Sample records for oscillations

  1. Multimode and multistate ladder oscillator and frequency recognition device

    NASA Technical Reports Server (NTRS)

    Aumann, Herbert M. (Inventor)

    1976-01-01

    A ladder oscillator composed of capacitive and inductive impedances connected together to form a ladder network which has a chosen number N oscillation modes at N different frequencies. Each oscillation mode is characterized by a unique standing wave voltage pattern along the nodes of the ladder oscillator, with the mode in which the ladder oscillator is oscillating being determinable from the amplitudes or phase of the oscillations at the nodes. A logic circuit may be connected to the nodes of the oscillator to compare the phases of selected nodes and thereby determine which mode the oscillator is oscillating in. A ladder oscillator composed of passive capacitive and inductive impedances can be utilized as a frequency recognition device, since the passive ladder oscillator will display the characteristic standing wave patterns if an input signal impressed upon the ladder oscillator is close to one of the mode frequencies of the oscillator. A CL ladder oscillator having series capacitive impedances and shunt inductive impedances can exhibit sustained and autonomous oscillations if active nonlinear devices are connected in parallel with the shunt inductive impedances. The active CL ladder oscillator can be synchronized to input frequencies impressed upon the oscillator, and will continue to oscillate after the input signal has been removed at a mode frequency which is, in general, nearest to the input signal frequency. Autonomous oscillations may also be obtained as desired from the active CL ladder oscillator at the mode frequencies.

  2. Surface oscillation of levitated liquid droplets under microgravity

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahito; Hibiya, Taketoshi; Ozawa, Shumpei; Mizuno, Akitoshi

    2012-07-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are now planning the thermophysical properties, the surface tension, viscosity, density and etc., measurements of liquid alloys using the electromagnetic levitator named MSL-EML (Materials Science Laboratory Electromagnetic Levitator), which ahs been developed by the European Space Agency (ESA), installed in the International Space Station (ISS). The surface tension and the viscosity of liquid samples by the oscillating drop method are obtained from the surface oscillation frequency and damping time of surface oscillation respectively. However, analysis of oscillating drop method in EML must be improved even in the microgravity conditions, because on the EML conditions the electromagnetic force (EMF) cannot generate the surface oscillation with discretely oscillation mode. Since under microgravity the levitated droplet shape is completely spherical, the surface oscillation frequency with different oscillation modes degenerates into the single frequency. Therefore, surface tension will be not affected the EML condition under microgravity, but viscosity will be affected on the different oscillation mode of surface oscillations. Because dumping time of surface oscillation of liquid droplets depends on the oscillation modes, the case of surface oscillation including multi oscillation modes the viscosity values obtained from dumping time will be modified from the correct viscosity. Therefore, we investigate the dumping time of surface oscillation of levitated droplets with different oscillation modes and also with including multi oscillation modes using the electrostatic levitation (ESL) on ground and EML under microgravity conditions by the parabolic flight of airplane. The ESL can discretely generate the surface oscillation with different oscillation modes by the change of generation frequency of surface oscillation, so we can obtain dumping time of surface oscillation with discrete oscillation mode. We repot the results of the damping time of the surface oscillation of levitated liquid droplet by ESL and EML experiment with numerical simulation of the damped oscillation model.

  3. Recent Developments in the Analysis of Couple Oscillator Arrays

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.

  4. Notes on oscillator-like interactions of various spin relativistic particles

    NASA Technical Reports Server (NTRS)

    Dvoeglazov, Valeri V.; Delsolmesa, Antonio

    1995-01-01

    The equations for various spin particles with oscillator-like interactions are discussed in this talk. Topics discussed include: (1) comment on 'The Klein-Gordon Oscillator'; (2) the Dirac oscillator in quaternion form; (3) the Dirac-Dowker oscillator; (4) the Weinberg oscillator; and (5) note on the two-body Dirac oscillator.

  5. Large deformation of self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Maeda, Shingo; Kato, Terukazu; Otsuka, Yuji; Hosoya, Naoki; Cianchetti, Matteo; Laschi, Cecilia

    2016-01-01

    A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N -isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ >0.5 ) and prestrained gel samples oscillate in a good solution (χ <0.5 ).

  6. Enhancing synchrony in chaotic oscillators by dynamic relaying

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranjib; Ghosh, Dibakar; Padmanaban, E.; Ramaswamy, R.; Pecora, L. M.; Dana, Syamal K.

    2012-02-01

    In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in the electronic circuit of Rössler oscillators.

  7. Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo

    2003-08-01

    A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.

  8. Propagating wave and irregular dynamics: Spatiotemporal patterns of cholinergic theta oscillations in neocortex, in vitro

    PubMed Central

    Bao, Weili; Wu, Jian-young

    2010-01-01

    Neocortical “theta” oscillation (5- 12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (~8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike”, a “regular” period (with relatively stable frequency and amplitude) and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ~50 mm/sec. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about equal or less than 300 μm wide horizontally. During irregular oscillations the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns. PMID:12612003

  9. [The mechanism and function of hippocampal neural oscillation].

    PubMed

    Lu, Ning; Xing, Dan-Qin; Sheng, Tao; Lu, Wei

    2017-10-25

    Neural oscillation is rhythmic or repetitive neural activity in the central nervous system that is usually generated by oscillatory activity of neuronal ensembles, reflecting regular and synchronized activities within these cell populations. According to several oscillatory bands covering frequencies from approximately 0.5 Hz to >100 Hz, neural oscillations are usually classified as delta oscillation (0.5-3 Hz), theta oscillation (4-12 Hz), beta oscillation (12-30 Hz), gamma oscillation (30-100 Hz) and sharp-wave ripples (>100 Hz ripples superimposed on 0.01-3 Hz sharp waves). Neural oscillation in different frequencies can be detected in different brain regions of human and animal during perception, motion and sleep, and plays an essential role in cognition, learning and memory process. In this review, we summarize recent findings on neural oscillations in hippocampus, as well as the mechanism and function of hippocampal theta oscillation, gamma oscillation and sharp-wave ripples. This review may yield new insights into the functions of neural oscillation in general.

  10. Universal, computer facilitated, steady state oscillator, closed loop analysis theory and some applications to precision oscillators

    NASA Technical Reports Server (NTRS)

    Parzen, Benjamin

    1992-01-01

    The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.

  11. Homodyne detection of short-range Doppler radar using a forced oscillator model

    NASA Astrophysics Data System (ADS)

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-03-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.

  12. Cooling flexural modes of a mechanical oscillator by magnetically trapped Bose-Einstein-condensate atoms

    NASA Astrophysics Data System (ADS)

    Xu, Donghong; Xue, Fei

    2017-12-01

    We theoretically study cooling of flexural modes of a mechanical oscillator by Bose-Einstein-condensate (BEC) atoms (Rb87) trapped in a magnetic trap. The mechanical oscillator with a tiny magnet attached on one of its free ends produces an oscillating magnetic field. When its oscillating frequency matches certain hyperfine Zeeman energy of Rb87 atoms, the trapped BEC atoms are coupled out of the magnetic trap by the mechanical oscillator, flying away from the trap with stolen energy from the mechanical oscillator. Thus the mode temperature of the mechanical oscillator is reduced. The mode temperature of the steady state of mechanical oscillator, measured by the mean steady-state phonon number in the flexural mode of the mechanical oscillator, is analyzed. It is found that ground state (phonon number less than 1) may be accessible with optimal parameters of the hybrid system of mechanical oscillator and trapped BEC atoms.

  13. Virtual Oscillator Controls | Grid Modernization | NREL

    Science.gov Websites

    Virtual Oscillator Controls Virtual Oscillator Controls NREL is developing virtual oscillator Santa-Barbara, and SunPower. Publications Synthesizing Virtual Oscillators To Control Islanded Inverters Synchronization of Parallel Single-Phase Inverters Using Virtual Oscillator Control, IEEE Transactions on Power

  14. Rhythmic Activity and Individual Variability in Recognition Memory: Theta Oscillations Correlate with Performance whereas Alpha Oscillations Correlate with ERPs.

    PubMed

    Chen, Yvonne Y; Caplan, Jeremy B

    2017-01-01

    During study trials of a recognition memory task, alpha (∼10 Hz) oscillations decrease, and concurrently, theta (4-8 Hz) oscillations increase when later memory is successful versus unsuccessful (subsequent memory effect). Likewise, at test, reduced alpha and increased theta activity are associated with successful memory (retrieval success effect). Here we take an individual-differences approach to test three hypotheses about theta and alpha oscillations in verbal, old/new recognition, measuring the difference in oscillations between hit trials and miss trials. First, we test the hypothesis that theta and alpha oscillations have a moderately mutually exclusive relationship; but no support for this hypothesis was found. Second, we test the hypothesis that theta oscillations explain not only memory effects within participants, but also individual differences. Supporting this prediction, durations of theta (but not alpha) oscillations at study and at test correlated significantly with d' across participants. Third, we test the hypothesis that theta and alpha oscillations reflect familiarity and recollection processes by comparing oscillation measures to ERPs that are implicated in familiarity and recollection. The alpha-oscillation effects correlated with some ERP measures, but inversely, suggesting that the actions of alpha oscillations on memory processes are distinct from the roles of familiarity- and recollection-linked ERP signals. The theta-oscillation measures, despite differentiating hits from misses, did not correlate with any ERP measure; thus, theta oscillations may reflect elaborative processes not tapped by recollection-related ERPs. Our findings are consistent with alpha oscillations reflecting visual inattention, which can modulate memory, and with theta oscillations supporting recognition memory in ways that complement the most commonly studied ERPs.

  15. Undamped transverse oscillations of coronal loops as a self-oscillatory process

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Anfinogentov, S. A.; Nisticò, G.; Lee, D.-H.

    2016-06-01

    Context. Standing transverse oscillations of coronal loops are observed to operate in two regimes: rapidly decaying, large amplitude oscillations and undamped small amplitude oscillations. In the latter regime the damping should be compensated by energy supply, which allows the loop to perform almost monochromatic oscillations with almost constant amplitude and phase. Different loops oscillate with different periods. The oscillation amplitude does not show dependence on the loop length or the oscillation period. Aims: We aim to develop a low-dimensional model explaining the undamped kink oscillations as a self-oscillatory process caused by the effect of negative friction. The source of energy is an external quasi-steady flow, for example, supergranulation motions near the loop footpoints or external flows in the corona. Methods: We demonstrate that the interaction of a quasi-steady flow with a loop can be described by a Rayleigh oscillator equation that is a non-linear ordinary differential equation, with the damping and resonant terms determined empirically. Results: Small-amplitude self-oscillatory solutions to the Rayleigh oscillator equation are harmonic signals of constant amplitude, which is consistent with the observed properties of undamped kink oscillations. The period of self-oscillations is determined by the frequency of the kink mode. The damping by dissipation and mode conversion is compensated by the continuous energy deposition at the frequency of the natural oscillation. Conclusions: We propose that undamped kink oscillations of coronal loops may be caused by the interaction of the loops with quasi-steady flows, and hence are self-oscillations, which is analogous to producing a tune by moving a bow across a violin string.

  16. Global competition and local cooperation in a network of neural oscillators

    NASA Astrophysics Data System (ADS)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  17. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  18. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.

    PubMed

    Kang, Jeong Won; Lee, Kang Whan

    2014-12-01

    Graphene nanoflakes (GNFs) have been of interest for a building block in order to develop electromechanical devices on a nanometer scale. Here, we present the oscillation motions of a square GNF oscillator on graphene nanoribbon (GNR) in the retracting-motions by performing classical molecular dynamics simulations. The simulation results showed that the GNF oscillators can be considered as a building block for nanoelectromechanical systems such as carbon-nanotube (CNT) oscillators. The oscillation dynamics of the GNF oscillator were similar to those of the CNT oscillators. When the square GNF had an initial velocity as impulse dynamics, its oscillation motions on the GNR were achieved from its self-retracting van der Waals force. For low initial velocity, its translational motions were dominant in its motions rather than its rotational motions. The kinetic energy damping ratio rapidly decreased as initial velocity increased and the kinetic energy for the translational motion of the GNF oscillator rapidly transferred into that for its rotational motion. The oscillation frequency of the GNF oscillator was dependent on its initial velocity.

  19. Homodyne detection of short-range Doppler radar using a forced oscillator model

    PubMed Central

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-01-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000

  20. Weld pool oscillation during GTA welding of mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y.H.; Ouden, G. den

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized bymore » a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.« less

  1. Coupled opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor); Maleki, Lute (Inventor)

    1999-01-01

    A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.

  2. Simultaneous excitation of the snake-like oscillations and the m/n = 1/1 resistive interchange modes around the iota = 1 rational surface just after hydrogen pellet injections in LHD plasmas

    NASA Astrophysics Data System (ADS)

    Bando, T.; Ohdachi, S.; Suzuki, Y.; Sakamoto, R.; Narushima, Y.; Takemura, Y.; Watanabe, K. Y.; Sakakibara, S.; Du, X. D.; Motojima, G.; Tanaka, K.; Morisaki, T.; LHD Experiment Group

    2018-01-01

    Two types of oscillation phenomena are found just after hydrogen ice pellet injections in the Large Helical Device (LHD). Oscillation phenomena appear when the deposition profile of a hydrogen ice pellet is localized around the rotational transform ι = 1 rational surface. At first, damping oscillations (type-I) appear only in the soft X-ray (SX) emission. They are followed by the second type of oscillations (type-II) where the magnetic fluctuations and density fluctuations synchronized to the SX fluctuations are observed. Both oscillations have poloidal/toroidal mode number, m/n = 1/1. Since the type-II oscillations appear when the local pressure is large and/or the local magnetic Reynold's number is small, it is reasonable that type-II oscillations are caused by the resistive interchange modes. Because both types of oscillations appear simultaneously at slightly different locations and with slightly different frequencies, it is certain that type-I oscillations are different from type-II oscillations, which we believe is the MHD instability. It is possible that type-I oscillations are caused by the asymmetric concentration of the impurities. The type-I oscillations are similar to the impurity snake phenomena observed in tokamaks though type-I oscillations survive only several tens of milliseconds in LHD.

  3. A multiscale interaction model for the origin of the tropospheric QBO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, B.N.

    1995-03-01

    A conceptual model for the origin of the tropospheric quasi-biennial oscillation (QBO) is presented. It is argued that the tropospheric QBO may not be a fundamental mode of oscillation of the tropical coupled system. It is proposed that it may arise due to multiscale interactions between high-frequency synoptic and intraseasonal oscillations of the atmosphere and a low-frequency oscillation of the couple system in the presence of the annual cycle. This is demonstrated using a conceptual low-order system consisting of three variables representing the nonlinear atmospheric oscillations and a linear oscillator representing the low-frequency coupled mode. The annual cycle and couplingmore » to the low-frequency linear oscillator provide slowly varying forcings for the atmospheric high-frequency oscillations. The atmospheric oscillations go through a chaotic regime during a certain part of the slowly varying forcing. Such variable forcing introduces a low-frequency tail in the spectrum of the atmospheric high-frequency oscillations. The low-frequency tail resonantly interacts with the low-frequency oscillation and produces the QBO in addition to broadening the spectrum of the low-frequency oscillator. The conceptual model simulates features similar to many observed features of the tropospheric QBO but depends on the assumption that there is an inherent low-frequency El Nino-Southern Oscillation oscillation with a four-year period that occurs independently of the high-frequency forcing or the QBO.« less

  4. Dominant side in single-leg stance stability during floor oscillations at various frequencies

    PubMed Central

    2014-01-01

    Background We investigated lateral dominance in the postural stability of single-leg stance with anteroposterior floor oscillations at various frequencies. Methods Thirty adults maintained a single-leg stance on a force platform for 20 seconds per trial. Trials were performed with no oscillation (static condition) and with anteroposterior floor oscillations (2.5-cm amplitude) at six frequencies: 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 Hz (dynamic condition). A set of three trials was performed on each leg in each oscillation frequency in random order. The mean speed of the center of pressure in the anteroposterior direction (CoPap) was calculated as an index of postural stability, and frequency analysis of CoPap sway was performed. Footedness for carrying out mobilizing activities was assessed with a questionnaire. Results CoPap speed exponentially increased as oscillation frequency increased in both legs. The frequency analysis of CoPap showed a peak <0.3 Hz at no oscillation. The frequency components at 0.25-Hz oscillation included common components with no oscillation and those at 1.5-Hz oscillation showed the maximum amplitude among all conditions. Postural stability showed no significant difference between left- and right-leg stance at no oscillation and oscillations ≤1.25 Hz, but at 1.5-Hz oscillation was significantly higher in the right-leg stance than in the left-leg stance. For the lateral dominance of postural stability at individual levels, the lateral difference in postural stability at no oscillation was positively correlated with that at 0.25-Hz oscillation (r = 0.51) and negatively correlated with that at 1.5-Hz oscillation (r = -0.53). For 70% of subjects, the dominant side of postural stability was different at no oscillation and 1.5-Hz oscillation. In the subjects with left- or right-side dominance at no oscillation, 94% or 38% changed their dominant side at 1.5-Hz oscillation, with a significant difference between these percentages. In the 1.5-Hz oscillation, 73% of subjects had concordance between the dominant side of postural stability and that of mobilizing footedness. Conclusion In static conditions, there was no lateral dominance of stability during single-leg stance. At 1.5-Hz oscillation, the highest frequency, right-side dominance of postural stability was recognized. Functional role in supporting leg may be divided between left and right legs according to the change of balance condition from static to dynamic. PMID:25127541

  5. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.

    PubMed

    Mathalon, Daniel H; Sohal, Vikaas S

    2015-08-01

    Neural oscillations are rhythmic fluctuations over time in the activity or excitability of single neurons, local neuronal populations or "assemblies," and/or multiple regionally distributed neuronal assemblies. Synchronized oscillations among large numbers of neurons are evident in electrocorticographic, electroencephalographic, magnetoencephalographic, and local field potential recordings and are generally understood to depend on inhibition that paces assemblies of excitatory neurons to produce alternating temporal windows of reduced and increased excitability. Synchronization of neural oscillations is supported by the extensive networks of local and long-range feedforward and feedback bidirectional connections between neurons. Here, we review some of the major methods and measures used to characterize neural oscillations, with a focus on gamma oscillations. Distinctions are drawn between stimulus-independent oscillations recorded during resting states or intervals between task events, stimulus-induced oscillations that are time locked but not phase locked to stimuli, and stimulus-evoked oscillations that are both time and phase locked to stimuli. Synchrony of oscillations between recording sites, and between the amplitudes and phases of oscillations of different frequencies (cross-frequency coupling), is described and illustrated. Molecular mechanisms underlying gamma oscillations are also reviewed. Ultimately, understanding the temporal organization of neuronal network activity, including interactions between neural oscillations, is critical for elucidating brain dysfunction in neuropsychiatric disorders.

  6. Cessation of oscillations in a chemo-mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit

    2018-06-01

    In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.

  7. Magnetically coupled magnet-spring oscillators

    NASA Astrophysics Data System (ADS)

    Donoso, G.; Ladera, C. L.; Martín, P.

    2010-05-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of mechanical, and easily adjustable by the experimenter. The coupling of this new coupled oscillator system is determined by the currents that the magnets induce in two coils connected in series, one to each magnet. It is an interesting case of mechanical oscillators with field-driven coupling, instead of mechanical coupling. Moreover, it is both a coupled and a damped oscillating system that lends itself to a detailed study and presentation of many properties and phenomena of such a system of oscillators. A set of experiments that validates the theoretical model of the oscillators is presented and discussed.

  8. Orthogonally referenced integrated ensemble for navigation and timing

    DOEpatents

    Smith, Stephen Fulton; Moore, James Anthony

    2013-02-26

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  9. Orthogonally referenced integrated ensemble for navigation and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, James Anthony

    2014-04-01

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clockmore » oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.« less

  10. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fu-cheng; Yan, Wen; Wang, De-zhen

    2013-12-15

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transformmore » spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.« less

  11. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  12. Oscillation Baselining and Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  13. REVIEWS OF TOPICAL PROBLEMS: Neutrino oscillations in three- and four-flavor schemes

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgenii Kh

    2004-02-01

    We review some theoretical aspects of neutrino oscillations in the case where more than two neutrino flavors are involved. These include: approximate analytic solutions for 3-flavor (3f) oscillations in matter; matter effects in νμ<-->ντ oscillations; 3f effects in oscillations of solar, atmospheric, reactor, and supernova neutrinos and in accelerator long-baseline experiments; CP and T violation in neutrino oscillations in the vacuum and in matter; the problem of Ue3; and 4f oscillations.

  14. Dynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents

    PubMed Central

    Valencia, Miguel; Artieda, Julio; Bolam, J. Paul; Mena-Segovia, Juan

    2013-01-01

    Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication among brain regions whose activity was correlated during the preceding waking period. While the frequencies of oscillations involved in such interactions have been identified, their dynamics and the correlations between them require further investigation. Here we analyzed the structure and dynamics of these signals in anesthetized rats. We show that spindles and gamma oscillations coexist but have distinct temporal dynamics across the slow oscillation cycle. Furthermore, we observed that spindles and gamma are functionally coupled to the slow oscillations and between each other. Following the activation of ascending pathways from the brainstem by means of a carbachol injection in the pedunculopontine nucleus, we were able to modify the gain in the gamma oscillations that are independent of the spindles while the spindle amplitude was reduced. Furthermore, carbachol produced a decoupling of the gamma oscillations that are dependent on the spindles but with no effect on their amplitude. None of the changes in the high-frequency oscillations affected the onset or shape of the slow oscillations, suggesting that slow oscillations occur independently of the phasic events that coexist with them. Our results provide novel insights into the regulation, dynamics and homeostasis of cortical slow oscillations. PMID:23844020

  15. Ferromagnetic mass fixed on a spring and subjected to an electromagnet powered by self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Abobda, L. T.; Woafo, P.

    2014-12-01

    The study of a ferromagnetic mass, fixed on a spring and subjected to an electromagnet powered by a Van der Pol (VDP) oscillator and by a Hindmarsh-Rose (HR) oscillator is performed, to serve as an electromechanical devices, but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. The excitation with the VDP oscillator shows in the mechanical part the transition from harmonic, periodic, biperiodic up to bursting oscillations, high displacement without pull-in instability in the free dynamics regime. Under DC plus square wave excitation, there is a coexistence of the bursting oscillations of the free dynamics and the one of the modulated dynamics. Considering the action of a HR oscillator, it is found transition from spikes, bursting oscillations, relaxation spikes, multiperiodic and sinusoidal oscillations under DC or DC plus square wave excitation. These electrical behaviors are transferred to the mechanical part which can then adopt spiking or bursting dynamics as the HR oscillator. For this electromechanical model, the VDP oscillator is more efficient than the HR oscillator to induce pulsatile pumping function with higher amplitude and to react to external influences without pull-in.

  16. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  17. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  18. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    NASA Astrophysics Data System (ADS)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  19. Decay-less kink oscillations in coronal loops

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.

    2013-12-01

    Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org

  20. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  1. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  2. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  3. Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona?

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S. A.; Nakariakov, V. M.; Nisticò, G.

    2015-11-01

    Context. We investigate the decayless regime of coronal kink oscillations recently discovered in the Solar Dynamics Observatory (SDO)/AIA data. In contrast to decaying kink oscillations that are excited by impulsive dynamical processes, this type of transverse oscillations is not connected to any external impulsive impact, such as a flare or coronal mass ejection, and does not show any significant decay. Moreover the amplitude of these decayless oscillations is typically lower than that of decaying oscillations. Aims: The aim of this research is to estimate the prevalence of this phenomenon and its characteristic signatures. Methods: We analysed 21 active regions (NOAA 11637-11657) observed in January 2013 in the 171 Å channel of SDO/AIA. For each active region we inspected six hours of observations, constructing time-distance plots for the slits positioned across pronounced bright loops. The oscillatory patterns in time-distance plots were visually identified and the oscillation periods and amplitudes were measured. We also estimated the length of each oscillating loop. Results: Low-amplitude decayless kink oscillations are found to be present in the majority of the analysed active regions. The oscillation periods lie in the range from 1.5 to 10 min. In two active regions with insufficient observation conditions we did not identify any oscillation patterns. The oscillation periods are found to increase with the length of the oscillating loop. Conclusions: The considered type of coronal oscillations is a common phenomenon in the corona. The established dependence of the oscillation period on the loop length is consistent with their interpretation in terms of standing kink waves. Appendix A is available in electronic form at http://www.aanda.org

  4. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    PubMed

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  5. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamicsmore » in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.« less

  6. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    NASA Astrophysics Data System (ADS)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  7. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  8. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa

    2015-10-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.

  9. Activity patterns in networks stabilized by background oscillations.

    PubMed

    Hoppensteadt, Frank

    2009-07-01

    The brain operates in a highly oscillatory environment. We investigate here how such an oscillating background can create stable organized behavior in an array of neuro-oscillators that is not observable in the absence of oscillation, much like oscillating the support point of an inverted pendulum can stabilize its up position, which is unstable without the oscillation. We test this idea in an array of electronic circuits coming from neuroengineering: we show how the frequencies of the background oscillation create a partition of the state space into distinct basins of attraction. Thus, background signals can stabilize persistent activity that is otherwise not observable. This suggests that an image, represented as a stable firing pattern which is triggered by a voltage pulse and is sustained in synchrony or resonance with the background oscillation, can persist as a stable behavior long after the initial stimulus is removed. The background oscillations provide energy for organized behavior in the array, and these behaviors are categorized by the basins of attraction determined by the oscillation frequencies.

  10. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  11. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  12. Longitudinal mode selection in a delay-line homogeneously broadened oscillator with a fast saturable amplifier.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2017-05-01

    Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter. The mode is selected by a short-time injection of an external signal into the oscillator. After the external signal is turned off, the oscillation is maintained in the selected mode even if this mode has a significantly lower small-signal gain than that of other cavity modes. The stability of the oscillation is obtained due to nonlinear saturation effect in the oscillator amplifier. We demonstrate, experimentally and theoretically, mode selection in a long cavity OEO. We could select any desired mode between 400 cavity modes while maintaining ultra-low phase noise in the selected mode and in the non-oscillating modes. No mode-hopping was observed during our maximum measurement duration of about 24 hours.

  13. Coupled Oscillators System in the True Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, A.; Fujii, T.; Endo, I.

    The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.

  14. Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro

    PubMed Central

    Cunningham, M O; Halliday, David M; Davies, Ceri H; Traub, Roger D; Buhl, Eberhard H; Whittington, Miles A

    2004-01-01

    High frequency oscillations (> 80–90 Hz) occur in neocortex and hippocampus in vivo where they are associated with specific behavioural states and more classical EEG frequency bands. In the hippocampus in vitro these oscillations can occur in the absence of pyramidal neuronal somatodendritic compartments and are temporally correlated with on-going, persistent gamma frequency oscillations. Their occurrence in the hippocampus is dependent on gap-junctional communication and it has been suggested that these high frequency oscillations originate as collective behaviour in populations of electrically coupled principal cell axonal compartments. Here we demonstrate that the superficial layers of medial entorhinal cortex can also generate high frequency oscillations associated with gamma rhythms. During persistent gamma frequency oscillations high frequency oscillations occur with a high bispectral coherence with the field gamma activity. Bursts of high frequency oscillations are temporally correlated with both the onset of compound excitatory postsynaptic potentials in fast-spiking interneurones and spikelet potentials in both pyramidal and stellate principal neurones. Both the gamma frequency and high frequency oscillations were attenuated by the gap junction blocker carbenoxolone. These data suggest that high frequency oscillations may represent the substrate for phasic drive to interneurones during persistent gamma oscillations in the medial entorhinal cortex. PMID:15254156

  15. Effects of Different Anesthetics on Oscillations in the Rat Olfactory Bulb

    PubMed Central

    Li, Anan; Zhang, Lei; Liu, Min; Gong, Ling; Liu, Qing; Xu, Fuqiang

    2012-01-01

    Different types of oscillations in the olfactory bulb (OB), including θ (1 to 4 and 5 to 12 Hz), β (13 to 30 Hz), and γ oscillations (31 to 64 and 65 to 90 Hz), are important in olfactory information processing and olfactory-related functions and have been investigated extensively in recent decades. The awake and anesthetized states, 2 different brain conditions, are used widely in electrophysiologic studies of OB. Chloral hydrate, pentobarbital, and urethane are commonly used anesthetics in these studies. However, the influence of these anesthetics on the oscillations has not been reported. In the present study, we recorded the local field potential (LFP) in the OB of rats that were freely moving or anesthetized with these agents. Chloral hydrate and pentobarbital had similar effects: they slightly affected the power of θ oscillations; significantly increased the power of β oscillations; significantly decreased the power of γ oscillations, and showed similar recovery of γ oscillations. Urethane had very different effects: it significantly increased oscillations at 1 to 4 Hz but decreased those at 5 to 12 Hz, decreased β and γ oscillations, and showed no overt recovery in γ oscillations. These results provide experimental evidence of different effects of various anesthetics on OB oscillations and suggest that the choice of anesthetic should consider the experimental application. PMID:23043811

  16. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    PubMed

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  17. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  18. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  19. Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry

    PubMed Central

    2015-01-01

    Gamma oscillations are a robust component of sensory responses but are also part of the background spontaneous activity of the brain. To determine whether the properties of gamma oscillations in cortex are specific to their mechanism of generation, we compared in mouse visual cortex in vivo the laminar geometry and single-neuron rhythmicity of oscillations produced during sensory representation with those occurring spontaneously in the absence of stimulation. In mouse visual cortex under anesthesia (isoflurane and xylazine), visual stimulation triggered oscillations mainly between 20 and 50 Hz, which, because of their similar functional significance to gamma oscillations in higher mammals, we define here as gamma range. Sensory representation in visual cortex specifically increased gamma oscillation amplitude in the supragranular (L2/3) and granular (L4) layers and strongly entrained putative excitatory and inhibitory neurons in infragranular layers, while spontaneous gamma oscillations were distributed evenly through the cortical depth and primarily entrained putative inhibitory neurons in the infragranular (L5/6) cortical layers. The difference in laminar distribution of gamma oscillations during the two different conditions may result from differences in the source of excitatory input to the cortex. In addition, modulation of superficial gamma oscillation amplitude did not result in a corresponding change in deep-layer oscillations, suggesting that superficial and deep layers of cortex may utilize independent but related networks for gamma generation. These results demonstrate that stimulus-driven gamma oscillations engage cortical circuitry in a manner distinct from spontaneous oscillations and suggest multiple networks for the generation of gamma oscillations in cortex. PMID:26719085

  20. Magnetically Coupled Magnet-Spring Oscillators

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  1. Gamma oscillations: precise temporal coordination without a metronome.

    PubMed

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A Computer Model for Soda Bottle Oscillations: "The Bottelator".

