Science.gov

Sample records for osmotic minipump studies

  1. Replacement of osmotic minipumps to extend the intracerebral infusion time of compounds into the mouse brain.

    PubMed

    Grathwohl, Stefan A; Jucker, Mathias

    2013-08-01

    Osmotic minipumps represent a convenient and established method for targeted delivery of agents into the brain of small rodents. Agents unable to cross the blood brain barrier can be directly infused into the brain parenchyma or lateral ventricle through implanted cannulas. The small volume of the minipump reservoir typically limits the infusion time to 4-6 weeks. Pump changes with reattachment of a new pump reservoir to the cannula might lead to brain tissue irritation or increased intracranial pressure associated with hydrocephalus. Here, we describe a pump reservoir exchange technique using a Y-shaped connection piece (Y-con) between the infusion cannula and the pump reservoir. This allows repeated replacement of a subcutaneously installed pump reservoir for brain delivery of agents in mice. Experimental evaluation of Y-con pump replacement revealed no signs of tissue irritation or hydrocephalus and allowed extended controlled delivery of infusion agents in the brain.

  2. Olanzapine-induced weight gain: chronic infusion using osmotic minipumps does not result in stable plasma levels due to degradation of olanzapine in solution.

    PubMed

    van der Zwaal, Esther M; Luijendijk, Mieneke C M; Adan, Roger A H; la Fleur, Susanne E

    2008-05-06

    The mechanisms underlying olanzapine-induced weight gain have not yet been fully elucidated. To examine the effects of long-term treatment with olanzapine on different aspects of energy balance, we administered olanzapine to male rats. Osmotic minipumps were chosen as preferred mode of administration because the half-life of olanzapine is only 2(1/2) h in rats compared to 30 h in humans. We discovered that, within one week, degradation of olanzapine occurred in the solution used to fill the minipump reservoir. This resulted in a decrease in delivered olanzapine and declining plasma levels over the course of the experiment. Therefore, we caution other researchers for the limitations of using osmotic minipumps to administer olanzapine for longer periods of time.

  3. Influence of environmental enrichment on hypothalamic-pituitary-adrenal (HPA) responses to single-dose nicotine, continuous nicotine by osmotic mini-pumps, and nicotine withdrawal by mecamylamine in male and female rats

    PubMed Central

    Skwara, Amanda J.; Karwoski, Tracy E.; Czambel, R. Kenneth; Rubin, Robert T.; Rhodes, Michael E.

    2012-01-01

    In the present study, we determined the effects of environmental enrichment (EE; Kong Toys® and Nestlets®) on sexually diergic HPA axis responses to single-dose nicotine (NIC), single-dose NIC following continuous NIC administration for two weeks, and NIC withdrawal by single-dose mecamylamine (MEC) in male and female rats. Blood sampling occurred before and after MEC and NIC administrations for the determination of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Supporting and extending our previous findings, EE appeared to produce anxiolytic effects by reducing hormone responses: Male and female rats housed with EE had lower baseline ACTH and significantly lower HPA axis responses to the mild stress of saline (SAL) injection than did those housed without EE. The sexually diergic responses to single dose NIC, continuous NIC, and MEC-induced NIC withdrawal were reduced by EE in many male and female groups. ACTH responses to continuous NIC and MEC-induced NIC withdrawal were blunted to a greater extent in female EE groups than in male EE groups, suggesting that females are more sensitive to the anxiolytic effects of EE. Because EE lowered stress-responsive hormones of the HPA axis in most groups, EE may be a useful intervention for stress reduction in animal models of NIC addiction. As well, the effectiveness of EE in animal studies of NIC withdrawal may enlighten human studies addressing coping styles and tobacco cessation in men and women. PMID:22705101

  4. Influence of environmental enrichment on hypothalamic-pituitary-adrenal (HPA) responses to single-dose nicotine, continuous nicotine by osmotic mini-pumps, and nicotine withdrawal by mecamylamine in male and female rats.

    PubMed

    Skwara, Amanda J; Karwoski, Tracy E; Czambel, R Kenneth; Rubin, Robert T; Rhodes, Michael E

    2012-09-01

    In the present study, we determined the effects of environmental enrichment (EE; Kong Toys and Nestlets) on sexually diergic HPA axis responses to single-dose nicotine (NIC), single-dose NIC following continuous NIC administration for two weeks, and NIC withdrawal by single-dose mecamylamine (MEC) in male and female rats. Blood sampling occurred before and after MEC and NIC administrations for the determination of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Supporting and extending our previous findings, EE appeared to produce anxiolytic effects by reducing hormone responses: Male and female rats housed with EE had lower baseline ACTH and significantly lower HPA axis responses to the mild stress of saline (SAL) injection than did those housed without EE. The sexually diergic responses to single dose NIC, continuous NIC, and MEC-induced NIC withdrawal were reduced by EE in many male and female groups. ACTH responses to continuous NIC and MEC-induced NIC withdrawal were blunted to a greater extent in female EE groups than in male EE groups, suggesting that females are more sensitive to the anxiolytic effects of EE. Because EE lowered stress-responsive hormones of the HPA axis in most groups, EE may be a useful intervention for stress reduction in animal models of NIC addiction. As well, the effectiveness of EE in animal studies of NIC withdrawal may enlighten human studies addressing coping styles and tobacco cessation in men and women. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  6. [Preliminary study of colloid osmotic pressure for cardiopulmonary bypass].

    PubMed

    Wang, D; Xiang, L; Luo, J

    1996-12-01

    The ideal colloid osmotic pressure is beneficial to decrease the fluid accumulated in the pulmonary and other tissue during cardiopulmonary bypass. Schupbach reported the proper colloidosmotic pressure for cardiopulmonary bypass was 2.1 kPa (16 mmHg). Colloid osmotic pressures of blood and priming fluid during cardiopulmonary bypass were measured in 28 patients with heart disease by using colloid osmotic pressure detection apparatus. The value of colloid osmotic pressure suitable for the designed standard was apparently different among the Gelofusine group and other groups. P value was 0.005. Priming fluid for cardiopulmonary bypass needs to satisfy the quality and the quantity of colloid osmotic pressure. Using Albumin isn't economical. Whole blood and plazma are not suitable for increasing colloid osmotic pressure. Hydroxyethyl starch or Gelofusine is best choice in priming to get designed standard of colloid osmotic pressure. The ratio of hydroxyethyl starch or Gelofusine in priming fluid should beyond 1/2.

  7. Hydration Changes upon DNA Folding Studied by Osmotic Stress Experiments

    PubMed Central

    Nakano, Shu-ichi; Yamaguchi, Daisuke; Tateishi-Karimata, Hisae; Miyoshi, Daisuke; Sugimoto, Naoki

    2012-01-01

    The thermal stability of nucleic acid structures is perturbed under the conditions that mimic the intracellular environment, typically rich in inert components and under osmotic stress. We now describe the thermodynamic stability of DNA oligonucleotide structures in the presence of high background concentrations of neutral cosolutes. Small cosolutes destabilize the basepair structures, and the DNA structures consisting of the same nearest-neighbor composition show similar thermodynamic parameters in the presence of various types of cosolutes. The osmotic stress experiments reveal that water binding to flexible loops, unstable mismatches, and an abasic site upon DNA folding are almost negligible, whereas the binding to stable mismatch pairs is significant. The studies using the basepair-mimic nucleosides and the peptide nucleic acid suggest that the sugar-phosphate backbone and the integrity of the basepair conformation make important contributions to the binding of water molecules to the DNA bases and helical grooves. The study of the DNA hydration provides the basis for understanding and predicting nucleic acid structures in nonaqueous solvent systems. PMID:22735531

  8. Osmotic diuresis

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001266.htm Osmotic diuresis To use the sharing features on this page, please enable JavaScript. Osmotic diuresis is increased urination due to the presence of ...

  9. Osmotic adaptation of renal medullary cells during transition from chronic diuresis to antidiuresis.

    PubMed

    Sone, M; Albrecht, G J; Dörge, A; Thurau, K; Beck, F X

    1993-04-01

    The cells of the renal medulla adapt osmotically to high extracellular tonicities by high concentrations of organic osmolytes. Intracellular accumulation of these substances is, however, relatively slow. The aim of the present study was to assess the effect of an abrupt rise in extracellular tonicity on intracellular osmotically active substances after prior reduction of medullary contents of organic osmolytes by chronic diuresis. Intra- and extracellular electrolyte concentrations at the papillary tip and the tissue contents of methylamines (glycerophosphorylcholine, betaine), polyols (myo-inositol, sorbitol), and several amino acids were determined in the different kidney zones by electron microprobe analysis and high-performance liquid chromatography in control animals, in rats infused for 6 days with furosemide via osmotic minipumps, and in rats given the vasopressin analogue [deamino-Cys1,D-Arg8]vasopressin (DDAVP) after the chronic furosemide treatment. Chronic diuresis greatly reduced interstitial tonicity and inner medullary contents of methylamines and polyols and moderately reduced inner medullary amino acid contents but did not significantly affect intracellular electrolyte concentrations. When the diuretic rats were infused with DDAVP for 2 h, interstitial tonicity more than doubled and intracellular K and Cl concentrations rose by approximately 60 and 160%, while inner medullary contents of methylamines, polyols, and amino acids were not changed significantly. These data demonstrate that after effective depletion of medullary organic osmolytes by long-term diuresis, the cells of the renal papilla adapt osmotically to an abrupt increase in extracellular tonicities by elevated cell electrolyte concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    PubMed Central

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-01-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the fecal fluid, the remainder being contributed by other solutes either of dietary, endogenous, or bacterial origin; and (c) fecal sodium, potassium, and chloride were avidly conserved by the intestine, in spite of stool water losses exceeding 1,200 g/d. Diarrhea was also induced in normal subjects by ingestion of lactulose, a disaccharide that is not absorbed by the small intestine but is metabolized by colonic bacteria. In lactulose-induced diarrhea, (a) a maximum of approximate 80 g/d of lactulose was metabolized by colonic bacteria to noncarbohydrate moieties such as organic acids; (b) the organic acids were partially absorbed in the colon; (c) unabsorbed organic acids obligated the accumulation of inorganic cations (Na greater than Ca greater than K greater than Mg) in the diarrheal fluid; (d) diarrhea associated with low doses of lactulose was mainly due to unabsorbed organic acids and associated cations, whereas with larger doses of lactulose unmetabolized carbohydrates also played a major role; and (e) the net effect of bacterial metabolism of lactulose and partial absorption of organic acids on stool water output was done dependent. With low or moderate doses of lactulose, stool water losses were reduced by as much as 600 g/d (compared with equimolar osmotic loads of PEG); with large dose, the increment in osmotically active solutes within the lumen exceeded the increment of the ingested osmotic load, and the severity of diarrhea was augmented. PMID:2794043

  11. Filtration method for studies of the kinetics of hypo-osmotic pore closure in erythrocyte.

    PubMed

    Shurkhina, E S; Nesterenko, V M; Tsvetaeva, N V; Kolodey, S V; Nikulina, O F

    2010-11-01

    Filterability of erythrocytes through small (3 μ) pores decreases with decreasing osmolarity of suspension medium because of hypo-osmotic swelling of cells. After appearance of lytic pores, erythrocyte filterability increases for some time, while after recovery of membrane integrity it decreases again. We suggest filtration method for studies of the kinetics of hypo-osmotic lytic pores closure. The dynamics of changes in erythrocyte filterability was studied in 2 patients with paroxysmal nocturnal hemoglobinuria and 6 donors (Ht 0.01%, Na phosphate buffer 5 mM, pH 7.4, 35 mOsm, 24°C). The method can be used for studies of erythrocyte membrane characteristics in various diseases and for evaluation of the membranotropic effects of drugs, infusion media, hemolysins, ethanol, etc.

  12. A study of the effect of sorbitol on osmotic tolerance during partial desiccation of bovine sperm.

    PubMed

    Sitaula, Ranjan; Fowler, Alex; Toner, Mehmet; Bhowmick, Sankha

    2010-06-01

    The goal of the study was to improve the partial desiccation survival of bovine sperm by decreasing the dehydration induced osmotic injury. The protective role of sorbitol, a polyol, was investigated by (i) studying the osmotic behavior of sperm in hypertonic Tyrode's buffer in the presence of sorbitol and trehalose, (ii) studying the effect of sorbitol and trehalose on sperm motility following partial dehydration. The osmotic behavior studies included the assessment of motility and volumetric responses in the presence of the additives. For the drying experiments, motility was assayed after drying the samples to different end water content followed by immediate rehydration. Compared to the effect of "intracellular+extracellular" trehalose alone, results showed a much improved motility in the presence of sorbitol and trehalose. While the drying results suggest an enhanced osmotolerance in the presence of sorbitol, the study of motility under hypertonic conditions combined with the sperm volume excursion experiments suggest that sorbitol imparts the enhancement by permeating into the cell cytoplasm. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Transcutaneous RF-powered implantable minipump driven by a class-E transmitter.

    PubMed

    Moore, William H; Holschneider, Daniel P; Givrad, Tina K; Maarek, Jean-Michel I

    2006-08-01

    We describe the design and testing of an inductive coupling system used to power an implantable minipump for applications in ambulating rats. A 2 MHz class-E oscillator driver powered a coil transmitter wound around a 33-cm-diameter rat cage. A receiver coil, a filtered rectifier, and a voltage-sensitive switch powered the implant. The implant DC current at the center of the primary coil (5.1 V) exceeded the level required to activate the solenoid valve in the pump. The variations of the implant current in the volume of the primary coil reflected the variations of the estimated coupling coefficient between the two coils. The pump could be activated in-vivo, while accommodating the vertical and horizontal movements of the animal. Advantages of this design include a weight reduction for the implant, an operation independent from a finite power source, and a remote activation/deactivation.

  14. Fabrication and study of AC electro-osmotic micropumps

    NASA Astrophysics Data System (ADS)

    Guo, Xin

    In this thesis, microelectrode arrays of micropumps have been designed, fabricated and characterized for transporting microfluid by AC electro-osmosis (ACEO). In particular, the 3D stepped electrode design which shows superior performance to others in literature is adopted for making micropumps, and the performance of such devices has been studied and explored. A novel fabrication process has also been developed in the work, realizing 3D stepped electrodes on a flexible substrate, which is suitable for biomedical use, for example glaucoma implant. There are three major contributions to ACEO pumping in the work. First, a novel design of 3D "T-shaped" discrete electrode arrays was made using PolyMUMPsRTM process. The breakthrough of this work was discretizing the continuous 3D stepped electrodes which were commonly seen in the past research. The "T-shaped" electrodes did not only create ACEO flows on the top surfaces of electrodes but also along the side walls between separated electrodes. Secondly, four 3D stepped electrode arrays were designed, fabricated and tested. It was found from the experiment that PolyMUMPsRTM ACEO electrodes usually required a higher driving voltage than gold electrodes for operation. It was also noticed that a simulation based on the modified model taking into account the surface oxide of electrodes showed a better agreement with the experimental results. It thus demonstrated the possibility that the surface oxide of electrodes had impact on fluidic pumping. This methodology could also be applied to metal electrodes with a native oxide layer such as titanium and aluminum. Thirdly, a prototype of the ACEO pump with 3D stepped electrode arrays was first time realized on a flexible substrate using Kapton polyimide sheets and packaged with PDMS encapsulants. Comprehensive experimental testing was also conducted to evaluate the mechanical properties as well as the pumping performance. The experimental findings indicated that this fabrication

  15. Direct-push-installed, gas-driven mini-pumps for discrete-point groundwater sampling: A new in-situ approach to long-term monitoring

    NASA Astrophysics Data System (ADS)

    Schulmeister, M. K.; Birk, S. M.; Healey, J. M.; Butler, J. J.; Whittemore, D. O.

    2001-12-01

    Discrete-point sampling is important for a variety of hydrogeological investigations. A new approach to vertical chemical profiling has been developed in which low-volume mini-pump samplers (MPS) are installed in a single borehole using direct-push methods. The new, positive-displacement, gas-driven mini-pumps overcome sampling depth limitations of conventional suction pumps. Up to ten pumps can be simultaneously operated using a multi-channel pneumatic controller that drives water to the surface through alternating pressurization and depressurization pulses. By combining direct-push chemical profiling with MPS installation, the pumps may be placed at the most appropriate depths for a particular investigation. This study assessed the potential of the new approach in an alluvial aquifer that has been the site of a great deal of previous work. Two sets of mini-pump samplers, comprised of four pumps each, were installed in an interval characterized by a steep chemical gradient. The MPS installations were placed within one meter of conventional multilevel samplers with similar intake depths. Chemical field parameters (DO, pH, ORP, conductivity and temperature) and dissolved constituent concentrations (NO3, SO4, Cl, Fe and Mn) were measured in the two sets of paired samplers. Although the vertical chemical trends observed in the multilevel samplers were also observed in MPS installed using direct-push rods composed of nitrided steel, redox sensitive measurements from the MPS were affected by installation with standard steel rods. The combination of MPS installation and direct-push characterization allows for repeat sampling of intervals of interest without the need for permanent wells. Ongoing work addresses the long-term performance of the MPS.

  16. Powering an Implantable Minipump with a Multi-layered Printed Circuit Coil for Drug Infusion Applications in Rodents

    PubMed Central

    Givrad, Tina K.; Maarek, Jean-Michel I.; Moore, William H.; Holschneider, Daniel P.

    2014-01-01

    We report the use of a multi-layer printed coil circuit for powering (36–94 mW) an implantable microbolus infusion pump (MIP) that can be activated remotely for use in drug infusion in nontethered, freely moving small animals. This implantable device provides a unique experimental tool with applications in the fields of animal behavior, pharmacology, physiology, and functional brain imaging. Two different designs are described: a battery-less pump usable when the animal is inside a home-cage surrounded by a primary inductive coil and a pump powered by a rechargeable battery that can be used for studies outside the homecage. The use of printed coils for powering of small devices by inductive power transfer presents significant advantages over similar approaches using hand-wound coils in terms of ease of manufacturing and uniformity of design. The high efficiency of a class-E oscillator allowed powering of the minipumps without the need for close physical contact of the primary and secondary coils, as is currently the case for most devices powered by inductive power transfer. PMID:20033778

  17. Powering an implantable minipump with a multi-layered printed circuit coil for drug infusion applications in rodents.

    PubMed

    Givrad, Tina K; Maarek, Jean-Michel I; Moore, William H; Holschneider, Daniel P

    2010-03-01

    We report the use of a multi-layer printed coil circuit for powering (36-94 mW) an implantable microbolus infusion pump (MIP) that can be activated remotely for use in drug infusion in nontethered, freely moving small animals. This implantable device provides a unique experimental tool with applications in the fields of animal behavior, pharmacology, physiology, and functional brain imaging. Two different designs are described: a battery-less pump usable when the animal is inside a home-cage surrounded by a primary inductive coil and a pump powered by a rechargeable battery that can be used for studies outside the home-cage. The use of printed coils for powering of small devices by inductive power transfer presents significant advantages over similar approaches using hand-wound coils in terms of ease of manufacturing and uniformity of design. The high efficiency of a class-E oscillator allowed powering of the minipumps without the need for close physical contact of the primary and secondary coils, as is currently the case for most devices powered by inductive power transfer.

  18. Cell-Biological Studies of Osmotic Shock Response in Streptomyces spp.

    PubMed

    Fuchino, Katsuya; Flärdh, Klas; Dyson, Paul; Ausmees, Nora

    2017-01-01

    Most bacteria are likely to face osmotic challenges, but there is yet much to learn about how such environmental changes affect the architecture of bacterial cells. Here, we report a cell-biological study in model organisms of the genus Streptomyces, which are actinobacteria that grow in a highly polarized fashion to form branching hyphae. The characteristic apical growth of Streptomyces hyphae is orchestrated by protein assemblies, called polarisomes, which contain coiled-coil proteins DivIVA and Scy, and recruit cell wall synthesis complexes and the stress-bearing cytoskeleton of FilP to the tip regions of the hyphae. We monitored cell growth and cell-architectural changes by time-lapse microscopy in osmotic upshift experiments. Hyperosmotic shock caused arrest of growth, loss of turgor, and hypercondensation of chromosomes. The recovery period was protracted, presumably due to the dehydrated state of the cytoplasm, before hyphae could restore their turgor and start to grow again. In most hyphae, this regrowth did not take place at the original hyphal tips. Instead, cell polarity was reprogrammed, and polarisomes were redistributed to new sites, leading to the emergence of multiple lateral branches from which growth occurred. Factors known to regulate the branching pattern of Streptomyces hyphae, such as the serine/threonine kinase AfsK and Scy, were not involved in reprogramming of cell polarity, indicating that different mechanisms may act under different environmental conditions to control hyphal branching. Our observations of hyphal morphology during the stress response indicate that turgor and sufficient hydration of cytoplasm are required for Streptomyces tip growth. Polar growth is an intricate manner of growth for accomplishing a complicated morphology, employed by a wide range of organisms across the kingdoms of life. The tip extension of Streptomyces hyphae is one of the most pronounced examples of polar growth among bacteria. The expansion of the cell

  19. Long-term morphine delivery via slow release morphine pellets or osmotic pumps: Plasma concentration, analgesia, and naloxone-precipitated withdrawal.

    PubMed

    McLane, Virginia D; Bergquist, Ivy; Cormier, James; Barlow, Deborah J; Houseknecht, Karen L; Bilsky, Edward J; Cao, Ling

    2017-09-15

    Slow-release morphine sulfate pellets and osmotic pumps are common routes of chronic morphine delivery in mouse models, but direct comparisons of these drug delivery systems are lacking. In this study, we assessed the efficacy of slow-release pellets versus osmotic pumps in delivering morphine to adult mice. Male C57BL/6NCr mice (8weeksold) were implanted subcutaneously with slow-release pellets (25mg morphine sulfate) or osmotic pumps (64mg/mL, 1.0μL/h). Plasma morphine concentrations were quantified via LC-MS/MS, analgesic efficacy was determined by tail flick assay, and dependence was assessed with naloxone-precipitated withdrawal behaviors (jumping) and physiological effects (excretion, weight loss). Morphine pellets delivered significantly higher plasma drug concentrations compared to osmotic pumps, which were limited by the solubility of the morphine sulfate and pump volume/flow rate. Within 96h post-implantation, plasma morphine concentrations were indistinguishable in pellet vs. pump-treated samples. While osmotic pump did not have an antinociceptive effect in the tail flick assay, pumps and pellets induced comparable dependence symptoms (naloxone-precipitated jumping behavior) from 24-72h post-implantation. In this study, we compared slow-release morphine pellets to osmotic minipumps for morphine delivery in mice. We found that osmotic pumps and subcutaneous morphine sulfate pellets yielded significantly different pharmacokinetics over a 7-day period, and as a result significantly different antinociceptive efficacy. Nonetheless, both delivery methods induced dependence as measured by naloxone-precipitated withdrawal. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Quantitative examination of a perfusion microscope for the study of osmotic response of cells.

    PubMed

    Takamatsu, Hiroshi; Komori, Yuichi; Zawlodzka, Sylwia; Fujii, Motoo

    2004-08-01

    The perfusion microscope was developed for the study of the osmotic response of cells. In this microscope, the cells are immobilized in a transparent chamber mounted on the stage and exposed to a variety of milieus by perfusing the chamber with solutions of different concentrations. The concentration of the supplied solution is controlled using two variable-speed syringe pumps, which supply an isotonic solution and a hypertonic solution. Before using this system to characterize the osmotic response of cells, the change in the concentration of NaCl solution flowing through the chamber is examined quantitatively using a laser interferometer and an image processing technique. The NaCl concentration is increased from an isotonic condition to a hypertonic condition abruptly or gradually at a given constant rate, and decreased from a hypertonic condition to an isotonic condition. It is confirmed that the concentration is nearly uniform in the cross direction at the middle of the chamber, and the change in the NaCl concentration is reproducible. The average rate of increase or decrease in the measured concentration agrees fairly well with the given rate when the concentration is changed gradually at a constant rate. The rate of the abrupt change is also determined to be the highest limit achieved by the present method. As the first application of using the perfusion microscope for biological studies, the volume change of cells after exposure to a hypertonic solution is measured. Then, the hydraulic conductivity of the cell membrane is determinedfrom the comparison of the volume change between the experiment and the theoretical estimation for the measured change in the NaCl concentration of the perfused solution.

  1. Feto-maternal osmotic balance at term. A prospective observational study.

    PubMed

    Moen, Vibeke; Brudin, Lars; Tjernberg, Ivar; Rundgren, Mats; Irestedt, Lars

    2017-06-06

    We performed the present study to investigate the feto-maternal osmotic relationship at term with the hypothesis that, in contrast to the literature, maternal plasma osmolality is lower than fetal levels. In a previous study, we found that maternal plasma sodium at delivery was consistently lower than the sodium in the umbilical artery. Our aim was to corroborate these results with analysis of osmolality. Blood was sampled from 30 women immediately before cesarean section and from the umbilical artery and vein before cord clamping and osmolality, sodium and albumin were analyzed. Maternal osmolality was (mean; 95% confidence interval) 287.0 (285.8-288.2) mOsmkg/kg, arterial cord osmolality was 289.4 (287.9-291.0) mOsm/kg and venous cord osmolality was 287.3 (286.0-288.5) mOsm/kg. The paired difference between maternal and umbilical arterial osmolality was mean (SD) -2.4 (3.3) mOsm/kg (P<0.001), between maternal and umbilical vein -0.3 (3.0) mOsm/kg (P=0.63) and between umbilical artery and vein -2.1 (2.8) mOsm/kg (P<0.001). Maternal osmolality was significantly lower than arterial cord osmolality confirming our previous results. The feto-maternal osmotic gradient favors water transport from the mother to the fetus and may increase the fetal risk of water intoxication when the mother ingests or is administered large volumes of electrolyte free solutions.

  2. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells.

    PubMed

    Shu, Zhiquan; Hughes, Sean M; Fang, Cifeng; Huang, Jinghua; Fu, Baiwen; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-04-01

    Cryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells. Thus, we obtained tissue specimens from vaginal repair surgeries, isolated and flow cytometry-purified immune cells, and determined fundamental cryobiological characteristics of vaginal CD3(+) T cells and CD14(+) macrophages using a microfluidic device. The osmotically inactive volumes of the two cell types (Vb) were determined relative to the initial cell volume (V0) by exposing the cells to hypotonic and hypertonic saline solutions, evaluating the equilibrium volume, and applying the Boyle van't Hoff relationship. The cell membrane permeability to water (Lp) and to four different cryoprotective agent (CPA) solutions (Ps) at room temperature were also measured. Results indicated Vb values of 0.516 V0 and 0.457 V0 for mucosal T cells and macrophages, respectively. Lp values at room temperature were 0.196 and 0.295 μm/min/atm for T cells and macrophages, respectively. Both cell types had high Ps values for the three CPAs, dimethyl sulfoxide (DMSO), propylene glycol (PG) and ethylene glycol (EG) (minimum of 0.418 × 10(-3) cm/min), but transport of the fourth CPA, glycerol, occurred 50-150 times more slowly. Thus, DMSO, PG, and EG are better options than glycerol in avoiding severe cell volume excursion and osmotic injury during CPA addition and removal for cryopreservation of human vaginal immune cells. Published by Elsevier Inc.

  3. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells

    PubMed Central

    Shu, Zhiquan; Hughes, Sean M.; Fang, Cifeng; Huang, Jinghua; Fu, Baiwen; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-01-01

    Cryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells. Thus, we obtained tissue specimens from vaginal repair surgeries, isolated and flow cytometry-purified immune cells, and determined fundamental cryobiological characteristics of vaginal CD3+ T cells and CD14+ macrophages using a microfluidic device. The osmotically inactive volumes of the two cell types (Vb) were determined relative to the initial cell volume (V0) by exposing the cells to hypotonic and hypertonic saline solutions, evaluating the equilibrium volume, and applying the Boyle van't Hoff relationship. The cell membrane permeability to water (Lp) and to four different cryoprotective agent (CPA) solutions (Ps) at room temperature were also measured. Results indicated Vb values of 0.516 V0 and 0.457 V0 for mucosal T cells and macrophages, respectively. Lp values at room temperature were 0.196 and 0.295 μm/min/atm for T cells and macrophages, respectively. Both cell types had high Ps values for the three CPAs, dimethyl sulfoxide (DMSO), propylene glycol (PG) and ethylene glycol (EG) (minimum of 0.418 × 10−3 cm/min), but transport of the fourth CPA, glycerol, occurred 50–150 times more slowly. Thus, DMSO, PG, and EG are better options than glycerol in avoiding severe cell volume excursion and osmotic injury during CPA addition and removal for cryopreservation of human vaginal immune cells. PMID:26976225

  4. Microtubules Buckling and Bundling under Osmotic Stress: A Synchrotron X-ray Diffraction Study Probing Inter-Protofilament Bond Strength

    NASA Astrophysics Data System (ADS)

    Needleman, D. J.; Ojeda-Lopez, M.; Ewert, K.; Jones, J. B.; Miller, H. P.; Wilson, L.; Safinya, C. R.

