Science.gov

Sample records for osmium phosphides

  1. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  2. Osmium in the rivers

    SciTech Connect

    Sharma, M. |; Wasserburg, G.J.

    1997-12-01

    There is a large uncertainty in our understanding of the behavior of osmium during weathering and transport into deep oceans and the osmium budget of the oceans. The problem stems chiefly from the lack of osmium data on the dissolved load in the rivers and in the estuaries. In this study, the concentration and isotopic composition of osmium have been determined in three North American rivers (the Mississippi, the Columbia, and the Connecticut) and one river draining central Europe and flowing into the Baltic Sea (the Vistula). Osmium concentration in the Mississippi and the Vistula is about 45 femto mol kg{sup -1}; it is about 14 and 15 femto mol kg{sup -1} for the Connecticut and the Columbia, respectively. The {sup 187}Os/{sup 186}Os ratios estimated for the Mississippi and the Vistula are 10.4 and 10.7, respectively. For the Connecticut and the Columbia {sup 187}Os/{sup 186}Os = 8.8 and 14.4, respectively. Of all the rivers examined, the Mississippi is by far the largest, supplying {approximately}1.6% of the total annual world river flow. Its osmium isotopic composition is identical to the upper Mississippi valley loesses indicating (1) congruent dissolution of the bedrock and (2) little or no impact of anthropogenic sources on the osmium isotopic composition of the dissolved load. The latter observation indicates that the upper limit of the anthropogenic input in the dissolved osmium load of the Mississippi outflow is about 250 g yr{sup -1}. While the osmium concentration of the Vistula is high the isotopic composition does not appear to have been affected by substantial pollution. The river data can be used to put limits on the mean residence time of osmium in the oceans ({bar {tau}}{sub Os}) and on the osmium budget of the oceans. 17 refs., 1 fig., 1 tab.

  3. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  4. Osmium Recycling in Subduction Zones

    PubMed

    Brandon; Creaser; Shirey; Carlson

    1996-05-10

    Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have neodymium and osmium isotopic compositions that are consistent with addition of 5 to 15 percent of subducted material to the present-day depleted mantle. These observations suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids or melts. These results place new constraints on the behavior of osmium (and possibly other platinum group elements) during subduction of oceanic crust by showing that osmium can be transported into the mantle wedge.

  5. Fatal aluminium phosphide poisoning

    PubMed Central

    Mittal, Sachin; Rani, Yashoda

    2015-01-01

    Aluminium phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law. PMID:27486362

  6. Zinc Phosphide Poisoning

    PubMed Central

    Doğan, Erdal; Güzel, Abdulmenap; Çiftçi, Taner; Aycan, İlker; Çetin, Bedri; Kavak, Gönül Ölmez

    2014-01-01

    Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes. PMID:25101186

  7. Fatal aluminum phosphide poisoning.

    PubMed

    Anger, F; Paysant, F; Brousse, F; Le Normand, I; Develay, P; Gaillard, Y; Baert, A; Le Gueut, M A; Pepin, G; Anger, J P

    2000-03-01

    A 39-year-old man committed suicide by ingestion of aluminum phosphide, a potent mole pesticide, which was available at the victim's workplace. The judicial authority ordered an autopsy, which ruled out any other cause of death. The victim was discovered 10 days after the ingestion of the pesticide. When aluminum phosphide comes into contact with humidity, it releases large quantities of hydrogen phosphine (PH3), a very toxic gas. Macroscopic examination during the autopsy revealed a very important asphyxia syndrome with major visceral congestion. Blood, urine, liver, kidney, adrenal, and heart samples were analyzed. Phosphine gas was absent in the blood and urine but present in the brain (94 mL/g), the liver (24 mL/g), and the kidneys (41 mL/g). High levels of phosphorus were found in the blood (76.3 mg/L) and liver (8.22 mg/g). Aluminum concentrations were very high in the blood (1.54 mg/L), brain (36 microg/g), and liver (75 microg/g) compared to the usual published values. Microscopic examination revealed congestion of all the organs studied and obvious asphyxia lesions in the pulmonary parenchyma. All these results confirmed a diagnosis of poisoning by aluminum phosphide. This report points out that this type of poisoning is rare and that hydrogen phosphine is very toxic. The phosphorus and aluminum concentrations observed and their distribution in the different viscera are discussed in relation to data in the literature.

  8. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  9. Managing aluminum phosphide poisonings.

    PubMed

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-07-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO(4), coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management.

  10. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  11. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  12. Aluminium phosphide-induced leukopenia

    PubMed Central

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  13. New osmium-based reagent for the dihydroxylation of alkenes.

    PubMed

    Donohoe, Timothy J; Harris, Robert M; Butterworth, Sam; Burrows, Jeremy N; Cowley, Andrew; Parker, Jeremy S

    2006-06-09

    The cis dihydroxylation of alkenes is most efficiently accomplished by reaction with osmium tetroxide. Recently, the expense and toxicity of osmium tetroxide have led to a number of attempts to harness alternative osmium-based reagents, including microencapsulation and solid support techniques. We describe here the development of a new nonvolatile, stable, and recoverable osmium-based reagent devised for the stoichiometric cis dihydroxylation of alkenes. Although attempts to make this new dihydroxylation work with catalytic amounts of this reagent were unsuccessful, we did develop a sensitive test for free osmium tetroxide leached from the reagent in situ: this test may well have uses in probing future applications of derivatized osmium reagents.

  14. Microencapsulation of osmium tetroxide in polyurea.

    PubMed

    Ley, Steven V; Ramarao, Chandrashekar; Lee, Ai-Lan; Østergaard, Niels; Smith, Stephen C; Shirley, Ian M

    2003-01-23

    [reaction: see text] Osmium tetroxide has been microencapsulated in a polyurea matrix using an in situ interfacial polymerization approach. These microcapsules have been effectively used as recoverable and reusable catalysts in the dihydroxylation of olefins

  15. Phonon properties of americium phosphide

    NASA Astrophysics Data System (ADS)

    Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.

    2016-05-01

    Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.

  16. Can Ni phosphides become viable hydroprocessing catalysts?

    SciTech Connect

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  17. Development of anticancer agents: wizardry with osmium.

    PubMed

    Hanif, Muhammad; Babak, Maria V; Hartinger, Christian G

    2014-10-01

    Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.

  18. The concentration and isotopic composition of osmium in the oceans

    SciTech Connect

    Sharma, M.; Papanastassiou, D.A.; Wasserburg, G.J.

    1997-08-01

    Osmium is one of the rarer elements in seawater. Analytical difficulties have previously prevented the direct measurement of the osmium concentration and isotopic composition in seawater. We report a chemical separation procedure that yields quantitative extraction of osmium standard and of osmium tracer by iron hydroxide precipitation from seawater doped with osmium standard, osmium tracer, and FeCl{sub 3}. The iron hydroxide precipitate is processed to extract osmium, using techniques developed for iron meteorites. Utilizing this procedure, water samples from the Pacific and Atlantic oceans were analyzed for osmium concentration and isotopic composition. Direct determination of the osmium concentration of seawater gives between 15 and 19 fM kg{sup -1}. Detailed experiments on different aliquots of one seawater sample from the North Atlantic Ocean, keeping the amounts of reagents constant, yield concentrations from 16 to 19 fM kg{sup -1}. The variability in concentration is outside the uncertainty introduced because of blanks and indicates a lack of full equilibration between the osmium tracer and seawater osmium. The most reliable osmium concentration of the North Atlantic deep ocean water is 19 fM kg {sup -1} with the {sup 187}Os/{sup 186}Os ratio being 8.7{+-}2 (2{sigma}). Detailed experiments on one seawater sample from the Central Pacific Ocean indicate that the most reliable osmium concentration of the deep ocean water from the Central Pacific is 19 fM kg{sup -1} with the {sup 187}Os/{sup 186}Os ratio being 8.7{+-}0.3 (2{sigma}). The directly measured osmium isotopic composition of the oceans is in good agreement with that obtained from the analysis of some rapidly accumulating organic rich sediments. A sample of ambient seawater around the Juan de Fuca Ridge gave {sup 187}Os/{sup 186}Os = 6.9{+-} 0.4. 42 refs., 6 figs., 4 tabs.

  19. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  20. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  1. Esophagobronchial fistula - A rare complication of aluminum phosphide poisoning.

    PubMed

    Bhargava, Sumeet; Rastogi, Rajul; Agarwal, Ajay; Jindal, Gaurav

    2011-01-01

    Aluminum phosphide is a systemic lethal poison. Fistulous communication between esophagus and airway tract (esophagorespiratory fistula) has rarely been reported in the survivors of aluminum phosphide poisoning. We report a case of benign esophagobronchial fistula secondary to aluminum phosphide poisoning, which to best of our knowledge has not been reported in the medical literature.

  2. Osmium complex binding to mismatched methylcytosine: effect of adjacent bases.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-01-01

    We investigated the efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes depended on the 5'-neighboring base of the 5-methylcytosine. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique side reaction was observed. However, the mismatched base pairs did not influence the selectivity of osmium complexation with methylated DNA.

  3. Gastrointestinal hemorrhage in aluminum phosphide poisoning.

    PubMed

    Hugar, Basappa S; Praveen, Shivaramareddy; Hosahally, Jayanth S; Kainoor, Sunilkumar; Shetty, Akshith Raj S

    2015-01-01

    Poisoning, both accidental and intentional, is a significant contributor to the mortality and morbidity throughout the world. The commonest pesticide poisoning is organophosphates followed by phosphides. Ingestion of phosphides can induce severe gastrointestinal irritation leading to hemorrhage and ulcerations. Gastrointestinal hemorrhages and ulcerations beyond the duodenum have not been reported in the literature. Here, we report a case of severe hemorrhages and ulcerations in stomach, duodenum, jejunum, and ileum observed in a 45-year-old male who had consumed five tablets of Celphos(®) (each 3 g with 56% aluminum phosphide and 44% Ammonium carbonate) to commit suicide. He started vomiting after consumption, and the vomitus was blood-tinged. Once the treatment was instituted, he was stable for a day and thereafter his condition gradually deteriorated. He died on the 4th day of hospitalization, and autopsy revealed features of multiorgan failure and extensive gastrointestinal hemorrhages.

  4. Pleural effusion in aluminum phosphide poisoning.

    PubMed

    Garg, Kranti; Mohapatra, Prasanta R; Sodhi, Mandeep K; Janmeja, Ashok K

    2012-10-01

    Aluminium phosphide (ALP) is a common agrochemical pesticide poisoning with high mortality rate. Primary manifestations are due to myocardial and gastrointestinal involvement. Pleural effusion in ALP poisoning is occasionally reported. We report a case of pleural effusion that developed after ALP ingestion and resolved along with recovery from poisoning.

  5. Pleural effusion in aluminum phosphide poisoning

    PubMed Central

    Garg, Kranti; Mohapatra, Prasanta R.; Sodhi, Mandeep K.; Janmeja, Ashok K.

    2012-01-01

    Aluminium phosphide (ALP) is a common agrochemical pesticide poisoning with high mortality rate. Primary manifestations are due to myocardial and gastrointestinal involvement. Pleural effusion in ALP poisoning is occasionally reported. We report a case of pleural effusion that developed after ALP ingestion and resolved along with recovery from poisoning. PMID:23243353

  6. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  7. Transition Metal Phosphide Hydroprocessing Catalysts: A review

    SciTech Connect

    Oyama, S.; Gott, T; Zhao, H; Lee, Y

    2009-01-01

    The diminishing quality of oil feedstocks coupled with increasingly more stringent environmental regulations limiting the content of sulfur in transportation fuels have given rise to a need for improved hydroprocessing technology. This review begins with a summary of the major improvements in hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) catalysts and processes that have been reported in recent years. It then describes a new class of hydroprocessing catalysts, the transition metal phosphides, which have emerged as a promising group of high-activity, stable catalysts. The phosphides have physical properties resembling ceramics, so are strong and hard, yet retain electronic and magnetic properties similar to metals. Their crystal structures are based on trigonal prisms, yet they do not form layered structures like the sulfides. They display excellent performance in HDS and HDN, with the most active phosphide, Ni{sub 2}P, having activity surpassing that of promoted sulfides on the basis of sites titrated by chemisorption (CO for the phosphides, O{sub 2} for the sulfides). In the HDS of difficult heteroaromatics like 4,6-dimethyldibenzothiophene Ni{sub 2}P operates by the hydrogenation pathway, while in the HDN of substituted nitrogen compounds like 2-methylpiperidine it carries out nucleophilic substitution. The active sites for hydrogenation in Ni{sub 2}P have a square pyramidal geometry, while those for direct hydrodesulfurization have a tetrahedral geometry. Overall, Ni{sub 2}P is a promising catalyst for deep HDS in the presence of nitrogen and aromatic compounds.

  8. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  9. The concentration and isotopic composition of osmium in the oceans

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-08-01

    Osmium is one of the rarer elements in seawater. Analytical difficulties have previously prevented the direct measurement of the osmium concentration and isotopic composition in seawater. We report a chemical separation procedure that yields quantitative extraction of osmium standard and of osmium tracer by iron hydroxide precipitation from seawater doped with osmium standard, osmium tracer, and FeCl 3. The iron hydroxide precipitate is processed to extract osmium, using techniques developed for iron meteorites. Utilizing this procedure, water samples from the Pacific and Atlantic oceans were analyzed for osmium concentration and isotopic composition. Direct determination of the osmium concentration of seawater gives between 15 and 19 fM kg -1. Detailed experiments on different aliquots of one seawater sample from the North Atlantic Ocean, keeping the amounts of reagents constant, yield concentrations from 16 to 19 fM kg -1. The variability in concentration is outside the uncertainty introduced because of blanks and indicates a lack of full equilibration between the osmium tracer and seawater osmium. The most reliable osmium concentration of the North Atlantic deep ocean water is 19 fM kg -1 with the 187Os 186Os ratio being 8.7 ± 0.2 (2σ). Detailed experiments on one seawater sample from the Central Pacific Ocean indicate that the most reliable osmium concentration of the deep ocean water from the Central Pacific is 19 fM kg -1 with the 187Os 186Os ratio being 8.7 ± 0.3 (2σ). The directly measured osmium isotopic composition of the oceans is in good agreement with that obtained from the analysis of some rapidly accumulating organic rich sediments ( Ravizza and Turekian, 1992). A sample of ambient seawater around the Juan de Fuca Ridge gave 187Os 186Os= 6.9 ± 0.4. This is distinctly lower than the deep-sea water value and may reflect local hydrothermal activity or some analytical difficulty with this sample. The osmium isotopic composition of the deep oceans

  10. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  11. Efficient water reduction with gallium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-07-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

  12. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  13. Aluminum phosphide poisoning: an unsolved riddle.

    PubMed

    Anand, R; Binukumar, B K; Gill, Kiran Dip

    2011-08-01

    Aluminum phosphide (ALP), a widely used insecticide and rodenticide, is also infamous for the mortality and morbidity it causes in ALP-poisoned individuals. The toxicity of metal phosphides is due to phosphine liberated when ingested phosphides come into contact with gut fluids. ALP poisoning is lethal, having a mortality rate in excess of 70%. Circulatory failure and severe hypotension are common features of ALP poisoning and frequent cause of death. Severe poisoning also has the potential to induce multi-organ failure. The exact site or mechanism of its action has not been proved in humans. Rather than targeting a single organ to cause gross damage, ALP seems to work at the cellular level, resulting in widespread damage leading to multiorgan dysfunction (MOD) and death. There has been proof in vitro that phosphine inhibits cytochrome c oxidase. However, it is unlikely that this interaction is the primary cause of its toxicity. Mitochondria could be the possible site of maximum damage in ALP poisoning, resulting in low ATP production followed by metabolic shutdown and MOD; also, owing to impairment in electron flow, there could be free radical generation and damage, again producing MOD. Evidence of reactive oxygen species-induced toxicity owing to ALP has been observed in insects and rats. A similar mechanism could also play a role in humans and contribute to the missing link in the pathogenesis of ALP toxicity. There is no specific antidote for ALP poisoning and supportive measures are all that are currently available.

  14. Anthropogenic forcings on the surficial osmium cycle.

    PubMed

    Rauch, Sebastien; Peucker-Ehrenbrink, Bernhard; Kylander, Malin E; Weiss, Dominik J; Martinez-Cortizas, Antonio; Heslop, David; Olid, Carolina; Mighall, Tim M; Hemond, Harold F

    2010-02-01

    Osmium is among the least abundant elements in the Earth's continental crust. Recent anthropogenic Os contamination of the environment from mining and smelting activities, automotive catalytic converter use, and hospital discharges has been documented. Here we present evidence for anthropogenic overprinting of the natural Os cycle using a ca. 7000-year record of atmospheric Os deposition and isotopic composition from an ombrotrophic peat bog in NW Spain. Preanthropogenic Os accumulation in this area is 0.10 +/- 0.04 ng m(-2) y(-1). The oldest strata showing human influence correspond to early metal mining and processing on the Iberian Peninsula (ca. 4700-2500 cal. BP). Elevated Os accumulation rates are found thereafter with a local maximum of 1.1 ng m(-2) y(-1) during the Roman occupation of the Iberian Peninsula (ca. 1930 cal. BP) and a further increase starting in 1750 AD with Os accumulation reaching 30 ng m(-2) y(-1) in the most recent samples. Osmium isotopic composition ((187)Os/(188)Os) indicates that recent elevated Os accumulation results from increased input of unradiogenic Os from industrial and automotive sources as well as from enhanced deposition of radiogenic Os through increased fossil fuel combustion and soil erosion. We posit that the rapid increase in catalyst-equipped vehicles, increased fossil fuel combustion, and changes in land-use make the changes observed in NW Spain globally relevant.

  15. Anticancer activity of osmium metalla-rectangles.

    PubMed

    Barry, Nicolas P E; Edafe, Fabio; Dyson, Paul J; Therrien, Bruno

    2010-03-21

    A series of cationic metalla-rectangles of the general formula [(p-cymene)(4)Os(4)(OO[intersection]OO)(2)(N[intersection]N)(2)](4+) have been obtained in methanol from the dinuclear arene osmium precursors [(p-cymene)(2)Os(2)(OO[intersection]OO)(2)Cl(2)] (OO[intersection]OO = 2,5-dioxydo-1,4-benzoquinonato (dhbq), 2,5-dichloro-1,4-benzoquinonato (dcbq)) by reaction with bipyridine linkers (N[intersection]N = 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethylene) in the presence of AgCF(3)SO(3). All complexes were isolated as triflate salts and characterised by NMR, IR and UV-visible spectroscopy. The cytotoxicities of the dinuclear and tetranuclear osmium complexes were established using ovarian A2780 cancer cell lines. The most active metalla-rectangle, [(p-cymene)(4)Os(4)(dhbq)(2)(4,4'-bipyridine)(2)](4+), shows an IC(50) value of 5.7 microM (comparable to cisplatin) against A2780 cancer cells and 7.5 microM against the cisplatin resistant A2780cisR cells.

  16. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  17. Anthropogenic Osmium in Airborne Particles from Woods Hole, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Sen, I. S.; Geboy, N.

    2012-12-01

    The global geochemical cycle of osmium has been significantly disturbed by the introduction of automobile exhaust catalysts to convert noxious gas emissions into more benign forms. Anthropogenic osmium has been reported in rainwater, snow, and in the urban airborne particles from around the world to reveal global-scale osmium pollution [1, 2]. In this study, we report on the platinum group element (PGE) concentrations and osmium isotope ratios of airborne particles (PM10) collected in Woods Hole, a small coastal town in Massachusetts to better understand inputs of anthropogenic osmium to rural environments. We further investigate the use of osmium isotopes to track sources of airborne particles and support source apportionment studies on a continental scale. The samples used in this study were collected at Woods Hole Oceanographic Institution over one year (2008-2009). From this collection twelve samples for which the backward air mass trajectories have been determined were selected for osmium isotope analyses. Our results show that the osmium and platinum concentrations are an order of magnitude lower when compared to downtown Boston [2]. The average Os, Pt and Ir concentrations are 0.006±0.012, 0.019±0.023, and 0.685±0.634 pg m-3, respectively. The 187Os/188Os of the aerosols range from 0.275 to 0.788. As continental crust is radiogenic (187Os/188Os >1) and PGE ore bodies generally have unradiogenic 187Os/188Os (~0.2), the unradiogenic 187Os/188Os signature of the aerosols indicates anthropogenic contributions. With 95% of the total osmium mobilization on land being attributed to human activities [3], it is clear that human imprint on airborne particles is not restricted to urban centers with high traffic flows, but also affects rural environments. Aerosol particles that have backward air mass trajectories from the Southwest, the densely populated and industrialized Eastern seaboard, are characterized by unradiogenic osmium, while air masses from the North

  18. Osmium coated diffraction grating in the Space Shuttle environment - Performance

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Samples coated with osmium were flown on the early Shuttle test flights, and on the return of these samples, the osmium coating was found to have disappeared, evidently due to the oxidation of the material in the atomic oxygen atmosphere. An instrument flown on the Spacelab 1 mission comprised an array of five spectrometers covering the extreme ultraviolet (EUV) to near-IR wavelengths. The EUV spectrometer contained an osmium-coated reflective grating located fairly deep within the instruments. Here, results of an assessment of the reflectivity and stability of the osmium surface over the course of the ten-day mission are reported. It is concluded that the osmium reflective coating remained stable relative to the spectrometer coated with MgF2 over the course of the mission. In addition, the ratio of sensitivity of these two spectrometers did not change in any major way from the time of the laboratory calibration until the time of flight two years later. Any changes are within the 50-percent calibration uncertainty.

  19. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    PubMed Central

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong

    2017-01-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer–Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  20. Thin boron phosphide coating as a corrosion-resistant layer

    DOEpatents

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  1. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    SciTech Connect

    Wang, Qingfang; Wang, Zhiqiang; Yin, Xiaoqian; Zhou, Linxi; Zhang, Minghui

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  2. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  3. Successful management of zinc phosphide poisoning

    PubMed Central

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-01-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction. PMID:27390464

  4. A successful management of aluminum phosphide intoxication

    PubMed Central

    Moazezi, Zoleika; Abedi, Seyed Hassan

    2011-01-01

    Background: Aluminum Phosphide or rice tablet is one of the most common pesticides which leads to accidental or intentional acute intoxication and finally death. In this paper, we describe a successful management of intoxication with rice tablet in a young girl. Case Presentation: A 14-year-old girl was admitted due to consumption of rice tablet. Gastric washing with two vials of sodium bicarbonate and discharge suction was done. In the first 24 hours, the patient underwent recurrent hydration, dopamine infusion with sodium bicarbonate, calcium, magnesium and amiodarone. On the second day of admission, the patient was transferred to intensive care unit (ICU) and five days later, she was discharged without liver or renal complications. Conclusion: Short interval between consumption of this tablet and start of the treatment and on time rescue to the patient can be some of the important factors to prevent early death in intoxication with this tablet. PMID:24049589

  5. BP: synthesis and properties of boron phosphide

    NASA Astrophysics Data System (ADS)

    Woo, Katherine; Lee, Kathleen; Kovnir, Kirill

    2016-07-01

    Cubic boron phosphide, BP, is notorious for its difficult synthesis, thus preventing it from being a widely used material in spite of having numerous favorable technological properties. In the current work, three different methods of synthesis are developed and compared: from the high temperature reaction of elements, Sn flux assisted synthesis, and a solid state metathesis reaction. Structural and optical properties of the products synthesized from the three methods were thoroughly characterized. Solid state metathesis is shown to be the cleanest and most efficient method in terms of reaction temperature and time. Synthesis by Sn flux resulted in a novel Sn-doped BP compound. Undoped BP samples exhibit an optical bandgap of ∼2.2 eV while Sn-doped BP exhibits a significantly smaller bandgap of 1.74 eV. All synthesized samples show high stability in concentrated hydrochloric acid, saturated sodium hydroxide solutions, and fresh aqua regia.

  6. Successful management of zinc phosphide poisoning.

    PubMed

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-06-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction.

  7. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10{sup 5} and mode volumes <10(λ/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  8. Method for production of free-standing polycrystalline boron phosphide film

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  9. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOEpatents

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  10. Osmium-labeled polynucleotides: reaction of osmium tetraoxide, with poly-1,N6-ethenoadenylic acid.

    PubMed

    Marzilli, L G; Hanson, B E; Kapili, L; Rose, S D; Beer, M

    1978-06-01

    Osmium tetraoxide, in the presence of ligands such as pyridine and bipyridine, adds across the etheno bridge of 1,N6-etheno-9-methyladenine and poly-1,N6-ethenoadenylic acid. The Os:P ratio in the labeled polynucleotide was approximately equal to 1 when bipyridine was used as the stabilizing ligand. A similar study with polycytidylic acid, which had been partially modified with chloroacetaldehyde so that some bases were converted to 3,N4-ethenocytosine, gave an OS:P ratio of approximately equal to 1.3. Calf-thymus DNA, in which the adenine and cytosine bases were modified by chloroacetaldehyde, gave an Os:P ratio of approximately equal to 1 after 24 h. These results suggest that 3,N4-ethenocytosine will add two Os labels.

  11. Discovery of tantalum, rhenium, osmium, and iridium isotopes

    SciTech Connect

    Robinson, R.; Thoennessen, M.

    2012-09-15

    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  12. Improved microbial electrocatalysis with osmium polymer modified electrodes.

    PubMed

    Patil, Sunil A; Hasan, Kamrul; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2012-10-21

    Using the well-known exoelectrogen Shewanella oneidensis MR-1, an osmium redox polymer modified anode exhibited ca. 4-fold increase in current generation. Additionally, a significant decrease in the start-up time for electrocatalysis was observed. The findings suggest that the inherent extracellular electron transfer capabilities of electrogens coupled with such polymers could enhance electrocatalysis.

  13. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    NASA Astrophysics Data System (ADS)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  14. Successful Management of Aluminium Phosphide Poisoning Resulting in Cardiac Arrest

    PubMed Central

    Hakimoğlu, Sedat; Dikey, İsmail; Sarı, Ali; Kekeç, Leyla; Tuzcu, Kasım; Karcıoğlu, Murat

    2015-01-01

    Aluminum phosphide has high toxicity when it is ingested, and in case of contact with moisture, phosphine gas is released. Aluminum phosphide poisoning causes metabolic acidosis, arrhythmia, acute respiratory distress syndrome and shock, and there is no specific antidote. A 17-year-old male patient was referred to our hospital because of aluminum phosphide poisoning with 1500 mg of aluminum phosphide tablets. The patient’s consciousness was clear but he was somnolent. Vital parameters were as follows: blood pressure: 85/56 mmHg, pulse: 88 beats/min, SpO2: 94%, temperature: 36.4°C. Because of hypotension, noradrenaline and dopamine infusions were started. The patient was intubated because of respiratory distress and loss of consciousness. Severe metabolic acidosis was determined in the arterial blood gas, and metabolic acidosis was corrected by sodium bicarbonate treatment. In addition to supportive therapy of the poisoning, haemodialysis was performed. Cardiac arrest occurred during follow-ups in the intensive care unit, and sinus rhythm was achieved after 10 min of cardiopulmonary resuscitation. The patient was discharged after three sessions of haemodialysis on the ninth day. As a result, haemodialysis contributed to symptomatic treatment of aluminum phosphide poisoning in this case report. PMID:27366514

  15. Successful Management of Aluminium Phosphide Poisoning Resulting in Cardiac Arrest.

    PubMed

    Hakimoğlu, Sedat; Dikey, İsmail; Sarı, Ali; Kekeç, Leyla; Tuzcu, Kasım; Karcıoğlu, Murat

    2015-08-01

    Aluminum phosphide has high toxicity when it is ingested, and in case of contact with moisture, phosphine gas is released. Aluminum phosphide poisoning causes metabolic acidosis, arrhythmia, acute respiratory distress syndrome and shock, and there is no specific antidote. A 17-year-old male patient was referred to our hospital because of aluminum phosphide poisoning with 1500 mg of aluminum phosphide tablets. The patient's consciousness was clear but he was somnolent. Vital parameters were as follows: blood pressure: 85/56 mmHg, pulse: 88 beats/min, SpO2: 94%, temperature: 36.4°C. Because of hypotension, noradrenaline and dopamine infusions were started. The patient was intubated because of respiratory distress and loss of consciousness. Severe metabolic acidosis was determined in the arterial blood gas, and metabolic acidosis was corrected by sodium bicarbonate treatment. In addition to supportive therapy of the poisoning, haemodialysis was performed. Cardiac arrest occurred during follow-ups in the intensive care unit, and sinus rhythm was achieved after 10 min of cardiopulmonary resuscitation. The patient was discharged after three sessions of haemodialysis on the ninth day. As a result, haemodialysis contributed to symptomatic treatment of aluminum phosphide poisoning in this case report.

  16. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction?

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.

    1995-01-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D??? layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  17. Osmium-187 Enrichment in Some Plumes: Evidence for Core-Mantle Interaction?

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Morgan, John W.; Horan, Mary F.

    1995-08-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D'' layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  18. An update on toxicology of aluminum phosphide

    PubMed Central

    2012-01-01

    Aluminum phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC), glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning. PMID:23351193

  19. An update on toxicology of aluminum phosphide.

    PubMed

    Moghadamnia, Ali Akbar

    2012-09-03

    Aluminum phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the "rice tablet". AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC), glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  20. Aluminum phosphide fatalities, new local experience.

    PubMed

    Abder-Rahman, H A; Battah, A H; Ibraheem, Y M; Shomaf, M S; el-Batainch, N

    2000-04-01

    Aluminum phosphide (AlP) pesticide is a highly toxic, low cost, and easily accessible rodenticidal agent. Its toxicity results from the liberation of phosphine gas upon exposure to moisture, which leads to multisystem involvement, resulting in serious consequences. The highly toxic parathion insecticide was a common cause of mortality in pesticide fatalities, prior to its banning. Its toxicity was familiar to the public as well as to physicians. Recently, ten fatalities due to AlP were encountered within a three-month period during spring, when it was used as a rodenticide in the vicinity of grain stores. The victims' ages ranged from 1-34 years. The circumstances of death were accidental in six cases, suicidal in two and possibly homicidal in two cases. Retrospectively, the clinical manifestations, scene investigation, autopsy, histological and toxicological findings supported the diagnosis of AlP intoxication. Immediate recognition was difficult due to unfamiliarity of the agent to the physicians. The occurrence of these fatalities might suggest changes of pattern in pesticide poisoning. This should raise the attention of the physician to the problem of AlP poisoning and also necessitates the awareness of the public to the hazards of this poison. Education, proper handling, strict observation and abiding by the regulations controlling this material are good protective measures against AlP poisoning.

  1. Osmium isotope constraints on Earth's late accretionary history

    USGS Publications Warehouse

    Morgan, J.W.

    1985-01-01

    Osmium isotope measurements reported by Alle??gre and Luck 1,2 indicate that terrestrial osmiridiums evolved in a mantle source region in which the osmium/rhenium ratio falls strictly within the range found in chondrites. This suggests that the highly siderophile elements in the Earth's mantle were introduced by a late influx of chondritic material and are not a result of endogenous processes. I have now examined the available data in more detail and conclude that the inferred Os/Re ratio of the Earth's mantle matches the E group and C3 chondrites, but that C1 and probably C2 chondrites were not major components of the material accreted in the late stages of mantle formation. ?? 1985 Nature Publishing Group.

  2. Elongated Dihydrogen versus Compressed Dihydride in Osmium Complexes.

    PubMed

    Eguillor, Beatriz; Esteruelas, Miguel A; Lezáun, Virginia; Oliván, Montserrat; Oñate, Enrique

    2017-01-31

    Small modifications on the co-ligands of complexes containing two coordinated hydrogen atoms can determine the elongated dihydrogen versus compressed dihydride nature of these species and therefore their chemical behavior. 2,6-diphenylpyridine favors the formation of the osmium(IV) cation [OsH2 (C6 H4 pyPh)(PiPr3 )2 ](+) , whereas 2-phenoxy-6-phenylpyridine, which contains an oxygen atom between the heterocycle and one of the phenyl groups, stabilizes the osmium(II) elongated dihydrogen species [Os(C6 H4 pyOPh)(η(2) -H2 )(PiPr3 )2 ](+) . In contrast to the latter, the former shows a marked tendency to undergo reductive elimination of the heterocycle.

  3. Anticancer Organometallic Osmium(II)-p-cymene Complexes.

    PubMed

    Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Clavel, Catherine M; Scopelliti, Rosario; Griffioen, Arjan W; Dyson, Paul J

    2015-09-01

    Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.

  4. Carbon phosphide monolayers with superior carrier mobility

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  5. Evaluation of aluminum phosphide against wood-destroying insects.

    PubMed

    Pant, Himani; Tripathi, Sadhna

    2012-02-01

    Aluminum phosphide, a well-known stored grain fumigant, available in solid formulation, has shown promise as wood fumigant. This chemical decomposes to phosphine when exposed to moisture. The feasibility of fumigant treatment to extend the service life of wood was evaluated in a small block test of two wood species. Hard wood (Mangifera indica L.) and conifer blocks (Pinus roxburghii Sargent) were fumigated with different concentrations (0.05, 0.1, 0.2, 0.4, 0.8, and 1.6%) of aluminum phosphide. Fumigated blocks were exposed to Lyctus africanus Lesne (Coleoptera; Lyctidae) larvae. Results revealed that aluminum phosphide showed complete mortality of Lyctus larvae at 0.2% concentration, that is, 0.93 g/m3 retention level. Mean mortality of 74% of Lyctus larvae was observed in soft wood blocks fumigated with lowest concentration, that is, 0.05% of aluminum phosphide, whereas in hard wood blocks > 85% mortality was observed at this concentration.

  6. Responses of Siberian ferrets to secondary zinc phosphide poisoning

    USGS Publications Warehouse

    Hill, E.F.; Carpenter, J.W.

    1982-01-01

    The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.

  7. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  8. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  9. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  10. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  11. Assessing potential risk to alligators, Alligator mississippiensis, from nutria control with zinc phosphide rodenticide baits.

    PubMed

    Witmer, Gary W; Eisemann, John D; Primus, Thomas M; O'Hare, Jeanette R; Perry, Kelly R; Elsey, Ruth M; Trosclair, Phillip L

    2010-06-01

    Nutria, Myocastor coypus, populations must be reduced when they cause substantial wetland damage. Control can include the rodenticide zinc phosphide, but the potential impacts to American alligators, Alligator mississippiensis, must be assessed. The mean amount of zinc phosphide per nutria found in nutria carcasses was 50 mg. Risk assessment determined that a conservative estimate for maximum exposure would be 173 mg zinc phosphide for a 28 kg alligator, or 6.2 mg/kg. Probit analysis found an LD(50) for alligators of 28 mg/kg. Our studies suggest that the use of zinc phosphide to manage nutria populations would pose only a small risk to alligators.

  12. Incompressibility of osmium metal at ultrahigh pressures and temperatures

    SciTech Connect

    Armentrout, Matt M.; Kavner, Abby

    2010-07-23

    Osmium is one of the most incompressible elemental metals, and is used as a matrix material for synthesis of ultrahard materials. To examine the behavior of osmium metal under extreme conditions of high pressure and temperature, we measured the thermal equation of state of osmium metal at pressures up to 50 GPa and temperatures up to 3000 K. X-ray diffraction measurements were conducted in the laser heated diamond anvil cell at GeoSoilEnviroCARS and the High Pressure at the Advanced Photon Source and beamline 12.2.2 at the advanced light source. Ambient temperature data give a zero pressure bulk modulus of 421 (3) GPa with a first pressure derivative fixed at 4. Fitting to a high temperature Birch-Murnaghan equation of state gives a room pressure thermal expansion of 1.51(0.06) x 10{sup -5} K{sup -1} with a first temperature derivative of 4.9(0.7) x 10{sup -9} K{sup -2} and the first temperature derivative of bulk modulus of be dK{sub 0}/dT = -0.055 (0.004). Fitting to a Mie-Grueneisen-Debye equation of state gives a Grueneisen parameter of 2.32 (0.08) with a q of 7.2 (1.4). A comparison of the high pressure, temperature behavior among Re, Pt, Os, shows that Os has the highest bulk modulus and lowest thermal expansion of the three, suggesting that Os-based ultrahard materials may be especially mechanically stable under extreme conditions.

  13. Osmium Metal Studied under High Pressure and Nonhydrostatic Stress

    SciTech Connect

    Weinberger,M.; Tolbert, S.; Kavner, A.

    2008-01-01

    Interest in osmium as an ultra-incompressible material and as an analog for the behavior of iron at high pressure has inspired recent studies of its mechanical properties. We have measured elastic and plastic deformation of Os metal at high pressures using in situ high pressure x-ray diffraction in the radial geometry. We show that Os has the highest yield strength observed for any pure metal, supporting up to 10 GPa at a pressure of 26 GPa. Furthermore, our data indicate changes in the nonhydrostatic apparent c/a ratio and clear lattice preferred orientation effects at pressures above 15 GPa.

  14. Organometallic osmium arene complexes with potent cancer cell cytotoxicity.

    PubMed

    Fu, Ying; Habtemariam, Abraha; Pizarro, Ana M; van Rijt, Sabine H; Healey, David J; Cooper, Patricia A; Shnyder, Steven D; Clarkson, Guy J; Sadler, Peter J

    2010-11-25

    Iodido osmium(II) complexes [Os(η(6)-arene)(XY)I](+) (XY = p-hydroxy or p-dimethylaminophenylazopyridine, arene = p-cymene or biphenyl) are potently cytotoxic at nanomolar concentrations toward a panel of human cancer cell lines; e.g., IC(50) = 140 nM for [Os(η(6)-bip)(azpy-NMe(2))I](+) toward A2780 ovarian cancer cells. They exhibit low toxicity and negligible deleterious effects in a colon cancer xenograft model, giving rise to the possibility of a broad therapeutic window. The most active complexes are stable and inert toward aquation. Their cytotoxic activity appears to involve redox mechanisms.

  15. Antagonizing STAT5B dimerization with an osmium complex

    PubMed Central

    Liu, Li-Juan; Wang, Wanhe; Kang, Tian-Shu; Liang, Jia-Xin; Liu, Chenfu; Kwong, Daniel W. J.; Wong, Vincent Kam Wai; Ma, Dik-Lung; Leung, Chung-Hang

    2016-01-01

    Targeting STAT5 is an appealing therapeutic strategy for the treatment of hematologic malignancies and inflammation. Here, we present the novel osmium(II) complex 1 as the first metal-based inhibitor of STAT5B dimerization. Complex 1 exhibited superior inhibitory activity against STAT5B DNA binding compared to STAT5A DNA binding. Moreover, 1 repressed STAT5B transcription and blocked STAT5B dimerization via binding to the STAT5B protein, thereby inhibiting STAT5B translocation to the nucleus. Furthermore, 1 was able to selectively inhibit STAT5B phosphorylation without affecting the expression level of STAT5B. PMID:27853239

  16. New modes for the osmium-catalyzed oxidative cyclization.

    PubMed

    Donohoe, Timothy J; Lindsay-Scott, Peter J; Parker, Jeremy S; Callens, Cedric K A

    2010-03-05

    The osmium-catalyzed oxidative cyclization of amino alcohol initiators formally derived from 1,4-dienes is an effective method for the construction of pyrrolidines, utilizing a novel reoxidant (4-nitropyridine N-oxide = NPNO). The cyclization of enantiopure syn- and anti-amino alcohols gives rise to enantiopure cis- and trans-2,5-disubstituted pyrrolidines, respectively. Moreover, the cyclization of bis-homoallylic amines bearing an exocyclic chelating group is shown to be a complementary method for trans-pyrrolidine formation.

  17. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  18. A quantitative link between recycling and osmium isotopes.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Brügmann, Gerhard; Batanova, Valentina G; Kuzmin, Dmitry V

    2008-07-25

    Recycled subducted ocean crust has been traced by elevated 187Os/188Os in some studies and by high nickel and low manganese contents in others. Here, we show that these tracers are linked for Quaternary lavas of Iceland, strengthening the recycling model. An estimate of the osmium isotopic composition of both the recycled crust and the mantle peridotite implies that Icelandic Quaternary lavas are derived in part from an ancient crustal component with model ages between 1.1 _ 109 and 1.8 _ 109 years and from a peridotitic end-member close to present-day oceanic mantle.

  19. Determination of series resistance of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving

    1991-01-01

    The series resistance of a solar cell is an important parameter, which must be minimized to achieve high cell efficiencies. The cell series resistance is affected by the starting material, its design, and processing. The theoretical approach proposed by Jia, et. al., is used to calculate the series resistance of indium phosphide solar cells. It is observed that the theoretical approach does not predict the series resistance correctly in all cases. The analysis was modified to include the use of effective junction ideality factor. The calculated results were compared with the available experimental results on indium phosphide solar cells processed by different techniques. It is found that the use of process dependent junction ideality factor leads to better estimation of series resistance. An accurate comprehensive series resistance model is warranted to give proper feedback for modifying the cell processing from the design state.

  20. Esophageal injuries due to aluminum phosphide tablet poisoning in India.

    PubMed

    Darbari, Anshuman; Tandon, Shekhar; Chaudhary, Sushant; Bharadwaj, Manu; Kumar, Ambrish; Singh, Gyan P

    2008-08-01

    Aluminum phosphide is a lethal systemic poison with 80%-90% mortality. Survivors have taken either a very small amount or the tablet had been exposed to air, rendering it less toxic, but often causing severe esophageal injuries. The presentation and treatment of 11 cases of esophageal injury due to aluminum phosphide are described. Ten patients had esophageal stricture, and 1 had tracheoesophageal fistula with stricture. Endoscopic bougie dilatation was sufficient in 7 patients, and surgical intervention was required in 4 who underwent definitive repair via gastric tube or feeding jejunostomy with a 2(nd) stage repair planned in 2. There was no mortality but significant morbidity. Mortality and morbidity might be prevented by withdrawing this pesticide from the market, making its sale difficult, or modifying the packaging.

  1. Unintentional poisoning by phosphine released from aluminum phosphide.

    PubMed

    Shadnia, S; Mehrpour, O; Abdollahi, M

    2008-01-01

    Aluminum phosphide as a releaser of phosphine gas is used as a grain preservative. In this case report, we describe an accidental severe poisoning in a 35-year-old woman, her 18-year-old daughter, and 6-year-old son caused by inhalation of phosphine gas released from 20 tablets of aluminum phosphide stored in 15 rice bags. The boy died 2 days after exposure before admission to hospital and any special treatment, but the others were admitted 48 h after exposure. They had signs and symptoms of severe toxicity, and their clinical course included metabolic acidosis, electrocardiographic changes, and hypotension. They were treated by intravenous administration of sodium bicarbonate, magnesium sulfate, and calcium gluconate. The patients were discharged after 3 days and followed up for 1 week after discharge. Rapid absorption of phosphine by inhalation, induction of hyperglycemia, and surviving of patients are interesting issues of this case report.

  2. Histopathological changes in cases of aluminium phosphide poisoning.

    PubMed

    Sinha, U S; Kapoor, A K; Singh, A K; Gupta, A; Mehrotra, Ravi

    2005-04-01

    Of a total of 205 poisoning deaths in our hospital in 2003, 83 cases were due to Aluminium phosphide poisoning and were further analyzed. Most vulnerable age group was 21-40 years and M:F ratio was 2:1. On naked eye examination, almost all the vital organs were found to be congested. On microscopic study, the liver showed central venous congestion, degeneration, haemorrhage, sinusoidal dilation, bile stasis, centrilobular necrosis, Kupffer cell hyperplasia, infiltration by mononuclear cells and fatty change. Microscopy of the lungs revealed alveolar thickening, oedema, dilated capillaries, collapsed alveoli and haemorrhage. In the kidney, changes were degeneration, infiltration, tubular dilation and cloudy swelling. Changes in the brain included congestion and coagulative necrosis and in the stomach, congestion and haemorrhage. Easy availability of this cheap and highly toxic substance was responsible for the sudden spurt of poisoning with aluminium phosphide.

  3. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    SciTech Connect

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa; Slenkamp, Karla M.; Kovarik, Libor; Bussell, Mark E.

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  4. Highly Ordered Mesoporous Bimetallic Phosphides as Efficient Oxygen Evolution Electrocatalysts

    SciTech Connect

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Li, Xiaolin; Du, Dan; Lin, Yuehe

    2016-09-15

    Oxygen evolution from water using earth abundant transition metal based catalysts is of importance for the commercialization of water electrolyzer. Herein, we report a novel hard templating method to synthesize transition metal phosphides with uniform shape and size. By virtue of the structural feature, synergistic effect among metals and the in situ formed active species, the as-prepared phosphides with optimized composition present enhanced electrocatalytic performance towards oxygen evolution reaction in alkaline solution. In details, the most efficient catalyst reaches a current density of 10 mA/cm2 at a potential of 1.511 V vs reversible hydrogen electrode, which is much lower than that of commercial RuO2 catalyst. Our work offers a new strategy to optimize the catalysts for water splitting by controlling the morphology and composition.

  5. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  6. Diphacinone and zinc phosphide toxicity in a flock of Peafowl.

    PubMed

    Shivaprasad, H L; Galey, F

    2001-12-01

    Toxicity probably due to a combination of diphacinone and zinc phosphide was diagnosed in a flock of peafowl, in which 35 birds in a flock of 80 died over a span of 10 days without any apparent clinical signs. Chickens and guinea fowl, 30 each on the same premises, were not affected. Plastic tubes containing diphacinone and zinc phosphide were used on the premises to control ground squirrels. Most of the six dead peafowl, which ranged in age from 6 months to 4 years, had an accumulation of serosanguinous fluid in the abdominal cavity, semi-clotted blood over the liver lobes, increased pericardial fluid, and enlarged and pale kidneys. Pellets of diphacinone and zinc phosphide were found in the crop and gizzard contents from most of the birds. Microscopically, most of the birds had mild to moderate centrolobular degeneration of hepatocytes and multifocal degeneration of myofibres in the heart with infiltration by a few mononuclear cells. Acute nephrosis and mucosal oedema in the oesophagus and crop were also observed. Toxicological analysis of the crop and gizzard contents revealed the presence of diphacinone and phosphine gas, and analysis of the crop contents from two birds for heavy metals revealed zinc levels of up to 6600 parts/10 6 . It was suspected that only the peafowl and not the chickens and guinea fowl were affected because peafowl, with their longer necks, were able to reach into the plastic tubes and eat the pellets.

  7. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  8. Osmium complexation of mismatched DNA: effect of the bases adjacent to mismatched 5-methylcytosine.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-03-18

    The efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes is a key point for the design of sequence-specific detection of DNA methylation. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes changed depending on the type of 5'-neighboring base of the 5-methylcytosine forming a mismatched base pair. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique "side reaction" was observed. However, the nature of the mismatched base pairs in the reaction site did not influence the selectivity of osmium complex formation with methylated DNA.

  9. Osmium tetroxide as a probe of RNA structure.

    PubMed

    Zhang, Jing; Li, Danbin; Zhang, Jun; Chen, Dongrong; Murchie, Alastair I H

    2017-04-01

    Structured RNAs have a central role in cellular function. The capability of structured RNAs to adopt fixed architectural structures or undergo dynamic conformational changes contributes to their diverse role in the regulation of gene expression. Although numerous biophysical and biochemical tools have been developed to study structured RNAs, there is a continuing need for the development of new methods for the investigation of RNA structures, especially methods that allow RNA structure to be studied in solution close to its native cellular conditions. Here we use osmium tetroxide (OsO4) as a chemical probe of RNA structure. In this method, we have used fluorescence-based sequencing technologies to detect OsO4 modified RNA. We characterized the requirements for OsO4 modification of RNA by investigating three known structured RNAs: the M-box, glycine riboswitch RNAs, and tRNA(asp) Our results show that OsO4 predominantly modifies RNA at uracils that are conformationally exposed on the surface of the RNA. We also show that changes in OsO4 reactivity at flexible positions in the RNA correlate with ligand-driven conformational changes in the RNA structure. Osmium tetroxide modification of RNA will provide insights into the structural features of RNAs that are relevant to their underlying biological functions.

  10. Use of continuous renal replacement therapy in acute aluminum phosphide poisoning: a novel therapy.

    PubMed

    Nasa, Prashant; Gupta, Ankur; Mangal, Kishore; Nagrani, S K; Raina, Sanjay; Yadav, Rohit

    2013-09-01

    Aluminum phosphide is most common cause of poisoning in northern India. There is no specific antidote available and management of such cases is mainly supportive with high mortality. We present two cases of severe acute aluminium phosphide poisoning where continuous renal replacement therapy (CRRT) was started early along with other resuscitative measures and both the patients survived.

  11. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  12. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  13. An osmium-DNA interstrand complex: application to facile DNA methylation analysis.

    PubMed

    Tanaka, Kazuo; Tainaka, Kazuki; Umemoto, Tadashi; Nomura, Akiko; Okamoto, Akimitsu

    2007-11-21

    Nucleic acids often acquire new functions by forming a variety of complexes with metal ions. Osmium, in an oxidized state, also reacts with C5-methylated pyrimidines. However, control of the sequence specificity of osmium complexation with DNA is still immature, and the value of the resulting complexes is unknown. We have designed a bipyridine-attached adenine derivative for sequence-specific osmium complexation. Sequence-specific osmium complexation was achieved by hybridization of a short DNA molecule containing this functional nucleotide to a target DNA sequence and resulted in the formation of a cross-linked structure. The interstrand cross-link clearly distinguished methylated cytosines from unmethylated cytosines and was used to quantify the degree of methylation at a specific cytosine in the genome.

  14. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zoufeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2016-06-07

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  15. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    SciTech Connect

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  16. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    SciTech Connect

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  17. Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives.

    PubMed

    van Rijt, Sabine H; Peacock, Anna F A; Johnstone, Russell D L; Parsons, Simon; Sadler, Peter J

    2009-02-16

    Chlorido osmium(II) arene [(eta(6)-biphenyl)Os(II)(X-pico)Cl] complexes containing X = Br (1), OH (2), and Me (3) as ortho, or X = Cl (4), CO(2)H (5), and Me (6) as para substituents on the picolinate (pico) ring have been synthesized and characterized. The X-ray crystal structures of 1 and 6 show typical "piano-stool" geometry with intermolecular pi-pi stacking of the biphenyl outer rings of 6. At 288 K the hydrolysis rates follow the order 2 > 6 > 4 > 3 > 5 > 1 with half-lives ranging from minutes to 4.4 h illustrating the influence of both electronic and steric effects of the substituents. The pK(a) values of the aqua adducts 3A, 4A, 5A, and 6A were all in the range of 6.3-6.6. The para-substituted pico complexes 4-6 readily formed adducts with both 9-ethyl guanine (9EtG) and 9-ethyl adenine (9EtA), but these were less favored for the ortho-substituted complexes 1 and 3 showing little reaction with 9EtG and 9EtA, respectively. Density-functional theory calculations confirmed the observed preferences for nucleobase binding for complex 1. In cytotoxicity assays with A2780, cisplatin-resistant A2780cis human ovarian, A549 human lung, and HCT116 colon cancer cells, only complexes 4 (p-Cl) and 6 (p-Me) exhibited significant activity (IC(50) values < 25 microM). Both of these complexes were as active as cisplatin in A2780 (ovarian) and HCT116 (colon) cell lines, and even overcome cisplatin resistance in the A2780cis (ovarian) cell line. The inactivity of 5 is attributed to the negative charge on its para carboxylate substituent. These data illustrate how the chemical reactivity and cancer cell cytotoxicity of osmium arene complexes can be controlled and "fine-tuned" by the use of steric and electronic effects of substituents on a chelating ligand to give osmium(II) arene complexes which are as active as cisplatin but have a different mechanism of action.

  18. Similar Biological Activities of Two Isostructural Ruthenium and Osmium Complexes

    SciTech Connect

    Maksimoska,J.; Williams, D.; Atilla-Gokcumen, G.; Smalley, K.; Carroll, P.; Webster, R.; Filippakopoulos, P.; Knapp, S.; Herlyn, M.; Meggers, E.

    2008-01-01

    In this study, we probe and verify the concept of designing unreactive bioactive metal complexes, in which the metal possesses a purely structural function, by investigating the consequences of replacing ruthenium in a bioactive half-sandwich kinase inhibitor scaffold by its heavier congener osmium. The two isostructural complexes are compared with respect to their anticancer properties in 1205?Lu melanoma cells, activation of the Wnt signaling pathway, IC50 values against the protein kinases GSK-3? and Pim-1, and binding modes to the protein kinase Pim-1 by protein crystallography. It was found that the two congeners display almost indistinguishable biological activities, which can be explained by their nearly identical three-dimensional structures and their identical mode of action as protein kinase inhibitors. This is a unique example in which the replacement of a metal in an anticancer scaffold by its heavier homologue does not alter its biological activity.

  19. PNP pincer osmium polyhydrides for catalytic dehydrogenation of primary alcohols.

    PubMed

    Bertoli, Marcello; Choualeb, Aldjia; Gusev, Dmitry G; Lough, Alan J; Major, Quinn; Moore, Brandon

    2011-09-21

    This paper reports the synthesis, structure, and properties of a series of PNP pincer complexes of osmium OsH(3)Cl[HN(C(2)H(4)P(i)Pr(2))(2)] (1), OsH(3)[N(C(2)H(4)P(i)Pr(2))(2)] (2), OsH(4)[HN(C(2)H(4)P(i)Pr(2))(2)] (3), and OsH(2)(PMe(3))[HN(C(2)H(4)P(i)Pr(2))(2)] (4). The tetrahydride 3 operates as an efficient catalyst at 0.1 mol% loading for the reactions of amination and dehydrogenative coupling of primary alcohols, producing secondary amines and symmetrical esters, respectively. The catalyst 3 is distinguished by outstanding stability, and it can be used in an aqueous environment at temperatures as high as 200 °C.