    ERIC Educational Resources Information Center

    Soltzberg, Leonard J.; And Others

    1997-01-01

    Presents a model to explain the behavior of oscillatory phenomena found in the soda bottle oscillator. Describes recording the oscillations, and the design of the model based on the qualitative explanation of the oscillations. Illustrates a variety of physiochemical concepts including far-from-equilibrium oscillations, feedback, solubility and…

  3. Opto-electronic oscillator and its applications

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute

    1997-04-01

    We review the properties of a new class of microwave oscillators called opto-electronic oscillators (OEO). We present theoretical and experimental results of a multi-loop technique for single mode selection. We then describe a new development called coupled OEO (COEO) in which the electrical oscillation is directly coupled with the optical oscillation, producing an OEO that generates stable optical pulses and single mode microwave oscillation simultaneously. Finally we discuss various applications of OEO.

  4. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  5. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  6. Calculations of combustion response profiles and oscillations

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1993-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Pressure and velocity oscillations calculated using this procedure are presented for the Space Shuttle Main Engine (SSME) to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Results of calculations to determine local combustion responses using detailed physical models for injection, atomization, and vaporization with gas phase oscillations in baffled and unbaffled SSME combustors are presented. The contributions of the various physical phenomena occurring in a combustor to oscillations in combustion response were determined.

  7. Dependence of synchronization on frequency mismatch and network configuration in chemo-mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    In this paper, synchronization among the mercury beating heart (MBH) oscillators is studied. In the first set of experiments, two MBH oscillators were taken. Frequency of one oscillator is kept constant and that of the other is increased monotonically. These were then coupled using bidirectional and unidirectional coupling mechanisms separately. Dependence of synchronization on the frequency difference between the two oscillators is investigated. For the second set of experiments involving unidirectional coupling, an ensemble of fifteen oscillators was taken and different configurations of these oscillators were considered. These include an all-to-all network and fractionally distributed master slave configurations. The effect of both the extent of coupling and network configuration on synchronization among these oscillators was investigated.

  8. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    NASA Astrophysics Data System (ADS)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  9. Initial Results in Using a Self-Coherence Method for Detecting Sustained Oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Dagle, Jeffery E.

    2015-01-01

    This paper develops a self-coherence method for detecting sustained oscillations using phasor measurement unit (PMU) data. Sustained oscillations decrease system performance and introduce potential reliability issues. Timely detection of the oscillations at an early stage provides the opportunity for taking remedial reaction. Using high-speed time-synchronized PMU data, this paper details a self-coherence method for detecting sustained oscillation, even when the oscillation amplitude is lower than ambient noise. Simulation and field measurement data are used to evaluate the proposed method’s performance. It is shown that the proposed method can detect sustained oscillations and estimate oscillation frequencies with a low signal-to-noise ratio.more » Comparison with a power spectral density method also shows that the proposed self-coherence method performs better. Index Terms—coherence, power spectral density, phasor measurement unit (PMU), oscillations, power system dynamics« less

  10. Mass transfer from an oscillating microsphere.

    PubMed

    Zhu, Jiahua; Zheng, Feng; Laucks, Mary L; Davis, E James

    2002-05-15

    The enhancement of mass transfer from single oscillating aerocolloidal droplets having initial diameters approximately 40 microm has been measured using electrodynamic levitation to trap and oscillate a droplet evaporating in nitrogen gas. The frequency and amplitude of the oscillation were controlled by means of ac and dc fields applied to the ring electrodes of the electrodynamic balance (EDB). Elastic light scattering was used to size the droplet. It is shown that the mass transfer process for a colloidal or aerocolloidal particle oscillating in the Stokes flow regime is governed by a Peclet number for oscillation and a dimensionless oscillation parameter that represents the ratio of the diffusion time scale to the oscillation time scale. Evaporation rates are reported for stably oscillating droplets that are as much as five times the rate for evaporation in a stagnant gas. The enhancement is substantially larger than that predicted by quasi-steady-flow mass transfer.

  11. Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.

  12. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  13. Dynamics in hybrid complex systems of switches and oscillators

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Fertig, Elana J.; Restrepo, Juan G.

    2013-09-01

    While considerable progress has been made in the analysis of large systems containing a single type of coupled dynamical component (e.g., coupled oscillators or coupled switches), systems containing diverse components (e.g., both oscillators and switches) have received much less attention. We analyze large, hybrid systems of interconnected Kuramoto oscillators and Hopfield switches with positive feedback. In this system, oscillator synchronization promotes switches to turn on. In turn, when switches turn on, they enhance the synchrony of the oscillators to which they are coupled. Depending on the choice of parameters, we find theoretically coexisting stable solutions with either (i) incoherent oscillators and all switches permanently off, (ii) synchronized oscillators and all switches permanently on, or (iii) synchronized oscillators and switches that periodically alternate between the on and off states. Numerical experiments confirm these predictions. We discuss how transitions between these steady state solutions can be onset deterministically through dynamic bifurcations or spontaneously due to finite-size fluctuations.

  14. Winner-take-all in a phase oscillator system with adaptation.

    PubMed

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2018-01-11

    We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation.

  15. Three-dimensional MHD Simulations of Solar Prominence Oscillations in a Magnetic Flux Rope

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Hao; Xia, C.; Keppens, R.; Fang, C.; Chen, P. F.

    2018-04-01

    Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures because the characteristics of the oscillations depend on their interplay with the solar corona. Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim of comparing the oscillation periods with those predicted by various simplified models and examining the restoring force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the pendulum model where the field-aligned component of gravity serves as the restoring force. In contrast, the horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when magnetic pressure overwhelms it.

  16. Membrane Resonance Enables Stable and Robust Gamma Oscillations

    PubMed Central

    Moca, Vasile V.; Nikolić, Danko; Singer, Wolf; Mureşan, Raul C.

    2014-01-01

    Neuronal mechanisms underlying beta/gamma oscillations (20–80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field potential. Simulations of neuronal circuitry demonstrate that membrane properties of inhibitory interneurons strongly determine the characteristics of emergent oscillations. Exploration of networks containing either integrator or resonator inhibitory interneurons revealed that: (i) Resonance, as opposed to integration, promotes robust oscillations with large power and stable frequency via a mechanism called RING (Resonance INduced Gamma); resonance favors synchronization by reducing phase delays between interneurons and imposes bounds on oscillation cycle duration; (ii) Stability of frequency and robustness of the oscillation also depend on the relative timing of excitatory and inhibitory volleys within the oscillation cycle; (iii) RING can reproduce characteristics of both Pyramidal INterneuron Gamma (PING) and INterneuron Gamma (ING), transcending such classifications; (iv) In RING, robust gamma oscillations are promoted by slow but are impaired by fast inputs. Results suggest that interneuronal membrane resonance can be an important ingredient for generation of robust gamma oscillations having stable frequency. PMID:23042733

  17. Vection during conflicting multisensory information about the axis, magnitude, and direction of self-motion.

    PubMed

    Ash, April; Palmisano, Stephen

    2012-01-01

    We examined the vection induced by consistent and conflicting multisensory information about self-motion. Observers viewed displays simulating constant-velocity self-motion in depth while physically oscillating their heads left-right or back-forth in time with a metronome. Their tracked head movements were either ignored or incorporated directly into the self-motion display (as an added simulated self-acceleration). When this head oscillation was updated into displays, sensory conflict was generated by simulating oscillation along: (i) an orthogonal axis to the head movement; or (ii) the same axis, but in a non-ecological direction. Simulated head oscillation always produced stronger vection than 'no display oscillation'--even when the axis/direction of this display motion was inconsistent with the physical head motion. When head-and-display oscillation occurred along the same axis: (i) consistent (in-phase) horizontal display oscillation produced stronger vection than conflicting (out-of-phase) horizontal display oscillation; however, (ii) consistent and conflicting depth oscillation conditions did not induce significantly different vection. Overall, orthogonal-axis oscillation was found to produce very similar vection to same-axis oscillation. Thus, we conclude that while vection appears to be very robust to sensory conflict, there are situations where sensory consistency improves vection.

  18. Self-oscillation

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  19. Observations of Excitation and Damping of Transversal Oscillations in Coronal Loops by AIA/SDO

    NASA Astrophysics Data System (ADS)

    Abedini, A.

    2018-02-01

    The excitation and damping of the transversal coronal loop oscillations and quantitative relation between damping time, damping property (damping time per period), oscillation amplitude, dissipation mechanism and the wake phenomena are investigated. The observed time series data with the Atmospheric Imaging Assembly (AIA) telescope on NASA's Solar Dynamics Observatory (SDO) satellite on 2015 March 2, consisting of 400 consecutive images with 12 s cadence in the 171 Å pass band is analyzed for evidence of transversal oscillations along the coronal loops by the Lomb-Scargle periodgram. In this analysis signatures of transversal coronal loop oscillations that are damped rapidly were found with dominant oscillation periods in the range of P=12.25 - 15.80 min. Also, damping times and damping properties of the transversal coronal loop oscillations at dominant oscillation periods are estimated in the range of {τd=11.76} - {21.46} min and {τd/P=0.86} - {1.49}, respectively. The observational results of this analysis show that damping properties decrease slowly with increasing amplitude of the oscillation, but the periods of the oscillations are not sensitive functions of the amplitude of the oscillations. The order of magnitude of the damping properties and damping times are in good agreement with previous findings and the theoretical prediction for damping of kink mode oscillations by the dissipation mechanism. Furthermore, oscillations of the loop segments attenuate with time roughly as t^{-α} and the magnitude values of α for 30 different segments change from 0.51 to 0.75.

  20. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2018-04-02

    We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.

  1. Phase computations and phase models for discrete molecular oscillators.

    PubMed

    Suvak, Onder; Demir, Alper

    2012-06-11

    Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.

  2. Oscillations in a Sunspot with Light Bridges

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Nakariakov, Valery M.; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minute oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.

  3. Phase computations and phase models for discrete molecular oscillators

    PubMed Central

    2012-01-01

    Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330

  4. Oscillations in a sunspot with light bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Su, Jiangtao; Yan, Yihua

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minutemore » oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.« less

  5. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  6. Efficient optical injection locking of electronic oscillators

    NASA Astrophysics Data System (ADS)

    Cochran, S. R.; Wang, S. Y.

    1989-05-01

    The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.

  7. Control of interaction strength in a network of the true slime mold by a microfabricated structure.

    PubMed

    Takamatsu, A; Fujii, T; Endo, I

    2000-02-01

    The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.

  8. Oscillation of satellite droplets in an Oldroyd-B viscoelastic liquid jet

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen

    2017-01-01

    A one-dimensional numerical simulation is carried out to study the oscillation characteristics of satellite droplets in the beads-on-a-string structure of an Oldroyd-B viscoelastic liquid jet. The oscillation of satellite droplets is compared with the linear oscillation of a single viscoelastic droplet. It is found that, contrary to the predictions of linear theory, the period of oscillation of satellite droplets decreases with time, despite the increase in droplet volume. The mechanism may lie in the existence of the filament, which exerts an extra resistance on droplets. On the other hand, the oscillation of droplets does not influence very much the thinning of the filament. The influence of the axial wave number, viscosity, and elasticity on the oscillation of satellite droplets is examined. Increasing the wave number may result in the decrease in the period and the increase in the decay rate of oscillation, while increasing viscosity may lead to the increase in both the period and the decay rate of oscillation. Elasticity is shown to suppress the oscillation at large wave numbers, but its influence is limited at small wave numbers.

  9. SNDR Limits of Oscillator-Based Sensor Readout Circuits.

    PubMed

    Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-02-03

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.

  10. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Yuan, Di; Tian, Jun-Long; Lin, Fang; Ma, Dong-Wei; Zhang, Jing; Cui, Hai-Tao; Xiao, Yi

    2018-06-01

    In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.

  11. Nonlinear Oscillators in Space Physics

    NASA Technical Reports Server (NTRS)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  12. Temporal structure of neuronal population oscillations with empirical model decomposition

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli

    2006-08-01

    Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation.

  13. The Duffin-Kemmer-Petiau oscillator

    NASA Technical Reports Server (NTRS)

    Nedjadi, Youcef; Barrett, Roger

    1995-01-01

    In view of current interest in relativistic spin-one systems and the recent work on the Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the equation the DKP oscillator. This oscillator is a relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We show that it conserves total angular momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of the DKP oscillator in the spin 1 representation.

  14. Say hello to the DSO

    NASA Astrophysics Data System (ADS)

    Pate, G.; Roberts, T.

    1981-05-01

    In the 2-to-10 GHz frequency range, the dielectrically stabilized oscillators (DSOs) with their small size, simple construction, and modest bias requirements, have advantages over cavity-stabilized oscillators (CSOs) and crystal-controlled multiplier chains (XCOs). Commercially available DSOs consist of a transistor oscillator locked to some frequency by a resonant disk of dielectric material. The disk is coupled to a microstrip line at the output of the oscillator. The stability of a DSO lies between that of a crystal-controlled oscillator and that of a cavity-stabilized oscillator. Dielectrically stabilized oscillators, built with nine basic parts and few solder joints, can be expected to be much more reliable than a CSO or XCO.

  15. BLOCKING OSCILLATOR DOUBLE PULSE GENERATOR CIRCUIT

    DOEpatents

    Haase, J.A.

    1961-01-24

    A double-pulse generator, particuiarly a double-pulse generator comprising a blocking oscillator utilizing a feedback circuit to provide means for producing a second pulse within the recovery time of the blocking oscillator, is described. The invention utilized a passive network which permits adjustment of the spacing between the original pulses derived from the blocking oscillator and further utilizes the original pulses to trigger a circuit from which other pulses are initiated. These other pulses are delayed and then applied to the input of the blocking oscillator, with the result that the output from the oscillator circuit contains twice the number of pulses originally initiated by the blocking oscillator itself.

  16. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  17. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    NASA Astrophysics Data System (ADS)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  18. Discovery of Nearly Coherent Oscillations with a Frequency of approximately 567 Hz During Type I X-ray Bursts of the X-ray Transient and Eclipsing Binary X1658-298

    NASA Technical Reports Server (NTRS)

    Wijnands, Rudy; Strohmayer, Tod; Franco, Lucia M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We report the discovery of nearly coherent oscillations with a frequency of approximately 567 Hz during type I X-ray bursts from the X-ray transient and eclipsing binary X1658-298. If these oscillations are directly related to the neutron star rotation, then the spin period of the neutron star in X1658-298 is approximately 1.8 ms. The oscillations can be present during the rise or decay phase of the bursts. Oscillations during the decay phase of the bursts show an increase in frequency of approximately 0.5-1 Hz. However, in one particular burst the oscillations reappear at the end of the decay phase at about 571.5 Hz. This represents an increase in oscillation frequency of about 5 Hz, which is the largest frequency change seen so far in a burst oscillation. It is unclear if such a large change can be accommodated by present models used to explain the frequency evolution of the oscillations. The oscillations at 571.5 Hz are unusually soft compared to the oscillations found at 567 Hz. We also observed several bursts during which the oscillations are detected at much lower significance or not at all. Most of these bursts happen during periods of X-ray dipping behavior, suggesting that the X-ray dipping might decrease the amplitude of the oscillations (although several complications exist with this simple picture). We discuss our discovery in the framework of the neutron star spin interpretation.

  19. Wavelet analysis of some rivers in SE Europe and selected climate indices.

    PubMed

    Briciu, Andrei-Emil; Mihăilă, Dumitru

    2014-10-01

    The influence of some climatic oscillations and sunspot number on river flows in Romania, Ukraine, and Moldova is verified by using standard wavelet analyses. The selected climate oscillations are Arctic Oscillation (AO), Antarctic Oscillation (AAO), East Atlantic Oscillation (EAO), East Atlantic/West Russia Oscillation (EAWRO), NINO3.4, North Atlantic Oscillation (NAO), Pacific/North America Oscillation (PNAO), Pacific Decadal Oscillation (PDO), Polar/Eurasia Oscillation (PEO), Scandinavian Oscillation (ScandO), Southern Oscillation (SO), and West Pacific Oscillation (WPO). Forty-five hydrological stations from an area of 45,000 km(2) were used in order to discover the spatial evolution of the periodicities found in rivers. The wavelet analysis is novel for the rivers in the study area. There is an important difference between the periodicities found in mountain and plateau areas and those found in the plain area. There is a general downstream increase in the confidence level of the identified periods, even if the atmospheric precipitation has more relevant periodicities in the mountain area. The periodicities can be grouped into two compact groups: 1-16.5 and 27.8-55.6 years. The correlation matrix of the global wavelet spectrum (GWS) values indicates that NAO, EAWRO, PDO, and the sunspot number are the main factors that generate the periodicities in rivers. It is the first time when the influence of PDO on local rivers is proven. All river periodicities smaller than 16 years have a confidence level of 0.95 or above, as proven by the GWS analysis of the daily discharge data, and are caused by multiple external factors.

  20. Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrichs, H., E-mail: henning.ulrichs@uni-muenster.de; Demidov, V. E.; Demokritov, S. O.

    2014-01-27

    We present a numerical study of magnetization dynamics in a recently introduced spin torque nano-oscillator, whose operational principle relies on the spin-Hall effect—spin-Hall nano-oscillators. Our numerical results show good agreement with the experimentally observed behaviors and provide detailed information about the features of the primary auto-oscillation mode observed in the experiments. They also clarify the physical nature of the secondary auto-oscillation mode, which was experimentally observed under certain conditions only.

  1. Computational modeling of the cell-autonomous mammalian circadian oscillator.

    PubMed

    Podkolodnaya, Olga A; Tverdokhleb, Natalya N; Podkolodnyy, Nikolay L

    2017-02-24

    This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.

  2. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao

    2001-08-01

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  3. Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao

    2000-08-01

    A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.

  4. Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold.

    PubMed

    Takamatsu, A; Tanaka, R; Yamada, H; Nakagaki, T; Fujii, T; Endo, I

    2001-08-13

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  5. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  6. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  7. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle

    PubMed Central

    Le Van Quyen, Michel; Muller, Lyle E.; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G.; Dehghani, Nima; Destexhe, Alain

    2016-01-01

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS. PMID:27482084

  8. ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress-Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Cummings, Brian S.; Shankaran, Harish

    2014-09-15

    Studies were undertaken to determine whether ERK oscillations regulate a unique subset of genes in human keratinocytes and subsequently, whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to non-oscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogenmore » that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs non-oscillating cells.« less

  9. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    PubMed

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  10. Neuronal ensemble for visual working memory via interplay of slow and fast oscillations.

    PubMed

    Mizuhara, Hiroaki; Yamaguchi, Yoko

    2011-05-01

    The current focus of studies on neural entities for memory maintenance is on the interplay between fast neuronal oscillations in the gamma band and slow oscillations in the theta or delta band. The hierarchical coupling of slow and fast oscillations is crucial for the rehearsal of sensory inputs for short-term storage, as well as for binding sensory inputs that are represented in spatially segregated cortical areas. However, no experimental evidence for the binding of spatially segregated information has yet been presented for memory maintenance in humans. In the present study, we actively manipulated memory maintenance performance with an attentional blink procedure during human scalp electroencephalography (EEG) recordings and identified that slow oscillations are enhanced when memory maintenance is successful. These slow oscillations accompanied fast oscillations in the gamma frequency range that appeared at spatially segregated scalp sites. The amplitude of the gamma oscillation at these scalp sites was simultaneously enhanced at an EEG phase of the slow oscillation. Successful memory maintenance appears to be achieved by a rehearsal of sensory inputs together with a coordination of distributed fast oscillations at a preferred timing of the slow oscillations. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.

    1959-08-01

    A cavity excitation circuit is described for rapidly building up and maintaining high-level oscillations in a resonant cavity. The circuit overcomes oscillation buildup slowing effects such as ion locking in the cavity by providing for the selective application of an amplified accelerating drive signal to the main cavity exciting oscillator during oscillation buildup and a direct drive signal to the oscillator thereafter.

  12. Phase reduction approach to synchronisation of nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya

    2016-04-01

    Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modelled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyse. Classical applications of this theory, i.e. the phase locking of an oscillator to a periodic external forcing and the mutual synchronisation of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronisation of non-interacting oscillators induced by common noise and the dynamics of coupled oscillators on complex networks are discussed. We also comment on some recent advances in phase reduction theory for noise-driven oscillators and rhythmic spatiotemporal patterns.

  13. Synchronization of an ensemble of oscillators regulated by their spatial movement.

    PubMed

    Sarkar, Sumantra; Parmananda, P

    2010-12-01

    Synchronization for a collection of oscillators residing in a finite two dimensional plane is explored. The coupling between any two oscillators in this array is unidirectional, viz., master-slave configuration. Initially the oscillators are distributed randomly in space and their autonomous time-periods follow a Gaussian distribution. The duty cycles of these oscillators, which work under an on-off scenario, are normally distributed as well. It is realized that random hopping of oscillators is a necessary condition for observing global synchronization in this ensemble of oscillators. Global synchronization in the context of the present work is defined as the state in which all the oscillators are rendered identical. Furthermore, there exists an optimal amplitude of random hopping for which the attainment of this global synchronization is the fastest. The present work is deemed to be of relevance to the synchronization phenomena exhibited by pulse coupled oscillators such as a collection of fireflies. © 2010 American Institute of Physics.

  14. How is the brain working?: Research on brain oscillations and connectivities in a new "Take-Off" state.

    PubMed

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    The present report is a trial to survey analysis and applications of brain oscillations in cognitive impairment for opening the way to a new take off in research on brain oscillation. Although the number of papers related to brain oscillations rapidly increases, it is important to indicate the common principles governing the functioning of brain oscillations in the brain and body. Research scientists need a global view on the types of analysis, applications and existing oscillations. Further, scientists dealing with brain oscillations must have some knowledge from theoretical physics, system theory, and also general philosophy. The neuroscientists working on brain oscillations can mentally integrate several papers in the present report, and try to discover new avenues to augment knowledge on brain functions. A new take off in the search of brain oscillations indicates the strong need to survey this brunch of neuroscience in a broad panoply of science. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.

    PubMed

    Campbell, S; Wang, D

    1996-01-01

    A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.

  16. The effects of ion channel blockers validate the conductance-based model of saccadic oscillations

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Optican, Lance M.; Miura, Kenichiro; Ramat, Stefano; Leigh, R. John

    2012-01-01

    Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (IT) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (Ih) and IT in the model abolished the simulated oscillations. We measured the effects of a selective blocker of IT (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of Ih and IT (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, Ih, and IT, in generation of saccadic oscillations and determining their kinematic properties. PMID:21950976

  17. Recent progress in opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    The optoelectronic oscillator (OEO) is a unique device based on photonics techniques to generate highly spectrally pure microwave signals [1]. The development of the OEO was motivated by the need for high performance oscillators in the frequency range larger than 10 GHz, where conventional electronic oscillators have a number of limitations. These limitations typically stem from the product of fQ, where f is the oscillator frequency and Q is the quality factor of the resonator in the oscillator. In conventional resonators, whether electromagnetic or piezoelectric, this product is usually a constant. Thus, as the oscillator frequency is pushed higher, the quality factor degrades, resulting in degradation of the phase noise of the oscillator. An approach to mitigate the problem is to start with a very high quality signal in the 5 to 100 MHz range generated by a quartz oscillator and multiply the frequency to achieve the desired microwave signal. Here again, frequency multiplication also results in an increase of the phase noise by a factor of 2010gN, where N is the multiplication factor.

  18. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  19. Comparisons Between Stability Prediction and Measurements for the Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.; Kenny, R. Jeremy

    2010-01-01

    The Space Transportation System has used the solid rocket boosters for lift-off and ascent propulsion over the history of the program. Part of the structural loads assessment of the assembled vehicle is the contribution due to solid rocket booster thrust oscillations. These thrust oscillations are a consequence of internal motor pressure oscillations active during operation. Understanding of these pressure oscillations is key to predicting the subsequent thrust oscillations and vehicle loading. The pressure oscillation characteristics of the Reusable Solid Rocket Motor (RSRM) design are reviewed in this work. Dynamic pressure data from the static test and flight history are shown, with emphasis on amplitude, frequency, and timing of the oscillations. Physical mechanisms that cause these oscillations are described by comparing data observations to predictions made by the Solid Stability Prediction (SSP) code.

  20. Supermode noise suppression with mutual injection locking for coupled optoelectronic oscillator.

    PubMed

    Dai, Jian; Liu, Anni; Liu, Jingliang; Zhang, Tian; Zhou, Yue; Yin, Feifei; Dai, Yitang; Liu, Yuanan; Xu, Kun

    2017-10-30

    The coupled optoelectronic oscillator (COEO) is typically used to generate high frequency spectrally pure microwave signal with serious sidemodes noise. We propose and experimentally demonstrate a simple scheme for supermode suppression with mutual injection locking between the COEO (master oscillator with multi-modes oscillation) and the embedded free-running oscillator (slave oscillator with single-mode oscillation). The master and slave oscillators share the same electrical feedback path, which means that the mutually injection-locked COEO brings no additional hardware complexity. Owing to the mode matching and mutually injection locking effect, 9.999 GHz signal has been successfully obtained by the mutually injection-locked COEO with the phase noise about -117 dBc/Hz at 10 kHz offset frequency. Besides, the supermode noise can be significantly suppressed more than 50 dB to below -120 dBc.

  1. Nonlinearity induced synchronization enhancement in mechanical oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein,more » are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.« less

  2. Using qubits to reveal quantum signatures of an oscillator

    NASA Astrophysics Data System (ADS)

    Agarwal, Shantanu

    In this thesis, we seek to study the qubit-oscillator system with the aim to identify and quantify inherent quantum features of the oscillator. We show that the quantum signatures of the oscillator get imprinted on the dynamics of the joint system. The two key features which we explore are the quantized energy spectrum of the oscillator and the non-classicality of the oscillator's wave function. To investigate the consequences of the oscillator's discrete energy spectrum, we consider the qubit to be coupled to the oscillator through the Rabi Hamiltonian. Recent developments in fabrication technology have opened up the possibility to explore parameter regimes which were conventionally inaccessible. Motivated by these advancements, we investigate in this thesis a parameter space where the qubit frequency is much smaller than the oscillator frequency and the Rabi frequency is allowed to be an appreciable fraction of the bare frequency of the oscillator. We use the adiabatic approximation to understand the dynamics in this quasi-degenerate qubit regime. By deriving a dressed master equation, we systematically investigate the effects of the environment on the system dynamics. We develop a spectroscopic technique, using which one can probe the steady state response of the driven and damped system. The spectroscopic signal clearly reveals the quantized nature of the oscillator's energy spectrum. We extend the adiabatic approximation, earlier developed only for the single qubit case, to a scenario where multiple qubits interact with the oscillator. Using the extended adiabatic approximation, we study the collapse and revival of multi-qubit observables. We develop analytic expressions for the revival signals which are in good agreement with the numerically evaluated results. Within the quantum restriction imposed by Heisenberg's uncertainty principle, the uncertainty in the position and momentum of an oscillator is minimum and shared equally when the oscillator is prepared in a coherent state. For this reason, coherent states and states which can be thought of as a statistical mixture of coherent states are categorized as classical; whereas states which are not valid coherent state mixtures are classified as non-classical. In this thesis, we propose a new non-classicality witness operation which does not require a tomography of the oscillator's state. We show that by coupling a qubit longitudinally to the oscillator, one can infer about the non-classical nature of the initial state of the oscillator. Using a qubit observable, we derive a non-classicality witness inequality, a violation of which definitively indicates the non-classical nature of an oscillator's state.

  3. Reviving oscillations in coupled nonlinear oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Zhan, Meng; Kurths, Jürgen

    2013-07-05

    By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This processing delay-induced phenomenon occurs both with and without the propagation delay. Further this effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit AD, and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.

  4. Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback

    NASA Astrophysics Data System (ADS)

    Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro

    2016-10-01

    This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.

  5. Generation of mechanical oscillation applicable to vibratory rate gyroscopes

    NASA Technical Reports Server (NTRS)

    Lemkin, Mark A. (Inventor); Juneau, Thor N. (Inventor); Clark, William A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    To achieve a drive-axis oscillation with improved frequency and amplitude stability, additional feedback loops are used to adjust force-feedback loop parameters. An amplitude-control loop measures oscillation amplitude, compares this value to the desired level, and adjusts damping of the mechanical sense-element to grow or shrink oscillation amplitude as appropriate. A frequency-tuning loop measures the oscillation frequency, compares this value with a highly stable reference, and adjusts the gain in the force-feedback loop to keep the drive-axis oscillation frequency at the reference value. The combined topology simultaneously controls both amplitude and frequency. Advantages of the combined topology include improved stability, fast oscillation start-up, low power consumption, and excellent shock rejection.

  6. Frequency-locked chaotic opto-RF oscillator.

    PubMed

    Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc

    2016-06-15

    A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.

  7. Self-oscillation in spin torque oscillator stabilized by field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  8. Resonant tunnelling diode oscillator as an alternative LO for SIS receiver applications

    NASA Technical Reports Server (NTRS)

    Blundell, R.; Papa, D. C.; Brown, E. R.; Parker, C. D.

    1993-01-01

    The resonant tunnelling diode (RTD) oscillator has been demonstrated for the first time as a local oscillator (LO) in a heterodyne receiver. Noise measurements made on a sensitive 200 GHz superconductor-insulator-superconductor receiver using both a multiplied Gunn diode and an RTD oscillator as the LO revealed no difference in receiver noise as a function of oscillator type.

  9. Relation of squeezed states between damped harmonic and simple harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Um, Chung-In; Yeon, Kyu-Hwang; George, Thomas F.; Pandey, Lakshmi N.

    1993-01-01

    The minimum uncertainty and other relations are evaluated in the framework of the coherent states of the damped harmonic oscillator. It is shown that the coherent states of the damped harmonic oscillator are the squeezed coherent states of the simple harmonic oscillator. The unitary operator is also constructed, and this connects coherent states with damped harmonic and simple harmonic oscillators.

  10. SNDR Limits of Oscillator-Based Sensor Readout Circuits

    PubMed Central

    Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-01-01

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646

  11. Basin stability measure of different steady states in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  12. Local inertial oscillations in the surface ocean generated by time-varying winds

    NASA Astrophysics Data System (ADS)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  13. The Question of Spontaneous Wing Oscillations : Determination of Critical Velocity Through Flight-oscillation Tests

    NASA Technical Reports Server (NTRS)

    Schlippe, B V

    1936-01-01

    Determination of the spontaneous oscillations of a wing or tail unit entail many difficulties, both the mathematical determination and the determination by static wing oscillation tests being far from successful and flight tests involving very great risks. The present paper gives a method developed at the Junkers Airplane Company by which the critical velocity with respect to spontaneous oscillations of increasing amplitude can be ascertained in flight tests without undue risks, the oscillation of the surface being obtained in the tests by the application of an external force.

  14. Review of optoelectronic oscillators based on modelocked lasers and resonant tunneling diode optoelectronics

    NASA Astrophysics Data System (ADS)

    Ironside, C. N.; Haji, Mohsin; Hou, Lianping; Akbar, Jehan; Kelly, Anthony E.; Seunarine, K.; Romeira, Bruno; Figueiredo, José M. L.