    2004-03-01

    Microtubules (MTs) are hollow cylindrical polymers composed of ab tubulin protein heterodimers that align end-to-end in the MT wall, forming linear protofilaments that interact laterally. Placing MTs under osmotic pressure causes them to reversibly buckle to a noncircular shape and pack into rectangular bundles at a critical osmotic pressure; further increases in pressure continue to distort MTs elastically. At higher osmotic pressures stressing polymers may be forced into the MT lumen causing the MTs to revert to a circle cross-section and pack into hexagonal bundles. This SAXRD-osmotic stress study provides a probe of the inter-protofilament bond strength and gives insight into the mechanisms by which microtubule associated proteins and the cancer chemotherapeutic drug Taxol stabilize MTs. We present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the microtubule lumen. Supported by NSF DMR- 0203755, NIH GM-59288 and NS-13560, and CTS-0103516. SSRL is supported by the U.S. DOE.

  5. Role of Osmotic Adjustment in Plant Productivity

    SciTech Connect

    Gebre, G.M.

    2001-01-11

    Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, but requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar

  6. Osmotic buckling of spherical capsules.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2014-11-07

    We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on the relationship between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications. We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte capsules.

  7. Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions.

    PubMed Central

    Abidor, I G; Li, L H; Hui, S W

    1994-01-01

    Using the relations between pellet structure and electric properties derived from the preceding paper, the responses of rabbit erythrocyte pellets to osmotic or colloidal-osmotic effects from exchanged supernatants and from electroporation were investigated. Changing the ionic strength of the supernatant, or replacing it with dextran or poly(ethylene glycol) solutions, caused changes of Rp according to the osmotic behavior of the pellet. Rp was high and ohmic before electroporation, but dropped abruptly in the first few microseconds once the transmembrane voltage exceeded the membrane breakdown potential. After the initial drop, Rp increased as a result of the reduction of intercellular space. Rp increased regardless of whether the pellets were formed before or immediately after the pulse, indicating that porated cells experienced a slow colloidal-osmotic swelling. The intercellular or intermembrane distances between cells in a pellet, as a function of osmotic, colloidal-osmotic, and centrifugal pressures used to compress rabbit erythrocyte pellets, were deduced from the Rp measurement. This offered a unique opportunity to measure the intermembrane repulsive force in a disordered system including living cells. Electrohemolysis of pelleted cells was reduced because of limited swelling by the compactness of the pellet. Electrofusion was observed when the applied voltage per pellet membrane exceeded the breakdown voltage. The fusion yield was independent of pulse length greater than 10 microseconds, because after the breakdown of membrane resistance, voltage drop across the pellet became insignificant. Replacing the supernatant with poly(ethylene glycol) or dextran solutions, or coating pellets with unporated cell layers reduced the colloidal-osmotic swelling and hemolysis, but also reduced the electrofusion yield. These manipulations can be explored to increase electroloading and electrofusion efficiencies. PMID:7522598

  8. Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.

    PubMed

    Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T

    2014-04-15

    In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.

  9. OSMOTIC PRESSURE STUDY OF PROTEIN FRACTIONS IN NORMAL AND IN NEPHROTIC SUBJECTS

    PubMed Central

    Bourdillon, Jaques

    1939-01-01

    In serum of patients with nephrosis both albumin and globulin showed by osmotic pressure nearly double the molecular weights of normal albumin and globulin. In the urines of such patients, on the other hand, both proteins showed molecular weights lower even than in normal serum. The colloidal osmotic pressures were measured by the author's method at such dilutions that the van't Hoff law relating pressures to molecular concentrations could be directly applied. For the albumin and globulin of normal serum the molecular weights found were 72,000 and 164,000 respectively, in agreement with the weights obtained by other methods. PMID:19870879

  10. A study of the molecular sources of nonideal osmotic pressure of bovine serum albumin solutions as a function of pH.

    PubMed

    Kanal, K M; Fullerton, G D; Cameron, I L

    1994-01-01

    The nonideal osmotic pressure of bovine serum albumin (BSA) solutions was studied extensively by Scatchard and colleagues. The extent of pH- and salt-dependent nonideality changes are large and unexplained. In 1992, Fullerton et al. derived new empirical expressions to describe solution nonideal colligative properties including osmotic pressure (Fullerton et al. 1992. Biochem. Cell Biol. 70:1325-1331). These expressions are based on the concepts of volume occupancy and hydration force. Nonideality is accurately described by a solute/solvent interaction parameter I and an "effective" osmotic molecular weight Ae. This paper uses the interaction-corrected nonideal expressions for osmotic pressure to calculate the hydration I values and "effective" osmotic molecular weight of BSA, Ae, as a function of pH. Both factors vary in a predictable manner due to denaturing of the BSA molecule. Both contribute to an increase in osmotic pressure for the same protein concentration as the solution pH moves away from the isoelectric point. Increased nonideality is caused by larger hydration resulting from larger solvent-accessible surface areas and by the decrease in "effective" osmotic molecular weight, Ae, due to segmental motion of denatured (filamentous) molecules.

  11. A study of the molecular sources of nonideal osmotic pressure of bovine serum albumin solutions as a function of pH.

    PubMed Central

    Kanal, K M; Fullerton, G D; Cameron, I L

    1994-01-01

    The nonideal osmotic pressure of bovine serum albumin (BSA) solutions was studied extensively by Scatchard and colleagues. The extent of pH- and salt-dependent nonideality changes are large and unexplained. In 1992, Fullerton et al. derived new empirical expressions to describe solution nonideal colligative properties including osmotic pressure (Fullerton et al. 1992. Biochem. Cell Biol. 70:1325-1331). These expressions are based on the concepts of volume occupancy and hydration force. Nonideality is accurately described by a solute/solvent interaction parameter I and an "effective" osmotic molecular weight Ae. This paper uses the interaction-corrected nonideal expressions for osmotic pressure to calculate the hydration I values and "effective" osmotic molecular weight of BSA, Ae, as a function of pH. Both factors vary in a predictable manner due to denaturing of the BSA molecule. Both contribute to an increase in osmotic pressure for the same protein concentration as the solution pH moves away from the isoelectric point. Increased nonideality is caused by larger hydration resulting from larger solvent-accessible surface areas and by the decrease in "effective" osmotic molecular weight, Ae, due to segmental motion of denatured (filamentous) molecules. PMID:8130335

  12. Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling.

    PubMed

    Qin, Jian-Jun; Kekre, Kiran A; Oo, Maung H; Tao, Guihe; Lay, Chee L; Lew, Cheun H; Cornelissen, Emile R; Ruiken, Chris J

    2010-01-01

    Preliminary study on a novel osmotic membrane bioreactor (OMBR) was explored. Objective of this study was to investigate the effects of draw solution on membrane flux and air scouring at the feed side on fouling tendency in a pilot OMBR system composing the anoxic/aerobic and forward osmosis (FO) processes. Domestic sewage was the raw feed, FO membrane from HTI and NaCl/MgSO4 draw solutions were used in the experiments. Fluxes of 3 l/m2/h (LMH) and 7.2 LMH were achieved at osmotic pressure of 5 and 22.4 atm, respectively. No significant flux decline was observed at 3 LMH over 190 h and at 7.2 LMH over 150 h when air scouring was provided at the feed side of the membrane. However, without air scouring, the flux at 22.4 atm osmotic pressure declined by 30% after 195 h and then levelled off. The potential advantages of the fouling reversibility with air scouring under the operating conditions of the pilot OMBR and better water quality in OMBR over the conventional MBR were preliminarily demonstrated.

  13. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    PubMed

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; P<0.001; n=50) between the area of relaxed chromatin in the nucleus and the degree of nucleotide labelling. While the chromatin of some spermatozoa increased more than eight times its normal size, not all sperm nuclei with relaxed chromatin showed evidence of nucleotide incorporation. Preferential staining associated with sperm DNA fragmentation (SDF) was typically located in the peri-acrosomal and peripheral regions of the sperm head and at the base of the spermatozoa where it appear to be 'hot spots' of DNA damage following cryopreservation. Results of the comparative effects of anisotonic media and cryopreservation on the integrity of koala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; P<0.05; n=5); however, no correlation was found when the percentage of sperm with relaxed chromatin was compared. While a cryo-induced osmotic

  14. STUDIES ON OSMOTIC EQUILIBRIUM AND ON THE KINETICS OF OSMOSIS IN LIVING CELLS BY A DIFFRACTION METHOD

    PubMed Central

    Lucké, Balduin; Larrabee, Martin G.; Hartline, H. Keffer

    1935-01-01

    1. Osmotic equilibrium and kinetics of osmosis of living cells (unfertilized eggs of Arbacia punctulata) have been studied by a diffraction method. This method consists of illuminating a suspension of cells by parallel monochromatic light and measuring, by means of telescope and scale, the angular dimensions of the resulting diffraction pattern from which the average volume of the cells may be computed. The method is far less laborious and possesses several advantages over direct measurement of individual cells. The average size of a large number of cells is obtained from a single measurement of the diffraction pattern and thus individual variability is averaged out. The observations can be made at intervals of a few seconds, permitting changes in volume to be followed satisfactorily. During the measurements the cells are in suspension and are constantly stirred. 2. Volumes of cells in equilibrium with solutions of different osmotic pressure have been determined. In agreement with our previous experiments, based upon direct microscope measurements, we have confirmed the applicability of the law of Boyle-van't Hoff to these cells; that is to say, the product of volume and pressure has been found to be approximately constant if allowance be made for the volume of osmotically inactive material of the cell contents. The volume of osmotically inactive material was found to be, on the average, 12 per cent of the initial cell volume; in eggs from different animals this value ranged from 6 to 20 per cent. 3. Permeability to water of the Arbacia egg has been found to average, at 22°C., 0.106 cubic micra of water per square micron of cell surface, per minute, per atmosphere of difference in osmotic pressure. 4. Permeability to ethylene glycol has been found to average, at 24°C., 4.0 x 10–15 mols, per square micron of cell surface, per minute, for a concentration difference of 1 mol per liter. This is in agreement with the values reported by Stewart and Jacobs. PMID

  15. Osmotic Properties of Mitochondria

    PubMed Central

    Bentzel, Carl J.; Solomon, A. K.

    1967-01-01

    The osmotic behavior of rat liver mitochondria has been studied in a sucrose medium. The mitochondria behave like a two compartment system. One compartment is permeable to sucrose and has a volume of 1.22 µl/(mg mitochondrial dry weight) in a 272 milliosmol sucrose medium; the second, inaccessible to sucrose, has a volume of 0.555 µl/mg dry weight) under the same conditions. Part of the water in the sucrose inaccessible space is apparently not free to participate in osmotic phenomena. This volume is 0.272 µl/(mg dry weight) under the same conditions. It is suggested that the osmotically inactive water corresponds to the water of hydration of the mitochondrial macromolecules. The volume of the remainder of the water in the sucrose inaccessible space depends inversely on the osmolality of the medium, as is to be expected. The volume of water in the sucrose accessible space is constant, independent of the osmolality of the medium, as is the volume of the mitochondrial framework plus the nonvolatile solutes. PMID:6034757

  16. Interaction between osmotic and oxidative stress in diabetic precataractous lens: studies with a sorbitol dehydrogenase inhibitor.

    PubMed

    Obrosova, I G; Fathallah, L; Lang, H J

    1999-12-15

    Both sorbitol accumulation-linked osmotic stress and "pseudohypoxia" [increase in NADH/NAD+, similar to that in hypoxic tissues, and attributed to increased sorbitol dehydrogenase (1-iditol:NAD+ 5-oxidoreductase; EC 1.1.1.14; SDH) activity] have been invoked among the mechanisms underlying oxidative injury in target tissues for diabetic complications. We used the specific SDH inhibitor SDI-157 [2-methyl-4(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimid ine] to evaluate the role of osmotic stress versus "pseudohypoxia" in oxidative stress occurring in diabetic precataractous lens. Control and diabetic rats were treated with or without SDI-157 (100 mg/kg/day for 3 weeks). Lens malondialdehyde (MDA) plus 4-hydroxyalkenals (4-HA), MDA, GSH, and ascorbate levels, as well as the GSSG/GSH ratios, were similar in SDI-treated and untreated control rats, thus indicating that SDI-157 was not a prooxidant. Intralenticular osmotic stress, manifested by sorbitol levels, was more severe in SDI-treated diabetic rats (38.2+/-6.8 vs 21.2+/-3.5 micromol/g in untreated diabetic and 0.758+/-0.222 micromol/g in control rats, P<0.01 for both), while the decrease in the free cytosolic NAD+/NADH ratio was partially prevented (120+/-16 vs 88+/-11 in untreated diabetic rats and 143+/-13 in controls, P<0.01 for both). GSH and ascorbate levels were decreased, while MDA plus 4-HA and MDA levels were increased in diabetic rats versus controls; both antioxidant depletion and lipid aldehyde accumulation were exacerbated by SDI treatment. Superoxide dismutase (superoxide:superoxide oxidoreductase; EC 1.15.1.1), GSSG reductase (NAD[P]H:oxidized-glutathione oxidoreductase; EC 1.6.4.2), GSH transferase (glutathione S-transferase; EC 2.5.1.18), GSH peroxidase (glutathione:hydrogen-peroxide oxidoreductase; EC 1.11.1.9), and cytoplasmic NADH oxidase activities were increased in diabetic rats versus controls, and all the enzymes but GSH peroxidase were up-regulated further by SDI. In conclusion, sorbitol

  17. The Osmotic Pump

    ERIC Educational Resources Information Center

    Levenspiel, Octave; de Nevers, Noel

    1974-01-01

    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  18. The Osmotic Pump

    ERIC Educational Resources Information Center

    Levenspiel, Octave; de Nevers, Noel

    1974-01-01

    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  19. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A new role for carbonic anhydrase 2 in the response of fish to copper and osmotic stress: implications for multi-stressor studies.

    PubMed

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E; Scrimshaw, Mark D

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis.

  1. A New Role for Carbonic Anhydrase 2 in the Response of Fish to Copper and Osmotic Stress: Implications for Multi-Stressor Studies

    PubMed Central

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015

  2. Characterizing osmotic lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies.

    PubMed

    Zhan, Yihong; Loufakis, Despina Nelie; Bao, Ning; Lu, Chang

    2012-12-07

    The biomechanics of erythrocytes, determined by the membrane integrity and cytoskeletal structure, provides critical information on diseases such as diabetes mellitus, myocardial infarction, hypertension, and sickle cell anemia. Here we demonstrate a simple microfluidic tool for examining erythrocyte fragility based on characterizing osmotic lysis kinetics. Hydrodynamic focusing is used for generating rapid dilution of the buffer and producing lysis of erythrocytes during their flow. The lysis kinetics are tracked by monitoring the release of intracellular contents from cells via recording the light intensity of erythrocytes at various locations in the channel. Such release profile reflects sensitively the changes in erythrocyte fragility induced by chemical, heating, and glucose treatment. Our tool provides a simple approach for probing red blood cell fragility in both basic research and clinical settings.

  3. Further studies on osmotic resistance of nucleated erythrocytes: observations with pigeon, peafowl, lizard and toad erythrocytes during changes in temperature and pH.

    PubMed

    Oyewale, J O

    1994-02-01

    The osmotic resistance of pigeon, peafowl, lizard and toad erythrocytes at different temperatures and pH was studied. Erythrocytes from female pigeons showed greater osmotic resistance than those from males, but no sex difference appeared with erythrocytes from peafowls. Pigeon erythrocytes were more resistant and the red blood cell, packed cell volume and haemoglobin values were higher than those in peafowls. Although no significant differences appeared in their haematological values, erythrocytes from the lizard were more resistant than erythrocytes from the toad. At higher temperature, the osmotic resistance of pigeon, lizard and toad erythrocytes increased, while that of peafowl erythrocytes decreased. The resistance of toad erythrocytes decreased in acidic and alkaline solutions, but that of peafowl erythrocytes increased in both solutions. However, with pigeon and lizard erythrocytes, the resistance was unaltered in alkaline solution and decreased in acidic solution.

  4. Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Chai, Zhenhua; Guo, Zhaoli; Shi, Baochang

    2007-05-01

    In this article, electro-osmotic flow (EOF) in microchannels packed with a variable porosity medium is studied using the lattice Boltzmann method (LBM). The present lattice Boltzmann model is constructed based on the generalized porous medium equation for EOF and validated by comparing the numerical solution with the approximate analytical solution. A detailed parametric study has been presented for EOF in microchannels filled with a variable porosity medium. It is found that the variations of porosity, particle size, ζ potential, applied electric field strength, and tortuosity significantly affect the flow pattern. Numerical results also indicate that the variation of the porosity near the wall has an important influence on the velocity profile, and should not be neglected in practice.

  5. Saltstone Osmotic Pressure

    SciTech Connect

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  6. [Effects of Shenwu capsule on learning-memory ability and cholinergic function of brain in AD-like rat model induced by chronic infusion of sodium azide by minipump].

    PubMed

    Zhang, Lan; Zhang, Ru-Yi; Li, Ya-Li; Zhang, Li; Ye, Cui-Fei; Li, Lin

    2013-05-01

    Because of the proposed importance of mitochondrial cytochrome C oxidase (COX) decrease in Alzheimer's disease (AD) , the protective effect of Shenwu capsule on mitochondrial deficiency model rats and its pharmacological mechanism were investigated in present study. Rats were administered with azide at 1 mg . kg-1 . h-1 subcutaneously via an Alzet minipump for 30 days. Tweny-four hours after the operation, the rats were administered intragastrically by Shenwu capsule with the dose of 0. 45, 0. 9 and 1. 8 g . kg-1 . d-1 for one month. Then learning-memory ability was determined by the watermaze test and passive avoidance tests. The activity of choline-acetyl-transfertase(ChAT) and acetylcholinesterase (AChE) in hippocampus and cortex of rats were measured by radiochemical method and hydroxylamine colorimetry separately. M-cholinergic receptor binding ability (M-binding) was assayed by radio binding. Chronic infusion of sodium azide via minipump induced learning-memory deficiency of rats. Both ChAT activity and M-binding decreased in hippocampus and cortex of model rats, however, the activity of AChE increased in hippocampus and was not affected at the cortex. As the result, the cholinergic function of the brain decreased in model rats. Shenwu capsule significantly improved learning and memory ability and the mechanism may be related with the improved cholinergic function in model brain: ChAT activity and M-binding significantly increased in Shenwu treated groups compared with model group; and the increased activity of AChE in hippocampus returned to normal. Mitochondria, especially mitochondrial cytochrome C oxidase, may play the key role in the early event of AD. Chronic, partial in vivo inhibition of mitochondrial cytochrome C oxidase in rats provides a suitable model mimicking several aspects of AD. Shenwu capsule indicate effectiveness in AD-like mitochondrial deficiency model rats, so it would be applied in the treatment of AD.

  7. Nonlinear osmotic properties of the cell nucleus

    PubMed Central

    Finan, John D.; Chalut, Kevin J.; Wax, Adam; Guilak, Farshid

    2009-01-01

    Summary In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van’t Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo, and furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically-sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically-induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  8. Nonlinear osmotic properties of the cell nucleus.

    PubMed

    Finan, John D; Chalut, Kevin J; Wax, Adam; Guilak, Farshid

    2009-03-01

    In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van't Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo. Furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology.

  9. FOST 2 Upgrade with Hollow-Fiber CTA FO Module and Generation of Osmotic Agent for Microorganism Growth Studies

    NASA Technical Reports Server (NTRS)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Shaw, Hali; Beeler, David

    2016-01-01

    FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.

  10. OSMOTICALLY LYSED RAT LIVER MITOCONDRIA

    PubMed Central

    Vasington, Frank D.; Greenawalt, John W.

    1968-01-01

    Osmotically lysed rat liver mitochondria have been utilized for a study of the biochemical and ultrastructural properties in relation to divalent ion accumulation. Osmotic lysis of mitochondria by suspension and washing in cold, distilled water results in the extraction of about 50% of the mitochondrial protein, the loss of the outer mitochondrial membrane, an increase in respiration, and a marked decrease in the ability to catalyze oxidative phosphorylation. Nevertheless, except for a decrease in the ability to accumulate Sr2+ by an ATP-supported process, these lysed mitochondria retain full capacity to accumulate massive amounts of divalent cations by respiration-dependent and ATP-supported mechanisms. The decreased ability of osmotically lysed mitochondria to accumulate Sr2+ by an ATP-energized process does not appear to be due to a loss or inactivation of a specific Sr2+-activated ATPase. The energy-dependent accumulation processes in lysed mitochondria show an increased sensitivity to inhibition by monovalent cations. Extraction of cytochrome c from osmotically lysed mitochondria results in a complete loss of phosphorylation and the respiration-dependent accumulation of Ca2+; a lesser, but significant, decrease in the ATP-supported accumulation of Ca2+ also was observed. The addition of cytochrome c fully restores the respiration-dependent accumulation of Ca2+ to the level present in unextracted, osmotically lysed mitochondria. The ATP-supported process is not affected by the addition of cytochrome c to extracted mitochondria, indicating that cytochrome c is not involved in ion transport energized by ATP. The osmotically lysed mitochondria are devoid of outer membranes and contain relatively little matrix substance. The accumulation of Ca2+ and Pi by lysed mitochondria under massive loading conditions is accompanied by the formation of electron-opaque deposits within the lysed mitochondria associated with the inner membranes. This finding suggests that the

  11. The effect of aqueous preparation of Allium cepa (onion) and Allium sativa (garlic) on erythrocyte osmotic fragility in Wistar rats: in vivo and in vitro studies.

    PubMed

    Salami, H A; John, A I; Ekanem, A U

    2012-06-07

    Allium cepa (onion) and Allium sativa (garlic) are bulbous herbs used as food item, spice and medicine in different parts of the world. The effects of onion and garlic on the osmotic fragility of red blood cells in albino rats were assessed in vivo and in vitro. In the in vivo studies, five albino rats weighing between 150 - 200g composed each of three study groups. Group A were administered 150mg/Kg body weight aqueous onion preparation; Group B 75mg/Kg body weight aqueous onion and 75mg/Kg body weight garlic preparations; and Group C served as the control and were administered distilled water. The treatment regimens were orally administered thrice a week, for a period of four weeks by gavages. The in vitro erythrocyte osmotic fragility was also evaluated in 12 Wistar rats that were not pre-treated with either onion alone or onion and garlic. The animals were divided into three groups. Blood samples from group A rats were treated with 150mg onion while blood from group B rats was treated with 75mg onion and 75mg garlic extracts. Group C served as the control and were treated with normal saline and osmotic fragility assays were carried out. The degree of haemolysis was greater in the treatment group compared to control and the percentage haemolysis was greater in blood samples with onion and garlic compared to the onion group. The same observation was made in the in vitro study, but the degree of haemolysis was significantly higher in in vitro than the in vivo experiments. It is concluded that onion and garlic increase the osmotic fragility of red blood cells in albino rats.

  12. Studies on bi-layer osmotic pump tablets of water-insoluble allopurinol with large dose: in vitro and in vivo.

    PubMed

    Wang, Xun; Nie, Shu-fang; Li, Wei; Luan, Lin; Pan, Weisan

    2007-09-01

    Controlled release bi-layer osmotic pump tablets (BOPT) of water-insoluble allopurinol with large dose (150 mg/BOPT) were successfully prepared merely with sodium chloride as osmotic promoting agent and polyethylene oxide (PEO) as suspending agent. Formulations of the two kinds of agents were investigated in order to discuss their effects on the release behavior of BOPT, and then the optimal formulation was evaluated. The pharmacokinetics studies of allopurinol and its active metabolite oxypurinol in two-preparation and two-period crossover design relative to the equivalent dose of commercially common allopurinol tablets were evaluated in six Beagle dogs. And the pharmacokinetics results showed that allopurinol BOPT were able to provide a slow release of allopurinol, and oxypurinol were bioequivalent between allopurinol BOPT and common allopurinol tablets. A good in vitro-in vivo correlation of allopurinol was also proved. In conclusion, water-insoluble drugs with large dose can be designed to BOPT for efficacy and safety use.

  13. A different perspective to study the effect of freeze, air, and osmotic drying on oil absorption during potato frying.

    PubMed

    Moreno, M C; Bouchon, P

    2008-04-01

    The objective of this article is to assess the effect of different dehydration pretreatments on oil absorption and illustrate how the different ways results can be reported may even drive to opposite conclusions. To do so, potato cylinders were blanched in hot water and dried until a moisture content of 62% (w.b.) by either freeze-drying, air drying, and osmotic drying with a sucrose solution or osmotic drying with a NaCl solution. Control (blanched) and dried potatoes were deep-fat fried at 170 degrees C for time periods between 1 and 5 min. Water removal and total oil uptake were determined and 2 oil fractions were distinguished: superficial oil and penetrated oil. Compared to the control, freeze dried samples increased oil uptake in 15.4% (d.b.) whereas air-dried samples reduced it in 11.2% (d.b.). Similarly, osmotic dehydrated samples showed a high reduction in oil uptake compared to the control (up to 27%[d.b.] when using a sucrose solution). However, this high decrease in oil absorption was attributed to the increase in solids content occurring during the osmotic dehydration process rather than a reduction in the amount of oil taken up. In fact, when the amount of oil absorbed per cylinder was determined, it was verified that oil uptake of osmotically dehydrated samples was even higher than the control, as opposed to what has been previously reported in the literature. These results highlight the importance of selecting an adequate basis to carry out comparisons properly.

  14. Osmotic regulation of gene action.

    PubMed Central

    Douzou, P

    1994-01-01

    Most reactions involved in gene translation systems are ionic-dependent and may be explained in electrostatic terms. However, a number of observations of equilibria and rate processes making up the overall reactions clearly indicate that there is still an enormous gap between the rough picture of the mechanism of ionic regulation and the detailed behavior of reactions at the molecular level that hold the key to specific mechanisms. The present paper deals with possible osmotic contributions arising from the gel state of gene systems that are complementary to, and interdependent of, electrostatic contributions. This treatment, although still oversimplified, explains many previous observations by relating them to a general osmotic mechanism and suggests experimental approaches to studying the mechanisms of gene regulation in organelle-free and intact systems. PMID:8127862

  15. Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: kinetic and molecular dynamics studies.

    PubMed

    Masson, Patrick; Lushchekina, Sofya; Schopfer, Lawrence M; Lockridge, Oksana

    2013-09-15

    CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E'. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈10⁸ M⁻¹·min⁻¹). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp⁷⁰ in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E', indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E'. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His⁴³⁸, leading to the less reactive form E'.

  16. Nanofluidic osmotic diodes

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic; Picallo, Clara; Gravelle, Simon; Joly, Laurent; Charlaix, Elisabeth

    2013-11-01

    Osmosis describes the flow of water across semipermeable membranes powered by the chemical free energy extracted from salinity gradients. While osmosis can be expressed in simple terms via the van't Hoff ideal gas formula for the osmotic pressure, it is a complex phenomenon taking its roots in the subtle interactions occurring at the scale of the membrane nanopores. Here we use new opportunities offered by nanofluidic systems to create an osmotic diode exhibiting asymmetric water flow under reversal of osmotic driving. We show that a surface charge asymmetry built on a nanochannel surface leads to non-linear couplings between water flow and the ion dynamics, which are capable of water flow rectification. This phenomenon opens new opportunities for water purification and complex flow control in nanochannels.

  17. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  18. Silk Fibroin under Osmotic Stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun; Strey, Helmut H.; Gido, Samuel P.

    2003-03-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. Controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules get pressurized to align together to form a water-soluble crystalline mesophase (Silk-I), and then gradually become anti-parallel b-sheet structure (Silk-II) at higher osmotic pressure. This behavior becomes more sensitive as the salt concentration decreases. A partial ternary phase diagram of Water-Silk fibroin-LiBr was constructed based on the results. This phase diagram can be utilized to help design a new route for wet spinning of re-generated silk fibroin. Precise control of compositions and corresponding crystalline structure of a silk fibroin solution may enable us to simulate the natural Bombyx mori silkworm spinning process.

  19. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  20. Synchrotron X-ray Diffraction Study of Microtubules Buckling and Bundling under Osmotic Stress: A Probe of Interprotofilament Interactions

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel J.; Ojeda-Lopez, Miguel A.; Raviv, Uri; Ewert, Kai; Jones, Jayna B.; Miller, Herbert P.; Wilson, Leslie; Safinya, Cyrus R.