  20. Effect of aluminum phosphide on blood glucose level.

    PubMed

    Abder-Rahman, H

    1999-02-01

    Aluminum phosphide (AlP), a poison extensively used as a grain fumigant and rodenticide, can cause an increase or decrease in blood glucose levels Both hypo- and hyper-glycemic effects of AlP can be attributed to the wide variety of changes in magnesium, calcium, phosphate, citrate and cortisol levels. These biochemical changes can act as active stimulatory or inhibitory modulators to enzymes and hormones that catalyze and regulate glucose metabolism. According to the type of biochemical changes, AlP can cause either elevation, decrease or no change in blood glucose levels. A case of AlP-caused death is reported.

  1. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  2. Investigation of properties of the gallium phosphide/insulator interface

    SciTech Connect

    Kashkarov, P.K.; Nevzorov, A.N.; Sorokin, I.N.; Sosnovskikh, Yu.N.; Syagailo, A.I.

    1987-08-01

    In this paper, the capacitance-voltage characteristics (CVC) of gallium phosphide-based MIS structures with two types of insulating layer are studied over wide ranges of temperature and frequency. Single crystals of n-type GaP were used. The CVC recorded in the dark and under illumination are shown, as well as the energy-band diagram for the MIS structure with intrinsic oxide. The CVC of MIS structures with a dual insulating layer are also presented. It is found that the hysteresis in the CVC of GaP-based MIS structures decreases by practically an order to magnitude when dual oxide is applied.

  3. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  4. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  5. Electronic structure and bonding in skutterudite-type phosphides

    NASA Astrophysics Data System (ADS)

    Llunell, Miquel; Alemany, Pere; Alvarez, Santiago; Zhukov, Vladlen P.; Vernes, Andreas

    1996-04-01

    The electronic structures of the skutterudite-type phosphides CoP3 and NiP3 have been investigated by means of first-principles linear muffin-tin orbital-atomic sphere approximation band-structure calculations. The presence of P4 rings in the skutterudite structure is of great importance in determining the nature of the electronic bands around the Fermi level, composed mainly of π-type molecular orbitals of these units. The metallic character found for NiP3 should be ascribed to the phosphorus framework rather than to the metal atoms.

  6. Aluminum Phosphide Poisoning-Related Deaths in Tehran, Iran, 2006 to 2013.

    PubMed

    Etemadi-Aleagha, Afshar; Akhgari, Maryam; Iravani, Fariba Sardari

    2015-09-01

    Metal phosphides such as aluminum phosphide are potent insecticides. This highly toxic substance is used for rice and other grains protection in Iran. Due to its high toxicity potential and easy availability, it is widely used as a suicide poison. This substance has no effective antidote and the incidence of deaths due to its poisoning is increasing day by day in Iran. The present study was conducted to show the increasing incidence of fatal aluminum phosphide poisoning and its toxicological and forensic aspects in an 8-year study, 2006 to 2013. Autopsy sheets were reviewed and cases with the history of aluminum phosphide poisoning were selected. Toxicological analysis results, demographic and necroscopic examination findings were studied. A total of 51.8% of studied cases were female. Most of the cases were between 10 and 40 years old. The manner of death was self-poisoning in 85% of cases. Morphine, ethanol, and amitriptyline were the most common additional drugs detected in toxicological analysis. The incidence of fatal aluminum phosphide poisoning cases referred for phosphine analysis was 5.22 and 37.02 per million of population of Tehran in 2006 and 2013, respectively. The results of this study showed that in spite of ban and restrictions, there was a dramatic increase in the incidence of fatal aluminum phosphide poisoning in Tehran from 2006 to 2013. Safety alert should be highlighted in training program for all population groups about the toxic effects of aluminum phosphide tablets.

  7. Aluminum Phosphide Poisoning-Related Deaths in Tehran, Iran, 2006 to 2013

    PubMed Central

    Etemadi-Aleagha, Afshar; Akhgari, Maryam; Iravani, Fariba Sardari

    2015-01-01

    Abstract Metal phosphides such as aluminum phosphide are potent insecticides. This highly toxic substance is used for rice and other grains protection in Iran. Due to its high toxicity potential and easy availability, it is widely used as a suicide poison. This substance has no effective antidote and the incidence of deaths due to its poisoning is increasing day by day in Iran. The present study was conducted to show the increasing incidence of fatal aluminum phosphide poisoning and its toxicological and forensic aspects in an 8-year study, 2006 to 2013. Autopsy sheets were reviewed and cases with the history of aluminum phosphide poisoning were selected. Toxicological analysis results, demographic and necroscopic examination findings were studied. A total of 51.8% of studied cases were female. Most of the cases were between 10 and 40 years old. The manner of death was self-poisoning in 85% of cases. Morphine, ethanol, and amitriptyline were the most common additional drugs detected in toxicological analysis. The incidence of fatal aluminum phosphide poisoning cases referred for phosphine analysis was 5.22 and 37.02 per million of population of Tehran in 2006 and 2013, respectively. The results of this study showed that in spite of ban and restrictions, there was a dramatic increase in the incidence of fatal aluminum phosphide poisoning in Tehran from 2006 to 2013. Safety alert should be highlighted in training program for all population groups about the toxic effects of aluminum phosphide tablets. PMID:26402837

  8. Acute pancreatitis: a lesser-known complication of aluminum phosphide poisoning.

    PubMed

    Verma, S K; Ahmad, S; Shirazi, N; Barthwal, S P; Khurana, D; Chugh, M; Gambhir, H S

    2007-12-01

    There have been no case reports on aluminum phosphide-induced pancreatitis in the literature available. In this report, we present the case of a young man who developed acute pancreatitis and probably acute myocarditis following ingestion of aluminum phosphide pellets in the absence of the usual risk factors and after exclusion of other possible causes of pancreatitis. In the absence of re-challenge, we put forth the probable causative association of pancreatitis with aluminum phosphide or phosphine gas, its active pesticidal component.

  9. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  10. Earth's Phosphides in Levant and insights into the source of Archean prebiotic phosphorus

    PubMed Central

    Britvin, Sergey N.; Murashko, Michail N.; Vapnik, Yevgeny; Polekhovsky, Yury S.; Krivovichev, Sergey V.

    2015-01-01

    Natural phosphides - the minerals containing phosphorus in a redox state lower than zero – are common constituents of meteorites but virtually unknown on the Earth. Herein we present the first rich occurrence of iron-nickel phosphides of terrestrial origin. Phosphide-bearing rocks are exposed in three localities in the surroundings of the Dead Sea, Levant: in the northern Negev Desert, Israel and Transjordan Plateau, south of Amman, Jordan. Seven minerals from the ternary Fe-Ni-P system have been identified with five of them, NiP2, Ni5P4, Ni2P, FeP and FeP2, previously unknown in nature. The results of the present study could provide a new insight on the terrestrial origin of natural phosphides – the most likely source of reactive prebiotic phosphorus at the times of the early Earth. PMID:25667163

  11. Cooling rates for lunar samples determined with a diffusion model for phosphide exsolution

    NASA Technical Reports Server (NTRS)

    Hewins, R. H.; Goldstein, J. I.

    1977-01-01

    A numerical model for diffusion-controlled phase growth has been applied to the exsolution of phosphide lamellae in lunar metal grains. Computer simulations reproduce observed composition profiles, and reveal the influence of cooling rate on dimensional and compositional parameters of phosphide and metal. At lower cooling rates, phosphide lamellae are larger and the concentration of P in the metal host close to the interface is lower. Cooling rates inferred for Apollo 16 samples, based on compositions and dimensions of the phosphide-metal grains, are mostly in the range 1-100 C/day. These rates correspond to burial depths of 5-0.5 m for melt rocks and 3-0.3 m for breccias. This is in good agreement with thicknesses of lunar cooling units determined by other techniques.

  12. Single-Site Osmium Catalysts on MgO: Reactivity and Catalysis of CO Oxidation.

    PubMed

    Yang, Dong; Zhang, Shengjie; Xu, Pinghong; Browning, Nigel D; Dixon, David A; Gates, Bruce C

    2017-02-21

    MgO-supported osmium dioxo species, described as Os(=O)2 {-Osupport }1 or 2 (the brackets denote O atoms of the MgO surface), formed from Os3 (CO)12 via supported Os(CO)2 , and characterized by spectroscopy, microscopy, and theory, react with ethylene at 298 K to form osmium glycol species or with CO to give osmium mono- and di-carbonyls. Os(=O)2 {-Osupport }1 or 2 is the precursor of a CO oxidation catalyst characterized by a turnover frequency of 4.0×10(-3) (molecules of CO)/(Os atom×s) at 473 K; the active species are inferred to be osmium monocarbonyls. The structures and frequencies calculated at the level of density functional theory with the B3LYP functional bolster the experimental results and facilitate structural assignments. The lowest-energy structures have various osmium oxidation and spin states. The results demonstrate not only new chemistry of the supported single-site catalysts but also their complexity and the value of complementary techniques used in concert to unravel the chemistry.

  13. Sequential separation and spectrophotometric determination of osmium and platinum with 5-chloro-2-hydroxythiobenzhydrazide.

    PubMed

    Sawant, Shakuntala S

    2009-06-01

    Osmium was determined spectrophotometrically after coprecipitation with 5-chloro-2-hydroxythiobenzhydrazide at room temperature in the pH range 2.5-5.0 and collection on microcrystalline naphthalene. Beer's law was obeyed in the concentration range 1.8-14.4 ppm of osmium in a chloroform solution at 510 nm. The molar absorptivity and Sandell sensitivity were 1.056 x 10(4) l mol(-1) cm(-1) and 0.018 ppm, respectively. Six replicate analyses of a solution containing 7.2 ppm of osmium gave a mean absorbance of 0.405 with a standard deviation of 0.013 and a relative standard deviation of 0.92%. The complex was stable for over 72 h. The metal-to-ligand ratio in the complex was 1:2. Interference from various ions was studied, and the method was applied to the determination of osmium in various synthetic mixtures containing commonly associated metals and corresponding to the alloy composition. The sequential separation and determination of osmium and platinum is reported.

  14. Photoelectrochemical cell having photoanode with thin boron phosphide coating as a corrosion resistant layer

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1984-01-01

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anitcorrosive, and providing it with unexpectedly improved photoresponsive properties.

  15. Successful Treatment of Severe Metabolic Acidosis Due to Acute Aluminum Phosphide Poisoning With Peritoneal Dialysis: a Report of 2 Cases.

    PubMed

    Bashardoust, Bahman; Farzaneh, Esmaeil; Habibzadeh, Afshin; Seyyed Sadeghi, Mir Salim

    2017-03-01

    Aluminum phosphide poisoning is common in our region. It can cause severe metabolic acidosis and persistent hypotension, which lead to cardiogenic shock and subsequently mortality. Oliguric or anuric acute kidney injury is seen in almost all patients with aluminum phosphide poisoning. Renal replacement therapies are recommended in these patients to improve metabolic acidosis and increase the rate of survival. We report 2 cases of severe acute aluminum phosphide poisoning treated successfully with peritoneal dialysis.

  16. Clinical characteristics of zinc phosphide poisoning in Thailand

    PubMed Central

    Trakulsrichai, Satariya; Kosanyawat, Natcha; Atiksawedparit, Pongsakorn; Sriapha, Charuwan; Tongpoo, Achara; Udomsubpayakul, Umaporn; Rittilert, Panee; Wananukul, Winai

    2017-01-01

    Objective The objectives of this study were to describe the clinical characteristics and outcomes of poisoning by zinc phosphide, a common rodenticide in Thailand, and to evaluate whether these outcomes can be prognosticated by the clinical presentation. Materials and methods A 3-year retrospective cohort study was performed using data from the Ramathibodi Poison Center Toxic Exposure Surveillance System. Results In total, 455 poisonings were identified. Most were males (60.5%) and from the central region of Thailand (71.0%). The mean age was 39.91±19.15 years. The most common route of exposure was oral (99.3%). Most patients showed normal vital signs, oxygen saturation, and consciousness at the first presentation. The three most common clinical presentations were gastrointestinal (GI; 68.8%), cardiovascular (22.0%), and respiratory (13.8%) signs and symptoms. Most patients had normal blood chemistry laboratory results and chest X-ray findings at presentation. The median hospital stay was 2 days, and the mortality rate was 7%. Approximately 70% of patients underwent GI decontamination, including gastric lavage and a single dose of activated charcoal. In all, 31 patients were intubated and required ventilator support. Inotropic drugs were given to 4.2% of patients. Four moribund patients also received hyperinsulinemia–euglycemia therapy and intravenous hydrocortisone; however, all died. Patients who survived and died showed significant differences in age, duration from taking zinc phosphide to hospital presentation, abnormal vital signs at presentation (tachycardia, low blood pressure, and tachypnea), acidosis, hypernatremia, hyperkalemia, in-hospital acute kidney injury, in-hospital hypoglycemia, endotracheal tube intubation, and inotropic requirement during hospitalization (P<0.05). Conclusion Zinc phosphide poisoning causes fatalities. Most patients have mild symptoms, and GI symptoms are the most common. Patients who present with abnormal vital signs or

  17. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  18. Osmium isotope stratigraphy of a marine ferromanganese crust

    USGS Publications Warehouse

    Klemm, V.; Levasseur, S.; Frank, M.; Hein, J.R.; Halliday, A.N.

    2005-01-01

    Ferromanganese crusts provide records of long term change in ocean circulation and continental weathering. However, calibrating their age prior to 10 Ma has been entirely based on empirical growth rate models using Co concentrations, which have inherently large uncertainties and fail to detect hiatuses and erosional events. We present a new method for dating these crusts by measuring their osmium (Os) isotope record and matching it to the well-known marine Os isotope evolution of the past 80 Ma. The well-characterised crust CD29-2 from the central Pacific, was believed to define a record of paleooceanographic change from 50 Ma. Previous growth rate estimates based on the Co method are consistent with the new Os isotope stratigraphy but the dating was grossly inaccurate due to long hiatuses that are now detectable. The new chronology shows that it in fact started growing prior to 70 Ma in the late Cretaceous and stopped growing or was eroded between 13.5 and 47 Ma. With this new technique it is now possible to exploit the full potential of the oceanographic and climatic records stored in Fe-Mn crusts. ?? 2005 Elsevier B.V. All rights reserved.

  19. Osmium isotope evidence for a large Late Triassic impact event.

    PubMed

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio ((187)Os/(188)Osi) of ~0.477 to unradiogenic values of ~0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous-Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3-7.8 km in diameter) produced a global decrease in seawater (187)Os/(188)Os ratios in the Late Triassic.

  20. Rhenium-osmium isotope systematics of carbonaceous chondrites

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.

    1989-01-01

    Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite 187Re/186Os and 187OS/186Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.

  1. Rhenium-osmium isotope systematics of carbonaceous chondrites.

    PubMed

    Walker, R J; Morgan, J W

    1989-01-27

    Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite (187)Re/(186)Os and (l87)Os/(l86)Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.

  2. Rhenium-osmium-isotope constraints on the age of iron meteorites

    NASA Technical Reports Server (NTRS)

    Horan, M. F.; Morgan, J. W.; Walker, R. J.; Grossman, J. N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately +/-31 million years for meteorites about 4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of Re-187, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  3. Rhenium-osmium isotope constraints on the age of iron meteorites

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately ??31 million years for meteorites ???4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of 187Re, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  4. Conduction electron g-factors in ruthenium and osmium from de Haas-van Alphen measurements

    NASA Astrophysics Data System (ADS)

    Startsev, V. E.; Coleridge, P. T.; Templeton, I. M.; Fawcett, E.; Muir, C.; Perz, J. M.

    1984-04-01

    Conduction electron g-factors have been deduced from de Haas-van Alphen line shapes in the hexagonal group VIII 4 d transition metal ruthenium and the electronically analogous 5 d metal osmium. The values for orbits normal to [0001] are 1.8±0.1 and 1.3±0.1 for the ellipsoids centered on the line LM in ruthenium and osmium, respectively, and 1.9±0.2 for the Γ-centered ellipsoid in ruthenium. The more marked suppression of the g-factor in osmium, where spin-orbit coupling is stronger, is consistent with recent theoretical studies of transition metal g-factor trends.

  5. Fabrication and properties of gallium phosphide variable colour displays

    NASA Technical Reports Server (NTRS)

    Effer, D.; Macdonald, R. A.; Macgregor, G. M.; Webb, W. A.; Kennedy, D. I.

    1973-01-01

    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission.

  6. Indium phosphide nanowires integrated directly on carbon fibers

    NASA Astrophysics Data System (ADS)

    Lohn, Andrew J.; Longson, Timothy J.; Kobayashi, Nobuhiko P.

    2011-10-01

    We have demonstrated the growth of a group III-V semiconductor binary alloy, indium phosphide (InP), directly on carbon fibers thereby enabling a union of semiconductor and structural materials. Carbon fibers were prepared by electrospinning solutions of polyacrilonitrile (PAN) and dimethylformamide (DMF) followed by carbonization at 750 °C in inert atmosphere. Gold nanoparticles dispersed on the fibers catalyzed nanowire growth by metal organic chemical vapor deposition. X-ray diffraction suggests that the nanowires appear to be epitaxially grown along the (110) direction. Geometrical parameters have been determined by scanning electron microscopy and transmission electron microscopy and elemental analysis has been carried out using energy dispersive spectroscopy. The nanowires grown from carbon fibers are composed of an amorphous shell and crystalline core which alternates at high spatial frequency.mountai

  7. Computational prediction of the diversity of monolayer boron phosphide allotropes

    NASA Astrophysics Data System (ADS)

    Zhu, Zhili; Cai, Xiaolin; Niu, Chunyao; Wang, Chongze; Jia, Yu

    2016-10-01

    We propose previously unrecognized allotropes of monolayer boron phosphorus (BP) based on ab initio density functional calculations. In addition to the hexagonal structure of h-BP, four types of boron phosphide compounds were predicted to be stable as monolayers. They can form sp2 hybridized planar structures composed of 6-membered rings, and buckled geometries including 4-8 or 3-9 membered rings with sp3 like bonding for P atoms. The calculated Bader charges illustrate their ionic characters with the charge transfers from B to P atoms. The competing between the electrostatic energy and the bonding energy of sp2 and sp3 hybridizations reflected in P atoms results in multiple structures of BP. These 2D BP structures can be semiconducting or metallic depending on their geometric structures. Our findings significantly broaden the diversity of monolayer BP allotropes and provide valuable guidance to other 2D group-III-V allotropes.

  8. Band structures in silicene on monolayer gallium phosphide substrate

    NASA Astrophysics Data System (ADS)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  9. Metal and phosphide phases in Luna 24 soil fragments

    NASA Astrophysics Data System (ADS)

    Axon, H. J.; Nasir, M. J.; Knowles, F.

    1980-06-01

    Soil fragments in the 106-150 and 150-250 micron size ranges were selected for metallographic and microprobe examination on the basis of their magnetic properties. Serial sections of the mounted fragments were examined. One fragment proved to be a compositionally zoned crystal of phosphide with no metal phase but partly embedded in glass. Another was a coarse-grained association of silica with ilmenite and fayalite with a 5-micron particle of metallic iron in troilite. One splinter of oxide contained a central spine of metallic iron. The remaining six fragments contained 10-micron particles of iron-nickel-cobalt alloy with compositions in either the 'meteoritic' or the low Ni-low Co sub-meteoritic composition ranges of Ni, Co content. In some fragments separate particles of alloy had different Ni, Co contents. No particles of high Co metal were encountered.

  10. Electronic structure and thermoelectric prospects of phosphide skutterudites

    NASA Astrophysics Data System (ADS)

    Fornari, Marco; Singh, David J.

    1999-04-01

    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first-principles calculations. We find that stoichiometric CoP3 differs from the corresponding arsenide and antimonide in that it is metallic. As such, the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe4P12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La-filled material may be more favorable.

  11. Spectrophotometric determination of hydrogen peroxide with osmium(VIII) and m-carboxyphenylfluorone

    NASA Astrophysics Data System (ADS)

    Hoshino, Mitsuru; Kamino, Shinichiro; Doi, Mitsunobu; Takada, Shingo; Mitani, Shota; Yanagihara, Rika; Asano, Mamiko; Yamaguchi, Takako; Fujita, Yoshikazu

    2014-01-01

    Spectrophotometric determination of hydrogen peroxide was accomplished with osmium(VIII) and m-carboxyphenylfluorone (MCPF) in the presence of cetyltrimethylammonium chloride (CTAC). In the determination of hydrogen peroxide based on the fading of the color of osmium(VIII)-MCPF complex, Beer's law was obeyed in the range 20-406 ng mL-1, with an effective molar absorption coefficient (at 580 nm) of 5.21 × 104 L mol-1 cm-1 and a relative standard deviation of 0.33% (n = 6). Further, we performed the characterization of MCPF and obtained the crystal structure.

  12. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os.

  13. Low earth orbit environmental effects on osmium and related optical thin-film coatings

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Herzig, H.; Osantowski, J. F.; Toft, A. R.

    1985-01-01

    A number of samples of optical thin film materials were flown on Shuttle flight STS-8 as part of an experiment to evaluate their interaction with residual atomic oxygen in low earth orbit. Osmium was selected because of its usefulness as a reflective optical coating for far-UV instruments and for confirmation of results from previous Shuttle flights in which such coatings disappeared. Reflectance data and photographic evidence are presented to support the hypothesis that the osmium disappearance is due to reaction with oxygen to form a volatile oxide. Platinum and iridium, which were included for comparison, fared much better.

  14. Spectrophotometric determination of hydrogen peroxide with osmium(VIII) and m-carboxyphenylfluorone.

    PubMed

    Hoshino, Mitsuru; Kamino, Shinichiro; Doi, Mitsunobu; Takada, Shingo; Mitani, Shota; Yanagihara, Rika; Asano, Mamiko; Yamaguchi, Takako; Fujita, Yoshikazu

    2014-01-03

    Spectrophotometric determination of hydrogen peroxide was accomplished with osmium(VIII) and m-carboxyphenylfluorone (MCPF) in the presence of cetyltrimethylammonium chloride (CTAC). In the determination of hydrogen peroxide based on the fading of the color of osmium(VIII)-MCPF complex, Beer's law was obeyed in the range 20-406 ng mL(-1), with an effective molar absorption coefficient (at 580 nm) of 5.21×10(4) L mol(-1) cm(-1) and a relative standard deviation of 0.33% (n=6). Further, we performed the characterization of MCPF and obtained the crystal structure.

  15. Wiring of pyranose dehydrogenase with osmium polymers of different redox potentials.

    PubMed

    Zafar, Muhammad Nadeem; Tasca, Federico; Boland, Susan; Kujawa, Magdalena; Patel, Ilabahen; Peterbauer, Clemens K; Leech, Dónal; Gorton, Lo

    2010-11-01

    In this study, five different flexible osmium based redox polymers were investigated for their ability to efficiently "wire" the oxidoreductase pyranose dehydrogenase (PDH, EC 1.1.99.29) from Agaricus meleagris, on graphite electrodes for possible applications in biofuel cells. A series of newly synthesised osmium based redox polymers covering the potential range between -270 and +160 mV vs. Ag|AgCl (0.1M KCl) was used. The performance of the redox polymers for enzyme wiring was investigated using glucose as substrate. The optimal operational conditions such as pH and potential were investigated.

  16. Conductive polymers derived from iron, ruthenium, and osmium metalloporphyrins: The shish-kebab approach

    PubMed Central

    Collman, James P.; McDevitt, John T.; Yee, Gordon T.; Leidner, Charles R.; McCullough, Laughlin G.; Little, William A.; Torrance, Jerry B.

    1986-01-01

    The synthesis and characterization of pyrazine-bridged polymers of iron(II/III), ruthenium(II/III), and osmium(II/III) octaethylporphyrin (dubbed “shish-kebab” polymers) are presented. Optical and dc conductivity measurements reveal that the ruthenium and osmium polymers, when partially oxidized, are highly conductive. Electrochemical and ESR results are presented that indicate the existence of an interesting metal-centered conduction pathway. Unlike most of the previously reported porphyrinic molecular metals in which the conduction electrons are macrocyclic-based, electron transport in these materials proceeds exclusively along the metal-pyrazine backbone. PMID:16593717

  17. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.

  18. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides.

    PubMed

    Guo, Lijuan; Zhao, Yu; Yao, Zhiwei

    2016-01-21

    This study presents a new type of precursor, mechanical mixtures of metal oxides (MOs) and phosphorus pentoxide (P2O5) are used to synthesize Ni2P, Co2P and MoP phosphides by the H2 reduction method. In addition, this is first report of common solid-state P2O5 being used as a P source for the synthesis of metal phosphides. The traditional precursors are usually prepared via a complicated preparation procedure involving dissolution, drying and calcination steps. However, these novel MOs/P2O5 precursors can be obtained only by simple mechanical mixing of the starting materials. Furthermore, unlike the direct transformation from amorphous phases to phosphides, various specific intermediates were involved in the transformation from MOs/P2O5 to phosphides. It is worthy to note that the dispersions of Ni2P, Co2P and MoP obtained from MOs/P2O5 precursors were superior to those of the corresponding phosphides prepared from the abovementioned traditional precursors. It is suggested that the morphology of the as-prepared metal phosphides might be inherited from the corresponding MOs. Based on the results of XRD, XPS, SEM and TEM, the formation pathway of phosphides can be defined as MOs/P2O5 precursors → complex intermediates (metals, metal phosphates and metal oxide-phosphates) → metal phosphides.

  19. Facile synthesis of hydroxymethylcytosine-containing oligonucleotides and their reactivity upon osmium oxidation.

    PubMed

    Sugizaki, Kaori; Ikeda, Shuji; Yanagisawa, Hiroyuki; Okamoto, Akimitsu

    2011-06-07

    DNA strands containing a 5-hydroxymethylcytosine ((hm)C), which have recently been found in neuron cells and embryonic stem cells, were synthesized through a facile synthetic technique. The (hm)C-containing strands were efficiently oxidized at (hm)C using an osmium oxidation assay. The (hm)C was oxidized as easily as 5-methylcytosine, which can be distinguished from unmethylated cytosine.

  20. DNA-osmium complexes: recent developments in the operative chemical analysis of DNA epigenetic modifications.

    PubMed

    Okamoto, Akimitsu

    2014-09-01

    The development of a reaction for the detection of one epigenetic modification in a long DNA strand is a chemically and biologically challenging research subject. Herein, we report and discuss the formation of 5-methylcytosine-osmium complexes that are used as the basis for a bisulfite-free chemical assay for DNA methylation analysis. Osmium in the oxidized state reacts with C5-methylated pyrimidines in the presence of a bipyridine ligand to give a stable ternary complex. On the basis of this reaction, an adenine derivative with a tethered bipyridine moiety has been designed for sequence-specific osmium complex formation. Osmium complexation is then achieved by hybridization of a short DNA molecule containing this functional nucleotide to a target DNA sequence and results in the formation of a cross-linked structure. This novel concept of methylation-specific reaction, based on a straightforward chemical process, expands the range of methods available for the analysis of epigenetic modifications. Advantages of the described method include amplification-insensitive detection, 5-hydroxymethylcytosine complexation, and visualization through methylation-specific in situ hybridization.

  1. Synthesis and antitumor activity of a series of osmium(VI) nitrido complexes bearing quinolinolato ligands.

    PubMed

    Tang, Quan; Ni, Wen-Xiu; Leung, Chi-Fai; Man, Wai-Lun; Lau, Kenneth King-Kwan; Liang, Yimin; Lam, Yun-Wah; Wong, Wai-Yeung; Peng, Shie-Ming; Liu, Gui-Jian; Lau, Tai-Chu

    2013-11-04

    A series of osmium(VI) nitrido complexes supported by quinolinolato ligands have been prepared and they exhibit promising in vitro anti-cancer activities. These results establish that Os(VI)≡N is a potentially versatile and promising platform for the design of a variety of high-valent anti-cancer drugs.

  2. Electrical wiring of live, metabolically enhanced Bacillus subtilis cells with flexible osmium-redox polymers.

    PubMed

    Coman, Vasile; Gustavsson, Tobias; Finkelsteinas, Arnonas; von Wachenfeldt, Claes; Hägerhäll, Cecilia; Gorton, Lo

    2009-11-11

    The present study explores genetic engineering of the respiratory chain and the application of two different flexible osmium redox polymers to achieve efficient electric communication between the gram-positive organism Bacillus subtilis and an electrode. Poly(1-vinylimidazole)(12)-[Os-(4,4'-dimethyl-2,2'-bipyridyl)(2)Cl(2)](+/2+) (osmium redox polymer I) and poly(vinylpyridine)-[Os-(N,N'-methylated-2,2'-biimidazole)(3)](2+/3+) (osmium redox polymer II) were investigated for efficient electrical "wiring" of viable gram-positive bacterial cells to electrodes. Using a B. subtilis strain that overproduces succinate/quinone oxidoreductase (respiratory complex II), we were able to improve the current response several fold using succinate as substrate, in both batch and flow analysis modes, and using gold and graphite electrodes. The efficiency of the osmium redox polymer, working as electron transfer mediator between the cells and the electrode, was compared with that of a soluble mediator (hexacyanoferrate). The results demonstrated that mediators did not have to pass the cytosolic membrane to bring about an efficient electronic communication between bacterial cells with a thick cell wall and electrodes.

  3. Osmium-catalyzed vicinal oxyamination of alkenes by N-(4-toluenesulfonyloxy)carbamates.

    PubMed

    Masruri; Willis, Anthony C; McLeod, Malcolm D

    2012-10-05

    N-(4-toluenesulfonyloxy)carbamates based on a range of common amine protecting groups serve as preformed nitrogen sources in the intermolecular osmium-catalyzed oxyamination reaction of a variety of mono-, di-, and trisubstituted alkenes. The reactions occur with low catalyst loadings and good yields and afford high regioselectivity for unsymmetrically substituted alkenes.

  4. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination.

    PubMed

    Chen, Cynthia; Sedwick, Peter N; Sharma, Mukul

    2009-05-12

    Osmium is one of the rarer elements in seawater, with typical concentration of approximately 10 x 10(-15) g g(-1) (5.3 x 10(-14) mol kg(-1)). The osmium isotope composition ((187)Os/(188)Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (approximately 1.3) and mantle/cosmic dust (approximately 0.13). Here, we show that the (187)Os/(188)Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximately 0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower (187)Os/(188)Os ratio (approximately 0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts.

  5. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination

    PubMed Central

    Chen, Cynthia; Sedwick, Peter N.; Sharma, Mukul

    2009-01-01

    Osmium is one of the rarer elements in seawater, with typical concentration of ≈10 × 10−15 g g−1 (5.3 × 10−14 mol kg−1). The osmium isotope composition (187Os/188Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (≈1.3) and mantle/cosmic dust (≈0.13). Here, we show that the 187Os/188Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (≈0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower 187Os/188Os ratio (≈0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts. PMID:19416862

  6. Synthesis and catalytic activity of the metastable phase of gold phosphide

    SciTech Connect

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  7. A facile high-yield solvothermal route to tin phosphide Sn{sub 4}P{sub 3}

    SciTech Connect

    Kovnir, Kirill A. . E-mail: kovnir@cpfs.mpg.de; Kolen'ko, Yury V.; Ray, Sugata; Li Jinwang; Watanabe, Tomoaki; Itoh, Mitsuru; Yoshimura, Masahiro; Shevelkov, Andrei V.

    2006-12-15

    An effective method of synthesis of tin phosphide Sn{sub 4}P{sub 3} starting from metallic tin and amorphous red phosphorus by a low-temperature (200 {sup o}C) solvothermal reaction in ethylenediamine is offered. The key parameters of this process - duration, temperature, and the ratio of initial components (Sn/P) are studied. The structure, phase composition, and morphology of the products are investigated using powder X-ray diffraction and scanning electron microscopy. Different synthetic ways for tin phosphide are discussed and compared with the proposed one. The mechanism of solvothermal preparation of tin phosphide in ethylenediamine is discussed. It is shown that the proposed solvothermal method opens up the possibility of preparing other metal-rich phosphides. - Graphical abstract: SEM microphotograph of the sample of layered tin phosphide Sn{sub 4}P{sub 3}, which can be simply solvothermally synthesized from metallic tin and red phosphorus.

  8. On the distribution of major and trace elements between metal and phosphide phases of some iron meteorites

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Seufert, M.; Begemann, F.

    1980-01-01

    The concentrations of Fe, Ni, Co, P, Cu, Ga, Ge, Mo, Ru, Rh, Pd, W, Ir and Pt in the phosphides and the metal of the coarse octahedrites Campo del Cielo, Canyon Diablo, Cranbourne and Sardis, the coarsest octahedrite Sao Juliao de Moreira and the hexahedrites Braunau and Lombard have been determined by spark source mass spectrometry. Striking differences are observed of the element contents between bulk meteorite and the phosphides as well as between the different phosphide modifications schreibersite and rhabdite. Extreme values are a 20 fold depletion of Ga and a 40 times higher content of Pd in the phosphides. A particularly strong correlation between the noble metal element content and size of phosphide aggregates is observed; it is shown that this correlation is not an artifact of the sample preparation but that it must be real.

  9. Phase change of nickel phosphide catalysts in the conversion of cellulose into sorbitol.

    PubMed

    Yang, Pengfei; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi

    2012-05-01

    Nickel phosphide catalysts supported on activated carbon were tested for the conversion of cellulose in water. High sorbitol yields of over 60% were obtained with high cellulose conversions at 503 K and 5 MPa of H(2) . It is interesting that an amorphous nickel phosphide phase is generated from a crystalline phase during the increase in temperature and that the amorphous phase is responsible for the high yield of sorbitol. The optimization of the reaction parameters indicates that the increase of the amorphous part in the cellulose is the key to obtaining high yields of sorbitol. A phase change of the nickel phosphide is observed, which can be correlated to the change in catalytic activity.

  10. A case of accidental fatal aluminum phosphide poisoning involving humans and dogs.

    PubMed

    Behera, Chittaranjan; Krishna, Karthik; Bhardwaj, Daya Nand; Rautji, Ravi; Kumar, Arvind

    2015-05-01

    Aluminum phosphide is one of the commonest poisons encountered in agricultural areas, and manner of death in the victims is often suicidal and rarely homicidal or accidental. This paper presents an unusual case, where two humans (owner and housemaid) and eight dogs were found dead in the morning hours inside a room of a house, used as shelter for stray dogs. There was allegation by the son of the owner that his father had been killed. Crime scene visit by forensic pathologists helped to collect vital evidence. Autopsies of both the human victims and the dogs were conducted. Toxicological analysis of viscera, vomitus, leftover food, and chemical container at the crime scene tested positive for aluminum phosphide. The cause of death in both humans and dogs was aluminum phosphide poisoning. Investigation by police and the forensic approach to the case helped in ascertaining the manner of death, which was accidental.

  11. Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents.

    PubMed

    Cecilia, J A; Infantes-Molina, A; Rodríguez-Castellón, E; Jiménez-López, A

    2013-09-15

    The gas phase catalytic hydrodechlorination (HDC) of chlorobenzene (CB) at atmospheric pressure was investigated over silica-supported cobalt and cobalt phosphide catalysts containing different P loading and a fixed amount of cobalt (5 wt.%). The effect of the initial P/Co molar ratio on the stoichiometry of the cobalt phosphide phase, the acidity and the hydrogen activation capability were discussed and these properties correlated with the catalytic activity. Catalytic results indicated that the cobalt phosphide phase is much more active than the monometallic cobalt one. The activity raised with the P content present in the sample due to the formation of the CoP phase instead of the Co₂P one, which favored the formation of hydrogen spillover species, increased the amount of weak acid sites and the number of exposed superficial cobalt atoms probably related to a better dispersion of the active phase. All the catalysts gave rise benzene as the main reaction product.

  12. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  13. Dinuclear osmium(II) probes for high-resolution visualisation of cellular DNA structure using electron microscopy.

    PubMed

    Wragg, Ashley; Gill, Martin R; Hill, Christopher J; Su, Xiaodi; Meijer, Anthony J H M; Smythe, Carl; Thomas, Jim A

    2014-12-04

    Two dinuclear osmium polypyridyl complexes function as convenient, easy to handle TEM contrast agents and facilitate the high-resolution visualisation of intracellular structure, particularly sub-nuclear detail.

  14. On line vapor generation of osmium based on solution cathode glow discharge for the determination by ICP-OES.

    PubMed

    Zhu, Zhenli; Huang, Chunying; He, Qian; Xiao, Qing; Liu, Zhifu; Zhang, Suicheng; Hu, Shenghong

    2013-03-15

    A novel plasma induced vapor generation method is proposed to determine osmium in solutions. Without any chemical oxidizing agents, osmium ion can be readily converted to volatile osmium tetraoxide vapor in the solution cathode glow discharge (SCGD) system. The generated osmium vapor is then transported to inductively coupled plasma for determination by optical emission spectrometry. The influences of background electrolyte, carrier gas flow rate, sample flow rate, ICP power and discharge current were investigated. The analytical performances of this proposed technique were evaluated under optimized conditions. The detection limit of Os was calculated to be 0.51 ng mL(-1). The reproducibility, expressed as the relative standard deviation (n=11) of a 2.0 μg mL(-1) standard solution, was 1.9%. This SCGD induced vapor generation is sensitive and simple, oxidation reagents free, providing an alternative analytical method for measuring Os in geological or environmental water samples.

  15. Unresponsive ventricular tachycardia associated with aluminum phosphide poisoning.

    PubMed

    Jadhav, Amar P; Nusair, Maein B; Ingole, Apekshe; Alpert, Martin A

    2012-05-01

    Inhalation or ingestion of aluminum phosphide (AP) generates phosphine gas on exposure to moisture, which, in turn, produces widespread organ toxicity primarily involving the lungs, heart, liver, and kidneys. Cardiac manifestations of AP poisoning include toxic myocarditis, refractory heart failure, bradyarrhythmias, and tachyarrhythmias including ventricular tachycardia (VT). A 19-year-old depressed male farm worker ingested ten 500-mg tablets of Celphos in a suicide attempt. Each Celphos tablet contains 56% AP. Over the course of 10 hours, the patient developed heart failure and respiratory failure associated with a rise in serum troponin level to 12.7 ng/mL. Serum electrolytes (including magnesium) and serum creatinine levels were normal throughout. His course was further complicated by acidemia and hypotension. These hemodynamic and metabolic abnormalities were initially corrected by assisted ventilation and continuous veno-venous hemofiltration. However, he developed hemodynamically stable sustained monomorphic VT, which proved unresponsive to treatment with intravenous magnesium sulfate and intravenous amiodarone therapy. After a decline in blood pressure, 6 attempts at electrocardioversion failed to restore sinus rhythm, and he died. Postmortem histologic examination of myocardium showed contraction band necrosis, early coagulation necrosis, edema, hemorrhage, and pyknosis of cardiac myocyte nuclei. Ventricular tachycardia associated with AP poisoning has been successfully treated with magnesium sulfate, amiodarone, and electrocardioversion. This case report documents failure of all 3 of these therapeutic modalities.

  16. Therapeutic role of hyperinsulinemia/euglycemia in aluminum phosphide poisoning

    PubMed Central

    Hassanian-Moghaddam, Hossein; Zamani, Nasim

    2016-01-01

    Abstract Background: Different protocols have been suggested to treat aluminum phosphide (ALP) poisoning. We aimed to evaluate the possible therapeutic effect of hyperinsulinemia/euglycemia (HIE) in treatment of ALP poisoning. Methods: In a prospective interventional study, a total of 88 ALP-poisoned patients were included and assigned into HIE group undergoing glucose/insulin/potassium (GIK) protocol and a control group that was managed by routine conventional treatments. The 2 groups were then compared regarding the signs and symptoms of toxicity and their progression, development of complications, and final outcome to detect the possible effect of GIK protocol on the patients’ course of toxicity and outcome. Results: The 2 groups were similar in terms of demographic characteristics and on-arrival vital signs and lab tests. Using GIK protocol resulted in significantly longer hospital stays (24 vs 60 hours; P < 0.001) and better outcomes (72.7% vs 50% mortality; P = 0.03). Regression analysis showed that GIK duration was an independent variable that could prognosticate mortality (odds ratio [95% confidence interval] = 1.045 [1.004,1.087]). The risk of mortality decreased by 4.5% each hour after initiation of GIK. Conclusion: GIK protocol improves the outcome of ALP poisoning and increases the length of hospital stay. PMID:27495040

  17. Comparative performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.; Parat, K. K.

    1987-01-01

    A comparison is made between indium phosphide solar cells whose p-n junctions were processed by open tube capped diffusion, and closed tube uncapped diffusion, of sulfur into Czochralski grown p-type substrates. Air mass zero, total area, efficiencies ranged from 10 to 14.2 percent, the latter value attributed to cells processed by capped diffusion. The radiation resistance of these latter cells was slightly better, under 1 MeV electron irradiation. However, rather than being process dependent, the difference in radiation resistance could be attributed to the effects of increased base dopant concentration. In agreement with previous results, both cells exhibited radiation resistance superior to that of gallium arsenide. The lowest temperature dependency of maximum power was exhibited by the cells prepared by open tube capped diffusion. Contrary to previous results, no correlation was found between open circuit voltage and the temperature dependency of Pmax. It was concluded that additional process optimization was necessary before concluding that one process was better than another.

  18. Excited state lifetime measurements of ytterbium in indium phosphide

    NASA Astrophysics Data System (ADS)

    Desrocher, David

    1989-12-01

    The AFIT Time Resolved Photoluminescence (TRPL) lab was disassembled, relocated and rebuilt with improvements to layout and performance. Excited state lifetime measurements of ytterbium implanted in indium phosphide were conducted using the new lab. Effects of sample temperature, rapid thermal annealing (RTA) time and RTA temperature on the lifetimes of the 1.002 microns Yb3+ line were examined. Lifetime measurements of Er, Pr and Tm in GaAs were also attempted. Ytterbium concentrations were 3 x 10(exp 13) ions/sq cm, implanted at an ion energy of 1 MeV in semi-insulating InP substrate. Sample temperatures ranged from 4.2 to 90K. Annealing times ranged from 1 to 25 seconds on samples annealed at 850 C. Annealing temperatures ranged from 400 to 850 C, with RTA times of 15 seconds. The excitation source was a nitrogen-pumped dye laser with primary wavelength at 580 nm. A germanium photodiode detector was selected to eliminate the long time constant associated with available S1 power supplies and to enable detection at the near infrared wavelengths of the other rare earths. Data acquisition was accomplished with a boxcar averager and a microcomputer equipped with acquisition hardware and software. Thermal quenching was clearly observed in lifetimes at increasing sample temperatures, most dramatically at above 50 C. The results would be very helpful in device fabrication/operation considerations, and some of the sample preparation parameters may be equally applicable for other RE doped III-V semiconductors.

  19. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    DOE PAGES

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; ...

    2017-03-10

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. Thismore » shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.« less

  20. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2016-01-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material. PMID:27175743

  1. An Entry to Stable Mixed Phosphine-Osmium-NHC Polyhydrides.

    PubMed

    Buil, María L; Cardo, Juan J F; Esteruelas, Miguel A; Fernández, Israel; Oñate, Enrique

    2016-05-16

    An entry to mixed phosphine-osmium-NHC polyhydride complexes is described, starting from the five-coordinate hydrido-alkylidyne compounds [OsHCl(≡CPh)(IPr)(PR3)]OTf (IPr = 1,3-bis(2,6-disopropylphenyl)imidazolylidene; OTf = CF3SO3; PR3 = P(i)Pr3 (1), PPh3 (2)). The experimental procedure involves the borylation of the Os-C triple bond of 1 and 2 with NaBH4 and the subsequent alcoholysis of the borylation products OsH2Cl(η(2)-H-BCH2Ph)(IPr)(PR3) (PR3 = P(i)Pr3 (3), PPh3 (4)) or OsH2(η(2):η(2):H2BCH2Ph)(IPr)(P(i)Pr3) (5). Stirring of 3 in 2-propanol affords the five coordinate chloride-trihydride OsH3Cl(IPr)(P(i)Pr3)2 (6), which reacts with NaBH4 to give OsH3(κ(2)-H2BH2)(IPr)(P(i)Pr3) (7). This trihydride-tetrahydrideborate derivative and its PPh3 counterpart OsH3(κ(2)-H2BH2)(IPr)(PPh3) (8) can be also obtained in a one-pot procedure, starting from 1 and 2 and using methanol at -60 °C instead of 2-propanol as alcoholysis agent. The bonding situation in 7 and 8, analyzed by DFT calculations using AIM and NBO methods, resembles that found in B2H6 and contrasts with the bonding situation in the bis-σ-borane derivative 5. Stirring of 7 and 8 in 2-propanol leads to the corresponding d(2)-hexahydride derivatives OsH6(IPr)(PR3) (PR3 = P(i)Pr3 (9), PPh3 (10)), which reduce the C≡N triple bond of benzonitrile and promote the subsequent chelate-assisted ortho-CH bond activation of the resulting phenylmethanimine, to form the trihydride compounds OsH3{κ(2)-N,C-(NH═CH-C6H4)}(IPr)(PR3)2 (PR3 = P(i)Pr3 (11), PPh3 (12)), containing a stabilized orthometalated aldimine.

  2. Indium phosphide solar cells - Recent developments and estimated performance in space

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Brinker, David J.

    1990-01-01

    The current status of indium phosphide solar cell research is reviewed. In the NASA research program, efficiencies of 18.8 percent were achieved for standard n/p homojunction InP cells while 17 percent was achieved for ITO/InP cells processed by sputtering n-type indium tin oxide onto p-type indium phosphide. The latter represents a cheaper, simpler processing alternative. Computer modeling calculations indicate that efficiencies of over 21 percent are feasible. Relatively large area cells are produced in Japan with a maximum efficiency of 16.6 percent.

  3. Severe reversible myocardial injury associated with aluminium phosphide toxicity: A case report and review of literature

    PubMed Central

    Elabbassi, Wael; Chowdhury, Mohammed Andaleeb; Fachtartz, Arif Al Nooryani

    2013-01-01

    Aluminium phosphide is commonly used as an insecticide and can be toxic to humans at the cellular level by interfering with mitochondrial energy metabolism. We report on three cases of severe aluminium phosphide cardio-toxicity, resulting in severe decrease in both ventricular heart functions. The first case succumbed to intractable ventricular arrhythmias complicated by multi-organ failure before she died; while the other two cases required invasive hemodynamic support and eventually improved over the course of 10–14 days. We describe our experience and the challenges faced while managing one of them. PMID:25278724

  4. New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale

    USGS Publications Warehouse

    Lichte, F.E.; Wilson, S.M.; Brooks, R.R.; Reeves, R.D.; Holzbecher, J.; Ryan, D.E.

    1986-01-01

    The determination of osmium content and isotopic abundances in geological materials has received increasing attention in recent years following the proposal of Alvarez et al.1 that mass extinctions at the end of the Cretaceous period were caused by the impact of a large (???10km) meteorite which left anomalously high iridium levels as a geochemical signature in the boundary shales. Here we report a new and simple method for measuring osmium in geological materials, involving fusion of the sample with sodium peroxide, distillation of the osmium as the tetroxide using perchloric acid, extraction into chloroform, and absorption of the chloroform extract onto graphite powder before instrumental neutron activation analysis. In a variant of this technique, the chloroform extract is back-extracted into an aqueous phase and the osmium isotopes are determined by plasma-source mass spectrometry (ICPMS). We have used this method on the Woodside Creek (New Zealand) Cretaceous/Tertiary boundary clay and have obtained the first osmium content (6g ng g-1) for this material. The 187Os/186Os ratio is 1.12??0.16, showing a typical non-crustal signature. This combined distillation-extraction- ICPMS method will prove to be useful for measuring osmium isotopes in other geological materials. ?? 1986 Nature Publishing Group.

  5. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  6. Electrocardiographic findings and cardiac manifestations in acute aluminum phosphide poisoning.

    PubMed

    Soltaninejad, Kambiz; Beyranvand, Mohammad-Reza; Momenzadeh, Seyed-Akbar; Shadnia, Shahin

    2012-07-01

    Aluminium phosphide (AlP) poisoning has a high mortality due to cardiovascular involvement. In this study, we evaluated the frequency of cardiac manifestations and electrocardiographic (ECG) findings in 20 patients with acute AlP poisoning, who were admitted to the intensive care unit (ICU) in Tehran, Iran, over a period of 6 months (between October 2008 and April 2009). The sex, age, cause and manner of ingestion, number of ingested AlP tablets, cardiac and ECG manifestations, creatine phosphokinase (CPK), CPK-myocardial band (CPK-mb) and troponin-T (TnT) were extracted from the patients' files. All data were analysed with Statistical Package for the Social Sciences (SPSS) software. The majority (60%) of patients were male. The mean age was 27 ± 8.7 years. The mortality rate was 40%. In all of the patients, the cause of poisoning was intentional suicide and ingestion was the route of exposure. The mean number of ingested AlP tablets per patient was 2.2 ± 1.1. The average time interval between admission and cardiovascular manifestations or ECG findings was 168.8 ± 116.2 min. The range of systolic (SBP) and diastolic blood pressure was 60-130 mmHg and 40-70 mmHg, respectively. Dysrhythmia was observed in nine (45%) cases. Elevation of the ST segment was seen in nine cases (45%). Seven patients (35%) had prolonged QTc intervals. Bundle branch block (BBB) was observed in four (20%) patients. In nine (45%) patients, the serum cardiac TnT qualitative assay was positive. There were no significant differences between normal and abnormal ECG groups according to sex, age, number and manner of ingested AlP tablets and SBP. There was a significant correlation between cardiac manifestations and ECG findings and TnT-positive results with mortality in acute AlP poisoning.

  7. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  8. Brugada pattern in toxic myocarditis due to severe aluminum phosphide poisoning.

    PubMed

    Nayyar, Sachin; Nair, Mohan

    2009-11-01

    Brugada pattern electrocardiogram (ECG) unmasking can occur due to various drugs. There are old reports of the acute infarction pattern in aluminum phosphide (rodenticide)-related toxic myocarditis. The given case illustrates the Brugada pattern and various other ECG abnormalities in a patient with this poisoning. The old reported cases of the acute infarction pattern are also likely the Brugada pattern.

  9. First-principles study of structural and thermodynamic properties of osmium

    NASA Astrophysics Data System (ADS)

    Liu, Ke; He, Duan-Wei; Zhou, Xiao-Lin; Chen, Hai-Hua

    2011-08-01

    We employ the first-principles plane wave pseudopotential density functional theory method to calculate the equilibrium lattice parameters of osmium and the thermodynamic properties of hcp structure osmium. The obtained lattice parameters are in good agreement with the experimental data investigated up to 58.2 GPa using radial X-ray diffraction (RXRD) together with lattice strain theory in a diamond-anvil cell and the available theoretical data of others. Through the quasi-harmonic Debye model, the dependencies of the normalized lattice parameters a/ a0 and c/ c0 on pressure P, the normalized primitive volume V/V0 on pressure P, the Debye temperature ΘD and the heat capacity CV on pressure P and temperature T, as well as the variation of the thermal expansion α with temperature and pressure are obtained successfully.

  10. Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways.

    PubMed

    Suntharalingam, Kogularamanan; Johnstone, Timothy C; Bruno, Peter M; Lin, Wei; Hemann, Michael T; Lippard, Stephen J

    2013-09-25

    The cellular response evoked by antiproliferating osmium(VI) nitrido compounds of general formula OsN(N^N)Cl3 (N^N = 2,2'-bipyridine 1, 1,10-phenanthroline 2, 3,4,7,8-tetramethyl-1,10-phenanthroline 3, or 4,7-diphenyl-1,10-phenanthroline 4) can be tuned by subtle ligand modifications. Complex 2 induces DNA damage, resulting in activation of the p53 pathway, cell cycle arrest at the G2/M phase, and caspase-dependent apoptotic cell death. In contrast, 4 evokes endoplasmic reticulum (ER) stress leading to the upregulation of proteins of the unfolded protein response pathway, increase in ER size, and p53-independent apoptotic cell death. To the best of our knowledge, 4 is the first osmium compound to induce ER stress in cancer cells.

  11. Use of an osmium complex as a universal luminescent probe for enzymatic reactions.

    PubMed

    Virel, Ana; Sanchez-Lopez, Jose; Saa, Laura; García, Ana Carla; Pavlov, Valeri

    2009-06-15

    The water-soluble bis(bipyridine)chloro(4-picolinic acid) osmium complex, [Os(III)(bpy)2Cl(PyCOOH)]2+ (bpy=2,2'-bipyridine, Py=pyridine), is fluorescent in aqueous solution, whereas the reduced form of the complex, [Os(II)(bpy)2Cl(PyCOOH)]+, shows no significant fluorescence under the same conditions. Such reversible redox control of the fluorescence of the complex can be easily adapted to follow any enzymatic reaction to yield oxidising or reducing products that are capable of interacting with [Os(III)(bpy)2Cl(PyCOOH)]2+ or [Os(II)(bpy)2Cl(PyCOOH)]+. Based on the redox reaction between products of biocatalytic reactions and the osmium complex, we have designed a simple bioanalytical assay for the detection of nerve gases, alpha-ketoglutarate, hydrogen peroxide and glucose.

  12. Electrochemical communication between microbial cells and electrodes via osmium redox systems.

    PubMed

    Hasan, Kamrul; Patil, Sunil A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2012-12-01

    Electrochemical communication between micro-organisms and electrodes is the integral and fundamental part of BESs (bioelectrochemical systems). The immobilization of bacterial cells on the electrode and ensuring efficient electron transfer to the electrode via a mediator are decisive features of mediated electrochemical biosensors. Notably, mediator-based systems are essential to extract electrons from the non-exoelectrogens, a major group of microbes in Nature. The advantage of using polymeric mediators over diffusible mediators led to the design of osmium redox polymers. Their successful use in enzyme-based biosensors and BFCs (biofuel cells) paved the way for exploring their use in microbial BESs. The present mini-review focuses on osmium-bound redox systems used to date in microbial BESs and their role in shuttling electrons from viable microbial cells to electrodes.

  13. Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites

    USGS Publications Warehouse

    Morgan, J.W.; Horan, M.F.; Walker, R.J.; Grossman, J.N.