    2011-05-01

    Optoelectronic oscillators can provide low noise oscillators at radio frequencies in the 0.5-40 GHz range and in this paper we review two recently introduced approaches to optoelectronic oscillators. Both approaches use an optical fibre feedback loop. One approach is based on passively modelocked laser diodes and in a 40 GHz oscillator achieves up to 30 dB noise reduction. The other approach is based on resonant tunneling diode optoelectronic devices and in a 1.4 GHz oscillator can achieve up to 30 dB noise reduction.

  15. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  16. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  17. Investigation of Meniscus Region Behavior and Oscillation Mark Formation in Steel Continuous Casting Using a Transient Thermo-Fluid Model

    NASA Astrophysics Data System (ADS)

    Blaes, Carly

    In the continuous casting of steel, many complex phenomena in the meniscus region of the mold are responsible for the formation of oscillation marks. Oscillation marks are depressions found around the perimeter of continuously cast steel slabs, which if too large can lead to cracking in steel slabs. Therefore, knowledge on how to minimize the size of oscillation marks is very valuable. A computational model was created of the meniscus region, which includes transient multiphase fluid flow of slag and steel, with low-Reynolds turbulence, heat transfer in the mold, slag, and steel, steel shell solidification, mold oscillation, and temperature-dependent properties. This model was first validated using previous experimental and plant data. The model was then used to study the impact of varying casting parameters, including oscillation frequency, stroke, modification ratio, casting speed, molten steel level fluctuations, and temperature-dependent slag properties and surface tension on the oscillation mark shape, and other aspects of thermal-flow behavior during each oscillation cycle, including heat flux profile, slag consumption and mold friction. The first half of oscillation marks were formed during negative strip time as the slag rim pushed molten steel away from the mold wall and that the second half of oscillation marks were formed during positive strip time as the molten steel is drawn near the mold wall due to the upstroke of the mold. Oscillation mark depth was found to decrease with increasing frequency, modification ratio, casting speed, and slag viscosity, while oscillation mark depth was found to increase with increasing stroke. Oscillation mark width was only found to increase due to increases in pitch, which can be contributed to decreasing frequency or increasing casting speed. While many observations were made in this study, in general, oscillation mark depth and total slag consumption increase with increasing negative strip time, while the average heat flux and average mold friction decrease with increasing negative strip time.

  18. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity

    NASA Astrophysics Data System (ADS)

    Leiser, Randolph J.; Rotstein, Horacio G.

    2017-08-01

    Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.

  19. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    PubMed Central

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine. PMID:24464086

  20. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.

    PubMed

    Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen

    2016-04-01

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  1. Generalizing the transition from amplitude to oscillation death in coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Koseska, Aneta; Kurths, Jürgen

    2013-11-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching types in coupled nonlinear oscillators. The transition from AD to OD has been recently realized due to the interplay between heterogeneity and coupling strength [A. Koseska et al., Phys. Rev. Lett. 111, 024103 (2013)]. We identify here the transition from AD to OD in nonlinear oscillators with couplings of distinct natures. It is demonstrated that the presence of time delay in the coupling cannot induce such a transition in identical oscillators, but it can indeed facilitate its occurrence with a low degree of heterogeneity. Moreover, it is further shown that the AD to OD transition is reliably observed in identical oscillators with dynamic and conjugate couplings. The coexistence of AD and OD and rich stable OD configurations after the transition are revealed, which are of great significance for potential applications in physics, biology, and control studies.

  2. Oscillating side-branch enhancements of thermoacoustic heat exchangers

    DOEpatents

    Swift, Gregory W.

    2003-05-13

    A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.

  3. Classification of attractors for systems of identical coupled Kuramoto oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelbrecht, Jan R.; Mirollo, Renato

    2014-03-15

    We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well asmore » chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.« less

  4. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less

  5. Locally excitatory, globally inhibitory oscillator networks: theory and application to scene segmentation

    NASA Astrophysics Data System (ADS)

    Wang, DeLiang; Terman, David

    1995-01-01

    A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.

  6. Robustness and fragility in coupled oscillator networks under targeted attacks.

    PubMed

    Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei

    2017-01-01

    The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.

  7. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.

    PubMed

    Huang, W; Pérez-García, P; Pokhilko, A; Millar, A J; Antoshechkin, I; Riechmann, J L; Mas, P

    2012-04-06

    In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TIMING OF CAB EXPRESSION 1 (TOC1) was proposed to activate a subset of morning-expressed oscillator genes. Here, we show that TOC1 does not function as an activator but rather as a general repressor of oscillator gene expression. Repression occurs through TOC1 rhythmic association to the promoters of the oscillator genes. Hormone-dependent induction of TOC1 and analysis of RNA interference plants show that TOC1 prevents the activation of morning-expressed genes at night. Our study overturns the prevailing model of the Arabidopsis circadian clock, showing that the morning and evening oscillator loops are connected through the repressing activity of TOC1.

  8. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less

  9. Analysis of self-oscillating behaviors aimed at the development of a molecular robot with organic acids as fuel

    NASA Astrophysics Data System (ADS)

    Nakazumi, Tomoka; Hara, Yusuke

    2017-09-01

    We studied the transmittance self-oscillation of a polymer chain driven by an organic acid as the fuel. The self-oscillating polymer chain consists of 4-acryloylmorpholine (ACMO) and the Ru catalyst (Ru(bpy)3) of the Belousov-Zhabotinsky (BZ) reaction. The transmittance self-oscillating behavior was affected significantly by the temperature. As the amplitude of the transmittance self-oscillation, which is reflected by the aggregation state, decreased with time, the oscillation period also decreased. This trend indicates that the polymer aggregation affects the rate of the BZ reaction significantly. The activation energy of the self-oscillating value was almost the same in the normal BZ reaction, which does not include Ru(bpy)3 complexes in the polymer chains. In addition, we demonstrated the effect of one BZ substrate (sodium bromate or malonic acid) on the transmittance self-oscillation period.

  10. Liquid in a tube oscillating along its axis

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Kasemo, Bengt

    2015-06-01

    The Quartz Crystal Microbalance with Dissipation (QCM-D) sensing technique has become widely used to study various supported thin films and adsorption of biological macromolecules, nanoparticles, aggregates, and cells. Such sensing, based on tracking shear oscillations of a piezoelectric crystal, can be employed in situations which are far beyond conventional ones. For example, one can deposit tubes on the surface of a sensor, orient them along the direction of the sensor surface oscillations, and study liquid oscillations inside the oscillating tubes. Herein, we illustrate and classify theoretically the regimes of liquid oscillations in this case. In particular, we identify and scrutinize the transition from the regime with appreciable gradients along the radial coordinate, which are qualitatively similar to those near the oscillating flat interface, to the regime where the liquid oscillates nearly coherently in the whole tube. The results are not only of relevance for the specific case of nanotubes but also for studies of certain mesoporous samples.

  11. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  12. Intrinsic evolution of controllable oscillators in FPTA-2

    NASA Technical Reports Server (NTRS)

    Sekanina, Lukas; Zebulum, Ricardo S.

    2005-01-01

    Simple one- and two-bit controllable oscillators were intrinsically evolved using only four cells of Field Programmable Transistor Array (FPTA-2). These oscillators can produce different oscillations for different setting of control signals. Therefore, they could be used, in principle, to compose complex networks of oscillators that could exhibit rich dynamical behavior in order to perform a computation or to model a desired system.

  13. Experimental investigation of millimeter-wave GaAs TED oscillators cooled to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders; Kollberg, Erik

    1988-03-01

    The output power and operating (bias) point for 80-100-GHz GaAs TED oscillators have been investigated for temperatures between 300 and 40 K. It is shown experimentally that the power can be increased by as much as nearly four times by cooling the oscillator. The thermal design of the oscillator was studied for GaAs and InP TED oscillators.

  14. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  15. In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns

    PubMed Central

    Khosrovani, S.; Van Der Giessen, R. S.; De Zeeuw, C. I.; De Jeu, M. T. G.

    2007-01-01

    In vitro whole-cell recordings of the inferior olive have demonstrated that its neurons are electrotonically coupled and have a tendency to oscillate. However, it remains to be shown to what extent subthreshold oscillations do indeed occur in the inferior olive in vivo and whether its spatiotemporal firing pattern may be dynamically generated by including or excluding different types of oscillatory neurons. Here, we did whole-cell recordings of olivary neurons in vivo to investigate the relation between their subthreshold activities and their spiking behavior in an intact brain. The vast majority of neurons (85%) showed subthreshold oscillatory activities. The frequencies of these subthreshold oscillations were used to distinguish four main olivary subtypes by statistical means. Type I showed both sinusoidal subthreshold oscillations (SSTOs) and low-threshold Ca2+ oscillations (LTOs) (16%); type II showed only sinusoidal subthreshold oscillations (13%); type III showed only low-threshold Ca2+ oscillations (56%); and type IV did not reveal any subthreshold oscillations (15%). These subthreshold oscillation frequencies were strongly correlated with the frequencies of preferred spiking. The frequency characteristics of the subthreshold oscillations and spiking behavior of virtually all olivary neurons were stable throughout the recordings. However, the occurrence of spontaneous or evoked action potentials modified the subthreshold oscillation by resetting the phase of its peak toward 90°. Together, these findings indicate that the inferior olive in intact mammals offers a rich repertoire of different neurons with relatively stable frequency settings, which can be used to generate and reset temporal firing patterns in a dynamically coupled ensemble. PMID:17895389

  16. Field ion microscopic studies of the CO oxidation on platinum: Bistability and oscillations

    NASA Astrophysics Data System (ADS)

    Gorodetskii, V.; Drachsel, W.; Ehsasi, M.; Block, J. H.

    1994-05-01

    The oscillating CO oxidation is investigated on a Pt-field emitter tip by using the field ion mode of surface imaging of Oad sites with O2 as imaging gas. Based on data of the titration reactions [V. Gorodetskii, W. Drachsel, and J. H. Block, J. Chem. Phys. 100, C. E. UPDATE (1994)], external control parameters for the regions of bistability and of self-sustained isothermal oscillations could be found. On a field emitter tip, oscillations can be generated in a rather large parameter space. The anticlockwise hysteresis of O+2 ion currents in temperature cycles occurs in agreement with results on single crystal planes. Unexpected regular oscillation sequences could occasionally be obtained on the small surface areas of a field emitter tip and measured as function of the CO partial pressure and of the temperature. Different stages within oscillating cycles were documented by field ion images. Oscillations of total ion currents are correlated with variations in the spatial brightness of field ion images. In the manifold of single crystal planes of a field emitter {331} planes around the {011} regions are starting points for oscillations which mainly proceed along [100] vicinals. This excludes the {111} regions from autonomous oscillations. With slightly increased CO partial pressures fast local oscillations at a few hundred surface sites of the Pt(001) plane display short-living CO islands of 40 to 50 Å diameter. Temporal oscillations of the total O+2 ion current are mainly caused by surface plane specific spatial oscillations. The synchronization is achieved by diffusion reaction fronts rather than by gas phase synchronization.

  17. Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.

    PubMed

    Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2013-03-01

    Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (P<0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P=0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO2 oscillations.

  18. Constraints on Io's interior from auroral spot oscillations

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D.; Blöcker, Aljona; Strobel, Darrell F.; Feldman, Paul D.

    2017-02-01

    The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images, we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (±5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness—like a conductive magma ocean—would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 × 103 S or lower. A magma ocean with conductances of 104 S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.

  19. Sunspot Oscillations From The Chromosphere To The Corona

    NASA Astrophysics Data System (ADS)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  20. Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone

    NASA Astrophysics Data System (ADS)

    Lingala, Nishanth; Sri Namachchivaya, N.; Pavlyukevich, Ilya

    2017-04-01

    For nonlinear oscillators, frequency of oscillations depends on the oscillation amplitude. When a nonlinear oscillator is periodically driven, the phase space consists of many resonance zones where the oscillator frequency and the driving frequency are commensurable. It is well known that, a small subset of initial conditions can lead to capture in one of the resonance zones. In this paper we study the effect of weak noise on the escape from a resonance zone. Using averaging techniques we obtain the mean exit time from a resonance zone and study the dependence of the exit rate on the parameters of the oscillator. Paper dedicated to Professor Peter W Sauer of University of Illinois on the occasion of his 70th birthday.

  1. Weak Perturbations of Biochemical Oscillators

    NASA Astrophysics Data System (ADS)

    Gailey, Paul

    2001-03-01

    Biochemical oscillators may play important roles in gene regulation, circadian rhythms, physiological signaling, and sensory processes. These oscillations typically occur inside cells where the small numbers of reacting molecules result in fluctuations in the oscillation period. Some oscillation mechanisms have been reported that resist fluctuations and produce more stable oscillations. In this paper, we consider the use of biochemical oscillators as sensors by comparing inherent fluctuations with the effects of weak perturbations to one of the reactants. Such systems could be used to produce graded responses to weak stimuli. For example, a leading hypothesis to explain geomagnetic navigation in migrating birds and other animals is based on magnetochemical reactions. Because the magnitude of magnetochemical effects is small at geomagnetic field strengths, a sensitive, noise resistant detection scheme would be required.

  2. The low-power potential of oven-controlled MEMS oscillators.

    PubMed

    Vig, John; Kim, Yoonkee

    2013-04-01

    It is shown that oven-controlled micro electromechanical systems (MEMS) oscillators have the potential of attaining a higher frequency stability, with a lower power consumption, than temperature-compensated crystal oscillators (TCXOs) and the currently manufactured MEMS oscillators.

  3. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms

    PubMed Central

    S, Shiju

    2017-01-01

    Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to explain the morning and evening oscillators. The proposed dual oscillator model based on Daan's hypothesis supports per1 and per2 playing the role of morning and evening oscillators respectively and this may be the first step towards the understanding of the core molecular mechanism responsible for encoding the day length. PMID:28486525

  4. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms.

    PubMed

    S, Shiju; Sriram, K

    2017-01-01

    Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to explain the morning and evening oscillators. The proposed dual oscillator model based on Daan's hypothesis supports per1 and per2 playing the role of morning and evening oscillators respectively and this may be the first step towards the understanding of the core molecular mechanism responsible for encoding the day length.

  5. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  6. Persistent lung oscillator response to CO2 after buccal oscillator inhibition in the adult frog.

    PubMed

    Leclère, Renaud; Straus, Christian; Similowski, Thomas; Bodineau, Laurence; Fiamma, Marie-Noëlle

    2012-08-15

    The automatic ventilatory drive in amphibians depends on two oscillators interacting with each other, the gill/buccal and lung oscillators. The lung oscillator would be homologous to the mammalian pre-Bötzinger complex and the gill/buccal oscillator homologous to the mammalian parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN). Dysfunction of the pFRG/RTN has been involved in the development of respiratory diseases associated to the loss of CO(2) chemosensitivity such as the congenital central hypoventilation syndrome. Here, on adult in vitro isolated frog brainstem, consequences of the buccal oscillator inhibition (by reducing Cl(-)) were evaluated on the respiratory rhythm developed by the lung oscillator under hypercapnic challenges. Our results show that under low Cl(-) concentration (i) the buccal oscillator is strongly inhibited and the lung burst frequency and amplitude decreased and (ii) it persists a powerful CO(2) chemosensitivity. In conclusion, in frog, the CO(2) chemosensitivity depends on cellular contingent(s) whose the functioning is independent of the concentration of Cl(-) and origin remains unknown. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.

    PubMed

    Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H

    2017-03-17

    Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.

  8. Theory on the Dynamics of Oscillatory Loops in the Transcription Factor Networks

    PubMed Central

    Murugan, Rajamanickam

    2014-01-01

    We develop a detailed theoretical framework for various types of transcription factor gene oscillators. We further demonstrate that one can build genetic-oscillators which are tunable and robust against perturbations in the critical control parameters by coupling two or more independent Goodwin-Griffith oscillators through either -OR- or -AND- type logic. Most of the coupled oscillators constructed in the literature so far seem to be of -OR- type. When there are transient perturbations in one of the -OR- type coupled-oscillators, then the overall period of the system remains constant (period-buffering) whereas in case of -AND- type coupling the overall period of the system moves towards the perturbed oscillator. Though there is a period-buffering, the amplitudes of oscillators coupled through -OR- type logic are more sensitive to perturbations in the parameters associated with the promoter state dynamics than -AND- type. Further analysis shows that the period of -AND- type coupled dual-feedback oscillators can be tuned without conceding on the amplitudes. Using these results we derive the basic design principles governing the robust and tunable synthetic gene oscillators without compromising on their amplitudes. PMID:25111803

  9. Free Oscillations of the Facula Node at the Stage of Slow Dissipation

    NASA Astrophysics Data System (ADS)

    Solov'ev, A. A.; Kirichek, E. A.; Efremov, V. I.

    2017-12-01

    A solar faculae having an appearance of quite long-lived magnetic nodes can perform (as well as sunspots, chromospheric filaments, coronal loops) free oscillations, i.e., they can oscillate about the stable equilibrium position as a single whole, changing quasi-periodically magnetic field averaged over the section with periods from 1 to 4 hours. Kolotkov et al. (2017) described the case in which the average magnetic field strength of the facula node considerably decreased during observations of SDO magnetograms (13 hours), and, at the same time, its oscillations acquired a specific character: the fundamental mode of free oscillations of the facula considerably increased in amplitude (by approximately two times), while the period of oscillations increased by three times. At the end of the process, the system dissipated. In this work, we present the exact solution of the equation of small-amplitude oscillations of the system with a time-variable rigidity, describing the oscillation behavior at which the elasticity of the system decreases with time, while the period and amplitude of oscillations grow.

  10. The effects of ion channel blockers validate the conductance-based model of saccadic oscillations.

    PubMed

    Shaikh, Aasef G; Zee, David S; Optican, Lance M; Miura, Kenichiro; Ramat, Stefano; Leigh, R John

    2011-09-01

    Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (I(T)) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (I(h)) and I(T) in the model abolished the simulated oscillations. We measured the effects of a selective blocker of I(T) (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of I(h) and I(T) (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, I(h), and I(T) , in generation of saccadic oscillations and determining their kinematic properties. © 2011 New York Academy of Sciences.

  11. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  12. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  13. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  14. Driven damped harmonic oscillator resonance with an Arduino

    NASA Astrophysics Data System (ADS)

    Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.

    2017-07-01

    In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.

  15. A review of recent studies on the mechanisms and analysis methods of sub-synchronous oscillation in wind farms

    NASA Astrophysics Data System (ADS)

    Wang, Chenggen; Zhou, Qian; Gao, Shuning; Luo, Jia; Diao, Junchao; Zhao, Haoran; Bu, Jing

    2018-04-01

    This paper reviews the recent studies of Sub-Synchronous Oscillation(SSO) in wind farms. Mechanisms and analysis methods are the main concerns of this article. A classification method including new types of oscillation occurred between wind farms and HVDC systems and oscillation caused by Permanent Magnet Synchronous Generators(PMSG) is proposed. Characteristics of oscillation analysis techniques are summarized.

  16. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  17. Synchronization of a self-sustained cold-atom oscillator

    NASA Astrophysics Data System (ADS)

    Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.

    2018-04-01

    Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.

  18. Synchronization of unidirectionally delay-coupled chaotic oscillators with memory

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.

    2016-11-01

    We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.

  19. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  20. A novel cryptochrome-dependent oscillator in Neurospora crassa.

    PubMed

    Nsa, Imade Y; Karunarathna, Nirmala; Liu, Xiaoguang; Huang, Howard; Boetteger, Brittni; Bell-Pedersen, Deborah

    2015-01-01

    Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment. Copyright © 2015 by the Genetics Society of America.

  1. A Novel Cryptochrome-Dependent Oscillator in Neurospora crassa

    PubMed Central

    Nsa, Imade Y.; Karunarathna, Nirmala; Liu, Xiaoguang; Huang, Howard; Boetteger, Brittni; Bell-Pedersen, Deborah

    2015-01-01

    Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment. PMID:25361899

  2. Neuromorphic computing with nanoscale spintronic oscillators.

    PubMed

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  3. GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tongjiang; Ofman, Leon; Su, Yang

    The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 A are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strandsmore » have very similar frequencies, and between two 193 A strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss.« less

  4. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the mechanism by which the fluidic oscillators were able to suppress the combustion instability. Results for steady jet secondary injection, showed a strong coupling between the jet injection and the combustion instability pressure pulse. The computational results were able to closely match the experimental results and previous CFD data. The model with the oscillating fluidic oscillator injection was unable to match the stable combustion seen in the experimental data. Further investigation is needed to determine the role higher order chemistry kinetics play in the process and the role of manifolds on the un-choked fuel and fluidic oscillator inlets. This research demonstrates the ability to modulate propellant injection and suppress combustion instabilities using fluidic devices that require no electrical power or moving parts. The advent of advanced manufacturing technologies such as direct metal laser sintering will allow for integration of fluidic devices into combustors to provide open loop active control with a high degree of reliability. Additionally, 2-D CFD analysis is demonstrated to be a valid tool for predicting the feedback free fluidic oscillator oscillation mechanism.

  5. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.

    PubMed

    Kang, Young-Jin; Lewis, Hannah Elisabeth Smashey; Young, Mason William; Govindaiah, Gubbi; Greenfield, Lazar John; Garcia-Rill, Edgar; Lee, Sang-Hun

    2018-04-15

    The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB 1 BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB 1 BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  7. Weld pool oscillation during pulsed GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Undermore » these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.« less

  8. Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Arroyo, Sebastián I.; Zanette, Damián H.

    2016-01-01

    We address two aspects of the dynamics of the forced Duffing oscillator which are relevant to the technology of micromechanical devices and, at the same time, have intrinsic significance to the field of nonlinear oscillating systems. First, we study the stability of periodic motion when the phase shift between the external force and the oscillation is controlled - contrary to the standard case, where the control parameter is the frequency of the force. Phase-shift control is the operational configuration under which self-sustained oscillators - and, in particular, micromechanical oscillators - provide a frequency reference useful for time keeping. We show that, contrary to the standard forced Duffing oscillator, under phase-shift control oscillations are stable over the whole resonance curve, and provide analytical approximate expressions for the time dependence of the oscillation amplitude and frequency during transients. Second, we analyze a model for the internal resonance between the main Duffing oscillation mode and a higher-harmonic mode of a vibrating solid bar clamped at its two ends. We focus on the stabilization of the oscillation frequency when the resonance takes place, and present preliminary experimental results that illustrate the phenomenon. This synchronization process has been proposed to counteract the undesirable frequency-amplitude interdependence in nonlinear time-keeping micromechanical devices. Supplementary material in the form of one pdf file and one gif file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2015-60517-3

  9. Time Series Decomposition into Oscillation Components and Phase Estimation.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  10. Caffeine-induced [Ca2+] oscillations in neurones of frog sympathetic ganglia

    PubMed Central

    Cseresnyés, Zoltán; Bustamante, Alexander I; Schneider, Martin F

    1999-01-01

    Single cell fluorimetry was used to monitor caffeine-induced oscillations of cytosolic [Ca2+] in frog sympathetic ganglion neurones in 2.0 mm K+ Ringer solution.[Ca2+] oscillations decreased in frequency and exhibited three different amplitude patterns after the first large peak of [Ca2+]: (a) a series of big oscillations (BOs) of constant large amplitude (300–;400 nm), (b) a series of much smaller oscillations (SOs) (40–60 nm), or (c) a series of decaying oscillations (DOs) of rapidly decreasing amplitude.A model in which the oscillation amplitude was determined by the Ca2+ content of the endoplasmic reticulum (ER) whereas the oscillation frequency was controlled by how rapidly the cytosolic [Ca2+] reached the threshold for Ca2+-induced Ca2+ release (CICR) was able to simulate each observed pattern by varying the level of activity of the ER Ca2+ pump (SERCA), CICR and release-activated Ca2+ transport (RACT). A cumulative, cytosolic Ca2+-dependent inactivation of the plasma membrane (PM) Ca2+ influx or of the Ca2+-sensitive leak coefficient of the ryanodine receptors caused the oscillation frequency to decrease in the model.Transitions between BOs and SOs and changes in [Ca2+] oscillations caused by ryanodine, thapsigargin, lanthanum and FCCP could also be simulated.We conclude that RACT, SERCA, CICR and Ca2+-dependent PM Ca2+ influx are major mechanisms underlying [Ca2+] oscillations in these neurones. PMID:9831718

  11. Separation control with fluidic oscillators in water

    NASA Astrophysics Data System (ADS)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  12. Desynchronization of slow oscillations in the basal ganglia during natural sleep.

    PubMed

    Mizrahi-Kliger, Aviv D; Kaplan, Alexander; Israel, Zvi; Bergman, Hagai

    2018-05-01

    Slow oscillations of neuronal activity alternating between firing and silence are a hallmark of slow-wave sleep (SWS). These oscillations reflect the default activity present in all mammalian species, and are ubiquitous to anesthesia, brain slice preparations, and neuronal cultures. In all these cases, neuronal firing is highly synchronous within local circuits, suggesting that oscillation-synchronization coupling may be a governing principle of sleep physiology regardless of anatomical connectivity. To investigate whether this principle applies to overall brain organization, we recorded the activity of individual neurons from basal ganglia (BG) structures and the thalamocortical (TC) network over 70 full nights of natural sleep in two vervet monkeys. During SWS, BG neurons manifested slow oscillations (∼0.5 Hz) in firing rate that were as prominent as in the TC network. However, in sharp contrast to any neural substrate explored thus far, the slow oscillations in all BG structures were completely desynchronized between individual neurons. Furthermore, whereas in the TC network single-cell spiking was locked to slow oscillations in the local field potential (LFP), the BG LFP exhibited only weak slow oscillatory activity and failed to entrain nearby cells. We thus show that synchrony is not inherent to slow oscillations, and propose that the BG desynchronization of slow oscillations could stem from its unique anatomy and functional connectivity. Finally, we posit that BG slow-oscillation desynchronization may further the reemergence of slow-oscillation traveling waves from multiple independent origins in the frontal cortex, thus significantly contributing to normal SWS.

  13. Morse oscillator propagator in the high temperature limit I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2017-02-15

    In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less

  14. Memcapacitor model and its application in chaotic oscillator with memristor.

    PubMed

    Wang, Guangyi; Zang, Shouchi; Wang, Xiaoyuan; Yuan, Fang; Iu, Herbert Ho-Ching

    2017-01-01

    Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.

  15. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  16. Strong feedback limit of the Goodwin circadian oscillator

    NASA Astrophysics Data System (ADS)

    Woller, Aurore; Gonze, Didier; Erneux, Thomas

    2013-03-01

    The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.

  17. Quantum effects in amplitude death of coupled anharmonic self-oscillators

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph

    2018-05-01

    Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.

  18. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Huan, Ronghua; Wei, Xueyong

    2017-03-01

    Synchronization phenomenon first discovered in Huygens' clock shows that the rhythms of oscillating objects can be adjusted via an interaction. Here we show that the frequency stability of a piezoresistive micromechanical oscillator can be enhanced via synchronization. The micromechanical clamped-clamped beam oscillator is built up using the electrostatic driving and piezoresistive sensing technique and the synchronization phenomenon is observed after coupling it to an external oscillator. An enhancement of frequency stability is obtained in the synchronization state. The influences of the synchronizing perturbation intensity and frequency detuning applied on the oscillator are studied experimentally. A theoretical analysis of phase noise leads to an analytical formula for predicting Allan deviation of the frequency output of the piezoresistive oscillator, which successfully explains the experimental observations and the mechanism of frequency stability enhancement via synchronization.

  19. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    NASA Astrophysics Data System (ADS)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  20. Circuit oscillations in odor perception and memory.

    PubMed

    Kay, Leslie M

    2014-01-01

    Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.

  1. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  2. Neutrino Oscillation in a Space-Time with Torsion

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shariati, A.

    Using Einstein-Cartan-Dirac theory, we study the effect of torsion on neutrino oscillation. We see that torsion cannot induce neutrino oscillation, but affects it whenever oscillation exists for other reasons. We show that the torsion effect on neutrino oscillation is as important as the neutrino mass effect, whenever the ratio of neutrino number density to neutrino energy is ~ 1069 cm-3/eV, or the number density of the matter is ~ 1069cm-3.

  3. Design and progress report for compact cryocooled sapphire oscillator 'VCSO'

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi T.; Tjoelker, Robert L.

    2005-01-01

    We report on the development of a compact cryocooled sapphiere oscillator 'VCSO', designed as a higher-performance replacement for ultra-stable quartz oscillators in local oscillator, cleanup, and flywheel applications in the frequency generation and distribution subsystems of NASA's Deep Space Network (DSN).

  4. S-band SBAW microwave source, phase 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Results of aging experiments on 1.072 GHz SBAW oscillators are discussed as well as the design, fabrication and test of 2.143 GHz SBAW delay lines. Two design approaches were implemented. The third harmonic transducer on 36 deg rotated Y cut quartz proved to be the most useful design, whereas the fifth harmonic transducer on - 50 5 deg rotated Y cut quartz suffered from high insertion loss and poor sidelobe rejection. The construction and characterization of the 2 GHz SBAW oscillator are described. Phase noise, frequency dependence on temperature, and 6-month aging were measured. Some SAW and SBAW oscillators were compared as were both the 1 and 2 GHz oscillators. The 2 GHz SBAW oscillator showed significant improvement in phase noise and temperature stability over the 2 GHz SAW oscillator developed in previous NASA programs. A technique to produce SBAW delay lines of different frequencies from a single mask is examined. The delay lines were incorporated into oscillator circuits to demonstrate the ability to select the frequency output of the SBAW oscillator.

  5. Transverse distribution of beam current oscillations of a 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Toivanen, V; Komppula, J; Kalvas, T; Koivisto, H

    2014-02-01

    The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation "modes" often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation "mode," with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The results help to explain differences observed between the two oscillation modes in terms of the transport efficiency through the JYFL K-130 cyclotron. The dependence of the oscillation pattern on ion source parameters is a strong indication that the mechanisms driving the fluctuations are plasma effects.

  6. High-frequency sediment-level oscillations in the swash zone

    USGS Publications Warehouse

    Sallenger, A.H.; Richmond, B.M.

    1984-01-01

    Sediment-level oscillations with heights of about 6 cm and shore-normal lengths of order 10 m have been measured in the swash zone of a high-energy, coarse-sand beach. Crests of oscillations were shore parallel and continuous alongshore. The oscillations were of such low steepness (height-to-length ratio approximately 0.006) that they were difficult to detect visually. The period of oscillation ranged between 6 and 15 min and decreased landward across the swash zone. The sediment-level oscillations were progressive landward with an average migration rate in the middle to upper swash zone of 0.8 m min-1. Migration was caused mostly by erosion on the seaward flank of the crest of an oscillation during a period of net seaward sediment transport. Thus, the observed migration was a form migration landward rather than a migration involving net landward sediment transport. The observed sediment-level oscillations were different than sand waves or other swash-zone bedforms previously described. ?? 1984.