    2004-11-01

    Microtubules are hollow cylinders composed of tubulin heterodimers that stack into linear protofilaments that interact laterally to form the microtubule wall. Synchrotron x-ray diffraction of microtubules under increasing osmotic stress shows they transition to rectangular bundles with noncircular buckled cross sections, followed by hexagonally packed bundles. This new technique probes the strength of interprotofilamen bonds, yielding insight into the mechanism by which associated proteins and the chemotherapy drug taxol stabilize microtubules.

  1. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis.

    PubMed

    Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling.

  2. Osmotic response of oocytes using a microscope diffusion chamber: a preliminary study comparing murine and human ova.

    PubMed

    Bernard, A; McGrath, J J; Fuller, B J; Imoedemhe, D; Shaw, R W

    1988-12-01

    The hydraulic conductivity (Lp) of the plasma membrane determines how cells respond to the stresses of dehydration encountered during cryopreservation. We have used a microscope diffusion chamber which allows for direct real-time observation of the dynamic osmotic response of individual cells in microvolume suspension to compare the Lp of murine and human unfertilized ova. In this system, the response of an individual cell to the induced osmotic imbalance is documented via a series of photomicrographs or videotape; from these data the Lp can be computed. Donated human preovulatory oocytes were compared with macroscopically normal human ova, 43 hr after insemination, which had failed to fertilize (Ff) and with murine ova collected 13 hr post human chorionic gonadotropin injection. The permeability coefficients were 0.65 +/- 0.43, 0.84 +/- 0.39, and 0.36 +/- 0.07 micron3/micron2/atm/min. The results suggest that it may be possible to use Ff ova for experiments to design suitable cryopreservation procedures.

  3. Comparison of erythrocyte osmotic fragility among ectotherms and endotherms at three temperatures.

    PubMed

    Aldrich, K; Saunders, D K.

    2001-06-01

    1. Comparison of erythrocyte osmotic fragility (EOF) between various ectotherms and endotherms was investigated at 5, 25, and 38 degrees C. 2. We hypothesized that ectotherms might possess erythrocytes whose osmotic fragility would be less affected by temperature than those of endotherms. 3. Ectotherm erythrocytes were much more osmotically resistant than those of endotherms. 4. The EOF of ectotherms and endotherms showed similar responses to temperature. 5. It does not appear that the osmotic fragility of erythrocytes from ectotherms in this study are adapted to be less affected by temperature than those of endotherms. The highly osmotic resistant erythrocytes of ectotherms may alleviate the need for further adaptation for osmotic resistance.

  4. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  5. Study on enhanced lymphatic exposure of polyamidoamin-alkali blue dendrimer for paclitaxel delivery and influence of the osmotic pressure on the lymphatic targeting.

    PubMed

    Yang, Rui; Mao, Yuling; Ye, Tiantian; Xia, Suxia; Wang, Shujun; Wang, Siling

    2016-09-01

    In this study, paclitaxel (PTX)-loaded polyamidoamin-alkali blue (PTX-P-AB) was prepared in order to investigate the intralymphatic targeting ability and anti-cancer effect after subcutaneous (s.c.) administration. The physicochemical properties and in vitro drug release were evaluated. The lymphatic drainage and lymph nodes (LNs) uptake were examined by pharmacokinetics and distribution recovery of PTX in plasma, LNs, injection site (IS) and tissues after s.c. injection in healthy mice and in tumor-bearing mice. The osmotic pressure of PTX-P-AB affecting the lymphatic targeting was studied. The anti-tumor activity of PTX-P-AB was investigated in mice bearing S180 metastatic tumors. Results showed that PTX-P-AB with suitable and stable physicochemical properties could be used for in vivo lymphatic studies, and displayed the more rapid lymphatic absorption, the higher AUC value in LNs, the longer LNs residence time and the higher metastasis-inhibiting rate compared with Taxol®. Enhanced lymphatic drainage from the IS and uptake into lymph by increasing the osmotic pressure of PTX-P-AB indicated that PTX-P-AB possesses the double function of lymphatic tracing and lymphatic targeting, and suggested the potential for the development of lymphatic targeting vectors and the lymphatic tracer for treatment and diagnosis.

  6. Negative second virial coefficients as predictors of protein crystal growth: evidence from sedimentation equilibrium studies that refutes the designation of those light scattering parameters as osmotic virial coefficients.

    PubMed

    Deszczynski, Marcin; Harding, Stephen E; Winzor, Donald J

    2006-03-20

    The effects of ammonium sulphate concentration on the osmotic second virial coefficient (BAA/MA) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, BAA/MA assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to BAA/MA but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive.

  7. In vitro--in silico--in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: nifedipine osmotic release tablets case study.

    PubMed

    Ilić, Marija; Ðuriš, Jelena; Kovačević, Ivan; Ibrić, Svetlana; Parojčić, Jelena

    2014-10-01

    In vitro--in vivo correlations (IVIVC) are generally accepted as a valuable tool in modified release formulation development aimed at (i) quantifying the in vivo drug delivery profile and formulation related effects on absorption; (ii) establishing clinically relevant dissolution specifications and (iii) supporting the biowaiver claims. The aim of the present study was to develop relevant IVIVC models based on mechanistic gastrointestinal simulation (GIS) and artificial neural network (ANN) analysis and to evaluate their applicability and usefulness in biopharmaceutical drug characterisation. Nifedipine osmotic release tablets were selected as model drug product on the basis of their robustness, dissolution limited drug absorption and the availability of relevant literature data. Although the osmotic release tablets have been designed to be robust against the influence of physiological conditions in the gastrointestinal tract, notable differences in nifedipine dissolution kinetics were observed depending on the in vitro experimental conditions employed. The results obtained indicate that both GIS and ANN model developed were sensitive to input kinetics represented by the in vitro profiles obtained under various experimental conditions. Different in silico approaches may be successfully employed in the in vitro--in silico--in vivo model development. However, the results obtained may differ and relevant outcomes are sensitive to the methodology employed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    SciTech Connect

    Finan, John D.; Leddy, Holly A.; Guilak, Farshid

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  9. Use of spent osmotic solutions for the production of fructooligosaccharides by Aspergillus oryzae N74.

    PubMed

    Ruiz, Yolanda; Klotz, Bernadette; Serrato, Juan; Guio, Felipe; Bohórquez, Jorge; Sánchez, Oscar F

    2014-07-01

    In the food industry, osmotic dehydration can be an important stage to obtain partially dry foodstuffs. However, the remaining spent osmotic solution at the end of the process could become a waste with an important environmental impact due to the large amount of organic compounds that it might contain. Since one of the most important osmotic agents used in osmotic dehydration is sucrose, this spent osmotic solution could be used to be biotransformed to produce fructooligosaccharides by a fructosyltransferase. This study evaluated the production of fructooligosaccharides using the fructosyltransferase produced by Aspergillus oryzae N74, and the spent osmotic solution that resulted in the osmotic dehydration of Andes berry (Rubus glaucus) and tamarillo (Cyphomandra betacea). Assays were conducted at small and bioreactor scales, using spent osmotic solution with or without re-concentration. At small scale no significant difference (p > 0.05) was observed in the fructooligosaccharides production yield, ranging from 31.18% to 34.98% for spent osmotic solution from tamarillo osmotic dehydration, and from 33.16% to 37.52% for spent osmotic solution from Andes berry osmotic dehydration, using either the SOS with or without re-concentration. At bioreactor scale the highest fructooligosaccharides yield of 58.51 ± 1.73% was obtained with spent osmotic solution that resulted from tamarillo osmotic dehydration. With the spent osmotic solution from Andes berry osmotic dehydration the yield was 49.17 ± 2.82%. These results showed the feasibility of producing fructooligosaccharides from spent osmotic solution that is considered a waste in food industry.

  10. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    PubMed Central

    Finan, John D.; Leddy, Holly A.; Guilak, Farshid

    2011-01-01

    Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport. PMID:21463604

  11. Study on the Salini-adaptation Physiology in Different Ecotypes of Phragmites australis in the Yellow River Delta of China: Osmotica and Their Contribution to the Osmotic Adjustment

    NASA Astrophysics Data System (ADS)

    Zhao, K. F.; Feng, L. T.; Zhang, S. Q.

    1999-08-01

    In the Yellow River Delta, there are four ecotypes of Phragmites australis: freshwater swamp reed; salty-water swamp reed; lower salt-meadow reed and higher salt-meadow reed. The growth status, composition and dominance of the reed community were observed. The organic and inorganic osmotica, osmotic potential and osmotic adjustment ability of reeds were determined. The abundance, coverage, plant height, leaf water content and osmotic potential all decreased with increasing salinity of habitats. K+ and sugars are the main osmotica in lower salinity, while Na+ is the main osmoticum in higher salinity. Na+ contents and the osmotic adjustment abilities of roots are higher than those in leaves. Na/K ratios of reeds varied with salinity levels of habitats, being about 1 in higher salinity. Moreover, the contributions of osmotica to the osmotic adjustment change with salinity, the higher the salinity level, the greater the contribution of inorganic osmotica, but the smaller the contribution of organic osmotica.

  12. Effect of osmotic stress on membrane fusion on solid substrate.

    PubMed

    Zhu, Tao; Jiang, Zhongying; Nurlybaeva, El Mi Ra; Sheng, Jie; Ma, Yuqiang

    2013-05-28

    There is currently a lack of comprehensive understanding of osmotic effect on lipid vesicle fusion on solid oxide surface. The question has both biological and biomedical implications. We studied the effect by quartz crystal microbalance with dissipation monitoring using NaCl, sucrose as osmolytes, and two different osmotic stress imposition methods, which allowed us to separate the osmotic effects from the solute impacts. Osmotic stress was found to have limited influence on the fusion kinetics, independently of the direction of the gradient. Further atomic force microscopy experiments and energy consideration implied that osmotic stress spends the majority of chemical potential energy associated in directed transport of water across membrane. Its contribution to vesicle deformation and fusion on substrate is therefore small compared to that of adhesion.

  13. Osmotically driven pipe flows

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle; Hansen, Rasmus; Jensen, Kaare; Bohr, Tomas; Clanet, Christophe

    2006-11-01

    The mechanism for the transport of sugar in plants is a key issue for the understanding of their growth. Since the 1930'ies the dominant model has been the so-called M"unch model (M"unch 1930) where the transport of sugar in the phloem of plants is viewed as a purely passive hydrodynamical process. According to M"unch, differences in osmotic pressure caused by differences in sugar concentration create a mean flow, transporting sugar from high concentration regions (e.g. leaves) to low concentration regions (e.g. new shoots or roots). We have performed experiments and numerical solutions for such flows under various conditions, to explore the nature of the ensuing rich fluid dynamics. Experiments are performed with solutions of dextran of various molecular weights and in channels of widths ranging from centimetric down to micrometric.

  14. [Extrapontine osmotic myelinolysis].

    PubMed

    Silva, Federico A; Rueda-Clausen, Christian F; Ramírez, Fabián

    2005-06-01

    Extrapontine osmotic myelinolysis is a rare nervous system complication. Symptoms of this malady were presented during the clinical examination of a 49-year-old alcoholic male, who arrived at the hospital emergency room in a state of cardiorespiratory arrest. After resuscitation methods were applied, the patient was found in metabolic acidosis (pH 7.014) and was treated with sodium bicarbonate. Forty-eight hours later, sodium levels in the patient had risen from 142 to 174 mEq/l. During the period of clinical observation, the patient showed signs of cognitive impairment, disartria, bilateral amaurosis, hyporeflexia and right-half body hemiparesias. After 72 hours, computer tomography was applied; this showed a bilateral lenticular hypodensity with internal and external capsule compromise. One month later, when the patient was referred to another institution for rehabilitation, the patient showed cognitive impairment, bilateral optic atrophy, residual disartria, bradikynesia and double hemiparesia.

  15. Canine RBC osmotic tolerance and membrane permeability.

    PubMed

    Liu, J; Christian, J A; Critser, J K

    2002-06-01

    The objective of this study was to determine the cryobiological characteristics of canine red blood cells (RBC). These included the hydraulic conductivity (L(p)), the permeability coefficients (P(s)) of common cryoprotectant agents (CPAs), the associated reflection coefficient (sigma), the activation energies (E(a)) of L(p) and P(s) and the osmotic tolerance limits. By using a stopped-flow apparatus, the changes of fluorescence intensity emitted by intracellularly entrapped 5-carboxyfluorescein diacetate (CFDA) were recorded when cells were experiencing osmotic volume changes. After the determination of the relationship between fluorescence intensity and cell volume, cell volume changes were calculated. These volume changes were used in three-parameter fitting calculations to determine the values of L(p), P(s), and sigma for common CPAs. These volume measurements and data analyses were repeated at three different temperatures (22, 14, 7 degrees C). Using the Arrhenius equation, the activation energies of L(p) and P(s) in the presence of CPAs were determined. The osmotic tolerance limits for canine RBC were determined by measuring the percentage of free hemoglobin in NaCl solutions with various osmolalities compared to that released by RBC incubated in double distilled water. The upper and lower osmotic tolerance limits were found to be 150mOsm (1.67V(iso)) and 1200mOsm (0.45V(iso)), respectively. These parameters were then used to calculate the amount of non-permeating solute needed to keep cell volume excursions within the osmotic tolerance limits during CPA addition and removal.

  16. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  17. Osmotic parameters of red blood cells from umbilical cord blood.

    PubMed

    Zhurova, Mariia; McGann, Locksley E; Acker, Jason P

    2014-06-01

    The transfusion of red blood cells from umbilical cord blood (cord RBCs) is gathering significant interest for the treatment of fetal and neonatal anemia, due to its high content of fetal hemoglobin as well as numerous other potential benefits to fetuses and neonates. However, in order to establish a stable supply of cord RBCs for clinical use, a cryopreservation method must be developed. This, in turn, requires knowledge of the osmotic parameters of cord RBCs. Thus, the objective of this study was to characterize the osmotic parameters of cord RBCs: osmotically inactive fraction (b), hydraulic conductivity (Lp), permeability to cryoprotectant glycerol (Pglycerol), and corresponding Arrhenius activation energies (Ea). For Lp and Pglycerol determination, RBCs were analyzed using a stopped-flow system to monitor osmotically-induced RBC volume changes via intrinsic RBC hemoglobin fluorescence. Lp and Pglycerol were characterized at 4°C, 20°C, and 35°C using Jacobs and Stewart equations with the Ea calculated from the Arrhenius plot. Results indicate that cord RBCs have a larger osmotically inactive fraction compared to adult RBCs. Hydraulic conductivity and osmotic permeability to glycerol of cord RBCs differed compared to those of adult RBCs with the differences dependent on experimental conditions, such as temperature and osmolality. Compared to adult RBCs, cord RBCs had a higher Ea for Lp and a lower Ea for Pglycerol. This information regarding osmotic parameters will be used in future work to develop a protocol for cryopreserving cord RBCs.

  18. A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential

    PubMed Central

    Bosher, S. K.; Warren, R. L.

    1971-01-01

    1. Changes in the endocochlear potential between the 8th and 18th days after birth were investigated in the rat. Initially the potential was low but its magnitude increased rapidly between the 11th and 16th day. During the 13th and 14th days the rate of increase was approximately 1 mV/hr. 2. The rapid potential increase arose virtually simultaneously in all three turns of the cochlea. 3. Histological examination revealed the cochlea, including the hair cells of Corti's organ and the stria vascularis, to be fully mature before the period of rapid change in the endocochlear potential, apart from the cells of Claudius, whose final development coincided with the latter part of this phase. 4. The endolymphatic sodium concentration (average 1·0 m-equiv/l.) had attained the very low adult level in the earliest period studied. The potassium and chloride concentrations were slightly below the normal adult levels, the result of some degree of general hypo-osmolality present at this time. 5. The endolymphatic ionic concentrations remained unchanged during the phase of rapid increase in the endocochlear potential. 6. The findings thus indicate that the distinctive endolymphatic ionic composition and the endocochlear potential arise largely independently and in succession during cochlear maturation. 7. No differences in osmotic pressure were demonstrated between endolymph, perilymph and serum. The problems concerning the homoeostasis of the inner ear fluids do not consequently seem to be complicated by unusual hydrodynamic aspects. 8. Alterations in body fluid osmolality, produced by intraperitoneal injection of water or hypertonic glycerol, were accompanied by simultaneous changes in the osmotic pressures of the inner ear fluids. Some portion of the membranes bounding the endolymphatic space is therefore considered to be freely permeable to water. 9. The investigations provide no further information about the nature of the endocochlear potential, although an increase in the

  19. Vesicle formation in the membrane of onion cells (Allium cepa) during rapid osmotic dehydration

    PubMed Central

    Assani, Akym; Moundanga, Sylvie; Beney, Laurent; Gervais, Patrick

    2009-01-01

    Background and Aims Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium. Methods Onion epidermal cells were submitted either to an osmotic shock or to a progressive osmotic shift from an osmotic pressure of 2 to 24 MPa to induce plasmolysis. After 30 min in the treatment solution, deplasmolysis was carried out. Cells were observed by microscopy during the whole cycle of dehydration–rehydration. Key Results The application of an osmotic shock to onion cells, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for <1 s, led to the formation of numerous exocytotic and osmocytic vesicles visualized through light and confocal microscopy. In contrast, after application of a progressive osmotic shift, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for 30 min, no vesicles were observed. Additionally, the absence of Hechtian strand connections led to the bursting of vesicles in the case of the osmotic shock. Conclusions It is concluded that the kinetics of osmotic dehydration strongly influence vesicle formation in onion cells, and that Hechtian strand connections between protoplasts and exocytotic vesicles are a prerequisite for successful deplasmolysis. These results suggest that a decrease in the area-to-volume ratio of a cell could cause cell death following an osmotic shock. PMID:19833611

  20. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study.

    PubMed

    Petrov, Anton S; Douglas, Scott S; Harvey, Stephen C

    2013-03-20

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage φ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage's capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent's viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  1. Osmotic control of bilayer fusion.

    PubMed Central

    Fisher, L R; Parker, N S

    1984-01-01

    We have used photography and capacitance measurement to monitor the steps in the interaction and eventual fusion of optically black lipid bilayers (BLMs), hydrostatically bulged to approximately hemispherical shape and pushed together mechanically. A necessary first step is drainage of aqueous solution from between the bilayers to allow close contact of the bilayers. The drainage can be controlled by varying the osmotic difference across the bilayers. If the differences are such as to remove water from between the bilayers, fusion occurs after a time that depends on the net osmotic difference and the area of contact. If there is an osmotic flow of water into the space between the bilayers, fusion never occurs. In the fusion process, a single central bilayer forms from the original apposed pair of bilayers. The central bilayer may later burst to allow mixing of the two volumes originally bounded by the separate bilayer; the topological equivalent of exocytosis. Images FIGURE 2 PMID:6541065

  2. The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in Arabidopsis[W

    PubMed Central

    Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. PMID:21610183

  3. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    ERIC Educational Resources Information Center

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  4. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    ERIC Educational Resources Information Center

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  5. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress

    NASA Astrophysics Data System (ADS)

    Parmar, J. H.; Bhartiya, Sharad; Venkatesh, K. V.

    2009-09-01

    Adaptation to osmotic shock in Saccharomyces cerevisiae is brought about by the activation of two independent signaling pathways, Sho1 and Sln1, which in turn trigger the high osmolarity glycerol (HOG) pathway. The HOG pathway thereby activates the transcription of Gpd1p, an enzyme necessary to synthesize glycerol. The production of glycerol brings about a change in the intracellular osmolarity leading to adaptation. We present a detailed mechanistic model for the response of the yeast to hyperosmotic shock. The model integrates the two branches, Sho1 and Sln1, of the HOG pathway and also includes the mitogen-activated protein kinase cascade, gene regulation and metabolism. Model simulations are consistent with known experimental results for wild-type strain, and Ste11Δ and Ssk1Δ mutant strains subjected to osmotic stress. Simulation results predict that both the branches contribute to the overall wild-type response for moderate osmotic shock, while under severe osmotic shock, the cell responds mainly through the Sln1 branch. The analysis shows that the Sln1 branch helps the cell in preventing cross-talk to other signaling pathways by inhibiting ste11ste50 activation and also by increasing the phosphorylation of Ste50. We show that the negative feedbacks to the Sho1 branch must be faster than those to the Sln1 branch to simultaneously achieve pathway specificity and adaptation during hyperosmotic shock. Sensitivity analysis revealed that the presence of both branches imparts robust behavior to the cell under osmoadaptation to perturbations.

  6. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-03-01

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage ϕ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  7. Effects of pulling forces, osmotic pressure, condensing agents, and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    PubMed Central

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-01-01

    In the current work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage φ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsionless string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin Dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents, and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependency of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles. PMID:23399864

  8. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading.

    PubMed

    Chao, Pen-Hsiu Grace; West, Alan C; Hung, Clark T

    2006-10-01

    While chondrocytes in articular cartilage experience dynamic stimuli from joint loading activities, few studies have examined the effects of dynamic osmotic loading on their signaling and biosynthetic activities. We hypothesize that dynamic osmotic loading modulates chondrocyte signaling and gene expression differently than static osmotic loading. With the use of a novel microfluidic device developed in our laboratory, dynamic hypotonic loading (-200 mosM) was applied up to 0.1 Hz and chondrocyte calcium signaling, cytoskeleton organization, and gene expression responses were examined. Chondrocytes exhibited decreasing volume and calcium responses with increasing loading frequency. Phalloidin staining showed osmotic loading-induced changes to the actin cytoskeleton in chondrocytes. Real-time PCR analysis revealed a stimulatory effect of dynamic osmotic loading compared with static osmotic loading. These studies illustrate the utility of the microfluidic device in cell signaling investigations, and their potential role in helping to elucidate mechanisms that mediate chondrocyte mechanotransduction to dynamic stimuli.

  9. High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response

    PubMed Central

    Zhang, Rongfei; Yuan, Haiyu; Wang, Shujing; Ouyang, Qi; Chen, Yong; Hao, Nan; Luo, Chunxiong

    2017-01-01

    Motorized fluorescence microscopy combined with high-throughput microfluidic chips is a powerful method to obtain information about different biological processes in cell biology studies. Generally, to observe different strains under different environments, high-throughput microfluidic chips require complex preparatory work. In this study, we designed a novel and easily operated high-throughput microfluidic system to observe 96 different GFP-tagged yeast strains in one switchable culture condition or 24 different GFP-tagged yeast strains in four parallel switchable culture conditions. A multi-pipette is the only additional equipment required for high-throughput patterning of cells in the chip. Only eight connections are needed to control 96 conditions. Using these devices, the proteomic dynamics of the yeast stress response pathway were carefully studied based on single-cell data. A new method to characterize the proteomic dynamics using a single cell’s data is proposed and compared to previous methods, and the new technique should be useful for studying underlying control networks. Our method provides an easy and systematic way to study signaling pathways at the single-cell level. PMID:28181485

  10. High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response.

    PubMed

    Zhang, Rongfei; Yuan, Haiyu; Wang, Shujing; Ouyang, Qi; Chen, Yong; Hao, Nan; Luo, Chunxiong

    2017-02-09

    Motorized fluorescence microscopy combined with high-throughput microfluidic chips is a powerful method to obtain information about different biological processes in cell biology studies. Generally, to observe different strains under different environments, high-throughput microfluidic chips require complex preparatory work. In this study, we designed a novel and easily operated high-throughput microfluidic system to observe 96 different GFP-tagged yeast strains in one switchable culture condition or 24 different GFP-tagged yeast strains in four parallel switchable culture conditions. A multi-pipette is the only additional equipment required for high-throughput patterning of cells in the chip. Only eight connections are needed to control 96 conditions. Using these devices, the proteomic dynamics of the yeast stress response pathway were carefully studied based on single-cell data. A new method to characterize the proteomic dynamics using a single cell's data is proposed and compared to previous methods, and the new technique should be useful for studying underlying control networks. Our method provides an easy and systematic way to study signaling pathways at the single-cell level.

  11. Effects of arachidonic acid on the lysosomal ion permeability and osmotic stability.

    PubMed

    Zhang, Gu; Yi, Ya-Ping; Zhang, Guo-Jiang

    2006-02-01

    In this study, we investigated the effects of arachidonic acid, a PLA2-produced lipid metabolite, on the lysosomal permeability, osmotic sensitivity and stability. Through the measurements of lysosomal beta-hexosaminidase free activity, membrane potential, intralysosomal pH, and lysosomal latency loss in hypotonic sucrose medium, we established that arachidonic acid could increase the lysosomal permeability to both potassium ions and protons, and enhance the lysosomal osmotic sensitivity. As a result, the fatty-acid-promoted entry of potassium ions into the lysosomes via K+/H+ exchange, which could produce osmotic imbalance across their membranes and osmotically destabilize the lysosomes. In addition, the enhancement of lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shock. The results suggest that arachidonic acid may play a role in the lysosomal destabilization.

  12. Studies on stercuia gum formulations in the form of osmotic core tablet for colon-specific drug delivery of azathioprine.

    PubMed

    Nath, Bipul; Nath, Lila Kanta

    2013-01-01

    The purpose of this research is to evaluate Sterculia urens gum as a carrier for a colon-targeted drug delivery system. Microflora degradation studies of Sterculia gum was conducted in phosphate-buffered saline pH 7.4 containing rat caecal medium under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%) and concentration of citric acid (10-30%) on the swelling index and in-vitro dissolution release. The results of the isothermal stress testing showed that there is no degradation of samples of model drug, azathioprine, the drug polymer mixture, and the core tablet excipients. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum can be used as tablet excipient for drug release in the colonic region by utilizing the action of enterobacteria. The swelling force of the Sterculia gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the mixed film coating under colonic microflora-activated environment. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as a colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) mixed blend as well as enteric polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon. The aim of the research is to evaluate wheather Sterculia urens, which is a polysaccharide, is suitable as a carrier for colonic delivery of drugs acting locally in the colon. Sterculia gum has been reported to have wide pharmaceutical applications such as tablet binder, disintegrant, gelling agent, and

  13. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress

    PubMed Central

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance. PMID:27861528

  14. Osmotic Pressure of Aqueous Polyethylene Glycols 1

    PubMed Central

    Money, Nicholas P.

    1989-01-01

    Osmotic pressures (II) of aqueous solutions of polyethylene glycols (PEGs) of average relative molecular weight (Mr) between 200 and 10,000 were measured using vapor pressure deficit osmometry. The relationships between molarity and II were described with high precision by second order polynomials for each of the PEGs studied. In contrast to previous reports, equivalent weights of different polymers in solution did not generate the same II; low Mr PEGs generated a higher II than the higher Mr PEGs. The effect of PEGs upon II represents an interaction between concentration and Mr. PMID:16667097

  15. Efficiency of osmotic pipe flows

    NASA Astrophysics Data System (ADS)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Hélix-Nielsen, Claus; Berg-Sørensen, Kirstine; Bohr, Tomas

    2013-05-01

    We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c*, and tube length L, and map out the dependence of the flow rate gain γ=Qout/Q*-1 on these parameters. A theoretical analysis based on (1) the known velocity field for slow flow in cylindrical porous tubes and (2) a parabolic concentration profile allows us to compute analytically how the flow gain depends on the relative magnitude of radial diffusion and advection as well as the ratio of the osmotic velocity to pumping velocity, in very good agreement with experiments and with no adjustable parameters. Our analysis provides criteria that are useful for optimizing osmotic flow processes in, e.g., water purification devices.

  16. Electro-osmotic mobility of non-Newtonian fluids.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2011-03-23

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy-Chapman solution to the Poisson-Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases.

  17. Electro-osmotic mobility of non-Newtonian fluids

    PubMed Central

    Zhao, Cunlu; Yang, Chun

    2011-01-01

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161

  18. Control of rabbit dura mater optical properties with osmotical liquids

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Cheng, Haiying; Luo, Qingming; Zhang, Wei; Zeng, Shaoqun; Tuchin, Valery V.

    2002-04-01

    An experimental study of controlling the optical properties of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using video camera and spectrometer was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) on transmittance (in vitro) and reflectance (in vivo) spectra of rabbit dura mater were reported. The significant decreasing of the reflectance and increasing of the transmittance of dura mater under action of osmotical solutions were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.

