of steady state equations which are derived and presented in a normalized form. Experimental results are included which demonstrate the nature of the low frequency oscillation before cyclic stability is lost.
Oscillations of a sessile droplet in open air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.
2013-11-15
The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less