    1995-01-01

    Rhenium and osmium abundances, and osmium isotopic compositions were measured by negative thermal ionization mass spectrometry in thirty samples, including replicates, of five IIA and eight IIB iron meteorites. Log plots of Os vs. Re abundances for IIA and IIB irons describe straight lines that approximately converge on Lombard, which has the lowest Re and Os abundances and highest 187Re/188Os measured in a IIA iron to date. The linear IIA trend may be exactly reproduced by fractional crystallization, but is not well fitted using variable partition coefficients. The IIB iron trend, however, cannot be entirely explained by simple fractional crystallization. One explanation is that small amounts of Re and Os were added to the asteroid core during the final stages of crystallization. Another possibility is that diffusional enrichment of Os may have occurred in samples most depleted in Re and Os. -from Authors

  14. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    SciTech Connect

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; Nash, Connor P.; Wang, Jun; Pan, Ming; Hensley, Jesse E.; Schaidle, Joshua A.

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni2P, Rh2P, and Pd3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni2P NPs was shown to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H2 incorporation in the presence of all of the catalysts except NP-Pd3P, which exhibited minimal productive activity, and IW-Ni, which evolved H2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of

  15. Metalorganic vapor-phase epitaxy of indium phosphide and related materials

    NASA Astrophysics Data System (ADS)

    Chen, Gangyi

    The surface chemistry of indium phosphide and related compound semiconductors during metalorganic vapor-phase epitaxy (MOVPE) has been investigated. In particular, the group V precursor chemistry, indium phosphide (001) atomic structure and the InP oxidation process have been examined. The properties of the semiconductors were studied using infrared spectroscopy, molecular cluster calculations, x-ray photoelectron spectroscopy, reflectance difference spectroscopy, x-ray diffraction, and photoluminescence spectroscopy. Indium phosphide, gallium arsenide phosphide, and aluminum indium phosphide have been deposited by MOVPE using tertiarybutylphosphine and tertiarybutylarsine. Minimum incorporation in InP was observed at 565°C and a V/III ratio of 32. In this case, the material contained a background carrier concentration of 2.7 x 1014 cm-3, and the Hall mobilities were 4,970 and 135,000 cm2/V·s at 300 and 77 K. The oxygen contamination in AlInP was found to be only 9.0 x 10 15 cm-3 for deposition at 650°C and a V/III ratio of 35. The relative distribution of arsenic to phosphorus in GaAs yP1-y was determined at temperatures between 525 and 575°C. The distribution coefficient [(NAs/ NP)film/(PTBAs /PTBP)gas] ranged from 25.4 to 8.4, and exhibited an Arrhenius relationship with an apparent activation energy of 1.2 eV. The surface structure of the indium phosphide (001)-(2 x 1) reconstruction has been clarified in this thesis. Infrared spectra collected during atomic deuterium titration of the (2 x 1) surface revealed a sharp P-H stretching mode at 2308 cm-1. Based on theoretical cluster calculations using density functional theory, this mode was due to a single hydrogen atom bonded to one end of a buckled phosphorus dimer. These results confirmed that the (2 x 1) structure was stabilized by hydrogen. Indium phosphide oxidation has been found to be an activated process and strongly structure sensitive. The In-rich (2 x 4) surface reacted with oxygen at 300 K and

  16. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    DOE PAGES

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni2P, Rh2P, and Pd3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni2P NPs was shown to proceed through anmore » amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H2 incorporation in the presence of all of the catalysts except NP-Pd3P, which exhibited minimal productive activity, and IW-Ni, which evolved H2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni2P catalyst exhibited H2 activation and

  17. Osmium polypyridyl complexes and their applications to dye-sensitized solar cells.

    PubMed

    Swetha, T; Reddy, K Raveendranath; Singh, Surya Prakash

    2015-04-01

    Dye-sensitized solar cells (DSSCs) have received much attention in recent years owing to their efficient conversion of sunlight to electricity. DSSCs became successful alternatives to silicon photovoltaic devices by virtue of their low fabrication costs and easy preparation methods. In DSSCs the dye plays the key role. This review summarizes the applications of osmium sensitizers in DSSCs. We also briefly discussed their synthesis and the effect of various electrolyte systems on device efficiencies.

  18. MCDHF calculations of isotope shifts of even-parity fine-structure levels in neutral osmium

    NASA Astrophysics Data System (ADS)

    Palmeri, P.; Quinet, P.; Bouazza, S.

    2016-12-01

    Ab initio multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations have been carried out in order to determine the isotope shifts of all the fine-structure levels belonging to the even-parity configurations (5d+6s)8 in neutral osmium, Os I. The theoretical predictions have been compared to laser spectroscopy measurements available in the literature showing a good agreement between theory and experiment.

  19. DNA photocleavage by an osmium(II) complex in the PDT window.

    PubMed

    Sun, Yujie; Joyce, Lauren E; Dickson, Nicole M; Turro, Claudia

    2010-09-28

    The extended pi-delocalization of dppn (benzo[i]dipyrido[3,2-a:2,3-c]phenazine) results in a (3)pipi* state as the lowest triplet excited state in [Os(bpy)(2)(dppn)](2+) (bpy = 2,2'-bipyridine), which generates a (1)O(2) quantum yield of 0.42. Together with its (3)MLCT absorption, this new osmium complex shows efficient DNA cleavage under irradiation of lambda(irr) > or = 645 nm.

  20. Isotopic signature and impact of car catalysts on the anthropogenic osmium budget.

    PubMed

    Poirier, André; Gariépy, Clement

    2005-06-15

    Higher osmium concentrations and lower 187Os/188Os ratios in sediments from urban areas have been linked to anthropogenic osmium sources. Automobile catalytic converters that use platinum group metals (PGM) are a potential source for this Os pollution. We present the first direct Os concentrations and isotopic measurements of catalytic converters for major automobile brands to test the assumption that car catalysts release Os with a distinct signature in the environment. The analysis of four new catalytic converters yields similar low 187Os/188Os ratios (0.1-0.2), suggesting a similar source for the PGM. The Os concentrations measured are in the ppt range (6-228 ppt). From our results, the osmium contribution of the car catalysts to the environment through attrition (wearing and grinding down of the catalyst by friction) is predicted to be low, <0.2 pg Os/m2/year in highly urbanized environment. We show that Os loss from catalysts as volatile OsO4 is important at car catalyst operating temperatures. Moreover, we estimate that car catalysts may be responsible for up to approximately 120 pg Os/m2 deposited per year in urban areas and that part of it may be exported to sedimentary sinks. Car catalytic converters are thus an important anthropogenic osmium source in densely populated areas. The NIST car catalyst standard (SRM-2557, made from recycled used catalysts) yields higher concentrations (up to 721 ppt Os) and a more radiogenic isotopic composition (approximately 0.38), perhaps indicative of Os contamination during its preparation.

  1. Ligand-free osmium clusters supported on MgO. A density functional study

    SciTech Connect

    Goellner, J.F.; Neyman, K.M.; Mayer, M.; Noertemann, F.; Gates, B.C.; Roesch, N.

    2000-03-21

    The interactions of Os{sub 4}, Os{sub 5}, and Os{sub 5}C clusters with various sites of a MgO(001) support were investigated theoretically with the aid of a scalar-relativistic density functional cluster model method. Adsorption geometries of C{sub 4{upsilon}} clusters centered above a magnesium cation and the Os atoms oriented either to the nearest surface oxygen anions (A) or between them (B) were considered. The influence of surface V{sub s} and V{sub s}{sup 2{minus}} defects on the adsorption of the clusters was also investigated. The calculated base Os-Os distances in supported Os{sub 5} and Os{sub 5}C square-pyramidal clusters are at most 0.1 {angstrom} longer (2.5--2.6{angstrom}) than the values calculated for the corresponding free osmium cluster but about 0.4{angstrom} (or more) shorter than the values determined by EXAFS spectroscopy for MgO-powder-supported clusters formed by decarbonylation of [Os{sub 5}C(CO){sub 14}]{sup 2{minus}} and shown to retains the Os{sub 5}C frame. The experimental Os-Os distances characterizing the supported clusters are close to the experimental and calculated bond lengths for coordinatively saturated osmium carbonyl clusters; the result favors the suggestion that the supported clusters characterized by EXAFS spectroscopy were not entirely ligand-free. The models reported here are inferred to be too simplified to capture all the pertinent structural details of MgO-powder-supported osmium clusters, but they are sufficient to indicate a significant role of defect sites in the adsorption of supported osmium clusters and, the authors infer, other transition metal clusters.

  2. Osmium(II)--versus ruthenium(II)--arene carbohydrate-based anticancer compounds: similarities and differences.

    PubMed

    Hanif, Muhammad; Nazarov, Alexey A; Hartinger, Christian G; Kandioller, Wolfgang; Jakupec, Michael A; Arion, Vladimir B; Dyson, Paul J; Keppler, Bernhard K

    2010-08-21

    The synthesis and in vitro anticancer activity of Os(II)-arene complexes with carbohydrate-derived phosphite co-ligands are reported. The compounds were characterized by standard methods and the molecular structure of dichlorido(eta(6)-p-cymene)(3,5,6-bicyclophosphite-1,2-O-isopropylidene-alpha-D-glucofuranoside)osmium(II) was determined by X-ray diffraction analysis. Complexes with chlorido leaving groups undergo hydrolysis by consecutive formation of aqua compounds, followed by cleavage of a P-O bond of sugar phosphite ligands, as demonstrated by NMR studies. These observations are similar to those of analogous Ru(II)-arene complexes; however the rate of hydrolysis is very slow for osmium compounds. The complexes with oxalato leaving groups resist hydrolysis; no hydrolytic species were detected by (31)P{(1)H} NMR spectroscopy over several days. Within this series of Os compounds, in vitro anticancer activity is highest for the most lipophilic chlorido complex dichlorido(eta(6)-p-cymene)(3,5,6-bicyclophosphite-1,2-O-cyclohexylidene-alpha-D-glucofuranoside)osmium(II).

  3. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources

    USGS Publications Warehouse

    Horan, M.F.; Walker, R.J.; Fedorenko, V.A.; Czamanske, G.K.

    1995-01-01

    Picrites from the Gudchikhinsky suite, the oldest rocks examined, have ??Os of +5.3 to +6.1 and ??Nd of +3.7 to +4.0. The osmium and neodymium isotopic compositions of these rocks are similar to some modern ocean-island basalts (OIB), consistent with their derivation from an mantle plume. Picrites from the stratigraphically higher Tuklonsky suite have similar ??Os of +3.4 to +6.5, but ??Nd of -0.9 to -2.6. The similar ??Os, but lower ??Nd , suggest that some magmas from the same OIB-type, mantle source were contaminated by lithospheric components. A differentiated ankaramite flow, associated with the top of the stratigraphically higher Morongovsky suite, has ??Os of +9.8 to +10.2 and ??Nd of +1.3 to +1.4. The higher ??Os may indicate that the plume source was heterogeneous with respect to osmium isotopic composition, consistent with osmium isotopic measurements in rocks from other plume sources. Mg-rich, alkaline rocks (meymechites) from the Guli area that erupted much nearer the end of the flood-basalt event have ??Os of -1.2 to -2.6 and ??Nd of +3.7 to +4.9. These rocks were probably produced by low degrees of partial melting of mantle after the main stages of flood-basalt production. -from Authors

  4. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    NASA Astrophysics Data System (ADS)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  5. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    SciTech Connect

    Yamaura, Kazunari

    2016-04-15

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO{sub 3}, LiOsO{sub 3}, and Na{sub 2}OsO{sub 4}, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal–insulator transition in NaOsO{sub 3}, a ferroelectric-like transition in LiOsO{sub 3}, and high-temperature ferrimagnetism driven by a local structural distortion in Ca{sub 2}FeOsO{sub 6} may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices. - Graphical Abstract: Flux-grown crystals of NaOsO{sub 3} under high-pressure and high-temperature conditions in a belt-type apparatus. The crystal shows a magnetically driven metal–insulator transition at a temperature of 410 K. - Highlights: • Short review of high-pressure crystal growth of solid-state osmium oxides. • Wide variety of magnetic properties of solid-state osmium oxides. • Perovskite and related dense structures stabilized at 3–17 GPa.

  6. Nickel Phosphide as a Copper Free Back Contact for CdTe-Based Solar Cells

    NASA Astrophysics Data System (ADS)

    Sunderland, Brian; Gupta, Akhlesh; Compaan, Alvin D.

    2002-03-01

    Nickel phosphide back contacts were deposited onto polycrystalline, thin-film, CdS/CdTe solar cells using DC magnetron sputtering. The effects of the etching procedure, substrate temperature, deposition duration, post-deposition diffusion temperature, and ambient on the initial performance and on the long term stability of the devices were studied. We found that the initial performance of nickel phosphide contacts was lower than typical Cu-based back contacts. However, the stability of the cells at open circuit under one-sun light soak for several months is better than for our standard contact with evaporated Cu and Au. The use of sputtered graphite as an interfacial layer improved the performance. Average efficiencies of over 8.6were achieved. The excellent stability makes Ni2P an attractive candidate for a Cu-free back contact to CdTe-based solar cells. Work supported by NREL and by NSF-REU.

  7. Successful management of aluminium phosphide poisoning using intravenous lipid emulsion: Report of two cases

    PubMed Central

    Baruah, Udismita; Sahni, Ameeta; Sachdeva, Harish C.

    2015-01-01

    Aluminum phosphide (ALP) is a cheap, easily available agricultural pesticide which causes lethal poisoning by liberation of phosphine and inhibition of cytochrome c oxidase thereby leading to cellular hypoxia. Although there is no known specific antidote, clinical trials are still going on. We present here two cases of ALP poisoning who were successfully managed by treatment with lipid emulsion and intravenous magnesium sulfate. PMID:26816450

  8. Photoluminescence of Undoped, Semi-Insulating, and Mg-Implanted Indium Phosphide.

    DTIC Science & Technology

    1979-12-01

    PH/79D-8 PHOTOLUMINESCENCE OF UNDOPED, SEMI-INSULATING, AND Mg- IMPLANTED INDIUM PHOSPHIDE THESIS Presented to the Faculty of the School of Engineering...Unannealed, Unimplanted and Mg- Implanted InP:Fe at 500 K ...... 132 Appendix H: Photoluminescence of Mg- Implanted , 750* C Annealed InP:Fe at 50 K...136 Appendix I: Photoluminescence of Mg- Implanted , 7000 C Annealed InP:Fe at 4.20 K ..................... 146 Appendix J

  9. Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Liu, Danni; Chen, Tao; Zhu, Wenxin; Cui, Liang; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-08-01

    In this letter, we demonstrate for the first time that cobalt phosphide nanowires (CoP NWs) exhibit remarkable catalytic activity toward electrochemical detection of hydrogen peroxide (H2O2). As an enzymeless H2O2 sensor, such CoP NWs show a fast amperometric response within 5 s and a low detection limit of 0.48 μM. In addition, this nonenzymatic sensor displays good selectivity, long-term stability and excellent reproducibility.

  10. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    NASA Astrophysics Data System (ADS)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  11. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    PubMed

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  12. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation.

    PubMed

    Pu, Zonghua; Amiinu, Ibrahim Saana; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-10-06

    There is a crucial demand for cost-effective hydrogen evolution reaction (HER) catalysts towards future renewable energy systems, and the development of such catalysts operating under all pH conditions still remains a challenging task. In this work, a one-step facile approach to synthesizing nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles (MoP NPs@NC) is introduced by using ammonium molybdate, ammonium dihydrogen phosphate and melamine as precursor. Benefitting from structural advantages, including ultrasmall nanoparticles, large exposed surface area and fast charge transfer, MoP NPs@NC exhibits excellent HER catalytic activities with small overpotentials at all pH values (j = 10 mA cm(-2) at η = 115, 136 and 80 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively.). Meanwhile, the high catalytic activities of MoP NPs@NC under both neutral and basic conditions have never been achieved before for molybdenum phosphide-based catalysts. Additionally, the encapsulation by N-doped carbon effectively prevents the MoP NPs from corrosion, exhibiting nearly unfading stability after 100 h testing in 0.5 M H2SO4. Thus, our work could pave a new avenue for unprecedented design and fabrication of novel low-cost metal phosphide electrocatalysts encapsulated by N-doped carbon.

  13. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  14. Osmium-catalyzed tethered aminohydroxylation of glycals: a stereodirected access to 2- and 3-aminosugars.

    PubMed

    Mirabella, Stefania; Cardona, Francesca; Goti, Andrea

    2015-02-06

    The osmium-catalyzed aminohydroxylation of glycals has been achieved with complete regio- and stereocontrol by taking advantage of the Donohoe tethering approach. Glucals and galactals showed complementary reactivity in dependence of the stage at which the reaction was performed, i.e., directly or after double-bond shift consequent to a Ferrier rearrangement (that is, on the 1,2 or 2,3-unsaturated sugar), allowing access to both classes of 2-amino (mannosamine) and 3-amino (talosamine) sugar derivatives, respectively.

  15. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  16. Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes.

    PubMed

    Hamidi, Hassan; Hasan, Kamrul; Emek, Sinan Cem; Dilgin, Yusuf; Åkerlund, Hans-Erik; Albertsson, Per-Åke; Leech, Dónal; Gorton, Lo

    2015-03-01

    Thylakoid membranes (TMs) are uniquely suited for photosynthesis owing to their distinctive structure and composition. Substantial efforts have been directed towards use of isolated photosynthetic reaction centers (PRCs) for solar energy harvesting, however, few studies investigate the communication between whole TMs and electrode surfaces, due to their complex structure. Here we report on a promising approach to generate photosynthesis-derived bioelectricity upon illumination of TMs wired with an osmium-redox-polymer modified graphite electrode, and generate a photocurrent density of 42.4 μA cm(-2).

  17. Proton-coupled electron transfer and multielectron oxidations in complexes of ruthenium and osmium

    SciTech Connect

    Dovletoglou, A.

    1992-01-01

    This doctoral research concerns the mechanism of proton-coupled electron transfer over an extended pH range. These processes between ruthenium and osmium complexes and hydroquinones have been studied using spectrophotometric methods and cyclic voltammetry. Elucidation of the mechanistic details has been attempted by using isotopic labelling, kinetic analysis, and numerical simulation of complex kinetic schemes. The coordination and redox chemistry of polypyridyl-acetylacetonato and -oxalato complexes of ruthenium and the role of ancillary ligands in defining the properties of Ru[sup IV]O complexes were explored. These studies represent the first attempt to probe possible 2e[sup [minus

  18. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes.

    PubMed

    Selby, David; Creaser, Robert A

    2005-05-27

    Rhenium-osmium (Re-Os) data from migrated hydrocarbons establish the timing of petroleum emplacement for the giant oil sand deposits of Alberta, Canada, at 112 +/- 5.3 million years ago. This date does not support models that invoke oil generation and migration for these deposits in the Late Cretaceous. Most Re-Os data from a variety of deposits within the giant hydrocarbon system show similar characteristics, supporting the notion of a single source for these hydrocarbons. The Re-Os data disqualify Cretaceous rocks as the primary hydrocarbon source but suggest an origin from older source rocks. This approach should be applicable to dating oil deposits worldwide.

  19. Osmium(II) polypyridyl polyarginine conjugate as a probe for live cell imaging; a comparison of uptake, localization and cytotoxicity with its ruthenium(II) analogue.

    PubMed

    Byrne, Aisling; Dolan, Ciarán; Moriarty, Roisin D; Martin, Aaron; Neugebauer, Ute; Forster, Robert J; Davies, Anthony; Volkov, Yuri; Keyes, Tia E

    2015-08-28

    A first investigation into the application of a luminescent osmium(ii) bipyridine complex to live cell imaging is presented. Osmium(ii) (bis-2,2-bipyridyl)-2(4-carboxylphenyl) imidazo[4,5f][1,10]phenanthroline was prepared and conjugated to octaarginine, a cell penetrating peptide. The photophysics, cell uptake and cytotoxicity of this osmium complex conjugate were performed and compared with its ruthenium analogue. Cell uptake and distribution of both ruthenium and osmium conjugates were very similar with rapid transmembrane transport of the osmium probe (complete within approx. 20 min) and dispersion throughout the cytoplasm and organelles. The near-infrared (NIR) emission of the osmium complex (λmax 726 nm) coincides well with the biological optical window and this facilitated luminescent and luminescence lifetime imaging of the cell which was well resolved from cell autofluorescence. The large Stokes shift of the emission also permitted resonance Raman mapping of the dye within CHO cells. Rather surprisingly, the osmium conjugate exhibited very low cytotoxicity when incubated both in the dark and under visible irradiation. This was attributed to the remarkable stability of this complex which was reflected by the complete absence of photo-bleaching of the complex even under extended continuous irradiation. In addition, when compared to its ruthenium analogue its luminescence was short-lived in water therefore rendering it insensitive to O2.

  20. C-H bond activation of the methyl group of the supporting ligand in an osmium(III) complex upon reaction with H2O2: formation of an organometallic osmium(IV) complex.

    PubMed

    Sugimoto, Hideki; Ashikari, Kenji; Itoh, Shinobu

    2013-01-18

    Oxidation of the hydroxoosmium(III) complex resulted in C-H bond activation of the methyl group of the supporting ligand (N,N'-dimethyl-2,11-diaza[3.3](2,6)pyridinophane). The product was an osmium(IV) complex exhibiting a seven-coordinate structure with an additional Os-CH(2) bond.

  1. Evaluation of Potential Oxidative Stress in Egyptian Patients with Acute Zinc Phosphide Poisoning and the Role of Vitamin C

    PubMed Central

    Sagah, Ghada A.; Oreby, Merfat M.; El-Gharbawy, Rehab M.; Ahmed Fathy, Amal S.

    2015-01-01

    Objective To evaluate potential oxidative stress in patients with acute phosphide poisoning and the effect of vitamin C. Methods Participants were females and divided into three groups; group I: healthy volunteers group II: healthy volunteers received vitamin C, group III: patients with acute phosphide poisoning received the supportive and symptomatic treatment and group IV: patients with acute phosphide poisoning received the supportive and symptomatic treatment in addition to vitamin C. All the participants were subjected to thorough history, clinical examination, ECG and laboratory investigations were carried on collected blood and gastric lavage samples on admission. Blood samples were divided into two parts, one for measurement of routine investigations and the second part was used for evaluation of malondialdehyde and total thiol levels before and after receiving the treatment regimen. Results Most of the cases in this study were among the age group of 15–25 years, females, single, secondary school education, from rural areas and suicidal. All vital signs were within normal range and the most common complaint was vomiting and abdominal pain. All cases in this study showed normal routine investigations. The mean MDA levels after receiving treatment decreased significantly in groups II and IV. The mean total thiol levels increased significantly after receiving treatment in groups II and IV. Conclusion It can be concluded that vitamin C has a potential benefit due to its antioxidant property on zinc phosphide induced-oxidative stress in acute zinc phosphide poisoned patients. PMID:26715917

  2. Ruthenium- and osmium-arene-based paullones bearing a TEMPO free-radical unit as potential anticancer drugs.

    PubMed

    Arion, Vladimir B; Dobrov, Anatolie; Göschl, Simone; Jakupec, Michael A; Keppler, Bernhard K; Rapta, Peter

    2012-09-04

    A modified paullone ligand bearing a TEMPO free-radical unit (HL) and its ruthenium(II) and osmium(II)-arene complexes [M(p-cymene)(HL)Cl]Cl·nH(2)O (M = Ru, Os) exhibit high antiproliferative activity in human cancer cell lines.

  3. Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity

    SciTech Connect

    Aydin, C.; Kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D.; Gates, Bruce C.

    2013-05-10

    Size, shape, nuclearity: Aberration-corrected scanning transmission electron microscopy was used to determine the 3D structures of MgO-supported Os3, Os4, Os5, and Os10 clusters, which have structures nearly matching those of osmium carbonyl compounds with known crystal structures. The samples are among the best-defined supported catalysts.

  4. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    NASA Astrophysics Data System (ADS)

    Yamaura, Kazunari

    2016-04-01

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO3, LiOsO3, and Na2OsO4, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal-insulator transition in NaOsO3, a ferroelectric-like transition in LiOsO3, and high-temperature ferrimagnetism driven by a local structural distortion in Ca2FeOsO6 may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices.

  5. Homogeneous electrochemical detection of hippuric acid in urine based on the osmium-antigen conjugate.

    PubMed

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2013-07-22

    A homogeneous electrochemical immunoassay is based on the interaction of osmium-antigen conjugate with its antibody. The novelty presented herein is the direct conjugation of the osmium complex to a small antigen and the application of the quantitative analysis of the antigen and its antibody as the electrical signal for homogeneous immunoassay. The small antigen chosen is hippuric acid (HA), a major urinary metabolite in toluene-exposed humans. As a redox mediator, [Os(4,4'-dimethoxy-2,2'-bipyridine)2(4-aminomethylpyridine-HA)Cl](+/2+) (Os-HA antigen) has been synthesized and characterized on screen-printed carbon electrodes. The synthesized Os-HA antigen shows reversible redox peaks at E(½)=0.056 V versus Ag/AgCl. The homogeneous competitive immunoassay relies on the interaction between Os-HA antigen conjugate and free antigen to its antibody, which can generate electrical signals linearly proportional to the free antigen monitored by cyclic voltammetry and differential pulse voltammetry in the range of 10 μg mL(-1) to 5.12 mg mL(-1). The cutoff concentration of HA in urine samples is 2.0 mg mL(-1), so the method can be used to develop a HA immunosensor. Moreover, the proposed homogeneous electrochemical immunoassay method can be applied to detect low concentrations of small antigens found in the healthcare area.

  6. Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer.

    PubMed

    Hasan, Kamrul; Patil, Sunil A; Górecki, Kamil; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2013-10-01

    The metabolically versatile purple bacteria Rhodobacter capsulatus was investigated to check its possible applicability in biofuel cells and electrochemical microbial biosensors. The wild type strain ATCC 17015 and mutant strain 37b4 lacking the lipopolysaccharide capsule was compared for their ability to communicate with electrodes modified with an osmium redox polymer. In this work, aerobic heterotrophically grown R. capsulatus were used to screen for efficient cell-electrode communication for later implementation using photoheterotrophically grown bacteria. The bacterial cells embedded in the osmium polymer matrix demonstrated efficient electrical "wiring" with the electrodes and were able to generate a noticeable current with succinate as substrate. Interestingly, at 2mM succinate the wild type strain showed much better bioelectrocatalytic current generation (4.25 μA/cm(2)) than the strain lacking capsule (1.55 μA/cm(2)). The wild type strain also exhibited a stable current response for longer time, demonstrating that the bacterial lipopolysaccharide in fact enhances the stability of the polymer matrix layer of the modified electrode. Control experiments with R. capsulatus without any mediator did not show any current irrespective of the capsule presence. This demonstrates that development of photosensors and other light driven bioelectrochemical devices could be feasible using R. capsulatus and will be at focus for future studies.

  7. Osmium-Based Pyrimidine Contrast Tags for Enhanced Nanopore-Based DNA Base Discrimination.

    PubMed

    Henley, Robert Y; Vazquez-Pagan, Ana G; Johnson, Michael; Kanavarioti, Anastassia; Wanunu, Meni

    2015-01-01

    Nanopores are a promising platform in next generation DNA sequencing. In this platform, an individual DNA strand is threaded into nanopore using an electric field, and enzyme-based ratcheting is used to move the strand through the detector. During this process the residual ion current through the pore is measured, which exhibits unique levels for different base combinations inside the pore. While this approach has shown great promise, accuracy is not optimal because the four bases are chemically comparable to one another, leading to small differences in current obstruction. Nucleobase-specific chemical tagging can be a viable approach to enhancing the contrast between different bases in the sequence. Herein we show that covalent modification of one or both of the pyrimidine bases by an osmium bipyridine complex leads to measureable differences in the blockade amplitudes of DNA molecules. We qualitatively determine the degree of osmylation of a DNA strand by passing it through a solid-state nanopore, and are thus able to gauge T and C base content. In addition, we show that osmium bipyridine reacts with dsDNA, leading to substantially different current blockade levels than exhibited for bare dsDNA. This work serves as a proof of principle for nanopore sequencing and mapping via base-specific DNA osmylation.

  8. Hydrolysis and cytotoxic properties of osmium(II)/(III)-DMSO-azole complexes. Short communication.

    PubMed

    Egger, Alexander; Cebrián-Losantos, Berta; Stepanenko, Iryna N; Krokhin, Artem A; Eichinger, Rene; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2008-08-01

    The antiproliferative properties of the osmium(II) complexes cis,fac-[Os(II)Cl(2)(DMSO)(3)(L)] and trans,cis,cis-[Os(II)Cl(2)(DMSO)(2)(L)(2)] (L = 1H-pyrazole, 1H-imidazole) were studied in three human cancer cell lines, namely 41M (ovary), SK-BR-3 (breast), and SW480 (colon). Their activities were compared with those of osmium(III) and ruthenium(III) NAMI-A type complexes on HT-29 (colon) and SK-BR-3 cancer cell lines. While IC(50) values of all the Os(II) complexes were found to be >1000 microM in all cell lines, Os and Ru-NAMI-A type complexes showed remarkable antiproliferative activity. The marginal in vitro cytotoxicity of the Os(II) compounds is presumably attributed to their resistance to hydrolysis. However, the Os-NAMI-A complexes, which are also kinetically stable in aqueous solution, showed reasonable antiproliferative activity in vitro when compared with the analogous Ru compounds and with the Os(II)-DMSO-azole species, indicating that hydrolysis might be not a prerequisite for the antitumor activity of Os-NAMI-A type complexes.

  9. Magneto-Transport Studies of Molecular Beam Epitaxial Grown Osmium Silicides

    NASA Astrophysics Data System (ADS)

    Cottier, Ryan; Zhao, Wei; Amir, Fatima; Hossain, Khalid; Anibou, Noureddine; Donner, Wolfgang; Golding, Terry

    2006-03-01

    Semiconducting transition metal silicides present a possible solution to on-chip integration of optical and electronic Si-based circuitry. Two phases of osmium silicide (OsSi2 and Os2Si3) are predicted to have promising optical characteristics but require additional development to fully determine their feasibility for high-quality devices. This study has been motivated by reports that OsSi2 has a bandgap between 1.4--1.8eV [1, 2] and Os2Si3 may have a direct bandgap of 0.95 eV [3] or 2.3 eV [1]. In this paper we will present temperature dependent (20 < T < 300 K) magneto Hall measurements of molecular beam epitaxial grown osmium silicide thin films. Os and Si were coevaporated onto Si(100) substrates at varying growth rates and temperatures. XRD was performed in order to identify the silicide phases present. We will discuss our results in relation to the known phase diagrams and our growth parameters. [1] L. Schellenberg et al., J. Less-Common Met. 144, 341 (1988). [2] K. Mason and G. Müller-Vogt, J. Appl. Phys. 63, 34 (1983). [3] A. B. Filonov et al., Phys. Rev. B 60(24), 16494 (1999).

  10. Iridium- and Osmium-decorated Reduced Graphenes as Promising Catalysts for Hydrogen Evolution.

    PubMed

    Lim, Chee Shan; Sofer, Zdeněk; Toh, Rou Jun; Eng, Alex Yong Sheng; Luxa, Jan; Pumera, Martin

    2015-06-22

    Renewable energy sources are highly sought after as a result of numerous worldwide problems concerning the environment and the shortage of energy. Currently, the focus in the field is on the development of catalysts that are able to provide water splitting catalysis and energy storage for the hydrogen evolution reaction (HER). While platinum is an excellent material for HER catalysis, it is costly and rare. In this work, we investigated the electrocatalytic abilities of various graphene-metal hybrids to replace platinum for the HER. The graphene materials were doped with 4f metals, namely, iridium, osmium, platinum and rhenium, as well as 3d metals, namely, cobalt, iron and manganese. We discovered that a few hybrids, in particular iridium- and osmium-doped graphenes, have the potential to become competent electrocatalysts owing to their low costs and-more importantly-to their promising electrochemical performances towards the HER. One of the more noteworthy observations of this work is the superiority of these two hybrids over MoS2 , a well-known electrocatalyst for the HER.

  11. Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation.

    PubMed

    Ó Conghaile, Peter; Pöller, Sascha; MacAodha, Domhnall; Schuhmann, Wolfgang; Leech, Dónal

    2013-05-15

    Newly synthesised osmium complex-modified redox polymers were tested for potential application as mediators in glucose oxidising enzyme electrodes for application to biosensors or biofuel cells. Coupling of osmium complexes containing amine functional groups to epoxy-functionalised polymers of variable composition provides a range of redox polymers with variation possible in redox potential and physicochemical properties. Properties of the redox polymers as mediators for glucose oxidation were investigated by co-immobilisation onto graphite with glucose oxidase or FAD-dependent glucose dehydrogenase using a range of crosslinkers and in the presence and absence of multiwalled carbon nanotubes. Electrodes prepared by immobilising [P20-Os(2,2'-bipyridine)2(4-aminomethylpyridine)Cl].PF6, carbon nanotubes and glucose oxidase exhibit glucose oxidation current densities as high as 560μAcm(-2) for PBS containing 100mM glucose at 0.45V vs. Ag/AgCl. Films prepared by crosslinking [P20-Os(4,4'-dimethoxy-2,2'-bipyridine)2(4-aminomethylpyridine)Cl].PF6, an FAD-dependent glucose dehydrogenase, and carbon nanotubes achieve current densities of 215μAcm(-2) in 5mM glucose at 0.2V vs. Ag/AgCl, showing some promise for application to glucose oxidising biosensors or biofuel cells.

  12. A New Lifshitz Transition and the Equation of State of Osmium

    SciTech Connect

    Occelli, F; Aracne, C M; Teter, D M; Hanfland, M; Canny, B; Couzinet, B; Chervin, J; Badro, J; Farber, D L

    2003-11-05

    We have measured the equation of state (EoS) of osmium to 75 GPa under hydrostatic conditions at room temperature using angle dispersive x-ray diffraction. A least-squares fit of the data using a third order Birch-Murnaghan EoS yields K{sub 0} = 411 {+-} 6 GPa and K'{sub 0} = 4.0 {+-} 0.2, showing osmium is in fact more compressible than diamond. Most importantly, we have documented an anomaly in the compressibility at 20.3 GPa associated with a large discontinuity in the first pressure derivative of the c/a ratio. This discontinuity likely arises from the collapse of the small hole-ellipsoid in the Fermi surface near the L point. There has been much interest in the possibility of a Lifshitz [1] or electronic topological transition (ETT) in zinc at high-pressure near 10 GPa. Interestingly, while the experimental data remain somewhat ambiguous [2-5], most simulations suggest the ETT exists in this pressure range [6-8]. Recently, Steinle-Neumann et al. [8] have shown that the transition arises from changes in the band structure near the high-symmetry point K where three bands cross the Fermi surface upon compression. Thus one might expect that other hcp metals should exhibit similar phenomena. The hcp 4d and 5d transition elements Re, Os and Ru are known to be among the densest and stiffest metals [9,10] suggesting that these might in fact be poor candidates in which to look for such effects. In osmium however, experimental and theoretical results [11,12] have shown the existence of small local maxima in the band structure just above the Fermi energy near the high-symmetry point L on the zone boundary [11]. These structures might potentially fall below the Fermi energy upon compression and give rise to an ETT. Osmium is of further interest as recent EoS measurements by Cynn et al. [13] have suggested that Os (K{sub 0} = 462 GPa and K'{sub 0} = 2.4) has the lowest known compressibility, lower even than diamond (K{sub 0} = 446 GPa and K'{sub 0} = 3) [14]. This

  13. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  14. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide

    SciTech Connect

    Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D.; Roberts, C.; Podolskiy, V. A.; Hoffman, A. J.

    2014-03-31

    We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.

  15. Hot charcoal vomitus in aluminum phosphide poisoning - A case report of internal thermal reaction in aluminum phosphide poisoning and review of literature

    PubMed Central

    Mirakbari, Seyed Mostafa

    2015-01-01

    Aluminium phosphide (ALP) poisoning is a commonly encountered poisoning in emergency departments in most developing countries. Many papers have revealed metabolic derangements in this poisoning and also examined contributing factors leading to death, but only few have reported physical damage. Some case reports have described a complication that has been frequently termed ‘ignition’. The exact mechanism of this phenomenon has not been fully elucidated. An exothermic reaction during therapeutic administration of chemicals may contribute to this problem, but the incidence has occurred in the absence of treatment or drug administration. Here, we report a 34-year-old woman with ALP poisoning who presented with hot charcoal vomitus, a sign of internal thermal event, leading to the thermal burning of the patient's face and internal damage resulting in death. We reviewed all reported cases with similar complication to demonstrate varied characteristics of patients and to propose the possible mechanisms leading to this event. PMID:26257417

  16. Hot charcoal vomitus in aluminum phosphide poisoning - A case report of internal thermal reaction in aluminum phosphide poisoning and review of literature.

    PubMed

    Mirakbari, Seyed Mostafa

    2015-07-01

    Aluminium phosphide (ALP) poisoning is a commonly encountered poisoning in emergency departments in most developing countries. Many papers have revealed metabolic derangements in this poisoning and also examined contributing factors leading to death, but only few have reported physical damage. Some case reports have described a complication that has been frequently termed 'ignition'. The exact mechanism of this phenomenon has not been fully elucidated. An exothermic reaction during therapeutic administration of chemicals may contribute to this problem, but the incidence has occurred in the absence of treatment or drug administration. Here, we report a 34-year-old woman with ALP poisoning who presented with hot charcoal vomitus, a sign of internal thermal event, leading to the thermal burning of the patient's face and internal damage resulting in death. We reviewed all reported cases with similar complication to demonstrate varied characteristics of patients and to propose the possible mechanisms leading to this event.

  17. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    SciTech Connect

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-04-01

    Preparation of supported nickel phosphide (Ni{sub 2}P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni{sub 2}P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni{sub 2}P structure, verified by XRD characterization results. The alumina (namely, γ-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, or α-Al{sub 2}O{sub 3}) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni{sub 2}P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N{sub 2}-sorption isotherm. The uniform surface energy of α-Al{sub 2}O{sub 3} results only in the nickel phosphosate precursor and thus the Ni{sub 2}P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, and γ-Al{sub 2}O{sub 3}) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni{sub 3}P, Ni{sub 12}P{sub 5}, Ni{sub 2}P). - Highlights: • Preparing pure Ni{sub 2}P. • Elucidating nickel phosphate precursor. • Associating with surface energy.

  18. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction.

    PubMed

    Popczun, Eric J; McKone, James R; Read, Carlos G; Biacchi, Adam J; Wiltrout, Alex M; Lewis, Nathan S; Schaak, Raymond E

    2013-06-26

    Nanoparticles of nickel phosphide (Ni2P) have been investigated for electrocatalytic activity and stability for the hydrogen evolution reaction (HER) in acidic solutions, under which proton exchange membrane-based electrolysis is operational. The catalytically active Ni2P nanoparticles were hollow and faceted to expose a high density of the Ni2P(001) surface, which has previously been predicted based on theory to be an active HER catalyst. The Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.

  19. Unusual complication of aluminum phosphide poisoning: Development of hemolysis and methemoglobinemia and its successful treatment

    PubMed Central

    Soltaninejad, Kambiz; Nelson, Leiws S.; Khodakarim, Nastaran; Dadvar, Zohreh; Shadnia, Shahin

    2011-01-01

    Methemoglobinemia and hemolysis are rare findings following phosphine poisoning. In this paper, a case of aluminum phosphide (AlP) poisoning complicated by methemoglobinemia and hemolysis with a successful treatment is reported. A 28-year-old male patient presented following intentional ingestion of an AlP tablet. In this case, hematuria, hemolysis and methemoglobinemia were significant events. A methemoglobin level of 46% was detected by CO-oximetry. The patient was treated with ascorbic acid and methylene blue and he also received supportive care. Two weeks after admission, the patient was discharged from the hospital. Hemolysis and methemoglobinemia may complicate the course of phosphine poisoning. PMID:21814377

  20. Ischemic stroke as a rare manifestation of aluminum phosphide poisoning: a case report.

    PubMed

    Abedini, Mahmoud; Fatehi, Farzad; Tabrizi, Nasim

    2014-01-01

    Aluminum phosphide (AlP) is a solid fumigant which is widely used for a suicide attempt in Iran. Although neurologic symptoms are commonly reported, cerebrovascular stenosis is rare in AlP poisoning. We described ischemic stroke as a delayed complication of AlP intoxication. A 30-year-old man was admitted because of sudden onset left side hemiplegia, 11 days after intentional ingestion of three rice tablets. Investigations revealed in situ thrombosis in right middle cerebral artery (MCA) while other causes of stroke in young adults were excluded. Ischemic stroke should be considered as a delayed complication of AlP intoxication even after the acute phase of intoxication.

  1. Unusual complication of aluminum phosphide poisoning: Development of hemolysis and methemoglobinemia and its successful treatment.

    PubMed

    Soltaninejad, Kambiz; Nelson, Leiws S; Khodakarim, Nastaran; Dadvar, Zohreh; Shadnia, Shahin

    2011-04-01

    Methemoglobinemia and hemolysis are rare findings following phosphine poisoning. In this paper, a case of aluminum phosphide (AlP) poisoning complicated by methemoglobinemia and hemolysis with a successful treatment is reported. A 28-year-old male patient presented following intentional ingestion of an AlP tablet. In this case, hematuria, hemolysis and methemoglobinemia were significant events. A methemoglobin level of 46% was detected by CO-oximetry. The patient was treated with ascorbic acid and methylene blue and he also received supportive care. Two weeks after admission, the patient was discharged from the hospital. Hemolysis and methemoglobinemia may complicate the course of phosphine poisoning.

  2. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  3. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  4. Specific features of intrinsic photoconductivity spectra of copper-compensated indium phosphide

    SciTech Connect

    Makarenko, Ph. V. Pribylov, N. N.; Rembeza, S. I.; Mel'nik, V. A.

    2008-05-15

    The intrinsic photoconductivity of copper-compensated indium phosphide has been studied. It is found that mechanical polishing of a sample surface gives rise to an additional photoconductivity peak in the region of the fundamental absorption edge. This peak disappears upon storage of the sample. The dependence of the shape of the photoconductivity spectrum on the storage time, electric-field strength, and position of the light spot with respect to the contacts was determined. The results are explained in terms of variation in the lifetime of nonequilibrium carriers across the sample thickness. An expression qualitatively describing the photoconductivity spectra is presented.

  5. Solution-based synthesis and purification of zinc tin phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Sheets, Erik J.; Balow, Robert B.; Yang, Wei-Chang; Stach, Eric A.; Agrawal, Rakesh

    2015-11-01

    The solution-based synthesis of nanoscale earth-abundant semiconductors has the potential to unlock simple, scalable, and tunable material processes which currently constrain development of novel compounds for alternative energy devices. One such promising semiconductor is zinc tin phosphide (ZnSnP2). We report the synthesis of ZnSnP2 nanowires via a solution-liquid-solid mechanism utilizing metallic zinc and tin in decomposing trioctylphosphine (TOP). Dried films of the reaction product are purified of binary phosphide phases by annealing at 345 °C. Tin is removed using a 0.1 M nitric acid treatment leaving pure ZnSnP2 nanowires. Diffuse reflectance spectroscopy indicates ZnSnP2 has a direct bandgap energy of 1.24 eV which is optimal for solar cell applications. Using a photoelectrochemical cell, we demonstrate cathodic photocurrent generation at open circuit conditions from the ZnSnP2 nanowires upon solar simulated illumination confirming p-type conductivity.The solution-based synthesis of nanoscale earth-abundant semiconductors has the potential to unlock simple, scalable, and tunable material processes which currently constrain development of novel compounds for alternative energy devices. One such promising semiconductor is zinc tin phosphide (ZnSnP2). We report the synthesis of ZnSnP2 nanowires via a solution-liquid-solid mechanism utilizing metallic zinc and tin in decomposing trioctylphosphine (TOP). Dried films of the reaction product are purified of binary phosphide phases by annealing at 345 °C. Tin is removed using a 0.1 M nitric acid treatment leaving pure ZnSnP2 nanowires. Diffuse reflectance spectroscopy indicates ZnSnP2 has a direct bandgap energy of 1.24 eV which is optimal for solar cell applications. Using a photoelectrochemical cell, we demonstrate cathodic photocurrent generation at open circuit conditions from the ZnSnP2 nanowires upon solar simulated illumination confirming p-type conductivity. Electronic supplementary information (ESI

  6. Osmium isotopes in Ivory Coast tektites: Confirmation of a meteoritic component and rhenium depletion

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shirey, Steven B.

    1993-01-01

    The sensitive negative thermal ionization mass spectrometry method was used for the measurement of concentrations and isotopic ratios of osmium and rhenium in four Ivory Coast tektites. These tektites have crustal major and trace element composition, as well as large negative epsilon(sub Nd)(-20) and positive epsilon(sub Sr)(+260 to +300) which are characteristic for old continental crust. Os concentrations ranging from 0.09 to 0.30 ppb were found, clearly much higher than average crustal values, Os-187/Os-186 ratios of about 1.2-1.7, and low Re-187/Os-186 ratios. These results show unambiguously the existence of a meteoritic component (on the order of 0.06%) in the Ivory Coast tektites. Low Re abundances are the result of fractionation of Re during the impact.

  7. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex.

    PubMed

    Suntharalingam, Kogularamanan; Lin, Wei; Johnstone, Timothy C; Bruno, Peter M; Zheng, Yao-Rong; Hemann, Michael T; Lippard, Stephen J

    2014-10-15

    The effect of a newly developed osmium(VI) nitrido complex, 1, on breast cancer stem cells (CSCs) is reported. The complex displays selective toxicity for HMLER breast cancer cells enriched with CD44-positive, CSC-like cells over the same cells having reduced CSC character. Remarkably, 1 also reduces the proportion of CSCs within a heterogeneous breast cancer cell population and irreversibly inhibits the formation of free-floating mammospheres to an extent similar to that of salinomycin, a natural product that targets CSCs. Detailed mechanistic studies reveal that in breast cancer cells 1 induces DNA damage and endoplasmic reticulum stress, the latter being responsible for the CSC selectivity. The anti-CSC properties of 1 provide a strong impetus for the development of new metal-based compounds to target CSCs and to treat chemotherapy-resistant and relapsed tumors.

  8. Polynuclear ruthenium, osmium and gold complexes. The quest for innovative anticancer chemotherapeutics.

    PubMed

    Hartinger, Christian G; Phillips, Andrew D; Nazarov, Alexey A

    2011-01-01

    Polynuclear compounds are a relatively new and successful approach in metal-based cancer chemotherapy as typified by the trinuclear Pt compound BBR3464 which was evaluated in clinical trials. In this review, we discuss newer developments of polynuclear ruthenium, osmium and gold complexes, focusing on their anticancer activity. The compounds presented are often supposed to exert their anticancer activity by different modes of action as compared to established drugs, including newly proposed mechanisms such as enzyme inhibition, crosslinking of biomacromolecules or through photo-activation, though many of the examples are also capable of binding to DNA nucleobases. Important metabolization and chemical characteristics of such compounds are discussed, and if the appropriate data is available, molecular modes of action are highlighted.

  9. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles.

    PubMed

    Büchel, Gabriel E; Gavriluta, Anatolie; Novak, Maria; Meier, Samuel M; Jakupec, Michael A; Cuzan, Olesea; Turta, Constantin; Tommasino, Jean-Bernard; Jeanneau, Erwann; Novitchi, Ghenadie; Luneau, Dominique; Arion, Vladimir B

    2013-06-03

    Ruthenium nitrosyl complexes of the general formulas (cation)(+)[cis-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (Hind) (1c), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (Hpz) (2c), (cation)(+) = (H2bzim)(+), Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (Him) (4c) and (cation)(+)[trans-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (1t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)(+)[cis-OsCl4(NO)(Hazole)](-), where (cation)(+) = (n-Bu4N)(+), Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)(+) = Na(+); Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11c), (cation)(+) = H2pz(+), Hazole = 1H-pyrazole (12c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (13c), and (cation)(+)[trans-OsCl4(NO)(Hazole)](-), where (cation)(+) = n-Bu4N(+), Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)(+) = Na(+), Hazole = 1H-indazole (9t), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV-vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most

  10. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  11. Borinium cations as sigma-B-H ligands in osmium complexes.

    PubMed

    Esteruelas, Miguel A; Fernández-Alvarez, Francisco J; López, Ana M; Mora, Malka; Oñate, Enrique

    2010-04-28

    The complex OsH(2)Cl(2)(P(i)Pr(3))(2) reacts with pinacolborane, Me(2)NH-BH(3), and (t)BuNH(2)-BH(3) to give the complexes OsH(2)Cl{eta(2)-HBOC(CH(3))(2)C(CH(3))(2)OBpin}(P(i)Pr(3))(2) and OsH(2)Cl(eta(2)-HBNR(1)R(2))(P(i)Pr(3))(2) (R(1) = R(2) = Me; R(1) = H, R(2) = (t)Bu) containing monosubstituted alkoxy- and amidoborinium cations coordinated as sigma-B-H ligands. The process is proposed to take place via the electrophilic 14-valence-electron fragment OsHCl(P(i)Pr(3))(2), which promotes hydride transfer from the corresponding borane to the osmium atom.

  12. Structure-activity relationships for organometallic osmium arene phenylazopyridine complexes with potent anticancer activity.

    PubMed

    Fu, Ying; Habtemariam, Abraha; Basri, Aida M B H; Braddick, Darren; Clarkson, Guy J; Sadler, Peter J

    2011-10-28

    We report the synthesis and characterisation of 32 half sandwich phenylazopyridine Os(II) arene complexes [Os(η(6)-arene)(phenylazopyridine)X](+) in which X is chloride or iodide, the arene is p-cymene or biphenyl and the pyridine and phenyl rings contain a variety of substituents (F, Cl, Br, I, CF(3), OH or NO(2)). Ten X-ray crystal structures have been determined. Cytotoxicity towards A2780 human ovarian cancer cells ranges from high potency at nanomolar concentrations to inactivity. In general the introduction of an electron-withdrawing group (e.g. F, Cl, Br or I) at specific positions on the pyridine ring significantly increases cytotoxic activity and aqueous solubility. Changing the arene from p-cymene to biphenyl and the monodentate ligand X from chloride to iodide also increases the activity significantly. Activation by hydrolysis and DNA binding appears not to be the major mechanism of action since both the highly active complex [Os(η(6)-bip)(2-F-azpy)I]PF(6) (9) and the moderately active complex [Os(η(6)-bip)(3-Cl-azpy)I]PF(6) (23) are very stable and inert towards aquation. Studies of octanol-water partition coefficients (log P) and subcellular distributions of osmium in A2780 human ovarian cancer cells suggested that cell uptake and targeting to cellular organelles play important roles in determining activity. Although complex 9 induced the production of reactive oxygen species (ROS) in A2780 cells, the ROS level did not appear to play a role in the mechanism of anticancer activity. This class of organometallic osmium complexes has new and unusual features worthy of further exploration for the design of novel anticancer drugs.

  13. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    USGS Publications Warehouse

    Gijbels, R.h.; Millard, H.T.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  14. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells.

    PubMed

    Hearn, Jessica M; Romero-Canelón, Isolda; Munro, Alison F; Fu, Ying; Pizarro, Ana M; Garnett, Mathew J; McDermott, Ultan; Carragher, Neil O; Sadler, Peter J

    2015-07-21

    The organometallic "half-sandwich" compound [Os(η(6)-p-cymene)(4-(2-pyridylazo)-N,N-dimethylaniline)I]PF6 is 49× more potent than the clinical drug cisplatin in the 809 cancer cell lines that we screened and is a candidate drug for cancer therapy. We investigate the mechanism of action of compound 1 in A2780 epithelial ovarian cancer cells. Whole-transcriptome sequencing identified three missense mutations in the mitochondrial genome of this cell line, coding for ND5, a subunit of complex I (NADH dehydrogenase) in the electron transport chain. ND5 is a proton pump, helping to maintain the coupling gradient in mitochondria. The identified mutations correspond to known protein variants (p.I257V, p.N447S, and p.L517P), not reported previously in epithelial ovarian cancer. Time-series RNA sequencing suggested that osmium-exposed A2780 cells undergo a metabolic shunt from glycolysis to oxidative phosphorylation, where defective machinery, associated with mutations in complex I, could enhance activity. Downstream events, measured by time-series reverse-phase protein microarrays, high-content imaging, and flow cytometry, showed a dramatic increase in mitochondrially produced reactive oxygen species (ROS) and subsequent DNA damage with up-regulation of ATM, p53, and p21 proteins. In contrast to platinum drugs, exposure to this organo-osmium compound does not cause significant apoptosis within a 72-h period, highlighting a different mechanism of action. Superoxide production in ovarian, lung, colon, breast, and prostate cancer cells exposed to three other structurally related organo-Os(II) compounds correlated with their antiproliferative activity. DNA damage caused indirectly, through selective ROS generation, may provide a more targeted approach to cancer therapy and a concept for next-generation metal-based anticancer drugs that combat platinum resistance.

  15. Occupational exposure to aluminium phosphide and phosphine gas? A suspected case report and review of the literature.

    PubMed

    Sudakin, D L

    2005-01-01

    The manufacture and application of aluminium phosphide fumigants pose risks of inhalation exposure to phosphine gas. This article presents a case report of suspected inhalation exposure to phosphine gas in a manufacturing facility for aluminium phosphide fumigants, which was associated with acute dyspnoea, hypotension, bradycardia and other signs of intoxication. These symptoms resolved within several hours after removal from exposure. A review of the data on human exposures to phosphide fumigants identifies both pesticide applicators and individuals in the vicinity of application to be at risk of accidental exposure and injury from phosphine inhalation. More recent reports have identified risks of phosphine gas inhalation in association with the clandestine production of methamphetamine. Toxicodynamic effects of phosphine result from the inhibition of cytochrome c oxidase and subsequent generation of reactive oxygen species. There remain unanswered questions relating to the toxicokinetics of phosphine, as well as the assessment of human exposure utilizing biomarkers. As initial signs and symptoms of intoxication from phosphine gas may be nonspecific and transient, there is a need for improved recognition of the potential hazards associated with phosphide fumigants and phosphine gas.