  19. THE OSMOTIC BEHAVIOR OF ROD PHOTORECEPTOR OUTER SEGMENT DISCS

    PubMed Central

    Heller, Joram; Ostwald, Thomas J.; Bok, Dean

    1971-01-01

    The permeability properties of frog rod photoreceptor outer segment discs were investigated in preparations of purified, dark-adapted, outer segment fragments by the techniques of direct volume measurement and electron microscopy. Outer segment discs were found to swell and contract reversibly in response to changes in the osmotic pressure of the bathing medium in accordance with the Boyle-van't Hoff law. By use of the criterion of reversible osmotic swelling, the disc membrane is impermeable to Na+, K+, Mg+2, Ca+2, Cl-, and (PO4)-3 ions, whereas it is freely permeable to ammonium acetate. The disc membrane is impermeable to sucrose, although its osmotic behavior towards this substance is different from its behavior towards impermeable ions. Electron microscopy showed that the osmotic effects on the rod outer segment fragments represent changes in the intradiscal volume. Fixation with glutaraldehyde did not abolish the permeability properties of the disc membrane, and fixed membranes were still capable of osmotic volume changes. It is concluded from this study that the frog's rod photoreceptor outer segment discs are free-floating membranous organelles with an inside space separate and distinct from the photoreceptor intracellular space. PMID:4100753

  20. Arbuscular mycorrhiza effects on plant performance under osmotic stress.

    PubMed

    Santander, Christian; Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Olave, Jorge; Cartes, Paula; Borie, Fernando; Cornejo, Pablo

    2017-06-25

    At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.

  1. Recycling of osmotic solutions in microwave-osmotic dehydration: product quality and potential for creation of a novel product.

    PubMed

    Wray, Derek; Ramaswamy, Hosahalli S

    2016-08-01

    Despite osmotic dehydration being a cost effective process for moisture removal, the cost implications of making, regenerating, and properly disposing of the spent osmotic solutions contributes greatly to the economic feasibility of the drying operation. The potential for recycling of osmotic solutions and their use for creation of a novel product was explored using microwave-osmotic dehydration under continuous flow spray (MWODS) conditions. Identical runs were repeated 10 times to determine the progressive physical and compositional effects of the thermal treatment and leaching from the cranberry samples. The microbiological stability and constant drying performance indicated that MWODS would be well suited for employing recycled solutions. While the anthocyanin content of the solution never approached that of cranberry juice concentrate, it is demonstrated that the spent syrup can infuse these health positive components into another product (apple). This study found that re-using osmotic solutions is a viable option to reduce cost in future MWODS applications, with no detriment to product quality and potential to use the spent solution for novel products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Simulation of osmotic pressure in concentrated aqueous salt solutions.

    SciTech Connect

    Luo, Y.; Roux, B.; Univ. of Chicago

    2010-01-01

    Accurate force fields are critical for meaningful simulation studies of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulations do not necessarily reproduce the correct behavior at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force field parameters for concentrated solutions. Here we describe a novel, simple, and practical method to compute the osmotic pressure directly from molecular dynamics (MD) simulation of concentrated aqueous solutions by introducing an idealized semipermeable membrane. Simple models for Na+, K+, and Cl- are tested and calibrated to accurately reproduce the experimental osmotic pressure at high salt concentration, up to the solubility limit of 4-5 M. The methodology is general and can be extended to any type of solute as well as nonadditive polarizable force fields.

  3. Asymmetric criticality of the osmotic compressibility in binary mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Tianxiang; Liu, Shixia; Xie, Jingjing; Shen, Weiguo

    2013-01-01

    Heat capacities in the critical and the non-critical regions for {benzonitrile + tridecane} and {benzonitrile + pentadecane}, and light scattering for {benzonitrile + undecane}, {benzonitrile + dodecane}, {benzonitrile + tridecane}, {benzonitrile + tetradecane}, {benzonitrile + pentadecane}, and {benzonitrile + hexadecane} in the critical two-phase region were measured. Light scattering measurements confirmed the existence of the asymmetry for the osmotic compressibility while no such asymmetry was observed for the correlation length. An analysis of the osmotic compressibility asymmetry suggested the dominance of the singular term | {Δ hat T} |^β, which supports the complete scaling theory. The consistency of the complete scaling theory in descriptions of different asymmetry behaviors was also discussed. Moreover, it was found that the contribution of the heat capacity-related term is also important in describing the asymmetry of the osmotic compressibility as it was observed in studies of the diameters of the coexistence curves.

  4. Asymmetric criticality of the osmotic compressibility in binary mixtures.

    PubMed

    Yin, Tianxiang; Liu, Shixia; Xie, Jingjing; Shen, Weiguo

    2013-01-14

    Heat capacities in the critical and the non-critical regions for {benzonitrile + tridecane} and {benzonitrile + pentadecane}, and light scattering for {benzonitrile + undecane}, {benzonitrile + dodecane}, {benzonitrile + tridecane}, {benzonitrile + tetradecane}, {benzonitrile + pentadecane}, and {benzonitrile + hexadecane} in the critical two-phase region were measured. Light scattering measurements confirmed the existence of the asymmetry for the osmotic compressibility while no such asymmetry was observed for the correlation length. An analysis of the osmotic compressibility asymmetry suggested the dominance of the singular term |ΔT[circumflex]|(β), which supports the complete scaling theory. The consistency of the complete scaling theory in descriptions of different asymmetry behaviors was also discussed. Moreover, it was found that the contribution of the heat capacity-related term is also important in describing the asymmetry of the osmotic compressibility as it was observed in studies of the diameters of the coexistence curves.

  5. Osmotic pumped heat pipes for large space platforms

    SciTech Connect

    Tanzer, H.J.; Fleischman, G.L.

    1982-01-01

    A thermal bus will be required as a thermal control source for future space platforms. The osmotic heat pipe is one candidate device with potential significant payoff toward serving growing thermal management needs. Results of a study evaluating osmotic heat pipes for thermal bus applications are presented. Electrostatic and other techniques are proposed for flow control and solution circulation in zero-gravity. Baseline size and performance design parameters of cellulose acetate membrane/sugar-water solution and other combinations were scaled up to predict osmotic pump performance for heat loads and temperatures of 4 to 120 C. A compact hollow-fiber membrane module measuring 20 inches in diameter by 12 inches long and weighing 190 pounds is projected for 50-kW heat loads.

  6. Osmotic pumped heat pipes for large space platforms

    NASA Astrophysics Data System (ADS)

    Tanzer, H. J.; Fleischman, G. L.; Stalmach, D. D.

    1982-06-01

    A thermal bus will be required as a thermal control source for future space platforms. The osmotic heat pipe is one candidate device with potential significant payoff toward serving growing thermal management needs. Results of a study evaluating osmotic heat pipes for thermal bus applications are presented. Electrostatic and other techniques are proposed for flow control and solution circulation in zero-gravity. Baseline size and performance design parameters of cellulose acetate membrane/sugar-water solution and other combinations were scaled up to predict osmotic pump performance for heat loads and temperatures of 4 to 120 C. A compact hollow-fiber membrane module measuring 20 inches in diameter by 12 inches long and weighing 190 pounds is projected for 50-kW heat loads.

  7. Osmotic water transport through carbon nanotube membranes

    PubMed Central

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied. PMID:12878724

  8. Osmotic properties of sulfobutylether and hydroxypropyl cyclodextrins.

    PubMed

    Zannou, E A; Streng, W H; Stella, V J

    2001-08-01

    The purpose of this study was to determine the osmolality of sulfobutylether (SBE) and hydroxypropyl (HP) derivatives of cyclodextrins (CDs) via vapor pressure osmometry (VPO) and freezing point depression (FPD). (SBE) and HP-CDs are efficient excipients capable of solubilizing and stabilizing poorly water-soluble drugs in parenteral formulations. (SBE)-CDs have also been used as solubility enhancers and osmotic agents for the sustained release of poorly water-soluble drugs from osmotic pump tablets. The knowledge of the CD's osmolality in solution or inside such tablets would allow one to further characterize the release mechanisms. Experiments were conducted at 37 degrees C with eight types of HP and (SBE)-CDs. The aqueous solutions ranged from 0.005-0.350 mol(-1). Methods were developed to allow the measurement of high osmolalities using a vapor pressure osmometer or a differential scanning calorimeter. The osmolality calculations from the VPO and FPD measurements correlated well. The osmolality of (SBE)-CDs was significantly higher than the osmolality of HP-CDs and increased with the total degree of substitution (TDS). All CDs showed deviations from ideality at high concentrations. Empirical correlations of osmolality with concentration and TDS allowed the prediction of osmolality over a wide concentration range. This study also gave some useful insights into the behavior of CD derivatives in solution.

  9. Hypo-osmotic test in cat spermatozoa.

    PubMed

    Comercio, E A; Monachesi, N E; Loza, M E; Gambarotta, M; Wanke, M M

    2013-10-01

    The hypo-osmotic (HOS) test has been used in other species as an indicator of the fertilising capacity of spermatozoa. The aims of this study were to assess the response of domestic cat spermatozoa to the hypo-osmotic test, to determine the type of solution, concentration and time of incubation needed to obtain a maximum percentage of swelling, to correlate the selected combination with the percentages of progressive motility and to evaluate whether dilution of the ejaculate alters the results. Incubation for 30 and 45 min in solutions of fructose and of citrate of 50 and 100 mOsmol kg⁻¹ was evaluated. The highest percentage of swelling was obtained using the 50 mOsmol kg⁻¹ solution, and no significant differences were observed between the times of exposure to the solutions. A positive correlation was observed between the percentage of individual progressive motility and the percentage of sperm swelling in a 50 mOsmol kg⁻¹ fructose solution, with no significant differences being observed between raw and diluted semen samples. The results of this study suggest that the HOS test could be useful for evaluating membrane function in domestic cat spermatozoa, both in raw semen and in samples diluted in the EZ Mixin® commercial extender, and thus could be incorporated into routine semen evaluation protocols.

  10. Osmotic tolerance of human granulocytes

    SciTech Connect

    Armitage, W.J.; Mazur, P.

    1984-11-01

    Human granulocytes are injured when returned to isotonic conditions after exposure at 0/sup 0/C to hyperosmotic solutions of NaCl or sucrose with osmolalities above 0.6 osmolal. The damage was expressed as a loss of membrane integrity (fluorescein diacetate (FDA) assay) only after 60-90 min incubation at 37/sup 0/C. Survival after exposure to a 1.4-osmolal solution at 0/sup 0/C was dependent on the extent of subsequent dilution. Dilution to below 0.6 osmolal was damaging, but cells could be returned to near-osmotic conditions provided that the solute concentration was increased again to 0.64 osmolal before the cells were incubated at 37/sup 0/C. Granulocyte cell volumes were measured under various osmotic conditions by computer-assisted micrometry. The cells did not display a minimum volume but behaved as osmometers over the observed range of 0.2-1.4 osmolal. Granulocyte volume at a given osmolality was independent of whether the cells had first been exposed to a strongly hyperosmotic medium, indicating that no solute loading occurred in hyperosmotic sucrose solutions. Even though the cells did not survive sequential exposure to >0.6 osmolal solutions, subsequent return to isotonicity, and incubation at 37/sup 0/C, neither cell lysis nor loss in FDA-positive cells occurred after the first two steps. This finding is not consistent with the critical-surface area-increment theory of freezing injury. The mechanism of cell injury in hyperosmotic solutions is thus not known. However, the results show that osmotic stress is potentially a major damaging factor both in the equilibration of cells with protective additives and during freezing and thawing.

  11. A novel controlled porosity osmotic pump system for sodium ferulate.

    PubMed

    He, Lili; Gong, Tao; Zhao, Dong; Zhang, Zhi-Rong; Li, Lili

    2006-12-01

    A controlled porosity osmotic pump (CPOP) delivery system for sodium ferulate was prepared with cellulose acetate (CA) as semipermeable membrane, polyethyleneglycol 400 (PEG 400) as channeling agent and dibutylphthalate (DBP) as plasticizer and release controller. Effects of coating levels, PEG and DBP content and amount of sodium chloride on in vitro release were studied. Coating formulations were optimized by a L9 (34) orthogonal array design (OAD) with three factors at three levels using statistical analysis. Controlled porosity osmotic pump tablets of sodium ferulate made with the optimal formulation were found to have good in vitro and in vivo release characteristics.

  12. The physics of osmotic pressure

    NASA Astrophysics Data System (ADS)

    Bowler, M. G.

    2017-09-01

    Osmosis drives the development of a pressure difference of many atmospheres between a dilute solution and pure solvent with which it is in contact through a semi-permeable membrane. The educational importance of this paper is that it presents a novel treatment in terms of fluid mechanics that is quantitative and exact. It is also simple and intuitive, showing vividly how osmotic pressures are generated and maintained in equilibrium, driven by differential solvent pressures. The present rigorous analysis using the virial theorem seems unknown and can be easily understood—and taught—at various different levels. It should be valuable to undergraduates, graduate students and indeed to the general physicist.

  13. Elastic and osmotic properties of articular cartilage

    NASA Astrophysics Data System (ADS)

    Lin, David; Dimitriadis, Emilios; Horkayne-Szakaly, Iren; Horkay, Ferenc

    2006-03-01

    The pathophysiology of osteoarthritis involves cellular and biochemical processes linked to mechanical stress. A better understanding of the mechanism of these processes and how they cause changes in the composition, macro- and micro-structure, and mechanical properties of cartilage is necessary for developing effective preventative and treatment strategies. In this study, elastic and osmotic swelling properties of tissue-engineered cartilage were explored using atomic force microscopy (AFM) and a tissue osmometer. AFM was also used to image the surface of the specimens while chemical composition was determined by biochemical analysis. Estimation of the Young's moduli of the tissue from AFM force-indentation data was performed using an optimization approach to fit appropriate models to the data. Force-indentation data were acquired both with sharp, pyramidal and with microspherical probes. The procedure has been validated by making measurements on model gel systems of known elastic properties. This approach is presented as a robust method of optimally extracting Young's moduli of soft, crosslinked materials from AFM data. Gross inhomogeneities at different scales in the cartilage tissue are manifested in the high degree of variance in local Young's moduli values obtained from both AFM and osmotic swelling data. These findings suggest that the mechanical properties of cartilage are affected by the local macromolecular composition.

  14. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context. PMID:27733850

  15. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum.

    PubMed Central

    Glaasker, E; Konings, W N; Poolman, B

    1996-01-01

    Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor pressure. The cytoplasmic pools of K+, proline, glutamate, alanine, and glycine of Lactobacillus plantarum ATCC 14917 increased when the osmolarity of the growth media was raised from 0.20 to 1.51 osmol/kg by KCL. When glycine-betaine was present in a high-osmolarity chemically defined medium, it was accumulated to a high cytoplasmic concentration, while the concentrations of most other osmotically important solutes decreased. These observations, together with the effects of glycine-betaine on the specific growth rate under high-osmolarity conditions, suggest that glycine-betaine is preferentially accumulated in L. plantarum. Uptake of glycine-betaine, proline, glutamate, and alanine was studied in cells that were alternately exposed to hyper- and hypo-osmotic stresses. The rate of uptake of proline and glycine-betaine increased instantaneously upon increasing the osmolarity, whereas that of other amino acids did not. This activation occurred also under conditions in which protein synthesis was inhibited was most pronounced when cells were pregrown at high osmolarity. The duration of net transport was a function of the osmotic strength of the assay medium. Glutamate uptake was not activated by an osmotic upshock, and the uptake of alanine was low under all conditions tested. When cells were subjected to osmotic downshock, a rapid efflux of accumulated glycine-betaine, proline, and alanine occurred whereas the pools of other amin acids remained unaffected. The results indicate that osmolyte efflux is, at least to some extent, mediated via specific osmotically regulated efflux systems and not via nonspecific mechanisms as has been suggested previously. PMID:8550485

  16. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae.

    PubMed

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.

  17. The effect of osmotic stabilizers on the radiometric detection of osmotically sensitive populations of some gram-negative bacteria

    SciTech Connect

    Martinez, O.V.; Malinin, T.I.

    1982-02-01

    The effect of four osmotic stabilizers on the radiometric detection of osmotically sensitive populations of E. coli, S. typhimurium, and E. cloacae was studied. The addition of sucrose, sorbitol, glycerol, or ethylene glycoll to BACTEC 6B blood culture medium failed to improve the sensitivity of the system and produced an inhibitory effect on the level of 14CO2 released by organisms previously exposed to lysozyme and ECTA or to penicillin followed by the lysozyme treatment. The same effect was observed both in blood free media and simulated blood cultures. The addition of proline to sucrose-containing hypertonic media had no effect on growth index readings.

  18. Osmotic properties of stallion sperm subpopulations determined by simultaneous assessment of cell volume and viability.

    PubMed

    Oldenhof, Harriëtte; Blässe, Anne-Kathrin; Wolkers, Willem F; Bollwein, Heinrich; Sieme, Harald

    2011-07-15

    The aim of this study was to determine the osmotic tolerance limits of stallion sperm as well as the osmotic behavior of different sperm subpopulations, including viable and non-viable cells as well as viable cells of different average sizes. A flow cytometric approach was used for simultaneous assessment of cell volume and permeability of the plasma membrane for the fluorescent dye propidium iodide while exposing the cells to media with different solute concentrations. Equine spermatozoa have limited osmotic tolerance limits: exposure to hypotonic conditions below approximately 240 mOsm kg(-1) already results in an increase in plasma membrane damaged cells, increasing up to 50% at an osmolality of 136 mOsm kg(-1). Plasma membrane damaged stallion sperm do not show an osmotic response after 10 min incubation in hypotonic conditions, and their volume is smaller as compared to viable cells. It is shown that inclusion or exclusion of different subpopulations greatly affects Boyle van 't Hoff behavior and therewith determination of the osmotic inactive volume. Osmotic inactive volumes were determined to be 76% and 46% of the isotonic volume for the whole sperm population and the plasma membrane intact viable cells, respectively. In addition, viable subpopulations with different average cell volumes also show different osmotic behavior. The main subpopulation of viable cells increased up to 1.6 times its isotonic volume upon exposure to 150 mOsm kg(-1), and exhibited an osmotic inactive volume of 79%. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.)

    PubMed Central

    Khalil, Farghama; Rauf, Saeed; Monneveux, Philippe; Anwar, Shoaib; Iqbal, Zafar

    2016-01-01

    Proline concentration has been often suggested as an indicator of osmotic stress. A better understanding of the genetics of this trait is however needed. In the present study, proline concentration has been assessed, together with root and stem growth, potassium, calcium and total soluble sugars concentration and stress injury symptoms, in seedlings of sunflower hybrids and their parents grown under control and osmotic conditions. Proline strongly accumulated with osmotic stress. Its concentration exhibited a large variation among genotypes and was higher in hybrids than in parental lines. A positive association was noted between proline concentration and osmotic adjustment that was reflected in a reduction of osmotic stress induced injury, as showed by the reduced number of calli in the hybrids with higher proline concentration. Broad and narrow sense heritability was higher under osmotic stress suggesting applying the selection in osmotic stress condition. In the control treatment, dominance effects explained most of the genetic variation for proline concentration while under osmotic stress both dominance and additive variance were high. The importance of dominance and additive effects suggested that several genomic regions are controlling this trait. Good general combiners, presumably carrying positive additive alleles affecting proline concentration, were identified. PMID:27795671

  20. [Applicability of a natural swelling matrix as the propellant of osmotic pump tablets].

    PubMed

    Wu, Li; Li, Hai-Yan; Yin, Xian-Zhen; Li, Ying; Chen, Jian-Xiu; Hu, Rong-feng; Zhang, Ji-Wen

    2013-08-01

    The purpose of this study is to investigate the applicability of a natural swelling matrix derived from boat-fruited sterculia seed (SMS) as the propellant of osmotic pump tablets. The sugar components, static swelling, water uptake and viscosity of SMS were determined and compared with that of polythylene oxide (WSR-N10 and WSR-303). Both ribavirin and glipizide were used as water-soluble and water-insoluble model drugs. Then, the monolayer osmotic pump tablets of ribavirin and the bilayer osmotic pump tablets of glipizide were prepared using SMS as the osmotically active substance and propellant. SMS was mainly composed of rhamnose, arabinose, xylose and galactose and exhibited relatively high swelling ability. The area of the disintegrated matrix tablet was 20.1 times as that at initial after swelling for 600 s. SMS swelled rapidly and was fully swelled (0.5%) in aqueous solution with relative low viscosity (3.66 +/- 0.03) mPa x s at 25 degrees C. The monolayer osmotic pump tablets of ribavirin and the bilayer osmotic pump tablets of glipizide using SMS as propellant exhibited typical drug release features of osmotic pumps. In conclusion, the swelling matrix derived from boat-fruited sterculia seed, with low viscosity and high swelling, is a potential propellant in the application of osmotic pump tablets.

  1. Regulation of the paracellular Na+ and Cl- conductances by the NaCl-generated osmotic gradient in a manner dependent on the direction of osmotic gradients.

    PubMed

    Tokuda, Shinsaku; Niisato, Naomi; Nakajima, Ken-Ichi; Marunaka, Yoshinori

    2008-02-08

    In the present study, we investigated the effect of osmolality on the paracellular ion conductance (Gp) composed of the Na(+) conductance (G(Na)) and the Cl(-) conductance (G(Cl)). An osmotic gradient generated by NaCl with relatively apical hypertonicity (NaCl-absorption-direction) induced a large increase in the G(Na) associated with a small increase in the G(Cl), whereas an osmotic gradient generated by NaCl with relatively basolateral hypertonicity (NaCl-secretion-direction) induced small increases in the G(Na) and the G(Cl). These increases in the Gp caused by NaCl-generated osmotic gradients were diminished by the application of sucrose canceling the NaCl-generated osmotic gradient. The osmotic gradient generated by apical [corrected] application of sucrose without any NaCl gradients had little effects on the Gp. However, this apical [corrected] application of sucrose produced a precondition drastically quickening the time course of the action of the NaCl-generated osmotic gradient on the Gp. Further, we found that application of the basolateral hypotonicity generated by reduction of NaCl concentration shifted the localization of claudin-1 to the apical from the lateral [corrected] side. These results indicate that the osmotic gradient regulates the paracellular ion conductive pathway of tight junctions via a mechanism dependent on the direction of NaCl gradients associated with a shift of claudin-1 localization to the apical side in renal A6 epithelial cells.

  2. Abnormal osmotic regulation in trpv4-/- mice

    PubMed Central

    Liedtke, Wolfgang; Friedman, Jeffrey M.

    2003-01-01

    Osmotic homeostasis is one of the most aggressively defended physiological parameters in vertebrates. However, the molecular mechanisms underlying osmotic regulation are poorly understood. The transient receptor potential channel, vanilloid subfamily (TRPV4), is an osmotically activated ion channel that is expressed in circumventricular organs in the mammalian CNS, which is an important site of osmotic sensing. We have generated trpv4-null mice and observed abnormalities of their osmotic regulation. trpv4-/- mice drank less water and became more hyperosmolar than did wild-type littermates, a finding that was seen with and without administration of hypertonic saline. In addition, plasma levels of antidiuretic hormone were significantly lower in trpv4-/- mice than in wild-type littermates after a hyperosmotic challenge. Continuous s.c. infusion of the antidiuretic hormone analogue, dDAVP, resulted in systemic hypotonicity in trpv4-/- mice, despite the fact that their renal water reabsorption capacity was normal. Thus, the response to both hyper- and hypoosmolar stimuli is impaired in trpv4-/- mice. After a hyperosmolar challenge, there was markedly reduced expression of c-FOS in the circumventricular organ, the organum vasculosum of the lamina terminalis, of trpv4-/- mice compared with wild-type mice. This finding suggests that there is an impairment of osmotic sensing in the CNS of trpv4-/- mice. These data indicate that TRPV4 is necessary for the normal response to changes in osmotic pressure and functions as an osmotic sensor in the CNS. PMID:14581612

  3. Effects of phospholipase A2 on the lysosomal ion permeability and osmotic sensitivity.

    PubMed

    Wang, Jiong-Wei; Sun, Lin; Hu, Jin-Shan; Li, Ying-Bin; Zhang, Guo-Jiang

    2006-01-01

    In this study, we investigated the mechanism of PLA(2)-induced lysosomal destabilization. Through the measurements of lysosomal beta-hexosaminidase free activity, their membrane potential, the intra-lysosomal pH and the lysosomal latency loss in hypotonic sucrose medium, we established that PLA(2) could increase the lysosomal membrane permeability to both potassium ions and protons. The enzyme could also enhance the organelle osmotic sensitivity. The increases in the lysosomal ion permeability promoted influx of potassium ions into the lysosomes via K(+)/H(+) exchange. The resulted osmotic imbalance across the lysosomal membranes osmotically destabilized the lysosomes. In addition, the enhancement of the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in the osmotic stress. The results explain how PLA(2) destabilized the lysosomes.

  4. Phosphatidic acid osmotically destabilizes lysosomes through increased permeability to K+ and H+.

    PubMed

    Yi, Y-P; Wang, X; Zhang, G; Fu, T-S; Zhang, G-J

    2006-06-01

    Lysosomal destabilization is a critical event not only for the organelle but also for living cells. However, what factors can affect lysosomal stability is not fully studied. In this work, the effects of phosphatidic acid (PA) on the lysosomal integrity were investigated. Through the measurements of lysosomal beta-hexosaminidase free activity, intralysosomal pH, leakage of lysosomal protons and lysosomal latency loss in hypotonic sucrose medium, we established that PA could increase the lysosomal permeability to K+ and H+, and enhance the lysosomal osmotic sensitivity. Treatment of lysosomes with PA promoted entry of K+ into the organelle via K+/H+ exchange, which could produce osmotic stresses and osmotically destabilize the lysosomes. In addition, PA-induced increase in the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shocks. The results suggest that PA may play a role in the lysosomal destabilization.

  5. Optimum condition of producing crisp osmotic banana using superheated steam puffing.

    PubMed

    Tabtiang, Surapit; Prachayawarakorn, Somkiat; Soponronnarit, Somchart

    2017-03-01

    Puffing can improve textural property of snacks. Nevertheless, high temperature puffing accelerates non-enzymatic browning reactions. The osmotic treatment using sucrose solution potentially retards the browning, but the high amount of sucrose gain causes hard texture. The objective of this work was therefore to study the effects of osmotic time, puffing time and puffing temperature on banana qualities such as colour, shrinkage and textural property. The experimental results showed that puffing temperature, puffing time and osmotic time significantly affected colour, shrinkage and textual properties. The optimisation using response surface methodology was used for a trade-off between colour and textural properties. To obtain a good quality product, the puffed osmotic banana should be operated at the osmotic time of 43 min and puffing temperature of 220 °C and puffing time of 2 min. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Osmotic stability of blood platelets.

    PubMed

    Fantl, P

    1968-09-01

    1. Hypotonic solutions added to human platelet-containing plasma cause a transient decrease of absorbancy of light at 610 mmu which is followed by a gradual increase of absorbancy.2. When platelets are stored for 7 hr at 4 degrees C the absorbancy changes with variations of osmolarity and their aggregation with adenosine diphosphate (ADP) remain the same. However, the reversal of absorbancy declines during storage of platelet-containing plasma.3. Platelets are not aggregated by stearate. Platelets appear to be only slightly affected by stearate concentration higher than 0.8 mM, but oleate has no effect.4. Hypertonic solutions of NaCl and urea cause increase in absorbancy of platelet-containing human plasma. Hypertonic sucrose solutions produce no more change than isotonic solutions. Hypertonic NaCl produces permanent increases in absorbancy. In human platelet-containing plasma the increased absorbancy caused by hypertonic urea is transient and declines.5. The osmotic platelet changes occur in isolated platelets as well as in platelet-containing plasma.6. The absorbancy of frozen and thawed platelet-containing plasma is not significantly altered by hypotonic solutions but the absorbancy changes caused by hypertonic solutions are similar to that of unfrozen plasma.7. The immediate absorbancy changes caused by hypo- and by hypertonic solutions are the same at 5 degrees C and 30 degrees C and are therefore probably of a physical nature. The reversal of absorbancy and aggregation of platelets by added adenosine diphosphate have Q(10) > 1 and are therefore probably of a chemical-enzymic nature.8. Divalent cations and contact activation are not required for the osmotic platelet changes and 10(-3)M-Cu(2+) and Zn(2+) do not interfere. Inhibitors of oxidative phosphorylation, electron transfer, sodium, potassium activated adenosine triphosphatases and adenosine triphosphate do not inhibit reversal of absorbancy of platelets exposed to hypotonic solutions. Cyanide, 5 x 10

  7. Osmotic stability of blood platelets

    PubMed Central

    Fantl, P.