  7. Physics behind the oscillation of pressure tensor autocorrelation function for nanocolloidal dispersions.

    PubMed

    Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa

    2008-08-01

    In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.

  8. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    PubMed Central

    Horschig, Jörn M.; Zumer, Johanna M.; Bahramisharif, Ali

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works. PMID:25018706

  9. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data.

    PubMed

    Onojima, Takayuki; Goto, Takahiro; Mizuhara, Hiroaki; Aoyagi, Toshio

    2018-01-01

    Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results.

  10. Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Salazar, Erik; Mittal, Rajat

    2017-11-01

    Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.

  11. ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation.

    PubMed

    Kwon, Hyuck Joon

    2013-01-01

    Skeletal patterns are prefigured by prechondrogenic condensation. Morphogens such as fibroblast growth factor (FGF) and sonic hedgehog (Shh) specify the skeletal patterns in limb development. However, how morphogens regulate prechondrogenic condensation has remained unclear. Recently, it was demonstrated that synchronized Adenosine triphosphate (ATP) oscillations play a critical role in prechondrogenic condensation. Thus, the present study has focused on whether ATP oscillations mediate the actions of major developmental morphogens such as FGF and Shh on prechondrogenic condensation. It has been shown that both FGF and Shh signalling promoted cellular condensation but not chondrogenic differentiation and also induced ATP oscillations. In addition, blockage of FGF and Shh signalling prevented both ATP oscillations and prechondrogenic condensation. Furthermore, it was found that inhibition of ATP oscillations suppressed FGF/Shh-induced prechondrogenic condensation. These results indicate that ATP oscillations mediate the actions of FGF and Shh signalling on prechondrogenic condensation. This study proposes that morphogens organize skeletal patterns via ATP oscillations. Copyright © 2012 John Wiley & Sons, Ltd.

  12. The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator

    NASA Astrophysics Data System (ADS)

    Borzov, V. V.; Damaskinsky, E. V.

    2014-10-01

    In the previous works of Borzov and Damaskinsky ["Chebyshev-Koornwinder oscillator," Theor. Math. Phys. 175(3), 765-772 (2013)] and ["Ladder operators for Chebyshev-Koornwinder oscillator," in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.

  13. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets

    PubMed Central

    Mukhitov, Nikita; Roper, Michael G.; Bertram, Richard

    2016-01-01

    Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal’s ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion. PMID:27788129

  14. Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems.

    PubMed

    Bae, Seul-A; Acevedo, Alison; Androulakis, Ioannis P

    2016-01-01

    Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.

  15. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  16. Collective behavior of coupled nonuniform stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2012-02-01

    Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≤α‧<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.

  17. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    PubMed

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations

    PubMed Central

    Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus

    2012-01-01

    Recent years of research have shown that the complex temporal structure of ongoing oscillations is scale-free and characterized by long-range temporal correlations. Detrended fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation, normal development, or disease can lead to differences in the scale-free amplitude modulation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the time-averaged oscillation power, indicating that the DFA provides unique insights into the functional organization of neuronal systems. To facilitate understanding and encourage wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explanation of the DFA algorithm and its underlying theory. Practical advice on applying DFA to oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Toolbox (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide a brief overview of insights derived from the application of DFA to ongoing oscillations in health and disease, and discuss the putative relevance of criticality for understanding the mechanism underlying scale-free modulation of oscillations. PMID:23226132

  19. Integer, Fractional, and Sideband Injection Locking of a Spintronic Feedback Nano-Oscillator to a Microwave Signal

    NASA Astrophysics Data System (ADS)

    Singh, Hanuman; Konishi, K.; Bhuktare, S.; Bose, A.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2017-12-01

    In this paper we demonstrate the injection locking of a recently demonstrated spintronic feedback nano-oscillator to microwave magnetic fields at integers (n =1 , 2, 3) as well as fractional multiples (f =1 /2 , 3 /2 , and 5 /2 ) of its auto-oscillation frequency. Feedback oscillators have delay as a new "degree of freedom" which is absent for spin-transfer torque-based oscillators, which gives rise to side peaks along with a main peak. We show that it is also possible to lock the oscillator on its sideband peaks, which opens an alternative avenue to phase-locked oscillators with large frequency differences. We observe that for low driving fields, sideband locking improves the quality factor of the main peak, whereas for higher driving fields the main peak is suppressed. Further, measurements at two field angles provide some insight into the role of the symmetry of oscillation orbit in determining the fractional locking.

  20. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  1. Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model

    NASA Astrophysics Data System (ADS)

    Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D.

    2012-10-01

    We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions.

  2. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency stabilities in the range of a few times 10-15 to a few times 10-16. In this contribution we review only liquid-helium-cooled secondary frequency standards, such as those just mentioned, which have attained frequency stabilities of 10-14 or better.

  3. Transmission of arterial oxygen partial pressure oscillations to the cerebral microcirculation in a porcine model of acute lung injury caused by cyclic recruitment and derecruitment.

    PubMed

    Klein, K U; Boehme, S; Hartmann, E K; Szczyrba, M; Heylen, L; Liu, T; David, M; Werner, C; Markstaller, K; Engelhard, K

    2013-02-01

    Cyclic recruitment and derecruitment (R/D) play a key role in the pathomechanism of acute lung injury (ALI) leading to respiration-dependent oscillations of arterial partial pressure of oxygen (Pa(O(2))). These Pa(O(2)) oscillations could also be forwarded to the cerebral microcirculation. In 12 pigs, partial pressure of oxygen was measured in the thoracic aorta (Pa(O(2))) and subcortical cerebral tissue (Pbr(O(2))). Cerebral cortical haemoglobin oxygen saturation (Sbr(O(2))), cerebral blood flow (CBF), and peripheral haemoglobin saturation (Sp(O(2))) were assessed by spectroscopy and laser Doppler flowmetry. Measurements at different fractions of inspired oxygen (F(I(O(2)))) were performed at baseline and during cyclic R/D. frequency domain analysis, the Mann-Whitney test, linear models to test the influence of Pa(O(2)) and systolic arterial pressure (SAP) oscillations on cerebral measurements. Parameters [mean (SD)] remained stable during baseline. Pa(O(2)) oscillations [10.6 (8) kPa, phase(reference)], systemic arterial pressure (SAP) oscillations [20 (9) mm Hg, phase(Pa(O(2))-SAP) -33 (72)°], and Sp(O(2))oscillations [1.9 (1.7)%, phase(Pa(O(2))-Sp(O(2))) 264 (72)°] were detected during lung R/D at 1.0. Pa(O(2)) oscillations decreased [2.7 (3.5) kPa, P=0.0008] and Sp(O(2)) oscillations increased [6.8 (3.9)%, P=0.0014] at F(I(O(2))) 0.3. In the brain, synchronized Pbr(O(2)) oscillations [0.6 (0.4) kPa, phase(Pa(O(2))-Pbr(O(2))) 90 (39)°], Sbr(O(2)) oscillations [4.1 (1.5)%, phase(Pa(O(2))-Sbr(O(2))) 182 (54)°], and CBF oscillations [198 (176) AU, phase(Pa(O(2))-CBF) 201 (63)°] occurred that were dependent on Pa(O(2)) and SAP oscillations. Pa(O(2)) oscillations caused by cyclic R/D are transmitted to the cerebral microcirculation in a porcine model of ALI. These cyclic oxygen alterations could play a role in the crosstalk of acute lung and brain injury.

  4. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  5. Method of forming calthrate ice

    DOEpatents

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  6. Method of forming clathrate ice

    DOEpatents

    Hino, Toshiyuki; Gorski, Anthony J.

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  7. Far-infrared-induced magnetoresistance oscillations in GaAs/AlxGa1-xAs -based two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Wirthmann, André; McCombe, Bruce D.; Heitmann, Detlef; Holland, Steffen; Friedland, Klaus-Jürgen; Hu, Can-Ming

    2007-11-01

    We report on photoresistance and magnetotransport measurements in a moderate mobility two-dimensional electron system subject to far-infrared (terahertz) radiation. The photoresistance shows radiation induced 1/B -periodic oscillations, which we identify as the terahertz analog of microwave-induced resistance oscillations (MIROs). The MIRO-analog oscillations show a sign reversal in the low-field, high current regime. We simultaneously observe magnetoplasmons and MIRO-analog oscillations with no apparent coupling between them. Using a meandering Hall-bar geometry allows us to greatly enhance sensitivity and detect these oscillations even at elevated temperatures and moderate mobilities.

  8. Emergence of self-sustained oscillations in excitable Erdös-Rényi random networks.

    PubMed

    Qian, Yu

    2014-09-01

    We investigate the emergence of self-sustained oscillations in excitable Erdös-Rényi random networks (EERRNs). Interestingly, periodical self-sustained oscillations have been found at a moderate connection probability P. For smaller or larger P, the system evolves into a homogeneous rest state with distinct mechanisms. One-dimensional Winfree loops are discovered as the sources to maintain the oscillations. Moreover, by analyzing these oscillation sources, we propose two criteria to explain the spatiotemporal dynamics obtained in EERRNs. Finally, the two critical connection probabilities for which self-sustained oscillations can emerge are approximately predicted based on these two criteria.

  9. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    PubMed

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  10. Nonlinear oscillations of gas in an open tube near the resonance frequency in the shock-free mode

    NASA Astrophysics Data System (ADS)

    Tkachenko, L. A.; Sergienko, M. V.

    2014-11-01

    The forced oscillations of gas in an open tube, excited by harmonical oscillations of piston in the shock-free mode were investigated near the first first eigenfrequencies. An expression for the pressure oscillations of gas was obtained for the tube with unrounded end without flange. The amplitude impact of piston displacement on the oscillations of pressure and velocity of the secondary flow of gas was investigated. The comparison of theoretical calculations with experimental data was executed. The effect of secondary flow on the particle drift along the tube axis with acoustic oscillations of gas was shown.

  11. Photospheric Origin of Three-minute Oscillations in a Sunspot

    NASA Astrophysics Data System (ADS)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk; Cho, Kyungsuk; Yurchyshyn, Vasyl

    2017-02-01

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni I λ5436, Fe I λ5435, and Na I D2 λ5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  12. Analysis of precision in chemical oscillators: implications for circadian clocks

    NASA Astrophysics Data System (ADS)

    d'Eysmond, Thomas; De Simone, Alessandro; Naef, Felix

    2013-10-01

    Biochemical reaction networks often exhibit spontaneous self-sustained oscillations. An example is the circadian oscillator that lies at the heart of daily rhythms in behavior and physiology in most organisms including humans. While the period of these oscillators evolved so that it resonates with the 24 h daily environmental cycles, the precision of the oscillator (quantified via the Q factor) is another relevant property of these cell-autonomous oscillators. Since this quantity can be measured in individual cells, it is of interest to better understand how this property behaves across mathematical models of these oscillators. Current theoretical schemes for computing the Q factors show limitations for both high-dimensional models and in the vicinity of Hopf bifurcations. Here, we derive low-noise approximations that lead to numerically stable schemes also in high-dimensional models. In addition, we generalize normal form reductions that are appropriate near Hopf bifurcations. Applying our approximations to two models of circadian clocks, we show that while the low-noise regime is faithfully recapitulated, increasing the level of noise leads to species-dependent precision. We emphasize that subcomponents of the oscillator gradually decouple from the core oscillator as noise increases, which allows us to identify the subnetworks responsible for robust rhythms.

  13. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    PubMed

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.

  14. Neuromorphic computing with nanoscale spintronic oscillators

    PubMed Central

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, M. D.; Grollier, Julie

    2017-01-01

    Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information1. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of nanoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals2–5, and several candidates such as memristive6 or superconducting7 oscillators, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator8,9 can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators. PMID:28748930

  15. The extratropical 40-day oscillation in the UCLA general circulation model. Part 1: Atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Dickey, J. O.

    1994-01-01

    Variations in atmospheric angular momentum (AAM) are examined in a three-year simulation of the large-scale atmosphere with perpetual January forcing. The simulation is performed with a version of the University of California at Los Angeles (UCLA) general circulation model that contains no tropical Madden-Julian Oscillation (MJO). In addition, the results of three shorter experiments with no topography are analyzed. The three-year standard topography run contains no significant intraseasonal AAM periodicity in the tropics, consistent with the lack of the MJO, but produces a robust, 42-day AAM oscillation in the Northern Hemisphere (NH) extratropics. The model tropics undergoes a barotropic, zonally symmetric oscillation, driven by an exchange of mass with the NH extratropics. No intraseasonal periodicity is found in the average tropical latent heating field, indicating that the model oscillation is dynamically rather than thermodynamically driven. The no-mountain runs fail to produce an intraseasonal AAM oscillation, consistent with a topographic origin for the NH extratropical oscillation in the standard model. The spatial patterns of the oscillation in the 500-mb height field, and the relationship of the extratropical oscillation to intraseasonal variations in the tropics, will be discussed in Part 2 of this study.

  16. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing

    PubMed Central

    Frederick, Donald E.; Brown, Austin; Brim, Elizabeth; Mehta, Nisarg; Vujovic, Mark

    2016-01-01

    Olfactory system beta (15–35 Hz) and gamma (40–110 Hz) oscillations of the local field potential in mammals have both been linked to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with gamma dominating the early odor sampling period (2–4 sniffs) and beta dominating later. The relative power and coherence of both oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across tasks. SIGNIFICANCE STATEMENT Olfactory system gamma (40–110 Hz) and beta (15–35 Hz) oscillations of the local field potential indicate different neural firing statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning, showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every ∼250 ms. Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli. PMID:27445151

  17. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.

    PubMed

    Frederick, Donald E; Brown, Austin; Brim, Elizabeth; Mehta, Nisarg; Vujovic, Mark; Kay, Leslie M

    2016-07-20

    Olfactory system beta (15-35 Hz) and gamma (40-110 Hz) oscillations of the local field potential in mammals have both been linked to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with gamma dominating the early odor sampling period (2-4 sniffs) and beta dominating later. The relative power and coherence of both oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across tasks. Olfactory system gamma (40-110 Hz) and beta (15-35 Hz) oscillations of the local field potential indicate different neural firing statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning, showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every ∼250 ms. Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli. Copyright © 2016 the authors 0270-6474/16/367750-18$15.00/0.

  18. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its neighbors. Using this array, we have been able to verify the theoretical predictions concerning the effect of this phase on both the locking range and ensemble frequency of the array. However, the scan range achieved fell somewhat short of the theoretical value because of the amplitude variation of the oscillator outputs with tuning.

  19. Integrating the FEL on an All-Electric Ship

    DTIC Science & Technology

    2007-06-01

    6 4. Optical Cavity ( Oscillator Configuration...36 Figure 12. Optical energy in an oscillator FEL with an electron beam tilt. ......................37 Figure 13. Optical energy in an oscillator ...38 Figure 15. Optical energy in an oscillator FEL with a mirror tilt. ....................................39 Figure 16. Diagram of a

  20. Linear and nonlinear aspects of the tropical 30-60 day oscillation: A modeling study

    NASA Technical Reports Server (NTRS)

    Stevens, Duane E.; Stephens, Graeme L.

    1991-01-01

    The scientific problem focused on study of the tropical 30-60 day oscillation and explanation for this phenomenon is discussed. The following subject areas are covered: the scientific problem (the importance of low frequency oscillations; suggested mechanisms for developing the tropical 30-60 day oscillation); proposed research and its objective; basic approach to research; and results (satellite data analysis and retrieval development; thermodynamic model of the oscillation; the 5-level GCM).

  1. Nonuniform gyrotropic oscillation of skyrmion in a nanodisk

    NASA Astrophysics Data System (ADS)

    Xuan, Shengjie; Liu, Yan

    2018-04-01

    It was predicted that magnetic skyrmions have potential application in the spin nano-oscillators. The oscillation frequency is a key parameter. In this paper, we study the skyrmion relaxation in a FeGe nanodisk and find that the oscillation frequency depends on the skyrmion position. The relaxation process is associated with the variation of skyrmion diameter. By analyzing the system energy, we believe that the nonuniform gyrotropic oscillation frequency is due to the change of the skyrmion diameter.

  2. The dynamics of a stabilised Wien bridge oscillator

    NASA Astrophysics Data System (ADS)

    Lerner, L.

    2016-11-01

    We present for the first time analytic solutions for the nonlinear dynamics of a Wien bridge oscillator stabilised by three common methods: an incandescent lamp, signal diodes, and the field effect transistor. The results can be used to optimise oscillator design, and agree well with measurements. The effect of operational amplifier marginal nonlinearity on oscillator performance at high frequencies is clarified. The oscillator circuits and their analysis can be used to demonstrate nonlinear dynamics in the undergraduate laboratory.

  3. Chemical oscillator as a generalized Rayleigh oscillator.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2013-10-28

    We derive the conditions under which a set of arbitrary two dimensional autonomous kinetic equations can be reduced to the form of a generalized Rayleigh oscillator which admits of limit cycle solution. This is based on a linear transformation of field variables which can be found by inspection of the kinetic equations. We illustrate the scheme with the help of several chemical and bio-chemical oscillator models to show how they can be cast as a generalized Rayleigh oscillator.

  4. Influence of the oscillation frequency of different side-to-side toothbrushes on noncontact biofilm removal.

    PubMed

    Schmidt, Julia C; Astasov-Frauenhoffer, Monika; Waltimo, Tuomas; Weiger, Roland; Walter, Clemens

    2018-01-22

    The objective of this study was to investigate the influence of different oscillation frequencies of three powered toothbrushes with side-to-side action for noncontact biofilm removal in an artificial interdental space model. A three-species biofilm (Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis) was formed in vitro on protein-coated titanium disks using a flow chamber system combined with a static biofilm growth model. The oscillation frequencies of three commercial side-to-side toothbrushes were evaluated by means of a dose response. The frequency was decreased in steps (100, 85, 70, 55, and 40%). Subsequently, the biofilm-coated substrates were exposed to the side-to-side toothbrushes. The biofilm volumes were measured using volumetric analyses (Imaris 8.1.2) with confocal laser scanning microscope images (Zeiss LSM700). Compared to maximum oscillation frequency (100%), lower oscillation frequencies (up to 40%) resulted in reduced median percentages of biofilm reduction (median biofilm reduction up to 53% for maximum oscillation frequency, and up to 13% for 40% oscillation frequency) (p ≥ 0.03). In addition, decreasing the oscillation frequencies of the side-to-side toothbrushes showed an enhanced variety in the results of repeated experiments. The oscillation frequency of the tested side-to-side toothbrushes affected the biofilm reduction in an interdental space model. Within a toothbrush, higher oscillation frequencies may lead to beneficial effects on interdental biofilm removal by noncontact brushing.

  5. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  6. Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.

    PubMed

    Robinson, Jennifer Claire; Chapman, C Andrew; Courtemanche, Richard

    2017-08-01

    Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.

  7. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study.

    PubMed

    Liang, Mingli; Starrett, Michael J; Ekstrom, Arne D

    2018-04-22

    Numerous reports have demonstrated low-frequency oscillations during navigation using invasive recordings in the hippocampus of both rats and human patients. Given evidence, in some cases, of low-frequency synchronization between midline cortex and hippocampus, it is also possible that low-frequency movement-related oscillations manifest in healthy human neocortex. However, this possibility remains largely unexplored, in part due to the difficulties of coupling free ambulation and effective scalp EEG recordings. In the current study, participants freely ambulated on an omnidirectional treadmill and explored an immersive virtual reality city rendered on a head-mounted display while undergoing simultaneous wireless scalp EEG recordings. We found that frontal-midline (FM) delta-theta (2-7.21 Hz) oscillations increased during movement compared to standing still periods, consistent with a role in navigation. In contrast, posterior alpha (8.32-12.76 Hz) oscillations were suppressed in the presence of visual input, independent of movement. Our findings suggest that FM delta-theta and posterior alpha oscillations arise at independent frequencies, under complementary behavioral conditions, and, at least for FM delta-theta oscillations, at independent recordings sites. Together, our findings support a double dissociation between movement-related FM delta-theta and resting-related posterior alpha oscillations. Our study thus provides novel evidence that FM delta-theta oscillations arise, in part, from real-world ambulation, and are functionally independent from posterior alpha oscillations. © 2018 Society for Psychophysiological Research.

  8. Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model.

    PubMed

    Demirkıran, Gökhan; Kalaycı Demir, Güleser; Güzeliş, Cüneyt

    2018-02-01

    This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.

  9. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  10. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

    PubMed Central

    2011-01-01

    Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240

  11. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.

  12. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  13. Umbral oscillations and penumbral waves in H alpha. [in sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Tang, F.

    1975-01-01

    Examples are presented of umbral oscillations observed on Big Bear H-alpha filtergram movies, and the relation between umbral oscillations and running penumbral waves occurring in the same sunspot is investigated. Umbral oscillations near the center of the umbra are probably physically independent of the penumbral waves because the period of these umbral oscillations (150 sec) is shorter than the penumbral wave period (270 sec), but not a harmonic. Dark puffs emerge from the edge of the umbra and move outward across the penumbra, and have the same period as the running penumbral waves. These dark puffs are interpreted to be the extension of chromospheric umbral oscillations at the edge of the umbra. It is suggested that the dark puffs and the running penumbral waves have a common source: photospheric oscillations just inside the umbra.

  14. Surface oscillation and jetting from surface attached acoustic driven bubbles.

    PubMed

    Prabowo, Firdaus; Ohl, Claus-Dieter

    2011-01-01

    We report on an experimental study of the onset of surface oscillation and jetting of bubbles attached to a rigid surface. The driving frequency is 16.27 kHz and the radius of the spherical capped bubble is 160 ± 5 μm. The acoustic amplitude is increased from 0 to 0.085 bar while the oscillation is recorded with a high-speed camera at 180,000 frames/s over 8100 periods of oscillations. The radial and surface modes are analyzed from a Fourier decomposition. With increasing pressure amplitude we find three regimes: pure radial oscillation, development of surface oscillations, and a chaotic surface oscillation regime. These regimes appear abrupt and are repeatable. In the chaotic regime, fast liquid jetting towards the rigid surface is observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Transverse mode instability of fiber oscillators in comparison with fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hejaz, Kamran; Shayganmanesh, Mahdi; Azizi, Saeed; Abedinajafi, Ali; Roohforouz, Ali; Rezaei-Nasirabad, Reza; Vatani, Vahid

    2018-05-01

    Transverse mode instability (TMI) is experimentally investigated in a fiber oscillator and a fiber amplifier. For a reasonable comparison of TMI in these two configurations, the same optical components and design parameters are applied to both. Our experimental results show that the TMI power threshold in a fiber oscillator is lower than in a corresponding fiber amplifier. By using simulation software, a fiber oscillator and an amplifier are designed with similar characteristics, to provide identical conditions for all effective parameters on TMI in both of them. Since the signal propagation in fiber oscillators is different from that of single-pass fiber amplifiers, and also since both forward and backward propagating signals in fiber oscillators can generate thermo-optic index gratings, the observed lower TMI threshold in the fiber oscillator is due to its different interaction of light with index gratings.

  16. Solution to the indexing problem of frequency domain simulation experiments

    NASA Technical Reports Server (NTRS)

    Mitra, Mousumi; Park, Stephen K.

    1991-01-01

    A frequency domain simulation experiment is one in which selected system parameters are oscillated sinusoidally to induce oscillations in one or more system statistics of interest. A spectral (Fourier) analysis of these induced oscillations is then performed. To perform this spectral analysis, all oscillation frequencies must be referenced to a common, independent variable - an oscillation index. In a discrete-event simulation, the global simulation clock is the most natural choice for the oscillation index. However, past efforts to reference all frequencies to the simulation clock generally yielded unsatisfactory results. The reason for these unsatisfactory results is explained in this paper and a new methodology which uses the simulation clock as the oscillation index is presented. Techniques for implementing this new methodology are demonstrated by performing a frequency domain simulation experiment for a network of queues.

  17. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.

    PubMed

    Zou, Wei; Sebek, Michael; Kiss, István Z; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  18. Microfluidic oscillators with widely tunable periods

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi

    2013-01-01

    We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between 0.3 s to 4.1 h by tuning an external membrane capacitor. This capacitor allows multiple adjustable periods at a given input flow-rate, thus providing great flexibility in device operation. Also, we show that a sufficiently large external capacitance, relative to the internal capacitance of the microfluidic valve itself, is a critical requirement for oscillation. These widely tunable microfluidic oscillators are envisioned to be broadly useful for the study of biological rhythms, as on-chip timing sources for microfluidic logic circuits, and other applications that require variation in timed flow switching. PMID:23429765

  19. Brain Oscillations, Hypnosis, and Hypnotizability.

    PubMed

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  20. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks.

    PubMed

    Bathellier, Brice; Carleton, Alan; Gerstner, Wulfram

    2008-12-01

    Fast oscillations and in particular gamma-band oscillation (20-80 Hz) are commonly observed during brain function and are at the center of several neural processing theories. In many cases, mathematical analysis of fast oscillations in neural networks has been focused on the transition between irregular and oscillatory firing viewed as an instability of the asynchronous activity. But in fact, brain slice experiments as well as detailed simulations of biological neural networks have produced a large corpus of results concerning the properties of fully developed oscillations that are far from this transition point. We propose here a mathematical approach to deal with nonlinear oscillations in a network of heterogeneous or noisy integrate-and-fire neurons connected by strong inhibition. This approach involves limited mathematical complexity and gives a good sense of the oscillation mechanism, making it an interesting tool to understand fast rhythmic activity in simulated or biological neural networks. A surprising result of our approach is that under some conditions, a change of the strength of inhibition only weakly influences the period of the oscillation. This is in contrast to standard theoretical and experimental models of interneuron network gamma oscillations (ING), where frequency tightly depends on inhibition strength, but it is similar to observations made in some in vitro preparations in the hippocampus and the olfactory bulb and in some detailed network models. This result is explained by the phenomenon of suppression that is known to occur in strongly coupled oscillating inhibitory networks but had not yet been related to the behavior of oscillation frequency.

  1. A fast, robust and tunable synthetic gene oscillator.

    PubMed

    Stricker, Jesse; Cookson, Scott; Bennett, Matthew R; Mather, William H; Tsimring, Lev S; Hasty, Jeff

    2008-11-27

    One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust and persistent, with tunable oscillatory periods as fast as 13 min. The oscillator was designed using a previously modelled network architecture comprising linked positive and negative feedback loops. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature and the media source. Computational modelling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.

  2. A novel optogenetically tunable frequency modulating oscillator

    PubMed Central

    2018-01-01

    Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour. PMID:29389936

  3. A novel optogenetically tunable frequency modulating oscillator.

    PubMed

    Mahajan, Tarun; Rai, Kshitij

    2018-01-01

    Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  4. A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neurospora.

    PubMed

    Shi, Mi; Larrondo, Luis F; Loros, Jennifer J; Dunlap, Jay C

    2007-12-11

    In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress could be masking output from the circadian system, although a caveat was that the CDO sometimes requires several days to become consolidated. To circumvent this and observe both oscillators simultaneously, we used an assay using a codon-optimized luciferase to follow the circadian oscillator. Under conditions where the long-period, uncompensated, CDO-driven developmental rhythm was expressed for weeks in growth tubes, the luciferase rhythm in the same cultures continued in a typical compensated manner with a circadian period length dependent on the allelic state of frq. Periodograms revealed no influence of the CDO on the circadian oscillator. Instead, the CDO appears as a cryptic metabolic oscillator that can, under appropriate conditions, assume control of growth and development, thereby masking output from the circadian system. frq-driven luciferase as a reporter of the circadian oscillator may in this way provide a means for assessing prospective role(s) of metabolic and/or ancillary oscillators within cellular circadian systems.

  5. Hints for cyclical recruitment of atelectasis during ongoing mechanical ventilation in lavage and oleic acid lung injury detected by SpO₂ oscillations and electrical impedance tomography.

    PubMed

    Bodenstein, Marc; Boehme, Stefan; Wang, Hemei; Duenges, Bastian; Markstaller, Klaus

    2014-11-01

    Detection of cyclical recruitment of atelectasis after induction of lavage (LAV) or oleic acid injury (OAI) in mechanically ventilated pigs. Primary hypothesis is that oxygen oscillations within the respiratory cycle can be detected by SpO₂ recordings (direct hint). SpO₂ oscillations reflect shunt oscillations that can only be explained by cyclical recruitment of atelectasis. Secondary hypothesis is that electrical impedance tomography (EIT) depicts specific regional changes of lung aeration and of pulmonary mechanical properties (indirect hint). Three groups (each n = 7) of mechanically ventilated pigs were investigated applying above mentioned methods before and repeatedly after induction of lung injury: (1) sham treated animals (SHAM), (2) LAV, and (3) OAI. Early oxygen oscillations occurred in the LAV group (mean calculated amplitude: 73.8 mmHg reflecting shunt oscillation of 11.2% in mean). In the OAI group oxygen oscillations occurred hours after induction of lung injury (mean calculated amplitude: 57.1 mmHg reflecting shunt oscillations of 8.4% in mean). The SHAM group had no relevant oxygen oscillations (<30 mmHg, shunt oscillations < 1.5%). Synchronously to oxygen oscillations, EIT depicted (1) a decrease of ventilation in dorsal areas, (2) an increase in ventral areas, (3) a decrease of especially dependent expiratory impedance, 3) an increase in late inspiratory flow especially in the dependant areas, (4) an increase in the speed of peak expiratory flow (PEF), and (5) a decrease of dorsal late expiratory flow. SpO2 and EIT recordings detect events that are interpreted as cyclical recruitment of atelectasis.

  6. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuandeng; Liu, Ying D.; Chen, P. F.

    2014-11-10

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using Hα Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments showsmore » weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large-amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are about 26.8 km s{sup –1} and 80.3 minutes, respectively. We propose that the orientation of a filament or prominence relative to the normal vector of the incoming shock should be an important factor for launching transverse or longitudinal filament oscillations. In addition, the restoring forces of the transverse prominence are most likely due to the coupling of gravity and magnetic tension of the supporting magnetic field, while that for the longitudinal filament oscillation is probably the resultant force of gravity and magnetic pressure.« less

  7. Propulsion of a flapping and oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Garrick, I E

    1937-01-01

    Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.

  8. Self-protecting transistor oscillator for treating animal tissues

    DOEpatents

    Doss, James D.

    1980-01-01

    A transistor oscillator circuit wherein the load current applied to animal tissue treatment electrodes is fed back to the transistor. Removal of load is sensed to automatically remove feedback and stop oscillations. A thermistor on one treatment electrode senses temperature, and by means of a control circuit controls oscillator transistor current.

  9. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.

    PubMed

    Stothard, David J M; Dunn, Malcolm H

    2010-01-18

    We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

  10. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    NASA Astrophysics Data System (ADS)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  11. Thermal acoustic oscillations, volume 2. [cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Sims, W. H.; Fan, C.