  16. Could hydroxyethyl starch be a therapeutic option in management of acute aluminum phosphide toxicity?

    PubMed

    Marashi, Sayed Mahdi; Arefi, Mohammad; Behnoush, Behnam; Nasrabad, Mahdi Ghazanfari; Nasrabadi, Zeynab Nasri

    2011-04-01

    Acute aluminum phosphide poisoning is a serious toxicity and results in high mortality rate despite the progress of critical care. After ingestion, phosphine gas is released and absorbed quickly, causing systemic poisoning and cell hypoxia. Excessive thirst, severe hypotension, arrhythmias, tachypnea, and severe metabolic acidosis are the common clinical manifestations. We think acute metabolic response which characteristically occurs in severe injury also happens in aluminum phosphide poisoning. Necropsy examinations indicate congestion in almost all vital organs because of leakage of fluids from intravascular to extravascular space. The most favorable type of fluid for intravascular volume resuscitation persists and is disputed. Colloids remain in the intravascular space rather than crystalloids, and provide more rapid hemodynamic stabilization. Furthermore, hydroxyethyl starch solution may have other benefits e.g. it can reduce the extra vascular leak of albumin and fluids from an endothelial injury site. As refractory hypotension and cardiovascular collapse, because leakage of fluids from intravascular to extravascular space are common cause of death in this toxicity, we propose that hydroxyethyl starch can dominate this refractory hypotension and consequently acute metabolic response.

  17. Effects of hyperbaric oxygenation on survival time of aluminum phosphide intoxicated rats

    PubMed Central

    Saidi, Hossein; Shokraneh, Farhad; Ghafouri, Hamed-Basir; Shojaie, Shayan

    2011-01-01

    BACKGROUND: Aluminium phosphide (AlP) is used as a fumigant. It produces phosphine gas which is a mitochondrial poison. Although this poisoning has been repeatedly reported in literature with a high mortality rate, there is no known antidote for AlP intoxication. In the present study, we studied the effects of hyperbaric oxygenation (HBO) on the survival time of AlP intoxicated rats. METHODS: Intoxicated rats with AlP (11.5 mg/kg, oral gavage) were placed in hyperbaric oxygenation with different concentrations of compressed air and oxygen. RESULTS: All the animals exposed to AlP died within 5 days. The mean survival times of rats exposed to AlP without any intervention, treated with hyperbaric condition by compressed air, and treated with hyperbaric condition by pure O2 were 91 ± 1, 262 ± 8, and 276 ± 6 minutes, respectively. In analysis of survival times, there was a significant difference between Group 2 which received AlP and the groups which underwent intervention (Groups 2 and 3, p < 0.001; Groups 2 and 4, p < 0.001). CONCLUSIONS: Hyperbaric oxygenation may probably improve the survival time of the intoxicated rats with aluminium phosphide, but it may not decrease the mortality rate. PMID:22973324

  18. Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity.

    PubMed

    Wang, Xina; Tong, Rui; Wang, Yi; Tao, Hualong; Zhang, Zhihua; Wang, Hao

    2016-12-21

    Development of earth-abundant, efficient, and stable electrocatalysts for hydrogen evolution reactions (HER) in alkaline or even neutral pH electrolyte is very important for hydrogen production from water splitting. Construction of bimetal phosphides via tuning the bonding strength to hydrogen and increasing effective active sites through nanostructuring and surface engineering should lead to high HER activity. Here, ternary NiCoP nanowires (NWs) decorated by homogeneous nanoparticles have been obtained on Ni foam for a highly efficient HER property via long-term cyclic voltammetric (CV) sweeping. The electron density transfer between the positively charged Ni and Co and negatively charged P atoms, one-dimensional electron transfer channel of the NWs, and abundant active sites supplied by the nanoparticles and NWs endow the catalyst with low overpotentials of 43 and 118 mV to achieve the respective current densities of 10 and 100 mA cm(-2) together with long durability for at least 33 h in 1 M KOH. A cycled anodic dissolution-redeposition mechanism is disclosed for the formation of the NiCoP nanoparticles during the CV sweeping process. Such a surface roughening method is found to be adaptable to enhance the HER property of other phosphides, including Ni2P nanoplates/NF, NiCoP nanoparticles/NF, and CoP NW/NF.

  19. Lattice-mismatched phosphide-based LEDs for color mixing white light applications

    NASA Astrophysics Data System (ADS)

    Alberi, Kirstin

    2011-03-01

    The most promising means of achieving high efficiency white light emitting diodes (LEDs) with high color rendering indices (CRI) is to combine individual red (615 nm), yellow (573 nm), green (535 nm) and blue (459 nm) solid-state LEDs in a four color RYGB architecture. Due to their high bandgaps and the availability of bulk substrates, phosphide-based alloys are currently leading candidates for achieving the longer wavelengths, of which AlGaInP lattice-matched to GaAs has been extensively explored. In a departure from this approach, we investigate phosphide alloys at compositions that are lattice-mismatched with respect to GaAs for color mixing white light applications. Lifting the lattice-matching requirement extends the options for active and cladding layer design and optimization, thereby providing additional avenues for reducing carrier loss pathways and improving device efficiency. This talk covers our work on issues central to the success of this technology: metamorphic growth of high quality epilayers, the competing trade-off between operating wavelength and intervalley carrier transfer loss, and the availability of optimal cladding layers for high power operation. Support from the DOE EERE-SSL and BES-DMS programs and the ~LDRD program at NREL is gratefully acknowledged.

  20. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    SciTech Connect

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.

  1. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    SciTech Connect

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  2. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER andmore » compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.« less

  3. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    SciTech Connect

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-05-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni{sub 2}P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni{sub 2}P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni{sub 2}P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni{sub 2}P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni{sub 2}P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni{sub 2}P was postulated and discussed in detail. To investigate its catalytic properties, SiO{sub 2} supported three-dimensional Ni{sub 2}P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni{sub 2}P/SiO{sub 2}.

  4. An osmium(III)/osmium(V) redox couple generating Os(V)(O)(OH) center for cis-1,2-dihydroxylation of alkenes with H2O2: Os complex with a nitrogen-based tetradentate ligand.

    PubMed

    Sugimoto, Hideki; Kitayama, Kazuhiro; Mori, Seiji; Itoh, Shinobu

    2012-11-21

    For the synthesis of the 1,2-diols, cis-1,2-dihydroxylation of alkenes catalyzed by osmium(VIII) tetroxide (OsO(4)) is a powerful method. However, OsO(4) is quite toxic due to its highly volatile and sublimable nature. Thus, the development of alternative catalysts for cis-1,2-dihydroxylation of alkenes is highly challenging. Our approach involves the use of a nitrogen-based tetradentate ligand, tris(2-pyridylmethyl)amine (tpa), for an osmium center to develop a new osmium catalyst and hydrogen peroxide (H(2)O(2)) as a cheap and environmentally benign oxidant. The new Os-tpa complex acts as a very efficient turnover catalyst for syn-selective dihydroxylation of various alkenes (turnover number ∼1000) in aqueous media, and H(2)O(2) oxidant is formally incorporated into the products quantitatively (100% atom efficiency). The reaction intermediates involved in the catalytic cycle have been isolated and characterized crystallographically as [Os(III)(OH)(H(2)O)(tpa)](2+) and [Os(V)(O)(OH)(tpa)](2+) complexes. The observed syn-selectivity, structural characteristics of the intermediates, and kinetic studies have suggested a concerted [3 + 2]-cycloaddition mechanism between [Os(V)(O)(OH)(tpa)](2+) and alkenes, which is strongly supported by DFT calculations.

  5. Ligand-incorporation site in 5-methylcytosine-detection probe modulating the site of osmium complexation with the target DNA.

    PubMed

    Sugizaki, Kaori; Nakamura, Akiko; Yanagisawa, Hiroyuki; Okamoto, Akimitsu

    2012-09-01

    ICON Probes, short DNA strands containing an adenine linked to a bipyridine ligand, formed an interstrand cross-link with 5-methylcytosine located opposite the modified adenine in the presence of an osmium oxidant. The location of a bipyridine-tethered adenine in the probes varied the selectivity of the reactive base. An ICON probe where the modified adenine was located at the probe center showed a 5-methylcytosine-selective osmium complexation, whereas an ICON probe with the modified adenine at the strand end exhibited high reactivity towards thymine as well as 5-methylcytosine. The modulation of reactive bases by the incorporation of a bipyridine-tethered adenine site made facilitates design of ICON probes for the fluorometric detection of 5-methylcytosine.

  6. Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2012-04-21

    This review describes how the incorporation of dicarba-closo-dodecarboranes into half-sandwich complexes of ruthenium, osmium, rhodium and iridium might lead to the development of a new class of compounds with applications in medicine. Such a combination not only has unexplored potential in traditional areas such as Boron Neutron Capture Therapy agents, but also as pharmacophores for the targeting of biologically important proteins and the development of targeted drugs. The synthetic pathways used for the syntheses of dicarba-closo-dodecarboranes-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium are also reviewed. Complexes with a wide variety of geometries and characteristics can be prepared. Examples of addition reactions on the metal centre, B-H activation, transmetalation reactions and/or direct formation of metal-metal bonds are discussed (103 references).

  7. An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry.

    PubMed

    Phend, K D; Rustioni, A; Weinberg, R J

    1995-03-01

    Immunocytochemistry for amino acids with post-embedding gold is compatible with glutaraldehyde fixation, osmication, and embedding in epoxy-based plastics, but immunogold detection of larger molecules in the central nervous system commonly requires special procedures, e.g. minimizing exposure to glutaraldehyde, eliminating osmium, cryosectioning, and/or embedding in acrylic plastics. These make samples more difficult to prepare and view and may compromise structural preservation. We report a new technique, fixing with high levels of glutaraldehyde, replacing osmium with tannic acid followed by other heavy metals and p-phenylenediamine, and embedding in Epon. This method optimizes antigenicity while retaining the structural preservation and convenient handling of standard embedding techniques. Compared to standard Epon embedment, labeling for neuropeptides in brain and spinal cord is improved. Moreover, the present method yields excellent labeling of glutamate receptors (difficult to identify with traditional post-embedding techniques) and enables simultaneous visualization of associated neurotransmitters.

  8. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker.

    PubMed

    Havran, Ludek; Vacek, Jan; Cahová, Katerina; Fojta, Miroslav

    2008-07-01

    This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.

  9. Atomically Resolved Site-Isolated Catalyst on MgO: Mononuclear Osmium Dicarbonyls formed from Os3(CO)12

    SciTech Connect

    Aydin, Ceren; kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D.; Gates, Bruce C.

    2012-01-01

    Supported triosmium clusters, formed from Os{sub 3}(CO){sub 12} on MgO, were treated in helium at 548 K for 2 h, causing fragmentation of the cluster frame and the formation of mononuclear osmium dicarbonyls. The cluster breakup and the resultant fragmented species were characterized by infrared and X-ray absorption spectroscopies, and the fragmented species were imaged by scanning transmission electron microscopy. The spectra identify the surface osmium complexes as Os(CO){sub 2}{l_brace}O{sub support}{r_brace}{sub n} (n = 3 or 4) (where the braces denote support surface atoms). The images show site-isolated Os atoms in mononuclear osmium species on MgO. The intensity analysis on the images of the MgO(110) face showed that the Os atoms were located atop Mg columns. This information led to a model of the Os(CO){sub 2} on MgO(110), with the distances approximated as those determined by EXAFS spectroscopy, which are an average over the whole MgO surface; the results imply that these complexes were located at Mg vacancies.

  10. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.

    PubMed

    Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun

    2016-04-01

    An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2).

  11. Atomically Resolved Site-Isolated Catalyst on MgO: Mononuclear Osmium Dicarbonyls formed from Os3(CO)12.

    PubMed

    Aydin, Ceren; Kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D; Gates, Bruce C

    2012-07-19

    Supported triosmium clusters, formed from Os3(CO)12 on MgO, were treated in helium at 548 K for 2 h, causing fragmentation of the cluster frame and the formation of mononuclear osmium dicarbonyls. The cluster breakup and the resultant fragmented species were characterized by infrared and X-ray absorption spectroscopies, and the fragmented species were imaged by scanning transmission electron microscopy. The spectra identify the surface osmium complexes as Os(CO)2{Osupport}n (n = 3 or 4) (where the braces denote support surface atoms). The images show site-isolated Os atoms in mononuclear osmium species on MgO. The intensity analysis on the images of the MgO(110) face showed that the Os atoms were located atop Mg columns. This information led to a model of the Os(CO)2 on MgO(110), with the distances approximated as those determined by EXAFS spectroscopy, which are an average over the whole MgO surface; the results imply that these complexes were located at Mg vacancies.

  12. The cyro-thermochromatographic separator (CTS): A new detectionand separation system for highly volatile osmium and hassium (element108) tetroxides

    SciTech Connect

    Kirbach, U.W.; Folden III, C.M.; Ginter, T.N.; Gregorich, K.E.; Lee, D.M.; Ninov, V.; Omtvedt, J.P.; Patin, J.B.; Seward, N.K.; Strellis,D.A.; Sudowe, R.; Wilk, P.A.; Zielinski, P.M.; Hoffman, D.C.; Nitsche, H.

    2002-03-08

    We implemented a new concept for heavy element chemistry research using an ion separator to separate the desired products from the beam, transfer products and other undesirable by-products prior to chemical studies. First, a Recoil product Transfer Chamber (RTC) was designed and attached to the Berkeley Gas-filled Separator (BGS) to collect and transfer the recoiling products to the chemical separation system. The RTC consists of a wire-grid-supported thin mylar foil ({le}) 200 {micro}g/cm{sup 2} that separates the BGS detector chamber, at 1.3 mbar pressure, from the chemistry system at different pressures ranging from 480 mbar to 2000 mbar. The overall transport efficiency ranged between 30% and 15%, compared to the activity measured in the focal plane detector of the BGS. The CTS was designed as a separation and {alpha}-decay detection system for the highly volatile tetroxides of osmium and hassium, element 108. The CTS, shown in figure 1, consists of two rows of 32-{alpha} detectors arranged along a negative temperature gradient. The tetroxides adsorb on the surface of one of the silicone photodiodes at a certain deposition temperature, and the nuclide is then identified by the {alpha}-decay. To test the CTS with the expected hassium homologue osmium, different {alpha}-active osmium isotopes were produced using the nuclear reactions {sup 118}Sn({sup 56}Fe, 4,5n) {sup 170,169}Os and {sup 120}Sn({sup 56}Fe, 4,5n) {sup 172,171}Os. After preseparation in the BGS, a mixture of 90% helium and 10% oxygen was used to transport the osmium to a quartz tube heated to 1225 K, where OsO{sub 4} was formed. The negative temperature gradient in the CTS ranged from 248 K to 173 K. Using a flow rate of 500 mL/min, most of the osmium activity was adsorbed at a temperature of about 203 K. From the measured {alpha}-activity distribution, an adsorption enthalpy of 40 {+-} 1 kJ/mol for OsO{sub 4} on the detector surface was calculated using Monte Carlo simulations. The results show

  13. Backscattered electron image of osmium-impregnated/macerated tissues as a novel technique for identifying the cis-face of the Golgi apparatus by high-resolution scanning electron microscopy.

    PubMed

    Koga, D; Bochimoto, H; Watanabe, T; Ushiki, T

    2016-07-01

    The osmium maceration method with scanning electron microscopy (SEM) enabled to demonstrate directly the three-dimensional (3D) structure of membranous cell organelles. However, the polarity of the Golgi apparatus (that is, the cis-trans axis) can hardly be determined by SEM alone, because there is no appropriate immunocytochemical method for specific labelling of its cis- or trans-faces. In the present study, we used the osmium impregnation method, which forms deposits of reduced osmium exclusively in the cis-Golgi elements, for preparation of specimens for SEM. The newly developed procedure combining osmium impregnation with subsequent osmium maceration specifically visualised the cis-elements of the Golgi apparatus, with osmium deposits that were clearly detected by backscattered electron-mode SEM. Prolonged osmication by osmium impregnation (2% OsO4 solution at 40°C for 40 h) and osmium maceration (0.1% OsO4 solution at 20°C for 24 h) did not significantly impair the 3D ultrastructure of the membranous cell organelles, including the Golgi apparatus. This novel preparation method enabled us to determine the polarity of the Golgi apparatus with enough information about the surrounding 3D ultrastructure by SEM, and will contribute to our understanding of the global organisation of the entire Golgi apparatus in various differentiated cells.

  14. Origin of platinum-group mineral assemblages in a mantle tectonite at Unst deduced from mineral chemistry and osmium isotopes

    NASA Astrophysics Data System (ADS)

    Badanina, Inna Yu.; Lord, Richard A.; Malitch, Kreshimir N.; Meisel, Thomas C.

    2013-04-01

    This study assesses textural and mineral chemistry data, whole-rock and mineral separate Os-isotope compositions for distinct platinum-group mineral (PGM) inclusion assemblages in an isolated chromitite pod at Harold's Grave, which occurrs in a mantle tectonite at Unst in the Shetland Ophiolite Complex, Scotland. The investigation employed a multi-technique approach and utilized a number of analytical techniques, including electron microprobe analysis, ID ICP-MS after high pressure acid digestion, and LA MC-ICP-MS. Two distinct PGM assemblages have been recognized. They comprise a 'primary' euhedrally shaped (up to 15 μm in size) PGM assemblage, which occur as inclusions in chromite, and a modified 'secondary' subeuhedral to anhedral PGM assemblage (up to 100 μm) associated with Ru-rich pentlandite observed in cracks filled by chlorite or serpentine, interstitially to chromite grains. A 'primary' PGM assemblage is represented by solitary grains of laurite or iridian osmium and composite grains that display well defined phase boundaries between two or three distinct PGM. The latter are dominated by laurite and iridian osmium, with subordinate laurite + osmian iridium + iridian osmium and rare laurite + Ir-Rh alloy + Rh-rich sulphide (possibly prassoite). The compositional variability of associated laurite and Os-rich alloys at Harold's Grave fit the predicted compositions of experiment W-1200-0.37 of Andrews and Brenan (2002) providing unequivocal information on conditions of their genesis, with the upper thermal stability of laurite in equilibrium with Os-rich alloys estimated at 1200 - 1250° C and f(S2) of 10-0.39-10-0.07. The inconsistent grouping of different primary PGM grains argues against an origin by subsolidus exsolution from the chromite host, providing useful information on conditions of their genesis. The 'secondary' PGM assemblage is polyphase, with dominant laurite, intimately intergrown with native osmium, irarsite and Ru-rich pentlandite. This

  15. Development of a reliable analytical method for the precise extractive spectrophotometric determination of osmium(VIII) with 2-nitrobenzaldehydethiocarbohydrazone: Analysis of alloys and real sample

    NASA Astrophysics Data System (ADS)

    Zanje, Sunil B.; Kokare, Arjun N.; Suryavanshi, Vishal J.; Waghmode, Duryodhan P.; Joshi, Sunil S.; Anuse, Mansing A.

    2016-12-01

    The proposed method demonstrates that the osmium(VIII) forms complex with 2-NBATCH from 0.8 mol L- 1 HCl at room temperature. The complex formed was extracted in 10 mL of chloroform with a 5 min equilibration time. The absorbance of the red colored complex was measured at 440 nm against the reagent blank. The Beer's law was obeyed in the range of 5-25 μg mL- 1, the optimum concentration range was 10-20 μg mL- 1 of osmium(VIII) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of osmium(VIII)-2NBATCH complex in chloroform is 8.94 × 103 L mol- 1 cm- 1 and 0.021 μg cm- 2, respectively. The composition of osmium(VIII)-2NBATCH complex was 1:2 investigated from Job's method of continuous variation, Mole ratio method and slope ratio method. The interference of diverse ions was studied and masking agents were used wherever necessary. The present method was successfully applied for determination of osmium(VIII) from binary, ternary and synthetic mixtures corresponding to alloys and real samples. The validity of the method was confirmed by finding the relative standard deviation for five determinations which was 0.29%.

  16. Development of a reliable analytical method for the precise extractive spectrophotometric determination of osmium(VIII) with 2-nitrobenzaldehydethiocarbohydrazone: Analysis of alloys and real sample.

    PubMed

    Zanje, Sunil B; Kokare, Arjun N; Suryavanshi, Vishal J; Waghmode, Duryodhan P; Joshi, Sunil S; Anuse, Mansing A

    2016-12-05

    The proposed method demonstrates that the osmium(VIII) forms complex with 2-NBATCH from 0.8molL(-1) HCl at room temperature. The complex formed was extracted in 10mL of chloroform with a 5min equilibration time. The absorbance of the red colored complex was measured at 440nm against the reagent blank. The Beer's law was obeyed in the range of 5-25μgmL(-1), the optimum concentration range was 10-20μgmL(-1) of osmium(VIII) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of osmium(VIII)-2NBATCH complex in chloroform is 8.94×10(3)Lmol(-1)cm(-1) and 0.021μgcm(-2), respectively. The composition of osmium(VIII)-2NBATCH complex was 1:2 investigated from Job's method of continuous variation, Mole ratio method and slope ratio method. The interference of diverse ions was studied and masking agents were used wherever necessary. The present method was successfully applied for determination of osmium(VIII) from binary, ternary and synthetic mixtures corresponding to alloys and real samples. The validity of the method was confirmed by finding the relative standard deviation for five determinations which was 0.29%.

  17. Unexpected Stable Two-dimensional Silicon Phosphides with Different Stoichiometries [Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties

    DOE PAGES

    Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; ...

    2015-01-01

    We report that the discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x ≥1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changingmore » the number of layers or applying an in-plane strain. Furthermore, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.« less

  18. Unexpected Stable Two-dimensional Silicon Phosphides with Different Stoichiometries [Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties

    SciTech Connect

    Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; Sumpter, Bobby G.; Wei, Su-Huai

    2015-01-01

    We report that the discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x ≥1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changing the number of layers or applying an in-plane strain. Furthermore, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.

  19. Osmium isotope anomalies in chondrites: Results for acid residues and related leachates

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; O'D. Alexander, Conel M.; Walker, Richard J.

    2010-03-01

    We have investigated Os isotope anomalies in acid residues enriched in insoluble organic matter (IOM) extracted from ten primitive chondrites, acid leachates and residues of these fractions, as well as acid leachates of bulk chondrites. Osmium isotopic compositions of bulk carbonaceous, ordinary and enstatite chondrites are also reported. Consistent with prior results, bulk chondrites have homogeneous Os isotope compositions for s-, r-, and p-process nuclides that are indistinguishable from terrestrial, at the current level of resolution. In contrast, nearly all the IOM-rich residues are enriched in s-process Os, evidently due to the preferential incorporation of s-process enriched presolar grains (most likely presolar SiC). Presolar silicate grains that formed in red giant branch (RGB) or asymptotic giant branch (AGB) stars are also likely hosts of additional s-process Os in chondrites. Consistent with one prior study, Os released by weak acid leaching of bulk chondrites is slightly to strongly enriched in r-process nuclides, of which the carrier may be fine-grained presolar silicates formed in supernovae or unidentified solar phases. Collectively, the different, chemically concentrated components in these meteorites are variably enriched in s-, r-, and possibly p-process Os, of which the individual carriers must have been produced in multiple stellar environments. The lack of evidence for Os isotopic heterogeneity among bulk chondrites contrasts with evidence for isotopic heterogeneities for various other elements at approximately the same levels of resolution (e.g., Cr, Mo, Ru, Ba, Sm, and Nd). One possible explanation for this is that the heterogeneities for some elements in bulk materials reflect selective removal of some types of presolar grains as a result of nebular processes, and that because of the strong chemical differences between Os and the other elements, the Os was not significantly affected. Another possible explanation is that late-stage injection

  20. Amide-Directed Formation of Five-Coordinate Osmium Alkylidenes from Alkynes

    PubMed Central

    2015-01-01

    The amide-directed synthesis of five-coordinate osmium alkylidene derivatives from alkynes is reported. These types of complexes, which have been elusive until now because of the tendency of osmium to give hydride alkylidyne species, are prepared by reaction of the dihydride OsH2Cl2(PiPr3)2 (1) with terminal alkynes containing a distal amide group. Complex 1 reacts with N-phenylhex-5-ynamide and N-phenylhepta-6-ynamide to give OsCl2{=C(CH3)(CH2)nNH(CO)Ph}(PiPr3)2 (n = 3 (2), 4 (3)). The relative position of carbonyl and NH groups in the organic substrates has no influence on the reaction. Thus, treatment of 1 with N-(pent-4-yn-1-yl)benzamide leads to OsCl2{=C(CH3)(CH2)3NHC(O)Ph}(PiPr3)2 (4). The new compounds are intermediate species in the cleavage of the C–C triple bond of the alkynes. Under mild conditions, they undergo the rupture of the Cα–CH3 bond of the alkylidene, which comes from the alkyne triple bond, to afford six-coordinate hydride–alkylidyne derivatives. In dichloromethane, complex 2 gives a 10:7 mixture of OsHCl2{≡C(CH2)3C(O)NHPh}(PiPr3)2 (5) and OsHCl2{≡CCH(CH3)(CH2)2C(O)NHPh}(PiPr3)2 (6). The first complex contains a linear separation between the alkylidyne Cα atom and the amide group, whereas the spacer is branched in the second complex. In contrast to the case for 2, complex 4 selectively affords OsHCl2{≡C(CH2)3NHC(O)Ph}(PiPr3)2 (7). In spite of their instability, these compounds give the alkylidene–allene metathesis, being a useful entry to five-coordinate vinylidene complexes, including the dicarbon-disubstituted OsCl2(=C=CMe2)(PiPr3)2 (8) and the monosubstituted OsCl2(=C=CHCy)(PiPr3)2 (9). PMID:26877575

  1. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  2. Aluminum phosphide poisoning: Possible role of supportive measures in the absence of specific antidote

    PubMed Central

    Agrawal, Vijay Kumar; Bansal, Abhishek; Singh, Ranjeet Kumar; Kumawat, Bhanwar Lal; Mahajan, Parul

    2015-01-01

    Aluminum phosphide (ALP) poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning. PMID:25722553

  3. Aluminum phosphide poisoning: Possible role of supportive measures in the absence of specific antidote.

    PubMed

    Agrawal, Vijay Kumar; Bansal, Abhishek; Singh, Ranjeet Kumar; Kumawat, Bhanwar Lal; Mahajan, Parul

    2015-02-01

    Aluminum phosphide (ALP) poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning.

  4. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    PubMed Central

    Oghabian, Zohreh; Mehrpour, Omid

    2016-01-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  5. Aluminum phosphide poisoning: effect of correction of severe metabolic acidosis on patient outcome.

    PubMed

    Jaiswal, S; Verma, R K; Tewari, N

    2009-01-01

    Forty patients of aluminum phosphide poisoning who were admitted to the ICU of Sir Sunder Lal Hospital, Banaras Hindu University, were studied. Restlessness, excessive thirst, shock, arrhythmias, tachypnoea, and severe metabolic acidosis were the common clinical findings. Only repeated and full correction with intravenous sodium bicarbonate was able to cope up with the severity and rapidity of acidosis. There was no significant change in blood pressure, pulse rate, and respiratory rate after full correction but gradually pulse and systolic blood pressure settled after ionotropic support in the survivors. There was significant improvement from 30.36% in the case when only half correction was done, as has been the common practice, to 57.5%, when full correction of metabolic acidosis was done.

  6. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    SciTech Connect

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  7. Strain tunable electronic and magnetic properties of pristine and semihydrogenated hexagonal boron phosphide

    SciTech Connect

    Yu, Jin; Guo, Wanlin

    2015-01-26

    Tunable electromagnetic properties of pristine two-dimensional boron phosphide (h-BP) nanosheet and its semihydrogenated structure were studied by density functional theory computations. In sharp contrast to previously reported tensile strain-induced red shift in two-dimensional semiconductors, the direct gap of h-BP undergoes blue shift under biaxial tensile strain. Once semihydrogenated, the h-BP not only transform from the nonmagnetic semiconductor into metal which is spin-resolved but also exhibits linear response between the magnetic moment and biaxial strain with a slope up to 0.005 μB/1%. These findings provide a simple and effective route to tune the electronic and magnetic properties of h-BP nanostructures in a wide range and should inspire experimental enthusiasm.

  8. Effect of emitter parameter variation on the performance of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Metallorganic chemical-vapor-deposited heteroepitaxial indium phosphide (InP) solar cell experimental results were simulated by using a PC-1D computer model. The effect of emitter parameter variation on the performance of n(+)/p/p(+) heteroepitaxial InP/GaAs solar cell was presented. The thinner and lighter doped emitters were observed to offer higher cell efficiencies. The influence of emitter thickness and minority carrier diffusion length on the cell efficiency with respect to dislocation density was studied. Heteroepitaxial cells with efficiencies similar to present day homojunction InP efficiencies (greater than 16 percent AMO) were shown to be attainable if a dislocation density lower than 10(exp 6)/sq cm could be achieved. A realistic optimized design study yielded InP solar cells of over 22 percent AMO efficiency at 25 C.

  9. Effect of InAlAs window layer on the efficiency of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide-bandgap lattice-matched indium aluminum arsenide (In0.52Al0.48As) window layer on the performance of InP solar cells was investigated using a numerical code PC-1D. The p(+)n InP solar cell performance improves significantly with the use of a window layer. No improvement is seen for n(+)p InP cells. Cell results are explained by the band diagram of the heterostructure and the conduction-band energy discontinuity. The calculated I-V and internal quantum efficiency results clearly demonstrate that In0.52Al0.48As is a promising candidate as a window layer material for p(+)n InP solar cells.

  10. Redox mechanism in the binary transition metal phosphide Cu3P

    NASA Astrophysics Data System (ADS)

    Mauvernay, B.; Doublet, M.-L.; Monconduit, L.

    2006-05-01

    The electrochemical behaviour of the binary transition metal phosphide Cu3P towards lithium is investigated through galvano- and potentiostatic measurements. Obtained through high-temperature synthesis, this system shows a better volumetric capacity than graphite and a good capacity retention. In situ X-ray diffraction and first-principles electronic structure calculations are combined with the electrochemical results to show that the complete insertion of 3Li+ in the Cu3P electrode proceeds with the formation of three intermediate phases of lithium composition LixCu(3-x)P (x=1,2,3). The extra capacity previously observed in discharge is now clearly assigned to lithium insertion into the CuP2 impurity and to SEI reactions.

  11. Effect of emitter parameter variation on the performance of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.

    1990-01-01

    Metalorganic chemical-vapor-deposited heteroepitaxial indium phosphide (InP) solar cell experimental results were simulated by using a PC-1D computer model. The effect of emitter parameter variation on the performance of n(+)/p/p(+) heteroepitaxial InP/GaAs solar cell was presented. The thinner and lighter doped emitters were observed to offer higher cell efficiencies. The influence of emitter thickness and minority carrier diffusion length on the cell efficiency with respect to dislocation density was studied. Heteroepitaxial cells with efficiencies similar to present day homojunction InP efficiencies (greaater than 16 percent AM0) were shown to be attainable if a dislocation density lower than 10(exp 6)/sq cm could be achieved. A realistic optimized design study yielded InP solar cells of over 22 percent AM0 efficiency at 25 C.

  12. Effect of InAlAs window layer on efficiency of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide bandgap, lattice-matched indium aluminum arsenide (In(0.52)Al(0.48)As) window layer on the performance of InP solar cells was investigated by using the numerical code PC-1D. The p(+)n InP solar cell performance improved significantly with the use of the window layer. No improvement was seen for the n(+)p InP cells. The cell results were explained by the band diagram of the heterostructure and the conduction band energy discontinuity. The calculated current voltage and internal quantum efficiency results clearly demonstrated that In(0.52)Al(0.48)As is a very promising candidate for a window layer material for p(+)n InP solar cells.

  13. Potential for use of indium phosphide solar cells in the space radiation environment

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    Indium phosphide solar cells were observed to have significantly higher radiation resistance than either GaAs or Si after exposure to 10 MeV proton irradiation data and previous 1 MeV electron data together with projected efficiencies for InP, it was found that these latter cells produced more output power than either GaAs or Si after specified fluences of 10 MeV protons and 1 MeV electrons. Estimates of expected performance in a proton dominated space orbit yielded much less degradation for InP when compared to the remaining two cell types. It was concluded that, with additional development to increase efficiency, InP solar cells would perform significantly better than either GaAs or Si in the space radiation environment.

  14. Progress of Aluminum Gallium Indium Phosphide Red Laser Diodes and Beyond

    NASA Astrophysics Data System (ADS)

    Hamada, Hiroki

    2015-11-01

    High-quality aluminum gallium indium phosphide epitaxial layers for red laser diodes have been grown by the metal organic chemical vapor deposition method. The layers have some issues, such as narrowing of the band gap, low p-carrier concentration, difficulty in epitaxial growth for quantum well structures, and generating of high-density hillocks. The issues have been successfully solved by introducing (100) substrates with misorientaion toward the [011] direction. High performance transverse-mode stabilized lasers are achieved by introducing the substrates, novel strain-compensated multiple-quantum well structures, which can add large strain to the wells, and low-loss optical cavity. This article also describes their applications.

  15. Surface modification of gallium phosphide caused by swift (200 MeV) silver ions

    NASA Astrophysics Data System (ADS)

    Dubey, S. K.

    2017-02-01

    In the present work, the effects of swift silver ion irradiation in crystalline gallium phosphide samples with various fluences ranging between 1 × 1011 and 2 × 1013 ions cm-2 have been described. Atomic force microscopy images of the samples irradiated with different fluences showed the existence of hillocks at the surface, the diameter and density of these clusters were found to be depend on the ion fluence. As the ion fluence increased (⩾1 × 1013 ions cm-2), the big size hillocks having arbitrary shapes were observed due to outflow of the molten material to the sample surface or defect induced swelling of track areas accumulated during the track overlapping. Phonon confinement model employed to first order Raman scattering from longitudinal optical phonon mode revealed the decrease in phonon coherence length from 73.0 nm to 23.7 nm with the increase in ion fluence from 1 × 1012 to 2 × 1013 ion cm-2.

  16. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  17. Indium phosphide solar cells - Status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brinker, D. J.

    1986-01-01

    The current status of indium phosphide cell research is reviewed and state of the art efficiencies compared to those of GaAs and Si. It is shown that the radiation resistance of InP cells is superior to that of either GaAs or Si under 1 MeV electron and 10 MeV proton irradiation. Using lightweight blanket technology, a SEP array structure and projected cell efficiencies, array specific powers are obtained for all three cell types. Array performance is calculated as a function of time in orbit. The results indicate that arrays using InP cells can outperform those using GaAs or Si in orbits where radiation is a significant cell degradation factor. It is concluded that InP solar cells are excellent prospects for future use in the space radiation environment.

  18. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    PubMed

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  19. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    SciTech Connect

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  20. Materials Development for Boron Phosphide Based Neutron Detectors: Final Technical Report

    SciTech Connect

    Edgar, James Howard

    2014-09-09

    The project goal was to improve the quality of boron phosphide (BP) by optimizing its epitaxial growth on single crystal substrates and by producing bulk BP single crystals with low dislocation densities. BP is potentially a good semiconductor for high efficiency solid state neutron detectors by combining neutron capture and charge creation within the same volume. The project strategy was to use newly available single crystal substrates, silicon carbide and aluminum nitride, engineered to produce the best film properties. Substrate variables included the SiC polytype, crystallographic planes, misorientation of the substrate surface (tilt direction and magnitude) from the major crystallographic plane, and surface polarity (Si and C). The best films were (111)BP on silicon-face (0001) 4H-SiC misoriented 4° in the [1-100] direction, and BP on (100) and (111) 3C-SiC/Si; these substrates resulted in films that were free of in-plane twin defects, as determined by x-ray topography. The impact of the deposition temperature was also assessed: increasing the temperature from 1000 °C to 1200 °C produced films that were more ordered and more uniform, and the size of individual grains increased by more than a factor of twenty. The BP films were free of other compounds such as icosahedral boron phosphide (B12P2) over the entire temperature range, as established by Raman spectroscopy. The roughness of the BP films was reduced by increasing the phosphine to diborane ratio from 50 to 200. Bulk crystals were grown by reacting boron dissolved in nickel with phosphorus vapor to precipitate BP. Crystals with dimensions up to 2 mm were produced.

  1. High-pressure radial X-ray diffraction study of osmium to 58 GPa

    NASA Astrophysics Data System (ADS)

    Chen, H.; He, D.; Liu, J.; Li, Y.; Peng, F.; Li, Z.; Wang, J.; Bai, L.

    2010-02-01

    Nonhydrostatic compression behavior of osmium (Os) was investigated up to 58.2 GPa using radial X-ray diffraction (RXRD) together with lattice strain theory in a diamond-anvil cell. The apparent bulk modulus of Os derived from RXRD data varies from 262 GPa to 413 GPa, depending on Ψ, the orientation of the diffraction planes with respect to the loading axis. Fitting to the third-order Birch-Murnaghan equation of state, the RXRD data obtained at Ψ = 54.7° yields a bulk modulus K0 = 390 ± 6 GPa with pressure derivative K' 0 fixed at 4. The ratio of differential stress to shear modulus t/G ranges from 0.024 to 0.029 at the pressures of 15.7-58.2 GPa. The yield strength was observed to increase with compression and reach the value of 11.7 GPa at the highest pressure. This confirms that Os is the strongest known pure metallic material compared with the reported stiff elemental metals such as W, Mo and Re. It was found that the apparent c/a ratio changed with the nonhydrostatic compression, as well as the orientation Ψ in our experiments. Moreover, the aggregate moduli of Os at high pressure were determined from the RXRD measurements.

  2. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    PubMed

    Sainna, Mala A; de Visser, Sam P

    2015-09-28

    Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu)₂(μ²-H) (μ²-NHCH₃)(μ³-C)PtCH₃(P(CH₃)₃)₂](CO)n⁺ with n=0, 2 and Cp=η⁵-C₅(CH₃)₅, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes.

  3. Rapid adaptation of some phytoplankton species to osmium as a result of spontaneous mutations.

    PubMed

    Marvá, Fernando; García-Balboa, Camino; Baselga-Cervera, Beatriz; Costas, Eduardo

    2014-03-01

    To understand the vulnerability of individual species to anthropogenic contamination, it is important to evaluate the different abilities of phytoplankton to respond to environmental changes induced by pollution. The ability of a species to adapt, rather than its initial tolerance, is the basis for survival under rapidly increasing levels of anthropogenic contamination. High doses of osmium (Os) cause massive destruction of diverse phytoplankton groups. In this study, we found that the coastal chlorophyte Tetraselmis suecica and the continental chlorophyte Dictyosphaerium chlorelloides were able to adapt to a lethal dose of Os. In these species, Os-resistant cells arose as a result of rare spontaneous mutations (at rates of approximately 10(-6) mutants per cell division) that occurred before exposure to Os. The mutants remained in the microalgal populations by means of mutation-selection balance. The huge size of phytoplankton populations ensures that there are always enough Os-resistant mutants to guarantee the survival of the population under Os pollution. In contrast, we observed that neither a haptophyte species from open ocean regions nor a cyanobacterium from continental freshwater were able to adapt to the lethal Os dose. Adaptation of phytoplankton to Os contamination is relevant because industrial activities are leading to a rapid increase in Os pollution worldwide.

  4. Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor.

    PubMed

    Antiochia, Riccarda; Vinci, Giuliana; Gorton, Lo

    2013-10-15

    This paper describes the development and performance of a new rapid amperometric biosensor for fructose monitoring in food analysis. The biosensor is based on the activity of fructose dehydrogenase (FDH) immobilised into a carbon nanotube paste electrode according to two different procedures. The direct wiring of the FDH in a highly original osmium-polymer hydrogel was found to offer a better enzyme entrapment compared to the immobilisation of the enzyme in an albumin hydrogel. The optimised biosensor required only 5U of FDH and kept the 80% of its initial sensitivity after 4months. During this time, the biosensor showed a detection limit for fructose of 1μM, a large linear range between 0.1 and 5mM, a high sensitivity (1.95μAcm(-2)mM), good reproducibility (RSD=2.1%) and a fast response time (4s). Finally, the biosensor was applied for specific determination of fructose in honey, fruit juices, soft and energy drinks. The results indicated a very good agreement with those obtained with a commercial reference kit. No significant interference was observed with the proposed biosensor.

  5. Lattice strain of osmium diboride under high pressure and nonhydrostatic stress

    SciTech Connect

    Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.

    2012-01-01

    The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostaticpressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.

  6. Emissive osmium(II) complexes with tetradentate bis(pyridylpyrazolate) chelates.

    PubMed

    Chang, Shih-Han; Chang, Chun-Fu; Liao, Jia-Ling; Chi, Yun; Zhou, Dong-Ying; Liao, Liang-Sheng; Jiang, Tzung-Ying; Chou, Tsao-Pei; Li, Elise Y; Lee, Gene-Hsiang; Kuo, Ting-Yi; Chou, Pi-Tai

    2013-05-20

    A tetradentate bis(pyridylpyrazolate) chelate, L, is assembled by connecting two bidentate 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole chelates at the 6 position of the pyridyl fragment with a phenylamido appendage. This chelate was then utilized in the synthesis of three osmium(II) complexes, namely, [Os(L)(CO)2] (4), [Os(L)(PPh2Me)2] (5), and [Os(L)(PPhMe2)2] (6). Single-crystal X-ray structural analyses were executed on 4 and 5 to reveal the bonding arrangement of the L chelate. Phosphine-substituted derivatives 5 and 6 are highly emissive in both solution and the solid state, and their photophysical properties were measured and discussed on the basis of computational approaches. For application, fabrication and analysis of organic light-emitting diodes (OLEDs) were also carried out. The OLEDs using 5 and 6 as dopants exhibit saturated red emission with maximum external quantum efficiencies of 9.8% and 9.4%, respectively, which are higher than that of the device using [Ir(piq)3] as a red-emitting reference sample. Moreover, for documentation, 5 and 6 also achieve a maximum brightness of 19540 cd·m(-2) at 800 mA·cm(-2) (11.6 V) and 12900 cd·m(-2) at 500 mA·cm(-2) (10.5 V), respectively.

  7. Towards Water Soluble Mitochondria-Targeting Theranostic Osmium(II) Triazole-Based Complexes.

    PubMed

    Omar, Salem A E; Scattergood, Paul A; McKenzie, Luke K; Bryant, Helen E; Weinstein, Julia A; Elliott, Paul I P

    2016-10-18

    The complex [Os(btzpy)₂][PF₆]₂ (1, btzpy = 2,6-bis(1-phenyl-1,2,3-triazol-4-yl)pyridine) has been prepared and characterised. Complex 1 exhibits phosphorescence (λem = 595 nm, τ = 937 ns, φem = 9.3% in degassed acetonitrile) in contrast to its known ruthenium(II) analogue, which is non-emissive at room temperature. The complex undergoes significant oxygen-dependent quenching of emission with a 43-fold reduction in luminescence intensity between degassed and aerated acetonitrile solutions, indicating its potential to act as a singlet oxygen sensitiser. Complex 1 underwent counterion metathesis to yield [Os(btzpy)₂]Cl₂ (1(Cl)), which shows near identical optical absorption and emission spectra to those of 1. Direct measurement of the yield of singlet oxygen sensitised by 1(Cl) was carried out (φ (¹O₂) = 57%) for air equilibrated acetonitrile solutions. On the basis of these photophysical properties, preliminary cellular uptake and luminescence microscopy imaging studies were conducted. Complex 1(Cl) readily entered the cancer cell lines HeLa and U2OS with mitochondrial staining seen and intense emission allowing for imaging at concentrations as low as 1 μM. Long-term toxicity results indicate low toxicity in HeLa cells with LD50 >100 μM. Osmium(II) complexes based on 1 therefore present an excellent platform for the development of novel theranostic agents for anticancer activity.

  8. Rhenium-osmium and samarium-neodymium isotopic systematics of the stillwater complex

    USGS Publications Warehouse

    Lambert, D.D.; Morgan, J.W.; Walker, R.J.; Shirey, S.B.; Carlson, R.W.; Zientek, M.L.; Koski, M.S.

    1989-01-01

    Isotopic data for the Stillwater Complex, Montana , which formed about 2700 Ma (million years ago), were obtained to evaluate the role of magma mixing in the formation of strategic platinum-group element (PGE) ore deposits. Neodymium and osmium isotopic data indicate that the intrusion formed from at least two geochemically distinct magmas. Ultramafic affinity (U-type) magmas had initial ??Nd of -0.8 to -3.2 and a chondritic initial 187Os/186Os ratio of ???0.88, whereas anorthositic affinity (A-type) magmas had ??Nd of -0.7 to +1.7 and an initial 187Os/186Os ratio of ???1.13. These data suggest that U-type magmas were derived from a lithospheric mantle source containing recycled crustal materials whereas A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The Nd and Os isotopic data also suggest that Os, and probably the other PGEs in ore horizons such as the J-M Reef, was derived from A-type magmas. The Nd and Os isotopic heterogeneity observed in rocks below the J-M Reef also suggests that A-type magmas were injected into the Stillwater U-type magma chamber at several stages during the development of the Ultramafic series.

  9. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction

    PubMed Central

    Yang, Chao; Wang, Wanhe; Li, Guo-Dong; Zhong, Hai-Jing; Dong, Zhen-Zhen; Wong, Chun-Yuen; Kwong, Daniel W. J.; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-01

    The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment. PMID:28225008

  10. Development of the osmium-191 yields iridium-191m radionuclide generator

    NASA Astrophysics Data System (ADS)

    Treves, S.; Packard, A. B.

    1985-04-01

    The use of Ir-191m in radionuclide angiography has been the subject of increasing interest in recent years. The Os-191-Ir-191m generator that has been used for these studies suffers, however, from Ir-191m yield (10%/ml) and higher than desirable Os-191 breakthrough (5 x 10 to the -3%). Ir generator has been developed that has higher yield (25 to 30%/ml) and lower breakthrough ( x 10 to the -4 power %) when eluted with an eluent (0.001 M oxalic acid/0.9% saline that does not require buffering prior to injection. Studies within the last year have shown the eluate of this generator to be nontoxic at up to 100 times the expected human dose and work is in progress to obtain approval for human use of this system. While a significant improvement over past generator designs, the yield of this generator is still modest and the evaluation of new osmium complexes for use on the generator has continued. Clinical studies involving the use of Ir-191m for first pass angiography in adults and children have continued.

  11. Coronary wall imaging in mice using osmium tetroxide and micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Kozlowski, Megan; Donohue, Danielle; Chen, Marcus; Daniels, Mathew; Connelly, Patricia; Jeffries, Kenneth; Clevenger, Randall; Wen, Han H.; Pai, Vinay M.

    2011-07-01

    Coronary artery disease (CAD) is a major cause of death in the United States and results from the accumulation of atherosclerotic plaques in the arteries of the heart. Plaques accumulate as the result of the retention of low-density lipoprotein (LDL) particles in the sub-endothelium of the arterial wall. In mouse aorta, these lesions form primarily at the branching sites or bifurcations. However, in the coronary system, data has shown that late-stage plaque formation occurs throughout the proximal segments of the arteries. In order to better understand plaque formation in the coronary arteries, we have developed an osmium tetroxide (OsO4) stained coronary wall imaging protocol performed using microcomputed tomography (microCT). OsO4 is a heavy metal contrast agent that readily binds to lipids. Our data in 3- to 25-week old C57BL6 wild-type mice shows that the coronary vessel walls are highlighted by the use of the contrast agent. We expect that this combination of OsO4 and microCT will allow us to investigate the coronary artery wall in atherogenesis models of mice to characterize plaque formation.

  12. Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal- and phosphorus-containing resins.

    PubMed

    Yao, Zhiwei; Tong, Jin; Qiao, Xue; Jiang, Jun; Zhao, Yu; Liu, Dongmei; Zhang, Yichi; Wang, Haiyan

    2015-11-28

    Dispersed pure phases of MoP and Ni2P nanoparticles supported by carbon were synthesized by carbonization of metal- and phosphorus-containing resins under an inert atmosphere. The solid products and the evolution of gases during the carbonization process were investigated by various techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 adsorption-desorption analysis, and mass spectrometry (MS). The resins underwent two carbonization stages: the low-temperature carbonization stage (<650 °C) and the high-temperature carbonization stage (≥650 °C). There was an initial reduction of Mo and Ni precursors in the low-temperature region. However, the formation of phosphides was observed in the high-temperature carbonization stage, in which Mo(Ni) and POx species were further reacted with the carbonization products (C, H2 and CH4) to yield Mo(Ni) phosphide. Note that compared with the traditional H2-temperature-programmed reduction (H2-TPR) method, this novel synthesis route produced a large amount of CO(x) besides H2O, leading to a lower water vapor pressure. In addition, the residual carbon produced from resin can play a role in bonding of nanoparticle aggregation. Therefore, the better dispersions and higher surface areas of the as-prepared phosphide nanoparticles were attributed to the mitigation of hydrothermal sintering and the intimate contact between phosphide nanoparticles and carbon species.

  13. A Metallacycle Fragmentation Strategy for Vinyl Transfer from Enol Carboxylates to Secondary Alcohol C-H Bonds via Osmium- or Ruthenium-Catalyzed Transfer Hydrogenation.

    PubMed

    Park, Boyoung Y; Luong, Tom; Sato, Hiroki; Krische, Michael J

    2015-06-24

    A strategy for catalytic vinyl transfer from enol carboxylates to activated secondary alcohol C-H bonds is described. Using XPhos-modified ruthenium(0) or osmium(0) complexes, enol carboxylate-carbonyl oxidative coupling forms transient β-acyloxy-oxametallacycles, which eliminate carboxylate to deliver allylic ruthenium(II) or osmium(II) alkoxides. Reduction of the metal(II) salt via hydrogen transfer from the secondary alcohol reactant releases the product of carbinol C-H vinylation and regenerates ketone and zero-valent catalyst.

  14. Mechanism Elucidation of the cis–trans Isomerization of an Azole Ruthenium–Nitrosyl Complex and Its Osmium Counterpart

    PubMed Central

    2013-01-01

    Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures (80–130 °C) has been observed and studied by NMR spectroscopy. Kinetic data indicate that isomerizations correspond to reversible first order reactions. The rates of isomerization reactions even at 110 °C are very low with rate constants of 10–5 s–1 and 10–6 s–1 for ruthenium and osmium complexes, respectively, and the estimated rate constants of isomerization at room temperature are of ca. 10–10 s–1. The activation parameters, which have been obtained from fitting the reaction rates at different temperatures to the Eyring equation for ruthenium [ΔHcis-trans‡= 122.8 ± 1.3; ΔHtrans-cis‡= 138.8 ± 1.0 kJ/mol; ΔScis-trans‡= −18.7 ± 3.6; ΔStrans-cis‡= 31.8 ± 2.7 J/(mol·K)] and osmium [ΔHcis-trans‡= 200.7 ± 0.7; ΔHtrans-cis‡= 168.2 ± 0.6 kJ/mol; ΔScis-trans‡= 142.7 ± 8.9; ΔStrans-cis‡= 85.9 ± 3.9 J/(mol·K)] reflect the inertness of these systems. The entropy of activation for the osmium complexes is highly positive and suggests the dissociative mechanism of isomerization. In the case of ruthenium, the activation entropy for the cis to trans isomerization is negative [−18.6 J/(mol·K)], while being positive [31.0 J/(mol·K)] for the trans to cis conversion. The thermodynamic parameters for cis to trans isomerization of [RuCl4(NO)(Hind)]−, viz. ΔH° = 13.5 ± 1.5 kJ/mol and ΔS° = −5.2 ± 3.4 J/(mol·K) indicate the low difference between the energies of cis and trans isomers. The theoretical calculation has been carried out on isomerization of ruthenium complexes with DFT methods. The dissociative, associative, and intramolecular twist isomerization mechanisms have

  15. Mechanism elucidation of the cis-trans isomerization of an azole ruthenium-nitrosyl complex and its osmium counterpart.