    1968-01-01

    1. Hypotonic solutions added to human platelet-containing plasma cause a transient decrease of absorbancy of light at 610 mμ which is followed by a gradual increase of absorbancy. 2. When platelets are stored for 7 hr at 4° C the absorbancy changes with variations of osmolarity and their aggregation with adenosine diphosphate (ADP) remain the same. However, the reversal of absorbancy declines during storage of platelet-containing plasma. 3. Platelets are not aggregated by stearate. Platelets appear to be only slightly affected by stearate concentration higher than 0·8 mM, but oleate has no effect. 4. Hypertonic solutions of NaCl and urea cause increase in absorbancy of platelet-containing human plasma. Hypertonic sucrose solutions produce no more change than isotonic solutions. Hypertonic NaCl produces permanent increases in absorbancy. In human platelet-containing plasma the increased absorbancy caused by hypertonic urea is transient and declines. 5. The osmotic platelet changes occur in isolated platelets as well as in platelet-containing plasma. 6. The absorbancy of frozen and thawed platelet-containing plasma is not significantly altered by hypotonic solutions but the absorbancy changes caused by hypertonic solutions are similar to that of unfrozen plasma. 7. The immediate absorbancy changes caused by hypo- and by hypertonic solutions are the same at 5° C and 30° C and are therefore probably of a physical nature. The reversal of absorbancy and aggregation of platelets by added adenosine diphosphate have Q10 > 1 and are therefore probably of a chemical-enzymic nature. 8. Divalent cations and contact activation are not required for the osmotic platelet changes and 10-3 M-Cu2+ and Zn2+ do not interfere. Inhibitors of oxidative phosphorylation, electron transfer, sodium, potassium activated adenosine triphosphatases and adenosine triphosphate do not inhibit reversal of absorbancy of platelets exposed to hypotonic solutions. Cyanide, 5 × 10-3 M, fluoride, 1

  8. Asymmetric membrane osmotic capsules for terbutaline sulphate.

    PubMed

    Gobade, N G; Koland, Marina; Harish, K H

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate.

  9. Asymmetric Membrane Osmotic Capsules for Terbutaline Sulphate

    PubMed Central

    Gobade, N. G.; Koland, Marina; Harish, K. H.

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  10. Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea

    PubMed Central

    Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph

    2013-01-01

    Background & Aims Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. Methods We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Results Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Conclusions Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used. PMID:23409050

  11. Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes.

    PubMed

    Dickson, D M; Wyn Jones, R G; Davenport, J

    1982-09-01

    A study has been made of the osmotic responses of the green intertidal alga, Ulva lactuca, under two fluctuating salinity regimes; sinusoidal and square-wave fluctuations between 30 and 100% sea water in a 12 h cycle. These regimes closely resemble the tidal fluctuation of salinity encountered by the alga in its natural estuarine habitat. Data on changes in the inorganic ions, potassium, sodium, chloride and sulphate; in the organic solute, dimethylsulphoniopropionate; in the total sugar levels and estimated osmotic and turgor pressures under the two salinity regimes are reported. Significant differences in the solute responses under these different conditions were detected. In general, better control of ion fluxes appeared to be exercised under the sinusoidal conditions which also buffered changes in dimethylsulphoniopropionate levels. Influxes of potassium were highly light-dependent. Chloride levels conspicuously failed to reach the steady-state levels in the 6-h-hyper-osmotic part of either the abrupt or gradual cycle. The possible significance of these data, which may better reflect osmotic changes in the natural environment, and some of the problems encountered, particularly in accounting for charge balance under some conditions, are discussed.

  12. Asymmetric osmotic water permeation through a vesicle membrane

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  13. Osmotic loading of in situ chondrocytes in their native environment.

    PubMed

    Korhonen, Rami K; Han, Sang-Kuy; Herzog, Walter

    2010-09-01

    Changes in the osmotic environment cause changes in volume of isolated cells and cells in tissue explants, and the osmotic environment becomes hypotonic in cartilage diseases such as osteoarthritis (OA). However, it is not known how cells respond to a hypotonic osmotic challenge when situated in the fully intact articular cartilage. A confocal laser scanning microscope was used to image chondrocytes of intact rabbit patellae in an isotonic (300 mOsm) and hypotonic (172 mOsm) immersion medium. Cell volumes were calculated before and 5, 15, 60, 120 and 240 minutes after the change in saline concentration. Local tissue strains and swelling of the entire tissue were estimated from the relative movements of cells and displacements of single cells, respectively. Cell volumes increased rapidly (< or = 5 minutes, p<0.05) by approximately 22%, after which they remained constant for an hour (p>0.05). However, two and four hours post the hypotonic challenge, cell volumes were statistically greater (p<0.05) than those at all earlier time points, and swelling of the entire tissue continued throughout the four hour loading period. The results of our study suggest that osmotic loading induced volume changes of in situ chondrocytes in their native environment occur quickly and continue for hours. Understanding the behaviour of cells in their native environment provides novel insigth into the cell mechanics in ostearthritic joints and so may help understand the onset and progression of this disease.

  14. Toward an Injectable Continuous Osmotic Glucose Sensor

    PubMed Central

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-01-01

    Background The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. Method A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. Results An in vitro model based on a 3.6 × 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4–6 nm large pores. The affinity assay offers a dynamic range of 36–720 mg/dl with a resolution of ±16 mg/dl. An integrated 1 × 1 mm2 large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 µW. Conclusions Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. PMID:20663452

  15. Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney.

    PubMed

    Hara, Masayuki; Minami, Yoichi; Ohashi, Munehiro; Tsuchiya, Yoshiki; Kusaba, Tetsuro; Tamagaki, Keiichi; Koike, Nobuya; Umemura, Yasuhiro; Inokawa, Hitoshi; Yagita, Kazuhiro

    2017-08-04

    Circadian clocks in mammals function in most organs and tissues throughout the body. Various renal functions such as the glomerular filtration and excretion of electrolytes exhibit circadian rhythms. Although it has been reported that the expression of the clock genes composing molecular oscillators show apparent daily rhythms in rodent kidneys, functional variations of regional clocks are not yet fully understood. In this study, using macroscopic bioluminescence imaging method of the PER2::Luciferase knock-in mouse kidney, we reveal that strong and robust circadian clock oscillation is observed in the medulla. In addition, the osmotic pressure in the inner medulla shows apparent daily fluctuation, but not in the cortex. Quantitative-PCR analysis of the genes contributing to the generation of high osmotic pressure or the water re-absorption in the inner medulla, such as vasopressin receptors (V1aR, V2R), urea transporter (UT-A2) and water channel (Aqp2) show diurnal variations as well as clock genes. Deficiency of an essential clock gene Bmal1 impairs day-night variations of osmotic pressure gradient in the inner medulla, suggesting that circadian clocks in the medulla part of the kidney may regulate the circadian rhythm of cortico-medullary osmotic pressure gradient, and may contribute physiological day-night rhythm of urination.

  16. Mechanism of Osmotic Flow in Porous Membranes

    PubMed Central

    Anderson, John L.; Malone, Dermot M.

    1974-01-01

    A model for osmotic flow in porous membranes is developed from classical transport and thermodynamic relations. Mathematical expressions for the reflection coefficient as a function of solute dimension and shape, and more generally pore/bulk distribution coefficient, are derived for long cylindrical pores of circular cross section. For a rigid, spherical macromolecule the osmotic reflection coefficient equals (1 - Φ)2, where Φ is the solute distribution coefficient; this result differs significantly from expressions found in the literature. The effect of weak solute adsorption to (or repulsion from) the pore wall can also be accounted for in the derivation. The driving force for osmotic flow arises from solute-pore wall interactions which cause radial variations in concentration and concomitant gradients in pressure normal to the wall. Implications of this three-dimensionality of osmotic phenomena are discussed with particular reference to the adequacy of one-dimensional treatments in relating reflection coefficient to membrane and solute properties. PMID:4429773

  17. Deriving Osmotic Pressures of Draw Solutes used in Osmotically Driven Membrane Processes

    SciTech Connect

    Frederick F. Stewart

    2013-03-01

    In osmotically driven membrane processes (ODMPs), such as forward osmosis (FO), the concentration of the draw solute and the related osmotic pressure play a critical role in mass transport and overall process performance. Search of the literature reveals that the concentration units used to describe draw solutes vary and the methods of deriving osmotic pressure from those concentrations are often unclear or not discussed. This paper recommends the use of molality and identifies the benefit of experimentally determined van ‘t Hoff indices when calculating osmotic pressures.

  18. Synchronous delivery of felodipine and metoprolol tartrate using monolithic osmotic pump technology.

    PubMed

    Zhao, Shiqing; Yu, Fanglin; Liu, Nan; Di, Zhong; Yan, Kun; Liu, Yan; Li, Ying; Zhang, Hui; Yang, Yang; Yang, Zhenbo; Li, Zhiping; Mei, Xingguo

    2016-11-01

    The synchronous sustained-release of two drugs was desired urgently for patients needing combination therapy in long term. However, sophisticated technologies were used generally to realize the simultaneous delivery of two drugs especially those with different physico-chemical properties. The purpose of this study was to obtain the concurrent release of felodipine and metoprolol tartrate, two drugs with completely different solubilities, in a simple monolithic osmotic pump system (FMOP). Two types of blocking agents were used in monolithic osmotic pump tablets and the synchronous sustained-release of FMOP was acquired in vitro. The tablets were also administered to beagle dogs and the plasma levels of FMOP were determined by HPLC-MS/MS. The pharmacokinetic parameters were calculated using a non-compartmental model. Cmax of both felodipine and metoprolol from the osmotic pump tablets were lower, tmax and mean residence time of both felodipine and metoprolol from the osmotic pump tablets were longer significantly than those from immediate release tablets. These results verified prolonged release of felodipine and metoprolol tartrate from osmotic pump formulations. The similar absorption rate between felodipine and metoprolol in beagles was also obtained by this osmotic pump formulation. Therefore, it could be supposed that the accordant release of two drugs with completely different solubilities may be realized just by using monolithic osmotic pump technology.

  19. Modulation of osmotic stress effects on photosynthesis and respiration by temperature in mesophyll protoplast of pea.

    PubMed

    Dwivedi, Padmanabh; Raghavendra, A S

    2004-12-01

    Exposure of mesophyll protoplast of pea to osmotic stress decreases the rate of photosynthesis while stimulating marginally the respiratory rate of mesophyll protoplasts. The interaction of osmotic and temperature stress during the modulation of photosynthetic and respiratory rates of pea (Pisum sativum var Azad P1) mesophyll protoplasts was investigated. The protoplasts were exposed to either iso-osmotic (0.4 M) or hyper-osmotic (1.0 M) concentration of sorbitol at 15 degrees and 25 degrees C. The rates of photosynthesis and respiration were studied. At optimum temperature of 25 degrees C, there was a decrease in photosynthesis (< 10%) at hyper-osmoticum (osmotic effect), whereas respiration increased marginally (by about 15%). Low temperature (15 degrees C) aggravated the sensitivity of both respiration and photosynthesis to osmotic stress. At 15 degrees C, the decrease in photosynthesis due to osmotic stress was > 35%, while the respiratory rate was stimulated by 30%. The relative proportion of cytochrome pathway decreased by about 50% at both 15 degrees C and 25 degrees C while that of alternative pathway increased, more so, at 15 degrees C, when the mesophyll protoplasts were subjected to hyper-osmoticum stress. The titration experiments showed that extent of engagement of alternative pathway was higher, the slope value was slightly higher for 15 degrees C compared to 25 degrees C. Low temperature modulates the effect of hyper-osmoticum stress on photosynthesis and respiration, and results in increased participation of alternative pathway.

  20. Osmotically induced electrical signals from actin filaments.

    PubMed Central

    Cantiello, H F; Patenaude, C; Zaner, K

    1991-01-01

    Actin filaments, F-actin, a major component of the cortical cytoskeleton, play an important role in a variety of cell functions. In this report we have assessed the role of osmotic stress on the electrochemical properties of F-actin. The spontaneous Donnan potential of a polymerized actin solution (5 mg/ml) was -3.93 +/- 1.84 mV, which was linearly reduced by osmotic stress on the order of 1-20 mOsm (0.28 +/- 0.06 mV/mM). Calculated surface charge density was reduced and eventually reversed by increasing the osmotic stress as expected for a phase transition behavior. The electro-osmotic behavior of F-actin disappeared at pH 5.5 and was dependent on its filamentous nature. Furthermore, osmotically stressed F-actin displayed a nonlinear electric response upon application of electric fields on the order of 500-2,000 V/cm. These data indicate that F-actin in solution may display nonideal electro-osmotic properties consistent with ionic "cable" behavior which may be of biological significance in the processing and conduction of electrical signals within the cellular compartment. PMID:1873465

  1. Osmotic-Sensitive Mutant of Salmonella typhimurium

    PubMed Central

    Anton, Dora N.

    1972-01-01

    A strain (DA82) having peculiar osmotic properties was isolated in Salmonella typhimurium. The mutant shows increased elasticity of its cell wall and makes spherical instead of elongated cells, regardless of the osmolality of the medium. The strain withstands dilution in distilled water without disruption or death and grows normally in 0.1 molal NaCl broth (240 milliosmol), but it dies exponentially in low-osmolality broth (40 milliosmol). Addition of salts or sucrose instantly stops death and allows growth and cell division to proceed. Death is not due to lysis because this appears at later times and at a much lower rate. Osmotic inactivation is temperature-dependent: higher death rates occur at higher incubation temperatures. Inhibition of protein synthesis by chloramphenicol (20 μg/ml) prevents osmotic death. At 37 C and at lower temperatures, the phenomenon of osmotic death is transient. After a variable interval, growth of the osmotic-sensitive strain resumes. It is assumed that the strain's osmotic behavior is due to membrane defectiveness. The membrane disfunction and the wall defect shown by the strain may be consequences of a single genetic alteration or the results of independent mutations. Images PMID:4110928

  2. Osmotic-sensitive mutant of Salmonella typhimurium.

    PubMed

    Antón, D N

    1972-03-01

    A strain (DA82) having peculiar osmotic properties was isolated in Salmonella typhimurium. The mutant shows increased elasticity of its cell wall and makes spherical instead of elongated cells, regardless of the osmolality of the medium. The strain withstands dilution in distilled water without disruption or death and grows normally in 0.1 molal NaCl broth (240 milliosmol), but it dies exponentially in low-osmolality broth (40 milliosmol). Addition of salts or sucrose instantly stops death and allows growth and cell division to proceed. Death is not due to lysis because this appears at later times and at a much lower rate. Osmotic inactivation is temperature-dependent: higher death rates occur at higher incubation temperatures. Inhibition of protein synthesis by chloramphenicol (20 mug/ml) prevents osmotic death. At 37 C and at lower temperatures, the phenomenon of osmotic death is transient. After a variable interval, growth of the osmotic-sensitive strain resumes. It is assumed that the strain's osmotic behavior is due to membrane defectiveness. The membrane disfunction and the wall defect shown by the strain may be consequences of a single genetic alteration or the results of independent mutations.

  3. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    PubMed

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged Tmax and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  4. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  5. Self-consistent unstirred layers in osmotically driven flows

    NASA Astrophysics Data System (ADS)

    Bruus, Henrik; Hartvig Jensen, Kåre; Bohr, Tomas

    2010-11-01

    It has long been recognized, that the osmotic transport characteristics of membranes may be strongly influenced by the presence of unstirred concentration boundary layers adjacent to the membrane. Previous experimental as well as theoretical works have mainly focused on the case where the solutions on both sides of the membrane remain well-mixed due to an external stirring mechanism. We investigate the effects of concentration boundary layers on the efficiency of osmotic pumping processes in the absence of external stirring i.e. when all advection is provided by the osmosis itself. This case is relevant in the study of intracellular flows, e.g. in plants. For such systems, we show that no well-defined boundary layer thickness exists and that the reduction in concentration can be estimated by a surprisingly simple mathematical relation across a wide range of geometries and P'eclet numbers. This work is accepted for publication in Journal of Fluid Mechanics.

  6. Physical mechanism of membrane osmotic phenomena

    SciTech Connect

    Guell, D.C.; Brenner, H.

    1996-09-01

    The microscale, physicomechanical cause of osmosis and osmotic pressure in systems involving permeable and semipermeable membranes is not well understood, and no fully satisfactory mechanism has been offered to explain these phenomena. A general theory, albeit limited to dilute systems of inert, noninteracting solute particles, is presented which demonstrates that short-range forces exerted by the membrane on the dispersed solute particles constitute the origin of osmotic phenomena. At equilibrium, the greater total force exerted by the membrane on those solute particles present in the reservoir containing the more concentrated of the two solutions bathing the membrane is balanced by a macroscopically observable pressure difference between the two reservoirs. The latter constitutes the so-called osmotic pressure difference. Under nonequilibrium conditions, the membrane-solute force is transmitted to the solvent, thus driving the convective flow of solvent observed macroscopically as osmosis. While elements of these ideas have been proposed previously in various forms, the general demonstration offered here of the physicomechanical source of osmotic phenomena is novel. Beyond the purely academic interest that exists in establishing a mechanical understanding of osmotic pressure, the analysis lays the foundation underlying a quantitative theory of osmosis in dilute, nonequilibrium systems outlined in a companion paper.

  7. Casein Micelle Dispersions under Osmotic Stress

    PubMed Central

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  8. On equations for the total suction and its matric and osmotic components

    SciTech Connect

    Dao, Vinh N.T. Morris, Peter H.; Dux, Peter F.

    2008-11-15

    A clear fundamental understanding of suctions is crucial for the study of the behaviour of plastic cement mortar and concrete, including plastic shrinkage cracking. In this paper, the expression relating the change in free energy of the pore water with an isothermal change in pressure is first derived. Based upon definitions of suctions, it is then shown that total, matric, and osmotic suctions can all be expressed in the same thermodynamic form. The widely accepted, but not yet satisfactorily validated, assumption that the total suction comprises matric and osmotic components is then confirmed theoretically. The well-known Kelvin equation for matric suction, and Morse and van't Hoff equations for osmotic suction are subsequently derived from the corresponding thermodynamic equations. The applicability of latter two equations in evaluating the osmotic suctions of cement mortar and concrete is highlighted.

  9. Clinical semiology and neuroradiologic correlates of acute hypernatremic osmotic challenge in adults: a literature review.

    PubMed

    Ismail, F Y; Szóllics, A; Szólics, M; Nagelkerke, N; Ljubisavljevic, M

    2013-12-01

    The complex interplay between hypernatremic osmotic disturbances and cerebral lesions is yet to be clarified. In this review, we discuss, on the basis of the reported data of hypernatremic CNS challenge in the adult population, the clinical and radiologic features of the condition. Our search captured 20 case studies and 1 case series with 30 patients in total who acquired acute hypernatremia due to different etiologies and developed CNS lesions. We explored the associations between premorbid conditions, clinical presentation, hypernatremic state, correction rate, and radiologic appearance, including the localization of brain lesions and the outcomes. The results revealed that altered mental status was the most commonly reported symptom and osmotic demyelination syndrome in the form of extrapontine myelinolysis was the prevailing radiologic pattern. Finally, we contrasted, when appropriate, clinical and experimental data related to hypernatremic and hyponatremic osmotic insults to aid the understanding of the pathophysiology of CNS osmotic brain injury.

  10. A prospective multicentre study to evaluate the efficacy and tolerability of osmotic release oral system (OROS®) hydromorphone in opioid-naive cancer patients: Results of the Korean South West Oncology Group study

    PubMed Central

    Song, Eun-Kee; Shim, Hyunjeong; Han, Hye-Suk; Sun, DerSheng; Lee, Soon-Il; Kang, Myung Hee; Lee, KyuTaek; Cho, DoYeun; Cho, In Sung; Park, Suk Young; Kim, Samyong; Yim, Chang-Yeol

    2015-01-01

    BACKGROUND: Osmotic release oral system (OROS®) hydromorphone is a potent, long-acting opioid analgesic, effective and safe for controlling cancer pain in patients who have received other strong opioids. To date, few studies have examined the efficacy of hydromorphone for pain relief in opioid-naive cancer patients. OBJECTIVES: A prospective, open-label, multicentre trial was conducted to determine the efficacy and tolerability of OROS hydromorphone as a single and front-line opioid therapy for patients experiencing moderate to severe cancer pain. METHODS: OROS hydromorphone was administered to patients who had not previously received strong, long-acting opioids. The baseline evaluation (visit 1) was followed by two evaluations (visits 2 and 3) performed two and 14 weeks later, respectively. The starting dose of OROS hydromorphone was 4 mg/day and was increased every two days when pain control was insufficient. Immediate-release hydromorphone was the only accepted alternative strong opioid for relief of breakthrough pain. The efficacy, safety and tolerability of OROS hydromorphone, including the effects on quality of life, and patients’ and investigators’ global impressions on pain relief were evaluated. The primary end point was pain intensity difference (PID) at visit 2 relative to visit 1 (expressed as %PID). RESULTS: A total of 107 patients were enrolled in the present study. An improvement in pain intensity of >50% (≥50% PID) was observed in 51.0% of the full analysis set and 58.6% of the per-protocol set. The mean pain score, measured using a numerical rating scale, was significantly reduced after two weeks of treatment, and most adverse events were manageable. Quality of life also improved, and >70% of patients and investigators were satisfied with the treatment. CONCLUSIONS: OROS hydromorphone provided effective pain relief and improved quality of life in opioid-naive cancer patients. As a single and front-line treatment, OROS hydromorphone delivered

  11. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  12. Formation and Restacking of Disordered Smectite Osmotic Hydrates

    DOE PAGES

    Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.; ...

    2015-12-01

    Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less

  13. Formation and Restacking of Disordered Smectite Osmotic Hydrates

    SciTech Connect

    Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.; Kunz, Martin; Banfield, Jillian F.

    2015-12-01

    Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutions was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.

  14. Development of an oral push–pull osmotic pump of fenofibrate-loaded mesoporous silica nanoparticles

    PubMed Central

    Zhao, Zongzhe; Wu, Chao; Zhao, Ying; Hao, Yanna; Liu, Ying; Zhao, Wenming

    2015-01-01

    In this study, mesoporous silica nanoparticles (MSNs) were used to prepare an oral push–pull osmotic pump. Fenofibrate, the selected model drug, was firstly loaded into the MSNs, followed by a suspending agent consisting of a drug layer of push–pull osmotic pump. Fenofibrate-loaded MSNs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption analysis, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) analysis, and Fourier-transform infrared (FT-IR) spectroscopy. Polyethylene oxide of molecular weight (MW) 100,000 and polyethylene oxide of MW 6,000,000 were selected as the suspending agent and the expanding agent, respectively. Cellulose acetate was used as the semipermeable membrane, along with polyethylene glycol 6,000 to increase the flexibility and control the membrane permeability. The in vitro dissolution studies indicated that the osmotic pump tablet combined with MSNs was able to deliver fenofibrate in an approximately zero-order manner in 24 hours. A pharmacokinetic study showed that, although the maximum plasma concentration of the osmotic pump was lower than that of the reference formulation, the relative bioavailability was increased, indicating that the osmotic pump was more efficient than the reference tablets. Therefore, using MSNs as a carrier for poorly water-soluble drugs is an effective method for preparing osmotic pump tablets. PMID:25784799

  15. Osmotic Pressure in a Bacterial Swarm

    PubMed Central

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G.; Tang, Jay X.; Berg, Howard C.

    2014-01-01

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. PMID:25140422

  16. Osmotic Heat Engine Using Thermally Responsive Ionic Liquids.

    PubMed

    Zhong, Yujiang; Wang, Xinbo; Feng, Xiaoshuang; Telalovic, Selvedin; Gnanou, Yves; Huang, Kuo-Wei; Hu, Xiao; Lai, Zhiping

    2017-08-15

    The osmotic heat engine (OHE) is a promising technology for converting low grade heat to electricity. Most of the existing studies have focused on thermolytic salt systems. Herein, for the first time, we proposed to use thermally responsive ionic liquids (TRIL) that have either an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) type of phase behavior as novel thermolytic osmotic agents. Closed-loop TRIL-OHEs were designed based on these unique phase behaviors to convert low grade heat to work or electricity. Experimental studies using two UCST-type TRILs, protonated betaine bis(trifluoromethyl sulfonyl)imide ([Hbet][Tf2N]) and choline bis(trifluoromethylsulfonyl)imide ([choline][Tf2N]) showed that (1) the specific energy of the TRIL-OHE system could reach as high as 4.0 times that of the seawater and river water system, (2) the power density measured from a commercial FO membrane reached up to 2.3 W/m(2), and (3) the overall energy efficiency reached up to 2.6% or 18% of the Carnot efficiency at no heat recovery and up to 10.5% or 71% of the Carnet efficiency at 70% heat recovery. All of these results clearly demonstrated the great potential of using TRILs as novel osmotic agents to design high efficient OHEs for recovery of low grade thermal energy to work or electricity.

  17. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride.

    PubMed

    Bathool, Afifa; Gowda, D V; Khan, Mohammed S; Ahmed, Ayaz; Vasudha, S L; Rohitash, K

    2012-04-01

    Microporous osmotic tablet of diltiazem hydrochloride was developed for colon targeting. These prepared microporous osmotic pump tablet did not require laser drilling to deliver the drug to the specific site of action. The tablets were prepared by wet granulation method. The prepared tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan coating process. The incorporation of sodium lauryl sulfate (SLS), a leachable pore-forming agent, could form in situ delivery pores while coming in contact with gastrointestinal medium. The effect of formulation variables was studied by changing the amounts of sodium alginate and NaCMC in the tablet core, osmogen, and that of pore-forming agent (SLS) used in the semipermeable coating. As the amount of hydrophilic polymers increased, drug release rate prolonged. It was found that drug release was increased as the concentration of osmogen and pore-former was increased. Fourier transform infrared spectroscopy and Differential scanning calorimetry results showed that there was no interaction between drug and polymers. Scanning electron microscopic studies showed the formation of pores after predetermined time of coming in contact with dissolution medium. The formation of pores was dependent on the amount of pore former used in the semipermeable membrane. in vitro results showed acid-resistant, timed release at an almost zero order up to 24 hours. The developed osmotic tablets could be effectively used for prolonged delivery of Diltiazem HCl.

  18. Enhancement of light in tissue using hyper-osmotic agents

    NASA Astrophysics Data System (ADS)

    Zaman, Raiyan T.; Chen, Bo; Parthasarathy, Ashwin B.; Estrada, Arnold D., Jr.; Ponticorvo, Ardien; Rylander, Henry G., III; Dunn, Andrew K.; Welch, Ashley J.

    2008-02-01

    Optical changes in skin blood flow due to the presence of glycerol were measured from a two-dimensional map of blood flow in skin blood vessels with a dynamic imaging technique using laser speckle. In this study a dorsal skin-flap window was implanted on the hamster skin with and without a hyper-osmotic agent i.e. glycerol. The hyper-osmotic drug was delivered to the skin through the open dermal end of the window model. A two-dimensional map of blood flow in skin blood vessels were obtained with very high spatial and temporal resolution by imaging the speckle pattern with a CCD camera. Preliminary studies demonstrated that hyper-osmotic agents such as glycerol not only make tissue temporarily translucent, but also reduce blood flow. The blood perfusion was measured every 3 minutes up to 36-60 minutes after diffusion of anhydrous glycerol. Small capillaries blood flow reduced significantly within 3-9 minutes. Perfusion rate in lager blood vessels i.e. all arteries and some veins decreased (speckle contrasts increased from 0.0115 to 0.384) over time. However, the blood flow in some veins reduced significantly in 36 minutes. After 24 hours the blood perfusion further reduced in capillaries. However, the blood flow increased in larger blood vessels in 24 hours compared to an hour after application of glycerol. For further investigation the speckle contrast measurement were verified with color Doppler optical coherence tomography.

  19. Osmotically driven flows in microchannels separated by a semipermeable membrane.

    PubMed

    Jensen, Kåre Hartvig; Lee, Jinkee; Bohr, Tomas; Bruus, Henrik

    2009-07-21

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 microm wide and 50-200 microm deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental results and the predictions of the model. Our motivation for studying osmotically driven microflows is that they are believed to be responsible for the translocation of sugar in plants through the phloem sieve element cells. Also, we suggest that osmotic elements can act as on-chip integrated pumps with no movable parts in lab-on-a-chip systems.

  20. Osmotic flow through fully permeable nanochannels.

    PubMed

    Lee, C; Cottin-Bizonne, C; Biance, A-L; Joseph, P; Bocquet, L; Ybert, C

    2014-06-20

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes.

  1. Osmotic Flow through Fully Permeable Nanochannels

    NASA Astrophysics Data System (ADS)

    Lee, C.; Cottin-Bizonne, C.; Biance, A.-L.; Joseph, P.; Bocquet, L.; Ybert, C.

    2014-06-01

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes.

  2. Collective osmotic shock in ordered materials.

    PubMed

    Zavala-Rivera, Paul; Channon, Kevin; Nguyen, Vincent; Sivaniah, Easan; Kabra, Dinesh; Friend, Richard H; Nataraj, S K; Al-Muhtaseb, Shaheen A; Hexemer, Alexander; Calvo, Mauricio E; Miguez, Hernan

    2011-11-27

    Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics.