    1975-01-01

    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

  12. Development of a sub-miniature rubidium oscillator for SEEKTALK application

    NASA Technical Reports Server (NTRS)

    Fruehauf, H.; Weidemann, W.; Jechart, E.

    1981-01-01

    Warm-up and size challenges to oscillator construction are presented as well as the problems involved in these tasks. The performance of M-100 military rubidium oscillator is compared to that of a subminiture rubididum oscillator (M-1000). Methods of achieving 1.5 minute warm-up are discussed as well as improvements in performance under adverse environmental conditions, including temperature, vibration, and magnetics. An attempt is made to construct an oscillator error budget under a set of arbitrary mission conditions.

  13. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  14. Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment

    NASA Astrophysics Data System (ADS)

    Srivastava, Rahul; Ternes, Christoph A.; Tórtola, Mariam; Valle, José W. F.

    2018-03-01

    Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters θ23 and δCP. We present the expected improved sensitivity on these parameters for different assumptions.

  15. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2010-03-01

    We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.

  16. Bifurcation to large period oscillations in physical systems controlled by delay

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Walther, Hans-Otto

    2005-12-01

    An unusual bifurcation to time-periodic oscillations of a class of delay differential equations is investigated. As we approach the bifurcation point, both the amplitude and the frequency of the oscillations go to zero. The class of delay differential equations is a nonlinear extension of a nonevasive control method and is motivated by a recent study of the foreign exchange rate oscillations. By using asymptotic methods, we determine the bifurcation scaling laws for the amplitude and the period of the oscillations.

  17. Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien

    2011-03-01

    We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.

  18. Oscillating Permanent Magnets.

    ERIC Educational Resources Information Center

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  19. Oscillator circuit for use with high loss quartz resonator sensors

    DOEpatents

    Wessendorf, Otto

    1995-01-01

    The disclosure is directed to a Lever oscillator for use in high resistance resonator applications, especially for use with quartz resonator sensors. The oscillator is designed to operate over a wide dynamic range of resonator resistance due to damping of the resonator in mediums such as liquids. An oscillator design is presented that allows both frequency and loss (R.sub.m) of the resonator to be determined over a wide dynamic range of resonator loss. The Lever oscillator uses negative feedback in a differential amplifier configuration to actively and variably divide (or leverage) the resonator impedance such that the oscillator can maintain the phase and gain of the loop over a wide range of resonator resistance.

  20. Linear transformation and oscillation criteria for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaowen

    2007-08-01

    Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.

  1. Local complexity predicts global synchronization of hierarchically networked oscillators

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Park, Dong-Ho; Jo, Junghyo

    2017-07-01

    We study the global synchronization of hierarchically-organized Stuart-Landau oscillators, where each subsystem consists of three oscillators with activity-dependent couplings. We considered all possible coupling signs between the three oscillators, and found that they can generate different numbers of phase attractors depending on the network motif. Here, the subsystems are coupled through mean activities of total oscillators. Under weak inter-subsystem couplings, we demonstrate that the synchronization between subsystems is highly correlated with the number of attractors in uncoupled subsystems. Among the network motifs, perfect anti-symmetric ones are unique to generate both single and multiple attractors depending on the activities of oscillators. The flexible local complexity can make global synchronization controllable.

  2. Chemical sensor with oscillating cantilevered probe

    DOEpatents

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  3. Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation

    NASA Astrophysics Data System (ADS)

    Zavrazhina, T. V.

    2007-10-01

    A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ℝ2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.

  4. The Aharonov-Bohm oscillation in the BiSbTe3 topological insulator macroflake

    NASA Astrophysics Data System (ADS)

    Huang, Shiu-Ming; Wang, Pin-Chun; Lin, Chien; You, Sheng-Yu; Lin, Wei-Cheng; Lin, Lin-Jie; Yan, You-Jhih; Yu, Shih-Hsun; Chou, M. C.

    2018-05-01

    We report the Aharonov-Bohm (AB) oscillation in the BiSbTe3 topological insulator macroflake. The magnetoresistance reveals periodic oscillations. The oscillation index number reveals the Berry phase is π which supports the oscillation originates from the surface state. The AB oscillation frequency increases as temperature decreases, and the corresponding phase coherence length is consistent with that extracted from the weak antilocalization. The phase coherence length is proportional to T-1/2. The magnetoresistance ratio reaches 700% (1000%) at 9 T (14 T) and 2 K, and it is proportional to the carrier mobility. The magnetoresistance ratio is larger than all reported values in (Bi, Sb)2(Te, Se)3 topological insulators.

  5. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    PubMed

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  6. Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification

    NASA Astrophysics Data System (ADS)

    Khurgin, J. B.; Pruessner, M. W.; Stievater, T. H.; Rabinovich, W. S.

    2012-10-01

    We develop a theory describing the operation of an opto-mechanical oscillator as a phonon laser using a set of coupled equations that is analogous to the standard set of laser rate equations. We show that laser-like parameters that characterize gain, stored energy, threshold, efficiency, oscillation frequency linewidth, and saturation power can be introduced for an opto-mechanical oscillator driven by photo-thermal or radiation pressure forces. We then apply the theoretical model to the experimental results for photo-thermally driven oscillations in a Si waveguide opto-mechanical resonator and show good agreement between the theory and experiments. We also consider the microscopic mechanism that transforms the energy of incoherent thermal phonons into coherent oscillations of a single phonon mode and show remarkable parallels with the three-wave parametric interactions in optics and also with opto-electronic oscillators used in microwave photonics.

  7. MHD oscillations observed in the solar photosphere with the Michelson Doppler Imager

    NASA Astrophysics Data System (ADS)

    Norton, A.; Ulrich, R. K.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.

    Magnetohydrodynamic oscillations are observed in the solar photosphere with the Michelson Doppler Imager (MDI). Images of solar surface velocity and magnetic field strength with 4'' spatial resolution and a 60 second temporal resolution are analyzed. A two dimensional gaussian aperture with a FWHM of 10'' is applied to the data in regions of sunspot, plage and quiet sun and the resulting averaged signal is returned each minute. Significant power is observed in the magnetic field oscillations with periods of five minutes. The effect of misregistration between MDI's left circularly polarized (LCP) and right circularly polarized (RCP) images has been investigated and is found not to be the cause of the observed magnetic oscillations. It is assumed that the large amplitude acoustic waves with 5 minute periods are the driving mechanism behind the magnetic oscillations. The nature of the magnetohydrodynamic oscillations are characterized by their phase relations with simultaneously observed solar surface velocity oscillations.

  8. An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble

    PubMed Central

    Liu, Yuan; Yuan, Baohong

    2013-01-01

    As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677

  9. Interaction of neutrons with layered magnetic media in oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Nikitenko, Yu. V.; Ignatovich, V. K.; Radu, F.

    2011-06-01

    New experimental possibilities of investigating layered magnetic structures in oscillating magnetic fields are discussed. Spin-flip and nonspin-flip neutron reflection and transmission probabilities show a frequency dependency near the magnetic neutron resonance condition. This allows to increase the precision of the static magnetic depth profile measurements of the magnetized matter. Moreover, this opens new possibilities of measuring the induction of the oscillating field inside the matter and determining the magnetic susceptibility of the oscillating magnetic field. Refraction of neutrons as they pass through a magnetic prism in the presence of an oscillating magnetic field is also investigated. A non-polarized neutron beam splits into eight spatially separated neutron beams, whose intensity and polarization depend on the strength and frequency of the oscillating field. Also, it is shown that the oscillating magnetic permeability of an angstrom-thick layer can be measured with a neutron wave resonator.

  10. A Simplified Theory of Coupled Oscillator Array Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.; York, R. A.

    1997-01-01

    Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.

  11. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata; Ghosh, Debarati; Bandyopadhyay, Biswabibek; Kurths, Jürgen

    2018-04-01

    We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric zone of occurrence of rhythmogenesis and oscillation death as a consequence of the presence of local filtering in the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which establishes its robustness in the presence of parameter fluctuations and noise.

  12. Stability of two-mode internal resonance in a nonlinear oscillator

    NASA Astrophysics Data System (ADS)

    Zanette, Damián H.

    2018-05-01

    We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.

  13. VARIABLE TIME-INTERVAL GENERATOR

    DOEpatents

    Gross, J.E.

    1959-10-31

    This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

  14. Modeling nonlinearities in MEMS oscillators.

    PubMed

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  15. Damped transverse oscillations of interacting coronal loops

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Luna, Manuel

    2015-10-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.

  16. Generation of a tunable environment for electrical oscillator systems.

    PubMed

    León-Montiel, R de J; Svozilík, J; Torres, Juan P

    2014-07-01

    Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.

  17. Spin-oscillator model for the unzipping of biomolecules by mechanical force.

    PubMed

    Prados, A; Carpio, A; Bonilla, L L

    2012-08-01

    A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and a coupling constant proportional to the oscillator position. At a critical value F(c) of an applied external force F, the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase transition. When the external force is cycled at different rates, the extension given by the oscillator position exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and metastable oscillator rest position is proportional to F-F(c) as in an Arrhenius law.

  18. Ultrafast optical pulse convertor caused by oscillations of the energy level structure in the conjugated polymer poly(p-phenylenevinylene).

    PubMed

    Zhang, Yusong; Chen, Weikang; Lin, Zhe; Li, Sheng; George, Thomas F

    2017-08-21

    For a conjugated polymer irradiated by two optical pulses, the whole process of excitation, involving lattice oscillations, oscillations of the energy level structure, and evolution of the electron cloud, is investigated. Localization of the electron cloud appears in the first 100 fs of irradiation, which in turn induces vibrations of lattice of the polymer chain as well as oscillations of the band gap. These oscillations filter the absorption of the external optical field inversely and convert the original optical field to an ultrafast light field whose intensity varies with a certain period. Based on the mechanism, oscillations of the energy level structure, induced by the external excitation, can be designed as an ultrafast response optical convertor that is able to change the external optical pulse into a new effective light field with a certain oscillation period. This helps provide new insight into designing nanostructures for polymeric optoelectronics.

  19. Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Wei, Xueyong; Xu, Liu; Jiang, Zhuangde; Huan, Ronghua

    2018-01-01

    In this Letter, synchronization of micromechanical oscillators with a frequency ratio of 3:1 is reported. Two electrically coupled piezoresistive micromechanical oscillators are built for the study, and their oscillation frequencies are tuned via the Joule heating effect to find out the synchronization region. Experimental results show that the larger coupling strength or bias driving voltage is applied and a wider synchronization region is obtained. Interestingly, however, the oscillator's frequency tunability is dramatically reduced from -809.1 Hz/V to -23.1 Hz/V when synchronization is reached. A nearly 10-fold improvement of frequency stability at 1 s is observed from one of the synchronized oscillators, showing a comparable performance of the other. The stable high order synchronization of micromechanical oscillators is helpful to design high performance resonant sensors with a better frequency resolution and a larger scale factor.

  20. Mutual 3:1 subharmonic synchronization in a micromachined silicon disk resonator

    NASA Astrophysics Data System (ADS)

    Taheri-Tehrani, Parsa; Guerrieri, Andrea; Defoort, Martial; Frangi, Attilio; Horsley, David A.

    2017-10-01

    We demonstrate synchronization between two intrinsically coupled oscillators that are created from two distinct vibration modes of a single micromachined disk resonator. The modes have a 3:1 subharmonic frequency relationship and cubic, non-dissipative electromechanical coupling between the modes enables their two frequencies to synchronize. Our experimental implementation allows the frequency of the lower frequency oscillator to be independently controlled from that of the higher frequency oscillator, enabling study of the synchronization dynamics. We find close quantitative agreement between the experimental behavior and an analytical coupled-oscillator model as a function of the energy in the two oscillators. We demonstrate that the synchronization range increases when the lower frequency oscillator is strongly driven and when the higher frequency oscillator is weakly driven. This result suggests that synchronization can be applied to the frequency-selective detection of weak signals and other mechanical signal processing functions.

  1. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  2. Brain Oscillations, Hypnosis, and Hypnotizability

    PubMed Central

    Jensen, Mark P.; Adachi, Tomonori; Hakimian, Shahin

    2014-01-01

    In this article, we summarize the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, and are usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. Here we propose that it is this role that may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis; specifically that theta oscillations may facilitate, and that changes in gamma activity observed with hypnosis may underlie, some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis, and for enhancing response to hypnotic treatments. PMID:25792761

  3. Excitation of Non-Axisymmetric g-MOde Oscillations by Corotation Resonance in Thin Relativistic Disks

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2002-02-01

    Various modes of oscillations are trapped in the inner region of geometrically thin relativistic disks. Among these oscillations, non-axisymmetric g-mode oscillations have been less studied compared with other modes of oscillations. The modes are, however, interesting since a corotation resonance appears in the trapped region. We mathematically examine whether the modes can be excited by the effects of the corotation resonance. This examination is made under an assumption that the inner and outer Lindblad radii are sufficiently separated in the opposite directions from the corotation radius. The results of analyses suggest that the waves are excited by the corotation resonance. The presence of the excitation suggests that the non-axisymmetric trapped g-mode oscillations are one of possible candidates for the quasi-periodic oscillations of a few hundred to kHz observed in some X-ray sources.

  4. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    PubMed

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

  5. Low-Frequency Oscillations and Control of the Motor Output

    PubMed Central

    Lodha, Neha; Christou, Evangelos A.

    2017-01-01

    A less precise force output impairs our ability to perform movements, learn new motor tasks, and use tools. Here we show that low-frequency oscillations in force are detrimental to force precision. We summarize the recent evidence that low-frequency oscillations in force output represent oscillations of the spinal motor neuron pool from the voluntary drive, and can be modulated by shifting power to higher frequencies. Further, force oscillations below 0.5 Hz impair force precision with increased voluntary drive, aging, and neurological disease. We argue that the low-frequency oscillations are (1) embedded in the descending drive as shown by the activation of multiple spinal motor neurons, (2) are altered with force intensity and brain pathology, and (3) can be modulated by visual feedback and motor training to enhance force precision. Thus, low-frequency oscillations in force provide insight into how the human brain regulates force precision. PMID:28261107

  6. Synchronization in oscillator networks with delayed coupling: a stability criterion.

    PubMed

    Earl, Matthew G; Strogatz, Steven H

    2003-03-01

    We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.

  7. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    ERIC Educational Resources Information Center

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  8. Trapping of Non-Axisymmetric g-Mode Oscillations in Thin Relativistic Disks and kHz QPOs

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2001-10-01

    We suggest that in the inner part of geometrically thin relativistic disks there are trapped non-axisymmetric g-mode oscillations which are excited by a corotation resonance. These oscillation modes would be the cause of quasi-periodic kHz oscillations observed in some low-mass X-ray sources.

  9. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    PubMed

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  10. Decaying and decayless transverse oscillations of a coronal loop

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Nakariakov, V. M.; Verwichte, E.

    2013-04-01

    Aims: We investigate kink oscillations of loops observed in an active region with the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) spacecraft before and after a flare. Methods: The oscillations were depicted and analysed with time-distance maps, extracted from the cuts taken parallel or perpendicular to the loop axis. Moving loops were followed in time with steadily moving slits. The period of oscillations and its time variation were determined by best-fitting harmonic functions. Results: We show that before and well after the occurrence of the flare, the loops experience low-amplitude decayless oscillations. The flare and the coronal mass ejection associated to it trigger large-amplitude oscillations that decay exponentially in time. The periods of the kink oscillations in both regimes (about 240 s) are similar. An empirical model of the phenomenon in terms of a damped linear oscillator excited by a continuous low-amplitude harmonic driver and by an impulsive high-amplitude driver is found to be consistent with the observations. Two movies are available in electronic form at http://www.aanda.org

  11. Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Reid, M. D.

    2013-11-01

    We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between a mesoscopic mechanical oscillator and an optical pulse. We find two types of paradox, defined by whether it is the oscillator or the pulse that shows the effect Schrödinger called “steering”. Only the oscillator paradox addresses the question of mesoscopic local reality for a massive system. In that case, EPR's “elements of reality” are defined for the oscillator, and it is these elements of reality that are falsified (if quantum mechanics is complete). For this sort of paradox, we show that a thermal barrier exists, meaning that a threshold level of pulse-oscillator interaction is required for a given thermal occupation n0 of the oscillator. We find there is no equivalent thermal barrier for the entanglement of the pulse with the oscillator or for the EPR paradox that addresses the local reality of the optical system. Finally, we examine the possibility of an EPR paradox between two entangled oscillators. Our work highlights the asymmetrical effect of thermal noise on quantum nonlocality.

  12. From small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HI.

    PubMed

    Isakova, Anna; Murdoch, Billy J; Novakovic, Katarina

    2018-04-04

    The oscillatory palladium-catalysed carbonylation reaction opens new horizons for applications in smart materials due to the versatility of its conditions and substrates, as well as the adjustability of amplitude and period of pH oscillations. A variety of viable substrates have been demonstrated, including polymeric alkyne-terminated substrates. However, so far, there have not been any reports of polymer-based palladium catalysts in oscillatory mode. In this paper, we demonstrate pH oscillations in various systems, using commercially available palladium acetate, a triphenylphosphine palladium acetate complex and a polymer-bound palladium catalyst. While palladium acetate was able to generate oscillations under the conditions already established in our previous research on PdI2-catalysed oscillators, the other two catalysts needed the addition of HI to induce oscillations. HI forced an initial pH drop, bringing pH into the range where oscillations generally occur. Addition of HI had a significant effect on all catalysts, modifying the amplitude and period of oscillations, oscillation mode, as well as starting material conversion and product distribution.

  13. Spectral variation during one quasi-periodic oscillation cycle in the black hole candidate H1743-322

    NASA Astrophysics Data System (ADS)

    Sarathi Pal, Partha; Debnath, Dipak; Chakrabarti, Sandip Kumar

    2016-07-01

    From the nature of energy dependence of the power density spectra, it is believed that the oscillation of the Compton cloud may be related to low frequency quasi-periodic oscillations (LFQPOs). In the context of two component advective flow (TCAF) solution, the centrifugal pressure supported boundary layer of a transonic flow acts as the Compton cloud. This region undergoes resonance oscillation when cooling time scale roughly agrees with infall time scale as matter crosses this region. By carefully separating photons emitted at different phases of a complete oscillation, we establish beyond reasonable doubt that such an oscillation is the cause of LFQPOs. We show that the degree of Comptonization and therefore the spectral properties of the flow oscillate systematically with the phase of LFQPOs. We analysis the properties of a 0.2Hz LFQPO exhibited by a black hole candidate H 1743-322 using the 3-80 keV data from NuSTAR satellite. This object was chosen because of availability of high quality data for a relatively low frequency oscillation, rendering easy phase-wise of separation of the light curve data.

  14. A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.

    2016-12-01

    An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.

  15. Autonomous oscillation in supramolecular assemblies: Role of free energy landscape and fluctuations

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Ortoleva, Peter J.

    2015-11-01

    Molecular dynamics studies demonstrated that a supramolecular assembly can express autonomous structural oscillations about equilibrium. It is demonstrated here that for nanosystems such oscillations can result from the interplay of free energy landscape and structural fluctuations. Furthermore, these oscillations have intermittent character, reflecting the conflict between a tendency to oscillate due to features in the free energy landscape, and the Second Law's repression of perpetual oscillation in an isothermal, equilibrium system. The demonstration system is a T = 1 icosahedral structure constituted of 12 protein pentamers in contact with a bath at fixed temperature. The oscillations are explained in terms of a Langevin model accounting for interactions among neighboring pentamers. The model is based on a postulated free energy landscape in the 24-dimensional space of variables describing the centrifugal and rotational motion of each pentamer. The model includes features such as basins of attraction and low free energy corridors. When the system is driven slightly out of equilibrium, the oscillations are transformed into a limit cycle, as expressed in terms of power spectrum narrowing.

  16. Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.

    PubMed

    Kim, Ilki; Mahler, Günter

    2010-01-01

    We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.

  17. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data

    PubMed Central

    Goto, Takahiro; Aoyagi, Toshio

    2018-01-01

    Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results. PMID:29337999

  18. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  19. A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1994-01-01

    Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor.

  20. An oscillating dynamic model of collective cells in a monolayer

    NASA Astrophysics Data System (ADS)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  1. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.

    PubMed

    Yoshino, S; Oohata, G; Mizoguchi, K

    2015-10-09

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  2. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  3. The effect of loss of immunity on noise-induced sustained oscillations in epidemics.

    PubMed

    Chaffee, J; Kuske, R

    2011-11-01

    The effect of loss of immunity on sustained population oscillations about an endemic equilibrium is studied via a multiple scales analysis of a SIRS model. The analysis captures the key elements supporting the nearly regular oscillations of the infected and susceptible populations, namely, the interaction of the deterministic and stochastic dynamics together with the separation of time scales of the damping and the period of these oscillations. The derivation of a nonlinear stochastic amplitude equation describing the envelope of the oscillations yields two criteria providing explicit parameter ranges where they can be observed. These conditions are similar to those found for other applications in the context of coherence resonance, in which noise drives nearly regular oscillations in a system that is quiescent without noise. In this context the criteria indicate how loss of immunity and other factors can lead to a significant increase in the parameter range for prevalence of the sustained oscillations, without any external driving forces. Comparison of the power spectral densities of the full model and the approximation confirms that the multiple scales analysis captures nonlinear features of the oscillations.

  4. Emergent Oscillations in Networks of Stochastic Spiking Neurons

    PubMed Central

    van Drongelen, Wim; Cowan, Jack D.

    2011-01-01

    Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework. PMID:21573105

  5. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys.

    PubMed Central

    Murthy, V N; Fetz, E E

    1992-01-01

    Synchronous 25- to 35-Hz oscillations were observed in local field potentials and unit activity in sensorimotor cortex of awake rhesus monkeys. The oscillatory episodes occurred often when the monkeys retrieved raisins from a Klüver board or from unseen locations using somatosensory feedback; they occurred less often during performance of repetitive wrist flexion and extension movements. The amplitude, duration, and frequency of oscillations were not directly related to movement parameters in behaviors studied so far. The occurrence of the oscillations was not consistently related to bursts of activity in forearm muscles, but cycle-triggered averages of electromyograms revealed synchronous modulation in flexor and extensor muscles. The phase of the oscillations changed continuously from the surface to the deeper layers of the cortex, reversing their polarity completely at depths exceeding 800 microns. The oscillations could become synchronized over a distance of 14 mm mediolaterally in precentral cortex. Coherent oscillations could also occur at pre- and postcentral sites separated by an estimated tangential intracortical distance of 20 mm. Activity of single units was commonly seen to burst in synchrony with field potential oscillations. These findings suggest that such oscillations may facilitate interactions between cells during exploratory and manipulative movements, requiring attention to sensorimotor integration. Images PMID:1608977

  6. Oscillation-Induced Signal Transmission and Gating in Neural Circuits

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-01-01

    Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for information processing by selectively gating and routing of signals. Our results are of particular interest for the interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay. PMID:25503492

  7. The Role of Perceived Speed in Vection: Does Perceived Speed Modulate the Jitter and Oscillation Advantages?

    PubMed Central

    Apthorp, Deborah; Palmisano, Stephen

    2014-01-01

    Illusory self-motion (‘vection’) in depth is strongly enhanced when horizontal/vertical simulated viewpoint oscillation is added to optic flow inducing displays; a similar effect is found for simulated viewpoint jitter. The underlying cause of these oscillation and jitter advantages for vection is still unknown. Here we investigate the possibility that perceived speed of motion in depth (MID) plays a role. First, in a 2AFC procedure, we obtained MID speed PSEs for briefly presented (vertically oscillating and smooth) radial flow displays. Then we examined the strength, duration and onset latency of vection induced by oscillating and smooth radial flow displays matched either for simulated or perceived MID speed. The oscillation advantage was eliminated when displays were matched for perceived MID speed. However, when we tested the jitter advantage in the same manner, jittering displays were found to produce greater vection in depth than speed-matched controls. In summary, jitter and oscillation advantages were the same across experiments, but slower MID speed was required to match jittering than oscillating stimuli. Thus, to the extent that vection is driven by perceived speed of MID, this effect is greater for oscillating than for jittering stimuli, which suggests that the two effects may arise from separate mechanisms. PMID:24651861

  8. Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting

    PubMed Central

    Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M.; Choi, Yang-Kyu

    2015-01-01

    A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running. PMID:26553524

  9. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2017-02-01

    We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.

  10. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  11. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    PubMed

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Carbachol-induced network oscillations in an in vitro limbic system brain slice.

    PubMed

    Lévesque, Maxime; Cataldi, Mauro; Chen, Li-Yuan; Hamidi, Shabnam; Avoli, Massimo

    2017-04-21

    We employed simultaneous field potential recordings from CA3, subiculum and entorhinal cortex in an in vitro brain slice preparation to understand the involvement of these limbic areas in the generation of the field potential oscillations that are induced by bath application of the muscarinic receptor agonist carbachol. Regularly spaced oscillations that mainly presented at theta frequency range (5-12Hz) occurred synchronously in all three structures in the presence of carbachol. These oscillations, which disappeared when slices were perfused with pirenzepine or with glutamatergic receptor antagonists, were categorized as short (<4s) and long (>4s) with short events oscillating at higher frequencies than long events. Field oscillations were highly synchronized between regions and latency analysis revealed that they often initiated in the entorhinal cortex later than in the other two structures. Blocking GABA A receptors modified the activity patterns of both short and long oscillations and decreased their coherence in the theta frequency range. Finally, blocking KCC2 activity disclosed a pattern of recurrent short oscillations. Our results suggest that in the presence of carbachol both subiculum and CA3 most often drive theta generators in the entorhinal cortex and that these oscillations are influenced but not abolished by altering GABA A receptor signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Stomatal oscillations in olive trees: analysis and methodological implications.

    PubMed

    López-Bernal, Alvaro; García-Tejera, Omar; Testi, Luca; Orgaz, Francisco; Villalobos, Francisco J

    2018-04-01

    Stomatal oscillations have long been disregarded in the literature despite the fact that the phenomenon has been described for a variety of plant species. This study aims to characterize the occurrence of oscillations in olive trees (Olea europaea L.) under different growing conditions and its methodological implications. Three experiments with young potted olives and one with large field-grown trees were performed. Sap flow measurements were always used to monitor the occurrence of oscillations, with additional determinations of trunk diameter variations and leaf-level stomatal conductance, photosynthesis and water potential also conducted in some cases. Strong oscillations with periods of 30-60 min were generally observed for young trees, while large field trees rarely showed significant oscillations. Severe water stress led to the disappearance of oscillations, but moderate water deficits occasionally promoted them. Simultaneous oscillations were also found for leaf stomatal conductance, leaf photosynthesis and trunk diameter, with the former presenting the highest amplitudes. The strong oscillations found in young potted olive trees preclude the use of infrequent measurements of stomatal conductance and related variables to characterize differences between trees of different cultivars or subjected to different experimental treatments. Under these circumstances, our results suggest that reliable estimates could be obtained using measurement intervals below 15 min.

  14. Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting.

    PubMed

    Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M; Choi, Yang-Kyu

    2015-11-10

    A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running.

  15. A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.

  16. Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.

    PubMed

    Samonds, Jason M; Bonds, A B

    2005-01-01

    Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.

  17. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma.

    PubMed

    Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-10-27

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.

  18. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma

    PubMed Central

    Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-01-01

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+ refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC. PMID:26498680

  19. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit

    PubMed Central

    Osinski, Bolesław L.

    2016-01-01

    Odors evoke gamma (40–100 Hz) and beta (20–30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca2+-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca2+ channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca2+ flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs. PMID:27121582

  20. Robustness of synthetic oscillators in growing and dividing cells

    NASA Astrophysics Data System (ADS)

    Paijmans, Joris; Lubensky, David K.; Rein ten Wolde, Pieter

    2017-05-01

    Synthetic biology sets out to implement new functions in cells, and to develop a deeper understanding of biological design principles. Elowitz and Leibler [Nature (London) 403, 335 (2000), 10.1038/35002125] showed that by rational design of the reaction network, and using existing biological components, they could create a network that exhibits periodic gene expression, dubbed the repressilator. More recently, Stricker et al. [Nature (London) 456, 516 (2008), 10.1038/nature07389] presented another synthetic oscillator, called the dual-feedback oscillator, which is more stable. Detailed studies have been carried out to determine how the stability of these oscillators is affected by the intrinsic noise of the interactions between the components and the stochastic expression of their genes. However, as all biological oscillators reside in growing and dividing cells, an important question is how these oscillators are perturbed by the cell cycle. In previous work we showed that the periodic doubling of the gene copy numbers due to DNA replication can couple not only natural, circadian oscillators to the cell cycle [Paijmans et al., Proc. Natl. Acad. Sci. (USA) 113, 4063 (2016), 10.1073/pnas.1507291113], but also these synthetic oscillators. Here we expand this study. We find that the strength of the locking between oscillators depends not only on the positions of the genes on the chromosome, but also on the noise in the timing of gene replication: noise tends to weaken the coupling. Yet, even in the limit of high levels of noise in the replication times of the genes, both synthetic oscillators show clear signatures of locking to the cell cycle. This work enhances our understanding of the design of robust biological oscillators inside growing and diving cells.

  1. Non-zero mean and asymmetry of neuronal oscillations have different implications for evoked responses.

    PubMed

    Nikulin, Vadim V; Linkenkaer-Hansen, Klaus; Nolte, Guido; Curio, Gabriel

    2010-02-01

    The aim of the present study was to show analytically and with simulations that it is the non-zero mean of neuronal oscillations, and not an amplitude asymmetry of peaks and troughs, that is a prerequisite for the generation of evoked responses through a mechanism of amplitude modulation of oscillations. Secondly, we detail the rationale and implementation of the "baseline-shift index" (BSI) for deducing whether empirical oscillations have non-zero mean. Finally, we illustrate with empirical data why the "amplitude fluctuation asymmetry" (AFA) index should be used with caution in research aimed at explaining variability in evoked responses through a mechanism of amplitude modulation of ongoing oscillations. An analytical approach, simulations and empirical MEG data were used to compare the specificity of BSI and AFA index to differentiate between a non-zero mean and a non-sinusoidal shape of neuronal oscillations. Both the BSI and the AFA index were sensitive to the presence of non-zero mean in neuronal oscillations. The AFA index, however, was also sensitive to the shape of oscillations even when they had a zero mean. Our findings indicate that it is the non-zero mean of neuronal oscillations, and not an amplitude asymmetry of peaks and troughs, that is a prerequisite for the generation of evoked responses through a mechanism of amplitude modulation of oscillations. A clear distinction should be made between the shape and non-zero mean properties of neuronal oscillations. This is because only the latter contributes to evoked responses, whereas the former does not. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.

    PubMed

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H

    2017-04-18

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude-especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  3. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H.

    2017-04-01

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude—especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  4. The slow light and dark oscillation of the clinical electro-oculogram.