    PubMed

    Gavriluta, Anatolie; Büchel, Gabriel E; Freitag, Leon; Novitchi, Ghenadie; Tommasino, Jean Bernard; Jeanneau, Erwann; Kuhn, Paul-Steffen; González, Leticia; Arion, Vladimir B; Luneau, Dominique

    2013-06-03

    Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures (80-130 °C) has been observed and studied by NMR spectroscopy. Kinetic data indicate that isomerizations correspond to reversible first order reactions. The rates of isomerization reactions even at 110 °C are very low with rate constants of 10(-5) s(-1) and 10(-6) s(-1) for ruthenium and osmium complexes, respectively, and the estimated rate constants of isomerization at room temperature are of ca. 10(-10) s(-1). The activation parameters, which have been obtained from fitting the reaction rates at different temperatures to the Eyring equation for ruthenium [ΔH(cis-trans)‡ = 122.8 ± 1.3; ΔH(trans-cis)‡ = 138.8 ± 1.0 kJ/mol; ΔS(cis-trans)‡ = -18.7 ± 3.6; ΔS(trans-cis)‡ = 31.8 ± 2.7 J/(mol·K)] and osmium [ΔH(cis-trans)‡ = 200.7 ± 0.7; ΔH(trans-cis)‡ = 168.2 ± 0.6 kJ/mol; ΔS(cis-trans)‡ = 142.7 ± 8.9; ΔS(trans-cis)‡ = 85.9 ± 3.9 J/(mol·K)] reflect the inertness of these systems. The entropy of activation for the osmium complexes is highly positive and suggests the dissociative mechanism of isomerization. In the case of ruthenium, the activation entropy for the cis to trans isomerization is negative [-18.6 J/(mol·K)], while being positive [31.0 J/(mol·K)] for the trans to cis conversion. The thermodynamic parameters for cis to trans isomerization of [RuCl4(NO)(Hind)]-, viz. ΔH° = 13.5 ± 1.5 kJ/mol and ΔS° = -5.2 ± 3.4 J/(mol·K) indicate the low difference between the energies of cis and trans isomers. The theoretical calculation has been carried out on isomerization of ruthenium complexes with DFT methods. The dissociative, associative, and intramolecular twist isomerization

  16. Rodenticide Comparative Effect of Klerat® and Zinc Phosphide for Controlling Zoonotic Cutaneous Leishmaniasis in Central Iran

    PubMed Central

    VEYSI, Arshad; VATANDOOST, Hassan; YAGHOOBI-ERSHADI, Mohammad Reza; JAFARI, Reza; ARANDIAN, Mohammad Hossein; HOSSEINI, Mostafa; FADAEI, Reza; RAMAZANPOUR, Javad; HEIDARI, Kamal; SADJADI, Ali; SHIRZADI, Mohammad Reza; AKHAVAN, Amir Ahmad

    2016-01-01

    Background: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected disease with public health importance that is common in many rural areas of Iran. In recent years, behavioral resistance and/or bait shyness against the common rodenticide among reservoir hosts of ZCL have been reported. The aim of this study was to evaluate the effectiveness of Klerat® and zinc phosphide against natural reservoir of ZCL. Methods: This survey was carried out in four villages located 45 to 95 km far from Esfahan City Esfahan province, central Iran from April to November 2011. The rodent burrows were counted destroyed and reopened holes baited around all villages. Effect of rodent control operation on the main vector density and incidence of ZCL were evaluated. Results: The reduction rate of rodent burrows after intervention calculated to be at 62.8% in Klerat® and 58.15% in zinc phosphide treated areas. Statistical analysis showed no difference between the densities of the vector in indoors and outdoors in intervention and control areas. The incidence of the disease between treated and control areas after intervention was statistically different (P< 0.05). Conclusion: Klerat® could be a suitable alternative for zinc phosphide in a specific condition such as behavior resistance or occurrence of bait shyness. PMID:28127358

  17. One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors.

    PubMed

    Yao, Zhiwei; Wang, Guanzhang; Shi, Yan; Zhao, Yu; Jiang, Jun; Zhang, Yichi; Wang, Haiyan

    2015-08-21

    Dispersed pure phases of Ni2P and Co2P nanoparticles with high surface areas were prepared from one-step decomposition of hexamethylenetetramine (HMT)-containing precursors under an inert atmosphere. The solids before and after decomposition and the evolution of gas during the processes were studied by various characterization techniques. The HMT precursors underwent three decomposition stages: low-, moderate- and high-temperature stages. The formation of phosphides was observed at the high-temperature decomposition stage, in which Ni (Co) and P species were reduced by the decomposition products (C, H2 and CH4) of HMT to yield Ni (Co) phosphides, with the release of COx and H2O. Note that in contrast to the traditional H2-temperature-programmed reduction (H2-TPR) method, the HMT-based method produced CO as a major gas product rather than H2O. The better dispersions and higher surface areas of the as-prepared phosphide nanoparticles were achieved probably due to the mitigation of hydrothermal sintering.

  18. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  19. Osmium-Isotope and Platinum-Group-Element Systematics of Impact-Melt Rocks, Chesapeake Bay Impact Structure, Virginia, USA

    NASA Technical Reports Server (NTRS)

    Lee, Seung Ryeol; Wright Horton, J., Jr.; Walker, Richard J.

    2005-01-01

    Osmium (Os) isotopes and platinum-group elements (PGEs) are useful for geochemically identifying a meteoritic component within impact structures, because meteorites are typically characterized by low (187)Os/(188)Os ratios and high PGE concentrations. In contrast, most types of crustal target rocks have high radiogenic Os and very low PGE concentrations. We have examined Os isotope and PGE systematics of impact-melt rocks and pre-impact target rocks from a 2004 test hole in the late Eocene Chesapeake Bay impact structure and from nearby coreholes. Our goal is to determine the proportion of the projectile component in the melt rock Additional information is included in the original extended abstract.

  20. Abundances and isotopic compositions of rhenium and osmium in pyrite samples from the Huaibei coalfield, Anhui, China

    USGS Publications Warehouse

    Liu, Gaisheng; Chou, C.-L.; Peng, Z.; Yang, G.

    2008-01-01

    Two pyrite samples from the Shihezi Formation (Lower Permian), Huaibei coalfield, Anhui, China, have been analyzed for abundances and isotopic compositions of rhenium and osmium using negative thermal ion mass spectrometry. The Re-Os ages of the pyrites are 64.4 and 226 Ma, which are younger than the formation age of the coal seam. The pyrite samples may consist of pyrite formed at various stages during the history of coal formation. The ??Osvalues of the two pyrite samples are +17 and +18, respectively. Such high ??Osvalues are reported for the first time for recycles crustal materials from a sedimentary basin. ?? Springer-Verlag 2007.

  1. POP-pincer osmium-polyhydrides: head-to-head (Z)-dimerization of terminal alkynes.

    PubMed

    Alós, Joaquín; Bolaño, Tamara; Esteruelas, Miguel A; Oliván, Montserrat; Oñate, Enrique; Valencia, Marta

    2013-05-20

    A wide range of osmium-polyhydride complexes stabilized by the POP-pincer ligand xant(P(i)Pr2)2 (9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) have been synthesized through cis-OsCl2{κ-S-(DMSO)4} (1, DMSO = dimethyl sulfoxide). Treatment of toluene solutions of this adduct with the diphosphine, under reflux, leads to OsCl2{xant(P(i)Pr2)2}(κ-S-DMSO) (2). The reaction of 2 with H2 in the presence of Et3N affords OsH3Cl{xant(P(i)Pr2)2} (3), which can be also prepared by addition of xant(P(i)Pr2)2 to toluene solutions of the unsaturated d(4)-trihydride OsH3Cl(P(i)Pr3)2 (5). Complex 3 reductively eliminates H2 in toluene at 90 °C. In the presence of dimethyl sulfoxide, the resulting monohydride is trapped by the S-donor molecule to give OsHCl{xant(P(i)Pr2)2}(κ-S-DMSO) (6). The reaction of 2 with H2 is sensible to the Brønsted base. Thus, in contrast to Et3N, NaH removes both chloride ligands and the hexahydride OsH6{xant(P(i)Pr2)2} (7), containing a κ(2)-P-binding diphosphine, is formed under 3 atm of hydrogen at 50 °C. Complex 7 releases a H2 molecule to yield the tetrahydride OsH4{xant(P(i)Pr2)2} (8), which can be also prepared by reaction of OsH6(P(i)Pr3)2 (9) with xant(P(i)Pr2)2. Complex 8 reduces H(+) to give, in addition to H2, the oxidized OsH4-species [OsH4(OTf){xant(P(i)Pr2)2}](+) (10, OTf = trifluoromethanesulfonate). The redox process occurs in two stages via the OsH5-cation [OsH5{xant(P(i)Pr2)2}](+) (11). The metal oxidation state four can be recovered. The addition of acetonitrile to 10 leads to [OsH2(η(2)-H2)(CH3CN){xant(P(i)Pr2)2}](2+) (12). The deprotonation of 12 yields the osmium(IV) trihydride [OsH3(CH3CN){xant(P(i)Pr2)2}](+) (13), which is also formed by addition of HOTf to the acetonitrile solutions of 8. The latter is further an efficient catalyst precursor for the head-to-head (Z)-dimerization of phenylacetylene and tert-butylacetylene. During the activation process of the tetrahydride, the bis(alkynyl)vinylidene derivatives Os

  2. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    USGS Publications Warehouse

    Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.

    2008-01-01

    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10??Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.

  3. Osmium NAMI-A analogues: synthesis, structural and spectroscopic characterization, and antiproliferative properties.

    PubMed

    Cebrián-Losantos, Berta; Krokhin, Artem A; Stepanenko, Iryna N; Eichinger, Rene; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2007-06-11

    The osmium(III) complex [(DMSO)2H][trans-OsIIICl4(DMSO)2] (1) has been prepared via stepwise reduction of OsO4 in concentrated HCl using N2H(4).2HCl and SnCl(2).2H2O in DMSO. 1 reacts with a number of azole ligands, namely, indazole (Hind), pyrazole (Hpz), benzimidazole (Hbzim), imidazole (Him), and 1H-1,2,4-triazole (Htrz), in organic solvents, affording novel complexes (H2ind)[OsIIICl4(Hind)(DMSO)] (2), (H2pz)[OsIIICl4(Hpz)(DMSO)] (3), (H2bzim)[OsIIICl4(Hbzim)(DMSO)] (4), (H2im)[OsIIICl4(Him)(DMSO)] (6), and (H2trz)[OsIIICl4(Htrz)(DMSO)] (7), which are close analogues of the antimetastatic complex NAMI-A. Metathesis reaction of 4 with benzyltriphenylphosphonium chloride in methanol led to the formation of (Ph3PCH2Ph)[OsIIICl4(Hbzim)(DMSO)] (5). The complexes were characterized by IR, UV-vis, ESI mass spectrometry, 1H NMR spectroscopy, cyclic voltammetry, and X-ray crystallography. In contrast to NAMI-A, 2-4, 6, and 7 are kinetically stable in aqueous solution and resistant to hydrolysis. Surprisingly, they show reasonable antiproliferative activity in vitro in two human cell lines, HT-29 (colon carcinoma) and SK-BR-3 (mammary carcinoma), when compared with analogous ruthenium compounds. Structure-activity relationships and the potential of the prepared complexes for further development are discussed.

  4. In vivo tumour and metastasis reduction and in vitro effects on invasion assays of the ruthenium RM175 and osmium AFAP51 organometallics in the mammary cancer model.

    PubMed

    Bergamo, A; Masi, A; Peacock, A F A; Habtemariam, A; Sadler, P J; Sava, G

    2010-01-01

    We have compared the organometallic arene complexes [(eta(6)-biphenyl)M(ethylenediamine)Cl](+) RM175 (M=Ru(II)) and its isostructural osmium(II) analogue AFAP51 (M=Os(II)) for their ability to induce cell detachment resistance from fibronectin, collagen IV and poly-l-lysine, and cell re-adhesion after treatment, their effects on cell migration and cell viability, on matrix metalloproteinases production, and on primary tumour growth of MCa mammary carcinoma, the effect of human serum albumin on their cytotoxicity. There are differences between ruthenium and osmium. The Os complex is up to 6x more potent than RM175 towards highly-invasive breast MDA-MB-231, human breast MCF-7 and human epithelial HBL-100 cancer cells, but whereas RM175 was active against MCa mammary carcinoma in vivo and caused metastasis reduction, AFAP51 was not. Intriguingly the presence of human serum albumin in the growth medium enhanced the cytotoxicity of both compounds. RM175 increased the resistance of MDA-MB-231 cells to detachment from substrates and both compounds inhibited the production of MMP-2. These data confirm the key role of ruthenium itself in anti-metastatic activity. It will be interesting to explore the activity of osmium arene complexes in other tumour models and the possibility of changing the non-arene ligands to tune the anticancer activity of osmium in vivo.

  5. A SAR study of novel antiproliferative ruthenium and osmium complexes with quinoxalinone ligands in human cancer cell lines.

    PubMed

    Ginzinger, Werner; Mühlgassner, Gerhard; Arion, Vladimir B; Jakupec, Michael A; Roller, Alexander; Galanski, Markus; Reithofer, Michael; Berger, Walter; Keppler, Bernhard K

    2012-04-12

    A series of ruthenium(II) arene complexes with 3-(1H-benzimidazol-2-yl)-1H-quinoxalin-2-one, bearing pharmacophoric groups of known protein kinase inhibitors, and related benzoxazole and benzothiazole derivatives have been synthesized. In addition, the corresponding osmium complexes of the unsubstituted ligands have also been prepared. The compounds have been characterized by NMR, UV-vis, and IR spectroscopy, ESI mass spectrometry, elemental analysis, and by X-ray crystallography. Antiproliferative activity in three human cancer cell lines (A549, CH1, SW480) was determined by MTT assays, yielding IC(50) values of 6-60 μM for three unsubstituted metal-free ligands, whereas values for the metal complexes vary in a broad range from 0.3 to 140 μM. Complexation with osmium of quinoxalinone derivatives with benzimidazole or benzothiazole results in a more consistent increase in cytotoxicity than complexation with ruthenium. For selected compounds, the capacity to induce apoptosis was confirmed by fluorescence microscopy and flow-cytometric analysis, whereas cell cycle effects are only moderate.

  6. Osmium isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod bays

    USGS Publications Warehouse

    Ravizza, G.E.; Bothner, Michael H.

    1996-01-01

    High concentrations of osmium (Os) and silver (Ag) and low 187Os/186Os ratios in Boston sewage make these elements sensitive tracers of the influence of sewage on marine sediments in Massachusetts and Cape Cod bays. Pristine marine sediments have Ag concentrations more than 200 times lower than sewage sludge, Os concentrations 10-40 times lower, and 187Os/186Os ratios six times higher. Surface sediments from both Massachusetts and Cape Cod bays exhibit both high Ag concentrations and low 187Os/186Os ratios indicating the influence of sewage particles on marine sediments in this region extends some 70 km from the point of sewage release. In detail, the distribution of Os and Ag do not support a model of simple physical mixing of sewage particles with normal marine sediments. Deviations from the mixing model may be the result of fractionation of Os and Ag in the marine environment, and [or] independent temporal variations in the Os and Ag content of the waste stream. The results of this investigation suggest that osmium isotopes may be widely applicable as tracers of the influence of sewage on sediments in estuarine environments and that subtle variations in the isotopic composition of Os in the waste stream may help constrain the sources of Os and other metals delivered to the environment.

  7. Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment.

    PubMed

    Yoshinaga, Arata; Kamitakahara, Hiroshi; Takabe, Keiji

    2016-05-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to detect monolignol glucosides in differentiating normal and compression woods of two Japanese softwoods, Chamaecyparis obtusa and Cryptomeria japonica Comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry collision-induced dissociation fragmentation analysis and structural time-of-flight (MALDI-TOF CID-FAST) spectra between coniferin and differentiating xylem also confirmed the presence of coniferin in differentiating xylem. However, as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF CID-FAST spectra of sucrose were similar to those of coniferin, it was difficult to distinguish the distribution of coniferin and sucrose using MALDI-MSI and collision-induced dissociation measurement only. To solve this problem, osmium tetroxide vapor was applied to sections of differentiating xylem. This vapor treatment caused peak shifts corresponding to the introduction of two hydroxyl groups to the C=C double bond in coniferin. The treatment did not cause a peak shift for sucrose, and therefore was effective in distinguishing coniferin and sucrose. Thus, it was found that MALDI-MSI combined with osmium tetroxide vapor treatment is a useful method to detect coniferin in differentiating xylem.

  8. Osmium isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod bays

    NASA Astrophysics Data System (ADS)

    Ravizza, G. E.; Bothner, M. H.

    1996-08-01

    High concentrations of osmium (Os) and silver (Ag) and low 187Os/ 186Os ratios in Boston sewage make these elements sensitive tracers of the influence of sewage on marine sediments in Massachusetts and Cape Cod bays. Pristine marine sediments have Ag concentrations more than 200 times lower than sewage sludge, Os concentrations 10-40 times lower, and 187OS/ 186Os ratios six times higher. Surface sediments from both Massachusetts and Cape Cod bays exhibit both high Ag concentrations and low 187OS/ 186Os ratios indicating the influence of sewage particles on marine sediments in this region extends some 70 km from the point of sewage release. In detail, the distribution of Os and Ag do not support a model of simple physical mixing of sewage particles with normal marine sediments. Deviations from the mixing model may be the result of fractionation of Os and Ag in the marine environment, and [or] independent temporal variations in the Os and Ag content of the waste stream. The results of this investigation suggest that osmium isotopes may be widely applicable as tracers of the influence of sewage on sediments in estuarine environments and that subtle variations in the isotopic composition of Os in the waste stream may help constrain the sources of Os and other metals delivered to the environment.

  9. Electrochemical Properties of a Thiol Monolayers Coated Gold Electrode Modified with Osmium Gel Membrane as Enzyme Sensor

    NASA Astrophysics Data System (ADS)

    Yabutani, Tomoki; Okada, Nobuyuki; Maruyama, Kenichi; Motonaka, Junko

    The electrochemical behavior of an enzyme sensor for glucose using a gold electrode modified with thiol self-assembled membrane and osmium complex gel as an electron transferring mediator has further been investigated by electrochemical analysis. The gold electrode was initially coated with aminomethanethiol self assembling mono layer membrane(thiol-SAM) and then immobilized with glucose oxidase using poly(vinylpyridine-co-allylamine) (PVP-co-AA), gel coordinated with osmium bipyridine complexes (GOD/Os-PVP-co-AA gel). The cleaning condition of the surface of the Au electrode prior to coating thiol SAM was optimized for reduction of interference caused by concomitant compounds. It was found that interfering influence was most efficiently reduced in the case of use of the Au electrode immersed into nitric acid. The current ratio with a thiol coated gold electrode modified with Os-PVP-co-AA gel in glucose solution in the presence to absence of ascorbic acid, acetaminophen, and uric acid (ID+I/II) was 1.006, 1.014, and 1.018, respectively. The peak current response of glucose in the electrode modified with thiol SAM was dropped to 60 98% as compared with that without thiol SAM.

  10. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  11. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction.

    PubMed

    Shi, Yanmei; Zhang, Bin

    2016-03-21

    The urgent need of clean and renewable energy drives the exploration of effective strategies to produce molecular hydrogen. With the assistance of highly active non-noble metal electrocatalysts, electrolysis of water is becoming a promising candidate to generate pure hydrogen with low cost and high efficiency. Very recently, transition metal phosphides (TMPs) have been proven to be high performance catalysts with high activity, high stability, and nearly ∼100% Faradic efficiency in not only strong acidic solutions, but also in strong alkaline and neutral media for electrochemical hydrogen evolution. In this tutorial review, an overview of recent development of TMP nanomaterials as catalysts for hydrogen generation with high activity and stability is presented. The effects of phosphorus (P) on HER activity, and their synthetic methods of TMPs are briefly discussed. Then we will demonstrate the specific strategies to further improve the catalytic efficiency and stability of TMPs by structural engineering. Making use of TMPs as cocatalysts and catalysts in photochemical and photoelectrochemical water splitting is also discussed. Finally, some key challenges and issues which should not be ignored during the rapid development of TMPs are pointed out. These strategies and challenges of TMPs are instructive for designing other high-performance non-noble metal catalysts.

  12. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  13. Aluminum phosphide-induced esophageal strictures: a new cause of benign esophageal strictures.

    PubMed

    Misra, Sri Prakash; Dwivedi, Manisha

    2009-01-01

    Fifteen consecutive patients presenting with dysphagia due to aluminum phosphide (AP)-induced esophageal strictures were studied retrospectively to elucidate the natural history of AP-induced esophageal strictures and to evaluate the efficacy of bougie dilation. The median time lag between consumption of AP and occurrence of dysphagia was 3 weeks. All patients had a single stricture and could be dilated using a bougie dilator. Thirteen patients were relieved of dysphagia on a mean (SD) follow-up of 18 (7.3) months. Two patients had recalcitrant strictures and needed needle-knife incision of the stricture followed by balloon dilation. The strictures opened up well in both the patients and they were relieved of dysphagia. AP-induced esophageal stricture is a new cause of benign esophageal stricture. Most patients present with dysphagia around 3 weeks after consumption of AP tablets. A single esophageal stricture is found in these patients. Most strictures respond very well to bougie dilation. However, some of the strictures may be recalcitrant and may require needle-knife incision and balloon dilation.

  14. Diagnosis of aluminum phosphide poisoning using a new analytical approach: forensic application to a lethal intoxication.

    PubMed

    Yan, Hui; Xiang, Ping; Zhang, Sujing; Shen, Baohua; Shen, Min

    2017-02-27

    Aluminum phosphide (AlP) is an effective and cheap pesticide that is commonly used worldwide, but it is also a common cause of human poisoning and carries a high mortality rate. AlP reacts with moisture in air, water, and hydrochloric acid in the stomach to produce phosphine (PH3) gas. Two routes of exposure are ingestion of AlP and inhalation of phosphine generated by the action of moisture on AlP. Absorbed phosphine is rapidly metabolized into phosphite and hypophosphite. A method is described for the analysis of the phosphine metabolites in various biological matrices. The method involves reacting the sample with zinc and aqueous H2SO4 in a volatile organic analysis vial. The metabolites were transformed into phosphine gas and then analyzed by headspace gas chromatography coupled with mass spectrometry (HS-GC-MS). This method is capable of detecting quantities of PH3 as low as 0.2 μg/mL in a sample. After validation, the method was applied to animal experiments and a real case of human AlP intoxication. This approach has the advantage of detecting metabolites of PH3, in case the PH3 was converted, and can be considered a useful additional tool for the diagnosis of AlP poisoning in forensic science.

  15. Forward-biased current annealing of radiation degraded indium phosphide and gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Michael, Sherif; Cypranowski, Corinne; Anspaugh, Bruce

    1990-01-01

    The preliminary results of a novel approach to low-temperature annealing of previously irradiated indium phosphide and gallium arsenide solar cells are reported. The technique is based on forward-biased current annealing. The two types of III-V solar cells were irradiated with 1-MeV electrons to a fluence level of (1-10) x 10 to the 14th electrons/sq cm. Several annealing attempts were made, varying all conditions. Optimum annealing was achieved when cells were injected with minority currents at a constant 90 C. The current density for each type of cell was also determined. Significant recovery of degraded parameters was achieved in both cases. However, the InP cell recovery notably exceeded the recovery in GaAs cells. The recovery is thought to be caused by current-stimulated reordering of the radiator-induced displacement damage. Both types of cell were then subjected to several cycles of irradiation and annealing. The results were also very promising. The significant recovery of degraded cell parameters at low temperature might play a major role in considerably extending the end of life of future spacecraft.

  16. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  17. Low resistance silver contacts to indium phosphide - Electrical and metallurgical considerations

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-01-01

    The electrical and metallurgical behavior of the Ag-InP contact system has been investigated. Specific contact resistivity (Rc) values in the low 10 exp -6 Ohm sq cm range are readily achieved on n-InP (Si: 1.7 x 10 exp 18/cu cm) after sintering at 400 C for several minutes. The low Rc values, however, are shown to be accompanied by dissolution of InP into the metallization, resulting in device degradation. An analysis of the sinter-induced metallurgical interactions shows this system to be similar to the well-characterized Au-InP system, albeit with fundamental differences. The similarities include the dissociative diffusion of In, the reaction-suppressing effect of SiO2 capping, and especially, the formation of a phosphide layer at the metal-InP interface. The low post-sinter Rc values in the Ag-InP system may be due to the presence of a AgP2 layer at the metal-InP interface; low values of Rc can be achieved without incurring device degrading metallurgical interactions by introducing a thin AgP2 layer between the InP and the current carrying metallization.

  18. Planar array antenna with director on indium phosphide substrate for 300GHz wireless link

    NASA Astrophysics Data System (ADS)

    Kanaya, Haruichi; Oda, Tomoki; Iizasa, Naoto; Kato, Kazutoshi

    2016-02-01

    This paper presents a design and fabrication of 1 x 4 one-sided directional slot array antenna with director metal layer on indium phosphide (InP) substrate for 300 GHz wireless link. The floating metal and polyimide dielectric layer are stacked on InP. Antenna is designed on the top metal layer. By optimizing the length of the bottom floating metal layer, one-sided directional radiation can be realized. The branched coplanar wave guide (CPW) transmission line is connected to each antenna element with the same electrical length. The size of the 1 x 4 array antenna is 2,550 µm x 1,217 µm x 18 µm. In order to enhance the gain of forward direction, director metal layer is placed over 83 µm from top metal layer. Simulated realized gain in peak direction of our antenna is 9.23 dBi. The measured center frequency is almost the same as that of the simulation results.

  19. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  20. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    PubMed Central

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-01-01

    Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0′ = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements. PMID:26905444

  1. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    DOE PAGES

    Wang, Pei; Wang, Yonggang; Wang, Liping; ...

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPamore » from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  2. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    SciTech Connect

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.

  3. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  4. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-04

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  5. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    PubMed

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%.

  6. Elastic, magnetic and electronic properties of iridium phosphide Ir2P.

    PubMed

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-02-24

    Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0' = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first - principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well-sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements.

  7. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B{sub 0} = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γ{sub G}{sup TO }= 1.26 and γ{sub G}{sup LO }= 1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which γ{sub G}{sup TO }> γ{sub G}{sup LO }≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO} ∼ 0.25 at 0.1 MPa to I{sub TO}/I{sub LO} ∼ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  8. ROLE OF C AND P SITES ON THE CHEMICAL ACTIVITY OF METAL CARBIDE AND PHOSPHIDES: FROM CLUSTERS TO SINGLE-CRYSTAL SURFACES

    SciTech Connect

    RODRIGUEZ,J.A.; VINES, F.; LIU, P.; ILLAS, F.

    2007-07-01

    Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbide and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.

  9. Osmium isotope and highly siderophile element systematics of the lunar crust

    USGS Publications Warehouse

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  10. Osmium isotope variations in the oceans recorded by Fe-Mn crusts

    USGS Publications Warehouse

    Burton, K.W.; Bourdon, B.; Birck, J.-L.; Allegre, C.J.; Hein, J.R.

    1999-01-01

    This study presents osmium (Os) isotope data for recent growth surfaces of hydrogenetic ferromanganese (Fe-Mn) crusts from the Pacific, Atlantic and Indian Oceans. In general, these data indicate a relatively uniform Os isotopic composition for modern seawater, but suggest that North Atlantic seawater is slightly more radiogenic than that of the Pacific and Indian Oceans. The systematic difference in the Os isotopic composition between the major oceans probably reflects a greater input of old continental material with a high Re/Os ratio in the North Atlantic Ocean, consistent with the distribution of Nd and Pb isotopes. This spatial variation in the Os isotope composition in seawater is consistent with a residence time for Os of between 2 and 60 kyr. Indian Ocean samples show no evidence of a local source of radiogenic Os, which suggests that the present-day riverine input from the Himalaya-Tibet region is not a major source for Os. Recently formed Fe-Mn crusts from the TAG hydrothermal field in the North Atlantic yield an Os isotopic composition close to that of modern seawater, which indicates that, in this area, the input of unradiogenic Os from the hydrothermal alteration of oceanic crust is small. However, some samples from the deep Pacific (???4 km) possess a remarkably unradiogenic Os isotope composition (187Os/186Os ratios as low as 4.3). The compositional control of Os incorporation into the crusts and mixing relationships suggest that this unradiogenic composition is most likely due to the direct incorporation of micrometeoritic or abyssal peridotite particles, rather than indicating the presence of an unradiogenic deep-water mass. Moreover, this unradiogenic signal appears to be temporary, and local, and has had little apparent effect on the overall evolution of seawater. These results confirm that input of continental material through erosion is the dominant source of Os in seawater, but it is not clear whether global Os variations are due to the input

  11. Osmium pyme complexes for fast hydrogenation and asymmetric transfer hydrogenation of ketones.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Siega, Katia; Magnolia, Santo; Rigo, Pierluigi

    2008-01-01

    The osmium compound trans,cis-[OsCl2(PPh3)2(Pyme)] (1) (Pyme=1-(pyridin-2-yl)methanamine), obtained from [OsCl2(PPh3)3] and Pyme, thermally isomerizes to cis,cis-[OsCl2(PPh3)(2)(Pyme)] (2) in mesitylene at 150 degrees C. Reaction of [OsCl2(PPh3)3] with Ph2P(CH2)(4)PPh2 (dppb) and Pyme in mesitylene (150 degrees C, 4 h) leads to a mixture of trans-[OsCl2(dppb)(Pyme)] (3) and cis-[OsCl2(dppb)(Pyme)] (4) in about an 1:3 molar ratio. The complex trans-[OsCl2(dppb)(Pyet)] (5) (Pyet=2-(pyridin-2-yl)ethanamine) is formed by reaction of [OsCl2(PPh3)3] with dppb and Pyet in toluene at reflux. Compounds 1, 2, 5 and the mixture of isomers 3/4 efficiently catalyze the transfer hydrogenation (TH) of different ketones in refluxing 2-propanol and in the presence of NaOiPr (2.0 mol %). Interestingly, 3/4 has been proven to reduce different ketones (even bulky) by means of TH with a remarkably high turnover frequency (TOF up to 5.7 x 10(5) h(-1)) and at very low loading (0.05-0.001 mol %). The system 3/4 also efficiently catalyzes the hydrogenation of many ketones (H2, 5.0 atm) in ethanol with KOtBu (2.0 mol %) at 70 degrees C (TOF up to 1.5 x 10(4) h(-1)). The in-situ-generated catalysts prepared by the reaction of [OsCl2(PPh3)3] with Josiphos diphosphanes and (+/-)-1-alkyl-substituted Pyme ligands, promote the enantioselective TH of different ketones with 91-96 % ee (ee=enantiomeric excess) and with a TOF of up to 1.9 x 10(4) h(-1) at 60 degrees C.

  12. Mont Albert to Buck Mountain: Provenance of Appalachian Ophiolite Chromites Using Osmium Isotopes

    NASA Astrophysics Data System (ADS)

    Minarik, W. G.; Gale, A.; Booker, C.

    2003-12-01

    Osmium 187Os/188Os isotopic ratios have been determined for chrome-rich spinels from a suite of Appalachian ophiolites thought to represent Iapetus margin mantle formed and emplaced during the Ordovician. Because Re is incompatible during mantle melting while Os is compatible, non-radiogenic initial 187Os/188Os can constrain the average source and the timing of melt extraction, especially as Os is concentrated in chromite. Radiogenic ratios indicate contamination from aged sources with high Re/Os, such as mafic or continental crust. In rocks where spinel is the only remaining primary mineral, these properties can constrain the tectonic environment of formation as well as active-margin Os transport. There is little correction for 187Os in-growth since the Ordovician due to very low sample Re. Each ultramafic unit (from Mont Albert on the Gaspé Peninsula of Québec down to the Blue Ridge of North Carolina) forms a unique cluster of 187Os/188Os ratios, spanning 1 to 3%, but the whole range is about 10%. This corresponds to a range of initial γ Os of -1 to +9, where γ Os is the percent deviation from a chondritic source at the age of formation (roughly 500 Ma). Within ophiolites where detailed mapping and other geochemical information are available, there is a correlation between mantle-like Os and tholeiitic basalts; radiogenic Os and boninites (Thetford Mines). Continental arc-related mantle chromites (Baltimore Mafic Complex; γ Os +4 to +7) are the most radiogenic. The least radiogenic are chromites from the Staten Island serpentinite and Mont Albert (γ Os -1 and 0, respectively), either indicating formation from a previously depleted source or that they predate the other Taconic ophiolites. The restricted range of each ophiolite, compared to the whole of the data set, allow provenance links to be made between isolated bodies. For example, the Buck Creek, NC ultramafic complex, which has undergone granulite facies metamorphism, (Tenthorey et al., 1996) has a

  13. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  14. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  15. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  16. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  17. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  18. Severe hypoglycemia following acute aluminum phosphide (rice tablet) poisoning; a case report and review of the literature.

    PubMed

    Mehrpour, Omid; Aghabiklooei, Abbas; Abdollahi, Mohammad; Singh, Surjit

    2012-01-01

    Aluminum phosphide (AlP) as 3 g tablet is widely used in Iran to protect stored food grains from pests. Hyperglycemia following its ingestion has been already reported in the recent years but severe hypoglycemia is uncommon. Here, we report a 19 year old male who attempted suicide with one tablet of AlP and demonstrated severe hypoglycemia. Despite restoration of blood glucose concentration to normal, he failed to respond to supportive treatment and died. The possible mechanisms leading to severe hypoglycemia are discussed. Though severe hypoglycemia is rare following AlP poisoning, physicians managing such patients should be aware of it.

  19. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  20. Ternary Phosphide Ho 2Cu 6- xP 5- y, Its Crystal Structure, and REm+ n(Cu 2P 3) m(Cu 4P 2) n Relationship with Other Rhombohedral Rare-Earth Copper Phosphides

    NASA Astrophysics Data System (ADS)

    Mozharivskyj, Yurij; Kuz'ma, Yurij B.

    2000-04-01

    Crystals of the phosphide Ho2Cu6-xP5-y (x=0.41, y=0.50) have been prepared by annealing pressed powders of the elements at 800°C for 2 weeks. The structure was determined by single-crystal methods: space group Roverline3m (No. 166), Z=3, a=3.976(1) Å, c=40.554(8) Å, R=0.045 for 243 independent reflections [F>4σ(F)]. The unit cell of Ho2Cu6-xP5-y can be built from a close packing of Ho atoms and fragments of Cu3P, with one of the fragments containing additional P atoms. It can be also considered as an intercalation of additional P atoms in the YbCu3-xP2 structure (P. Klüfers, A. Mewis, and H. U. Schuster, Z. Kristallogr. 149, 211 (1979)). The REm+n(Cu2P3)m(Cu4P2)n relationship with other rare-earth copper phosphides, having similar structural characteristics is discussed.

  1. On the benefit of magnetic magnesium nanocarrier in cardiovascular toxicity of aluminum phosphide.

    PubMed

    Baeeri, Maryam; Shariatpanahi, Marjan; Baghaei, Amir; Ghasemi-Niri, Seyedeh Farnaz; Mohammadi, Hamidreza; Mohammadirad, Azadeh; Hassani, Shokoufeh; Bayrami, Zahra; Hosseini, Asieh; Rezayat, Seyed Mahdi; Abdollahi, Mohammad

    2013-03-01

    The present study was designed to determine the effect of a new (25)Mg(2+)-carrying nanoparticle ((25)MgPMC16) on energy depletion, oxidative stress, and electrocardiographic (ECG) parameters on heart tissue of the rats poisoned by aluminum phosphide (AlP). (25)MgPMC16 at doses of 0.025, 0.05, and 0.1 median lethal dose (LD50 = 896 mg/kg) was administered intravenously (iv) 30 min after a single intragastric administration of AlP (0.25 LD50). Sodium bicarbonate (Bicarb; 2 mEq/kg, iv) was used as the standard therapy. After anesthesia, the animals were rapidly connected to an electronic cardiovascular monitoring device for monitoring of ECG, blood pressure (BP), and heart rate (HR). Later lipid peroxidation, antioxidant power, ATP/ADP ratio, and Mg concentration in the heart were evaluated. Results indicated that after AlP administration, BP and HR decreased while R-R duration increased. (25)MgPMC16 significantly increased the BP and HR at all doses used. We found a considerable increase in antioxidant power, Mg level in the plasma and the heart and a reduction in lipid peroxidation and ADP/ATP ratio at various doses of (25)MgPMC16, but (25)MgPMC16-0.025 + Bicarb was the most effective combination therapy. The results of this study support that (25)MgPMC16 can increase heart energy by active transport of Mg inside the cardiac cells.(25)MgPMC16 seems ameliorating AlP-induced toxicity and cardiac failure necessitating further studies.

  2. Hydroxyethyl Starch Could Save a Patient With Acute Aluminum Phosphide Poisoning.

    PubMed

    Marashi, Sayed Mahdi; Nasri Nasrabadi, Zeynab; Jafarzadeh, Mostafa; Mohammadi, Sogand

    2016-07-01

    A 40-year-old male patient with suicidal ingestion of one tablet of aluminium phosphide was referred to the department of toxicology emergency of Baharloo Hospital, Tehran, Iran. The garlic odor was smelled from the patient and abdominal pain and continuous vomiting as well as agitation and heartburn were the first signs and symptoms. Systolic and diastolic blood pressures at the arrival time were 95 and 67 mmHg, respectively. Gastric lavage with potassium permanganate (1:10,000), and 2 vials of sodium bicarbonate through a nasogastric tube was started for the patient and the management was continued with free intravenous infusion of 1 liter of NaCl 0.9% serum plus NaHCO3, hydrocortisone acetate (200 mg), calcium gluconate (1 g) and magnesium sulfate (1 g). Regarding the large intravenous fluid therapy and vasoconstrictor administering (norepinephrine started by 5 µg/min and continued till 15 µg/min), there were no signs of response and the systolic blood pressure was 49 mmHg. At this time, hydroxyethyl starch (HES) (6% hetastarch 600/0.75 in 0.9% sodium chloride) with a dose of 600 cc in 6 hours was started for the patient. At the end of therapy with HES, the patient was stable with systolic and diastolic blood pressure of 110 and 77 mmHg, respectively. He was discharged on the 6th day after the psychological consultation, with normal clinical and paraclinical examinations. This is the first report of using HES in the management of AlP poisoning and its benefit to survive the patient.

  3. Aluminum phosphide-induced genetic and oxidative damages in rats: attenuation by Laurus nobilis leaf extract.

    PubMed

    Türkez, Hasan; Toğar, Başak

    2013-08-01

    Aluminum phosphide (AlP) is a colorless, flammable, liquefied pesticide that is commonly used to control insects, nematodes, weeds, and pathogens in crops, forests, ornamental nurseries, and wood products. Early investigations of AlP-poisoned mammalian cells led to the proposed involvement of oxidative damage in its toxicity mechanism. Therefore, this study was aimed to evaluate the effect of Laurus nobilis (L) leaf extract (LNE) against AlP-induced genetic and oxidative damages in rats. Selected animals were assigned to four groups (n = 6), namely, group A: control (only distilled water is injected); group B: AlP (4 mg kg(-1) injected intraperitoneally (i.p.)); group C: LNE (200 mg kg(-1) injected i.p.), and group D: AlP plus LNE, respectively. The experimental period lasted for 14 successive days. Chromosomal aberrations (CAs) and micronucleus (MN) assay were used for monitoring genotoxic damage. In addition, biochemical parameters such as total antioxidant capacity (TAC) and total oxidative status (TOS) were examined in serum samples to determine oxidative damage. Our results indicated that AlP caused increase in CA and MN assay rates and alterations in TAC and TOS levels when compared with control group. On the contrary, LNE did not change the rates of both the analyzed cytogenetic end points and led to increase in TAC level. Moreover, we observed that LNE suppressed the genetic damage by AlP to bone marrow cells in vivo. Interestingly AlP-induced oxidative stress was also strongly reduced by LNE. The results of the present study indicated that the protective effect of LNE might be ascribable to its antioxidant and free radical scavenging properties.

  4. Effect of acute aluminum phosphide exposure on rats: a biochemical and histological correlation.

    PubMed

    Anand, R; Kumari, Priyanka; Kaushal, Alka; Bal, Amanjit; Wani, Willayat Y; Sunkaria, Aditya; Dua, Raina; Singh, Surjit; Bhalla, Ashish; Gill, Kiran Dip

    2012-11-23

    Aluminum phosphide (AlP), a widely used fumigant and rodenticide leads to high mortality if ingested. Its toxicity is due to phosphine liberated when it comes in contact with moisture. The exact mechanism of action of phosphine is not known. In this study male Wistar rats were used. The animals received a single dose (20mg AlP/kg body weight i.g.) orally. Basic serum biochemical parameters, activity of mitochondrial complexes, antioxidant enzymes and parameters of oxidative stress, individual mitochondrial cytochrome levels were measured along with tissue histopathology and immunostaining for cytochrome c and compared with controls. The serum levels of creatinine kinase-MB, lactate dehydrogenase, magnesium and cortisol were higher (p<0.01); the activities of mitochondrial complexes I, II, IV were observed to be significantly decreased in liver tissue in treated rats (p<0.01). The activity of catalase was lower (p<0.05) with a significant increase in lipid peroxidation (p<0.05) whereas superoxide dismutase and glutathione peroxidase were unaffected in them. There was a significant decrease in all the cytochromes in brain and liver tissues (p<0.05) with the exception of cytochrome b in brain, the levels of which remained same. Histopathology revealed congestion in most organs with centrizonal hemorrhagic necrosis in liver. Ultra structural changes indicating mitochondrial injury was observed in heart, liver and kidney tissues. There was also a marked reduction in the cytochrome-c immunostaining compared to the controls. Toxicity due to AlP appears to result as a consequence of both-energy insufficiency and oxidative stress, with a possible and preferential interaction with the tissue cytochromes.

  5. Blood levels of methemoglobin in patients with aluminum phosphide poisoning and its correlation with patient's outcome.

    PubMed

    Mostafazadeh, Babak; Pajoumand, Abdolkarim; Farzaneh, Esmaeil; Aghabiklooei, Abbas; Rasouli, Mohammad Reza

    2011-03-01

    Although methemoglobinemia following aluminum phosphide (AlP) intoxication has been reported, probable effect of blood level of methemoglobin (Met-Hb) on outcome of AlP-poisoned patients has not yet been investigated. This study aimed to evaluate blood levels of methemoglobin in patients with AP intoxication and its correlation with patient's outcome. This prospective study was carried out at the Loghman-Hakim poison hospital from April 2009 to August 2009. All patients aged >12 years who had ingested AlP and were admitted at the hospital were enrolled in the study. Using the co-oximetry, blood Met-Hb level was measured at the time of admission and 24 h later if the patient survived. Forty-eight patients with AlP intoxication including 24 males were evaluated. Mean age of the patients was 25.5±9.5 years. There was significant association between blood level of Met-Hb at the time of admission and mortality (2.4%±7.1% in survivors versus 15.2%±13.5% in non-survivors, P<0.001). The same association was found at the 2nd day of admission (2.9%±8.2% in survivors versus 26.5%±9.9% in non-survivors, P=0.02). The present study found an association between blood level of Met-Hb and mortality in patients with AlP intoxication. Effect of administration of vitamin C and methylene blue on outcome of patients with AlP intoxication should be investigated in future studies.

  6. Clinical profile and outcome of aluminum phosphide-induced esophageal strictures.

    PubMed

    Kochhar, Rakesh; Dutta, Usha; Poornachandra, Kuchhangi Sureshchandra; Vaiphei, Kim; Bhagat, Suraj; Nagi, Birinder; Singh, Kartar

    2010-09-01

    Aluminum phosphide (AlP) is a lethal solid fumigant pesticide which has been recently linked to esophageal stricture formation. This paper aims to study the clinical profile and response to treatment of AlP-induced esophageal strictures. Data on all patients of AlP-induced strictures seen between January 2004 and June 2008 were retrieved and analyzed for clinical parameters and response to endoscopic dilation. Each patient underwent barium swallow to define the site and length of stricture and then was dilated endoscopically. Twelve patients of AlP-induced esophageal stricture (seven males) with a mean age of 26.83+/-8.43 years were evaluated. They had consumed one to three AlP tablets, 4-156 weeks before reporting to us. They had onset of dysphagia within 2 to 8 weeks of ingestion of AlP. Of 14 strictures in 12 patients, seven were in upper third, two in middle third, and five in lower third of esophagus with a mean length of 1.96+/-0.75 cm. Nine patients responded to dilation requiring 5.56+/-2.65 dilations. Four patients were given intralesional steroids to augment the effect of dilation. Three patients failed and were operated upon. All patients remained symptom free over a follow-up of 3-30 (15.67+/-9.41) months. AlP-induced esophageal strictures can be dilated endoscopically in a majority of patients; however, 25% of them require surgical intervention. AlP-induced esophageal strictures, thus, behave like caustic-induced strictures.

  7. Studies regarding the homogeneity range of the zirconium phosphide telluride Zr 2+δPTe 2

    NASA Astrophysics Data System (ADS)

    Tschulik, Kristina; Hoffmann, Stefan; Fokwa, Boniface P. T.; Gilleßen, Michael; Schmidt, Peer

    2010-12-01

    The phosphide tellurides Zr 2+ δPTe 2 (0 ≤ δ ≤ 1) can be synthesized from the elements in a solid state reaction or by thermal decomposition of Z. Zr 2PTe 2 decomposes under release of Te 2(g) + P 4(g) forming the homogeneity range Zr 2+ δPTe 2. The growth of single crystals of Zr 2+δPTe 2 succeeded by chemical vapour transport using iodine as transport agent from 830 °C in direction of higher temperatures up to 900 °C. Zr 2+ δPTe 2 crystallizes in the rhombohedral space group R3¯m (no. 166) with lattice parameters a = 383(1)…386(1) pm and c = 2935(4)…2970(4) pm for δ = 0…1, respectively. Single crystal data have been determined for Zr 2.40(2)PTe 2 with lattice parameters a = 385.24(4) pm and c = 2967.8(4) pm. The electronic structure and chemical bonding in Zr 2+ δPTe 2 was investigated by the linear muffin-tin orbital (LMTO) method. Both Zr 2PTe 2 and Zr 3PTe 2 show non-vanishing DOS values at the Fermi level ( EF) indicating metallic character. According to COHP bonding analyses, mainly the heteroatomic Zr-P and Zr-Te bonds are responsible for the structural stability of Zr 3PTe 2. The new Zr2-Te bond, which is not present in Zr 2PTe 2, is stronger than Zr1-Te and is thought to be responsible for the stability of phases having Zr in excess.

  8. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting.

    PubMed

    Han, Ali; Zhang, Hanyu; Yuan, Ruihan; Ji, Hengxing; Du, Pingwu

    2017-01-25

    Hydrogen is essential to many industrial processes and could play an important role as an ideal clean energy carrier for future energy supply. Herein, we report for the first time the growth of crystalline Cu3P phosphide nanosheets on conductive nickel foam (Cu3P@NF) for electrocatalytic and visible light-driven overall water splitting. Our results show that the Cu3P@NF electrode can be used as an efficient Janus catalyst for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). For OER catalysis, a current density of 10 mA/cm(2) requires an overpotential of only ∼320 mV and the slope of the Tafel plot is as low as 54 mV/dec in 1.0 M KOH. For HER catalysis, the overpotential is only ∼105 mV to achieve a catalytic current density of 10 mA cm(-2). Moreover, overall water splitting can be achieved in a water electrolyzer based on the Cu3P@NF electrode, which showed a catalytic current density of 10 mA/cm(2) under an applied voltage of ∼1.67 V. The same current density can also be obtained using a silicon solar cell under ∼1.70 V for both the HER and the OER. This new Janus Cu3P@NF electrode is made of inexpensive and nonprecious metal-based materials, which opens new possibilities based on copper to exploit overall water splitting for hydrogen production. To the best of our knowledge, such high performance of a copper-based water oxidation and overall water splitting catalyst has not been reported to date.

  9. CVD growth and properties of boron phosphide on 3C-SiC

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing; Raghothamachar, Balaji; Edgar, J. H.

    2016-09-01

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000-1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths across the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) < 011 > BP||(100) < 011 > 3C-SiC and (111) < 11 2 ̅ > BP||(111) < 11 2 ̅ > 3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.

  10. Thiophene Hydrodesulfurization over Nickel Phosphide Catalysts: Effect of the Precursor Composition and Support

    SciTech Connect

    Sawhill, Stephanie J.; Layman, Kathryn A.; Van Wyk, Daniel R.; Engelhard, Mark H.; Wang, Chong M.; Bussell, Mark E.

    2005-04-25

    Silica- and alumina-supported nickel phosphide (NixPy) catalysts have been prepared, characterized by bulk and surface sensitive techniques, and evaluated for the hydrodesulfurization (HDS) of thiophene. Series of 30 wt% NixPy/SiO2 and 20 wt% NixPy/Al2O3 catalysts were prepared from oxidic precursors having a range of P/Ni molar ratios by temperature programmed reduction (TPR) in flowing H2. Oxidic precursors with molar ratios of P/Ni = 0.8 and 2.0 yielded catalysts containing phase-pure Ni2P on the silica and alumina supports, respectively. At lower P/Ni ratios, significant Ni12P5 impurities were present in the NixPy/SiO2 and NixPy/Al2O3 catalysts as indicated by X-ray diffraction. The HDS activities of the NixPy/SiO2 and NixPy/Al2O3 catalysts depended strongly on the P/Ni molar ratio of the oxidic precursors with optimal activities obtained for catalysts containing phase pure Ni2P and minimal excess P. After 48 h on-stream, a Ni2P/SiO2 catalyst was 20 and 3.3 times more active than sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, respectively. A Ni2P/Al2O3 catalyst was 2.7 times more active than a sulfided Ni/Al2O3 catalyst but only about half as active as a Ni-Mo/Al2O3 catalyst.

  11. Search for a meteoritic component in impact-melt rocks from the Lonar crater, India - Evidence from osmium isotope systematics

    NASA Astrophysics Data System (ADS)

    Schulz, T.; Luguet, A.; Koeberl, C.

    2013-12-01

    Introduction: The Lonar crater in western India (Maharashtra) is a bowl-shaped simple impact structure of 1830 m diameter and a depth of 120 m below the rim crest. The crater formed 0.656 × 0.081 Ma ago on the 65 Ma old basaltic lava flows of the Deccan Traps (Jourdan et al. 2010) and is one of the few terrestrial impact structures to have formed in basaltic host-rocks. In the absence of actual meteorite fragments, the impact origin of this structure was supported by the identification of a variety of shock metamorphic features (e.g. Fredriksson et al. 1973). However, clear indications of an extraterrestrial component in impactites based on geochemical studies are absent or remained ambiguous so far (e.g. Osae et al. 2005). As the Os isotope tool has the potential to provide firm constraints on the presence or absence of even very small (<<1%) contributions of meteoritic matter to impactite lithologies (e.g. Koeberl et al. 2002), we conduct a detailed Os isotope study of a variety of unshocked host-basalts (target rocks) and impactites (impact-melt rocks) from the Lonar crater. Samples and Method: All samples analyzed in this study were collected in 2000 and 2001 and were geochemically characterized by Osae et al. (2005). Osmium (and additional PGE) analyses were performed on about 2 g whole rock powders, which were spiked with a mixed 190Os,185Re,191Ir,194Pt tracer, and digested via high pressure Asher using inverse aqua regia. Osmium solvent extraction and microdistillation were performed as described by Cohen and Waters (1996). Osmium isotopic compositions were measured using a TRITON N-TIMS at the Department of Lithospheric Research in Vienna. Results and Discussion: Osmium data on seven target and nine impact melt rocks reveal 187Os/188Os ratios ranging from ~0.38 to ~2.23 for the target rocks and from ~0.22 to ~0.59 for the nine analyzed impact melt rocks, whereas Os concentrations range from ~7.1 to ~31.6 ppt and ~7.2 to ~134 ppt, respectively. Although in

  12. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity.

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Heffeter, Petra; Berger, Walter; Arion, Vladimir B

    2012-08-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.

  13. Transmission electron microscopy staining methods for the cortex of human hair: a modified osmium method and comparison with other stains.

    PubMed

    Harland, D P; Vernon, J A; Walls, R J; Woods, J L

    2011-08-01

    For wool, superior staining of a wide range of ultrastructural components is achieved by en bloc treatment of fibres with a chemical reductant followed by osmium tetroxide. For human scalp hair, although staining quality is similar, the penetration of reagents is poor, resulting in large parts of the fibre cortex remaining unstained. Here we describe a modification to the reduction-osmication method in which reagents penetrate through a cut fibre end, allowing visualization of a wide range of features across the cortex. We compare the staining quality, artefacts and range of structure rendered visible using transmission electron microscopy for en bloc reduction-osmication to other staining alternatives including en bloc silver nitrate and section stains based on uranyl acetate and lead citrate, phosphotungstic acid, potassium permanganate, ammoniacal silver nitrate and some combinations of these stains. The effects of hair-care treatments are briefly examined.

  14. Preparation, Crystal Structure, and Physical Properties of the Uranium Nickel Phosphide U 3Ni 3.34P 6

    NASA Astrophysics Data System (ADS)

    Ebel, Thomas; Jeitschko, Wolfgang

    1995-05-01

    The new ternary phosphide U 3Ni 3.34P 6 was prepared by reaction of the elemental components in a tin flux and its crystal structure was determined from single-crystal X-ray data: P4/ mmm, a = 381.8(1) pm, c = 1350.1(4) pm, Z = 1, and R = 0.018 for 200 structure factors and 18 variable parameters. The ideal composition is U 3Ni 4P 6; however, the nickel site was found to be occupied to only 83.6(5)%. The formation of these defects is rationalized from bonding considerations. One phosphorus site had to be refined with a split position and models suggesting various kinds of short-range order for this position are discussed. U 3Ni 3.34P 6 contains two different uranium sites, which are assigned the oxidation numbers +3 and +4 on the basis of their differing U-P bond lengths. The structure is related to the structures of several tetragonal transition metal phosphides and arsenides, e.g., UNi 1.51P 2 with ThCr 2Si 2 type structure and U 2Cu 4As 5. Magnetic susceptibility measurements suggest ferrimagnetism with the Curie temperature Tc = 139(2) K, the Weiss constant Θ = 107(3) K, and a magnetic moment of μ exp = 2.1(1)μ B per average uranium atom. Four-probe electrical conductivity measurements indicate semimetallic behavior.

  15. Electronic structures of ruthenium and osmium complexes of 9,10-phenanthrenequinone.

    PubMed

    Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Adhikary, Nirmal Das; Ghosh, Prasanta

    2012-06-18

    The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(•-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(•-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(•-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(•-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(•-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) Å; 2·toluene, 1.281(5) Å; 4·CH(2)Cl(2), 1.300(8) Å] and shorter C-C lengths [1, 1.418(5) Å; 2·toluene, 1.439(6) Å; 4·CH(2)Cl(2), 1.434(9) Å] of the OO chelates are consistent with the presence of a reduced PQ(•-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(•-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans

  16. Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds.