  3. Pulsatile Lipid Vesicles under Osmotic Stress

    NASA Astrophysics Data System (ADS)

    Chabanon, Morgan; Ho, James C. S.; Liedberg, Bo; Parikh, Atul N.; Rangamani, Padmini

    2017-04-01

    The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously, in [Oglecka et al. 2014], we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypotonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we seek to deepen our quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions, by advancing a comprehensive theoretical model for vesicle dynamics. The model quantitatively captures our experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further identify new scaling relationships between the pulsatile dynamics and GUV properties. Our findings provide a fundamental framework that has the potential to guide future investigations on the non-equilibrium dynamics of vesicles under osmotic stress.

  4. Electro-osmotic flow over a charged superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2010-06-01

    Bubbles can be trapped inside textured structures such as grooves, forming a superhydrophobic surface. A superhydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many interesting applications in microfluidics. However, recent theoretical studies suggested that electro-osmotic flows over a weakly charged superhydrophobic surface [the zeta potential of the surface is smaller than the thermal potential (25 mV)] can only be enhanced when liquid-gas interfaces are charged [T. M. Squires, Phys. Fluids 20, 092105 (2008); Bahga , J. Fluid Mech. 644, 245 (2010)]. So far there is little work reported when the zeta potential of the surface is comparable or even larger than the thermal potential. In this paper we numerically investigate electro-osmotic flows over a periodically striped slip-stick surface by solving the standard Poisson-Nernst-Planck equations. Our results indicate that at large zeta potentials, even if liquid-gas interfaces are charged, the nonuniform surface conduction due to the mismatch between surface conductions over no-shear and no-slip regions leads to electric field lines penetrating the double layer and thus the nonuniform surface conduction weakens the tangential component of the electric field which primarily drives electro-osmotic flows. Our results imply that, in the presence of strong nonuniform surface conduction, enhanced electro-osmotic flows over a superhydrophobic surface are possible only in certain conditions. In particular, the enhancement due to the slip can potentially be lost at large zeta potentials. Similar loss of the enhancement of a charged particle’s electrophoretic mobility due to the slip was reported by Khair and Squires [Phys. Fluids 21, 042001 (2009)].

  5. Preparation of osmotic dehydrated ripe banana slices.

    PubMed

    Chavan, U D; Prabhukhanolkar, A E; Pawar, V D

    2010-08-01

    Process for preparation of ripe banana slices using osmotic dehydration was standardized. Fully ripe banana fruits were peeled and slices of 8 mm thickness were prepared. The slices were divided into 5 lots and pretreated with sulphur fumigation @ 2 g/kg of slices for 2 h then each lot was soaked in 60 (0)Brix sugar syrup containing 0.1% KMS + 0.1 % citrate, 0.1% KMS + 0.1% citrate + 0.2%, 0.4% and 0.8% ascorbic acid and control respectively. After 16 h soaking, quick washing, blotting and then cabinet drying at 55 °C for 10 h up to 18% moisture content was done. The dried products were packed in 200 gauge polypropylene bags and stored at ambient condition for 6 months. The chemical, microbial and organoleptic changes were monitored for 6 months. The osmo-dried banana slices prepared with sulphur fumigation @ 2 g /kg slices for 2 h followed by soaking in 60(0)Brix sugar syrup containing 0.1% KMS + 0.1% citrate + 0.2% ascorbic acid were found better with respect to colour and appearance, flavour, texture, taste and overall acceptability with non-stickiness of the product. Storage study showed that there was marginal decrease in moisture content and organoleptic quality and increase in TSS, total sugars and reducing sugars content of osmodried banana slices. The products were found microbiologically safe and sensorily acceptable up to 6 months storage at ambient condition.

  6. Intravesical electro-osmotic administration of mitomycin C.

    PubMed

    Di Stasi, Savino M; Verri, Cristian; Celestino, Francesco; De Carlo, Francesco; Pagliarulo, Vincenzo

    2016-10-04

    Bladder cancer is very common and most cases are diagnosed as nonmuscle invasive disease, which is characterized by its propensity to recur and progress. Intravesical therapy is used to delay recurrence and progression, while cystectomy is reserved for patients who are refractory to transurethral resection and intravesical therapy. There is an increasing interest in methods to enhance the delivery of intravesical chemotherapeutic agents to improve efficacy. In vitro and in vivo studies demonstrated that electro-osmosis of mitomycin C (MMC) is more effective in delivering this drug into the urothelium, lamina propria, and superficial muscle layers of the bladder wall than is passive transport. Higher MMC tissue concentrations might have a clinical impact in the treatment of nonmuscle invasive bladder cancer (NMIBC). In randomized trials, intravesical electro-osmotic MMC was associated with superior response rate in high-risk NMIBC cancer, compared with passive diffusion MMC transport. New strategies such as intravesical Bacillus Calmette-Guerin (BCG) combined with electro-osmotic MMC as well as intravesical pre-operative electro-osmotic MMC provided promising results in terms of higher remission rates and longer remission times.Device-assisted intravesical chemotherapy may be a useful ancillary procedure in the treatment of NMIBC. Its evaluation must be planned with respect to the technical functioning of equipment and their use for a clear purpose to avoid the financial and human costs associated with incorrect therapies.

  7. Mechanosensitive Channels and Sensing Osmotic Stimuli in Bacteria

    NASA Astrophysics Data System (ADS)

    Blount, Paul; Iscla, Irene; Li, Yuezhou

    Microbes are directly exposed to the elements, and one of the most acute insults they can experience is a rapid change in osmotic environment. The forces that are generated by even small changes in the osmolarity are massive. In response to increases in the osmolarity of the medium, also called osmotic upshock, the cell transports and synthesizes cytoplasmic osmoprotectants, which thus help to maintain its turgor. A subsequent severe osmotic downshock is more than an inconvenience, it is life threatening. The cell swells, its cell-wall becomes compromised, and without immediate action the organism would lyse. Largeconductance mechanosensitive channels within the cytoplasmic membrane prevent this needless death by serving as biological emergency release valves. Two such bacterial mechanosensitive channel families have been extensively studied: MscL and MscS. For each, a crystal structure of a family member has been obtained, and detailed models for structural changes that occur upon gating have been postulated. As we learn more of the molecular mechanisms by which these channels sense and respond to membrane tension, we discover similarities not only between these two relatively distant families, but also potentially with the more complex mechanosensory systems of eukaryotic organisms.

  8. Osmotic water permeability of human red cells

    PubMed Central

    1981-01-01

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1. PMID:7229611

  9. Subcutaneous Angiotensin II Infusion using Osmotic Pumps Induces Aortic Aneurysms in Mice.

    PubMed

    Lu, Hong; Howatt, Deborah A; Balakrishnan, Anju; Moorleghen, Jessica J; Rateri, Debra L; Cassis, Lisa A; Daugherty, Alan

    2015-09-28

    Osmotic pumps continuously deliver compounds at a constant rate into small animals. This article introduces a standard protocol used to induce aortic aneurysms via subcutaneous infusion of angiotensin II (AngII) from implanted osmotic pumps. This protocol includes calculation of AngII amount and dissolution, osmotic pump filling, implantation of osmotic pumps subcutaneously, observation after pump implantation, and harvest of aortas to visualize aortic aneurysms in mice. Subcutaneous infusion of AngII through osmotic pumps following this protocol is a reliable and reproducible technique to induce both abdominal and thoracic aortic aneurysms in mice. Infusion durations range from a few days to several months based on the purpose of the study. AngII 1,000 ng/kg/min is sufficient to provide maximal effects on abdominal aortic aneurysmal formation in male hypercholesterolemic mouse models such as apolipoprotein E deficient or low-density lipoprotein receptor deficient mice. Incidence of abdominal aortic aneurysms induced by AngII infusion via osmotic pumps is 5-10 times lower in female hypercholesterolemic mice and also lower in both genders of normocholesterolemic mice. In contrast, AngII-induced thoracic aortic aneurysms in mice are not hypercholesterolemia or gender-dependent. Importantly, multiple features of this mouse model recapitulate those of human aortic aneurysms.

  10. Osmotic Pressure induced by Poly(ethylene glycol) at High Salt Concentrations

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun; Strey, Helmut; Gido, Sam

    2006-03-01

    The osmotic pressure method is one of the most effective tools that can be used in controlling self-assembly of polymers in solution, especially of water-soluble biopolymers. This study investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase. PEG 8,000 and LiBr were chosen as osmolyte and salt, respectively, since this model system can be directly applied to the case of silk protein self-assembly, where hydrogen bonding plays a major role. In addition to the conventional methods for measuring osmotic pressure, such as membrane osmometry, vapor pressure osmometry, and ultracentrifuge, an `equilibration method' that measures osmotic pressure relative to a reference with known osmotic pressure, was introduced. PEG 400 solution was chosen as the reference for this method. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters and Arrhenius kinetics based on time-temperature relationship during the equilibration process were derived as well.

  11. Subcutaneous Angiotensin II Infusion using Osmotic Pumps Induces Aortic Aneurysms in Mice

    PubMed Central

    Lu, Hong; Howatt, Deborah A.; Balakrishnan, Anju; Moorleghen, Jessica J.; Rateri, Debra L.; Cassis, Lisa A.; Daugherty, Alan

    2015-01-01

    Osmotic pumps continuously deliver compounds at a constant rate into small animals. This article introduces a standard protocol used to induce aortic aneurysms via subcutaneous infusion of angiotensin II (AngII) from implanted osmotic pumps. This protocol includes calculation of AngII amount and dissolution, osmotic pump filling, implantation of osmotic pumps subcutaneously, observation after pump implantation, and harvest of aortas to visualize aortic aneurysms in mice. Subcutaneous infusion of AngII through osmotic pumps following this protocol is a reliable and reproducible technique to induce both abdominal and thoracic aortic aneurysms in mice. Infusion durations range from a few days to several months based on the purpose of the study. AngII 1,000 ng/kg/min is sufficient to provide maximal effects on abdominal aortic aneurysmal formation in male hypercholesterolemic mouse models such as apolipoprotein E deficient or low-density lipoprotein receptor deficient mice. Incidence of abdominal aortic aneurysms induced by AngII infusion via osmotic pumps is 5 - 10 times lower in female hypercholesterolemic mice and also lower in both genders of normocholesterolemic mice. In contrast, AngII-induced thoracic aortic aneurysms in mice are not hypercholesterolemia or gender-dependent. Importantly, multiple features of this mouse model recapitulate those of human aortic aneurysms. PMID:26436287

  12. Products of Proline Catabolism Can Induce Osmotically Regulated Genes in Rice1

    PubMed Central

    Iyer, Suresh; Caplan, Allan

    1998-01-01

    Many plants accumulate high levels of free proline (Pro) in response to osmotic stress. This imino acid is widely believed to function as a protector or stabilizer of enzymes or membrane structures that are sensitive to dehydration or ionically induced damage. The present study provides evidence that the synthesis of Pro may have an additional effect. We found that intermediates in Pro biosynthesis and catabolism such as glutamine and Δ1-pyrroline-5-carboxylic acid (P5C) can increase the expression of several osmotically regulated genes in rice (Oryza sativa L.), including salT and dhn4. One millimolar P5C or its analog, 3,4-dehydroproline, produced a greater effect on gene expression than 1 mm l-Pro or 75 mm NaCl. These chemicals did not induce hsp70, S-adenosylmethionine synthetase, or another osmotically induced gene, Em, to any significant extent. Unlike NaCl, gene induction by P5C did not depend on the normal levels of either de novo protein synthesis or respiration, and did not raise abscisic acid levels significantly. P5C- and 3,4-dehydroproline-treated plants consumed less O2, had reduced NADPH levels, had increased NADH levels, and accumulated many osmolytes associated with osmotically stressed rice. These experiments indicate that osmotically induced increases in the concentrations of one or more intermediates in Pro metabolism could be influencing some of the characteristic responses to osmotic stress.

  13. Text-mining network analysis of the response to osmotic stimuli in the intervertebral disc.

    PubMed

    Xu, X; Liu, L; Lu, Q Y

    2013-05-13

    Intervertebral disc cells experience a broad range of physical stimuli under physiologic conditions, including alterations in their osmotic environment. The purpose of this study was to construct a text-mining network of the genes induced during the response to osmotic stimuli in the intervertebral disc. We obtained a gene expression profile of human intervertebral disc cells from the National Center for Biotechnology Information, after culture under hyper- and hypo-osmotic conditions compared to iso-osmotic conditions, and we identified 65 differentially expressed genes of intervertebral disc cells. We constructed a text-mining network using Biblio-MetReS between the differentially expressed genes and other genes that were included in the same document as the differentially expressed genes. Then, we performed pathway-enrichment analysis to identify the most relevant pathways for the response to osmotic stimuli in intervertebral disc cells. Our data provide a comprehensive bioinformatics analysis of genes and pathways that may be involved in the response to osmotic stimuli in the intervertebral disc.

  14. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential.

    PubMed

    Pompon, Julien; Quiring, Dan; Goyer, Claudia; Giordanengo, Philippe; Pelletier, Yvan

    2011-09-01

    Phloem-sap feeders (Hemiptera) occasionally consume the dilute sap of xylem, a behaviour that has previously been associated with replenishing water balance following dehydration. However, a recent study reported that non-dehydrated aphids ingested xylem sap. Here, we tested the hypothesis that the consumption of xylem sap, which has a low osmolality, is a general response to osmotic stresses other than dehydration. Alate aphids were subjected to different treatments and subsequently transferred onto a plant, where electrical penetration graph (EPG) was used to estimate durations of passive phloem sap consumption and active sucking of xylem sap. The proportion of time aphids fed on xylem sap (i.e., time spent feeding on xylem sap/total time spent feeding on phloem plus xylem sap) was used as a proxy of the solute concentration of the uptake. The proportion of time alate aphids fed on xylem sap increased: (1) with the time spent imbibing an artificial diet containing a solution of sucrose, which is highly concentrated in phloem sap and is mainly responsible for the high osmotic potential of phloem sap; (2) with the osmotic potential of the artificial diet, when osmotic potential excess was not related to sucrose concentration; and (3) when aphids were deprived of primary symbionts, a condition previously shown to lead to a higher haemolymph osmotic potential. All our results converge to support the hypothesis that xylem sap consumption contributes to the regulation of the osmotic potential in phloem-sap feeders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Calculating osmotic pressure according to nonelectrolyte Wilson nonrandom factor model.

    PubMed

    Li, Hui; Zhan, Tingting; Zhan, Xiancheng; Wang, Xiaolan; Tan, Xiaoying; Guo, Yiping; Li, Chengrong

    2014-08-01

    Abstract The osmotic pressure of NaCl solutions was determined by the air humidity in equilibrium (AHE) method. The relationship between the osmotic pressure and the concentration was explored theoretically, and the osmotic pressure was calculated according to the nonelectrolyte Wilson nonrandom factor (N-Wilson-NRF) model from the concentration. The results indicate that the calculated osmotic pressure is comparable to the measured one.

  16. Osmotic compressibility of soft colloidal systems.

    PubMed

    Tan, Beng H; Tam, Kam C; Lam, Yee C; Tan, Chee B

    2005-05-10

    A turbidimetric analysis of particle interaction of model pH-responsive microgel systems consisting of methacrylic acid-ethyl acrylate cross-linked with diallyl phthalate in colloidal suspensions is described. The structure factor at zero scattering angle, S(0), can be determined with good precision for wavelengths greater than 500 nm, and it measures the dispersion's resistance to particle compression. The structure factor of microgels at various cross-linked densities and ionic strengths falls onto a master curve when plotted against the effective volume fraction, phi(eff) = kc, which clearly suggests that particle interaction potential and osmotic compressibility is a function of effective volume fraction. In addition, the deviation of the structure factor, S(0), of our microgel systems with the structure factor of hard spheres, S(PY)(0), exhibits a maximum at phi(eff) approximately 0.2. Beyond this point the osmotic de-swelling force exceeds the osmotic pressure inside the soft particles resulting in particle shrinkage. Good agreement was obtained when the structural properties of our microgel systems obtained from turbidimetric analysis and rheology measurements were compared. Therefore, a simple turbidimetric analysis of these model pH-responsive microgel systems permits a quantitative evaluation of factors governing particle osmotic compressibility.

  17. Osmotic Model to Explain Anomalous Hydraulic Heads

    NASA Astrophysics Data System (ADS)

    Marine, I. Wendell; Fritz, Steven J.

    1981-01-01

    Laboratory experiments have shown that compacted clays act as osmotic membranes when they separate aqueous solutions of unequal ionic concentration. Theoretically, osmotically induced differential hydraulic pressure in groundwater systems can be relatively high. The magnitude depends primarily upon concentration differences across the membrane, type of ions, type of clay, and pore size. In experiments, thin, compacted clay membranes commonly exhibit varying degrees of osmotic efficiency due to ion leak-age through the clay. In natural systems the membrane and the solution containers are not as distinct and well defined as they are in the laboratory. Moreover, the membrane is commonly thick, inhomogeneous, and composite. In a buried Triassic basin at the Savannah River plant near Aiken, South Carolina, it is suspected that osmosis causes the saline water in the basin center to be slightly geopressurized in relation to freshwater in the overlying coastal plain aquifer. Two wells have heads of 7.88 and 12.98 bars (114.3 and 188.3 psi) above the head in the coastal plain aquifer. The head in each of these wells approximates the osmotic equilibrium head calculated from solution concentration of water produced by each well (12,000 and 18,500 mg/l, respectively). Other wells penetrating the top and edge of the Triassic basin probably penetrate a zone where ion leakage gives rise to less saline water. Thus these wells are not geopressurized.

  18. Polyamine Metabolism and Osmotic Stress 1

    PubMed Central

    Tiburcio, Antonio Fernández; Kaur-Sawhney, Ravindar; Galston, Arthur W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with dl-α-difluoromethylarginine (DFMA), a specific `suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role. PMID:11539087

  19. Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Yoshida, Hiroaki; Bocquet, Lydéric

    2017-05-01

    In this paper, we explore various forms of osmotic transport in the regime of high solute concentration. We consider both the osmosis across membranes and diffusio-osmosis at solid interfaces, driven by solute concentration gradients. We follow a mechanical point of view of osmotic transport, which allows us to gain much insight into the local mechanical balance underlying osmosis. We demonstrate in particular how the general expression of the osmotic pressure for mixtures, as obtained classically from the thermodynamic framework, emerges from the mechanical balance controlling non-equilibrium transport under solute gradients. Expressions for the rejection coefficient of osmosis and the diffusio-osmotic mobilities are accordingly obtained. These results generalize existing ones in the dilute solute regime to mixtures with arbitrary concentrations.

  20. A simple student laboratory on osmotic flow, osmotic pressure, and the reflection coefficient.

    PubMed

    Feher, J J; Ford, G D

    1995-06-01

    Osmosis is usually taught from the point of view of the osmotic pressure developed when solutions of different concentrations of solute are separated by an ideal semipermeable membrane. The osmotic pressure is defined at equilibrium when there is no net flow, and it takes some time to reach this equilibrium. Although the osmotic pressure is certainly important, teaching only this point of view implicitly diminishes the importance of osmotic flow, which begins almost instantaneously across a membrane. A device was constructed with which students could measure the flow across a model membrane (dialysis tubing) as a function of concentration for solutes of different sizes. The device produced flows that were linearly proportional to the concentration, providing a confirmation of van't Hoff's law. Separate student groups repeated these experiments using both different solutes and different dialysis membranes. The combined results of four student groups showed that the flow across these nonideal membranes depends on the solute and membrane as well as the concentration of solute. Given a value for area times filtration coefficient (A x Lp) for the membranes (determined beforehand by their instructor), the students could calculate the reflection coefficient (sigma) for three solutes and two membranes. The results showed that large solutes had large sigma and that less porous membranes had larger sigma. A concurrent demonstration using this device and membranes showed that the osmotic flow can generate large pressures. These experiments and demonstration provide a balanced view of osmotic flow and pressure.

  1. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Föster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations. PMID:27040652

  2. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-07-01

    The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations.

  3. A randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of osmotic-controlled release oral delivery system methylphenidate HCl in adults with attention-deficit/hyperactivity disorder in Japan.

    PubMed

    Takahashi, Nagahide; Koh, Tadaishi; Tominaga, Yushin; Saito, Yuki; Kashimoto, Yuji; Matsumura, Taka

    2014-08-01

    To evaluate the safety and efficacy of osmotic-controlled release oral delivery system (OROS) methylphenidate (MPH) HCl in adults with attention-deficit/hyperactivity disorder (ADHD). In this study, 284 adults with ADHD were randomized to OROS MPH or placebo. During the 4-week titration period, patients were titrated from a starting dose of 18 mg once daily to an individually-optimized dose of up to 72 mg once daily in weekly 18-mg increments. Patients continued on their individualized dose during the 4-week efficacy assessment period. The primary efficacy endpoint was change in DSM-IV Total ADHD Symptoms subscale score of Conners' Adult ADHD Rating Scale-Observer: Screening Version (CAARS-O:SV) from baseline to endpoint. The mean change in DSM-IV Total ADHD Symptoms subscale score of CAARS-O:SV was significantly larger with OROS MPH compared with placebo (P < 0.0001, ANCOVA). Similar results were observed for the majority of secondary endpoints, including CAARS-O:SV total score and other subscale scores. Although treatment-emergent adverse events were reported more frequently in the OROS MPH group (81.8%) versus the placebo group (53.9%), OROS-MPH showed a well-tolerated safety profile overall. OROS MPH in a dose range of 18-72 mg once daily was effective and well-tolerated in adult patients with ADHD.

  4. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration.

    PubMed

    Fullerton, Gary D; Kanal, Kalpana M; Cameron, Ivan L

    2006-01-01

    How much does protein-associated water differ in colligative properties (freezing point, boiling point, vapor pressure and osmotic behavior) from pure bulk water? This question was approached by studying the globular protein bovine serum albumin (BSA), using changes in pH and salt concentration to alter its native structural conformation and state of aggregation. BSA osmotic pressure was investigated experimentally and analyzed using the molecular model of Fullerton et al. [Biochem Cell Biol 1992;70(12):1325]. Analysis yielded both the extent of osmotically unresponsive water (OUW) and the effective molecular weight values of the membrane-impermeable BSA solute. Manipulation of BSA conformation and aggregation by membrane-penetrating cosolutes show that alterations in pH and salt concentration change the amount of bulk water that escapes into BSA from a minimum of 1.4 to a maximum of 11.7 g water per g dry mass BSA.

  5. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways

    PubMed Central

    Irsigler, André ST; Costa, Maximiller DL; Zhang, Ping; Reis, Pedro AB; Dewey, Ralph E; Boston, Rebecca S; Fontes, Elizabeth PB

    2007-01-01

    inversely regulated by osmotic stress. Conclusion The present ER-stress- and osmotic-stress-induced transcriptional studies demonstrate a clear predominance of stimulus-specific positive changes over shared responses on soybean leaves. This scenario indicates that polyethylene glycol (PEG)-induced cellular dehydration and ER stress elicited very different up-regulated responses within a 10-h stress treatment regime. In addition to identifying ER-stress and osmotic-stress-specific responses in soybean (Glycine max), our global expression-profiling analyses provided a list of candidate regulatory components, which may integrate the osmotic-stress and ER-stress signaling pathways in plants. PMID:18036212

  6. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures.

    PubMed

    Cochrane, T T; Cochrane, T A

    2016-01-01

    subsequently used to estimate Nf values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors' equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Following work to measure the relative densities of aqueous solutions for the calculation of Nf values and the determination of definitive t values up to and beyond bodily temperatures, the authors' equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.

  7. Colon targeted delivery systems of metronidazole based on osmotic technology: development and evaluation.

    PubMed

    Kumar, Pramod; Singh, Sanjay; Mishra, Brahmeshwar

    2008-09-01

    Colon targeted delivery systems of metronidazole (MTZ) based on osmotic technology were developed. The developed systems consisted of osmotic core (drug, osmotic agent and wicking agent), coated with semipermeable membrane (SPM) containing guar gum as pore former, coated core were then further coated with enteric coating to protect the system from acidic environment of stomach. The effect of various formulation variables namely the level of wicking agent (sodium lauryl sulphate), osmotic agent in the osmotic core, the level of pore former (guar gum) in SPM, and the thickness of SPM, were studied on physical parameters and drug release characteristics of developed formulations. MTZ release was inversely proportional to SPM thickness, but directly related to the level of pore former, wicking agent and osmotic agent. On the other hand burst strength of the exhausted shells was decreased with the increase in level of pore former in the membrane but increased with the increase in the thickness of SPM. The drug release from the developed formulations was independent of pH, and agitation intensity, but dependent on the osmotic pressure of the release media. The thickness of enteric coating could prevent formation of delivery pores before contact with simulated colonic fluid, but had no effect on drug release. Result of SEM studies showed the formation of in-situ delivery pores in the membrane from where the drug release occurred, and the number of pores formed were directly related to the initial level of pore former (guar gum) in SPM. The manufacturing procedure was found to be reproducible and formulations were found to be stable during 3 months of accelerated stability studies.

  8. Osmotic and specific ion effects on the germination of Prosopis strombulifera.

    PubMed

    Sosa, Laura; Llanes, Analía; Reinoso, Herminda; Reginato, Mariana; Luna, Virginia

    2005-08-01

    Salinity can affect germination of seeds either by creating osmotic potentials that prevent water uptake or by toxic effects of specific ions. Most studies have only used monosaline solutions, although these limit the extent to which one can interpret the results or relate them to field conditions. The aim of this work was to evaluate the germination of Prosopis strombulifera seeds under increasing salinity by using the most abundant salts in central Argentina in monosaline or bisaline iso-osmotic solutions, or in solutions of mannitol and polyethylene glycol. Seeds were allowed to germinate under controlled conditions in a germination chamber at 30 +/- 1 degrees C and at 80 % r.h. Salinizing agents were KCl, NaCl, Na(2)SO(4), K(2)SO(4), NaCl + Na(2)SO(4) and KCl + K(2)SO(4) and osmotic agents were polyethylene glycol 6000 and mannitol. Treatments for all osmotica consisted of 0.0, -0.4, -0.8, -1.2, -1.5, -1.9 and -2.2 MPa solutions. The percentage of germination decreased as salinity increased. SO(4)(2-) in monosaline solutions, with osmotic potentials -1.2 MPa and lower, was more inhibitory than Cl(-) at iso-osmotic concentrations. This SO(4)(2-) toxicity was alleviated in salt mixtures and was more noticeable in higher concentrations. K(+) was more inhibitory than Na(+) independently of the accompanying anion. Different responses to different compositions of iso-osmotic salt solutions and to both osmotic agents indicate specific ionic effects. This study demonstrates that the germination of P. strombulifera is strongly influenced by the nature of the ions in the salt solutions and their interactions. Comparative studies of Cl(-) and SO(4)(2-) effects and the interaction between SO(4)(2-) and Cl(-) in salt mixtures indicate that extrapolation of results obtained with monosaline solutions in the laboratory to field conditions can be speculative.

  9. Uptake of an endocytic marker by rice cells: variations related to osmotic and saline stress.

    PubMed

    Bahaji, Abdellatif; Aniento, Fernando; Cornejo, María-Jesús

    2003-10-01

    Saline and osmotic stress are the main abiotic factors limiting the productivity of rice and other crop plants. Although both coincide in generating water deficit and affect many aspects of plant growth and development similarly, some effects of salinity are distinctively related to the ionic component of salt stress. At the cellular level, dessication tolerance is largely dependent on the cell's ability for osmotic adjustment. Here, we have studied the effects of saline and osmotic stress on endocytosis by rice cells, to investigate the common and distinctive effects of saline-generated stress and osmotically generated stress, and the possible involvement of endocytosis in tolerance mechanisms. For this purpose, we have used rice cell lines with different levels of tolerance and biotinylated bovine serum albumin (bBSA) as an endocytic marker, which in our previous experiments has been shown to enter rice cells by a process with the characteristics of receptor-mediated endocytosis. Our results indicate that the pattern of uptake is common to both types of stress. Thus, when rice cells were subjected to saline or osmotic stress there was an initial dose-dependent inhibition of uptake. However, after more extended stress periods, there was an activation of uptake in the stressed cells. This late activation appears mainly related to the inhibition of growth commonly caused by the different stress agents used in this study. When using cell lines with different degrees of tolerance, the level of uptake activation varied as a function of the type of stress. Thus, under osmotic stress, a higher stress tolerance was directly related to a higher bBSA uptake, while the opposite occurred under saline stress. The possible role of endocytosis in the cellular responses to osmotic and saline stress is discussed.