    PubMed

    Constable, Paul A; Ngo, David

    2018-05-20

    The standing potential of the eye exhibits a slow damped oscillation under light and dark conditions that continues for at least 80 minutes. However, our understanding of the relationship between the slow dark and light oscillation has not been previously studied. The aim of this study was to explore through regression analysis a model of these oscillations in order to establish if they may have the same underlying cellular generators. Healthy participants undertook recordings of the standing potential using the electro-oculogram for 100 minutes. To explore the light oscillation, participants (n = 8) were dilated and performed an extended electro-oculogram protocol consisting of 15 minutes dark adaptation and 85 minutes of white light adaptation at 100 cd/m 2 . For the dark oscillation, participants (n = 11) undertook the electro-oculogram for 100 minutes in complete darkness. Both sessions began with pre-adaptation to 30 cd/m 2 of white light for five minutes. Non-parametric statistics were used to evaluate all data. Ratios of the dark and light oscillations showed a significantly greater dampening of the dark oscillation compared to the light oscillation (p < 0.000). Regression analysis using a five-factor damped sine function revealed significant differences in the parameters governing the dampening (p = 0.005) and period (p = 0.009) of the functions (R 2  > 0.874). There were no significant differences in the dark trough amplitude. The results support a different underlying physiological mechanism for the light and dark oscillation of the clinical electro-oculogram. Future work will need to establish how the dark oscillation and dark trough of the clinical electro-oculogram arise. © 2018 Optometry Australia.

  5. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  6. Quantitative Characterization of Spurious Gibbs Waves in 45 CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Geil, K. L.; Zeng, X.

    2014-12-01

    Gibbs oscillations appear in global climate models when representing fields, such as orography, that contain discontinuities or sharp gradients. It has been known for decades that the oscillations are associated with the transformation of the truncated spectral representation of a field to physical space and that the oscillations can also be present in global models that do not use spectral methods. The spurious oscillations are potentially detrimental to model simulations (e.g., over ocean) and this work provides a quantitative characterization of the Gibbs oscillations that appear across the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. An ocean transect running through the South Pacific High toward the Andes is used to characterize the oscillations in ten different variables. These oscillations are found to be stationary and hence are not caused by (physical) waves in the atmosphere. We quantify the oscillation amplitude using the root mean square difference (RMSD) between the transect of a variable and its running mean (rather than the constant mean across the transect). We also compute the RMSD to interannual variability (IAV) ratio, which provides a relative measure of the oscillation amplitude. Of the variables examined, the largest RMSD values exist in the surface pressure field of spectral models, while the smallest RMSD values within the surface pressure field come from models that use finite difference (FD) techniques. Many spectral models have a surface pressure RMSD that is 2 to 15 times greater than IAV over the transect and an RMSD:IAV ratio greater than one for many other variables including surface temperature, incoming shortwave radiation at the surface, incoming longwave radiation at the surface, and total cloud fraction. In general, the FD models out-perform the spectral models, but not all the spectral models have large amplitude oscillations and there are a few FD models where the oscillations do appear. Finally, we present a brief comparison of the numerical methods of a select few models to better understand their Gibbs oscillations.

  7. Data mining neocortical high-frequency oscillations in epilepsy and controls

    PubMed Central

    Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H.; Marsh, Richard; Litt, Brian; Worrell, Gregory A.

    2011-01-01

    Transient high-frequency (100–500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100–250 Hz) and fast ripple (250–500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100–500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value. PMID:21903727

  8. Oscillations In Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.; Muglach, K.

    2017-12-01

    Active regions (ARs) on the Sun are directly related to space weather phenomena like flares and coronal mass ejections (CMEs). It is well known that both can have impacts not only on Earth, but also on nearby orbits and beyond. Predicting when and where active regions will emerge at the surface of the Sun would strengthen space weather forecasting abilities. In this study, data from the Solar Dynamics Observatory (SDO) are used to produce images of the magnetic field and Doppler Velocity at the photosphere of the Sun. This data is used to study the emergence of ARs at the surface of the Sun. Since global oscillations that travel through the solar interior are modified by the magnetic field, the oscillation patterns in and around ARs should be different from the oscillation patterns in the quiet, non-active Sun. Thus, a change in oscillation patterns can be determined before an AR is visible at the Sun's surface. Using Fast Fourier Transforms, the oscillation patterns can be calculated from the SDO Dopplergrams. Magnetograms provide the time when the magnetic field of the active region reaches the solar surface. Thus, both the calculated oscillation frequencies and power can be compared to the information of an AR's emergence in the magnetograms. In particular, it can be determined if there is any time delay between the change of oscillation power and magnetic field emergence. For this particular AR studied, it was found that the 5-min oscillation power starts to decrease at the time the AR emerges. The 3-min oscillation power also decreases first but increases again a few hours after the start of the emergence. This observation is probably due to 3-min oscillation power halos around the AR and has been observed before. A few hours before the AR starts to emerge, an increase was found in both 5-min and 3-min oscillation power. This effect is promising, however, it has not been observed before and has to be verified with additional observations.

  9. Data mining neocortical high-frequency oscillations in epilepsy and controls.

    PubMed

    Blanco, Justin A; Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H; Marsh, Richard; Litt, Brian; Worrell, Gregory A

    2011-10-01

    Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value.

  10. Some Unsettled Questions in the Problem of Neutrino Oscillations. Experiments

    NASA Astrophysics Data System (ADS)

    Muchamedovich Beshtoev, Khamidbi

    2003-07-01

    It is shown that in order to register neutrino oscillations, it is necessary to see second or higher neutrino oscillation modes on experiments. For this purpose we can use the elliptic character of 1the Earth orbit. A special importance for study of the Earth neutrino sources, using big neutrino detectors, is stressed here. The analysis is showing that the SNO experimental results do not confirm the smallest of νe → ντ transition angle mixings, which was obtained from analysis of the CHOOZ experimental data. It is also noted that there is contradiction between SNO, super-Kamiokande, Homestake and the SAGE and GNO (GALLEX) data. 1. Introduction In this article we will consider some unsettled questions in experiments on the problem of neutrino oscillations. 2. experimental Observation of the Neutrino Oscillations At present it supposed that the neutrino oscillations have been observed [1-3], In reality in these experiments there were observed only transitions between (the Sun or atmospheric) neutrinos. Since we presume that the neutrino oscillations do take place; therefore we must observe (Sun) neutrino oscillations in reality. Since the length of neutrino oscillations is great sufficiently, we cannot observe the higher modes in terrestrial experiment. But we have another possibility to observe the Sun neutrino oscillation using the fact that the Earth orbit is the elliptic one with: Earth's perihelion RP = 147.117 ·106k m , Earth's aphelion RA = 152.083 ·106k m, and their difference R is R = 4.866 · 106 k m. Since the Sun neutrinos conclude all energies up to 15M eV , we must divide this energy spectrum into energy regions and observe these neutrino fluxes as a function of energy and the Ears's distances from the Sun. At these conditions we must observe the neutrino oscillations, in order to determine if the length of neutrino oscillation Rosc is bigger than the region where these (high energy)

  11. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    PubMed

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.

  12. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain

    PubMed Central

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L.; Aziz, Tipu Z.; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations. PMID:29695951

  13. A cardioid oscillator with asymmetric time ratio for establishing CPG models.

    PubMed

    Fu, Q; Wang, D H; Xu, L; Yuan, G

    2018-01-13

    Nonlinear oscillators are usually utilized by bionic scientists for establishing central pattern generator models for imitating rhythmic motions by bionic scientists. In the natural word, many rhythmic motions possess asymmetric time ratios, which means that the forward and the backward motions of an oscillating process sustain different times within one period. In order to model rhythmic motions with asymmetric time ratios, nonlinear oscillators with asymmetric forward and backward trajectories within one period should be studied. In this paper, based on the property of the invariant set, a method to design the closed curve in the phase plane of a dynamic system as its limit cycle is proposed. Utilizing the proposed method and considering that a cardioid curve is a kind of asymmetrical closed curves, a cardioid oscillator with asymmetric time ratios is proposed and realized. Through making the derivation of the closed curve in the phase plane of a dynamic system equal to zero, the closed curve is designed as its limit cycle. Utilizing the proposed limit cycle design method and according to the global invariant set theory, a cardioid oscillator applying a cardioid curve as its limit cycle is achieved. On these bases, the numerical simulations are conducted for analyzing the behaviors of the cardioid oscillator. The example utilizing the established cardioid oscillator to simulate rhythmic motions of the hip joint of a human body in the sagittal plane is presented. The results of the numerical simulations indicate that, whatever the initial condition is and without any outside input, the proposed cardioid oscillator possesses the following properties: (1) The proposed cardioid oscillator is able to generate a series of periodic and anti-interference self-exciting trajectories, (2) the generated trajectories possess an asymmetric time ratio, and (3) the time ratio can be regulated by adjusting the oscillator's parameters. Furthermore, the comparison between the simulated trajectories by the established cardioid oscillator and the measured angle trajectories of the hip angle of a human body show that the proposed cardioid oscillator is fit for imitating the rhythmic motions of the hip of a human body with asymmetric time ratios.

  14. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  15. Automatic Oscillating Turret.

    DTIC Science & Technology

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  16. Production of squeezed states for macroscopic mechanical oscillator

    NASA Technical Reports Server (NTRS)

    Kulagin, V. V.

    1994-01-01

    The possibility of squeezed states generation for macroscopic mechanical oscillator is discussed. It is shown that one can obtain mechanical oscillator in squeezed state via coupling it to electromagnetic oscillator (Fabry-Perot resonator) and pumping this Fabry-Perot resonator with a field in squeezed state. The degradation of squeezing due to mechanical and optical losses is also analyzed.

  17. Emergence of amplitude and oscillation death in identical coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Duan, Jinqiao; Kurths, Jürgen

    2014-09-01

    We deduce rigorous conditions for the onset of amplitude death (AD) and oscillation death (OD) in a system of identical coupled paradigmatic Stuart-Landau oscillators. A nonscalar coupling and high frequency are beneficial for the onset of AD. In strong contrast, scalar diffusive coupling and low intrinsic frequency are in favor of the emergence of OD. Our finding contributes to clearly distinguish intrinsic geneses for AD and OD, and further substantially corroborates that AD and OD are indeed two dynamically distinct oscillation quenching phenomena due to distinctly different mechanisms.

  18. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1992-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  19. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  20. Doubly anharmonic oscillator under the topological effects of a screw dislocation

    NASA Astrophysics Data System (ADS)

    Bakke, Knut

    2018-05-01

    We consider an elastic medium with the distortion of a circular curve into a vertical spiral, and investigate the influence of this topological defect on the doubly anharmonic oscillator. We show that the Schrödinger equation for the doubly anharmonic oscillator in the presence of this linear topological defect can be solved analytically. We also obtain the exact expressions for the permitted energies of the ground state of the doubly anharmonic oscillator, and show that the topology of the screw dislocation modifies the spectrum of energy of the doubly anharmonic oscillator.

  1. Experimental study of rotational oscillation of H-shaped bodies in the flow

    NASA Astrophysics Data System (ADS)

    Braun, Oleg; Ryabinin, Anatoly

    2018-05-01

    The rotational oscillations of H-shaped body in the air flow are studied in the wind tunnel. The body is elastically fixed in the test section and can rotate only around axis that is perpendicular to the velocity vector. Tenzometrical technique is used for measurement of amplitude of rotational oscillations. The dependencies of oscillation amplitude on aspect ratio of the H-shaped body and air velocity are obtained. It is found that the increase of the flange height leads to growth of the amplitude of the oscillations.

  2. The effects of oscillating forces upon the flow of dental cements.

    PubMed

    Judge, R B; Wilson, P R

    1999-11-01

    The aim of this study was to evaluate the effect of oscillating forces upon the flow of five dental cements. A laboratory investigation was carried out using a crown and die. It showed that the application of oscillating forces improved the flow of the tested dental cements when combined with low static loads and wide crown-die separations. The oscillating forces enhanced the late, particle-dominated phase of cement flow. Further investigations characterised the nature of the oscillating forces applied in this experiment and revealed yield stress behaviour shown by one cement.

  3. Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feiginov, Michael, E-mail: feiginov.michael@canon.co.jp

    We present a theoretical analysis of traveling-wave microstrip resonant-tunneling-diode (RTD) oscillators. Such oscillators are similar to terahertz (THz) quantum-cascade lasers (QCLs) with a metal-metal waveguide and with just the active part of a single QCL period (an RTD) as their active core. Assuming realistic parameters of RTDs, we show that the microstrip RTD oscillators should be working at sub-THz and THz frequencies. Contrary to the contemporary THz QCLs, RTD microstrips are room-temperature oscillators. The major loss- and gain-enhancement mechanisms in RTD microstrips are identified.

  4. Interaction function of oscillating coupled neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2013-01-01

    Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210

  5. Parametric resonance in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-05-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  6. Frequency control of a spin-torque oscillator using magnetostrictive anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min Gyu Albert; Lee, Seok-Hee, E-mail: bgpark@kaist.ac.kr, E-mail: shlee@kaist.edu; Baek, Seung-heon Chris

    2016-01-11

    We report the working principle of a spin-torque oscillator, of which the frequency is efficiently controlled by manipulating the magnetostrictive anisotropy. To justify the scheme, we simulate a conventional magnetic-tunnel junction-based oscillator which is fabricated on a piezoelectric material. By applying mechanical stress to a free layer using a piezoelectric material, the oscillation frequency can be controlled to ensure a broad tuning range without a significant reduction of the dynamic resistance variation. Such controllability, which appears in the absence of an external magnetic field, will not only enable the integration of spin-torque oscillators and conventional complimentary metal-oxide semiconductor technology butmore » will also broaden the applicability of spin-torque oscillators.« less

  7. Atmospheric neutrino oscillations for Earth tomography

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  8. Frequency jumps in single chip microwave LC oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualco, Gabriele; Grisi, Marco; Boero, Giovanni, E-mail: giovanni.boero@epfl.ch

    2014-12-15

    We report on the experimental observation of oscillation frequency jumps in microwave LC oscillators fabricated using standard complementary metal-oxide-semiconductor technologies. The LC oscillators, operating at a frequency of about 20 GHz, consist of a single turn planar coil, a metal-oxide-metal capacitor, and two cross-coupled metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K as well as at 77 K, the oscillation frequency is a continuous function of the oscillator bias voltage. At 4 K, frequency jumps as large as 30 MHz are experimentally observed. This behavior is tentatively attributed to the emission and capture of single electrons from defects andmore » dopant atoms.« less

  9. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  10. Self-sustained micro mechanical oscillator with linear feedback

    DOE PAGES

    Chen, Changyao; Zanette, Damian H.; Guest, Jeffrey R.; ...

    2016-07-01

    Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external frequency reference. In order to sustain stable periodic motions, there needs to be external energy supply as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlinearity is provided by the sustaining feedback mechanism, which also supplies energy, whereas the constituent resonator that determines the output frequency stays linear. Here we propose a new self-sustaining scheme that relies on the nonlinearity originating from the resonator itself to limit the oscillation amplitude, while the feedback remains linear. We introduce a model to describe the workingmore » principle of the self-sustained oscillations and validate it with experiments performed on a nonlinear microelectromechanical (MEMS) based oscillator.« less

  11. Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force.

    PubMed

    Pyragas, Kestutis; Novičenko, Viktor

    2015-07-01

    The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

  12. Forced oscillations of cracked beam under the stochastic cyclic loading

    NASA Astrophysics Data System (ADS)

    Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.

    2018-05-01

    An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.

  13. Triple inverter pierce oscillator circuit suitable for CMOS

    DOEpatents

    Wessendorf,; Kurt, O [Albuquerque, NM

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  14. The study of shielding influence of the disks placed coaxially on rotational oscillations of the cylinder in the airflow

    NASA Astrophysics Data System (ADS)

    Kiselev, Nikolay; Ryabinin, Anatoly

    2018-05-01

    The experimental study of shielding effects of the disk placed upstream of a cylinder is described. The disk reduces the drag of the cylinder and changes its dynamic characteristics. Two cylinders with different aspect ratio are studied. Without a disk, an elastically fixed cylinder in the airflow performs rotational oscillations with constant amplitude. The influence of the aerodynamic force on the damping of the oscillations depends on the disk diameter, the gap between disk and cylinder and aspect ratio of the cylinder. The disk reduces the amplitude of steady rotational oscillations or causes the damped rotational oscillations. A mathematical model is proposed for describing the rotational steady and damped oscillations of a cylinder with the disk.

  15. Common oscillatory mechanisms across multiple memory systems

    NASA Astrophysics Data System (ADS)

    Headley, Drew B.; Paré, Denis

    2017-01-01

    The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

  16. A statistical study of decaying kink oscillations detected using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.

    2016-01-01

    Context. Despite intensive studies of kink oscillations of coronal loops in the last decade, a large-scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). Aims: We carry out a statistical study of kink oscillations using extreme ultraviolet imaging data from a previously compiled catalogue. Methods: We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) on board SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Results: Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck = (1330 ± 50) km s-1. The main body of the data corresponds to kink speeds in the range Ck = (800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 21 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles rather than a purely exponential damping envelope. There are nine additional cases where the profile appears to be purely non-exponential and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.

  17. Beta-gamma burst stimulations of the inferior olive induce high-frequency oscillations in the deep cerebellar nuclei.

    PubMed

    Cheron, Julian; Cheron, Guy

    2018-02-20

    The cerebellum displays various sorts of rhythmic activities covering both low- and high-frequency oscillations. These cerebellar high-frequency oscillations were observed in the cerebellar cortex. Here, we hypothesised that not only is the cerebellar cortex a generator of high-frequency oscillations but also that the deep cerebellar nuclei may also play a similar role. Thus, we analysed local field potentials and single-unit activities in the deep cerebellar nuclei before, during and after electric stimulation in the inferior olive of awake mice. A high-frequency oscillation of 350 Hz triggered by the stimulation of the inferior olive, within the beta-gamma range, was observed in the deep cerebellar nuclei. The amplitude and frequency of the oscillation were independent of the frequency of stimulation. This oscillation emerged during the period of stimulation and persisted after the end of the stimulation. The oscillation coincided with the inhibition of deep cerebellar neurons. As the inhibition of the deep cerebellar nuclei is related to inhibitory inputs from Purkinje cells, we speculate that the oscillation represents the unmasking of the synchronous activation of another subtype of deep cerebellar neuronal subtype, devoid of GABA receptors and under the direct control of the climbing fibres from the inferior olive. Still, the mechanism sustaining this oscillation remains to be deciphered. Our study sheds new light on the role of the olivo-cerebellar loop as the final output control of the intercerebellar circuitry. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Stratospheric Semi-Decadal Oscillations in NCEP Data

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Talaat, E. R.; Nash, E. R.; Reddy, C. A.

    2008-01-01

    An analysis of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) data is presented to provide a more complete description of the stratospheric 5-year semi-decadal (SD) oscillation (Mayr et al., 2007). The zonal-mean temperature and zonal wind data from the Atmospheric Research R-1 analysis are employed, covering the years from 1962 to 2002 in the altitude range from 10 to 30km. For diagnostic purposes, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to identify the signatures of the SD oscillations. Through the synthesis or filtering of spectral features, the SD modulations of the annual oscillation (AO) and quasi-biennial oscillation (QBO) are delineated. In agreement with the earlier findings, the magnitude of the SD oscillation is more pronounced when the 30-month QBO dominates during the years from 1975 to 1995. This is consistent with results from a numerical model, which shows that such a QBO generates the SD oscillation through interaction with the 12-month AO. In the zonal winds, the SD oscillation in the NCEP data is confined to equatorial latitudes, where it modulates the symmetric AO and QBO by about 5 m/s below 30 km. In the temperature data, the effect is also seen around the equator, but it is much larger at polar latitudes where the SD oscillation produces variations as large as 2 K. Our data analysis indicates that the SD oscillation is mainly hemispherically symmetric, and it appears to originate at equatorial latitudes where most of the energy resides.

  19. Chemical factors determine olfactory system beta oscillations in waking rats.

    PubMed

    Lowry, Catherine A; Kay, Leslie M

    2007-07-01

    Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.

  20. The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation

    PubMed Central

    Lemieux, Maxime; Chen, Jen-Yung; Lonjers, Peter; Bazhenov, Maxim

    2014-01-01

    Slow oscillation is the main brain rhythm observed during deep sleep in mammals. Although several studies have demonstrated its neocortical origin, the extent of the thalamic contribution is still a matter of discussion. Using electrophysiological recordings in vivo on cats and computational modeling, we found that the local thalamic inactivation or the complete isolation of the neocortical slabs maintained within the brain dramatically reduced the expression of slow and fast oscillations in affected cortical areas. The slow oscillation began to recover 12 h after thalamic inactivation. The slow oscillation, but not faster activities, nearly recovered after 30 h and persisted for weeks in the isolated slabs. We also observed an increase of the membrane potential fluctuations recorded in vivo several hours after thalamic inactivation. Mimicking this enhancement in a network computational model with an increased postsynaptic activity of long-range intracortical afferents or scaling K+ leak current, but not several other Na+ and K+ intrinsic currents was sufficient for recovering the slow oscillation. We conclude that, in the intact brain, the thalamus contributes to the generation of cortical active states of the slow oscillation and mediates its large-scale synchronization. Our study also suggests that the deafferentation-induced alterations of the sleep slow oscillation can be counteracted by compensatory intracortical mechanisms and that the sleep slow oscillation is a fundamental and intrinsic state of the neocortex. PMID:24741059

  1. Observational properties of decameter type IV bursts

    NASA Astrophysics Data System (ADS)

    Melnik, Valentin; Brazhenko, Anatoly; Rucker, Helmut; Konovalenko, Alexander; Briand, Carine; Dorovskyy, Vladimir; Zarka, Philippe; Frantzusenko, Anatoly; Panchenko, Michael; Poedts, Stefan; Zaqarashvili, Teimuraz; Shergelashvili, Bidzina

    2013-04-01

    Oscillations of decameter type IV bursts were registered during observations of solar radio emission by UTR-2, URAN-2 and NDA in 2011-2012. Large majority of these bursts were accompanied by coronal mass ejections (CMEs), which were observed by SOHO and STEREO in the visible light. Only in some cases decameter type IV bursts were not associated with CMEs. The largest periods of oscillations P were some tens of minutes. There were some modes of long periods of oscillations simultaneously. Periods of oscillations in flux and in polarization profiles were close. Detailed properties of oscillations at different frequencies were analyzed on the example of two type IV bursts. One of them was observed on April 7, 2011 when a CME happened. Another one (August 1, 2011) was registered without any CME. The 7 April type IV burst had two periods in the frames 75-85 and 35-85 minutes. Interesting feature of these oscillations is decreasing periods with time. The observed decreasing rates dP/dt equaled 0.03-0.07. Concerning type IV burst observed on August 1, 2011 the period of its oscillations increases from 17 min. at 30 MHz to 44 min. at 10 MHz. Connection of type IV burst oscillations with oscillations of magnetic arches and CMEs at corresponding altitudes are discussed. The work is fulfilled in the frame of FP7 project "SOLSPANET".

  2. Minimal models of electric potential oscillations in non-excitable membranes.

    PubMed

    Perdomo, Guillermo; Hernández, Julio A

    2010-01-01

    Sustained oscillations in the membrane potential have been observed in a variety of cellular and subcellular systems, including several types of non-excitable cells and mitochondria. For the plasma membrane, these electrical oscillations have frequently been related to oscillations in intracellular calcium. For the inner mitochondrial membrane, in several cases the electrical oscillations have been attributed to modifications in calcium dynamics. As an alternative, some authors have suggested that the sustained oscillations in the mitochondrial membrane potential induced by some metabolic intermediates depends on the direct effect of internal protons on proton conductance. Most theoretical models developed to interpret oscillations in the membrane potential integrate several transport and biochemical processes. Here we evaluate whether three simple dynamic models may constitute plausible representations of electric oscillations in non-excitable membranes. The basic mechanism considered in the derivation of the models is based upon evidence obtained by Hattori et al. for mitochondria and assumes that an ionic species (i.e., the proton) is transported via passive and active transport systems between an external and an internal compartment and that the ion affects the kinetic properties of transport by feedback regulation. The membrane potential is incorporated via its effects on kinetic properties. The dynamic properties of two of the models enable us to conclude that they may represent alternatives enabling description of the generation of electrical oscillations in membranes that depend on the transport of a single ionic species.

  3. Fundamental and subharmonic excitation for an oscillator with several tunneling diodes in series

    NASA Technical Reports Server (NTRS)

    Boric-Lubecke, Olga; Pan, Dee-Son; Itoh, Tatsuo

    1995-01-01

    Connecting several tunneling diodes in series shows promise as a method for increasing the output power of these devices as millimeter-wave oscillators. However, due to the negative differential resistance (NDR) region in the dc I-V curve of a single tunneling diode, a circuit using several devices connected in series, and biased simultaneously in the NDR region, is dc unstable. Because of this instability, an oscillator with several tunneling diodes in series has a demanding excitation condition. Excitation using an externally applied RF signal is one approach to solving this problem. This is experimentally demonstrated using an RF source, both with frequency close to as well as with frequency considerably lower than the oscillation frequency. Excitation by an RF (radio frequency) source with a frequency as low as one sixth of the oscillation frequency was demonstrated in a proof-of-principle experiment at 2 GHz, for an oscillator with two tunnel diodes connected in series. Strong harmonics of the oscillation signal were generated as a result of the highly nonlinear dc I-V curve of the tunnel diode and a large signal oscillator design. Third harmonic output power comparable to that of the fundamental was observed in one oscillator circuit. If submillimeter wave resonant-tunneling diodes (RTD's) are used instead of tunnel diodes, this harmonic output may be useful for generating signals at frequencies well into the terahertz range.

  4. Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

    PubMed

    Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B

    2014-09-05

    The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.

  5. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hui; He, Jiansen; Young, Peter R.

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s{sup −1} and a derived electron density of at least 5.4 × 10{sup 10} cm{sup −3}, the observed short-period oscillation is most likely the global fast sausage mode ofmore » a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.« less

  6. Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus

    PubMed Central

    Martin, Pascal; Bozovic, D.; Choe, Y.; Hudspeth, A. J.

    2007-01-01

    One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair-bundle motility probably constitutes the active process of non-mammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacoustic emissions. When maintained in the ear's normal ionic milieu, many bundles oscillated spontaneously through distances as great as 80 nm at frequencies of 5-50 Hz. Whole-cell recording disclosed that the positive phase of movement was associated with the opening of transduction channels. Gentamicin, which blocks transduction channels, reversibly arrested oscillation; drugs that affect the cAMP phosphorylation pathway and might influence myosin's activity altered the rate of oscillation. Increasing the Ca2+ concentration rendered oscillations faster and smaller until they were suppressed; lowering the Ca2+ concentration moderately with chelators had the opposite effect. When a bundle was offset with a stimulus fiber, oscillations were transiently suppressed but gradually resumed. Loading a bundle by partial displacement clamping, which simulated the presence of the accessory structures to which a bundle is ordinarily attached, increased the frequency and diminished the magnitude of oscillation. These observations accord with a model in which oscillations arise from the interplay of the hair bundle's negative stiffness with the activity of adaptation motors and with Ca2+-dependent relaxation of gating springs. PMID:12805294

  7. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    PubMed

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations.

    PubMed

    Kajiya, Hiroshi; Okamoto, Fujio; Nemoto, Tetsuomi; Kimachi, Keiichiro; Toh-Goto, Kazuko; Nakayana, Shuji; Okabe, Koji

    2010-11-01

    The receptor activator of NFκB ligand (RANKL) induces Ca(2+) oscillations and activates the Nuclear Factor of Activated T cells 1 (NFATc1) during osteoclast differentiation (osteoclastogenesis). Ca(2+) oscillations are an important trigger signal for osteoclastogenesis, however the molecular basis of Ca(2+) permeable influx pathways serving Ca(2+) oscillations has not yet been identified. Using a DNA microarray, we found that Transient Receptor Potential Vanilloid channels 2 (TRPV2) are expressed significantly in RANKL-treated RAW264.7 cells (preosteoclasts) compared to untreated cells. Therefore, we further investigated the expression and functional role of TRPV2 on Ca(2+) oscillations and osteoclastogenesis. We found that RANKL dominantly up-regulates TRPV2 expression in preosteoclasts, and evokes spontaneous Ca(2+) oscillations and a transient inward cation current in a time-dependent manner. TRPV inhibitor ruthenium red and tetracycline-induced TRPV2 silencing significantly decreased both the frequency of Ca(2+) oscillations and the transient inward currents in RANKL-treated preosteoclasts. Silencing of store-operated Ca(2+) entry (SOCE) proteins similarly suppressed both RANKL-induced oscillations and currents in preosteoclasts. Furthermore, suppression of TRPV2 also reduced RANKL-induced NAFTc1 expression, its nuclear translocation, and osteoclastogenesis. In summary, Ca(2+) oscillations in preosteoclasts are triggered by RANKL-dependent TRPV2 and SOCE activation and intracellular Ca(2+) release. Subsequent activation of NFATc1 promotes osteoclastogenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. METHOD FOR STABILIZING KLYSTRONS

    DOEpatents

    Magnuson, D.W.; Smith, D.F.

    1959-04-14

    High-frequency oscillators for the generation of microwaves, particularly a system for stabilizing frequency-modulated klystron oscillators of the reflex type, are described. The system takos advantage of the fact that a change in oscillator frequency will alter the normal phase displacement between the cavity and its modulator, creating an error voltage which is utilized to regulate the frequency of the oscillator and stabilize it.

  10. Plasma oscillations in spherical Gaussian shaped ultracold neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-04-15

    The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.

  11. Characterization of Low-Frequency Combustion Stability of the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Jones, Preston (Technical Monitor)

    2002-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.

  12. Pole movement in electronic and optoelectronic oscillators

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Pal, S.; Biswas, B. N.

    2013-12-01

    An RLC circuit with poles on the left half of the complex frequency plane is capable of executing transient oscillations. During this period, energy conversion from potential to kinetic and from kinetic to potential continuously goes on, until the stored energy is lost in dissipation through the resistance. On the other hand, in an electronic or opto-electronic oscillator with an embedded RLC circuit, the poles are forcibly placed on the right-half plane (RHP) and as far as practicable away from the imaginary axis in order to help the growth of oscillation as quickly as possible. And ultimately, it is imagined that, like the case of an ideal linear harmonic oscillator, the poles are frozen on the imaginary axis so that the oscillation neither grows nor decays. The authors feel that this act of holding the poles right on the imaginary axis is a theoretical conjecture in a soft or hard self-excited oscillator. In this article, a detailed discussion on pole movement in an electronic and opto-electronic oscillator is carried out from the basic concept. A new analytical method for estimating the time-dependent part of the pole is introduced here.

  13. Active shunt capacitance cancelling oscillator circuit

    DOEpatents

    Wessendorf, Kurt O.

    2003-09-23

    An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.