    PubMed

    Castillo, Amaya; Barea, Guada; Esteruelas, Miguel A.; Lahoz, Fernando J.; LLedós, Agustí; Maseras, Feliu; Modrego, Javier; Oñate, Enrique; Oro, Luis A.; Ruiz, Natividad; Sola, Eduardo

    1999-04-19

    Reaction of the hexahydride complex OsH(6)(P(i)Pr(3))(2) (1) with pyridine-2-thiol leads to the trihydride derivative OsH(3){kappa-N,kappa-S-(2-Spy)}(P(i)Pr(3))(2) (2). The structure of 2 has been determined by X-ray diffraction. The geometry around the osmium atom can be described as a distorted pentagonal bipyramid with the phosphine ligands occupying axial positions. The equatorial plane contains the pyridine-2-thiolato group, attached through a bite angle of 65.7(1) degrees, and the three hydride ligands. The theoretical structure determination of the model complex OsH(3){kappa-N,kappa-S-(2-Spy)}(PH(3))(2) (2a) reveals that the hydride ligands form a triangle with sides of 1.623, 1.714, and 2.873 Å, respectively. A topological analysis of the electron density of 2a indicates that there is no significant electron density connecting the hydrogen atoms of the OsH(3) unit. In solution, the hydride ligands of 2 undergo two different thermally activated site exchange processes, which involve the central hydride with each hydride ligand situated close to the donor atoms of the chelate group. The activation barriers of both processes are similar. Theoretical calculations suggest that the transition states have a cis-hydride-dihydrogen nature. In addition to the thermally activated exchange processes, complex 2 shows quantum exchange coupling between the central hydride and the one situated close to the sulfur atom of the pyridine-2-thiolato group. The reactions of 1 with L-valine and 2-hydroxypyridine afford OsH(3){kappa-N,kappa-O-OC(O)CH[CH(CH(3))(2)]NH(2)}(P(i)Pr(3))(2) (3) and OsH(3){kappa-N,kappa-O-(2-Opy)}(P(i)Pr(3))(2) (4) respectively, which according to their spectroscopic data have a similar structure to that of 2. In solution, the hydride ligands of 3 and 4 also undergo two different thermally activated site exchange processes. However, they do not show quantum exchange coupling. The tetranuclear complexes [(P(i)Pr(3))(2)H(3)Os(&mgr;-biim)M(TFB)](2) [M = Rh

  17. Proto-Pacific OAE2 osmium isotope records revealed: global correlation and basin dynamics

    NASA Astrophysics Data System (ADS)

    Du Vivier, A.; Selby, D. S.; Takashima, R.; Condon, D. J.; Nishi, H.

    2013-12-01

    Globally the marine realm across the Cenomanian-Turonian boundary interval records the oceanic anoxic event (OAE) 2. This event has been studied using several geochemical proxies at several sites from the proto-Atlantic. In contrast, there are limited studies from the proto-Pacific. We present initial osmium isotope stratigraphy (Osi) from two proto-Pacific sites: the Yezo Group (YG) section, Hokkaido, Japan, and the Great Valley Sequence (GVS), California, USA; to evaluate the Os seawater chemistry of the proto-Pacific with that of the proto-Atlantic. For the YG section the Osi prior to OAE2 are moderately radiogenic and heterogeneous. Synchronous with OAE2 onset the Osi abruptly become unradiogenic and remain homogenous before showing a gradual return to more radiogenic Osi throughout the middle to late OAE2. The Osi profile from the YG is analogous to the record from the Portland #1 core of the Western Interior Seaway (WIS). In contrast, the Osi profile from the GVS is disparate to the YG profile and those of several proto-Atlantic locations. The Osi for the GVS oscillate from radiogenic to unradiogenic values across the OAE2. We suggest the Osi of the GVS was influenced interchangeably by both unradiogenic and radiogenic Os; where radiogenic Osi is associated with weathered evolved continental rocks and unradiogenic Osi is derived from a submarine hydrothermal input associated with the Caribbean Large Igneous Province (CLIP). All proto-Atlantic sections show a synchronous correlation between Osi and δ13Corg excursions. However, this is not the case for the YG. As such we infer that the OAE2 excursion has been misidentified in the δ13Cwood analysis for the YG and thus the onset is ~24 m higher in the section. In order to further facilitate correlation we identified a number of zircon bearing tuff horizons throughout the YG for U-Pb ID-TIMS zircon geochronology. The Osi data and U-Pb age(s) combined, improves the correlation and the identification of the OAE2

  18. Marine osmium isotopic record of cherts across the Triassic-Jurassic boundary: implications for environmental change

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Kuroda, J.; Hori, R. S.; Ohkouchi, N.; Grocke, D. R.

    2010-12-01

    Attention has long been focused on relationships between massive volcanisms and major environmental change such as large mass extinctions (e.g., Wignall, 2001). The Triassic-Jurassic (T-J) boundary at c.a. 200 Ma has been regarded as one of the five biggest mass extinction events in the Phanerozoic when a substantial proportion of marine and terrestrial species became extinct. This period also marks extensive magmatic activities associated with the emplacement of the Central Atlantic Magmatic Province (CAMP). These magmatic activities are likely to be a possible forcing mechanism for the climatic changes in the T-J transition. However, the mechanism triggering the T-J mass extinction is still under debate, because there are remarkable difficulties in correlating the timing of the widespread CAMP volcanic activity with the environmental events, and in estimating the environmental impact of large-scale igneous activity. Since seawater Os isotopic composition varies in response to change in balance of Os supply from continental, mantle and extraterrestrial sources, Os isotopic record from hydrogenous fraction of marine sediments is useful to reconstruct secular changes in the relative contribution from these sources (Ravizza and Peucker-Ehrenbrink, 2003; Tugeon and Creaser, 2008; Tejada et al., 2009). Such information possibly provides us important constraints on the mechanism of the environmental change and mass extinction. Although Cohen and Coe (2007) have reported Os isotopic records across the T-J boundary from southern England, no data have been reported from the Paleo-Pacific (Panthalassa) pelagic basin that covered approximately half of the Earth’s surface. Here we present a high-resolution isotopic record of osmium extracted from bedded chert successions across the T-J boundary in Kurusu section, central Japan, deposited on a Panthalassa deep basin. Our new dataset show a gradual decrease in seawater 187Os/188Os values through the Rhaetian and subsequent

  19. Osmium Isotopic Evolution in Cumulate Piles at the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Humayun, M.

    2009-12-01

    Osmium isotopic and Fe/Mn elemental tracers imply that chemical signals originating from the core are observed in some mantle plumes, particularly Hawaii. The discovery of radiogenic Os-186 in Hawaii requires a reservoir with time-integrated high Pt/Os ratios and Pt/Re ratios, proposed to be the Earth’s outer core. The radiogenic in-growth of Os-186 is directly proportional to time and Pt/Os ratio, so that any process acting more recently than the Hadean must create even larger Pt/Os fractionations. In the iron meteorite-analog model proposed to-date, the high Pt/Os ratio of the outer core is acquired by fractional crystallization of the inner core. To create sufficient Pt/Os fractionation, this model requires that: 1) substantial inner core growth had occurred prior to 3.5 Ga, and 2) the partition coefficients have extremely high values requiring the maximum amount of sulfur, or other light elements, possible in the core. The need for such extreme values is a vulnerability of the iron meteorite-analog model. The time constraint is in conflict with inner core growth models inferred from core heat flow requiring alternative heat sources for the core. Further, high Fe/Mn ratios are observed in every major Hawaiian volcano while these volcanoes exhibit a wide range of Os isotopic compositions from unradiogenic to radiogenic. Seismically observed features termed core rigidity zones at the core-mantle boundary have been interpreted to be flotation cumulate piles of FeO-rich material. Such features are not necessarily permanent, but may lose mass to the mantle by incorporation into plumes originating at the CMB. Here, I propose an alternative model for obtaining radiogenic Os-186, correlated with Os-187, from the core by examining the likely chemical evolution of a flotation cumulate pile of FeO-rich material. Fractional crystallization of trapped intercumulus metallic liquid in the cumulate pile produces solid metal with low Pt/Os ratios, and a residual liquid with

  20. A simple osmium post-fixation paraffin-embedment technique to identify lipid accumulation in fish liver using medaka (Oryziaslatipes) eggs and eleutheroembryos as lipid rich models.

    PubMed

    Mondon, J A; Howitt, J; Tosiano, M; Kwok, K W H; Hinton, D E

    2011-01-01

    Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models.

  1. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA

    PubMed Central

    Badalyan, Artavazd; Dierich, Marlen; Stiba, Konstanze; Schwuchow, Viola; Leimkühler, Silke; Wollenberger, Ulla

    2014-01-01

    Biosensors for the detection of benzaldehyde and γ−aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer. PMID:25587431

  2. Photocatalytic performance of nitrogen, osmium co-doped TiO2 for removal of eosin yellow in water under simulated solar radiation.

    PubMed

    Kuvarega, Alex T; Krause, Rui W M; Mamba, Bhekie B

    2013-07-01

    Nitrogen, osmium co-doped TiO2 photocatalysts were prepared by a modified sol-gel method using ammonia as the nitrogen source and osmium tetroxide as the source of osmium. The role of rutile phase OsO2 in enhancing the photocatalytic activity of rutile TiO2 towards the degradation of Eosin Yellow was investigated. The materials were characterised by various techniques that include FTIR, Raman, XRD, SEM, EDS, TEM, TGA and DRUV-Vis. The amorphous, oven dried sample was transformed to the anatase and then the rutile phase with increasing calcination temperature. DRUV-Vis analysis revealed a red shift in absorption with increasing calcination temperature, confirmed by a decrease in the band gap of the material. The photocatalytic activity of N, Os co-doped TiO2 was evaluated using eosin yellow degradation and activity increased with increase in calcination temperature under simulated solar irradiation. The rutile phase of the co-doped TiO2 was found to be more effective in degrading the dye (k(a) = 1.84 x 10(-2) min(-1)) compared to the anatase co-doped phase (k(a) = 9.90 x 10(-3) min(-1)). The enhanced photocatalytic activity was ascribed to the synergistic effects of rutile TiO2 and rutile OsO2 in the N, Os co-doped TiO2.

  3. Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M.; Murowchick, J.B.; Hulbert, L.J.

    1994-01-01

    Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.

  4. A retrospective 7-years study of aluminum phosphide poisoning in Tehran: opportunities for prevention.

    PubMed

    Shadnia, S; Sasanian, G; Allami, P; Hosseini, A; Ranjbar, A; Amini-Shirazi, N; Abdollahi, M

    2009-04-01

    The objective of this study was to survey aluminum phosphide (AIP) poisoning in a referral poisoning hospital in Tehran servicing an estimation of 10,000,000 populations. Records of all patients admitted and hospitalized during a period of 7 years from January 2000 to January 2007 were collected and analyzed according to gender, age, cause of intoxication, amount of AIP consumed, route of exposure, time between exposure and onset of treatment, signs and symptoms of intoxication at admission, therapeutic intervention, laboratory tests, and outcome. During the studied years, 471 patients were admitted to the hospital with AIP poisoning; 50% of them were men. The overall case fatality ratio was 31%. The mean age was 27.1 years, and most of the patients were between 20 and 40 years old. Self-poisoning was observed in 93% of cases. The average ingested dose was 5.1 g, and most of the patients (73%) consumed 1-3 tablets of AIP. A wide range of symptoms and signs was seen on admission, but the most common one was cardiovascular manifestations (78.12%). The majority (65%) of patients were from Tehran. Poisoning in spring and winter (34% and 24%, respectively) was more common than other seasons. Gastric decontamination with potassium permanganate, and administration of calcium gluconate, magnesium sulfate, sodium bicarbonate, and charcoal were considered for most of the patients. Mean arterial blood pH was 7.23 and bicarbonate concentration was 12.7 mEq/L. One-hundred percent of patients with blood pH <7 died and 100% of patients with blood pH >or= 7.35 survived. Electrocardiogram (EKG) abnormalities were noted in 65.6% of cases. There was a significant difference between survival and non-survival according to pH, HCO(3) concentration, and EKG abnormality. Even without an increase in resources, there appears to be significant opportunities for reducing mortality by better medical management and further restrictions on the AIP tablets usage. Arterial blood pH seems to be a

  5. Advanced transition metal phosphide materials from single-source molecular precursors

    NASA Astrophysics Data System (ADS)

    Colson, Adam Caleb

    In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe3P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe3P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe2--xMn xP nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO)8(mu-PR1R 2) (R1 = H, R2 = H or R1 = H, R2 = Ph), which contain the relatively rare mu-PH2 and mu-PPhH functionalities. Iron rich Fe2--xMnxP nanoparticles were obtained by thermal decomposition of FeMn(CO)8(mu-PH 2) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO)8(mu-PH2) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn xOy. A new method for the preparation of phase-pure ferromagnetic Fe 3P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and

  6. Synthesis and x-ray characterization of cobalt phosphide (Co₂P) nanorods for the oxygen reduction reaction

    DOE PAGES

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; ...

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore » conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less

  7. Synthesis and x-ray characterization of cobalt phosphide (Co₂P) nanorods for the oxygen reduction reaction

    SciTech Connect

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; Trigg, Edward B.; Agarwal, Rahul; Li, Jing; Winey, Karen I.; Murray, Christopher B.

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable than conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.

  8. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  9. Simulation of high-efficiency n[sup +]p indium phosphide solar cell results and future improvements

    SciTech Connect

    Jain, R.K.; Flood, D.J. )

    1994-12-01

    A simulation of the highest efficiency (19.1% AM0) n[sup +]p indium phosphide (InP) solar cell was made using a computer code PC-1D in order to understand it and suggest future improvements to it. Available cell design and process data was used in the simulation. Minority carrier diffusion lengths in the emitter and base have been varied to match the experimental cell I-V characteristics with the calculated results. To further understand and improve the InP cell efficiency, simulations were performed using improved values of cell material and process parameters. The authors show that the efficiency of this cell could be increased to more than 23% AM0 by incorporating the suggested cell material, design and process improvements. At these high efficiencies InP cell technology will be very attractive for space use.

  10. Characterization of the Absolute Crystal Polarity across Twin Boundaries in Gallium Phosphide Using Convergent-Beam Electron Diffraction.

    PubMed

    Cohen; McKernan; Carter

    1999-05-01

    : The measurement of absolute crystal polarity is crucial to understanding the structural properties of many planar defects in compound semiconductors. Grain boundaries, including twin boundaries, in the sphalerite lattice are uniquely characterized by the crystallographic misorientation of individual grains and the direction of the crystal polarity in domains adjoining the grain boundary. To evaluate crystal polarity in gallium phosphide (GaP), asymmetrical interference contrast in convergent-beam electron-diffraction (CBED) patterns was used to ascertain the nature and direction of polar bonds. The direction of the asymmetry in the electron diffraction reflections was correlated with the crystal polarity of a sample with known polarity. The CBED technique was applied to determine the polar orientation of grains adjoining Sigma = 3 coherent and lateral twin boundaries in polycrystalline GaP.

  11. 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study.

    PubMed

    Carenco, Sophie; Portehault, David; Boissière, Cédric; Mézailles, Nicolas; Sanchez, Clément

    2014-01-22

    The notions of nanoscale "phase speciation" and "phase diagram" are defined and discussed in terms of kinetic and thermodynamic controls, based on the case of metal phosphide nanoparticles. After an overview of the most successful synthetic routes for these exotic nanomaterials, the cases of InP, Ni2 P, Ni12 P5 and Pdx Py are discussed in detail to highlight the relationship between composition, structure, and size at the nanoscale. The influence of morphology is discussed next by comparing the behavior of Cu3 P nanophases with those of Nix Py , FeP/Fe2 P, and CoP/Co2 P. Perspectives provide the reader with methodological guidelines for further investigation of nanoscale "phase diagrams", and their use for optimized synthesis of new functional nanomaterials.

  12. Ultrafine Metal Phosphide Nanocrystals in Situ Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution.

    PubMed

    Zhu, Yun-Pei; Xu, Xueyan; Su, Huan; Liu, Yu-Ping; Chen, Tiehong; Yuan, Zhong-Yong

    2015-12-30

    In spite of being technologically feasible, electrochemical water reduction to facilitate hydrogen production is confronted with issues mainly due to the lack of affordable and efficient catalysts for the water reduction half reaction. Reported herein is the fabrication of metal phosphides nanocrystals uniformly loaded on highly porous heteroatom-modified carbons through one-step carbonization-phosphization methodology. Remarkably, the well-structured porosity and the increased electrochemically accessible active sites ensure the high catalytic efficiency for electrochemical hydrogen evolution in acidic medium in terms of small onset potentials (33 mV) and large cathodic current density (0.481 mA cm(-2)), even comparable to the state-of-the-art Pt/C benchmark. The easily prepared composite catalysts of structural and textural peculiarities may serve as promising non-noble metal catalysts for realistic hydrogen evolution.

  13. Characterization of iron doped indium phosphide as a current blocking layer in buried heterostructure quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Nida, S.; Hinkov, B.; Gini, E.; Faist, J.

    2017-03-01

    This work analyzes transport through metal organic chemical vapour deposition grown Iron doped Indium Phosphide (InP:Fe) for use as a current blocking layer in buried heterostructure Quantum Cascade Lasers. The nature of Iron incorporation in InP and electrical transport properties of InP:Fe is investigated via simulation and compared with measurement. Through simulations, we are able to predict the threshold for the onset of current rise in test structures due to avalanche injection of carriers. In addition, the benefit of InAlAs barriers inserted in InP:Fe layers is investigated and found to reduce the leakage current at lower biases while delaying the onset of avalanche. In buried heterostructure configuration, we have determined that non ideal regrowth profiles make the structure more susceptible to high field effects such as avalanche injection and trap filling that induce leakage currents.

  14. Probing hydrodesulfurization over bimetallic phosphides using monodisperse Ni2-xMxP nanoparticles encapsulated in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Danforth, Samuel J.; Liyanage, D. Ruchira; Hitihami-Mudiyanselage, Asha; Ilic, Boris; Brock, Stephanie L.; Bussell, Mark E.

    2016-06-01

    Metal phosphide nanoparticles encapsulated in mesoporous silica provide a well-defined system for probing the fundamental chemistry of the hydrodesulfurization (HDS) reaction over this new class of hydrotreating catalysts. To investigate composition effects in bimetallic phosphides, the HDS of dibenzothiophene (DBT) was carried out over a series of Ni-rich Ni2-xMxP@mSiO2 (M = Co, Fe) nanocatalysts (x ≤ 0.50). The Ni2-xMxP nanoparticles (average diameters: 11-13 nm) were prepared by solution-phase arrested precipitation and encapsulated in mesoporous silica, characterized by a range of techniques (XRD, TEM, IR spectroscopy, BET surface area, CO chemisorption) and tested for DBT HDS activity and selectivity. The highest activity was observed for a Ni1.92Co0.08P@mSiO2 nanocatalyst, but the overall trend was a decrease in HDS activity with increasing Co or Fe content. In contrast, the highest turnover frequency (TOF) was observed for the most Co- and Fe-rich compositions based on sites titrated by CO chemisorption. IR spectral studies of adsorbed CO on the Ni2-xMxP@mSiO2 catalysts indicate that an increase in electron density occurs on Ni sites as the Co or Fe content is increased, which may be responsible for the increased TOFs of the catalytic sites. The Ni2-xMxP@mSiO2 nanocatalysts exhibit a strong preference for the direct desulfurization pathway (DDS) for DBT HDS that changes only slightly with increasing Co or Fe content.

  15. cis-1,2-Aminohydroxylation of Alkenes Involving a Catalytic Cycle of Osmium(III) and Osmium(V) Centers: Os(V)(O)(NHTs) Active Oxidant with a Macrocyclic Tetradentate Ligand.

    PubMed

    Sugimoto, Hideki; Mikami, Akine; Kai, Kenichiro; Sajith, P K; Shiota, Yoshihito; Yoshizawa, Kazunari; Asano, Kaori; Suzuki, Takeyuki; Itoh, Shinobu

    2015-07-20

    Catalytic activity of [Os(III)(OH)(H2O)(L-N4Me2)](PF6)2 (1: L-N4Me2 = N,N'-dimethyl-2,11-diaza-[3,3](2,6)pyridinophane) in 1,2-cis-aminohydroxylation of alkenes with sodium N-chloro-4-methylbenzenesulfonamide (chloramine-T) is explored. Simple alkenes as well as those containing several types of substituents are converted to the corresponding 1,2-aminoalcohols in modest to high yields. The aminoalcohol products have exclusively cis conformation with respect to the introduced -OH and -NHTs groups. The spectroscopic measurements including cold mass spectroscopic study of the reaction product of complex 1 and chloromine-T as well as density functional theory (DFT) calculations indicate that an oxido-aminato-osmium(V) species [Os(V)(O)(NHTs)(L-N4Me2)](PF6)2 (2) is an active oxidant for the aminohydroxylation. The DFT calculations further indicate that the reaction involves a [3 + 2] cycloaddition between 2 and alkene, and the regioselectivity in the aminohydroxylation of unsymmetrical alkenes is determined by the orientation that bears less steric hindrance from the tosylamino group, which leads to the energetically more preferred product isomer.

  16. Hyperglycemia in acute aluminum phosphide poisoning as a potential prognostic factor.

    PubMed

    Mehrpour, O; Alfred, S; Shadnia, S; Keyler, D E; Soltaninejad, K; Chalaki, N; Sedaghat, M

    2008-07-01

    Aluminum phosphide (AlP) is a solid fumigant widely used in Iran as a grain preservative. When reacted with water or acids, AIP produces phosphine gas, a mitochondrial poison that interferes with oxidative phosphorylation and protein synthesis. Poisoning by AIP is one of the most important causes of fatal chemical toxicity in Iran. There are few studies in the medical literature addressing prognostic factors associated with AlP poisoning. In this prospective study conducted across a 14-month period commencing on 21st March 2006, we enrolled all patients admitted to the ICU of Loghman-Hakim Hospital Poison Center (Tehran, Iran) with AIP poisoning, no history of diabetes mellitus diagnosed before hospitalization, and normal body mass index. We recorded patient-specific demographic information, blood glucose level on presentation (before treatment), arterial blood gas (ABG) analysis, time elapsed between ingestion and presentation, ingested dose, duration of intensive care admission, and outcome data related to each presentation. We enrolled the group of patients who survived the intoxication as a control group and compared their blood glucose levels with those who died because of AlP poisoning. Data were analyzed by Statistical Product and Service Solutions (SPSS) software (Version 12; Chicago, Ilinois, USA) using logistic regression, Pearson correlation coefficient and Student's t-test. P values of 0.05 or less were considered as the statistical significant levels. Forty-five patients (21 women and 24 men) with acute AlP poisoning were included in the study. The mean age was 27.3 +/- 11.5 years (range: 14-62 years). Thirteen patients survived (29%) and 32 expired (71%). AlP poisoning followed deliberate ingestion in all patients. The time elapsed between ingestion and arrival at the hospital was 3.2 +/- 0.4 h. There was no significant difference between survived and non-survived groups according to age, gender, and time to treatment. However, the difference between

  17. Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release from Living Cells.

    PubMed

    Li, Zhenzhen; Xin, Yanmei; Wu, Wenlong; Fu, Baihe; Zhang, Zhonghai

    2016-08-02

    In this work, we clearly demonstrate for the first time the use of transition-metal phosphides to set up a new cathodic analysis platform for sensitive and selective electrochemical nonenzymatic detection of H2O2. With the help of a facile topotactic conversion method, the noble metal-free electrocatalyst of copper(I) phosphide nanowires on three-dimensional porous copper foam (Cu3P NWs/CF) is fabricated with electrochemical anodized Cu(OH)2 NWs as precursor. The Cu3P NWs/CF-based sensor presents excellent electrocatalytic activity for H2O2 reduction with a detection limit of 2 nM, the lowest detection limit achieved by noble-metal free electrocatalyst, which guarantees the possibility of sensitive and reliable detection of H2O2 release from living tumorigenic cells, thus showing the potential application as a sensitive cancer cell detection probe.

  18. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma.

    PubMed

    Maillet, A; Yadav, S; Loo, Y L; Sachaphibulkij, K; Pervaiz, S

    2013-06-06

    Engagement of the mitochondrial-death amplification pathway is an essential component in chemotherapeutic execution of cancer cells. Therefore, identification of mitochondria-targeting agents has become an attractive avenue for novel drug discovery. Here, we report the anticancer activity of a novel Osmium-based organometallic compound (hereafter named Os) on different colorectal carcinoma cell lines. HCT116 cell line was highly sensitive to Os and displayed characteristic features of autophagy and apoptosis; however, inhibition of autophagy did not rescue cell death unlike the pan-caspase inhibitor z-VAD-fmk. Furthermore, Os significantly altered mitochondrial morphology, disrupted electron transport flux, decreased mitochondrial transmembrane potential and ATP levels, and triggered a significant increase in reactive oxygen species (ROS) production. Interestingly, the sensitivity of cell lines to Os was linked to its ability to induce mitochondrial ROS production (HCT116 and RKO) as HT29 and SW620 cell lines that failed to show an increase in ROS were resistant to the death-inducing activity of Os. Finally, intra-peritoneal injections of Os significantly inhibited tumor formation in a murine model of HCT116 carcinogenesis, and pretreatment with Os significantly enhanced tumor cell sensitivity to cisplatin and doxorubicin. These data highlight the mitochondria-targeting activity of this novel compound with potent anticancer effect in vitro and in vivo, which could have potential implications for strategic therapeutic drug design.

  19. Mediated glucose enzyme electrodes by cross-linking films of osmium redox complexes and glucose oxidase on electrodes.

    PubMed

    Ó Conghaile, Peter; Kamireddy, Sirisha; MacAodha, Domhnall; Kavanagh, Paul; Leech, Dónal

    2013-04-01

    Here, we report on a novel, versatile approach for the preparation of mediated enzyme electrodes, demonstrated using cross-linked films of glucose oxidase and a range of functionalised osmium complexes on graphite electrodes. Response of enzyme electrodes are optimised by evaluation of glucose response as a function of variation in ratios of [Os(2,2'-bipyridine)2(4-aminomethyl pyridine)Cl](+) redox mediator, polyallylamine support and glucose oxidase enzyme cross-linked using a di-epoxide reagent in films on graphite. Lowering of the redox potential required to mediate glucose oxidation is achieved by synthesis of complexes using (4,4'-dimethyl-2,2'-bipyridine) or (4,4'-dimethoxy-2,2'-bipyridine) as a ligand instead of (2,2'-bipyridine). Enzyme electrodes prepared using the complexes based on dimethoxy- or dimethyl-substituted bipyridines provide glucose oxidation current densities of 30 and 70 μA cm(-2) at 0.2 and 0.35 V applied potential compared to 120 μA cm(-2) at 0.45 V for the initial enzyme electrode, under pseudo-physiological conditions in 5 mM glucose, with stability of signals proving inadequate for long-term operation. Current output and stability may be improved by selection of alternate anchoring and cross-linking methodology, to provide enzyme electrodes capable for application to long-term glucose biosensors and anodes in enzymatic fuel cells.

  20. Matrix infrared spectroscopic and computational studies on the reactions of osmium and iron atoms with carbon monoxide and dinitrogen mixtures.

    PubMed

    Lu, Zhang-Hui; Xu, Qiang

    2011-10-06

    Reactions of laser-ablated osmium and iron atoms with CO and N(2) mixtures in excess neon have been investigated using matrix isolation infrared spectroscopy. The (NN)(x)MCO (M = Os, Fe; x = 1, 2) complexes are formed as reaction products during sample deposition and on annealing. These reaction products are characterized on the basis of the results of isotopic substitution, mixed isotopic splitting patterns, stepwise annealing, broad-band irradiation, and change of reagent concentration and laser energy. Density functional theory calculations have been performed on these products. Overall agreement between the experimental and calculated results supports the identification of these species from the matrix infrared spectra. The bonding characteristics and reaction mechanisms have been discussed. The M-C bonds are stronger than the M-N bonds in the same molecules. The formation of metal carbonyl dinitrogen complexes from the addition of CO to metal dinitrogen complexes is found to be more energetically favorable than that from the reactions of N(2) with metal carbonyls.

  1. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers.

    PubMed

    Jenkins, Peter A; Boland, Susan; Kavanagh, Paul; Leech, Dónal

    2009-09-01

    We are interested in investigating the applications of biocatalytic mediated reduction of oxygen by oxygenases in films on electrode surfaces, as such reactions can form the basis for biosensors or biocatalytic fuel cell development. Here we present approaches aimed at improving the stability and signal output of such films. These include selection of oxygen reducing biocatalysts which are active under physiological conditions and development of redox mediators which offer the opportunity to tailor the mediator to each enzyme. It was found that for each enzyme Melanocarpus albomyces laccase (MaL), Trametes hirsutus laccase (ThL) or bilirubin oxidase (MvBOD) it was the biocatalytic films mediated by Os(2,2'-bipyridine)(2)Cl.PVI that not only generated the highest current densities compared to Os(4,4'-dimethyl-2,2'-bipyridine)(2)Cl.PVI and Os(4,4'-dichloro-2,2'-bipyridine)(2)Cl.PVI, but also proved to be the most stable over 48 h. Under physiological conditions electrodes constructed from MvBOD generated the highest initial current densities for each of the osmium redox polymers, however these films proved to be the least stable over 48 h. Stability could be improved using surface pre-treatment.

  2. Synthesis, structure, spectroscopic properties, and antiproliferative activity in vitro of novel osmium(III) complexes with azole heterocycles.

    PubMed

    Stepanenko, Iryna N; Krokhin, Artem A; John, Roland O; Roller, Alexander; Arion, Vladimir B; Jakupec, Michael A; Keppler, Bernhard K

    2008-08-18

    Reactions of (H 2azole) 2[OsCl 6], where Hazole = pyrazole, Hpz, ( 1), indazole, Hind, ( 2), imidazole, Him, ( 3) and benzimidazole, Hbzim, ( 4) with the corresponding azole heterocycle in 1:4 molar ratio in boiling isoamyl alcohol or hexanol-1 afforded novel water-soluble osmium(III) complexes of the type trans-[OsCl 2(Hazole) 4]Cl, where Hazole = Hpz ( 5a), Hind ( 6a), Him ( 7a), and Hbzim ( 9a) in 50-70% ( 5a, 7a, 9a) and 5% ( 6a) yields. The synthesis of 7a was accompanied by a concurrent reaction which led to minor formation (<4%) of cis-[OsCl 2(Him) 4]Cl ( 8). The complexes were characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, ESI mass spectrometry, cyclic voltammetry, and X-ray crystallography. 5a, 7a, and 9a were found to possess remarkable antiproliferative activity in vitro against A549 (non-small cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma) cells, which was compared with that of related ruthenium compounds trans-[RuCl 2(Hazole) 4]Cl, where Hazole = Hpz (5b), Hind (6b), Him (7b), and Hbzim (9b).

  3. High-resolution spectroscopy and structure of osmium tetroxide. A benchmark study on 192OsO4.

    PubMed

    Louviot, Maud; Boudon, Vincent; Manceron, Laurent; Roy, Pascale; Bermejo, Dionisio; Martínez, Raúl Z

    2012-10-01

    Osmium tetroxide (OsO(4)) is a heavy tetrahedral molecule that constitutes a benchmark for quantum chemistry calculations. Its favorable spin statistics (due to the zero nuclear spin of oxygen atoms) is such that only A(1) and A(2) (T(d) symmetry) rovibrational levels are allowed, leading to a dense but quite easily resolvable spectrum. We reinvestigate here the ν(1)/ν(3) stretching fundamental (940-980 cm(-1)) dyad region and perform new assignments and effective Hamiltonian parameter fits for the main isotopologue ((192)OsO(4)). We also investigate the ν(2)/ν(4) bending fundamental dyad (300-360 cm(-1)) for the first time and perform a preliminary analysis. New experimental data have been obtained at 0.001 cm(-1) resolution using an isotopically pure (192)OsO(4) sample and the Synchrotron SOLEIL light source. Assignments and analyses were performed using SPVIEW and XTDS software, respectively. We provide precise effective Hamiltonian parameters, including the band centers for all of the fundamental levels and rotational constants for the ground state and for all four fundamental levels. We discuss isotopic shifts, estimate the equilibrium rotational constant B(e), and derive a precise value for the equilibrium bond length r(e)(Os-O) = 1.70919(16) Å. We also performed experiments to measure for the first time the IR integrated intensities for the ν(2)/ν(4) bending fundamental dyad. These new data are compared to current ab initio predictions.

  4. Tracking millennial-scale Holocene glacial advance and retreat using Osmium isotopes: Insights from the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rooney, Alan; Selby, David; Lloyd, Jeremy; Roberts, David; Lückge, Andreas; Sageman, Bradley; Prouty, Nancy

    2016-04-01

    Using new high-resolution osmium (Os) isotope stratigraphy from cores adjacent to the Greenland ice sheet we highlight the potential for chemostratigraphy to contribute to our understanding of ice sheet dynamics. This study utilizes sediment cores that have excellent chronological controls and demonstrates the role of local and regional weathering fluxes on the marine Os residence time. Distal to the Greenland ice streams core MSM-520 displays a steady lowering of the Os isotope composition during the Holocene. In contrast, proximal to the calving front of Jakobshavn Isbræ (core DA00-06), the Os isotope stratigraphy highlights four stages of ice stream retreat and advance. Our chemostratigraphic records provide vital benchmarks as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from both near-field and far-field settings emphasize the overwhelming effect local weathering sources have on seawater Os isotope composition.

  5. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    PubMed

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  6. Aqueous Corrosion of Phosphide Minerals from Iron Meteorites: A Highly Reactive Source of Prebiotic Phosphorus on the Surface of the Early Earth

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Lauretta, Dante S.

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO3, the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  7. Comparative Study on the Effectiveness of Coumavec® and Zinc Phosphide in Controlling Zoonotic Cutaneous Leishmaniasis in a Hyperendemic Focus in Central Iran

    PubMed Central

    Veysi, A; Vatandoost, H; Yaghoobi-Ershadi, MR; Arandian, MH; Jafari, R; Hosseini, M; abdoli, H; Rassi, Y; Heidari, K; Sadjadi, A; Fadaei, R; Ramazanpour, J; Aminian, K; Shirzadi, MR; Akhavan, AA

    2012-01-01

    Background Zoonotic cutaneous leishmaniasis (ZCL) is an increasing health problems in many rural areas of Iran. The aim of this study was to introduce a new alternative rodenticide to control the reservoirs of ZCL, its effect on the vector density and the incidence of the disease in hyperendemic focus of Esfahan County, central Iran. Methods: The study was carried out from January 2011 to January 2012. In intervention areas, rodent control operation was conducted using zinc phosphide or Coumavec®. Active case findings were done by house-to-house visits once every season during 2011–2012. To evaluate the effect of rodent control operation on the vector density, sand flies were collected twice a month using sticky traps. Results: The reduction rate of rodent holes in intervention areas with Coumavec® and zinc phosphide were 48.46% and 58.15% respectively, whereas in control area results showed 6.66 folds intensification. The Incidence of ZCL significantly reduced in the treated areas. Totally, 3200 adult sand flies were collected and identified in the intervention and control areas. In the treated area with zinc phosphide, the density of Phlebotomus papatasi was higher in outdoors in contrast with the treated area by Coumavec® which the density of the sand fly was higher in indoors. Conclusion: Both rodenticides were effective on the incidence of ZCL and the population of the reservoirs as well. Coumavec® seems to be effective on the outdoor density of the vector. This combination of rodenticide-insecticide could be a suitable alternative for zinc phosphide while bait shyness or behavioral resistance is occurred. PMID:23293775

  8. X-Ray Emission Spectra and Electronic Structures of Red Phosphorus, 3d Transition-Metal Phosphides and III V Compounds

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1995-07-01

    The P Kβ emission spectra in fluorescence from red amorphous phosphorus, 3d transition-metal phosphides TiP, CrP, FeP, Fe2P, Fe3P, CoP, Co2P, Ni5P4, Ni2P, Ni3P, Cu3P, ZnP2 (black) and Zn3P2, and the semiconducting phosphides of the III-V type, BP, AlP, GaP and InP are measured with a high-resolution two-crystal vacuum spectrometer equipped with Ge(111) crystals. The influence of the metal atoms appears distinctly on the P Kβ fluorescence emission spectra. The measured spectra are compared with available X-ray emission and XPS valence-band spectra and theoretical energy-band calculations on a common energy scale. It is shown that considerable p-d, s mixing occurs in the valence bands of the 3d transition-metal phosphides and the P 3p states mix fairly with the P 3s states in the valence bands of red phosphorus, Gap and InP

  9. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells.

    PubMed

    van Rijt, Sabine H; Romero-Canelón, Isolda; Fu, Ying; Shnyder, Steve D; Sadler, Peter J

    2014-05-01

    The problems of acquired resistance associated with platinum drugs may be addressed by chemotherapeutics based on other transition metals as they offer the possibility of novel mechanisms of action. In this study, the cellular uptake and induction of apoptosis in A549 human non-small cell lung cancer cells of three promising osmium(II) arene complexes containing azopyridine ligands, [Os(η(6)-arene)(p-R-phenylazopyridine)X]PF6, where arene is p-cymene or biphenyl, R is OH or NMe2, and X is Cl or I, were investigated. These complexes showed time-dependent (4–48 h) potent anticancer activity with highest potency after 24 h (IC50 values ranging from 0.1 to 3.6 μM). Cellular uptake of the three compounds as quantified by ICP-MS, was independent of their logP values (hydrophobicity). Furthermore, maximum cell uptake was observed after 24 h, with evident cell efflux of the osmium after 48 and 72 h of exposure, which correlated with the corresponding IC50 values. The most active compound 2, [Os(η(6)-p-cymene)(NMe2-phenylazopyridine)I]PF6, was taken up by lung cancer cells predominately in a temperature-dependent manner indicating that energy-dependent mechanisms are important in the uptake of 2. Cell fractionation studies showed that all three compounds accumulated mainly in cellular membranes. Furthermore, compound 2 induced apoptosis and caused accumulation in the S-phase of the cell cycle. In addition, 2 induced cytochrome c release and alterations in mitochondrial membrane potential even after short exposure times, indicating that mitochondrial apoptotic pathways are involved. This study represents the first steps towards understanding the mode of action of this promising class of new osmium-based chemotherapeutics.

  10. Confirmation of a meteoritic component in impact-melt rocks of the Chesapeake Bay impact structure, Virginia, USA - Evidence from osmium isotopic and PGE systematics

    USGS Publications Warehouse

    Lee, S.R.; Horton, J.W.; Walker, R.J.

    2006-01-01

    The osmium isotope ratios and platinum-group element (PGE) concentrations of impact-melt rocks in the Chesapeake Bay impact structure were determined. The impact-melt rocks come from the cored part of a lower-crater section of suevitic crystalline-clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact-melt rocks range from 0.151 to 0.518. The rhenium and platinum-group element (PGE) concentrations of these rocks are 30-270?? higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact-melt rocks. Because the PGE abundances in the impact-melt rocks are dominated by the target materials, interelemental ratios of the impact-melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact-melt rocks include a bulk meteoritic component of 0.01-0.1% by mass. Several impact-melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%-0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01-0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact-melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact-melt rocks, and 2) variable fractionations of PGE during syn- to post-impact events. ?? The Meteoritical Society, 2006.

  11. Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition.

    PubMed

    Kinoshita, Takumi; Fujisawa, Jun-Ichi; Nakazaki, Jotaro; Uchida, Satoshi; Kubo, Takaya; Segawa, Hiroshi

    2012-02-02

    A new osmium (Os) complex of the [Os(tcterpy)-(4,4'-bis(p-butoxystyryl)-2,2'-bipyridine)Cl]PF6 (Os-stbpy) has been synthesized and characterized for dye-sensitized solar cells (DSSCs). The Os-stbpy dye shows enhanced spin-forbidden absorptions around 900 nm. The DSSCs with Os-stbpy show a wide-band spectral response up to 1100 nm with high overall conversion efficiency of 6.1% under standard solar illumination.

  12. Osmium isotope perturbations during the Pliensbachian-Toarcian (Early Jurassic): Relationships between volcanism, weathering, and climate change

    NASA Astrophysics Data System (ADS)

    Percival, Lawrence; Cohen, Anthony; Davies, Marc; Dickson, Alexander; Jenkyns, Hugh; Hesselbo, Stephen; Mather, Tamsin; Xu, Weimu; Storm, Marisa

    2016-04-01

    The Mesozoic Era marked a time of greenhouse conditions on Earth, punctuated by a number of abrupt perturbations to the carbon cycle, such as Ocean Anoxic Events (OAEs). OAEs are typically marked in the stratigraphic record by the appearance of organic-rich shales, and excursions in carbon-isotope ratios registered in carbonates and organic matter. A range of geochemical evidence indicates changes to global temperatures, typically featuring abrupt warming possibly caused by CO2 emissions resulting from Large Igneous Province (LIP) volcanism. A warmer atmosphere is thought to have led to changes in the global hydrological cycle, which would likely have enhanced global weathering rates. The Toarcian OAE (T-OAE) is inferred, from osmium isotope ratios in organic-rich mudrocks from Yorkshire and western North America, to have been a time of such increased weathering rates. However, it is likely that the sediments at these locations were deposited in relatively hydrographically restricted environments, potentially more susceptible to the influence of local input; consequently, they may not offer the best representation of the global seawater Os-isotope composition at that time. In this study, we have measured the osmium isotope composition of siciliclastic mudrocks in a core from the Mochras borehole (Llanbedr Farm, Cardigan Bay Basin, Wales), which constitutes a sedimentary record for a fully open-marine seaway that connected Tethys to the Boreal ocean during the Toarcian. We analysed samples from strata including both the T-OAE and preceding Pliensbachian-Toarcian boundary (Pl-To), both of which record multiple geochemical excursions and records of elevated extinction amongst benthic fauna. We find that the latest Pliensbachian records seawater 187Os/188Os of ~0.35-0.4, rising to ~0.5 at the Pl-To boundary, before a further rise to ~0.7 during the T-OAE. We conclude that such increases in radiogenic Os flux to the ocean system resulted from enhanced continental

  13. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  14. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.

    PubMed

    Stewart, Michael H; Huston, Alan L; Scott, Amy M; Efros, Alexander L; Melinger, Joseph S; Gemmill, Kelly Boeneman; Trammell, Scott A; Blanco-Canosa, Juan B; Dawson, Philip E; Medintz, Igor L

    2012-06-26

    The ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms. In this report, we examine energy transfer between a range of CdSe-ZnS core-shell QDs and a redox-active osmium(II) polypyridyl complex. To facilitate this, the Os complex was synthesized as a reactive isothiocyanate and used to label a hexahistidine-terminated peptide. The Os-labeled peptide was ratiometrically self-assembled to the QDs via metal affinity coordination, bringing the Os complex into close proximity of the nanocrystal surface. QDs displaying different emission maxima were assembled with increasing ratios of Os-peptide complex and subjected to detailed steady-state, ultrafast transient absorption, and luminescence lifetime decay analyses. Although the possibility exists for charge transfer quenching interactions, we find that the QD donors engage in relatively efficient Förster resonance energy transfer with the Os complex acceptor despite relatively low overall spectral overlap. These results are in contrast to other similar QD donor-redox-active acceptor systems with similar separation distances, but displaying far higher spectral overlap, where charge transfer processes were reported to be the dominant QD quenching mechanism.

  15. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    SciTech Connect

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  16. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    PubMed

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  17. En route to osmium analogues of KP1019: synthesis, structure, spectroscopic properties and antiproliferative activity of trans-[Os(IV)Cl4(Hazole)2].

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Arion, Vladimir B

    2011-08-15

    By controlled Anderson type rearrangement reactions complexes of the general formula trans-[Os(IV)Cl(4)(Hazole)(2)], where Hazole = 1H-pyrazole, 2H-indazole, 1H-imidazole, and 1H-benzimidazole, have been synthesized. Note that 2H-indazole tautomer stabilization in trans-[Os(IV)Cl(4)(2H-indazole)(2)] is unprecedented in coordination chemistry of indazole. The metal ion in these compounds possesses the same coordination environment as ruthenium(III) in (H(2)ind)[Ru(III)Cl(4)(Hind)(2)], where Hind = 1H-indazole, (KP1019), an investigational anticancer drug in phase I clinical trials. These osmium(IV) complexes are appropriate precursors for the synthesis of osmium(III) analogues of KP1019. In addition the formation of an adduct of trans-[Os(IV)Cl(4)(Hpz)(2)] with cucurbit[7]uril is described. The compounds have been comprehensively characterized by elemental analysis, EI and ESI mass spectrometry, spectroscopy (IR, UV-vis, 1D and 2D NMR), cyclic voltammetry, and X-ray crystallography. Their antiproliferative acitivity in the human cancer cell lines CH1 (ovarian carcinoma), A549 (nonsmall cell lung carcinoma), and SW480 (colon carcinoma) is reported.

  18. Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba{sub 2}LnOsO{sub 6} (Ln=rare earths)

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro; Wakeshima, Makoto

    2013-10-15

    The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Os{sup 5+} ions are structurally ordered at the M site of the perovskite BaMO{sub 3}. Magnetic susceptibility and specific heat measurements show that an antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Magnetic ordering of Ln{sup 3+} moments occurs when the temperature is furthermore decreased. - Graphical abstract: The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. An antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Measurements and analysis of the specific heat for Ba{sub 2}PrOsO{sub 6} show that magnetic ordering of the Pr{sup 3+} moments should have occurred at ∼20 K. Display Omitted.

  19. Luminescence response of an osmium(II) complex to macromolecular polyanions for the detection of heparin and chondroitin sulfate in biomedical preparations.

    PubMed

    Wu, Hao; Wu, Jain; Saez, Christopher; Campana, Maria; Megehee, Elise G; Wang, Enju

    2013-12-04

    Heparin, dextran sulfate (DS), chondroitin sulfate (CS), and carrageenan are found to enhance the luminescence intensity of an osmium(II) carbonyl complex with phenanthroline (phen) and 4-phenylpyridine (4-phpy) ligands in aqueous and ethanol solutions. The enhancing effect of the polyanions on the luminescence of the complex is heavily dependent on the sulfate content and other factors such as structure, solubility, and counter ions of the polyanion. The highly sulfated dextran and ι-carrageenan have the most profound effect, while the low charged κ-carrageenan and CS have the least response in aqueous solution. All polyanions exhibited enhanced luminescence intensity of the complex in ethanol solutions, and even the low charged CS and κ-carrageenan enhanced the luminescence more than 4 times. DS contamination of the sodium heparin at 5% can show a significant increase in luminescence response. The osmium complex is found to be highly successful in the fast and sensitive detection of heparin in commercial injectable samples with various backgrounds as well as the detection of CS in over the counter food supplement tablets.

  20. Thoughts on the current management of acute aluminum phosphide toxicity and proposals for therapy: An Evidence-based review.

    PubMed

    Farahani, Maryam Vasheghani; Soroosh, Davood; Marashi, Sayed Mahdi

    2016-12-01

    The majority of aluminum phosphide (ALP) toxicity cases are suicidal attempts. Despite advances in critical care medicine, the mortality rate of ALP remains very high. Unfortunately, knowledge on the toxicokinetics of ALP is very low. An obsolete idea was proposed that inhibition of complex IV of cytochrome C oxidase is responsible for multiorgan dysfunction. However, based on human studies, this effect might be insignificant. Thus, a novel idea proposes that the main mechanism might be vascular wall integrity disruption. The low frequency of acute toxicity and unanswered questions about the toxicokinetics and toxicodynamics has led to leaden advances of novel treatments. The aim of this review was to evaluate problems regarding current treatment protocols and propose new ideas based on updated information. For this purpose, we reviewed all available articles on the management of ALP poisoning published to date. Considering failure of conventional therapies on maintaining systolic blood pressure, correcting acid-base disturbances, and support cardiac function, the previous treatment protocols have been overruled. However, repudiate of conventional treatments in this deadly condition is not without penalties for the health-care provider. The introduction of new therapies including refuse of gastric lavage with water-soluble compounds, administration of a high molecular weight colloidal solution for fluid resuscitation and termination using sodium bicarbonate, and vasoactive agents has been prospected to improve patient survival. This protocol is in early clinical evaluation; nevertheless, it appears to improve patient's survival; hence, future randomized trials should be performed to support their effectiveness.

  1. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  2. Aluminum phosphide (celphos) poisoning in children: A 5-year experience in a tertiary care hospital from northern India

    PubMed Central

    Sharma, Anupama; Dishant; Gupta, Vikas; Kaushik, Jaya Shankar; Mittal, Kundan

    2014-01-01

    Background: Aluminum phosphide (ALP) (celphos) is an agricultural pesticide commonly implicated in poisoning. Literature pertaining to the clinical manifestations and treatment outcome of its poisoning among children is limited. Materials and Methods: A retrospective chart review was conducted of the medical records of 30 children aged less than 14 years admitted to pediatric intensive care unit (PICU) of a tertiary care hospital in northern India. Demographic, clinical, and laboratory parameters were recorded. The outcome was categorized into “survivors” and “nonsurvivors.” Results: The Mean (SD) age of the enrolled children [19 males (63.3%)] was 8.55 (3.07) years. Among the 30 children, 14 (46.67%) were nonsurvivors and the rest 16 (53.33%) were survivors. Nonsurvivors had ingested significantly higher doses of ALP (P < 0.001), and showed higher time lag to PICU transfer (P 0.031), presence of abnormal radiological findings on chest skiagram (P = 0.007), and a higher Pediatric Risk of Mortality (PRISM) III score (P < 0.001) at admission. Use of magnesium sulfate was associated significantly with survival [odds ratio (OR) (95% CI): 0.11 (0.02-0.66); P 0.016]. Conclusion: The present study highlights that survival among children with ALP poisoning is predicted by dose of ALP ingestion, time lag to medical attention, and higher PRISM score at admission. Use of magnesium sulfate could be associated with better survival among them. PMID:24550611

  3. A novel protocol for gastric lavage in patients with aluminum phosphide poisoning: a double-blind study.

    PubMed

    Mostafazadeh, Babak; Farzaneh, Esmaeil

    2012-01-01

    Aluminum phosphide poisoning (ALPP) still has no efficient and approved antidote. Supportive care and hemodynamic monitoring are the only choices of treatment. We proposed a new lavage formulation in addition to evaluation of its efficacy and defining the impact of clinical characteristics of patients on their prognosis. During eight months period of time, 120 patients were enrolled to the study and randomly received two different gastric lavage protocols. Our new lavage protocol had positive impact on patients' survival and the P-value in comparison with the classic gastric lavage method was close to significant level (P=0.054). On hospital arrival indication for intubation-ventilation as well as sense of thirst, sore throat and absence of nausea indicate worse outcome. Using our novel approach, indication for intubation-ventilation as well as sense of thirst, sore throat and absence of nausea can be considered as applicable prognostic factors in survival of ALPP patients. Further studies are required to set this approach as preferred treatment.

  4. Aluminium phosphide-induced genetic and oxidative damages in vitro: Attenuation by Laurus nobilis L. leaf extract

    PubMed Central

    Türkez, Hasan; Toğar, Başak

    2013-01-01

    Objective: The present investigation was undertaken to assess the protective effect of Laurus nobilis leaf extract (LNE) against aluminum phosphide (AIP)-induced genotoxic and oxidative damages stress in cultured human blood cells in the presence of a metabolic activator (S9 mix). Materials and Methods: Sister chromatid exchange (SCE) and chromosome aberration (CA) assays were used to assess AlP-induced genotoxicity and to establish the protective effects of LNE. In addition, we determined total antioxidant capacity (TAC) and total oxidative status (TOS) levels in AlP and LNE treated cultures for biomonitoring the oxidative alterations. Results: There was significant increases (P < 0.05) in both SCE and CA frequencies of cultures treated with AlP as compared to controls. Our results also showed that AlP (58 mg/l) caused oxidative stress by altering TAC and TOS levels. However, co-application of LNE (25, 50, 100 and 200 mg/l) and AlP resulted in decreases of SCE, CA rates and TOS level and increases of TAC level as compared to the group treated with AlP alone. Conclusion: The preventive role of LNE in alleviating AlP-induced DNA and oxidative damages was indicated for the first time in the present study. PMID:23543905

  5. Thoughts on the current management of acute aluminum phosphide toxicity and proposals for therapy: An Evidence-based review

    PubMed Central

    Farahani, Maryam Vasheghani; Soroosh, Davood; Marashi, Sayed Mahdi

    2016-01-01

    The majority of aluminum phosphide (ALP) toxicity cases are suicidal attempts. Despite advances in critical care medicine, the mortality rate of ALP remains very high. Unfortunately, knowledge on the toxicokinetics of ALP is very low. An obsolete idea was proposed that inhibition of complex IV of cytochrome C oxidase is responsible for multiorgan dysfunction. However, based on human studies, this effect might be insignificant. Thus, a novel idea proposes that the main mechanism might be vascular wall integrity disruption. The low frequency of acute toxicity and unanswered questions about the toxicokinetics and toxicodynamics has led to leaden advances of novel treatments. The aim of this review was to evaluate problems regarding current treatment protocols and propose new ideas based on updated information. For this purpose, we reviewed all available articles on the management of ALP poisoning published to date. Considering failure of conventional therapies on maintaining systolic blood pressure, correcting acid-base disturbances, and support cardiac function, the previous treatment protocols have been overruled. However, repudiate of conventional treatments in this deadly condition is not without penalties for the health-care provider. The introduction of new therapies including refuse of gastric lavage with water-soluble compounds, administration of a high molecular weight colloidal solution for fluid resuscitation and termination using sodium bicarbonate, and vasoactive agents has been prospected to improve patient survival. This protocol is in early clinical evaluation; nevertheless, it appears to improve patient's survival; hence, future randomized trials should be performed to support their effectiveness. PMID:28149031

  6. Aluminum phosphide fatalities at mild exertion in asymptomatic children: a clue to understand the variations of the autopsy findings.

    PubMed

    Abder-Rahman, Hasan A

    2009-08-01

    Fatalities resulted from aluminium phosphide (ALP) intoxication in completely healthy children with no preceded clinical sings or symptoms were presented. Data regarding circumstances, autopsy reports, histopathological examination, toxicological investigation, and police enquiries were also collected and evaluated. The affected children were females, and 6-16 years old. They were completely healthy and died suddenly in relation to some physical activities such as running, walking, and bathing, without any prior complain. The viscera showed intense congestion with moderate to severe pulmonary edema. The cause of the sudden termination of life in the reported cases is mostly cardiac ones. Physical exertion may precipitate death due to increased cardiac stress, increased oxygen demand, and by aggravating metabolic acidosis. The absence of clinical symptoms before death may be due to the low level ALP, or due to the occurrence of death in the early stages after exposure to poison. Death due to ALP could result in cases of mild, moderate, or severe ALP intoxication. This may explain partly the differences encountered in clinical, autopsy, and histopathology findings of ALP intoxication. Fatalities are not the mere consequences of the dose of the poison, but factors such as physical activity and low oxygen level may be quite important.