  10. An examination of the effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals.

    PubMed

    Hubbard, J I; Jones, S F; Landau, E M

    1968-08-01

    1. When the frequency of miniature end-plate potentials (m.e.p.p.s) was measured at neuromuscular junctions in rat diaphragm nerve preparations in vitro bathed in solutions having osmolarities between 200 and 700 m-osmoles/l. it was found that m.e.p.p. frequency was transiently increased by exposure to osmotic gradients exceeding 75 m-osmoles/l., and then declined, within 1 hr, to a steady level slightly higher than the control level of frequency. Smaller osmotic gradients caused a maintained increase in m.e.p.p. frequency. E.p.p. quantal content was initially increased and later profoundly decreased upon exposure of preparations to solutions with an osmotic pressure of 500 or 600 m-osmoles/l. but was unaffected by less hypertonic solutions.2. Variation of the Ca or Mg content of the bathing solutions did not alter these effects of osmotic pressure on the early transient increase in m.e.p.p. frequency or e.p.p. quantal content but affected the late steady increase in m.e.p.p. frequency.3. The value of the transient increase in m.e.p.p. frequency was exponentially related to the osmotic gradient in the range 0-300 m-osmoles/l. with a Q(10) of 1.95 (range 11-34 degrees C). Greater osmotic gradients did not further increase m.e.p.p. frequency. Variation of the ionic strength of the bathing medium did not influence osmotic effects upon frequency.4. The discrepancy between the effects of osmotic gradients upon spontaneous and nerve-impulse induced transmitter release was explained by an occlusion of the osmotic effects by depolarization of nerve terminals. Time-course studies showed that in the presence of 20 mM-KCl the m.e.p.p. frequency increase in response to an increase in osmotic pressure was small and was followed by a reduction in frequency to below control levels while osmotic pressure changes had no immediate effect upon m.e.p.p. frequency in solutions containing 30 mM-KCl.5. It was concluded that increased osmotic gradients could release transmitter by a

  11. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles

    PubMed Central

    Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo

    2016-01-01

    Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements

  12. Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses

    PubMed Central

    Vallejo, Augusto J.; Yanovsky, Marcelo J.; Botto, Javier F.

    2010-01-01

    Background Water and salt stresses are two important environmental factors that limit the germination of seeds in most ecological environments. Most studies conducted so far to address the genetic basis of the above phenomenon have used stress conditions that are much more extreme than those found in natural environments. Furthermore, although an excess of ions and water restrictions have similar osmotic effects on germination, the common and divergent signalling components mediating the effects of both factors remain unknown. Methods The germination of seeds was compared under solutions of NaCl (50 mm) and polyethylene glycol (PEG, −0·6 MPa), that establish mild stress conditions, in 28 Arabidopsis thaliana accessions. Because Bayreuth (Bay) and Shadara (Sha) accessions showed contrasting sensitivity responses to both stresses, a quantitative trait locus (QTL) analysis was carried out using Bay × Sha recombinant inbred lines (RILs) to identify loci involved in the control of germination under mild salt and osmotic stresses. Key Results Two loci associated with the salt sensitivity response, named SSR1 and SSR2 QTLs, and four loci for the osmotic sensitivity response, named OSR1–OSR4 QTLs, were mapped. The effects of the SSR1 QTL on toxic salt sensitivity, and the osmotic contribution of OSR1, were confirmed by heterogeneous inbred families (HIFs). Whilst the SSR1 QTL had a significant effect under a wide range of NaCl concentrations, the OSR1 QTL was confirmed only under moderate drought stress. Interestingly the OSR1 QTL also showed pleiotropic effects on biomass accumulation in response to water deficit. Conclusions The regulation of germination under moderate salt and osmotic stresses involves the action of independent major loci, revealing the existence of loci specifically associated with the toxic component of salt and not just its osmotic effect. Furthermore, this work demonstrates that novel loci control germination under osmotic stress conditions

  13. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles.

    PubMed

    Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo

    2016-01-01

    Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf ) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf . We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf /Ps ), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements

  14. A novel solubility-modulated granules through porosity osmotic pump for controlled carvedilol delivery.

    PubMed

    Song, Qun-Li; Li, Ping; Li, Yu-Min

    2012-01-01

    A method for the preparation of porosity osmotic pump granules was obtained by modulating carvedilol solubility with tartaric acid. Controlled porosity of the membrane was accomplished by the use of pore-forming agent in the coating. In this study, carvedilol was chosen as a model drug with an aim to develop a zero-order release system; tartaric acid was used as the solubility promoter; NaCl was used as the osmotic agent; cellulose acetate (CA) was used as the materials of semipermeable membrane; and PEG-400 was used as the pore-forming agent in the semipermeable membrane. The influence of different factors or levels on the in vitro release was studied. In order to simulate the gastrointestinal tract environments, two kinds of pH media (pH 1.5 and 6.8) on drug release were studied in this research, respectively. This porosity osmotic pump was optimized by single factor design experiments, and it was found to deliver carvedilol at a zero-order rate within 12 h and controlled release for 24 h. We drew a conclusion that the solubility-modulated porosity osmotic pump system is simple to prepare and might be used for the preparation of osmotic pump system of other poorly water-soluble drugs with alkaline or acid groups.

  15. Physics of Bacteria During Osmotic Shock

    NASA Astrophysics Data System (ADS)

    Price, Jordan; Klug, William

    Bacteria combat hypoosmotic shocks by opening mechanosensitive ion channels located within the inner membrane. These channels are believed to act as ``emergency release valves,'' reducing transient pressure during the shock by regulating solute and water flux. Recent experiments have shown that cell survivability depends strongly on channel populations and the rate of osmotic shock. However, the understanding of the physical mechanisms behind osmotic protection remains unclear. We investigate how channel deletions, variations in shock rate, and cell envelope mechanics affect survivability by constructing theoretical elasticity and transport models. We find that reducing the number of channels and applying faster shocks significantly increases the time-dependent stress of the cell membrane and wall. This result provides insight into physical mechanisms that govern cell failure, including membrane rupture and wall fracture.

  16. Effect of different carbohydrates on in vitro fermentation activity and bacterial numbers of porcine inocula under osmotic stress conditions.

    PubMed

    Rink, Franziska; Bauer, Eva; Eklund, Meike; Mosenthin, Rainer

    2011-12-01

    The bacteria of the intestine have to cope with varying osmotic conditions in their ecosystem. In this in vitro study, the modified Hohenheim gas test (HGT) was used to determine fermentation activity and bacterial composition of pig's faecal microbial inoculum, when fermenting different carbohydrates (inulin, corn starch, potato starch, cellulose, pectin), under normal buffered and osmotic stress conditions (elevated medium salinity). After 24 h of fermentation, gas, ammonia and short-chain fatty acid (SCFA) production was measured, and the cell numbers of total eubacteria, Lactobacillus spp., Bifidobacterium spp. and enterobacteria were analysed, using real-time polymerase chain reaction. There was a significant reduction in gas production after 24 h when comparing osmotic stress conditions with normal buffered conditions, and there were also differences among carbohydrates under both conditions. The content of SCFA was significantly lower when comparing osmotic stress with normal buffered conditions. Under osmotic stress, inulin and corn starch increased (p < 0.05) cell numbers of total eubacteria, while Bifidobacterium spp. and enterobacteria were higher (p < 0.05) when corn starch and pectin were fermented, respectively, in comparison to the other carbohydrates. The in vitro system of the modified HGT appears to be suitable to scrutinise effects of carbohydrates on the metabolic activity and composition of the microbial community under osmotic stress conditions, as they might occur during situations of osmotic diarrhoea.

  17. Osmotically-assisted desalination method and system

    SciTech Connect

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  18. Osmotic Pressure Based Cavitation Suppression System

    DTIC Science & Technology

    2010-08-19

    is the sea level pressure, or 1 atmosphere. 5 of 17 [0017] Membranes used in reverse osmosis are generally made out of a polyimide material that...transducer for projecting acoustic energy. The transducer is positioned within a semi- permeable membrane . The volume around the transducer within...the membrane is filled with water having a lower concentration of a solute such as salt. When positioned in the saltwater environment, an osmotic

  19. Unraveling supported lipid bilayer formation kinetics: osmotic effects.

    PubMed

    Hain, Nicole; Gallego, Marta; Reviakine, Ilya

    2013-02-19

    Solid-supported lipid bilayers are used as cell membrane models and form the basis of biomimetic and biosensor platforms. The mechanism of their formation from adsorbed liposomes is not well-understood. Using membrane-permeable solute glycerol, impermeable solutes sucrose and dextran, and a pore forming peptide melittin, we studied experimentally how osmotic effects affect the kinetics of the adsorbed liposome-to-bilayer transition. We find that its rate is enhanced if adsorbed liposomes are made permeable but is not significantly retarded by impermeable solutes. The results are explained in terms of adsorbed liposome deformation and formation of transmembrane pores.

  20. Ecophysiology of invasive plants: osmotic adjustment and antioxidants.

    PubMed

    Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2013-12-01

    Current research into plant invasiveness often attempts to predict the effect of invasions under future climate change, but most studies only focus on ecological aspects. Understanding ecophysiological responses by characterizing physiological markers such as osmotic adjustment or antioxidant protection indicators will help us to project future invasiveness patterns. In this opinion article, we highlight how the information from physiological measurements can be incorporated into effective management strategies. Furthermore, we propose how combining research strategies of physiologists and ecologists could speed up our understanding of the advantageous mechanisms adopted by invasive species. We suggest that a combined approach would also be of considerable benefit for the development of effective governmental biodiversity conservation policies.

  1. Osmotic Pressure in Ionic Microgel Dispersions

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2015-03-01

    Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  2. Osmotic and Heat Stress Effects on Segmentation

    PubMed Central

    Weiss, Julian

    2016-01-01

    During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio) embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process. PMID:28006008

  3. Osmotic properties of human red cells.

    PubMed

    Solomon, A K; Toon, M R; Dix, J A

    1986-01-01

    When an osmotic pressure gradient is applied to human red cells, the volume changes anomalously, as if there were a significant fraction of "nonosmotic water" which could not serve as solvent for the cell solutes, a finding which has been discussed widely in the literature. In 1968, Gary-Bobo and Solomon (J. Gen. Physiol. 52:825) concluded that the anomalies could not be entirely explained by the colligative properties of hemoglobin (Hb) and proposed that there was an additional concentration dependence of the Hb charge (ZHb). A number of investigators, particularly Freedman and Hoffman (1979, J. Gen. Physiol. 74:157) have been unable to confirm Gary-Bobo and Solomon's experimental evidence for this concentration dependence of ZHb and we now report that we are also unable to repeat the earlier experiments. Nonetheless, there still remains a significant anomaly which amounts to 12.5 +/- 0.8% of the total isosmotic cell water (P much less than 0.0005, t test), even after taking account of the concentration dependence of the Hb osmotic coefficient and all the other known physical chemical constraints, ideal and nonideal. It is suggested that the anomalies at high Hb concentration in shrunken cells may arise from the ionic strength dependence of the Hb osmotic coefficient. In swollen red cells at low ionic strength, solute binding to membrane and intracellular proteins is increased and it is suggested that this factor may account, in part, for the anomalous behavior of these cells.

  4. Evaluation of the tablet core factors influencing the release kinetics and the loadability of push-pull osmotic systems.

    PubMed

    Malaterre, Vincent; Ogorka, Joerg; Loggia, Nicoletta; Gurny, Robert

    2009-04-01

    Push-pull osmotic systems have been developed to deliver poorly soluble drugs in a modified-release fashion. The aim of this study was to investigate the influence of the tablet core factors on the drug release kinetics and loadability. The release kinetics was efficiently modulated by varying either the proportion of osmotic agent or the drug layer polymer grade as an alternative to change the membrane characteristics. High osmotic agent proportions and viscous-grade polymers were recommended to formulate high drug loads up to 20% without losing both the release completeness and the zero-order drug release kinetics.

  5. Evaluation of an osmotic pump for microdialysis sampling in an awake and untethered rat.

    PubMed

    Cooper, Joshua D; Heppert, Kathleen E; Davies, Malonne I; Lunte, Susan M

    2007-03-15

    The feasibility of using an osmotic pump in place of a syringe pump for microdialysis sampling in rat brain was investigated. The use of an osmotic pump permits the rat to be free from the constraints of the standard tethered system. The in vitro flow rates of a microdialysis syringe pump (set at 10.80 microl/h) and the osmotic pump (pump specifications were 11.35 microl/h) with no probe attached were compared, yielding results of 10.87 microl/h+/-1.7% and 10.95 microl/h+/-8.0%, respectively. The average of four flow rate experiments in vivo yielded R.S.D.s less than 10% and an average flow rate of 11.1 microl/h. Following the flow rate studies, in vivo sampling of neurotransmitters was accomplished with the osmotic pump coupled to a microdialysis probe implanted in the brain. Finally, after determination of basal levels of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the rats, the rats were dosed with benserazide followed by l-3,4-dihydroxyphenylalanine (l-DOPA). The results from the dosing study showed at least a 10-fold increase in compounds in the l-DOPA metabolic pathway (DOPAC and HVA) and a slight or no increase in 5-HIAA (serotonin metabolic pathway.) These results indicate that the osmotic pump is a viable alternative to the syringe pump for use in microdialysis sampling.

  6. Ions in mixed dielectric solvents: density profiles and osmotic pressure between charged interfaces.

    PubMed

    Ben-Yaakov, Dan; Andelman, David; Harries, Daniel; Podgornik, Rudi

    2009-04-30

    The forces between charged macromolecules, usually given in terms of osmotic pressure, are highly affected by the intervening ionic solution. While in most theoretical studies the solution is treated as a homogeneous structureless dielectric medium, recent experimental studies concluded that, for a bathing solution composed of two solvents (binary mixture), the osmotic pressure between charged macromolecules is affected by the binary solvent composition. By adding local solvent composition terms to the free energy, we obtain a general expression for the osmotic pressure, in planar geometry and within the mean-field framework. The added effect is due to the permeability inhomogeneity and nonelectrostatic short-range interactions between the ions and solvents (preferential solvation). This effect is mostly pronounced at small distances and leads to a reduction in the osmotic pressure for macromolecular separations of the order 1-2 nm. Furthermore, it leads to a depletion of one of the two solvents from the charged macromolecules (modeled as planar interfaces). Lastly, by comparing the theoretical results with experimental ones, an explanation based on preferential solvation is offered for recent experiments on the osmotic pressure of DNA solutions.

  7. An analysis of the effects of osmotic backwashing on the seawater reverse osmosis process.

    PubMed

    Park, JunYoung; Jeong, WooWon; Nam, JongWoo; Kim, JaeHun; Kim, JiHoon; Chon, Kangmin; Lee, Euijong; Kim, HyungSoo; Jang, Am

    2014-01-01

    Fouling control is an important consideration in the design and operation of membrane-based water treatment processes. It has been generally known that chemical cleaning is still the most common method to remove foultants and maintain the performance of reverse osmosis (RO) desalination. Regardless of the chemical membrane cleaning methods applied effectively, however, frequent chemical cleaning can shorten the membrane life. In addition, it also increases operating and maintenance costs due to the waste chemical disposal. As an alternative, osmotic backwashing can be applied to RO membranes by diluting the concentration polarization (CP) layer. In this study, the effects of osmotic backwashing were analysed under different total dissolved salts (TDSs) and backwashing conditions, and the parameters of the osmotic backwashing were evaluated. The results of the analysis based on the properties of the organic matters found in raw water showed that the cleaning efficiency in respect to the fouling by hydrophilic organic matters was the greatest. Osmotic backwashing was carried out by changing the TDS of the permeate. As a result, the backwashing volume decreased with time due to the CP of the permeate and the backwashing volume. The difference in the osmotic pressure between the raw water and the permeate (Delta pi) also decreased as time passed. It was confirmed that when the temperature of the effluent was high, both the cleaning efficiency and the backwashing volume, which inpours at the same time, increased. When the circulation flow of the effluent was high, both the cleaning efficiency and the backwashing volume increased.

  8. Differentiation of osmotic and secretory diarrhoea by stool carbohydrate and osmolar gap measurements

    PubMed Central

    Castro-Rodriguez, J. A.; Salazar-Lindo, E.; Leon-Barua, R.

    1997-01-01

    

 Clinical features and laboratory tests that determine carbohydrate in faeces were evaluated to determine which was best able to distinguish between osmotic and secretory diarrhoea in infants and children. For this purpose 80 boys aged 3 to 24 months, with acute watery diarrhoea, were studied prospectively. The faecal osmolar gap (FOG) was calculated as: serum osmolarity − [2 × (faecal sodium + potassium concentration)]. Fifty eight patients were classified as having predominantly osmotic diarrhoea (FOG >100 mosmol/l), and 22 as having predominantly secretory diarrhoea (FOG ⩽100 mosmol/l). The two groups were comparable in their clinical features on admission, in the results of blood and urine tests, and in the evolution of their diarrhoeal illness. Evidence of steatorrhoea (by positive Sudan III test) and of acid faecal pH on admission were significantly more frequent in patients with osmotic diarrhoea. Mean (SD) faecal osmolarity was not significantly different between the two groups (319 (80) mosmol/l in secretory diarrhoea v 361 (123) mosmol/l in osmotic diarrhoea). Tests for reducing substances in faeces such as Benedict's test—with and without hydrolysis—and glucose strip, all showed a positive and significant association with osmotic diarrhoea (p <0.05, <0.025, <0.05, respectively). The presence of excess reducing substances (Benedict's test with hydrolysis >++) on admission was the most sensitive and specific test with the best predictive value for differentiating between the two types of watery diarrhoea.

 PMID:9370895

  9. Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses.

    PubMed

    Gunasekera, Thusitha S; Csonka, Laszlo N; Paliy, Oleg

    2008-05-01

    Osmotic stress is known to increase the thermotolerance and oxidative-stress resistance of bacteria by a mechanism that is not adequately understood. We probed the cross-regulation of continuous osmotic and heat stress responses by characterizing the effects of external osmolarity (0.3 M versus 0.0 M NaCl) and temperature (43 degrees C versus 30 degrees C) on the transcriptome of Escherichia coli K-12. Our most important discovery was that a number of genes in the SoxRS and OxyR oxidative-stress regulons were up-regulated by high osmolarity, high temperature, or a combination of both stresses. This result can explain the previously noted cross-protection of osmotic stress against oxidative and heat stresses. Most of the genes shown in previous studies to be induced during the early phase of adaptation to hyperosmotic shock were found to be also overexpressed under continuous osmotic stress. However, there was a poorer overlap between the heat shock genes that are induced transiently after high temperature shifts and the genes that we found to be chronically up-regulated at 43 degrees C. Supplementation of the high-osmolarity medium with the osmoprotectant glycine betaine, which reduces the cytoplasmic K(+) pool, did not lead to a universal reduction in the expression of osmotically induced genes. This finding does not support the hypothesis that K(+) is the central osmoregulatory signal in Enterobacteriaceae.

  10. Membrane fluidity of halophilic ectoine-secreting bacteria related to osmotic and thermal treatment.

    PubMed

    Bergmann, Sven; David, Florian; Clark, Wiebke; Wittmann, Christoph; Krull, Rainer

    2013-12-01

    In response to sudden decrease in osmotic pressure, halophilic microorganisms secrete their accumulated osmolytes. This specific stress response, combined with physiochemical responses to the altered environment, influence the membrane properties and integrity of cells, with consequent effects on growth and yields in bioprocesses, such as bacterial milking. The aim of this study was to investigate changes in membrane fluidity and integrity induced by environmental stress in ectoine-secreting organisms. The halophilic ectoine-producing strains Alkalibacillus haloalkaliphilus and Chromohalobacter salexigens were treated hypo- and hyper-osmotically at several temperatures. The steady-state anisotropy of fluorescently labeled cells was measured, and membrane integrity assessed by flow cytometry and ectoine distribution. Strong osmotic downshocks slightly increased the fluidity of the bacterial membranes. As the temperature increased, the increasing membrane fluidity encouraged more ectoine release under the same osmotic shock conditions. On the other hand, combined shock treatments increased the number of disintegrated cells. From the ectoine release and membrane integrity measurements under coupled thermal and osmotic shock conditions, we could optimize the secretion conditions for both bacteria.

  11. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    NASA Technical Reports Server (NTRS)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  12. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats.

    PubMed

    Veitenheimer, Britta; Osborn, John W

    2013-01-15

    Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ~15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension.

  13. Three dimensional structural insight of laser drilled orifices in osmotic pump tablets.

    PubMed

    Wu, Li; Wang, Lebing; Wang, Shuxia; Xiao, Tiqiao; Chen, Min; Shao, Qun; York, Peter; Singh, Vikaramjeet; Yin, Xianzhen; Gu, Jingkai; Zhang, Jiwen

    2016-10-10

    The orifice drilled in the membrane as a channel for drug delivery is the key functional part of the osmotic pumps for a controlled drug release system. Reported conventional microscopic evaluations of these orifices have been limited to measurement of two-dimensional cross-section diameters. This study was aimed at establishing a novel method to measure quantitatively the three-dimensional architectures of orifices based on synchrotron radiation X-ray microcomputed tomography (SR-μCT). Quantitative analysis of architectures extracted from captopril osmotic pumps drilled by a range of operating parameters indicated that laser power correlated with the cross section area, volume, surface area and depth of the orifices, while scanning speed of laser beam showed inverse relationships with the above structure characters. The synchrotron radiation based Fourier transform infrared microspectroscopy mapping showed that there was no apparent chemical change in the surrounding area of the orifice compared with the normal membrane region. Thus SR-μCT was successfully applied to marketed felodipine osmotic pumps for architectural evaluation of the orifices. In conclusion, the first three-dimensional structural insight of orifices in osmotic pump tablets by SR-μCT and structural reconstruction for the architectures has provided deeper insight into improving the design of advanced osmotic pumps for controlled drug release. Copyright © 2016. Published by Elsevier B.V.

  14. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans.

    PubMed

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R; Chen, Shiwen; Le, Anna; Sutphin, George L; Shamieh, Lara S; Smith, Erica D; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes.

  15. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    NASA Technical Reports Server (NTRS)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  16. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    PubMed

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress.

  17. Laboratory experiments for estimating chemical osmotic parameters of mudstones

    NASA Astrophysics Data System (ADS)

    Miyoshi, S.; Tokunaga, T.; Mogi, K.; Ito, K.; Takeda, M.

    2010-12-01

    Recent studies have quantitatively shown that mudstone can act as semi-permeable membrane and can generate abnormally high pore pressure in sedimentary basins. Reflection coefficient is one of the important properties that affect the chemical osmotic behavior of mudstones. However, not many quantitative studies on the reflection coefficient of mudstones have been done. We have developed a laboratory apparatus to observe chemical osmotic behavior, and a numerical simulation technique to estimate the reflection coefficient and other relating properties of mudstones. A core sample of siliceous mudstone obtained from the drilled core at Horonobe, Japan, was set into the apparatus and was saturated by 0.1mol/L sodium chloride solution. Then, the up-side reservoir was replaced with 0.05mol/L sodium chloride solution, and temporal changes of both pressure and concentration of the solution in both up-side and bottom-side reservoirs were measured. Using the data obtained from the experiment, we estimated the reflection coefficient, effective diffusion coefficient, hydraulic conductivity, and specific storage of the sample by fitting the numerical simulation results with the observed ones. A preliminary numerical simulation of groundwater flow and solute migration was conducted in the area where the core sample was obtained, using the reflection coefficient and other properties obtained from this study. The result suggested that the abnormal pore pressure observed in the region can be explained by the chemical osmosis.

  18. Effect of aging on regional cerebral blood flow responses associated with osmotic thirst and its satiation by water drinking: a PET study.

    PubMed

    Farrell, M J; Zamarripa, F; Shade, R; Phillips, P A; McKinley, M; Fox, P T; Blair-West, J; Denton, D A; Egan, G F

    2008-01-08

    Levels of thirst and ad libitum drinking decrease with advancing age, making older people vulnerable to dehydration. This study investigated age-related changes in brain responses to thirst and drinking in healthy men. Thirst was induced with hypertonic infusions (3.1 ml/kg 0.51M NaCl) in young (Y) and older (O) subjects. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET). Thirst activations were identified by correlating rCBF with thirst ratings. Average rCBF was measured from regions of interest (ROI) corresponding to activation clusters in each group. The effects of drinking were examined by correlating volume of water drunk with changes in ROI rCBF from maximum thirst to postdrinking. There were increases in blood osmolality (Y, 2.8 +/- 1.8%; O, 2.2 +/- 1.4%) and thirst ratings (Y, 3.1 +/- 2.1; O, 3.7 +/- 2.8) from baseline to the end of the hypertonic infusion. Older subjects drank less water (1.9 +/- 1.6 ml/kg) than younger subjects (3.9 +/- 1.9 ml/kg). Thirst-related activation was evident in S1/M1, prefrontal cortex, anterior midcingulate cortex (aMCC), premotor cortex, and superior temporal gyrus in both groups. Postdrinking changes of rCBF in the aMCC correlated with drinking volumes in both groups. There was a greater reduction in aMCC rCBF relative to water drunk in the older group. Aging is associated with changes in satiation that militate against adequate hydration in response to hyperosmolarity, although it is unclear whether these alterations are due to changes in primary afferent inflow or higher cortical functioning.

  19. Effect of aging on regional cerebral blood flow responses associated with osmotic thirst and its satiation by water drinking: A PET study

    PubMed Central

    Farrell, M. J.; Zamarripa, F.; Shade, R.; Phillips, P. A.; McKinley, M.; Fox, P. T.; Blair-West, J.; Denton, D. A.; Egan, G. F.

    2008-01-01

    Levels of thirst and ad libitum drinking decrease with advancing age, making older people vulnerable to dehydration. This study investigated age-related changes in brain responses to thirst and drinking in healthy men. Thirst was induced with hypertonic infusions (3.1 ml/kg 0.51M NaCl) in young (Y) and older (O) subjects. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET). Thirst activations were identified by correlating rCBF with thirst ratings. Average rCBF was measured from regions of interest (ROI) corresponding to activation clusters in each group. The effects of drinking were examined by correlating volume of water drunk with changes in ROI rCBF from maximum thirst to postdrinking. There were increases in blood osmolality (Y, 2.8 ± 1.8%; O, 2.2 ± 1.4%) and thirst ratings (Y, 3.1 ± 2.1; O, 3.7 ± 2.8) from baseline to the end of the hypertonic infusion. Older subjects drank less water (1.9 ± 1.6 ml/kg) than younger subjects (3.9 ± 1.9 ml/kg). Thirst-related activation was evident in S1/M1, prefrontal cortex, anterior midcingulate cortex (aMCC), premotor cortex, and superior temporal gyrus in both groups. Postdrinking changes of rCBF in the aMCC correlated with drinking volumes in both groups. There was a greater reduction in aMCC rCBF relative to water drunk in the older group. Aging is associated with changes in satiation that militate against adequate hydration in response to hyperosmolarity, although it is unclear whether these alterations are due to changes in primary afferent inflow or higher cortical functioning. PMID:18160533

  20. Design and statistical optimization of osmotically driven capsule based on push-pull technology.

    PubMed

    Shaikh, Wasim; Deshmukh, Prashant K; Patil, Ganesh B; Chatap, Vivekanand K; Bari, Sanjay B

    2013-01-01

    In present investigation attempt was made to develop and statistically optimize osmotically active capsule tailor made from the concept of bilayer (push-pull) osmotic tablet technology. The capsule was comprised of active (drug) and push (osmogen) layer. Active layer was compressed in form of tablet by mixing known amount of drug and formulation excipients. Similarly push layer was made by compressing Mannitol with formulation excipients. Finally, both layers were packed in hard gelatin capsule having small aperture at top and coated with semipermeable membrane to form osmotically active capsule. Formulated and optimized capsules were characterized for Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC), scanning electron microscopy, In-vitro drug release study and Release models and kinetics. Statistically optimized formulation showed good correlation between predicted and experimented results, which further confirms the practicability and validity of the model.