  14. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system

    PubMed Central

    Rojas-Líbano, Daniel

    2008-01-01

    Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484

  15. BBN with electron-sterile neutrino oscillations — the finest leptometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirilova, Daniela, E-mail: dani@astro.bas.bg

    2012-06-01

    A relic lepton asymmetry orders of magnitude bigger than the baryon one may hide in the relic neutrino background. No direct theoretical or experimental limitations on its magnitude and sign are known. Only indirect cosmological constraints exist ranging from |L| < 0.01 to L < 10. Here we discuss a Big Bang Nucleosynthesis (BBN) model with late electron-sterile neutrino oscillations. The influence of L on neutrino oscillations and on nucleons freezing in the pre-BBN epoch is numerically analyzed in the full range of the oscillation parameters of the model and for |L| ≥ 10{sup −10}. The asymmetry-oscillations interplay is studiedmore » in detail and the behavior of L for different oscillation parameters is found. L effect on the primordially produced {sup 4}He is precisely studied. It is shown that this BBN model is a fine leptometer, capable of feeling extremely small relic lepton asymmetry — |L| > 10{sup −8}. The case of oscillations generated asymmetry by late electron-sterile oscillations and its effect on the primordial {sup 4}He is also briefly discussed. The instability region of the asymmetry growth is obtained.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3more » minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.« less

  17. New kind of injection-locked oscillator and its corresponding long-term stability control.

    PubMed

    Hong, Jun; Liu, An; Wang, Xiao-hu; Yao, Sheng-xing; Li, Zu-ling

    2015-09-20

    A new type of opto-electronic hybrid oscillator is proposed for the first time, to the best of our knowledge, and verified by experiments in this paper. Typical electronic oscillator-dielectric resonator oscillator as the first injection source is used to injection lock the first long-fiber loop-based opto-electronic oscillator (OEO); then its output is used to injection lock the second long-fiber opto-electronic oscillator. Using this method, low-phase noise output signal can be obtained. Experiments show that single side-band (SSB) phase noise of a 9.5 GHz oscillation signal at 10 kHz offset frequency decreases from -123 to -135  dBc/Hz after the first injection, then, through the second injection, the SSB phase noise drops down to -146  dBc/Hz. In order to solve the long-term stability problem of the above oscillator, a new stability-control circuit also is designed and verified by experiments. Experiments show that the Allan deviation decreases from 9.0×10(-11) to 2.2×10(-12) during 1 s after the long-term stability-control circuit being used.

  18. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.

    PubMed

    English, L Q; Mertens, David; Abdoulkary, Saidou; Fritz, C B; Skowronski, K; Kevrekidis, P G

    2016-12-01

    We derive the Kuramoto-Sakaguchi model from the basic circuit equations governing two coupled Wien-bridge oscillators. A Wien-bridge oscillator is a particular realization of a tunable autonomous oscillator that makes use of frequency filtering (via an RC bandpass filter) and positive feedback (via an operational amplifier). In the past few years, such oscillators have started to be utilized in synchronization studies. We first show that the Wien-bridge circuit equations can be cast in the form of a coupled pair of van der Pol equations. Subsequently, by applying the method of multiple time scales, we derive the differential equations that govern the slow evolution of the oscillator phases and amplitudes. These equations are directly reminiscent of the Kuramoto-Sakaguchi-type models for the study of synchronization. We analyze the resulting system in terms of the existence and stability of various coupled oscillator solutions and explain on that basis how their synchronization emerges. The phase-amplitude equations are also compared numerically to the original circuit equations and good agreement is found. Finally, we report on experimental measurements of two coupled Wien-bridge oscillators and relate the results to the theoretical predictions.

  19. Object-based attentional selection modulates anticipatory alpha oscillations

    PubMed Central

    Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán

    2015-01-01

    Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection—similarly to spatial and feature-based attention—gating of visual information processing might involve visual cortical alpha oscillations. PMID:25628554

  20. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  1. Torsional oscillations of magnetized relativistic stars

    NASA Astrophysics Data System (ADS)

    Messios, Neophytos; Papadopoulos, Demetrios B.; Stergioulas, Nikolaos

    2001-12-01

    Strong magnetic fields in relativistic stars can be a cause of crust fracturing, resulting in the excitation of global torsional oscillations. Such oscillations could become observable in gravitational waves or in high-energy radiation, thus becoming a tool for probing the equation of state of relativistic stars. As the eigenfrequency of torsional oscillation modes is affected by the presence of a strong magnetic field, we study torsional modes in magnetized relativistic stars. We derive the linearized perturbation equations that govern torsional oscillations coupled to the oscillations of a magnetic field, when variations in the metric are neglected (Cowling approximation). The oscillations are described by a single two-dimensional wave equation, which can be solved as a boundary-value problem to obtain eigenfrequencies. We find that, in the non-magnetized case, typical oscillation periods of the fundamental l=2 torsional modes can be nearly a factor of 2 larger for relativistic stars than previously computed in the Newtonian limit. For magnetized stars, we show that the influence of the magnetic field is highly dependent on the assumed magnetic field configuration, and simple estimates obtained previously in the literature cannot be used for identifying normal modes observationally.

  2. Maximalist vs. minimalist shoes: dose-effect response of elastic compression on muscular oscillations.

    PubMed

    Gellaerts, Jules; Pirard, Maxime; Muzic, Jessie; Peseux, Maxime; Ménétrier, Arnaud

    2017-10-01

    The aim of this study was to establish whether maximalist shoes engender fewer muscular oscillations than minimalist shoes and determine to what extent these shoes, when combined with elastic compression (EC), help reduce muscle oscillations. For that purpose, we tested the effects of various levels of compression on the muscular oscillations in maximalist and minimalist footwear. Eleven volunteers executed 16 one-minute passages on a flat treadmill in a randomized order: maximalists or minimalists, walking (6 km/h) or running (10 km/h), without EC (control condition [CON]) or with EC applying different pressures (9.6 mmHg, 14.5 mmHg and 20.4 mmHg). The muscular oscillations were measured on both thighs, on the rectus femoris and on the vastus medialis with tri-axial accelerometers. Muscular oscillations are lower in maximalist shoes than in minimalist shoes, for both walking to 6 km/h and running to 10 km/h (P<0.05). Oscillations are also reduced with EC (P<0.05). This decrease is most marked when the pressure exercised by the EC is increased. Increased compression with minimalist shoes reduces muscular oscillations as much as maximalist shoes, when combined with lower compression.

  3. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    PubMed

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  4. The influence of collective neutrino oscillations on a supernova r process

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Friedland, Alexander; McLaughlin, Gail C.; Surman, Rebecca

    2011-03-01

    Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used 'single-angle' approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions—in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.

  5. A θ-γ oscillation code for neuronal coordination during motor behavior.

    PubMed

    Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki

    2013-11-20

    Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.

  6. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock

    PubMed Central

    Webb, Alexis B; Lengyel, Iván M; Jörg, David J; Valentin, Guillaume; Jülicher, Frank; Morelli, Luis G; Oates, Andrew C

    2016-01-01

    In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a “segmentation clock”. This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics. DOI: http://dx.doi.org/10.7554/eLife.08438.001 PMID:26880542

  7. Oscillator Noise Analysis

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2005-08-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, that exist in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter. These are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In noise analysis for oscillators, the key is figuring out how the various disturbances and noise sources in the oscillator end up as phase fluctuations. In doing so, one first computes transfer functions from the noise sources to the oscillator phase, or the sensitivity of the oscillator phase to these noise sources. In this paper, we first provide a discussion explaining the origins and the proper definition of this transfer or sensitivity function, followed by a critical review of the various numerical techniques for its computation that have been proposed by various authors over the past fifteen years.

  8. A modeling study on the influence of blood flow regulation on skin temperature pulsations

    NASA Astrophysics Data System (ADS)

    Tang, Yanliang; Mizeva, Irina; He, Ying

    2017-04-01

    Nowadays together with known optic techniques of microcirculation blood flow monitoring, skin temperature measurements are developed as well. In this paper, a simple one-dimensional bioheat transfer model was developed to analyse the heat wave transport in biological tissue, where an arteriole vessel with pulsatile blood is located. The simulated results show that the skin temperature oscillation amplitudes attenuate with the increase of blood flow oscillation frequency which gives the same tendency as that in the experiments. The parameter analyses further show that the amplitude of oscillation is also influenced by oscillation amplitude of blood and effective thermal conductivity. When oscillation amplitude of blood flow and effective thermal conductivity increase, the amplitude of skin temperature oscillation increases nonlinearly. Variation of effective thermal convective influence to the time delay of the thermal wave on the skin surface and distort it. Combination of two measurement techniques: one for estimation blood flow oscillations in the microvessels and other to the skin temperature measurement can produce additional information about the skin properties.

  9. A class of parametrically excited calcium oscillation detectors.

    PubMed Central

    Izu, L T; Spangler, R A

    1995-01-01

    Intracellular Ca2+ oscillations are often a response to external signals such as hormones. Changes in the external signal can alter the frequency, amplitude, or form of the oscillations suggesting that information is encoded in the pattern of Ca2+ oscillations. How might a cell decode this signal? We show that an excitable system whose kinetic parameters are modulated by the Ca2+ concentration can function as a Ca2+ oscillation detector. Such systems have the following properties: (1) They are more sensitive to an oscillatory than to a steady Ca2+ signal. (2) Their response is largely independent of the signal amplitude. (3) They can extract information from a noisy signal. (4) Unlike other frequency sensitive detectors, they have a flat frequency response. These properties make a Ca(2+)-sensitive excitable system nearly ideal for detecting and decoding Ca2+ oscillations. We suggest that Ca2+ oscillations, in concert with these detectors, can act as cellular timekeepers to coordinate related biochemical reactions and enhance their overall efficiency. PMID:7787048

  10. Reduction of parasitic lasing

    NASA Technical Reports Server (NTRS)

    Storm, Mark E. (Inventor)

    1994-01-01

    A technique was developed which carefully retro-reflects precisely controlled amounts of light back into a laser system thereby intentionally forcing the laser system components to oscillate in a new resonator called the parasitic oscillator. The parasitic oscillator uses the laser system to provide the gain and an external mirror is used to provide the output coupling of the new resonator. Any change of gain or loss inside the new resonator will directly change the lasing threshold of the parasitic oscillator. This change in threshold can be experimentally measured as a change in the absolute value of reflectivity, provided by the external mirror, necessary to achieve lasing in the parasitic oscillator. Discrepancies between experimental data and a parasitic oscillator model are direct evidence of optical misalignment or component performance problems. Any changes in the optical system can instantly be measured as a change in threshold for the parasitic oscillator. This technique also enables aligning the system for maximum parasitic suppression with the system fully operational.

  11. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Ryskin, N. M.; Won, J. H.; Han, S. T.; Park, G. S.

    2006-03-01

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/π modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillator shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, ˜3.5Ist, compared to typical vacuum tube oscillators (10-100Ist), where Ist is a start-oscillation current.

  12. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    PubMed

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gap junction plasticity as a mechanism to regulate network-wide oscillations

    PubMed Central

    Nicola, Wilten; Clopath, Claudia

    2018-01-01

    Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex. PMID:29529034

  14. Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.

    PubMed

    Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh

    2008-12-01

    This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.

  15. A Biochemical Oscillator Using Excitatory Molecules for Nanonetworks.

    PubMed

    Shitiri, Ethungshan; Cho, Ho-Shin

    2016-10-01

    For nanonetworks to be able to achieve large-scale functionality, such as to respond collectively to a trigger, synchrony between nanomachines is essential. However, to facilitate synchronization, some sort of physical clocking mechanism is required, such as the oscillators driven by auto-inhibitory molecules or by auto-inducing molecules. In this study, taking inspiration from the widely studied biological oscillatory phenomena called Calcium (Ca 2+ ) oscillations, we undertake a different approach to design an oscillator. Our model employs three different types of excitatory molecules that work in tandem to generate oscillatory phenomenon in the concentration levels of the molecule of interest. The main objective of the study is to model a high frequency biochemical oscillator, along with the investigations to identify and determine the parameters that affect the period of the oscillations. The investigations entail and highlight the design of the reserve unit, a reservoir of the molecule of interest, as a key factor in realizing a high frequency stable biochemical oscillator.

  16. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  17. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    PubMed

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borzov, V. V., E-mail: borzov.vadim@yandex.ru; Damaskinsky, E. V., E-mail: evd@pdmi.ras.ru

    In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which ismore » bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.« less

  19. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    NASA Astrophysics Data System (ADS)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  20. Nondegenerate parametric oscillations in a tunable superconducting resonator

    NASA Astrophysics Data System (ADS)

    Bengtsson, Andreas; Krantz, Philip; Simoen, Michaël; Svensson, Ida-Maria; Schneider, Ben; Shumeiko, Vitaly; Delsing, Per; Bylander, Jonas

    2018-04-01

    We investigate nondegenerate parametric oscillations in a superconducting microwave multimode resonator that is terminated by a superconducting quantum interference device (SQUID). The parametric effect is achieved by modulating magnetic flux through the SQUID at a frequency close to the sum of two resonator-mode frequencies. For modulation amplitudes exceeding an instability threshold, self-sustained oscillations are observed in both modes. The amplitudes of these oscillations show good quantitative agreement with a theoretical model. The oscillation phases are found to be correlated and exhibit strong fluctuations which broaden the oscillation spectral linewidths. These linewidths are significantly reduced by applying a weak on-resonant tone, which also suppresses the phase fluctuations. When the weak tone is detuned, we observe synchronization of the oscillation frequency with the frequency of the input. For the detuned input, we also observe an emergence of three idlers in the output. This observation is in agreement with theory indicating four-mode amplification and squeezing of a coherent input.

  1. Neptune as a Mirror for the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    How would the Kepler mission see a star like the Sun? We now know the answer to this question due to a creative approach: a new study has used the Kepler K2 mission to detect signals from the Sun reflected off of the surface of Neptune.Asteroseismology uses different oscillation modes of a star to probe its internal structure and properties. [Tosaka]Information in OscillationsKeplers most glamorous work is in discovering new planets around other stars. To successfully do this, however, the spacecraft is also quietly doing a lot of very useful work in the background, characterizing the many stars in our vicinity that planets might be found around.One of the ways Kepler gets information about these stars is from oscillations of the stars intensities. In asteroseismology, we look at oscillatory modes that are caused by convection-driven pressure changes on the inside of the star. All stars with near-surface convection oscillate like this including the Sun and by measuring the oscillations in intensity of these stars, we can make inferences about the stars properties.A Planetary MirrorWe do this by first understanding our Suns oscillations especially well (made easier by the fact that its nearby!). Then we use asteroseimic scaling relations determined empirically that relate characteristics like mass and radius of other stars to those of the Sun, based on the relation between the stars oscillation properties to the Suns.The trouble is, those oscillation properties are difficult to measure, and different instruments often measure different values. For this reason, wed like to measure the Suns oscillations with the same instrument we use to measure other stars oscillations: Kepler.Top panel: Kepler K2 49-day light curve of Neptune. Bottom panel: power density spectrum as a function of frequency (grey). Neptunes rotation frequencies and harmonics appear toward the left side (blue); the excess power due to the solar modes is visible toward the bottom right. The green curve shows the direct observations of solar oscillations simultaneously made by VIRGO/SPM. [Gaulme et al. 2016]A team led by Patrick Gaulme (New Mexico State University, New Mexico Institute of Mining and Technology, and Apache Point Observatory) have now done this but not with direct Kepler observations of the Sun. Instead, Kepler was pointed at Neptune for a total of 49 days, during which time it measured the reflection of the Suns oscillations off of the planets surface. These observations mark the first indirect detection of solar oscillations in intensity.Measuring Solar PropertiesThe success of this technique for observing solar oscillations represents a remarkable technical performance. The oscillations the team observed by Kepler in the reflection from Neptune are consistent with the solar oscillations that were measured directly with programs like the Birmingham Solar Oscillations Network (BiSON) and SOHO/VIRGO/SPM.What can we learn from the oscillations? The authors treated the detection of the Sun as though it were any other star being observed: they used the asteroseismic scaling relations to estimate the stars mass and radius. Based on the oscillations they measured, they found a mass for the Sun between 1.11 0.05 and 1.16 0.09 solar masses, and a radius between 1.04 0.02 and 1.05 0.03 solar radii.The fact that these values are a little high (roughly 13.8% too high for mass and 4.3% for the radius) illustrates the highly stochastic nature of stellar oscillations. Still, it provides a useful reference point, and it also gives us a valuable look at how Kepler would see a star like the Sun.CitationP. Gaulme et al 2016 ApJL 833 L13. doi:10.3847/2041-8213/833/1/L13

  2. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, Stephen J.; Denton, Peter B.; Minakata, Hisakazu

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  3. First Neutrino Oscillation Results from the NOvA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachdev, Kanika

    2016-11-29

    NOvA is a long-baseline neutrino oscillation experiment on the NuMI muon neutrino beam at Fermilab. It consists of two functionally identical, nearly fully-active liquid-scintillator tracking calorimeters. The Near Detector (ND) at Fermilab is used to study the neutrino beam spectrum and composition before oscillations occur. The Far Detector in northern Minnesota, 810 km away, observes the oscillated beam and is used to extract the oscillation parameters. NOvA is designed to observe oscillations in two channels: disappearance channel ( ν μ → ν μ ) and ν e appearance channel ( ν μ → ν e ). This paper reports themore » measurements of both these channels based on the first NOvA data taken from February 16, 2014 till May 15, 2015« less

  4. Subphotospheric Resonator and Local Oscillations in Sunspots

    NASA Astrophysics Data System (ADS)

    Zhugzhda, Yu. D.

    2018-05-01

    The conditions under which the subphotospheric slow-wave resonator can be responsible for the local oscillations in a sunspot have been determined. A rich spectrum of local 3-min oscillations can be produced by the subphotospheric resonator only if the magnetic field in the resonator magnetic flux tube is much weaker than the surrounding sunspot magnetic field. Convective upflows of hot plasma in the sunspot magnetic field satisfy this condition. Consequently, there must be a correlation between the local oscillations and umbral dots, because the latter are produced by convective flows. Various modes of operation of the subphotospheric resonator give rise to wave packets of 3-min oscillations and umbral flashes. It is shown that giant local umbral flashes can emerge under certain conditions for the excitation of oscillations in the subphotospheric resonator.

  5. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  6. Water-absorbing capacitor system for measuring relative humidity

    NASA Technical Reports Server (NTRS)

    Laue, Eric G. (Inventor)

    1987-01-01

    A method and apparatus using a known water-absorbent polymer as a capacitor which is operated at a dc voltage for measuring relative humidity is presented. When formed as a layer between porous electrically-conductive electrodes and operated in an RC oscillator circuit, the oscillator frequency varies inversely with the partial pressure of the moisture to be measured. In a preferred embodiment, the capacitor is formed from Nafion and is operated at a low dc voltage with a resistor as an RC circuit in an RC oscillator. At the low voltage, the leakage current is proper for oscillation over a satisfactory range. The frequency of oscillation varies in an essentially linear fashion with relative humidity which is represented by the moisture being absorbed into the Nafion. The oscillation frequency is detected by a frequency detector.

  7. Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection

    DOE PAGES

    You, Shutang; Kou, Gefei; Liu, Yong; ...

    2017-03-31

    Our study explores the impact of high-photovoltaic (PV) penetration on the inter-area oscillation modes of large-scale power grids. A series of dynamic models with various PV penetration levels are developed based on a detailed model representing the U.S. Eastern Interconnection (EI). Transient simulations are performed to investigate the change of inter-area oscillation modes with PV penetration. The impact of PV control strategies and parameter settings on inter-area oscillations is studied. This paper finds that as PV increases, the damping of the dominant oscillation mode decreases monotonically. We also observed that the mode shape varies with the PV control strategy andmore » new oscillation modes may emerge under inappropriate parameter settings in PV plant controls.« less

  8. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2011-02-04

    We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.

  9. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  10. An efficient approach to suppress the negative role of contrarian oscillators in synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Ruan, Zhongyuan; Liu, Zonghua

    2013-09-01

    It has been found that contrarian oscillators usually take a negative role in the collective behaviors formed by conformist oscillators. However, experiments revealed that it is also possible to achieve a strong coherence even when there are contrarians in the system such as neuron networks with both excitable and inhibitory neurons. To understand the underlying mechanism of this abnormal phenomenon, we here consider a complex network of coupled Kuramoto oscillators with mixed positive and negative couplings and present an efficient approach, i.e., tit-for-tat strategy, to suppress the negative role of contrarian oscillators in synchronization and thus increase the order parameter of synchronization. Two classes of contrarian oscillators are numerically studied and a brief theoretical analysis is provided to explain the numerical results.

  11. Weak photoacoustic signal detection based on the differential duffing oscillator

    NASA Astrophysics Data System (ADS)

    Li, Chenjing; Xu, Xuemei; Ding, Yipeng; Yin, Linzi; Dou, Beibei

    2018-04-01

    In view of photoacoustic spectroscopy theory, the relationship between weak photoacoustic signal and gas concentration is described. The studies, on the principle of Duffing oscillator for identifying state transition as well as determining the threshold value, have proven the feasibility of applying the Duffing oscillator in weak signal detection. An improved differential Duffing oscillator is proposed to identify weak signals with any frequency and ameliorate the signal-to-noise ratio. The analytical methods and numerical experiments of the novel model are introduced in detail to confirm its superiority. Then the signal detection system of weak photoacoustic based on differential Duffing oscillator is constructed, it is the first time that the weak signal detection method with differential Duffing oscillator is applied triumphantly in photoacoustic spectroscopy gas monitoring technology.

  12. Synchronization of an optomechanical system to an external drive

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph

    2017-05-01

    Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.

  13. Discussion paper: The kink oscillations of the thin nonuniform coronal loops

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.

    2006-12-01

    [1] MHD-oscillations of an inhomogeneous coronal loop consisting of a dense cord and a surrounding shell are investigated. Magnetic field in the cord is longitudinal and in the shell is azimuthal only. Usually the nonuniform field leads to the existence of resonance. However here we assume the resonance points non exist in the tube, i.e. the resonances are cutted. Our approach pursue a target - an investigation of an influence of the wave radiation on the tube oscillations. The resonant absorption of tube oscillation energy is eliminated. The same tube effectively radiate a magnetosonic waves into the environment and the Q-factor of the tube oscillations is small. The presented model can explain the fast damping of the coronal loop oscillations observed by the TRACE EUV channel.

  14. Optical distribution of local oscillators in future telecommunication satellite payloads

    NASA Astrophysics Data System (ADS)

    Benazet, Benoît; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    The distribution of high spectral purity reference signals over optical fibre in future telecommunication satellite payloads is presented. Several types of applications are considered, including the distribution of a reference frequency at 10 MHz (Ultra-Stable Reference Oscillator) as well as the distribution of a radiofrequency oscillator around 800 MHz (Master Local Oscillator). The results of both experimental and theoretical studies are reported. In order to meet phase noise requirements for the USRO distribution, the use of an optimised receiver circuit based on an optically synchronised oscillator is investigated. Finally, the optical distribution of microwave local oscillators at frequencies exceeding 20 GHz is described. Such a scheme paves the way to more advanced sub-systems involving optical frequency-mixing and optical transmission of microwave signals, with applications to multiple-beam active antennas.

  15. Mode competition and hopping in optomechanical nano-oscillators

    NASA Astrophysics Data System (ADS)

    Zhang, Xingwang; Lin, Tong; Tian, Feng; Du, Han; Zou, Yongchao; Chau, Fook Siong; Zhou, Guangya

    2018-04-01

    We investigate the inter-mode nonlinear interaction in the multi-mode optomechanical nano-oscillator which consists of coupled silicon nanocantilevers, where the integrated photonic crystal nanocavities provide the coupling between the optical and mechanical modes. Due to the self-saturation and cross-saturation of the mechanical gain, the inter-mode competition is observed, which leads to the bistable operation of the optomechanical nano-oscillator: only one of the mechanical modes can oscillate at any one time, and the oscillation of one mode extremely suppresses that of the other with a side mode suppression ratio (SMSR) up to 40 dB. In the meantime, mode hopping, i.e., the optomechanical oscillation switches from one mode to the other, is also observed and found to be able to be provoked by excitation laser fluctuations.

  16. Oscillatory threshold logic.

    PubMed

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.

  17. Microbar sensor

    DOEpatents

    Wachter, Eric A.; Thundat, Thomas G.

    1995-01-01

    A mass microsensor is fabricated with a microcantilever oscillated by a piezoelectric transducer. A chemical coating having absorptive or adsorptive affinity for a specifically targeted chemical or compound is applied to the microcantilever for oscillation in the monitored atmosphere. Molecules of the targeted chemical attach to the microcantilever coating resulting in an oscillating mass increase which influences the resonant frequency of the microcantilever oscillation. The rate at which the coated microcantilever accumulates the target chemical is functional of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change is related to the concentration of the target chemical within the monitored atmosphere. Such oscillation frequency changes are detected by a center-crossing photodiode which responds to a laser diode beam reflected from the microcantilever surface resulting in an output frequency from the photodiode that is synchronous with the microcantilever frequency.

  18. Inferring phase equations from multivariate time series.

    PubMed

    Tokuda, Isao T; Jain, Swati; Kiss, István Z; Hudson, John L

    2007-08-10

    An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.

  19. Study of {Lambda}-{Lambda} oscillation in quantum coherent {Lambda}{Lambda} by using J/{psi}{yields}{Lambda}{Lambda} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang Xianwei; Department of Physics, Henan Normal University, Xinxiang 453007; Li Haibo

    2010-03-01

    We discuss the possibility of searching for the {Lambda}-{Lambda} oscillations for coherent {Lambda}{Lambda} production in the J/{psi}{yields}{Lambda}{Lambda} decay process. The sensitivity of measurement of {Lambda}-{Lambda} oscillation in the external field at BES-III experiment is considered. These considerations indicate an alternative way to probe the {Delta}B=2 amplitude in addition to neutron oscillation experiments. Both coherent and time-dependent information can be used to extract the {Lambda}-{Lambda} oscillation parameter. With one year's luminosity at BES-III, we can set an upper limit of {delta}m{sub {Lambda}{Lambda}<}10{sup -15} MeV at 90% confidence level, corresponding to about 10{sup -6} s of {Lambda}-{Lambda} oscillation time.

  20. Stochastic Kuramoto oscillators with discrete phase states.

    PubMed

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  1. Stochastic Kuramoto oscillators with discrete phase states

    NASA Astrophysics Data System (ADS)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  2. Coupled oscillators: interesting experiments for high school students

    NASA Astrophysics Data System (ADS)

    Kodejška, Č.; Lepil, O.; Sedláčková, H.

    2018-07-01

    This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of this work, coupled mechanical oscillators of different types are shown and the data analysis by the Tracker or Vernier Logger Pro programs. The second part describes a measurement using two LC circuits with inductively or capacitive coupled electromagnetic oscillators and the obtained experimental results.

  3. Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators

    NASA Astrophysics Data System (ADS)

    Martins, T. V.; Toral, R.

    2011-09-01

    We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of a fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal.

  4. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  5. Experimental study of the robust global synchronization of Brockett oscillators

    NASA Astrophysics Data System (ADS)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2017-12-01

    This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

  6. Quantum synchronization of quantum van der Pol oscillators with trapped ions.

    PubMed

    Lee, Tony E; Sadeghpour, H R

    2013-12-06

    The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.

  7. Ergodicity of a singly-thermostated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold

    2016-03-01

    Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.

  8. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  9. Mode-locked long fibre master oscillator with intra-cavity power management and pulse energy > 12 µJ.

    PubMed

    Ivanenko, Alexey; Kobtsev, Sergey; Smirnov, Sergey; Kemmer, Anna

    2016-03-21

    Combined lengthening of the cavity of a passive mode-locked fibre master oscillator and implementation of a new concept of intra-cavity power management led to achievement of a record-high pulse energy directly at the output of the mode-locked fibre master oscillator (without any subsequent amplification) exceeding 12 µJ. Output powers at the level of > 12 µJ obtainable from a long-cavity mode-locked fibre master oscillator open new possibilities of application of all pulse types that can be generated in such oscillators.

  10. Hopf bifurcation with dihedral group symmetry - Coupled nonlinear oscillators

    NASA Technical Reports Server (NTRS)

    Golubitsky, Martin; Stewart, Ian

    1986-01-01

    The theory of Hopf bifurcation with symmetry developed by Golubitsky and Stewart (1985) is applied to systems of ODEs having the symmetries of a regular polygon, that is, whose symmetry group is dihedral. The existence and stability of symmetry-breaking branches of periodic solutions are considered. In particular, these results are applied to a general system of n nonlinear oscillators coupled symmetrically in a ring, and the generic oscillation patterns are described. It is found that the symmetry can force some oscillators to have twice the frequency of others. The case of four oscillators has exceptional features.

  11. Optimal parameters uncoupling vibration modes of oscillators

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  12. Spectral linewidth of spin-current nano-oscillators driven by nonlocal spin injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidov, V. E., E-mail: demidov@uni-muenster.de; Divinskiy, B.; Urazhdin, S.

    2015-11-16

    We study experimentally the auto-oscillation characteristics of magnetic nano-oscillators driven by pure spin currents generated by nonlocal spin injection. By combining micro-focus Brillouin light scattering spectroscopy with electronic microwave spectroscopy, we are able to simultaneously perform both the spatial and the high-resolution spectral analyses of auto-oscillations induced by spin current. We find that the devices exhibit a highly coherent dynamics with the spectral linewidth of a few megahertz at room temperature. This narrow linewidth can be achieved over a wide range of operational frequencies, demonstrating a significant potential of nonlocal oscillators for applications.

  13. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  14. Oscillating-flow loss test results in rectangular heat exchanger passages

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  15. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    NASA Technical Reports Server (NTRS)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  16. Collective neutrino oscillations and r-process nucleosynthesis in supernovae

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu

    2012-10-01

    Neutrinos can oscillate collectively in a core-collapse supernova. This phenomenon can occur much deeper inside the supernova envelope than what is predicted from the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect, and hence may have an impact on nucleosynthesis. The oscillation patterns and the r-process yields are sensitive to the details of the emitted neutrino fluxes, the sign of the neutrino mass hierarchy, the modeling of neutrino oscillations and the astrophysical conditions. The effects of collective neutrino oscillations on the r-process will be illustrated using representative late-time neutrino spectra and outflow models.