  7. Mitochondrial electron transport chain complexes, catalase and markers of oxidative stress in platelets of patients with severe aluminum phosphide poisoning.

    PubMed

    Anand, R; Sharma, D R; Verma, D; Bhalla, A; Gill, K D; Singh, S

    2013-08-01

    Aluminum phosphide (ALP), a widely used fumigant and rodenticide, leads to high mortality if ingested. Its toxicity is due to phosphine that is liberated when it comes in contact with moisture. The exact site or mechanism of action of phosphine is not known, although it is widely believed that it affects mitochondrial oxidative phosphorylation. Basic serum biochemical parameters, activity of mitochondrial complexes, antioxidant enzymes and parameters of oxidative stress were estimated in the platelets of 21 patients who developed severe poisoning following ALP ingestion. These parameters were compared with 32 healthy controls and with 22 patients with shock due to other causes (cardiogenic shock (11), septic shock (9) and hemorrhagic shock (2)). The serum levels of creatine kinase-muscle brain and lactate dehydrogenase were higher in patients poisoned with ALP, whereas a significant decrease was observed in the activities of mitochondrial complexes I, II and IV. The activity of catalase was lower but the activities of superoxide dismutase and glutathione peroxidase were unaffected in them. A significant increase in lipid peroxidation and protein carbonylation was observed, whereas total blood thiol levels were lower. In patients severely poisoned with ALP, not only cytochrome c oxidase but also other complexes are involved in mitochondrial electron transport, and enzymes are also inhibited.

  8. The achievement of low contact resistance to indium phosphide: The roles of Ni, Au, Ge, and combinations thereof

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1992-01-01

    We have investigated the electrical and metallurgical behavior of Ni, Au-Ni, and Au-Ge-Ni contacts on n-InP. We have found that very low values of contact resistivity rho(sub c) in the E-7 omega-sq cm range are obtained with Ni-only contacts. We show that the addition of Au to Ni contact metallization effects an additional order of magnitude reduction in rho(sub c). Ultra-low contact resistivities in the E-8 omega-sq cm range are obtained with both the Au-Ni and the Au-Ge-Ni systems, effectively eliminating the need for the presence of Ge in the Au-Ge-Ni system. The formation of various nickel phosphides at the metal-InP interface is shown to be responsible for the observed rho(sub c) values in the Ni and Au-Ni systems. We show, finally, that the order in which the constituents of Au-Ni and Au-Ge-Ni contacts are deposited has a significant bearing on the composition of the reaction products formed at the metal-InP interface and therefore on the contact resistivity at that interface.

  9. Mid-infrared tunable, narrow-linewidth difference-frequency laser based on orientation-patterned gallium phosphide

    NASA Astrophysics Data System (ADS)

    Insero, G.; Clivati, C.; D’Ambrosio, D.; De Natale, P.; Santambrogio, G.; Schunemann, P. G.; Borri, S.; Zondy, J. J.

    2017-01-01

    We report on the first characterization of orientation-patterned gallium phosphide (OP-GaP) crystals used to generate narrow-linewidth, coherent mid-infrared (MIR) radiation at 5.85 μm by difference frequency generation (DFG) of continuous-wave (cw) Nd:YAG laser at 1064nm and diode-laser at 1301nm. By comparison of the experimental absolute MIR efficiency versus focusing to Gaussian beam DFG theory, we derive an effective nonlinear coefficient for first-order quasi-phase-matched OP-GaP at the generated DFG wavelength. Using d = (2/π)d 14 and taking into account Miller’s delta rule, we retrieve an absolute value of the d 14 quadratic nonlinear susceptibility coefficient of GaP of d 14 = 27.2(3) pm/V at 5.85 μm, in good agreement with the latest absolute measurement of this nonlinear coefficient from non-phase-matched second-harmonic generation (1.32 μm → 0.66 μm) taking into account multiple reflection effects [Shoji et al 1997 J. Opt. Soc. Am. B 14 2268]. The temperature and signal-wave tuning curves are also in qualitative agreement with a recently proposed temperature-dependent Sellmeier equation for OP-GaP when focusing effects are taken into account.

  10. Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Wang, Kunyang; Du, Gu; Zhu, Wenxin; Cui, Liang; Zhang, Chengxiao; Sun, Xuping; Asiri, Abdullah M.

    2016-11-01

    Hydrogen has been considered as an ideal energy carrier for replacing fossil fuels to mitigate global energy crises. Hydrolysis of sodium borohydride (NaBH4) is simple and effective for hydrogen production but needs active and durable catalysts to accelerate the kinetics. In this paper, we demonstrate that cobalt phosphide nanowall arrays supported on carbon cloth (CoP NAs/CC) efficiently catalyze the hydrolytic dehydrogenation of NaBH4 with an activation energy of 42.1 kJ mol-1 in alkaline media. These monolithic CoP NAs/CC show a maximum hydrogen generation rate of 5960 {{ml}} {{{\\min }}}-1 {{{{g}}}-1}({{CoP})} and are robust with superior durability and reusability. They are also excellent in activity and durability for electrochemical hydrogen evolution in 1.0 M KOH, with the need of an overpotential of only 80 mV to drive 10 mA cm-2. They offer us a promising low-cost hydrogen-generating catalyst for applications.

  11. High energy oxygen irradiation-induced defects in Fe-doped semi-insulating indium phosphide by positron annihilation technique

    NASA Astrophysics Data System (ADS)

    Pan, S.; Mandal, A.; Sohel, Md. A.; Saha, A. K.; Das, D.; Sen Gupta, A.

    2017-02-01

    Positron annihilation technique is applied to study the recovery of radiation-induced defects in 140 MeV oxygen (O6+) irradiated Fe-doped semi-insulating indium phosphide during annealing over a temperature region of 25∘C-650∘C. Lifetime spectra of the irradiated sample are fitted with three lifetime components. Trapping model analysis is used to characterize defect states corresponding to the de-convoluted lifetime values. After irradiation, the observed average lifetime of positron τavg = 263 ps at room temperature is higher than the bulk lifetime by 21 ps which reveals the presence of radiation-induced defects in the material. A decrease in τavg occurs during room temperature 25∘C to 200∘C indicating the dissociation of higher order defects, might be due to positron trapping in acceptor-type of defects (VIn). A reverse annealing stage is found at temperature range of 250∘C-425∘C for S-parameter probably due to the migration of vacancies and the formation of vacancy clusters. Increase in R-parameter from 325∘C to 425∘C indicates the change in the nature of predominant positron trapping sites. Beyond 425∘C, τavg, S-parameter and R-parameter starts decreasing and around 650∘C, τavg and S-parameter approached almost the bulk value showing the annealing out of radiation-induced defects.

  12. A review of episodes of zinc phosphide toxicosis in wild geese (Branta spp.) in Oregon (2004−2011)

    USGS Publications Warehouse

    Bildfell, Rob J.; Rumbeiha, Wilson K.; Schuler, Krysten L.; Meteyer, Carol U.; Wolff, Peregrine L.; Gillin, Colin M.

    2013-01-01

    Epizootic mortality in several geese species, including cackling geese (Branta hutchinsii) and Canada geese (Branta canadensis), has been recognized in the Willamette Valley of Oregon for over a decade. Birds are generally found dead on a body of water or are occasionally observed displaying neurologic clinical signs such as an inability to raise or control the head prior to death. Investigation of these epizootic mortality events has revealed the etiology to be accidental poisoning with the rodenticide zinc phosphide (Zn3P2). Gross and histologic changes are restricted to acute pulmonary congestion and edema, sometimes accompanied by distension of the upper alimentary tract by fresh grass. Geese are unusually susceptible to this pesticide; when combined with an epidemiologic confluence of depredation of specific agricultural crops by rodents and seasonal avian migration pathways, epizootic toxicosis may occur. Diagnosis requires a high index of suspicion, appropriate sample collection and handling, plus specific test calibration for this toxicant. Interagency cooperation, education of farmers regarding pesticide use, and enforcement of regulations has been successful in greatly decreasing these mortality events since 2009.

  13. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries.

    PubMed

    Zhang, Huijuan; Feng, Yangyang; Zhang, Yan; Fang, Ling; Li, Wenxiang; Liu, Qing; Wu, Kai; Wang, Yu

    2014-07-01

    Herein, we introduce a peapod-like composite with Ni12 P5 nanoparticles encapsulated in carbon fibers as the enhanced anode in Li-ion batteries for the first time. In the synthesis, NiNH4 PO4 ⋅H2 O nanorods act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source. With the aid of hydrogen bonding between the precursor and carbon source, a polymer layer is hydrothermally formed and then rationally converted into carbon fibers upon inert calcination at elevated temperatures. Meanwhile, NiNH4 PO4 ⋅H2 O nanorods simultaneously turn into Ni12 P5 nanoparticles encapsulated in carbon fibers by undergoing a decomposition and reduction process induced by high temperature and the carbon fibers. The obtained composite performs excellently as a Li-ion batteries anode relative to pure-phase materials. Specific capacity can reach 600 m Ah g(-1) over 200 cycles, which is much higher than that of isolated graphitized carbon or phosphides, and reasonably believed to originate from the synergistic effect based on the combination of Ni12 P5 nanoparticles and carbon fibers. Due to the benignity, sustainability, low cost, and abundance of raw materials of the peapod-like composite, numerous potential applications, in fields such as optoelectronics, electronics, specific catalysis, gas sensing, and biotechnology can be envisaged.

  14. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  15. Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst.

    PubMed

    Yang, Libin; Wang, Kunyang; Du, Gu; Zhu, Wenxin; Cui, Liang; Zhang, Chengxiao; Sun, Xuping; Asiri, Abdullah M

    2016-11-25

    Hydrogen has been considered as an ideal energy carrier for replacing fossil fuels to mitigate global energy crises. Hydrolysis of sodium borohydride (NaBH4) is simple and effective for hydrogen production but needs active and durable catalysts to accelerate the kinetics. In this paper, we demonstrate that cobalt phosphide nanowall arrays supported on carbon cloth (CoP NAs/CC) efficiently catalyze the hydrolytic dehydrogenation of NaBH4 with an activation energy of 42.1 kJ mol(-1) in alkaline media. These monolithic CoP NAs/CC show a maximum hydrogen generation rate of [Formula: see text] and are robust with superior durability and reusability. They are also excellent in activity and durability for electrochemical hydrogen evolution in 1.0 M KOH, with the need of an overpotential of only 80 mV to drive 10 mA cm(-2). They offer us a promising low-cost hydrogen-generating catalyst for applications.

  16. Lattice-mismatched In(0.40)Al(0.60)As window layers for indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.; Wilt, David M.; Flood, Dennis J.

    1993-01-01

    The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination velocity (approximately 10(exp 7) cm/s). This might be reduced by a wide-bandgap window layer. The performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched In(0.40)Al(0.60)As as a window layer was calculated. Because the required window layer thickness is less than the critical layer thickness, growth of strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations using the PC-lD numerical code showed that the efficiencies of baseline and optimized p(+)n (p-on-n) cells are increased to more than 22 and 24 percent, (air mass zero (AMO), 25 C), respectively for a lattice-mismatched In(0.40)Al(0.60)As window layer of 10-nm thickness. Currently, most cell development work has been focused on n(+)p (n-on-p) structures although comparatively little improvement has been found for n(+)p cells.

  17. Acute liver failure due to zinc phosphide containing rodenticide poisoning: Clinical features and prognostic indicators of need for liver transplantation.

    PubMed

    Saraf, Vivek; Pande, Supriya; Gopalakrishnan, Unnikrishnan; Balakrishnan, Dinesh; Menon, Ramachandran N; Sudheer, O V; Dhar, Puneet; Sudhindran, S

    2015-07-01

    Zinc phosphide (ZnP) containing rodenticide poisoning is a recognized cause of acute liver failure (ALF) in India. When standard conservative measures fail, the sole option is liver transplantation. Records of 41 patients admitted to a single centre with ZnP-induced ALF were reviewed to identify prognostic indicators for requirement of liver transplantation. Patients were analyzed in two groups: group I (n = 22) consisted of patients who either underwent a liver transplant (n = 14) or died without a transplant (n = 8); group II (n = 19) comprised those who survived without liver transplantation. International normalized ratio (INR) in group I was 9 compared to 3 in group II (p < 0.001). Encephalopathy occurred only in group I. Model for End-Stage Liver Disease (MELD) score in group I was 41 compared to 24 in group II (p < 0.001). MELD score of 36 (sensitivity of 86.7 %, specificity of 90 %) or a combination of INR of 6 and encephalopathy (sensitivity of 100 %, specificity of 83 %) were the best indicators of mortality. Such patients should undergo urgent liver transplantation.

  18. Boron nitride phosphide thin films grown on quartz substrate by hot-filament and plasma-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xu, S. Y.; Han, G. R.

    2004-10-01

    Boron nitride phosphide films are, for the first time, grown on transparent quartz substrate by hot filament and radio-frequency plasma co-assisted chemical vapor deposition technique. XPS, XRD, SEM, and UV measurements are performed to study the chemical composition, crystallization, microstructure, and optical absorption, respectively. A centipede-like microstructure and undulating ground morphology on the film surface are observed, and their growth mechanism is speculated upon. The chemical composition is determined as BN1-xPx, whose characteristic XRD peak is preliminarily identified. The optical band gap can be modulated between 5.52 eV and 3.74 eV, simply by adjusting the phosphorus content in BN1-xPx through modifying the PH3 flux during the film-deposition process. The merits of the BN1-xPx film, such as high ultraviolet photoelectric sensitivity with negligible sensitivity in the visible region, modifiable wide optical band gap, and good adhesion on transparent substrate, suggest potential applications for ultraviolet photo-electronics.

  19. A review of episodes of zinc phosphide toxicosis in wild geese (Branta spp.) in Oregon (2004-2011).

    PubMed

    Bildfell, Rob J; Rumbeiha, Wilson K; Schuler, Krysten L; Meteyer, Carol U; Wolff, Peregrine L; Gillin, Colin M

    2013-01-01

    Epizootic mortality in several geese species, including cackling geese (Branta hutchinsii) and Canada geese (Branta canadensis), has been recognized in the Willamette Valley of Oregon for over a decade. Birds are generally found dead on a body of water or are occasionally observed displaying neurologic clinical signs such as an inability to raise or control the head prior to death. Investigation of these epizootic mortality events has revealed the etiology to be accidental poisoning with the rodenticide zinc phosphide (Zn(3)P(2)). Gross and histologic changes are restricted to acute pulmonary congestion and edema, sometimes accompanied by distension of the upper alimentary tract by fresh grass. Geese are unusually susceptible to this pesticide; when combined with an epidemiologic confluence of depredation of specific agricultural crops by rodents and seasonal avian migration pathways, epizootic toxicosis may occur. Diagnosis requires a high index of suspicion, appropriate sample collection and handling, plus specific test calibration for this toxicant. Interagency cooperation, education of farmers regarding pesticide use, and enforcement of regulations has been successful in greatly decreasing these mortality events since 2009.

  20. mer, fac, and Bidentate Coordination of an Alkyl-POP Ligand in the Chemistry of Nonclassical Osmium Hydrides.

    PubMed

    Esteruelas, Miguel A; García-Yebra, Cristina; Martín, Jaime; Oñate, Enrique

    2017-01-03

    Nonclassical and classical osmium polyhydrides containing the diphosphine 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(P(i)Pr2)2), coordinated in κ(3)-mer, κ(3)-fac, and κ(2)-P,P fashions, have been isolated during the cyclic formation of H2 by means of the sequential addition of H(+) and H(-) or H(-) and H(+) to the classical trihydride OsH3Cl{xant(P(i)Pr2)2} (1). This complex adds H(+) to form the compressed dihydride dihydrogen complex [OsCl(H···H)(η(2)-H2){xant(P(i)Pr2)2}](+) (2). Under argon, cation 2 loses H2 and the resulting unsaturated fragment dimerizes to give [(Os(H···H){xant(P(i)Pr2)2})2(μ-Cl)2](2+) (3). During the transformation the phosphine changes its coordination mode from mer to fac. The benzofuran counterpart of 1, OsH3Cl{dbf(P(i)Pr2)2} (4; dbf(P(i)Pr2)2 = 4,6-bis(diisopropylphosphino)dibenzofuran), also adds H(+) to afford the benzofuran counterpart of 2, [OsCl(H···H)(η(2)-H2){xant(P(i)Pr2)2}](+) (5), which in contrast to the latter is stable and does not dimerize. Acetonitrile breaks the chloride bridge of 3 to form the dihydrogen [OsCl(η(2)-H2)(CH3CN){xant(P(i)Pr2)2}](+) (6), regenerating the mer coordination of the diphosphine. The hydride ion also breaks the chloride bridge of 3. The addition of KH to 3 leads to 1, closing a cycle for the formation of H2. Complex 1 reacts with a second hydride ion to give OsH4{xant(P(i)Pr2)2} (7) as consequence of the displacement of the chloride. Similarly to the latter, the oxygen atom of the mer-coordinated diphosphine of 7 has a tendency to be displaced by the hydride ion. Thus, the addition of KH to 7 yields [OsH5{xant(P(i)Pr2)2}](-) (8), containing a κ(2)-P,P-diphosphine. Complex 8 is easily protonated to afford OsH6{xant(P(i)Pr2)2} (9), which releases H2 to regenerate 7, closing a second cycle for the formation of molecular hydrogen.

  1. Accretion rate of extraterrestrial particles determined from osmium isotope systematics of pacific pelagic clay and manganese nodules

    SciTech Connect

    Esser, B.K.; Turekian, K.K. )

    1988-06-01

    Pelagic clay and Mn nodules from DOMES sites in the North Pacific and a varved glacial lake deposit from Connecticut were analyzed for Os concentration and isotopic composition by isotope-dilution secondary ion mass spectrometry after treatment by NiS fusion of oxalic acid leaching. Bulk pelagic clay from DOMES site C has {sup 187}Os/{sup 186}Os = 6.5 and Os = 0.14 ng/g. Oxalic acid leaches of this same sediment and of Mn nodules for DOMES sites A and C have more radiogenic {sup 187}Os/{sup 186}Os ratios which average 8.3. Bulk glacial Lake Hitchcock sediment has {sup 187}Os/{sup 186}Os = 12.5 and Os = 0.06 ng/g. The total Os flux to North Pacific pelagic clay is 7 to 10 ng Os/cm{sup 2}/10{sup 6} y. Lake Hitchcock sediment provides an integrated value for the local crustal {sup 187}Os/{sup 186}Os ratio. The oxalic acid leaches are assumed to attack hydrogenous phases selectively. A simple model in which the only sources of Os to the ocean are continental crust with the isotopic composition of Lake Hitchcock and extraterrestrial particles with {sup 187}Os/{sup 186}Os = 1.1 results in a cosmic flux of osmium to the sediment of 4.9 ng Os/cm{sup 2}/10{sub 6} y of which 20% is hydrogenous. A model in which the sources of Os to the ocean are continental crust with an {sup 187}Os/{sup 186}Os ratio of 30, oceanic mantle or crust with {sup 187}Os/{sup 186}Os = 1.04 and extraterrestrial particles with {sup 187}Os/{sup 186}Os = 1.1 results in a cosmic flux of Os to the sediment of 5.7 ng Os/cm{sup 2}/10{sup 6} y of which none is hydrogenous. These extraterrestrial Os fluxes correspond to maximum C-1 chondrite accretion rates of between 4.9 {times} 10{sub 4} and 5.6 {times}10{sub 4} tonnes/y.

  2. Substituent directed selectivity in anion recognition by a new class of simple osmium-pyrazole derived receptors.

    PubMed

    Das, Ankita; Mondal, Prasenjit; Dasgupta, Moumita; Kishore, Nand; Lahiri, Goutam Kumar

    2016-02-14

    The present article deals with the structurally, spectroscopically and electrochemically characterised osmium-bipyridyl derived complexes [(bpy)2Os(II)(HL1)Cl]ClO4 [1]ClO4 and [(bpy)2Os(II)(HL2)Cl]ClO4 [2]ClO4 incorporating neutral and monodentate pyrazole derivatives (HL) with one free NH function (bpy = 2,2'-bipyridine, HL1 = pyrazole, HL2 = 3,5-dimethylpyrazole). The crystal structures of [1]ClO4 and [2]ClO4 reveal intramolecular hydrogen bonding interactions between the free NH proton of HL and the equatorially placed Cl(-) ligand (N-HCl) with donor-acceptor distances of 3.114(7) Å and 3.153(6) Å as well as intermolecular hydrogen bonding interactions between the NH proton and one of the oxygen atoms of ClO4(-) (N-HO) with donor-acceptor distances of 2.870(10) Å and 3.024(8) Å, respectively. The effect of hydrogen bonding interactions has translated into the less acidic nature of the NH proton of the coordinated HL with estimated pKa > 12. 1(+) and 2(+) exhibit reversible Os(II)/(III) and irreversible Os(III)/(IV) processes in CH3CN within ± 2.0 V versus SCE. The effect of 3,5-dimethyl substituted HL2 on 2(+) has been reflected in the appreciable lowering (40 mV) of the Os(II/III) potential, along with the further decrease in the acidity of the NH proton (pKa > 13.0) with regard to HL1 coordinated 1(+) (pKa: ∼ 12.3). The electronic spectral features of Os(ii) (1(+)/2(+)) and electrochemically generated Os(III) (1(2+)/2(2+)) derived complexes have been analysed by TD-DFT calculations. The efficacy of the 1(+) and 2(+) encompassing free NH proton towards the anion recognition process has been evaluated by different experimental investigations using a wide variety of anions. It however establishes that receptor 1(+) can recognise both F(-) and OAc(-) in acetonitrile solution, while 2(+) is exclusively selective for the F(-) ion.

  3. A rise of atmospheric oxygen triggered by the Paleoproterozoic deglaciations: Insights from redox-sensitive elements and osmium isotopes

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Sekine, Y.; Suzuki, K.; Tajika, E.; Senda, R.; Nozaki, T.; Tada, R.; Goto, K.; Yamamoto, S.

    2010-12-01

    Paleoproterozoic is one of the most interesting periods in Earth’s history for our understanding of the interactions between the evolution of Earth’s system and early life. A number of geological evidence suggest that atmospheric oxygen rose dramatically during the Paleoproterozoic as a result of the photosynthetic production of oxygen (the Great Oxidation Event (GOE)). Because repeated severe glaciations occurred at the time of the GOE, climate change in the aftermath of these glaciations would have played a key role for the rise of atmospheric oxygen. However, because of lack of detailed geochemical records constraining the redox conditions in the atmosphere and oceans during and after the glaciations, the relationship between the GOE and the Paleoproterozoic glaciations is still poorly understood. Here we investigate the evolution of the redox conditions in the atmosphere and oceans based on both the isotopic compositions of osmium (Os) and the abundances of redox-sensitive elements such as rhenium (Re), molybdenum (Mo), uranium (U) and vanadium (V) in the sedimentary rocks deposited during and immediately after the first and second glaciations in the Huronian Supergroup, Canada. We found the remarkable enrichments of Re and Os in the sedimentary rocks deposited in the both glacial aftermath, suggesting that the redox conditions in the oceans were drastically changed in response to climate recovery. We also found the high initial 187Os/188Os ratios, up to 1.2, in the sedimentary rocks characterized by the enrichments of Os, suggesting that significant increases in the input of radiogenic Os from the continents. Taking into account that mobilization of Re and Os in the hydrological cycle requires moderately oxic conditions, our findings suggest that the atmosphere and shallow oceans have become moderately oxic immediately after both of the glaciations, possibly due to high levels of photosynthetic production. Although the similar nature of oxidation is

  4. Theoretical modeling, near-optimum design and predicted performance of n(+)pp(+) and p(+)nn(+) indium phosphide homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Goradia, Chandra; Thesling, William; Weinberg, Irving

    1991-01-01

    Using a detailed simulation model of p(+)nn(+) and n(+)pp(+) indium phosphide (InP) homojunction solar cells, extensive parametric variation computer simulation runs are conducted to help arrive at near-optimum designs of these two solar cell configurations. Values of all the geometrical and material parameters corresponding to the near-optimal designs of both these configurations are presented. For each configuration, results are given for parametric variation runs showing how the performance parameters JSC, VOC, and eta vary with each of the cell parameters for the near-optimally designed cell.

  5. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Maidment, Luke; Schunemann, Peter G.; Reid, Derryck T.

    2016-09-01

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 \\mu m with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  6. Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator.

    PubMed

    Maidment, Luke; Schunemann, Peter G; Reid, Derryck T

    2016-09-15

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  7. Monometallic osmium(II) complexes with bis(N-methylbenzimidazolyl)benzene or -pyridine: a comparison study with ruthenium(II) analogues.

    PubMed

    Shao, Jiang-Yang; Zhong, Yu-Wu

    2013-06-03

    Seven bis-tridentate osmium complexes with Mebib or Mebip (Mebib is the 2-deprotonated form of 1,3-bis(N-methylbenzimidazolyl)benzene and Mebip is bis(N-methylbenzimidazolyl)pyridine) have been prepared, and their electrochemical and spectroscopic properties are compared with ruthenium structural analogues. Among them, four complexes have the [Os(NCN)(NNN)]-type coordination, including [Os(Mebib)(Mebip)](PF6)2 (1(PF6)2), [Os(dpb)(Mebip)](PF6) (2(PF6), dpb is the 2-deprotonated form of 1,3-di(pyrid-2-yl)benzene), [Os(Mebib)(ttpy)](PF6) (3(PF6), ttpy = 4'-tolyl-2,2':6',2"-terpyridine), and [Os(dpb)(ttpy)](PF6) (4(PF6)). The other three complexes are [Os(Mebip)2](PF6)2 (5(PF6)2), [Os(Mebip)(tpy)](PF6)2 (6(PF6)2, tpy = 2,2':6',2"-terpyridine), and [Os(ttpy)2](PF6)2 (7(PF6)2) with the [Os(NNN)(NNN)]-type coordination. Single crystals of 2(PF6) and 6(PF6)2 have been obtained, and their structures are studied by X-ray crystallographic analysis. The Os(II/III) redox potentials of 1(PF6)2 to 7(PF6)2 progressively increase from +0.04, +0.23, +0.24, +0.36, +0.56, +0.79 to +0.94 V vs Ag/AgCl, which are 200-300 mV less positive relative to the Ru(II/III) potentials of their ruthenium counterparts. The highest occupied molecular orbital energy levels of 1(+)-7(2+) are calculated to vary in a descending order. The ruthenium and osmium complexes have singlet metal-to-ligand charge-transfer (MLCT) transitions of similar energies and band shapes, while the osmium complexes display additional (3)MLCT transitions in the lower-energy region. Complexes 6(PF6)2 and 7(PF6)2 emit weakly at 780 and 740 nm, respectively. Complex 1(PF6)2 was synthesized as the oxidized Os(III) salt because of the low Os(II/III) potential. The transformation of 1(2+) to 1(+) by chemical reduction or electrolysis led to the emergence of the (1)MLCT transitions in the visible region.

  8. Escape of unradiogenic osmium during sub-aerial lava degassing: Evidence from fumarolic deposits, Piton de la Fournaise, Réunion Island

    NASA Astrophysics Data System (ADS)

    Gannoun, Abdelmouhcine; Vlastélic, Ivan; Schiano, Pierre

    2015-10-01

    This study presents new Re-Os isotope and elemental data in gas condensates and corresponding lavas in order to examine the geochemical behavior of these two elements during magma degassing at Piton de la Fournaise, Réunion Island. Gas sublimates formed between 2007 and 2011 at temperature ranging from 400 to ca. 100 °C include Na-K sulfate (aphthitalite), Na sulfate (thenardite), Ca-Cu sulfate (e.g. gypsum), Ca-Mg-Al-Fe fluoride (e.g. ralstonite) and native sulfur. The high temperature deposits show trace element typical of volcanic gas with high enrichment in Re (24 to 79 ppb), almost two order of magnitude higher than the corresponding lavas but with Os abundances similar to those of the lavas (14-132 ppt). In contrast the Os contents of the low temperature fluoride deposits (13-77 ppb) are higher than any of the other condensates. The fluorides are also enriched in Re, albeit to lesser extent than Os (2.9-15.3 ppb). Based on high-temperature samples, the fluid/melt partition coefficients estimated for Re and Os are 100 ± 80 and 1 ± 2, respectively. Considering 1% of fluid loss, these partition coefficients translate into emanation coefficients of 0.50 (0.17-0.65) for Re and 0.01 (0-0.03) for Os. These results indicate that Re, unlike Os, is highly volatile at Piton de la Fournaise. Osmium isotopic compositions of samples collected at medium and low temperature (<350 °C) are very uniform and unfractionated (187Os/188Os between 0.130-0.135) and plot within the range of the April 2007 lava flow and the historical lavas of Piton de la Fournaise (i.e. 0.130-0.137). However the highest temperature condensates (Na-K sulfates with T of 384-400°C) yield lower 187Os/188Os ratios (i.e. 0.124-0.129) within the field of mantle signal. Such unradiogenic compositions are best explained if old mantle sulfides occur in lavas and contribute to volcanic gases. Within the general frame of osmium mantle geochemistry, loss of unradiogenic Os during magmas degassing could help

  9. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    PubMed Central

    Agarwal, Avinash; Robo, Roto; Jain, Nirdesh; Gutch, Manish; Consil, Shuchi; Kumar, Sukriti

    2014-01-01

    Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP) poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC) given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD) and glutathione reductase (GR). The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required), while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008) and SOD (P < 0.01) levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4%) expired and 15 (32.6%) survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043). Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning. PMID:25316977

  10. N-acetylcysteine, Ascorbic Acid, and Methylene Blue for the Treatment of Aluminium Phosphide Poisoning: Still Beneficial?

    PubMed Central

    Gheshlaghi, Farzad; Lavasanijou, Mohamad Reza; Moghaddam, Noushin Afshar; Khazaei, Majid; Behjati, Mohaddeseh; Farajzadegan, Ziba; Sabzghabaee, Ali Mohammad

    2015-01-01

    Objectives: Intentional and accidental intoxication with aluminium phosphide (ALP) remains a clinical problem, especially in the Middle East region. Considering the high mortality rate besides lack of any recommended first option drug for its treatment, this study was aimed to compare the therapeutic effects of N-acetylcysteine (NAC), vitamin C (Vit C), and methylene blue; both in isolate and also in combination, for the treatment of ALP intoxication in a rat model. Materials and Methods: In this experimental animal study, 80 male Wistar rats in eight groups were intoxicated with ALP (12.5 mg/kg) and treated with a single dose of NAC (100 mg/kg) or Vit C (500–1,000 mg/kg) or methylene blue (1 mg/kg/5 min, 0.1%) or two of these agents or all three of them (controls were not treated). Rats were monitored regarding the parameters of drug efficacy as increased survival time and reduced morbidity and mortality rate for 3 consecutive days to ensure toxin neutralization. Macroscopic changes were recorded and biopsy sections were taken from brain, cerebellum, kidney, liver, and heart for microscopic evaluation regarding cellular hypoxia. Results: The mean survival times of rats exposed to ALP and treated with VitC + NAC was 210.55±236.22 minutes. In analysis of survival times, there was a significant difference between Group 5 which received VitC + NAC and the other groups (P < 0.01). Serum magnesium levels after death were higher than normal (P = 0.01). Conclusions: Despite the higher survival rate of antioxidant-treated rats compared with controls, this difference was not statistically significant. PMID:26862259

  11. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Zhang, Hongzhe; Xu, Liqiang; Ma, Lanbing; Chen, Xiaoxia

    2016-02-01

    Tin phosphide (Sn4P3) nanoparticles with different sizes are synthesized via a facile solvothermal method at 180 °C for 10 h. The as-prepared Sn4P3 nanoparticles have an average size of about 15 nm. Meanwhile, their size could be easily controlled by the solvent ratio. The long cycle stability and rate performance of the as-obtained Sn4P3 nanoparticles have been tested as an anode material for lithium ion batteries for the first time. Electrochemical measurements show that the Sn4P3 nanoparticles with a smallest size give the best cycling and rate performances. They deliver a discharge capacity of 612 mAh g-1 after 10 cycles and could still maintain 442 mAh g-1 after 320 cycles at the current density of 100 mA g-1 within voltage limit of 0.01-3.0 V. Even after 200 cycles at a current density of 200 mA g-1, the specific capacity still could be remained at 315 mAh g-1. The improved electrochemical performances of Sn4P3 electrode might be largely attributed to their small-size. Furthermore, the as-prepared Sn4P3 nanoparticles have also been tested as an anode material for Na-ion batteries, this Sn4P3 anode can deliver a reversible capacity of 305 mAh g-1 after 10 cycles at the current density of 50 mA g-1.

  12. Oxidative Cyclization of 1,5-Dienes with Hydrogen Peroxide Catalyzed by an Osmium(III) Complex: Synthesis of cis-Tetrahydrofurans.

    PubMed

    Sugimoto, Hideki; Kanetake, Takayuki; Maeda, Kazuki; Itoh, Shinobu

    2016-03-18

    Stereoselective oxidative cyclization of 1,5-dienes with hydrogen peroxide catalyzed by [Os(III)(OH)(H2O)(L-N4Me2)](PF6)2 (1: L-N4Me2 = N,N'-dimethyl-2,11-diaza-[3,3](2,6)pyridinophane) is explored. 1,5-Dienes involving geraniol derivatives are converted to the corresponding tetrahydrofurans in modest to high yields. The products exclusively have the cis-conformation with respect to the substituents at the 2- and 5-positions of the tetrahydrofuran ring. The products also have a syn-conformation with respect to the furan oxygen atom and the hydroxyl groups. Mechanistic studies including a direct reaction of the oxo-hydroxo-osmium(V) complex, 2, with a dihydroxylated geraniol derivative are performed.

  13. Studies on the fine structural localization of zinc iodide-osmium reaction in the brain. III. Some characteristics of localization in the synaptosomes.

    PubMed

    Halász, N; Joó, F; Karnushina, I

    1978-02-01

    Synaptosomes from rat cerebral cortex were impregnated in the zinc iodide--osmium (ZIO) solution. The fine structural localization of the ZIO impregnation product was studied and, in addition, the function-dependent features of the reaction were examined after electrical stimulation or potassium chloride treatment. It was revealed that: (i) Aldehyde prefixation resulted in an increase in the number of reactive synaptic vesicles in all types of synaptosomes; (ii) Electrical stimulation decreased the number of reactive vesicles in a voltage dependent manner; (iii) Potassium chloride treatment also reduced the reactivity of vesicles; the reduction was dependent on the concentration of potassium and duration of treatment; (iv) Experimental interventions leading to the release of neurotransmitters from the synaptic vesicles and to fatigue of the nerve terminals also resulted in a decrease of the ZIO-reaction product of synaptic vesicles in a manner proportional to the strength of stimuli.

  14. Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from dichalcogenoimidodiphosphinato complexes: deposition, spectroscopic and computational studies.

    PubMed

    Panneerselvam, Arunkumar; Periyasamy, Ganga; Ramasamy, Karthik; Afzaal, Mohammad; Malik, Mohammad A; O'Brien, Paul; Burton, Neil A; Waters, John; van Dongen, Bart E

    2010-07-14

    The series of nickel dichalcogenoimidodiphosphinates [Ni{(i)Pr(2)P(X1)NP(X2)(i)Pr(2)}(2)]: X1 = S, X2 = Se (1), X1 = X2 = S (2), and X1 = X2 = Se (3) have been successfully used as single-source precursors (SSPs) to deposit thin films of nickel sulfide, selenide or phosphide; the material deposited depended on both temperature and method used for the deposition. Aerosol-assisted (AA) chemical vapour deposition (CVD) and low-pressure (LP) CVD were used. The as-deposited films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A variety of phases including: Ni(2)P, Ni(0.85)Se and NiS(1.03) were deposited under different conditions. The mechanism of decomposition to the phosphide, selenide, or sulfide was studied by pyrolysis gas chromatography mass spectrometry (Py-GC-MS) and modelled by density functional theory (DFT).

  15. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    PubMed

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.

  16. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity.

    PubMed

    Kuhn, Paul-Steffen; Büchel, Gabriel E; Jovanović, Katarina K; Filipović, Lana; Radulović, Siniša; Rapta, Peter; Arion, Vladimir B

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-Os(III)Cl4(Hazole)2], where cation = H2pz(+) (H2pz[1]), H2ind(+) (H2ind[2]), H2im(+) (H2im[3]), Ph4P(+) (Ph4P[3]), nBu4N(+) (nBu4N[3]), H2bzim(+) (H2bzim[4]), Ph4P(+) (Ph4P[4]), and nBu4N(+) (nBu4N[4]). All complexes were characterized by elemental analysis, (1)H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1](-) and [4](-) are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5'-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3].

  17. Tris-bipyridine based dinuclear ruthenium(ii)-osmium(iii) complex dyads grafted onto TiO2 nanoparticles for mimicking the artificial photosynthetic Z-scheme.

    PubMed

    Favereau, Ludovic; Makhal, Abhinandan; Provost, David; Pellegrin, Yann; Blart, Errol; Göransson, Erik; Hammarström, Leif; Odobel, Fabrice

    2017-02-08

    The Z-Scheme function within molecular systems has been rarely reported for solar energy conversion although it offers the possibility to achieve higher efficiency than single photon absorber photosystems due to the use of a wider range of visible light. In this study, we synthesized and investigated the electrochemical and spectroscopic properties of two new dyads based on ruthenium and osmium tris-bipyridine complexes covalently linked via a butane bridge to explore their ability to realize the Z-scheme function once immobilized on TiO2. These dyads can be grafted onto a nanocrystalline TiO2 film via the osmium complex bearing two dicarboxylic acid bipyridine ligands, while the ruthenium complex contains either two unsubstituted bipyridine ancillary ligands (RuH-Os) or two (4,4'-bis-trifluoromethyl-bipyridine) ancillary ligands (RuCF3-Os). Transient absorption spectroscopy studies of the Ru(ii)-Os(iii) dyads with femtosecond and nanosecond lasers were conducted both in solution and on TiO2. For both conditions, the photophysical studies revealed that the MLCT excited state of the ruthenium complex is strongly quenched and predominantly decays by energy transfer to the LMCT of the adjacent Os(iii) complex, in spite of the high driving force for electron transfer. This unexpected result, which is in sharp contrast to previously reported Ru(ii)-Os(iii) dyads, precluded us to achieve the expected Z-scheme function. However, the above results may be a guide for designing new artificial molecular systems reproducing the complex function of a Z-scheme with molecular systems grafted onto a TiO2 mesoporous film.

  18. Metal-rich phosphides RE{sub 5}Ir{sub 19}P{sub 12} with Sc{sub 5}Co{sub 19}P{sub 12} type structure

    SciTech Connect

    Pfannenschmidt, Ulrike; Rodewald, Ute Ch.; Hoffmann, Rolf-Dieter; Poettgen, Rainer

    2011-10-15

    The iridium-rich phosphides RE{sub 5}Ir{sub 19}P{sub 12} (RE=Sc, Y, La-Nd, Sm-Lu) with Sc{sub 5}Co{sub 19}P{sub 12} type structure, space group P62-bar m were synthesized by solid state reactions of the elements in tantalum crucibles. Well shaped single crystals were obtained in bismuth fluxes. All phosphides were characterized on the basis of X-ray powder data. The structures of RE{sub 5}Ir{sub 19}P{sub 12} with RE=Sc, La, Ce, Dy, Er, Tm, and Yb were refined from single crystal diffractometer data. The complex structure of these phosphides can be described by an intergrowth of simpler ThCr{sub 2}Si{sub 2} and SrPtSb related slabs. Striking structural motifs of the RE{sub 5}Ir{sub 19}P{sub 12} structures are slightly distorted tricapped trigonal prisms of the metal atoms around the phosphorus atoms. The iridium and phosphorus atoms build up three-dimensional [Ir{sub 19}P{sub 12}] polyanionic networks (230-286 pm Ir-P and 282-296 pm Ir-Ir in La{sub 5}Ir{sub 19}P{sub 12}) which leave cavities of coordination numbers 16 and 15 for the rare earth atoms. - Graphical Abstract: The intergrowth structure La{sub 5}Ir{sub 19}P{sub 12}. Highlights: > Metal flux syntheses of intermetallic compounds. > Synthesis and structure of new phosphides RE{sub 5}Ir{sub 19}P{sub 12}. > Crystal chemistry of metal-rich phosphides. > Description of the RE{sub 5}Ir{sub 19}P{sub 12} structure as an intergrowth variant.

  19. Rhenium - osmium heterogeneity of enriched mantle basalts explained by composition and behaviour of mantle-derived sulfides

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2010-12-01

    Analyses of enriched mantle (EM) -basalts, using lithophile element-based isotope systems have long provided evidence for discrete, but variable mantle reservoirs [1]. Upon partial melting, the isotopic fingerprint of each reservoir is imparted upon the partial melt produced. However, recent work involving the Re-Os isotope systematics of EM-basalts [2] suggests that it may not be so simple to delimit these previously well defined mantle reservoirs; the “mantle zoo” [3] may contain more reservoirs than previously envisaged. However, a simple model, with varying contributions from two populations of compositionally distinct mantle sulfides can readily account for the observed heterogeneities in Re-Os isotope systematics of such basalts without additional mantle reservoirs. Rhenium-osmium elemental and isotopic analyses of individual sulfide grains separated from spinel lherzolites from Kilbourne Hole, NM, USA demonstrate that two discrete populations of mantle sulfide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os], low [Re] with unradiogenic, typically sub-chondritic, 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulfides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic, 187Os/188Os ([Os] typically ≤ 1-2 ppm, 187Os/188Os ≤ 0.3729; this study). This population is thought to represent metasomatic sulfide (e.g. [4,5]). Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulfide ([Os] ≤ 37 ppm, this study). During the early stages of partial melting, supra-chondritic interstitial sulfides are mobilized and incorporated into the melt, adding their radiogenic

  20. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    NASA Astrophysics Data System (ADS)

    Lillis, Paul G.; Selby, David

    2013-10-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  1. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  2. Cross sections for (n, 2n), (n, p) and (n, ) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.

    PubMed

    Zhao, Liangyong; Yuan, Jilong; Tuo, Fei; Zhang, Yanbin; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-10-01

    Cross sections for (n, 2n), (n, p) and (n, alpha) reactions on the osmium isotopes were measured in the neutron energies 13.5-14.8 MeV by the activation technique with the monitor reaction (93)Nb(n, 2n)(92 m)Nb. Our measurements were carried out by gamma-detection using a coaxial high-purity germanium (HPGe) detector. Natural high-purity osmium powder (99.9%) was fabricated as the samples. The neutron energies were determined by the cross-section ratios for (93)Nb(n, 2n)(92 m)Nb and (90)Zr(n, 2n)(89 m+g)Zr reactions. The fast neutrons were produced by the T(d, n)(4)He reaction. The results obtained were compared with previous data.

  3. Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: A case study of stoichiometric aluminum phosphide semiconductor clusters.

    PubMed

    Karamanis, Panaghiotis; Xenides, Demetrios; Leszczynski, Jerzy

    2008-09-07

    The dependences of the static dipole polarizabilities per atom (PPAs) on the bonding and shape of selected stoichiometric aluminum phosphide clusters (ground states and higher lying species) of small and medium sizes have been comprehensively studied at Hartree-Fock and the second order Moller-Plesset perturbation levels of theory. It is shown that the nonmonotonic size variations in the mean PPAs of AlP species which maintain closed cagelike structures, frequently observed in clusters, are directly related to covalent homoatomic bonds inside each cluster's framework. Accordingly, the PPAs of clusters which are characterized by one or more bonds between the Al and P atoms are larger than the PPAs of clusters with the uniform alternating Al-P bond matrix. This is caused by the electron transfer increase from the electropositive Al to the electronegative P atom with the cluster growth. This transfer is larger for the clusters characterized by alternating Al-P bonding. The later effect explains the decrease in the PPA of AlP species which maintain closed cage-like structures, with the cluster growth. However, this picture drastically changes for artificial metastable prolate species built up by the ground states of smaller clusters. It is demonstrated that for prolate binary AlP clusters of medium size, the shape dominates against any other structural or bonding factor, forcing the PPA to increase with the cluster size. Nonetheless, as the cluster size grows, it is predicted that the PPAs of the studied prolate clusters will saturate eventually with the cluster size. Also, it is verified that the theoretical predicted polarizabilities of AlP semiconductor clusters are larger than the bulk polarizability in accord with other theoretical predictions for similar systems. Lastly, it is pointed out that major bonding or structural changes should take place in order the convergence with the bulk polarizability to be accomplished since it is revealed that the size increase

  4. Electron-nuclear double resonance studies of point defects in silver gallium selenide and zinc germanium phosphide

    NASA Astrophysics Data System (ADS)

    Stevens, Kevin Taylor

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies have been performed on two chalcopyrite crystals grown by the horizontal-gradient-freeze technique. An impurity defect has been characterized in silver gallium selenide (AgGaSe2) and has been identified as a Ni+ ion substituting for a Ag+ ion. This nickel defect exists in as-grown crystals in the paramagnetic state. A complete ENDOR angular dependence study provided spin-Hamiltonian parameters for the 61Ni isotope as well as the neighboring selenium ions (77Se) and gallium ions (69Ga and 71Ga). Optical absorption data taken at room temperature and low temperature showed a broad band peaking near 2.2 microns. The zero-phonon line position was determined from the low temperature data. The EPR and optical absorption data were consistent with each other, suggesting the absorption band was associated with Ni+ impurities. Two point defects have been identified and characterized in zinc germanium phosphide (ZnGeP 2). The first is a copper impurity, which substitutes for a zinc ion in the ZnGeP2 lattice. The copper impurity acts as a conventional acceptor and is not paramagnetic in the as-grown condition, i.e., the light-off condition. Upon illumination of the sample with 633-nm or 1064-nm light, the copper acceptor gives up an electron and becomes paramagnetic. The EPR spectrum consists of resolved hyperfine due to the copper nucleus (63Cu and 65Cu) as well as neighboring phosphorous nuclei ( 31P). The spin-Hamiltonian parameters have been determined from ENDOR measurements of the light-induced EPR spectrum. The second defect that has been studied in ZnGeP2 is the previously identified zinc vacancy (VZn). EPR and ENDOR studies have previously characterized the g values and primary hyperfine interactions associated with the VZn. Further ENDOR measurements have been made in order to identify hyperfine interactions with more distant phosphorous neighbors. The results led to spin

  5. Binding of an organo-osmium(II) anticancer complex to guanine and cytosine on DNA revealed by electron-based dissociations in high resolution Top-Down FT-ICR mass spectrometry.

    PubMed

    Wootton, Christopher A; Sanchez-Cano, Carlos; Liu, Hong-Ke; Barrow, Mark P; Sadler, Peter J; O'Connor, Peter B

    2015-02-28

    The Os(II) arene anticancer complex [(η(6)-bip)Os(en)Cl](+) (Os1-Cl; where bip = biphenyl, and en = ethylenediamine) binds strongly to DNA. Here we investigate reactions between Os1-Cl and the self-complementary 12-mer oligonucleotide 5'-TAGTAATTACTA-3' (DNA12) using ultra high resolution Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Identification of the specific sites of DNA osmiation with {(η(6)-bip)Os(en)}(2+) was made possible by the use of Electron Detachment Dissociation (EDD) which produced a wide range of assignable osmiated MS/MS fragments. In contrast, the more commonly used CAD and IRMPD techniques produced fragments which lose the bound osmium. These studies reveal that not only is guanine G3 a strong binding site for {(η(6)-bip)Os(en)}(2+) but, unexpectedly, so too is cytosine C10. Interestingly, the G3/C10 di-osmiated adduct of DNA12 also formed readily but did not undergo such facile fragmentation by EDD, perhaps due to folding induced by van der Waal's interactions of the bound osmium arene species. These new insights into osmium arene DNA adducts should prove valuable for the design of new organometallic drugs and contribute to understanding the lack of cross resistance of this organometallic anticancer complex with cisplatin.

  6. Synthesis, crystal structure, and magnetic properties of Li3Mg2OsO6, a geometrically frustrated osmium(V) oxide with an ordered rock salt structure: comparison with isostructural Li3Mg2RuO6.

    PubMed

    Nguyen, Phuong-Hieu T; Ramezanipour, Farshid; Greedan, John E; Cranswick, Lachlan M D; Derakhshan, Shahab

    2012-11-05

    The novel osmium-based oxide Li(3)Mg(2)OsO(6) was synthesized in polycrystalline form by reducing Li(5)OsO(6) by osmium metal and osmium(IV) oxide in the presence of stoichiometric amounts of magnesium oxide. The crystal structure was refined using powder X-ray diffraction data in the orthorhombic Fddd space group with a = 5.88982(5) Å, b = 8.46873(6) Å, and c = 17.6825(2) Å. This compound is isostructural and isoelectronic with the ruthenium-based system Li(3)Mg(2)RuO(6). The magnetic ion sublattice Os(5+) (S = 3/2) consists of chains of interconnected corner- and edge-shared triangles, which brings about the potential for geometric magnetic frustration. The Curie-Weiss law holds over the range 80-300 K with C = 1.42(3) emu·K/mol [μ(eff) = 3.37(2) μ(B)] and θ(C) = -105.8(2) K. Below 80 K, there are three anomalies at 75, 30, and 8 K. Those at 75 and 30 K are suggestive of short-range antiferromagnetic correlations, while that at 8 K is a somewhat sharper maximum showing a zero-field-cooled/field-cooled divergence suggestive of perhaps spin freezing. The absence of magnetic Bragg peaks at 3.9 K in the neutron diffraction pattern supports this characterization, as does the absence of a sharp peak in the heat capacity, which instead shows only a very broad maximum at ∼12 K. A frustration index of f = 106/8 = 13 indicates a high degree of frustration. The magnetic properties of the osmium phase differ markedly from those of the isostructural ruthenium material, which shows long-range antiferromagnetic order below 17 K, f = 6, and no unusual features at higher temperatures. Estimates of the magnetic exchange interactions at the level of spin-dimer analysis for both the ruthenium and osmium materials support a more frustrated picture for the latter. Errors in the calculation and assignment of the exchange pathways in the previous report on Li(3)Mg(2)RuO(6) are identified and corrected.

  7. A theoretical comparison of the near-optimum design and predicted performance of n/p and p/n indium phosphide homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Goradia, Chandra; Thesling, William; Weinberg, Irving

    1991-01-01

    Using a detailed simulation model of p(+)nn(+) and n(+)pp(+) indium phosphide (InP) homojunction solar cells, extensive parametric variation computer simulation runs were performed to aid in making near-optimum designs for these two solar cell configurations. The values of all the geometrical and material parameters corresponding to the near-optimal designs of both these configurations are presented. The results of parametric variation runs are presented for each configuration showing how the performance parameters J(sub sc), V(sub oc), and eta vary with each of the cell design parameters for the near-optimally designed cell. Finally, the theoretically obtained results are discussed, and the relative merits and drawbacks of the two configurations are compared.

  8. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    SciTech Connect

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  9. Thermal expansion, heat capacity and Grüneisen parameter of iridium phosphide Ir2P from quasi-harmonic Debye model

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Song, T.; Sun, X. W.; Ma, Q.; Wang, T.; Guo, Y.

    2017-03-01

    Thermal expansion coefficient, heat capacity, and Grüneisen parameter of iridium phosphide Ir2P are reported by means of quasi-harmonic Debye model for the first time in the current study. This model combines with first-principles calculations within generalized gradient approximation using pseudopotentials and a plane-wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. The Debye temperature as a function of volume, the Grüneisen parameter, thermal expansion coefficient, constant-volume and constant-pressure heat capacities, and entropy on the temperature T are also successfully obtained. All the thermodynamic properties of Ir2P in the whole pressure range from 0 to 100 GPa and temperature range from 0 to 3000 K are summarized and discussed in detail.

  10. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    SciTech Connect

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; Ruddy, Daniel A.; Schaidle, Joshua A.

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H2:1 guaiacol, weight hourly space velocity 5 h$-$1). Ligand-capped Ni, Pt, Rh, Ni2P, and Rh2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO2 and Pt/SiO2 prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO2 catalyst. The NP-Ni/SiO2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO2, NP-Rh2P/SiO2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO2 and IW-Pt/SiO2 catalyst exhibited the highest normalized rate of guaiacol conversion per m2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.

  11. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE PAGES

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H2:1 guaiacol, weight hourly space velocity 5 h$-$1). Ligand-capped Ni, Pt, Rh, Ni2P, and Rh2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO2 and Pt/SiO2 prepared using incipient wetness (IW) impregnationmore » and a commercial (com) Pt/SiO2 catalyst. The NP-Ni/SiO2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO2, NP-Rh2P/SiO2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO2 and IW-Pt/SiO2 catalyst exhibited the highest normalized rate of guaiacol conversion per m2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  12. Growth of Zinc Phosphide (Zn3P2) and Iron Disulfide (FeS2) using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vaddi, Rajesh

    The growing energy needs of society have triggered tremendous interest in the development of photovoltaics formed from earth abundant materials. Zinc Phosphide (Zn3P2) and Iron Pyrite (FeS2) are two materials formed from elements with large Earth crustal abundances that have nearly ideal band gap energies (1.5eV and 0.96 eV, respectively) and optical absorption coefficients (~104 /cm) for use as absorber layers in solar cells. In this work, the structural, optical, and electronic properties of these materials produced in thin film form using pulsed laser deposition have been explored. Stoichiometric Zn3P2 thin films were obtained at a laser energy density of 3 J/cm2. However, these films were found to be amorphous. Crystallization of these highly resistive amorphous thin films was possible after rapid thermal annealing (RTA). A near optimal band gap of 1.6 eV and a high absorption coefficient of >104/cm were observed for samples annealed at 500 C for 60 seconds when high ramp rates of 150 °C/sec were used for annealing. XPS studies showed the presence of a trace amount of oxygen in the samples upon depth profiling. Schottky barrier heights were extracted for samples annealed at 350 °C and 500 °C with different metals. Al and Mg showed higher barrier heights with good diode rectification behavior. Fermi level pinning was shown to be a significant concern in both cases due to the large values of interface states observed (> 1013/cm2-eV). A Schottky barrier solar cell was fabricated using these films and showed low efficiency with a low Voc of 410 mV that was impacted by Fermi level pinning. Growth of Iron pyrite thin films from an FeS target was demonstrated for the first time using pulsed laser deposition. For the different laser energy densities and substrate temperatures explored, amorphous FeS (Pyrrhotite) was mainly produced. Conversion of FeS to FeS2 was obtained by sulfurization of thin films at 350 °C for times of 30 minutes at a N2 flow rates of 200

  13. Electron transfer from Proteus vulgaris to a covalently assembled, single walled carbon nanotube electrode functionalised with osmium bipyridine complex: application to a whole cell biosensor.