  17. PLCζ Induced Ca2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca2+ Induced InsP3 Formation From Cytoplasmic PIP2

    PubMed Central

    Sanders, Jessica R.; Ashley, Bethany; Moon, Anna; Woolley, Thomas E.; Swann, Karl

    2018-01-01

    Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm induced Ca2+ oscillations in eggs requires the hydrolysis of PIP2 from finely spaced cytoplasmic vesicles. PMID:29666796

  18. Aspects of neutrino oscillation in alternative gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sumanta, E-mail: sumantac.physics@gmail.com

    2015-10-01

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Having exploited the spherical symmetry we have confined ourselves to the equatorial plane in order to determine the spin and flavour oscillation frequency in this general set-up. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes.more » We have verified previous results along this line by transforming to Schwarzschild coordinates under appropriate limit. This finally lends itself to the probability of neutrino helicity flip which turns out to be non-zero. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to three different gravity theories. One, of them appears as low-energy approximation to string theory, where we have an additional field, namely, dilaton field coupled to Maxwell field tensor. This yields a realization of Reissner-Nordström solution in string theory at low-energy. Next one corresponds to generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action. Finally, we have also discussed regular black hole solutions. In all these cases the flavour oscillation probabilities can be determined for solar neutrinos and thus can be used to put bounds on the parameters of these gravity theories. While for spin oscillation probability, we have considered two cases, Gauss-Bonnet term added to the Einstein-Hilbert action and the f(R) gravity theory. In both these cases we could impose bounds on the parameters which are consistent with previous considerations. In a nutshell, in this work we have presented both spin and flavour oscillation frequency of neutrino in most general static spherically symmetric spacetime, encompassing a vast class of solutions, which when applied to three such instances in alternative theories for flavour oscillation and two alternative theories for spin oscillation put bounds on the parameters of these theories. Implications are also discussed.« less

  19. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly within the network, significant synchronization and anterograde propagation remained. A local increase in pacemaker frequency diminished anterograde propagation; the effects were strongly dependent on location, frequency gradient and coupling strength. In summary, the model puts forth the hypothesis that fundamental changes in oscillation patterns (ICC slow-wave activity or circular muscle contractions) can occur through physiological modulation of network properties. Strong evidence is provided to accept the ICC network as a system of coupled oscillators. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  20. Simultaneous Sea-Level Oscillations in Japanese Bays Induced by the Tsunami of Nankai-Trough Earthquake

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Furumura, T.; Imamura, F.; Yamashita, K.; Sugawara, D.

    2016-12-01

    In this study, we investigate the response of bays to the tsunami of Nankai-trough earthquake based on tsunami simulations and demonstrate the possibility that sea-level oscillation of each bay, which is induced by an incident tsunami, interacts with those of other bays. Several major cities in Japan, including the capital, are located in the bays near the Nankai trough and it is assumed that these cities will be largely affected by the tsunamis caused by recurring large earthquakes at the trough. Therefore, it is very important for these populated cities to understand the mechanism and properties of the tsunami-induced oscillations that continue for a long time in bays to draw up evacuation plans. To investigate the response of bays for various tsunamis that may occur in the Nankai trough area, we distributed the tsunami sources that have the form of a 2-D Gaussian function around the Nankai trough. From simulations with these sources, it was found that strong oscillations of bay water occur when the source is located in the bay itself or when strong oscillations occur in other bays. For example, when the Tosa bay oscillates, the Tokyo bay that is 600 km away from the Tosa bay also oscillates. Among the bays around the Nankai trough, the Suruga bay, the deepest bay in Japan with a 2500-km depth, oscillates more strongly than other bays for most cases. To check the influence of the strong oscillations in the Suruga bay on other bays, we conducted tsunami simulations using a modified topography model in which the Suruga bay is artificially landfilled. As a consequence, the strength of oscillations in the adjacent bays are reduced by 20-30%, suggesting the large influence of the distinguished oscillation of the Suruga bay on these bays. We finally conducted tsunami simulations using the eleven Nankai-trough earthquake scenarios of the Central Disaster Prevention Council (CDPC) of Japan as tsunami sources, and the mutual relation regarding the strengths of oscillations among the bays around the Nankai trough was confirmed irrespective of the earthquake scenarios. The results of this study suggest that oscillations of the bays do not occur independently in each bay but simultaneously occur among the bays. More detailed characteristics of the response of the bays to the tsunamis in the Nankai-trough area will be discussed in the presentation.

  1. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  2. Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch.

    PubMed

    Khaydarov, J D; Andrews, J H; Singer, K D

    1994-06-01

    We report on experimental intracavity compression of generated pulses (down to one quarter of the pumppulse duration) in a widely tunable synchronously pumped picosecond optical parametric oscillator. This pulse compression takes place when the optical parametric oscillator is well above threshold and is due to the pronounced group-velocity mismatch of the pump and oscillating waves in the nonlinear crystal.

  3. Recent Progress in Silicon Mems Oscillators

    DTIC Science & Technology

    2008-12-01

    MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of

  4. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  5. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com; Wang, Jie, E-mail: wangjie@iun.edu

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  6. Collective dynamics of identical bistable self-sustained oscillators with delayed feedback coupled via a mean field

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. I.; Kul'minskii, D. D.; Karavaev, A. S.; Prokhorov, M. D.

    2017-03-01

    Peculiarities of the collective dynamics of self-sustained oscillators in an ensemble of identical bistable systems with delayed feedback coupled via a mean field have been experimentally studied and numerically simulated. It is established that the ensemble can occur in so-called "chimera" states, whereby some elements exhibit synchronous oscillations, while other oscillators exhibit asynchronous behavior.

  7. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.

    PubMed

    Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya

    2016-11-28

    Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable platform for optomechanical control of integrated lasers, cavity quantum electrodynamics, and spontaneous emission. Furthermore, this device may open the door on the study of interactions between photons, phonons, and excitons in the quantum regime.

  8. Implication of the Slow-5 Oscillations in the Disruption of the Default-Mode Network in Healthy Aging and Stroke

    PubMed Central

    Nair, Veena A.; Mossahebi, Pouria; Young, Brittany M.; Chacon, Marcus; Jensen, Matthew; Birn, Rasmus M.; Meyerand, Mary E.; Prabhakaran, Vivek

    2016-01-01

    Abstract The processes of normal aging and aging-related pathologies subject the brain to an active re-organization of its brain networks. Among these, the default-mode network (DMN) is consistently implicated with a demonstrated reduction in functional connectivity within the network. However, no clear stipulation on the underlying mechanisms of the de-synchronization has yet been provided. In this study, we examined the spectral distribution of the intrinsic low-frequency oscillations (LFOs) of the DMN sub-networks in populations of young normals, older subjects, and acute and subacute ischemic stroke patients. The DMN sub-networks were derived using a mid-order group independent component analysis with 117 eyes-closed resting-state functional magnetic resonance imaging (rs-fMRI) sessions from volunteers in those population groups, isolating three robust components of the DMN among other resting-state networks. The posterior component of the DMN presented noticeable differences. Measures of amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) of the network component demonstrated a decrease in resting-state cortical oscillation power in the elderly (normal and patient), specifically in the slow-5 (0.01–0.027 Hz) range of oscillations. Furthermore, the contribution of the slow-5 oscillations during the resting state was diminished for a greater influence of the slow-4 (0.027–0.073 Hz) oscillations in the subacute stroke group, not only suggesting a vulnerability of the slow-5 oscillations to disruption but also indicating a change in the distribution of the oscillations within the resting-state frequencies. The reduction of network slow-5 fALFF in the posterior DMN component was found to present a potential association with behavioral measures, suggesting a brain–behavior relationship to those oscillations, with this change in behavior potentially resulting from an altered network integrity induced by a weakening of the slow-5 oscillations during the resting state. The repeated identification of those frequencies in the disruption of DMN stresses a critical role of the slow-5 oscillations in network disruption, and it accentuates the importance of managing those oscillations in the health of the DMN. PMID:27130180

  9. Comparing performance of three oscillating positive expiratory pressure devices at similar amplitude and frequencies of oscillations on displacement of mucus inside trachea during cough.

    PubMed

    Ragavan, Anpalaki J

    2012-03-13

    Performance of Flutter® (Axcan Scandipharm Inc, Birmingham, AL), Acapella® (Smiths Medicals Inc, Rockland, MA) and Quake® (Thayer Medical, Tucson, AZ) were compared at similar frequencies and amplitudes of oscillations at nine angles of the device in clearing simulated mucus inside a tracheal model (trachea) oriented at three angles with or without simulated constrictions in airway upstream of trachea. Displacement of 0.4mL of simulated mucus prepared with viscoelastic properties similar to healthy individuals (syrup-like) or patients with COPD (gel-like) using locust bean gum(LBG) solution (0.38g LBG in 100mL water) cross-linked with 3mL or 12mL borax solution (0.02 molar), respectively were measured inside trachea during coughs of 300ms at low cough velocity (15±0.5m/s) generated using a computer controlled solenoid valve. Oscillations were superimposed on cough by connecting the oscillator device to the outlet of the trachea. Frequency and amplitude of oscillations generated by Quake and Acapella and resulting mucus displacement were independent of angle of oscillator, while amplitude of oscillations and resulting mucus displacement generated by Flutter, increased up to 30o upward and 20o downward angles of Flutter from horizontal but decreased significantly thereafter. Displacement with Quake increased significantly with frequencies of oscillations up to 25 Hz and decreased thereafter but increased with amplitudes of oscillations up to 22±4.7 m/s. Quake showed significantly larger displacements than Flutter and Acapella at equal frequencies and amplitudes (p<0.05). Displacements were significantly larger with trachea positioned 30o upwards than horizontal or 20o downwards (p<0.0001). Displacement was the greatest for gel-like mucus than syrup-like (p<0.0001). Airway constrictions upstream resulted in enhanced displacement of mucus (p<0.0001). Mucus clearance can be significantly enhanced by coughing through oscillating positive expiratory devices that generate high amplitude oscillations at moderate frequencies, increasing frontal depths of mucus facing airflow and slightly increasing resistance to airflow in airways in COPD patients.

  10. Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG

    PubMed Central

    Moon, Hwasil; Kim, Changki; Kwon, Minhyuk; Chen, Yen Ting; Onushko, Tanya; Lodha, Neha; Christou, Evangelos A.

    2014-01-01

    Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07±2.76 years, 7 women) performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) power spectrum of force below 2 Hz; 3) EMG bursts; 4) power spectrum of EMG bursts below 2 Hz; and 5) power spectrum of the interference EMG from 10–300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R 2 = 0.82). For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0–0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68). The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R 2 = 0.51). Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35–60 Hz (R 2 = 0.95). In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz. PMID:25372038

  11. Modeling of termokinetic oscillations at partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving with time, but as well lead to significant increase of its mole fraction simultaneously twice decreasing the mole fraction of CO.

  12. Light-dependent changes in the leaflet movement rhythm of the plant Desmodium gyrans.

    PubMed

    Sharma, Vijay Kumar; Bardal, Tom Kristian; Johnsson, Anders

    2003-01-01

    The movements of the lateral leaflets of the Indian telegraph plant Desmodium gyrans (L. F.) DC, have earlier been studied in detail with regards to the effects of chemicals, DC currents, and static magnetic fields. In the present paper we have discussed the oscillation of the lateral leaflets under the influence of white light of various light levels (0-75 micromol x m(-2) x s(-1)), produced by an array of LEDs (light emitting diodes). LEDs were used in contrast to fluorescense tubes as in earlier studies in order to minimize changes of wavelength when light intensity was decreased or increased. Furthermore, care was taken to ensure that the temperature in the experimental chamber was constant. When the oscillations were first monitored in bright light, the oscillations were found to be very rapid and with decreasing light intensity the oscillations slowed down. For light levels lower than about 20 micromol x m(-2) x s(-1) the period of the oscillation of the lateral leaflets was almost constant (or even decreased slightly towards complete darkness). We also show that the oscillations could completely stop under prolonged darkness (for longer than about 6 h) and that such halted oscillations could be restarted in most of the leaflets when he light was turned back on. Such stopping of the oscillation of the lateral leaflets in prolonged darkness suggests that these short period oscillations of the lateral leaflets could have a daily component and in natural environment these oscillations could serve the purpose of optimising the amount of light falling on the leaflets or/and facilitating transpiration of water through stomata. Such a finding could have an implication for the answer to the long standing question of adaptive significance of short period oscillation of the Indian telegraph plant Desmodium gyrans (L. F.) DC.

  13. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.

    1994-01-01

    The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.

  14. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation

    PubMed Central

    2013-01-01

    Background VHG fermentation is a promising process engineering strategy aiming at improving ethanol titer, and thus saving energy consumption for ethanol distillation and distillage treatment. However, sustained process oscillation was observed during continuous VHG ethanol fermentation, which significantly affected ethanol fermentation performance of the system. Results Sustained process oscillation was investigated in continuous VHG ethanol fermentation, and stresses exerted on yeast cells by osmotic pressure from unfermented sugars and ethanol inhibition developed within the fermentation system were postulated to be major factors triggering this phenomenon. In this article, steady state was established for continuous ethanol fermentation with LG medium containing 120 g/L glucose, and then 160 g/L non-fermentable xylose was supplemented into the LG medium to simulate the osmotic stress on yeast cells under the VHG fermentation condition, but the fermentation process was still at steady state, indicating that the impact of osmotic stress on yeast cells was not the main reason for the process oscillation. However, when 30 g/L ethanol was supplemented into the LG medium to simulate the ethanol inhibition in yeast cells under the VHG fermentation condition, process oscillation was triggered, which was augmented with extended oscillation period and exaggerated oscillation amplitude as ethanol supplementation was increased to 50 g/L, but the process oscillation was gradually attenuated when the ethanol supplementations were stopped, and the steady state was restored. Furthermore, gas stripping was incorporated into the continuous VHG fermentation system to in situ remove ethanol produced by Saccharomyces cerevisiae, and the process oscillation was also attenuated, but restored after the gas stripping was interrupted. Conclusions Experimental results indicated that ethanol inhibition rather than osmotic stress on yeast cells is one of the main factors triggering the process oscillation under the VHG fermentation condition, and in the meantime gas stripping was validated to be an effective strategy for attenuating the process oscillation. PMID:24041271

  15. Structure of resonances and formation of stationary points in symmetrical chains of bilinear oscillators

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady V.; Pasternak, Elena; Shufrin, Igor

    2014-12-01

    Dynamics of strongly nonlinear systems can in many cases be modelled by bilinear oscillators, which are the oscillators whose springs have different stiffnesses in compression and tension. This underpins the analysis of a wide range of phenomena, from oscillations of fragmented structures, connections and mooring lines to deformation of geological media. Single bilinear oscillators were studied previously and the presence of multiple resonances both super- and sub-harmonic was found. Less attention was paid to systems of multiple bilinear oscillators that describe many natural and engineering processes such as for example the behaviour of fragmented solids. Here we fill this gap concentrating on the simplest case - 1D symmetrical chains of bilinear oscillators. We show that the presence and structure of resonances in a symmetric chain of bilinear oscillators with fixed ends depends upon the number of oscillating masses. Two elementary chains act as the basic ones: a single mass bilinear chain (a mass connected to the fixed points by two bilinear springs) that behaves as a linear oscillator with a single resonance and a two mass chain that is a coupled bilinear oscillator (two masses connected by three bilinear springs). The latter has multiple resonances. We demonstrate that longer chains either do not have resonances or get decomposed, in the resonance, into either the single mass or two mass elementary chains with stationary masses in between. The resonance frequencies are inherited from the basic chains of decomposition. We show that if the number of masses is odd the chain can be decomposed into the single mass bilinear chains separated by stationary masses. It then inherits the resonances of the single mass bilinear chain. The chains with the number of masses minus 2 divisible by 3 can be decomposed into the two mass bilinear chains separated by stationary masses and inherit the resonances of the two mass chains. The chains whose lengths satisfy both criteria (such as chains with 5, 11, 17 … masses) allow both types of resonances.

  16. Global dynamics of a stochastic neuronal oscillator

    NASA Astrophysics Data System (ADS)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  17. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.

    PubMed

    Houl, Jerry H; Ng, Fanny; Taylor, Pete; Hardin, Paul E

    2008-12-18

    The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.

  18. Global dynamics of a stochastic neuronal oscillator.

    PubMed

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  19. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  20. Interplay between non-NMDA and NMDA receptor activation during oscillatory wave propagation: Analyses of caffeine-induced oscillations in the visual cortex of rats.

    PubMed

    Yoshimura, Hiroshi; Sugai, Tokio; Kato, Nobuo; Tominaga, Takashi; Tominaga, Yoko; Hasegawa, Takahiro; Yao, Chenjuan; Akamatsu, Tetsuya

    2016-07-01

    Generation and propagation of oscillatory activities in cortical networks are important features of the brain. However, many issues related to oscillatory phenomena are unclear. We previously reported neocortical oscillation following caffeine treatment of rat brain slices. Input to the primary visual cortex (Oc1) generates N-methyl-d-aspartate (NMDA) receptor-dependent oscillations, and we proposed that the oscillatory signals originate in the secondary visual cortex (Oc2). Because non-NMDA and NMDA receptors cooperate in synaptic transmission, non-NMDA receptors may also play an important role in oscillatory activities. Here we investigated how non-NMDA receptor activities contribute to NMDA receptor-dependent oscillations by using optical recording methods. After induction of stable oscillations with caffeine application, blockade of NMDA receptors abolished the late stable oscillatory phase, but elicited 'hidden' non-NMDA receptor-dependent oscillation during the early depolarizing phase. An interesting finding is that the origin of the non-NMDA receptor-dependent oscillation moved from the Oc1, during the early phase, toward the origin of the NMDA receptor-dependent oscillation that is fixed in the Oc2. In addition, the frequency of the non-NMDA receptor-dependent oscillation was higher than that of the NMDA receptor-dependent oscillation. Thus, in one course of spatiotemporal oscillatory activities, the relative balance in receptor activities between non-NMDA and NMDA receptors gradually changes, and this may be due to the different kinetics of the two receptor types. These results suggest that interplay between the two receptor types in the areas of Oc1 and Oc2 may play an important role in oscillatory signal communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells

    PubMed Central

    Estevez, Ana Y; Strange, Kevin

    2005-01-01

    Inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in Caenorhabditis elegans intestinal epithelial cells regulate the nematode defecation cycle. The role of plasma membrane ion channels in intestinal cell oscillatory Ca2+ signalling is unknown. We have shown previously that cultured intestinal cells express a Ca2+-selective conductance, IORCa, that is biophysically similar to TRPM7 currents. IORCa activates slowly and stabilizes when cells are patch clamped with pipette solutions containing 10 mm BAPTA and free Ca2+ concentrations of ∼17 nm. However, when BAPTA concentration is lowered to 1 mm, IORCa oscillates. Oscillations in channel activity induced simultaneous oscillations in cytoplasmic Ca2+ levels. Removal of extracellular Ca2+ inhibited IORCa oscillations, whereas readdition of Ca2+ to the bath caused a rapid and transient reactivation of the current. Experimental manoeuvres that elevated intracellular Ca2+ blocked current oscillations. Elevation of intracellular Ca2+ in the presence of 10 mm BAPTA to block IORCa oscillations led to a dose-dependent increase in the rate of current activation. At intracellular Ca2+ concentrations of 250 nm, current activation was transient. Patch pipette solutions buffered with 1–4 mm of either BAPTA or EGTA gave rise to similar patterns of IORCa oscillations. We conclude that changes in Ca2+ concentration close to the intracellular opening of the channel pore regulate channel activity. Low concentrations of Ca2+ activate the channel. As Ca2+ enters and accumulates near the pore mouth, channel activity is inhibited. Oscillating plasma membrane Ca2+ entry may play a role in generating intracellular Ca2+ oscillations that regulate the C. elegans defecation rhythm. PMID:15961418

  2. Nonlinear oscillatory rarefied gas flow inside a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhu, Lianhua; Su, Wei; Wu, Lei; Zhang, Yonghao

    2018-04-01

    The nonlinear oscillation of rarefied gas flow inside a two-dimensional rectangular cavity is investigated on the basis of the Shakhov kinetic equation. The gas dynamics, heat transfer, and damping force are studied numerically via the discrete unified gas-kinetic scheme for a wide range of parameters, including gas rarefaction, cavity aspect ratio, and oscillation frequency. Contrary to the linear oscillation where the velocity, temperature, and heat flux are symmetrical and oscillate with the same frequency as the oscillating lid, flow properties in nonlinear oscillatory cases turn out to be asymmetrical, and second-harmonic oscillation of the temperature field is observed. As a consequence, the amplitude of the shear stress near the top-right corner of the cavity could be several times larger than that at the top-left corner, while the temperature at the top-right corner could be significantly higher than the wall temperature in nearly the whole oscillation period. For the linear oscillation with the frequency over a critical value, and for the nonlinear oscillation, the heat transfer from the hot to cold region dominates inside the cavity, which is contrary to the anti-Fourier heat transfer in a low-speed rarefied lid-driven cavity flow. The damping force exerted on the oscillating lid is studied in detail, and the scaling laws are developed to describe the dependency of the resonance and antiresonance frequencies (corresponding to the damping force at a local maximum and minimum, respectively) on the reciprocal aspect ratio from the near hydrodynamic to highly rarefied regimes. These findings could be useful in the design of the micro-electro-mechanical devices operating in the nonlinear-flow regime.

  3. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  4. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration.

    PubMed

    Miyagawa, Atsumi; Tatsumi, Sawako; Takahama, Wako; Fujii, Osamu; Nagamoto, Kenta; Kinoshita, Emi; Nomura, Kengo; Ikuta, Kayo; Fujii, Toru; Hanazaki, Ai; Kaneko, Ichiro; Segawa, Hiroko; Miyamoto, Ken-Ichi

    2018-05-01

    Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown. Here we investigated the roles of the sodium phosphate cotransporter SLC34 (Npt2) family and nicotinamide phosphoribosyltransferase (Nampt) in the daily oscillation of plasma inorganic phosphate levels. First, it is roughly linked to urinary inorganic phosphate excretion. Second, expression of renal Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and Npt2c knockout mice revealed the importance of renal inorganic phosphate reabsorption and cellular inorganic phosphate shifts in the daily oscillation. Third, experiments in which nicotinamide and a specific Nampt inhibitor (FK866) were administered in the active and rest phases revealed that the Nampt/NAD + system is involved in renal inorganic phosphate excretion. Additionally, for cellular shifts, liver-specific Nampt deletion disturbed the daily oscillation of plasma phosphate during the rest but not the active phase. In systemic Nampt +/- mice, NAD levels were significantly reduced in the liver, kidney, and intestine, and the daily oscillation (active and rest phases) of the plasma phosphate concentration was attenuated. Thus, the Nampt/NAD + system for Npt2 regulation and cellular shifts to tissues such as the liver play an important role in generating daily oscillation of plasma inorganic phosphate levels. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Modelling vortex-induced fluid-structure interaction.

    PubMed

    Benaroya, Haym; Gabbai, Rene D

    2008-04-13

    The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.

  6. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  7. First and second generation antipsychotics influence hippocampal gamma oscillations by interactions with 5-HT3 and D3 receptors

    PubMed Central

    Schulz, Steffen B; Heidmann, Karin E; Mike, Arpad; Klaft, Zin-Juan; Heinemann, Uwe; Gerevich, Zoltan

    2012-01-01

    BACKGROUND AND PURPOSE Disturbed cortical gamma band oscillations (30–80 Hz) have been observed in schizophrenia: positive symptoms of the disease correlate with an increase in gamma oscillation power, whereas negative symptoms are associated with a decrease. EXPERIMENTAL APPROACH Here we investigated the effects of first and second generation antipsychotics (FGAs and SGAs, respectively) on gamma oscillations. The FGAs haloperidol, flupenthixol, chlorpromazine, chlorprothixene and the SGAs clozapine, risperidone, ziprasidone, amisulpride were applied on gamma oscillations induced by acetylcholine and physostigmine in the CA3 region of rat hippocampal slices. KEY RESULTS Antipsychotics inhibited the power of gamma oscillations and increased the bandwidth of the gamma band. Haloperidol and clozapine had the highest inhibitory effects. To determine which receptor is responsible for the alterations in gamma oscillations, the effects of the antipsychotics were plotted against their pKi values for 19 receptors and analysed for correlation. Our results indicated that 5-HT3 receptors have an enhancing effect on gamma oscillations whereas dopamine D3 receptors inhibit them. To test this prediction, m-chlorophenylbiguanide, PD 128907 and CP 809101, selective agonists at 5-HT3, D3 and 5-HT2C receptors were applied and revealed that 5-HT3 receptors indeed enhanced the gamma power whereas D3 receptors reduced it. As predicted, 5-HT2C receptors had no effects on gamma oscillations. CONCLUSION AND IMPLICATIONS Our data suggest that antipsychotics alter hippocampal gamma oscillations by interacting with 5-HT3 and dopamine D3 receptors. Moreover, a correlation of receptor affinities with the biological effects can be used to predict targets for the pharmacological effects of multi-target drugs. PMID:22817643

  8. Solar oscillations and the problem of the internal structure of the sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severnyi, A.B.; Kotov, V.A.; Tsap, T.T.

    1979-11-01

    Analysis of five years of Doppler-shift measurements of global solar oscillations (1974--1978, more than 1000 h of observation, 215 days) demonstrates that the sun oscillates with a period of 160x/sup m/010 +- 0x/sup m/004 and an amplitude of approx. =1 m/sec. The phases of oscillation recorded in the Crimea and at Stanford, Kitt Peak, and Pic du Midi are in good agreement, so it is unlikely the oscillations are of telluric origin. Two effects are found: 1) a slow shift (synchronized at Stanford and in the Crimea) in the phase of maximum velocity from year to year; 2) a dependencemore » of the amplitude on the phase of the sun's 27/sup d/ rotation period, in accord with the idea that the oscillations are of quadrupole character (Z=2). These facts, as well as the absence of waves in concurrent observations of a telluric spectral line, preclude any interpretation of the results as a statistical artifact (as harmonics of the form 24/sup h//m in the quasiperiodic diurnal window). Differential extinction effects would induce oscillations smaller than observed by an order of magnitude. The general magnetic field of the sun as a star, its brightness, and its radio emission all seem to fluctuate in synchronism with the velocity oscillations. From time to time the oscillations disappear, possibly because of supergranules crossing the solar disk. The oscillations observed impose new constraints on the sun's internal structure. They suggest that nonradiative heat transfer may occur in the solar interior, thereby helping to resolve the problem of low neutrino flux.« less

  9. Transverse Oscillations of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Erdélyi, Robert

    2009-12-01

    On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.

  10. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  11. Baryogenesis via particle-antiparticle oscillations

    DOE PAGES

    Ipek, Seyda; March-Russell, John

    2016-06-29

    CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Hence, taking bino to be the lightest U(1) R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we showmore » that bino-antibino oscillations can produce the baryon asymmetry of the Universe.« less

  12. A coarse-grained simulation for the folding of molybdenum disulphide

    NASA Astrophysics Data System (ADS)

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Rabczuk, Timon

    2016-01-01

    We investigate the folding of molybdenum disulphide (MoS2) using coarse-grained (CG) simulations, in which all the parameters are determined analytically from the Stillinger-Weber atomic potential. Owing to its simplicity, the CG model can be used to derive analytic predictions for the relaxed configuration of the folded MoS2 and the resonant frequency for the breathing-like oscillation. We disclose two interesting phenomena for the breathing-like oscillation in the folded MoS2. First, the breathing-like oscillation is self-actuated, since this oscillation can be actuated by intrinsic thermal vibrations without any external actuation force. Second, the resonant frequency of the breathing-like oscillation is insensitive to the adsorption effect. These two features enable practical applications of the folded MoS2 based nanoresonators, where stable resonant oscillations are desirable.

  13. Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model.

    PubMed

    Shu, Hongying; Wang, Lin; Watmough, James

    2014-01-01

    Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.

  14. Position control system for use with micromechanical actuators

    DOEpatents

    Guckel, Henry; Stiers, Eric W.

    2000-01-01

    A positioning system adapted for use with micromechanical actuators provides feedback control of the position of the movable element of the actuator utilizing a low Q sensing coil. The effective inductance of the sensing coil changes with position of the movable element to change the frequency of oscillation of a variable oscillator. The output of the variable oscillator is compared in a phase detector to a reference oscillator signal. The phase detector provides a pulsed output having a pulse duty cycle related to the phase or frequency difference between the oscillator signals. The output of the phase detector is provided to a drive coil which applies a magnetic force to the movable element which balances the force of a spring. The movable element can be displaced to a new position by changing the frequency of the reference oscillator.

  15. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  16. Secret loss of unitarity due to the classical background

    NASA Astrophysics Data System (ADS)

    Yang, I.-Sheng

    2017-07-01

    We show that a quantum subsystem can become significantly entangled with a classical background through a process with few or no semiclassical backreactions. We study two quantum harmonic oscillators coupled to each other in a time-independent Hamiltonian. We compare it to its semiclassical approximation in which one of the oscillators is treated as the classical background. In this approximation, the remaining quantum oscillator has an effective Hamiltonian which is time-dependent, and its evolution appears to be unitary. However, in the fully quantum model, the two oscillators can entangle each other. Thus, the unitarity of either individual oscillator is never guaranteed. We derive the critical time scale after which the unitarity of either individual oscillator is irrevocably lost. In particular, we give an example that in the adiabatic limit, unitarity is lost before other relevant questions can be addressed.

  17. External synchronization of oscillating pulse edge on a transmission line with regularly spaced tunnel diodes.

    PubMed

    Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji

    2013-01-01

    We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.

  18. Drag reduction of turbulent pipe flows by circular-wall oscillation

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So; Graham, Mark

    1998-01-01

    An experimental study on turbulent pipe flows was conducted with a view to reduce their friction drag by oscillating a section of the pipe in a circumferential direction. The results indicated that the friction factor of the pipe is reduced by as much as 25% as a result of active manipulation of near-wall turbulence structure by circular-wall oscillation. An increase in the bulk velocity was clearly shown when the pipe was oscillated at a constant head, supporting the measured drag reduction in the present experiment. The percentage reduction in pipe friction was found to be better scaled with the nondimensional velocity of the oscillating wall than with its nondimensional period, confirming a suggestion that the drag reduction seem to be resulted from the realignment of longitudinal vortices into a circumferential direction by the wall oscillation.

  19. Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods

    PubMed Central

    Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.

    2008-01-01

    Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545

  20. Zeno effect in quantum Newton's cradle

    NASA Astrophysics Data System (ADS)

    Barros Hito, C. M.; Silva, M. B. E.; Bosco de Magalhães, A. R.

    2018-04-01

    We describe a chain of quantum oscillators which behaves analogously to Newton's cradle. The energy swings between the ends of the chain with very low population in its interior. Moreover, the oscillators at the ends can entangle with each other with negligible entanglement with the intermediate oscillators that mediate the process. Up to a certain number of oscillators, the system evolves in a manner similar to two coupled oscillators. The conditions for such behavior and the characteristic periods are analyzed. When that number exceeds a threshold, the dynamical regime changes to virtually freezing. In the oscillatory regime, Zeno effect can be observed. The parallelism between the Zeno dynamics in quantum Newton's cradle and in two coupled oscillators is highlighted. Promising platforms to observe such phenomena in the laboratory are cavities in photonic-band-gap material and trapped ions.

Top