    PubMed

    Rawson, Frankie J; Garrett, David J; Leech, Donal; Downard, Alison J; Baronian, Keith H R

    2011-01-15

    We report the fabrication and use of electrodes constructed from single walled carbon nanotubes (SWCNTs) chemically assembled on a carbon surface and functionalised with an osmium(II) bipyridine complex (Osbpy). The ability of the electrodes to transduce biologically generated currents from Proteus vulgaris has been established. Our investigations show that there are two contributions to the current: one from electroactive species secreted into solution and another from cell redox sites. The modified electrode can be used to monitor cell metabolism, thereby acting as a whole cell biosensor. The biosensor was used in a 1-h assay to investigate the toxicity of ethanol, sodium azide and the antibiotic ampicillin and gave quantitative data that were closely correlated with standard cell plate viability assays. The results provide proof of principle that the whole cell biosensor could be used for high throughput screening of antimicrobial activity. One of the modified electrodes was used for approximately 1000 measurements over four months demonstrating the robustness of the system.

  14. Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Ushiki, Tatsuo

    2016-04-01

    Although many studies of the Golgi apparatus structure have been performed by light and electron microscopy, the full shape of the Golgi apparatus remained unclear due to the technical limitations of the previously applied microscopy techniques. In this study, we used serial section scanning electron microscopy (SEM) for the morphological study of the Golgi apparatus. This method is useful for three-dimensional (3D) reconstruction of cellular structures without requiring specialized instruments, unlike focused ion beam SEM (FIB-SEM) and serial block face SEM (SBF-SEM). Using the serial section SEM method developed by our laboratory, we investigate the 3D shape of the osmium-impregnated Golgi apparatus in rat epididymal cells, pancreatic acinar cells and gonadotropes. The combination of serial section SEM and a 3D reconstruction technique enabled us to elucidate the entire shape of the Golgi apparatus in these cells. The full shape of the Golgi apparatus in epididymal cells formed a basket-like structure with oval-shaped cisterns, while the Golgi apparatus in an acinar cell from the pancreas was composed of elongated ribbon-like structures that were connected to each other, making a coarse network. The overall image of the Golgi apparatus cisterns from a gonadotrope looked like a spherical cage. This study has clearly shown that entire 3D shape of the Golgi apparatus varies depending on the cell type and that the Golgi cisterns network appears as a single mass located in the large region of the cytoplasm.

  15. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide.

    PubMed

    Scodeller, Pablo; Carballo, Romina; Szamocki, Rafael; Levin, Laura; Forchiassin, Flavia; Calvo, Ernesto J

    2010-08-18

    High potential purified Trametes trogii laccase has been studied as a biocatalyst for oxygen cathodes composed of layer-by-layer self-assembled thin films by sequential immersion of mercaptopropane sulfonate-modified Au electrode surfaces in solutions containing laccase and osmium-complex bound to poly(allylamine), (PAH-Os). The polycation backbone carries the Os redox relay, and the polyanion is the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. Enzyme thin films were characterized by quartz crystal microbalance, ellipsometry, cyclic voltammetry, and oxygen reduction electrocatalysis under variable oxygen partial pressures with a rotating disk electrode. New kinetic evidence relevant to biofuel cells is presented on the detection of traces of H(2)O(2), intermediate in the O(2) reduction, with scanning electrochemical microscopy (SECM). Furthermore the inhibitory effect of peroxide on the biocatalytic current resulted in abnormal current dependence on the O(2) partial pressure and peak shape with hysteresis in the polarization curves under stagnant conditions, which is offset upon stirring with the RDE. The new kinetic evidence reported in the present work is very relevant for the operation of biofuel cells under stagnant conditions of O(2) mass transport.

  16. Reversible Redox-Based Optical Sensing of Parts per Million Levels of Nitrosyl Cation in Organic Solvents by Osmium Chromophore-Based Monolayers

    SciTech Connect

    Gupta,T.; Cohen, R.; Evmenenko, G.; Dutta, P.; van der Boom, M.

    2007-01-01

    Exposure of an osmium(II)-based monolayer on glass to organic solvents containing 0.36-116 ppm of NOBF{sub 4} results in one-electron transfer from the covalently immobilized complexes to the inorganic analyte with concurrent optical changes. The NO{sup +} induced oxidation of the monolayer can be detected optically with an off-the-self-UV/vis spectrophotometer (260-800 nm). The redox-based NO{sup +} detection and quantification system can be reset with water within {approx}20 s for at least 40 times. The reaction of the monolayer with a THF solution containing 5 ppm of NOBF{sub 4} follows pseudo first-order kinetics in the monolayer with {Delta}G{sup {double_dagger}}{sub 298K} = 21.5 {+-} 0.7 kcal/mol, {Delta}H{sup {double_dagger}} = 9.5 {+-} 0.3 kcal/mol, and {Delta}S{sup {double_dagger}} = -40.6 {+-} 1.1 eu. The monolayer structure and properties have been resolved by electrochemical measurements and synchrotron X-ray reflectivity measurements in combination with density functional theory calculations (B3LYP/SDD level of theory).

  17. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode.

    PubMed

    Němcová, Kateřina; Sebest, Peter; Havran, Luděk; Orság, Petr; Fojta, Miroslav; Pivoňková, Hana

    2014-09-01

    In this paper, we present an electrochemical DNA-protein interaction assay based on a combination of protein-specific immunoprecipitation at magnetic beads (MBIP) with application of oligonucleotide (ON) probes labeled with an electroactive oxoosmium complex (Os,bipy). We show that double-stranded ONs bearing a dT20 tail labeled with Os,bipy are specifically recognized by the tumor suppressor p53 protein according to the presence or absence of a specific binding site (p53CON) in the double-stranded segment. We demonstrate the applicability of the Os,bipy-labeled probes in titration as well as competition MBIP assays to evaluate p53 relative affinity to various sequence-specific or structurally distinct unlabeled DNA substrates upon modulation of the p53-DNA binding by monoclonal antibodies used for the immunoprecipitation. To detect the p53-bound osmium-labeled probes, we took advantage of a catalytic peak yielded by Os,bipy-modified DNA at the mercury-based electrodes, allowing facile determination of subnanogram quantities of the labeled oligonucleotides. Versatility of the electrochemical MBIP technique and its general applicability in studies of any DNA-binding protein is discussed.

  18. Ultraviolet Spectroscopy of Metal-Poor Stars: New Detections of Phosphorus, Germanium, Arsenic, Selenium, Cadmium, Tellurium, Lutetium, Osmium, Iridium, Platinum, Gold, and More!

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2015-01-01

    Ultraviolet spectroscopy with HST/STIS provides a 30% increase in the number of elements that can be detected in metal-poor stars. Although nearly every element from hydrogen through bismuth is probably present in most metal-poor stars, not all elements can be detected. The resonance lines of the dominant species of some elements are only found in the UV in late-type stars. The chemical compositions of these stars reflect the history of stellar nucleosynthesis from the first stars to today. Here, I present a summary of recent work that has expanded the chemical inventory in metal-poor stars using UV spectroscopy conducted using HST/STIS. The highlights include new detections of phosphorus, germanium, arsenic, selenium, cadmium, tellurium, lutetium, osmium, iridium, platinum, and gold in metal-poor stars. These detections reveal new insights into stellar nucleosynthesis in the earliest generations of massive stars, provide new constraints on the r-process, and open new channels for chemically-tagging stars that have assembled to form the Milky Way stellar halo.

  19. Long-lifetime and long-wavelength osmium (II) metal complexes containing polypyridine ligands: excellent red fluorescent dyes for biophysics and for sensors

    NASA Astrophysics Data System (ADS)

    Murtaza, Zakir; Lakowicz, Joseph R.

    1999-05-01

    Several luminescent complexes of osmium (II) containing polypyridine ligands have been prepared. The syntheses, photophysical and fluorescence polarization properties of [Os(phen)2(aphen)]2+, [Os(tpy)(mcbpy)(py)]2+, [Os(ttpy)2]2+, [Os(tpy)(triphos)]2+ and [Os(tppz)2]2+ are reported. Where phen is 1,10-phenanthroline, aphen is 5-amino-1,10-phenanthroline, tpy is 2,2':6,2'-terpyridine, mcbpy is 4-methyl-2,2'- bipyridine-4'-carboxylic, py is pyridine, triphos is bis(2-diphenylphosphinoethyl)-phenyl phosphine, ttpy is 4- tolyl,2,2':6,2'-terpyridine, and tppz is 2,3,5,6- tetrakis(2-pyridyl)pyrazine. The complexes absorb light at above 550 nm, emit above 700 nm, and have emission lifetimes longer than 50 ns in water. The emission of all the complexes is polarized, so they can have applications as red light excitable dyes for biophysical studies of macromolecules and for polarization immunoassays. The complexes can also be used for lifetime-based oxygen sensing using low-cost phase fluorometry and a LED light source.

  20. Intraepidermal free nerve fiber endings in the hairless skin of the rat as revealed by the zinc iodide-osmium tetroxide technique.

    PubMed

    Müller, T

    2000-04-01

    The nerve fiber distribution in the epidermis of the hairless rat skin was studied light microscopically by means of zinc iodide-osmium tetroxide staining. Two different morphological types of free nerve fiber endings could be detected: clusters of relatively thick nerve fibers stretched up through the spinous layer up to the granular layer sending off terminal branches. In addition, many solitary thin varicose nerve fibers were seen within the epidermis. The observed discrepancies in nerve fiber diameters appeared to be larger than those reported for human intraepidermal nerve fibers in recent immunohistochemical studies. Moreover, dendritic cells, most probably representing Langerhans cells, could be selectively stained. These cells appeared to be in a close location to thin varicose nerve fibers. Both types of demonstrated free nerve endings have to be functionally connected with different sensoric functions. Possibly, a subpopulation of the thin nerve fibers might possess primarily a nociceptive task, whereas the thick ones have most probably to be regarded as mechanoreceptive. The nerve fibers innervating dendritic cells appear to be identical to the peptidergic ones which may regulate the antigen-presenting capacity of these cells. Due to its selectivity for intraepidermal nerve fibers, the used method might supplement immunohistochemical procedures in a helpful manner.

  1. Indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving

    1991-01-01

    The direction for InP solar cell research; reduction of cell cost; increase of cell efficiency; measurements needed to better understand cell performance; n/p versus p/n; radiation effects; major problems in cell contacting; and whether the present level of InP solar cell research in the USA should be maintained, decreased, or increased were considered.

  2. Phosphaalkynes from acid chlorides via P for O(Cl) metathesis: a recyclable niobium phosphide (P(3-)) reagent that effects C-P triple-bond formation.

    PubMed

    Figueroa, Joshua S; Cummins, Christopher C

    2004-11-03

    Reported herein is a new, metathetical P for O(Cl) exchange mediated by an anionic niobium phosphide complex that furnished phosphaalkynes (RCP) from acid chlorides (RC(O)Cl) under mild conditions. The niobaziridine hydride complex, Nb(H)(tBu(H)C=NAr)(N[Np]Ar)2 (1, Np = neopentyl, Ar = 3,5-Me2C6H3), has been shown previously to react with elemental phosphorus (P4), affording the mu-diphosphide complex, (mu2:eta2,eta2-P2)[Nb(N[Np]Ar)3]2, (2), which can be subsequently reduced by sodium amalgam to the anonic, terminal phosphide complex, [Na][PNb(N[Np]Ar)3] (3). It is now shown that treatment of 3 with either pivaloyl (t-BuC(O)Cl) or 1-adamantoyl (1-AdC(O)Cl) chloride provides the thermally unstable niobacyles, (t-BuC(O)P)Nb(N[Np]Ar)3 (4-t-Bu) and (1-AdC(O)P)Nb(N[Np]Ar)3 (4-1-Ad), which are intermediates along the pathway to ejection of the known phosphaalkynes t-BuCP (5-t-Bu) and 1-AdCP(5-1-Ad). Phosphaalkyne ejection from 4-t-Bu and 4-1-Ad proceeds with formation of the niobium(V) oxo complex ONb(N[Np]Ar)3 (6) as a stable byproduct. Preliminary kinetic measurements for fragmentation of 4-t-Bu to 5-t-Bu and 6 in C6D6 solution are consistent with a first-order process, yielding the thermodynamic parameters DeltaH = 24.9 +/- 1.4 kcal mol-1 and DeltaS = 2.4 +/- 4.3 cal mol-1 K-1 over the temperature range 308-338 K. Separation of volatile 5-t-Bu from 6 after thermolysis has been readily achieved by vacuum transfer in yields of 90%. Pure 6 is recovered after vacuum transfer and can be treated with 1.0 equiv of triflic anhydride (Tf2O, Tf = O2SCF3) to afford the bistriflate complex, Nb(OTf)2(N[Np]Ar)3 (7), in high yield. Complex 7 provides direct access to 1 upon reduction with magnesium anthracene, thus completing a cycle of element activation, small-molecule generation via metathetical P-atom transfer, and deoxygenative recycling of the final niobium(V) oxo product.

  3. Ruthenium(II) and osmium(II) vinyl complexes as highly sensitive and selective chromogenic and fluorogenic probes for the sensing of carbon monoxide in air.

    PubMed

    Toscani, Anita; Marín-Hernández, Cristina; Moragues, María E; Sancenón, Félix; Dingwall, Paul; Brown, Neil J; Martínez-Máñez, Ramón; White, Andrew J P; Wilton-Ely, James D E T

    2015-10-05

    The detection of carbon monoxide in solution and air has been achieved using simple, inexpensive systems based on the vinyl complexes [M(CHCHR)Cl(CO)(BTD)(PPh3 )2 ] (R=aryl, BTD=2,1,3-benzothiadiazole). Depending on the nature of the vinyl group, chromogenic and fluorogenic responses signalled the presence of this odourless, tasteless, invisible, and toxic gas. Solutions of the complexes in CHCl3 underwent rapid change between easily differentiated colours when exposed to air samples containing CO. More significantly, the adsorption of the complexes on silica produced colorimetric probes for the naked-eye detection of CO in the gas phase. Structural data for key species before and after the addition of CO were obtained by means of single X-ray diffraction studies. In all cases, the ruthenium and osmium vinyl complexes studied showed a highly selective response to CO with exceptionally low detection limits. Naked-eye detection of CO at concentrations as low as 5 ppb in air was achieved with the onset of toxic levels (i.e., 100 ppm), thus resulting in a remarkably clear colour change. Moreover, complexes bearing pyrenyl, naphthyl, and phenanthrenyl moieties were fluorescent, and greater sensitivities were achieved (through turn-on emission fluorescence) in the presence of CO both in solution and air. This behaviour was explored computationally using time-dependent density functional theory (TDDFT) experiments. In addition, the systems were shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. Supporting the metal complexes on cellulose strips for use in an existing optoelectronic device allows numerical readings for the CO concentration to be obtained and provision of an alarm system.

  4. Ruthenium(II) and osmium(II) mixed chelates based on pyrenyl-pyridylimidazole and 2,2'-bipyridine ligands as efficient DNA intercalators and anion sensors.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Maity, Dinesh; Baitalik, Sujoy

    2015-01-20

    We report herein the synthesis and characterization of two monometallic ruthenium(II) and osmium(II) complexes of composition [(bpy)2M(HImzPPy)] (ClO4)2 derived from pyrenylimidazole-10-pyridin-2-yl-9H-9,11-diazacyclopenta[e]pyrene (HImzPPy) and 2,2'-bipyridine (bpy) ligands. X-ray crystallographic study shows that both crystals belong to the triclinic system having space group P1̅. The photophysical properties of 1 and 2 in acetonitrile indicate that the metal-to-ligand charge-transfer excited state is mainly centered in the [M(bpy)2](2+) moiety of the complexes and slightly affected by the extended conjugation of the pyrenylimidazole moiety. Both complexes display one-electron reversible metal-centered oxidative processes and a number of quasi-reversible reductive processes. The binding affinities of the complexes toward calf-thymus DNA (CT-DNA) were thoroughly studied through different methods such as absorption, emission, excited-state lifetime, circular dichroism, and thermal denaturation of DNA and a relative DNA binding study using ethidium bromide. All of these experiments account for the intercalative nature of both 1 and 2 toward CT-DNA as well as their light-switch behavior. The anion recognition study through different spectroscopic techniques reveals that both complexes act as "turn-on" luminescence sensors for H2PO4(-) and "turn-off" sensors toward F(-) and AcO(-). The imidazole N-H proton of the receptors gets deprotonated with the excessive addition of F(-) and AcO(-), while it interacts with H2PO4(-) through hydrogen-bonding interaction. Theoretical calculations (DFT and TD-DFT) were also performed to understand the photophysical properties of the metalloreceptors.

  5. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil

    2012-08-01

    The modification of glassy carbon (GC) electrode with electrodeposited nickel oxide nanoparticles (NiOxNPs) and deoxyribonucleic acid (DNA) is utilized as a new efficient platform for entrapment of osmium (III) complex. Surface morphology and electrochemical properties of the prepared nanocomposite modified electrode (GC/DNA/NiOxNPs/Os(III)-complex) were investigated by FESEM, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Cyclic voltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of l-cysteine (CySH) at reduced overpotential (0.1 V vs. Ag/AgCl). Using chronoamperometry to CySH detection, the sensitivity and detection limit of the biosensor are obtained as 44 μA mM(-1) and 0.07 μM with a concentration range up to 1000 μM. The electrocatalytic activity of the modified electrode not only for oxidation of low molecular-mass biothiols derivatives such as, glutathione, l-cystine, l-methionine and electroactive biological species ( dopamine, uric acid, glucose) is negligible but also for very similar biothiol compound (homocysteine) no recognizable response is observed at the applied potential window. Furthermore, the simultaneous voltammetric determination of l-cysteine and homocysteine compounds without any separation or pretreatment process was reported for the first time in this work. Finally, the applicability of sensor for the analysis of CySH concentration in complex serum samples was successfully demonstrated. Highly selectivity, excellent electrocatalytic activity and stability, remarkable antifouling property toward thiols and their oxidation products, as well as the ability for simultaneous detection of l-cysteine and homocysteine are remarkably advantageous of the proposed DNA based biosensor.

  6. Osmium(0)-Catalyzed C-C Coupling of Ethylene and α-Olefins with Diols, Ketols, or Hydroxy Esters via Transfer Hydrogenation.

    PubMed

    Park, Boyoung Y; Luong, Tom; Sato, Hiroki; Krische, Michael J

    2016-09-16

    Osmium(0) complexes derived from Os3(CO)12 and XPhos (2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl) catalyze the C-C coupling of α-hydroxy esters 1a-1i, α-ketols 1j-1o, or 1,2-diols dihydro-1j-1o with ethylene 2a to form ethylated tertiary alcohols 3a-3o. As illustrated in couplings of 1-octene 2b with vicinally dioxygenated reactants 1a, 1b, 1i, 1j, 1k, 1m, higher α-olefins are converted to adducts 4a, 4b, 4i, 4j, 4k, 4m with complete levels of branched regioselectivity. Oxidation level independent C-C coupling is demonstrated by the reaction of 1-octene 2b with diol dihydro-1k, α-ketol 1k, and dione dehydro-1k. Functionalized olefins 2c-2f react with ethyl mandelate 1a to furnish adducts 5a-8a as single regioisomers. The collective data, including deuterium labeling studies, are consistent with a catalytic mechanism involving olefin-dione oxidative coupling to form an oxa-osmacyclopentane, which upon reductive cleavage via hydrogen transfer from the secondary alcohol reactant releases the product of carbinol C-alkylation with regeneration of the ketone. Single-crystal X-ray diffraction data of the dinuclear complex Os2(CO)4(O2CR)2(XPhos)2 and the trinuclear complex Os3(CO)11(XPhos) are reported. These studies suggest increased π-backbonding at the stage of the metal-olefin π-complex plays a critical role in facilitating alkene-carbonyl oxidative coupling, as isostructural ruthenium(0) complexes, which are weaker π-donors, do not catalyze the transformations reported herein.

  7. Use of tris(2,2'-bipyridine)osmium as a photoluminescence-following electron-transfer reagent for postcolumn detection in capillary high-performance liquid chromatography.

    PubMed

    Jung, Moon Chul; Munro, Nicole; Shi, Guoyue; Michael, Adrian C; Weber, Stephen G

    2006-03-15

    The photoluminescence-following electron-transfer (PFET) technique, developed in our laboratory, is a sensitive chromatographic detection method for oxidizable analytes. Because the oxidations are homogeneous, the technique avoids the problem of electrode fouling. A liquid-phase oxidant reacts with the electrochemically active analytes after separation, becoming capable of photoluminescence. Laser-induced photoluminescence is measured to quantitate the analytes. Thus, the electrochemical properties of the oxidant determine the detection selectivity, and the spectroscopic properties define the sensitivity. The properties of tris(2,2'-bipyridine)osmium (1) were investigated for use as the liquid-phase oxidant in the PFET system. The redox potential of the complex is less positive than that of tris(2,2'-bipyridine)ruthenium (2); thus, on-line generation of 1(3+) by reaction with PbO2, and selective oxidation of catechols by 1(3+), was possible. The mild oxidizing power of 1(3+) led to a lower background signal (compared to 2(3+)) when mixed with acidic mobile phases. Photoluminescence from 1(2+) was much weaker than that from 2(2+); nonetheless, the system achieved subnanomolar detection limits for dopamine, 3-methoxytyramine, and serotonin. Dopamine and 3-methoxytyramine in rat brain striatal dialysates were determined before and after the injection of nomifensine. The pH of the mobile phase can govern the detection selectivity, since oxidation of most organics is accompanied by proton transfer. Reaction of 1 with catechols showed pH-dependent sensitivity resulting from pH-dependent reaction rate changes. Since the reaction rate is also temperature dependent, increased temperature at the mixer resulted in higher sensitivity. However, the noise level also increased at elevated temperature; thus, the detection limit did not improve.

  8. Ternary rare earth osmium aluminides R(7+)(x)Os(12)Al(61+)(y) belonging to a structural family with layered topology.

    PubMed

    Niermann, Jens; Jeitschko, Wolfgang

    2004-05-17

    The 10 intermetallic compounds R(7+)(x)Os(12)Al(61+)(y) (R = Y, Nd, Sm, Gd-Tm) were prepared by arc-melting of the elemental components. They crystallize with a hexagonal structure very similar to that of Y(7.28)Re(12)Al(61.38). The structure was determined from four-circle diffractometer data of Y(7+)(x)Os(12)Al(61+)(y): P6(3)/mcm, a = 1301.5(2) pm, c = 903.0(2) pm, Z =1. Four atomic sites, all located on the 6(3) axis, show fractional occupancy, resulting in the composition Y(7.86(1))Os(12)Al(61.51(4)), corresponding to the Pearson symbol hP90-8.63. The structure may be viewed as consisting of alternating atomic layers of two kinds, although chemical bonding within and between the layers is of similar character as can be judged from the near-neighbor environments, where all of the 11 atomic sites have high coordination numbers. One kind of layers (A). is relatively loosely packed and contains the yttrium and some aluminum atoms. The other kind (B). consists of the osmium and the remaining aluminum atoms in a nearly hexagonal close-packed arrangement. These layers are stacked in the sequence ABAB. A similar building principle has recently been recognized for several other structures of ternary intermetallic compounds of rare earth and transition metals with a high content of aluminum or gallium, where the structures of CeOsGa(4), Ho(3)Ru(4)Ga(15), and Y(2)Pt(6)Al(15) are the most recent examples. This structural family is briefly reviewed. The cell volume of Yb(7+)(x)Os(12)Al(61+)(y) indicates a mixed or intermediate valence character +2/+3 for the ytterbium atoms of this compound.

  9. Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event

    NASA Astrophysics Data System (ADS)

    Dijkstra, Arjan H.; Dale, Christopher W.; Oberthür, Thomas; Nowell, Geoffrey M.; Graham Pearson, D.

    2016-10-01

    We report osmium isotopic compositions for 297 mantle-derived detrital Ru-Os-Ir alloy grains found in gold and platinum-group mineral bearing placers of the Rhine River. These alloys were likely formed as a result of high degree melting in the convective mantle and derived from residual Paleozoic mantle peridotites in the Alps of Central Europe that were accreted as part of a collage of Gondwana-derived 'Armorican' terranes before the Variscan Orogeny. The 187Os/188Os isotope ratios of the Os-rich alloys show a wide distribution, with two modes at 0.1244 and 0.1205. These two modes correspond to rhenium depletion ages, interpreted to correspond with episodes of high-degree mantle melting, at ∼0.5 and ∼1.1 Ga. The data confirm the ability of the oceanic mantle to preserve evidence of ancient melting events. Our new data, in combination with published data on Os-rich alloys from the Urals and Tasmania and with data for abyssal peridotites, indicate a geographically widespread record of a major global Late Mesoproterozoic (1.0-1.2 Ga) high-degree melting event in Paleozoic oceanic mantle rocks. This model age peak is essentially absent from the crustal record of Central-Western Europe, but does coincide with the apparent peak in global continental crust zircon ages at this time. Thus, high-degree mantle melting peaking in the 1.0-1.2 Ga interval may have affected a large part of Earth's mantle. This interval occurred during a period of relative super-continental stability, which may have been accompanied in the oceanic realm by rapid seafloor spreading and extensive subduction, and by unusually high activity of mantle plumes forming two active mantle superswells.

  10. False positives and false negatives measure less than 0.001% in labeling ssDNA with osmium tetroxide 2,2’-bipyridine

    PubMed Central

    2016-01-01

    Summary Osmium tetroxide 2,2’-bipyridine (OsBp) is known to react with pyrimidines in ssDNA and preferentially label deoxythymine (T) over deoxycytosine (C). The product, osmylated DNA, was proposed as a surrogate for nanopore-based DNA sequencing due to OsBp’s “perfect” label attributes. Osmylated deoxyoligos translocate unassisted and measurably slow via sub-2 nm SiN solid-state nanopores, as well as via the alpha-hemolysin (α-HL) pore. Both nanopores discriminate clearly between osmylated and intact nucleobase; α-HL was also shown to discriminate between osmylated T and osmylated C. Experiments presented here confirm that the kinetics of osmylation are comparable for short oligos and long ssDNA and show that pyrimidine osmylation is practically complete in two hours at room temperature with less than 15 mM OsBp. Under the proposed labeling conditions: deoxyoligo backbone degradation measures less than 1/1,000,000; false positives such as osmylated deoxyadenine (A) and osmylated deoxyguanine (G) measure less than 1/100,000; false negatives, i.e., unosmylated C measure less than 1/10,000; and unosmylated T must measure substantially lower than 1/10,000 due to the 27-fold higher reactivity of T compared to C. However, osmylated C undergoes degradation that amounts to about 1–2% for the duration of the labeling protocol. This degradation may be further characterized, possibly suppressed, and the properties of the degradation products via nanopore translocation can be evaluated to assure base calling quality in a DNA sequencing effort. PMID:27826518

  11. Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoting; Si, Conghui; Gao, Yulai; Frenzel, Jan; Sun, Junzhe; Eggeler, Gunther; Zhang, Zhonghua

    2015-01-01

    Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium (np-PtRuCuOsIr) electrocatalyst has been facilely fabricated by chemical dealloying of mechanically alloyed AlCuPtRuOsIr precursor. The np-PtRuCuOsIr catalyst exhibits a typical three-dimensional bi-continuous interpenetrating ligament/channel structure with a length scale of ∼2.5 nm. The np-PtRuCuOsIr catalyst reaches a higher level in the mass activity (857.5 mA mgPt-1) and specific activity (3.0 mA cm-2) towards methanol oxidation compared to the commercial PtC catalyst (229.5 mA mgPt-1 and 0.5 mA cm-2 respectively). Moreover, the CO stripping peak of np-PtRuCuOsIr is 0.54 V (vs. SCE), 130 mV negative shift in comparison with the commercial PtC (0.67 V vs. SCE). The half-wave potential of np-PtRuCuOsIr is 0.900 V vs. RHE, 36 mV positive compared with that of the commercial PtC (0.864 V vs. RHE). The np-PtRuCuOsIr catalyst also shows 1.8 and 3.8 times enhancement in the mass and specific activity towards oxygen reduction than the commercial PtC. Moreover, the np-PtRuCuOsIr alloy exhibits superior oxygen reduction activities even after 15 K cycles, indicating its excellent long-term stability. The present np-PtRuCuOsIr can act as a promising candidate for the electrocatalyst in direct methanol fuel cells (DMFCs).

  12. Markedly enhanced visible-light photocatalytic H2 generation over g-C3N4 nanosheets decorated by robust nickel phosphide (Ni12P5) cocatalysts.

    PubMed

    Wen, Jiuqing; Xie, Jun; Shen, Rongchen; Li, Xin; Luo, XingYi; Zhang, Hongdan; Zhang, Aiping; Bi, Guican

    2017-02-14

    In the present work, nickel phosphide (Ni12P5) modified graphitic carbon nitride (g-C3N4) nanosheets were synthesized by a simple grinding method. The structural characterization clearly proved that Ni12P5 nanoparticles were well loaded on the surface of g-C3N4 nanosheets. The photocatalytic activity of the composites was tested by catalyzing the reduction of water to hydrogen under visible light irradiation. The results demonstrate that Ni12P5 is an efficient co-catalyst for photocatalytic H2 production of g-C3N4 nanosheets. The maximum photocatalytic H2-production rate of 126.61 μmol g(-1) h(-1) could be obtained by loading 2.0% Ni12P5 nanoparticles on the surface of g-C3N4, which is about 269.4 times higher than that of pure g-C3N4. It is believed that Ni12P5 nanoparticles on the surface of g-C3N4 could act as significant active sites to boost separation of photoexcited electrons and holes and accelerate the H2-evolution kinetics, thus achieving greatly enhanced hydrogen generation. It is expected that this work could contribute to further experimental investigation for exploiting the low cost, high-efficiency, and environmentally friendly g-C3N4-based nanocomposites for photocatalytic H2 production.

  13. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    SciTech Connect

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  14. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    SciTech Connect

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  15. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  16. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  17. A 3D Nanostructure Based on Transition-Metal Phosphide Decorated Heteroatom-Doped Mesoporous Nanospheres Interconnected with Graphene: Synthesis and Applications.

    PubMed

    Qiu, Shuilai; Xing, Weiyi; Mu, Xiaowei; Feng, Xiaming; Ma, Chao; Yuen, Richard K K; Hu, Yuan

    2016-11-30

    A novel three-dimensional nanostructure based on cobalt phosphide nanoparticles (Co2P NPs) and heteroatom-doped mesoporous carbon spheres interconnected with graphene (3D PZM@Co2P@RGO) was facilely synthesized for the first time, and it was used for enhancing the flame retardancy and toxicity suppression of epoxy resins (EP) via a synergistic effect. Herein, the cross-linked polyphosphazene hollow spheres (PZM) were used as templates for the fabrication of 3D architecture. The 3D architecture based on Co2P-decorated heteroatom-doped carbon sphere and reduced graphene oxide was prepared via a carbonization procedure followed by a hydrothermal self-assembly strategy. The as-prepared material exhibits excellent catalytic activity with regard to the combustion process. Notably, inclusion of incorporating PZM@Co2P@RGO resulted in a dramatic reduction of the fire hazards of EP, such as a 47.9% maximum decrease in peak heat release rate and a 29.2% maximum decrease in total heat release, lower toxic CO yield, and formation of high-graphitized protective char layer. In addition, the mechanism for flame retardancy and toxicity suppression was proposed. It is reasonable to know that the improved flame-retardant performance for EP nanocomposites is attributed to tripartite cooperative effect from respective components (Co2P NPs and RGO) plus the heteroatom-doped carbon spheres.

  18. Power recovery of radiation damaged MOCVD grown indium phosphide on silicon solar cells through argon-ion laser annealing. Master`s thesis

    SciTech Connect

    Boyer, L.L.

    1996-06-01

    This thesis reports the results of a laser annealing technique used to remove defect sites from radiation damaged indium phosphide on silicon MOCVD grown solar cells. This involves the illumination of damaged solar cells with a continuous wave laser to produce a large forward-biased current. The InP/Si cells were irradiated with 1 MeV electrons to a given fluence, and tested for degradation. Light from an argon laser was used to illuminate four cells with an irradiance of 2.5 W/sq cm, producing a current density 3 to 5 times larger than AMO conditions. Cells were annealed at 19 deg C with the laser and at 25 deg C under AMO conditions. Annealing under laser illumination of n/p-type cells resulted in recovery of 48%. P/n type cells lost 4 to 12% of the assumed degradaton. Annealing under AMO conditions resulted in power recovery of 70% in n/p type cells. P/n-type cells recovered approximately 16% of lost power. Results indicate that significant power recovery results from the annealing of defects within n/p type InP/Si solar cells.

  19. Pre-fixation of virulent Mycobacterium tuberculosis with glutaraldehyde preserves exquisite ultrastructure on transmission electron microscopy through cryofixation and freeze-substitution with osmium-acetone at ultralow temperature.

    PubMed

    Yamada, Hiroyuki; Chikamatsu, Kinuyo; Aono, Akio; Mitarai, Satoshi

    2014-01-01

    Sample preparations for transmission electron microscopy of virulent Mycobacterium tuberculosis are usually performed with chemical fixation using glutaraldehyde (GA) in a biosafety area followed by post-fixation with aqueous osmium tetroxide (OT) in a conventional laboratory outside the biosafety area. Freeze-substitution with osmium-acetone (OA) at ultralow temperature (-85°C) has been shown to provide high quality final images and preserves cellular structures intact. However, some preparation procedures for freeze-substitution often require large fixed devices for freezing in a special laboratory. We have reported a novel freeze-substitution preparation method that can be performed using a portable device in a biosafety cabinet at biosafety level (BSL) 3 areas. Here, as a next step, we examined whether images obtained from rapid freeze-substitution (RFS) after fixation with glutaraldehyde (GA>RFS) are of comparable quality to those obtained using standard RFS. GA>RFS provided excellent preservation of mycobacterial cell ultrastructure, including visualization of cytoplasmic ribosomes, DNA fibers, and the outer membrane. The average number of ribosomes per cubic micrometer counted on RFS and GA>RFS was not significantly different (6987.8±2181.0 and 6888.9±1799.3, respectively). These values were higher, but not significantly so, than those obtained using conventional chemical fixation (5018.7±2511.3). This procedure may be useful for RFS preparation of unculturable mycobacteria strains or virulent strains isolated in laboratories that cannot perform RFS.

  20. Osmium uptake, distribution, and 187Os/188Os and 187Re/188Os compositions in Phaeophyceae macroalgae, Fucus vesiculosus: Implications for determining the 187Os/188Os composition of seawater

    NASA Astrophysics Data System (ADS)

    Racionero-Gómez, B.; Sproson, A. D.; Selby, D.; Gannoun, A.; Gröcke, D. R.; Greenwell, H. C.; Burton, K. W.

    2017-02-01

    The osmium isotopic composition (187Os/188Os) of seawater reflects the balance of input from mantle-, continental- and anthropogenic-derived sources. This study utilizes the Phaeophyceae, Fucus vesiculosus, to analyse its Os abundance and uptake, as well as to assess if macroalgae records the Os isotope composition of the seawater in which it lives. The data demonstrates that Os is not located in one specific biological structure within macroalgae, but is found throughout the organism. Osmium uptake was measured by culturing F. vesiculosus non-fertile tips with different concentrations of Os with a known 187Os/188Os composition (∼0.16), which is significantly different from the background isotopic composition of local seawater (∼0.94). The Os abundance of cultured non-fertile tips show a positive correlation to the concentration of the Os doped seawater. Moreover, the 187Os/188Os composition of the seaweed equalled that of the culture medium, strongly confirming the possible use of macroalgae as a biological proxy for the Os isotopic composition of the seawater.

  1. Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Rawlins, Barry G.; Wragg, Joanna; Reinhard, Christina; Atwood, Robert C.; Houston, Alasdair; Lark, R. Murray; Rudolph, Sebastian

    2016-12-01

    The spatial distribution and accessibility of organic matter (OM) to soil microbes in aggregates - determined by the fine-scale, 3-D distribution of OM, pores and mineral phases - may be an important control on the magnitude of soil heterotrophic respiration (SHR). Attempts to model SHR on fine scales requires data on the transition probabilities between adjacent pore space and soil OM, a measure of microbial accessibility to the latter. We used a combination of osmium staining and synchrotron X-ray computed tomography (CT) to determine the 3-D (voxel) distribution of these three phases (scale 6.6 µm) throughout nine aggregates taken from a single soil core (range of organic carbon (OC) concentrations: 4.2-7.7 %). Prior to the synchrotron analyses we had measured the magnitude of SHR for each aggregate over 24 h under controlled conditions (moisture content and temperature). We test the hypothesis that larger magnitudes of SHR will be observed in aggregates with (i) shorter length scales of OM variation (more aerobic microsites) and (ii) larger transition probabilities between OM and pore voxels. After scaling to their OC concentrations, there was a 6-fold variation in the magnitude of SHR for the nine aggregates. The distribution of pore diameters and tortuosity index values for pore branches was similar for each of the nine aggregates. The Pearson correlation between aggregate surface area (normalized by aggregate volume) and normalized headspace C gas concentration was both positive and reasonably large (r = 0.44), suggesting that the former may be a factor that influences SHR. The overall transition probabilities between OM and pore voxels were between 0.07 and 0.17, smaller than those used in previous simulation studies. We computed the length scales over which OM, pore and mineral phases vary within each aggregate using 3-D indicator variograms. The median range of models fitted to variograms of OM varied between 38 and 175 µm and was generally larger than

  2. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    NASA Technical Reports Server (NTRS)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  3. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor.

    PubMed

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O

    1996-06-28

    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  4. Synthesis of osmium and ruthenium complexes bearing dimethyl (S,S)-2,2'-(pyridine-2,6-diyl)-bis-(4,5-dihydrooxazol-4-carboxylate) ligand and application to catalytic H/D exchange

    SciTech Connect

    Young, Kenneth J. H.; Lokare, Kapil S.; Leung, Chin Hin; Cheng, Mu-Jeng; Nielsen, Robert J.; Petasis, Nicos A.; Goddard, William A.; Periana, Roy A.

    2011-01-01

    Using tridentate, neutral PyBox ligands, several new osmium and ruthenium complexes [M(PyBox)Cl₂(C₂H₄), where M = Ru, Os] have been prepared, all thermally stable. Some of these PyBox compounds are active for C–H activation of benzene. The Os(PyBox)Cl₂(C₂H₄) complex was characterized by X-ray diffraction. DFT calculations (B3LYP and M06 including Poisson–Boltzmann solvation) corroborate that the Os/PyBox complex in acetic acid (ΔG = 32.0 kcal/mol) is more reactive for benzene C–H activation than Ru/PyBox in basic conditions (ΔG = 34.8 kcal/mol at pH = 13). The stability of hydroxide- and chloride-bridged dinuclear resting states determines calculated barriers.

  5. Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic evolution of the oceanic mantle

    NASA Astrophysics Data System (ADS)

    Hattori, Keiko; Hart, Stanley R.

    1991-12-01

    Osmium-isotope ratios were determined by an ion microprobe on the individual platinum-group minerals (PGM) from placers, which are associated with ultramafic intrusions of late Precambrian to Tertiary age. Unlike Os-isotope ratios in large layered mafic intrusions, these 187Os/ 186Os ratios are low, and within a narrow range from 0.99 to 1.12, which is attributed to the occurrences of the intrusions. There was no opportunity to incorporate old crustal Os because of the small sizes of the intrusions and the mode of emplacement into the upper crustal level. In addition, the interaction with the host volcanic rocks of similar age, if any, would not have seriously affected the 187Os/ 86Os ratios of the peridotites. While different phases of PGM in one grain have similar 187Os/ 186Os ratios, there is a significant variation in a given district. The variation is attributed to a long-term heterogeneity in Re/Os ratios of the oceanic upper mantle. The lowest value in each area is lower than the value expected from the evolution of bulk Earth composition. The lowering may be due to primordially low Re/Os ratios in the mantle or preferential removal of Re by partial melting to form the continental crust. The former model is rejected because most chondrites have higher Re/Os ratios than type C1 and the core-mantle separation would not have lowered Re/Os ratios. The low 187Os/ 186Os ratios are, therefore attributed to the extraction of continental crust by preferential removal of Re from the mantle through partial melting. The model is consistent with the depleted nature of oceanic peridotites (positive ɛ Nd, negative ɛ Sr, and low Re/Os ratios). Calculations of 187Os/ 186Os ratios of the mantle residue suggest that the observed data are in accordance with a model involving the extraction of ˜ 2% melt by fractional fusion from the mantle of C1 chondritic composition at ˜ 2.0 Ga. If the bulk Earth has higher Re/Os ratios, as proposed by Martin [1], then the observed data

  6. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities (greater than 10%) of lithologically distinct mafic material which represents ancient oceanic lithosphere cycled through the convecting mantle on a time-scale of 800 million years or more.

  7. Osmium Isotope Systematics of Ureilites

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. d.; Humayun, M.

    2007-01-01

    The Os-187/Os-188 for twenty-two ureilite whole rock samples, including monomict, augite-bearing, and polymict lithologies, were examined in order to constrain the provenance and subsequent magmatic processing of the ureilite parent body (or bodies). The Re/Os ratios of most ureilites show evidence for a recent disturbance, probably related to Re mobility during weathering, and no meaningful chronological information can be extracted from the present data set. The ureilite Os-187/Os-188 ratios span a range from 0.11739 to 0.13018, with an average of 0.1258+/-0.0023 (1(sigma)), similar to typical carbonaceous chondrites, and distinct from ordinary or enstatite chondrites. The similar mean of Os-187/Os-188 measured for the ureilites and carbonaceous chondrites suggests that the ureilite parent body probably formed within the same region of the solar nebula as carbonaceous chondrites. From the narrow range of the 187Os/188Os distribution in ureilite meteorites it is further concluded that Re was not significantly fractionated from Os during planetary differentiation and was not lost along with the missing ureilitic melt component. The lack of large Re/Os fractionations requires that Re/Os partitioning was controlled by a metal phase, and thus metal had to be stable throughout the interval of magmatic processing on the ureilite parent body.

  8. Tetranuclear phosphide- and phosphinidene-bridged derivatives of the diphosphenyl complex [Mo2Cp2(μ-PCy2)(μ-κ(2):κ(2)-P2Me)(CO)2].

    PubMed

    Alvarez, M Angeles; García, M Esther; Lozano, Raquel; Ramos, Alberto; Ruiz, Miguel A

    2015-03-02

    Reaction of the title complex with excess [Fe2(CO)9] at room temperature gave the tetranuclear derivative [Fe2Mo2Cp2(μ4-P)(μ-PCy2)(μ3-PMe)(CO)9], following from formal insertion of an Fe(CO)3 fragment in the P-P bond of the diphosphenyl ligand with formation of a new heterometallic bond (Mo-Fe = 2.935 (1) Å), and coordination of an Fe(CO)4 fragment through the lone electron pair of the resulting phosphide ligand (P-Fe = 2.359(2) Å). Reactions of the title complex with excess of the tetrahydrofuran (THF) adducts [MLn(THF)] (MLn = MnCp'(CO)2, W(CO)5) led instead to tetranuclear diphosphenyl-bridged complexes [M2Mo2Cp2(μ-PCy2)(μ-κ(2):κ(1):κ(1):κ(1)-P2Me)(CO)2L2n] displaying a Mo-Mo double bond (Mo-Mo = 2.760(2) Å when M = W), along with the phosphide- and phosphinidene-bridged complex [Mo2W2Cp2(μ3-P)(μ-PCy2)(μ3-PMe)(CO)10], with the latter displaying a Mo-Mo triple bond (Mo-Mo = 2.5542(4) Å) and a trigonal planar phosphide ligand. Reaction of the title complex with excess [Mo(CO)4(THF)2] also resulted in facile P-P bond cleavage of the diphosphenyl ligand to give [Mo4Cp2(μ4-P)(μ-PCy2)(μ3-PMe)(CO)9], a cluster built on a Mo3 triangular core bridged by phosphinidene and phosphide ligands, with the latter further coordinated to an exocyclic Mo(CO)5 fragment. The related Mo2W2 complex [Mo2W2Cp2(μ3-P)(μ-PCy2)(μ3-PMe)(CO)9] could be rationally synthesized upon reaction of the trinuclear cluster [Mo2WCp2(μ3-P)(μ-PCy2)(μ3-PMe)(CO)6] with the adduct [W(CO)5(THF)]. The title complex reacted photochemically with [M2(CO)10] (M = Mn, Re) to give the 66-electron tetranuclear derivatives [M2Mo2Cp2(μ4-P)(μ-PCy2)(μ3-PMe)(CO)9], after formation of a new Mo-M bond (Mo-Mn = 2.9988(7) Å, Mo-Re = 3.1003(4) Å) and cleavage of the diphosphenyl P-P bond. In contrast, its room-temperature reaction with [Co2(CO)8] gave the 64-electron square-planar cluster [Co2Mo2Cp2(μ4-P)(μ-PCy2)(μ4-PMe)(μ-CO)(CO)6] resulting from formation of two new Mo-Co bonds (Mo-Co = 2

  9. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    SciTech Connect

    Song, Junhua; Zhu, Chengzhou; Xu, Bo Z.; Fu, Shaofang; Engelhard, Mark H.; Ye, Ranfeng; Du, Dan; Beckman, Scott P.; Lin, Yuehe

    2016-10-25

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.

  10. Epitaxy of boron phosphide on AlN, 4H-SiC, 3C-SiC and ZrB2 substrates

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji

    The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AlN, 4H-SiC, 3C-SiC and ZrB2 by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail. Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [11¯00] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB2 at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH 3 to B2H6 resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm -1), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm2/V˙s and a lowest carrier concentration of 3.15x1018 cm -3. Raman imaging had lower values of FWHM (4.8 cm-1 ) and a standard deviation (0.56 cm-1) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB2/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB2 substrates. Among the substrates studied, Al

  11. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  12. Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models.

    PubMed

    Nomura, Taichi; Bando, Yoshio; Bochimoto, Hiroki; Koga, Daisuke; Watanabe, Tsuyoshi; Yoshida, Shigetaka

    2013-03-01

    Axonal injury and demyelination are observed in demyelinating diseases such as multiple sclerosis. However, pathological changes that underlie these morphologies are not fully understood. We examined in vivo morphological changes using a new histological technique, scanning electron microscopy (SEM) with osmium maceration method to observe three-dimensional structures such as myelin and axons in the spinal cord. Myelin basic protein-deficient shiverer mice and mice with experimental autoimmune encephalomyelitis (EAE) were used to visualize how morphological changes in myelin and axons are induced by dysmyelination and demyelination. SEM revealed following morphological changes during dysmyelination of shiverer mice. First, enriched mitochondria and well-developed sER in axons were observed in shiverer, but not in wild-type mice. Second, the processes from some perinodal glial cells ran parallel to internodes of axons in addition to the process that covered the nodal region of the axon in shiverer mice. Last, this technique left myelin and axonal structures undisturbed. Moreover, SEM images showed clear variations in the ultrastructural abnormalities of myelin and axons in the white matter of the EAE spinal cord. This technique will be a powerful tool for identifying the mechanisms underlying the pathogenesis in demyelination.

  13. K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9}: The first osmium perovskites containing alkali cations at the 'A' site

    SciTech Connect

    Mogare, Kailash M.; Klein, Wilhelm; Jansen, Martin

    2012-07-15

    K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9} were obtained from solid-state reactions of potassium superoxide, sodium peroxide and osmium metal at elevated oxygen pressures. K{sub 2}NaOsO{sub 5.5} crystallizes as an oxygen-deficient cubic double perovskite in space group Fm3{sup Macron }m with a=8.4184(5) A and contains isolated OsO{sub 6} octahedra. K{sub 3}NaOs{sub 2}O{sub 9} crystallizes hexagonally in P6{sub 3}/mmc with a=5.9998(4) A and c=14.3053(14) A. K{sub 3}NaOs{sub 2}O{sub 9} consists of face sharing Os{sub 2}O{sub 9} pairs of octahedra. According to magnetic measurements K{sub 2}NaOsO{sub 5.5} is diamagnetic, whereas K{sub 3}NaOs{sub 2}O{sub 9} displays strong antiferromagnetic coupling (T{sub N}=140 K), indicating enhanced magnetic interactions within the octahedral pair. - Graphical abstract: High oxidation states of Os, obtained by high oxygen pressure synthesis, are accommodated in double and triple perovskite matrices. K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions. Highlights: Black-Right-Pointing-Pointer New osmates containing highly oxidized Os were obtained by high O{sub 2} pressure synthesis. Black-Right-Pointing-Pointer High oxidation states of Os are accommodated in double and triple perovskite matrices. Black-Right-Pointing-Pointer Both compounds represent the first Os perovskites with an alkali metal at the A site. Black-Right-Pointing-Pointer K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions within the octahedral pair.

  14. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-04

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.

  15. GeP and (Ge{sub 1−x}Sn{sub x})(P{sub 1−y}Ge{sub y}) (x≈0.12, y≈0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides

    SciTech Connect

    Lee, Kathleen; Synnestvedt, Sarah; Bellard, Maverick; Kovnir, Kirill

    2015-04-15

    GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The layered crystal structures of these compounds were characterized by single crystal X-ray diffraction. Both phosphides crystallize in a GaTe structure type in the monoclinic space group C2/m (No. 12) with GeP: a=15.1948(7) Å, b=3.6337(2) Å, c=9.1941(4) Å, β=101.239(2)°; Ge{sub 0.93(3)}P{sub 0.95(1)}Sn{sub 0.12(3)}: a=15.284(9) Å, b=3.622(2) Å, c=9.207(5) Å, β=101.79(1)°. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Each layer is built of Ge–Ge dumbbells surrounded by a distorted antiprism of phosphorus atoms. Sn-doped GeP has a similar structural motif, but with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Graphical abstract: Layered phosphides GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Sn-doped GeP has a similar structural motif with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Highlights: • GeP crystallizes in a layered crystal structure. • Doping of Sn into GeP causes large structural distortions. • GeP is narrow bandgap semiconductor. • Sn-doped GeP exhibits an order of magnitude higher resistivity due to disorder.

  16. Crystal and electronic structures of CaAl 2Si 2-type rare-earth copper zinc phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Stoyko, Stanislav S.; Cavell, Ronald G.; Mar, Arthur

    2011-01-01

    The quaternary rare-earth phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 °C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl 2Si 2-type structure (Pearson symbol hP5, space group P3¯ m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP 2 and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP 2 model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP 2 ( RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e - per formula unit, as demonstrated by the formation of a solid solution in GdCu xZn 2- xP 2 (1.0≤ x≤1.3), while still retaining the CaAl 2Si 2-type structure. Because the Cu 2 p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP 2 ( RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms.

  17. Phase equilibria in the Mo-Fe-P system at 800 °C and structure of ternary phosphide (Mo(1-x)Fe(x))3P (0.10 ≤ x ≤ 0.15).

    PubMed

    Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur

    2013-01-18

    Construction of the isothermal section in the metal-rich portion (<67 atom % P) of the Mo-Fe-P phase diagram at 800 °C has led to the identification of two new ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.

  18. Is osmium chemically fractionated in the moon

    NASA Technical Reports Server (NTRS)

    Hertogen, J.; Janssens, M.-J.

    1977-01-01

    An investigation was conducted involving the determination of Os in 53 highland samples from the Apollo 14-17 missions. The Os/Ir ratio was found to remain essentially constant at 1.05 as Os and Ir abundances vary over four orders of magnitude. The Os-Au and the Os-Ni correlation in highland samples is presented in graphs. The graphs show that the majority of highland samples have Os/Au and Os/Ni ratios somewhat below the cosmic value. But there is no reason to attribute this trend to a loss of Os by local processes, because two other refractory siderophiles, Ir and Re, show exactly the same trend. Results on more than 150 analyzed highland samples show that meteoritic groups of low (Ir, Re, Os)/Au ratio are much more common at the Apollo landing sites than are groups of high ratio.

  19. Minority carrier lifetime in indium phosphide

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Weinberg, Irving; Kneisel, Keith

    1991-01-01

    Transient photoluminescence is used to measure the minority carrier lifetime on n-type and p-type InP wafers. The measurements show that unprocessed InP wafers have very high minority carrier lifetimes. Lifetimes of 200 ns and 700 ns were observed for lightly-doped p- and n-type material respectively. Lifetimes over 5 ns were found in heavily doped n-type material.

  20. Low Pressure Synthesis of Indium Phosphide,

    DTIC Science & Technology

    1982-04-01

    single crystal chips, and van der Pauw measurements. C-𔃽 . .... . Contents 1. INTRODUCTION 7 2. BACKGROUND a 3. EXPERIMENTAL TECHNIQUE 8 4...ranged from150 r *L to 400 g. An etched ei e fr mn one, thtee inrt e showing typica sniile crysal rains used for the van der Pauw measurele ta is shown...quaz" did not pro- vide any measurable increase in purity as indicated from the van der Pauw measurements.. ... . . - *,toahd 4vl Moe1 Eche Tyclo