  1. Formulation design and characterization of an elementary osmotic pump tablet of flurbiprofen.

    PubMed

    Patel, Kunal N; Mehta, Tejal A

    2014-01-01

    Elementary osmotic pumps are well known for delivering moderately soluble drugs at a zero-order rate. The objective of the present study was to develop elementary osmotic pump tablets containing Flurbiprofen using an inclusion complex. Formation of complex was confirmed by Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy. A 3(2) factorial design was applied systematically; the amount of osmotic agent (X1) and size of delivery orifice (X2) were selected as independent variables. Batches were prepared by the direct compression method and evaluated for percent cumulative drug release (%CDR) at 9 h as dependent variables. The amount of osmotic agent and size of the delivery orifice had a significant effect on %CDR. The results of multiple linear regression analysis revealed that elementary osmotic pump tablets should be prepared using an optimum concentration of osmotic agent and size of delivery orifice to achieve a zero-order drug release. Contour plots as well as response surface plots were constructed to show the effects of X1 and X2 on %CDR. A model was validated for accurate prediction of %CDR by performing checkpoint analysis. The computer optimization process, contour plots, and response surface plots were predicted at the concentration of independent variables X1 and X2 (78.38 mg and 0.99 mm, respectively), for maximized response. The drug release from the developed formulation was found to be independent of pH and agitational intensity. The above optimized batch was also evaluated by different pharmacokinetic models like zero-order, first-order, Higuchi, Korsmeyer Peppas, and Hixson Crowell models. Stability study of the optimized batch was conducted at accelerated conditions for 6 months, and was found stable. This study strongly indicates application of osmotic tablets of Flurbiprofen for the treatment of rheumatoid arthritis, as well as osteoarthritis. The aim of this study was to develop an elementary osmotic pump tablet of

  2. Electro-osmotic flow of a model electrolyte.

    PubMed

    Zhu, Wei; Singer, Sherwin J; Zheng, Zhi; Conlisk, A T

    2005-04-01

    Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.

  3. Osmotic water permeability of plasma and vacuolar membranes in protoplasts I: high osmotic water permeability in radish (Raphanus sativus) root cells as measured by a new method.

    PubMed

    Murai-Hatano, Mari; Kuwagata, Tsuneo

    2007-03-01

    Intra- and transcellular water movements in plants are regulated by the water permeability of the plasma membrane (PM) and vacuolar membrane (VM) in plant cells. In the present study, we investigated the osmotic water permeability of both PM (P ( f1)) and VM (P ( f2)), as well as the bulk osmotic water permeability of a protoplast (P ( f(bulk))) isolated from radish (Raphanus sativus) roots. The values of P ( f(bulk)) and P ( f2) were determined from the swelling/shrinking rate of protoplasts and isolated vacuoles under hypo- or hypertonic conditions. In order to minimize the effect of unstirred layer, we monitored dropping or rising protoplasts (vacuoles) in sorbitol solutions as they swelled or shrunk. P ( f1) was calculated from P ( f(bulk)) and P ( f2) by using the 'three-compartment model', which describes the theoretical relationship between P ( f1), P ( f2) and P ( f(bulk)) (Kuwagata and Murai-Hatano in J Plant Res, 2007). The time-dependent changes in the volume of protoplasts and isolated vacuoles fitted well to the theoretical curves, and solute permeation of PM and VM was able to be neglected for measuring the osmotic water permeability. High osmotic water permeability of more than 500 mum s(-1), indicating high activity of aquaporins (water channels), was observed in both PM and VM in radish root cells. This method has the advantage that P ( f1) and P ( f2) can be measured accurately in individual higher plant cells.

  4. Human platelet osmotic water and nonelectrolyte transport.

    PubMed

    Meyer, M M; Verkman, A S

    1986-10-01

    The osmotic water (Pf) and nonelectrolyte permeability (Ps) properties of human platelets were characterized using the stopped-flow light-scattering technique. At 37 degrees C, Pf = 0.007 +/- 0.001 cm/s, the urea reflection coefficient (sigma urea) = 0.95 +/- 0.04, and Ps for a series of permeant nonelectrolytes was (in cm X s-1 X 10(-6)) 2.1 (urea), 3.5 (glycerol), 3.8 (thiourea), 17 (ethylene glycol), 18 (acetamide), 23 (formamide), and 24 (butyramide). Pf did not depend on the size of the osmotic gradient or on the direction of volume flow. Mercurial sulfhydryl reagents did not inhibit osmotic water transport, and phloretin and phenylurea did not inhibit urea transport. There was a discontinuity in the temperature dependence for both Pf and urea permeability (P urea) at 36 degrees C; enthalpy (delta H) = 25 (greater than 36 degrees C) and 4.4 kcal/mol (less than 36 degrees C) for Pf, and delta H = 26 (greater than 36 degrees C) and 7 kcal/mol (less than 36 degrees C) for P urea. In contrast to the facilitated water and urea transport systems in the red blood cell, these results suggest that the mechanism for water and urea transport in the platelet is primarily by diffusion through membrane phospholipid. A computer-simulated model of platelet circulation through the renal medulla, based on the measured values for Pf, P urea, and sigma urea, indicated that platelets undergo an approximately 40% decrease in volume in the inner medulla and an approximately 20% overshoot in volume as they return to the external isosmotic environment.

  5. Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi.

    PubMed

    Duran, Rocio; Cary, Jeffrey W; Calvo, Ana M

    2010-04-01

    Environmental stimuli trigger an adaptative cellular response to optimize the probability of survival and proliferation. In eukaryotic organisms from mammals to fungi osmotic stress, mainly through the action of the high osmolarity glycerol (HOG) pathway, leads to a response necessary for adapting and surviving hyperosmotic environments. In this review we show that the osmoadaptative response is conserved but not identical in different fungi. The osmoadaptative response system is also intimately linked to morphogenesis in filamentous fungi, including mycotoxin producers. Previous studies indicate that the response to osmotic stress is also coupled to the biosynthesis of natural products, including mycotoxins.

  6. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    PubMed

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  7. Lipid tubule growth by osmotic pressure

    NASA Astrophysics Data System (ADS)

    Rangamani, Padmini; Zhang, Di; Orster, George; Shen, Amy

    2013-11-01

    We present here a procedure for growing lipid tubules in vitro. This method allows us to grow tubules of consistent shape and structure and thus can be a useful tool for nano-engineering applications. There are three stages during the tubule growth process: initiation, elongation and termination. Balancing the forces that act on the tubule head shows that the growth of tubules during the elongation phase depends on the balance between osmotic pressure and the viscous drag exerted on the membrane from the substrate and the external fluid. Using a combination of mathematical modeling and experiment, we identify the key forces that control tubule growth during the elongation phase.

  8. Osmotically driven shape-dependent colloidal separations

    NASA Astrophysics Data System (ADS)

    Mason, T. G.

    2002-12-01

    The thermally induced motion of nanometer-sized surfactant micelles in water is used to create strong attractive forces between micron-sized disks of wax in a mixed aqueous dispersion of microdisks and microspheres. The short-ranged attractive force due to the depletion of micelles from between the microdisks is much stronger than that between two microspheres of similar size, and is largest when the disks approach face to face, so columns of microdisks form. These columns cream, whereas the spheres remain dispersed, providing a means for shape-dependent colloidal separations driven by an applied micellar osmotic pressure.

  9. Osmotic Water Permeability of Isolated Protoplasts. Modifications during Development1

    PubMed Central

    Ramahaleo, Tiana; Morillon, Raphaël; Alexandre, Joël; Lassalles, Jean-Paul

    1999-01-01

    A transference chamber was developed to measure the osmotic water permeability coefficient (Pos) in protoplasts 40 to 120 μm in diameter. The protoplast was held by a micropipette and submitted to a steep osmotic gradient created in the transference chamber. Pos was derived from the changes in protoplast dimensions, as measured using a light microscope. Permeabilities were in the range 1 to 1000 μm s−1 for the various types of protoplasts tested. The precision for Pos was ≤40%, and within this limit, no asymmetry in the water fluxes was observed. Measurements on protoplasts isolated from 2- to 5-d-old roots revealed a dramatic increase in Pos during root development. A shift in Pos from 10 to 500 μm s−1 occurred within less than 48 h. This phenomenon was found in maize (Zea mays), wheat (Triticum aestivum), and rape (Brassica napus) roots. These results show that early developmental processes modify water-transport properties of the plasma membrane, and that the transference chamber is adapted to the study of water-transport mechanisms in native membranes. PMID:10069827

  10. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana

    PubMed Central

    Paudel, Gagan; Bilova, Tatiana; Schmidt, Rico; Greifenhagen, Uta; Berger, Robert; Tarakhovskaya, Elena; Stöckhardt, Stefanie; Balcke, Gerd Ulrich; Humbeck, Klaus; Brandt, Wolfgang; Sinz, Andrea; Vogt, Thomas; Birkemeyer, Claudia; Wessjohann, Ludger; Frolov, Andrej

    2016-01-01

    Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought. PMID:27856706

  11. Microporous bilayer osmotic tablet for colon-specific delivery.

    PubMed

    Chaudhary, Anil; Tiwari, Neha; Jain, Vikas; Singh, Ranjit

    2011-05-01

    Microporous bilayer osmotic tablet bearing dicyclomine hydrochloride and diclofenac potassium was developed using a new oral drug delivery system for colon targeting. The tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan-coating process. The developed microporous bilayer osmotic pump tablet (OPT) did not require laser drilling to form the drug delivery orifice. The colon-specific biodegradation of pectin could form in situ delivery pores for drug release. The effect of formulation variables like inclusion of osmogen, amount of HPMC and NaCMC in core, amount of pore former in semipermeable membrane was studied. Scanning electron microscopic photographs showed formation of in situ delivery pores after predetermined time of coming in contact with dissolution medium. The number of pores was dependent on the amount of the pore former in the semipermeable membrane. In vitro dissolution results indicated that system showed acid-resistant, timed release and was able to deliver drug at an approximate zero order up to 24h. The developed tablets could be effectively used for colon-specific drug delivery to treat IBS. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Molecular origins of osmotic second virial coefficients of proteins.

    PubMed Central

    Neal, B L; Asthagiri, D; Lenhoff, A M

    1998-01-01

    The thermodynamic properties of protein solutions are determined by the molecular interactions involving both solvent and solute molecules. A quantitative understanding of the relationship would facilitate more systematic procedures for manipulating the properties in a process environment. In this work the molecular basis for the osmotic second virial coefficient, B22, is studied; osmotic effects are critical in membrane transport, and the value of B22 has also been shown to correlate with protein crystallization behavior. The calculations here account for steric, electrostatic, and short-range interactions, with the structural and functional anisotropy of the protein molecules explicitly accounted for. The orientational dependence of the protein interactions is seen to have a pronounced effect on the calculations; in particular, the relatively few protein-protein configurations in which the apposing surfaces display geometric complementarity contribute disproportionately strongly to B22. The importance of electrostatic interactions is also amplified in these high-complementarity configurations. The significance of molecular recognition in determining B22 can explain the correlation with crystallization behavior, and it suggests that alteration of local molecular geometry can help in manipulating protein solution behavior. The results also have implications for the role of protein interactions in biological self-organization. PMID:9788942

  13. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  14. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  15. An Open-label, Self-control, Prospective Study on Cognitive Function, Academic Performance, and Tolerability of Osmotic-release Oral System Methylphenidate in Children with Attention-deficit Hyperactivity Disorder

    PubMed Central

    Zheng, Yi; Liang, Jian-Min; Gao, Hong-Yun; Yang, Zhi-Wei; Jia, Fu-Jun; Liang, Yue-Zhu; Fang, Fang; Li, Rong; Xie, Sheng-Nan; Zhuo, Jian-Min

    2015-01-01

    Background: Attention-deficit hyperactivity disorder (ADHD) is the most common mental and behavioral disorder in school-aged children. This study evaluated the effect of osmotic-release oral system (OROS) methylphenidate (MPH) on cognitive function and academic performance of Chinese school-aged children with ADHD. Methods: This 12-week, prospective, multicenter, open-label, self-controlled study enrolled 153 Chinese school-aged children with ADHD and 41 non-ADHD children. Children with ADHD were treated with once-daily OROS-MPH (18 mg, 36 mg, or 54 mg). The primary endpoints were Inattention/Overactivity (I/O) with Aggression Conners Behavior Rating Scale (IOWA) and Digit Span Test at week 12 compared with baseline. Secondary endpoints included opposition/defiant (O/D) subscale of IOWA, Clinical Global Impression (CGI), Coding Test, Stroop Color-word Test, Wisconsin Card Sorting Test (WCST), academic performance on teacher-rated school examinations, and safety at week 12 compared with baseline. Both non-ADHD and ADHD children received the same frequency of cognitive operational test to avoid the possible bias caused by training. Results: A total of 128 patients were evaluated with cognitive assessments. The OROS-MPH treatment significantly improved IOWA Conners I/O subscale scores at week 12 (3.8 ± 2.3) versus baseline (10.0 ± 2.4; P < 0.0001). Digit Span Test scores improved significantly (P < 0.0001) with a high remission rate (81.1%) at week 12 versus baseline. A significant (P < 0.0001) improvement was observed in O/D subscale of IOWA, CGI, Coding Test, Stroop Color-word Test, WCST, and academic performance at week 12 versus baseline. Very few practice-related improvements were noticed in the non-ADHD group at week 12 compared with baseline. No serious adverse events and deaths were reported during the study. Conclusions: The OROS-MPH treatment effectively controlled symptoms of ADHD and significantly improved academic performance and cognitive function of

  16. An Open-label, Self-control, Prospective Study on Cognitive Function, Academic Performance, and Tolerability of Osmotic-release Oral System Methylphenidate in Children with Attention-deficit Hyperactivity Disorder.

    PubMed

    Zheng, Yi; Liang, Jian-Min; Gao, Hong-Yun; Yang, Zhi-Wei; Jia, Fu-Jun; Liang, Yue-Zhu; Fang, Fang; Li, Rong; Xie, Sheng-Nan; Zhuo, Jian-Min

    2015-11-20

    Attention-deficit hyperactivity disorder (ADHD) is the most common mental and behavioral disorder in school-aged children. This study evaluated the effect of osmotic-release oral system (OROS) methylphenidate (MPH) on cognitive function and academic performance of Chinese school-aged children with ADHD. This 12-week, prospective, multicenter, open-label, self-controlled study enrolled 153 Chinese school-aged children with ADHD and 41 non-ADHD children. Children with ADHD were treated with once-daily OROS-MPH (18 mg, 36 mg, or 54 mg). The primary endpoints were Inattention/Overactivity (I/O) with Aggression Conners Behavior Rating Scale (IOWA) and Digit Span Test at week 12 compared with baseline. Secondary endpoints included opposition/defiant (O/D) subscale of IOWA, Clinical Global Impression (CGI), Coding Test, Stroop Color-word Test, Wisconsin Card Sorting Test (WCST), academic performance on teacher-rated school examinations, and safety at week 12 compared with baseline. Both non-ADHD and ADHD children received the same frequency of cognitive operational test to avoid the possible bias caused by training. A total of 128 patients were evaluated with cognitive assessments. The OROS-MPH treatment significantly improved IOWA Conners I/O subscale scores at week 12 (3.8 ± 2.3) versus baseline (10.0 ± 2.4; P < 0.0001). Digit Span Test scores improved significantly (P < 0.0001) with a high remission rate (81.1%) at week 12 versus baseline. A significant (P < 0.0001) improvement was observed in O/D subscale of IOWA, CGI, Coding Test, Stroop Color-word Test, WCST, and academic performance at week 12 versus baseline. Very few practice-related improvements were noticed in the non-ADHD group at week 12 compared with baseline. No serious adverse events and deaths were reported during the study. The OROS-MPH treatment effectively controlled symptoms of ADHD and significantly improved academic performance and cognitive function of Chinese school-aged children with ADHD. The

  17. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes.

    PubMed

    Phan, Mimi N; Leddy, Holly A; Votta, Bartholomew J; Kumar, Sanjay; Levy, Dana S; Lipshutz, David B; Lee, Suk Hee; Liedtke, Wolfgang; Guilak, Farshid

    2009-10-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. This study was undertaken to demonstrate the presence and functionality of TRPV4 in chondrocytes. TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca(2+) signaling, cell volume, and prostaglandin E(2) (PGE(2)) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. TRPV4 was expressed abundantly at the RNA and protein levels. Exposure to 4alpha-phorbol 12,13-didecanoate (4alphaPDD), a TRPV4 activator, caused Ca(2+) signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca(2+) responsive cells, the regulatory volume decrease, and PGE(2) production. Ca(2+) signaling was inhibited by removal of extracellular Ca(2+) or depletion of intracellular stores. Specific activation of TRPV4 restored the defective regulatory volume decrease caused by IL-1. Chemical disruption of the primary cilium eliminated Ca(2+) signaling in response to either 4alphaPDD or hypo-osmotic stress. Our findings indicate that TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca(2+) and intracellular Ca(2+) release. TRPV4 may also be involved in modulating the production or influence of proinflammatory molecules in response to osmotic stress.

  18. Functional Characterization of TRPV4 As an Osmotically Sensitive Ion Channel in Articular Chondrocytes

    PubMed Central

    Phan, Mimi N.; Leddy, Holly A.; Votta, Bartholomew J.; Kumar, Sanjay; Levy, Dana S.; Lipshutz, David B.; Lee, Sukhee; Liedtke, Wolfgang; Guilak, Farshid

    2010-01-01

    Objective Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+ permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. The objective of this study was to demonstrate the presence and functionality of TRPV4 in chondrocytes. Methods TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca2+ signaling, cell volume, and prostaglandin E2 (PGE2) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. Results TRPV4 was expressed abundantly at the RNA and protein level. Exposure to 4αPDD, a TRPV4 activator, caused Ca2+ signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca2+ responsive cells, regulatory volume decrease (RVD), and PGE2 production. Ca2+ signaling was inhibited by removal of extracellular Ca2+ or depletion of intracellular stores. Specific activation of TRPV4 restored defective RVD caused by IL-1. Chemical disruption of the primary cilium eliminated Ca2+ signaling in response to either 4αPDD or hypo-osmotic stress. Conclusion TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca2+ and intracellular Ca2+ release. TRPV4 may also be involved in modulating the production or influence of pro-inflammatory molecules in response to osmotic stress. PMID:19790068

  19. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.

    PubMed

    Hatmi, Saloua; Trotel-Aziz, Patricia; Villaume, Sandra; Couderchet, Michel; Clément, Christophe; Aziz, Aziz

    2014-01-01

    Abiotic factors inducing osmotic stress can influence the plant immune response and resistance to pathogen infections. In this study, the effect of polyethylene glycol (PEG)- and sucrose-induced osmotic stress on polyamine (PA) homeostasis and the basal immune response in grapevine plantlets before and after Botrytis cinerea infection was determined. Pharmacological approaches were also addressed to assess the contribution of osmotic stress-induced PA oxidation to the regulation of defence responses and the susceptibility of grapevine to B. cinerea. Following osmotic stress or pathogen infection, PA homeostasis was linked to enhanced activity of diamine oxidases (CuAO) and PA oxidases (PAO) and the production of 1,3-diaminopropane. These responses paralleled the accumulation of the main stilbenic phytoalexins, resveratrol and ε-viniferin and upregulation of gene transcripts including STS (a stilbene synthase), PR-2 (a β-1,3-glucanase), PR3-4c (acidic chitinase IV), and PR-5 (a thaumatin-like protein), as well as NCED2 involved in abscisic acid biosynthesis. It was also demonstrated that leaves pre-exposed to osmotic stress and later inoculated with B. cinerea showed enhanced PA accumulation and attenuation of CuAO and PAO activities. This was consistent with the impaired production of phytoalexins and transcript levels of defence- and stress-related genes following infection, and the enhanced susceptibility to B. cinerea. Pharmacological experiments revealed that, under osmotic stress conditions, CuAO and PAO were involved in PA homeostasis and in the regulation of defence responses. Specific inhibition of CuAO and PAO in osmotically stressed leaves strongly attenuated the induction of defence responses triggered by B. cinerea infection and enhanced susceptibility to the pathogen. Taken together, this study reveals a contribution of PA catabolism to the resistance state through modulation of immune response in grapevine following osmotic stress and/or after B

  20. Influence of a three stage hybrid ultrasound-osmotic-frying process on production of low-fat fried potato strips.

    PubMed

    Dehghannya, Jalal; Abedpour, Lida

    2017-08-11

    Fried potato is one of the most consumed products in the world. Due to consumers' growing tendency to use healthy and low-fat foods, reducing oil content in fried foods has become a necessity. Several studies have shown that higher initial water content results in increased oil uptake during frying. Therefore, pretreatments that reduce water content of the product could lower oil uptake in the final product. The aim of this study was to evaluate the influence of a three-stage hybrid ultrasound-osmotic-frying process on production of low-fat fried potato strips. Results showed that, compared to control samples, osmotic pretreated samples using saline solutions at concentrations of 2% and 4% decreased oil uptake by 29.5% and 32.7%, respectively. Ultrasound (28 and 40 kHz) also showed a significant synergistic effect on reducing oil uptake in the samples pretreated with both ultrasound and osmotic dehydration so that different samples pretreated with both ultrasound and osmotic dehydration decreased oil uptake from approximately 40% to more than 50%, compared to untreated control samples. Owing to production of low-fat fried potato strips, utilising osmotic dehydration pretreatment was desirable before the frying process. Regarding low mass transfer rate during osmotic treatment, ultrasound was applied to enhance mass transfer rate. The use of ultrasound pretreatment in the frying process can yield promising results in reducing oil uptake. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Novel regulation of aquaporins during osmotic stress.

    PubMed

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar

    2004-08-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.

  2. Osmotic self-propulsion of slender particles

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2015-03-01

    We consider self-diffusiophoresis of axisymmetric particles using the continuum description of Golestanian et al. ["Designing phoretic micro-and nano-swimmers," New J. Phys. 9, 126 (2007)], where the chemical reaction at the particle boundary is modelled by a prescribed distribution of solute absorption and the interaction of solute molecules with that boundary is represented by diffusio-osmotic slip. With a view towards modelling of needle-like particle shapes, commonly employed in experiments, the self-propulsion problem is analyzed using slender-body theory. For a particle of length 2L, whose boundary is specified by the axial distribution κ(z) of cross-sectional radius, we obtain the approximation - /μ 2 D L ∫- L L j ( z ) /d κ ( z ) d z d z for the particle velocity, wherein j(z) is the solute-flux distribution, μ the diffusio-osmotic slip coefficient, and D the solute diffusivity. This approximation can accommodate discontinuous flux distributions, which are commonly used for describing bimetallic particles; it agrees strikingly well with the numerical calculations of Popescu et al. ["Phoretic motion of spheroidal particles due to self-generated solute gradients," Eur. Phys. J. E: Soft Matter Biol. Phys. 31, 351-367 (2010)], performed for spheroidal particles.

  3. Osmotic therapies added to antibiotics for acute bacterial meningitis.

    PubMed

    Wall, Emma C B; Ajdukiewicz, Katherine M B; Heyderman, Robert S; Garner, Paul

    2013-03-28

    Every day children and adults throughout the world die from acute community-acquired bacterial meningitis, particularly in low-income countries. Survivors are at risk of deafness, epilepsy and neurological disabilities. Osmotic therapies have been proposed as an adjunct to improve mortality and morbidity from bacterial meningitis. The theory is that they will attract extra-vascular fluid by osmosis and thus reduce cerebral oedema by moving excess water from the brain into the blood. The intention is to thus reduce death and improve neurological outcomes. To evaluate the effects on mortality, deafness and neurological disability of osmotic therapies added to antibiotics for acute bacterial meningitis in children and adults. We searched CENTRAL 2012, Issue 11, MEDLINE (1950 to November week 3, 2012), EMBASE (1974 to November 2012), CINAHL (1981 to November 2012), LILACS (1982 to November 2012) and registers of ongoing clinical trials (April 2012). We also searched conference abstracts and contacted researchers in the field. Randomised controlled trials testing any osmotic therapy in adults or children with acute bacterial meningitis. Two review authors independently screened the search results and selected trials for inclusion. We collected data from each study for mortality, deafness, seizures and neurological disabilities. Results are presented using risk ratios (RR) and 95% confidence intervals (CI) and grouped according to whether the participants received steroids or not. Four trials were included comprising 1091 participants. All compared glycerol (a water-soluble sugar alcohol) with a control; in three trials this was a placebo, and in one a small amount of 50% dextrose. Three trials included comparators of dexamethasone alone or in combination with glycerol. As dexamethasone appeared to have no modifying effect, we aggregated results across arms where both treatment and control groups received corticosteroids and where both treatment and control groups did

  4. Osmotic therapies added to antibiotics for acute bacterial meningitis

    PubMed Central

    Wall, Emma CB; Ajdukiewicz, Katherine MB; Heyderman, Robert S; Garner, Paul

    2014-01-01

    Background Every day children and adults throughout the world die from acute community-acquired bacterial meningitis, particularly in low-income countries. Survivors are at risk of deafness, epilepsy and neurological disabilities. Osmotic therapies have been proposed as an adjunct to improve mortality and morbidity from bacterial meningitis. The theory is that they will attract extra-vascular fluid by osmosis and thus reduce cerebral oedema by moving excess water from the brain into the blood. The intention is to thus reduce death and improve neurological outcomes. Objectives To evaluate the effects on mortality, deafness and neurological disability of osmotic therapies added to antibiotics for acute bacterial meningitis in children and adults. Search methods We searched CENTRAL 2012, Issue 11, MEDLINE (1950 to November week 3, 2012), EMBASE (1974 to November 2012), CINAHL (1981 to November 2012), LILACS (1982 to November 2012) and registers of ongoing clinical trials (April 2012). We also searched conference abstracts and contacted researchers in the field. Selection criteria Randomised controlled trials testing any osmotic therapy in adults or children with acute bacterial meningitis. Data collection and analysis Two review authors independently screened the search results and selected trials for inclusion. We collected data from each study for mortality, deafness, seizures and neurological disabilities. Results are presented using risk ratios (RR) and 95% confidence intervals (CI) and grouped according to whether the participants received steroids or not. Main results Four trials were included comprising 1091 participants. All compared glycerol (a water-soluble sugar alcohol) with a control; in three trials this was a placebo, and in one a small amount of 50% dextrose. Three trials included comparators of dexamethasone alone or in combination with glycerol. As dexamethasone appeared to have no modifying effect, we aggregated results across arms where both

  5. Involvement of redox- and phosphorylation-dependent pathways in osmotic adaptation in sperm cells of euryhaline tilapia.

    PubMed

    Morita, Masaya; Nakajima, Ayako; Takemura, Akihiro; Okuno, Makoto

    2011-06-15

    Sperm cells involved in fertilisation must tolerate hypo-osmotic and hyper-osmotic environments. Euryhaline tilapia (Oreochromis mossambicus) can acclimatise to and reproduce in freshwater and seawater because its sperm are able to adapt to these differing osmotic environments. In this study, we found that the dephosphorylation of sperm proteins in O. mossambicus correlated with the activation of flagellar motility when sperm were exposed to hypotonic or hypertonic conditions, and that differences in phosphorylation may reflect adaptations to a given osmotic environment. Of the sperm proteins that were dephosphorylated, the phosphorylation pattern of an 18 kDa protein, identified as the superoxide anion scavenger Cu/Zn superoxide dismutase (Cu/Zn SOD), was different in freshwater- and seawater-acclimatised tilapia sperm. Cu/Zn SOD was distributed from the sperm head to the flagellum. Additionally, differences were observed between freshwater and seawater tilapia in the nitration of tyrosine residues (which might be mediated by SOD) in sperm flagellar proteins in response to osmotic shock. These results demonstrate that reactive-oxygen-species-dependent mechanisms contribute to both osmotic tolerance and the activation of flagellar motility.

  6. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic...

  7. Osmotic Power: A Fresh Look at an Old Experiment

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  8. Osmotic Power: A Fresh Look at an Old Experiment

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  9. Probing Osmotic Effects on Invertase with l-(−)-Sucrose

    PubMed Central

    Seo, Seung-kee; Wei, Alexander

    2008-01-01

    l-(−)-Sucrose‡ was efficiently synthesized using intramolecular aglycon delivery and used to elucidate osmotic effects on the activity of invertase, which catalyzes the hydrolysis of d-(+)-sucrose. The osmotic effect imposed by l-sucrose was responsible for more than 30% of the activity loss ascribed otherwise to “substrate inhibition.” PMID:18802643

  10. Probing osmotic effects on invertase with L-(-)-sucrose.

    PubMed

    Seo, Seung-kee; Wei, Alexander

    2008-09-21

    L-(-)-sucrose was efficiently synthesized using intramolecular aglycon delivery and used to elucidate osmotic effects on the activity of invertase, which catalyzes the hydrolysis of D-(+)-sucrose. The osmotic effect imposed by L-sucrose was responsible for more than 30% of the activity loss ascribed otherwise to "substrate inhibition."

  11. Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube

    PubMed Central

    Mondal, Sourav; De, Sirshendu

    2013-01-01

    Mass transport of a neutral solute for a power law fluid in a porous microtube under electro-osmotic flow regime is characterized in this study. Combined electro-osmotic and pressure driven flow is conducted herein. An analytical solution of concentration profile within mass transfer boundary layer is derived from the first principle. The solute transport through the porous wall is also coupled with the electro-osmotic flow to predict the solute concentration in the permeate stream. The effects of non-Newtonian rheology and the operating conditions on the permeation rate and permeate solute concentration are analyzed in detail. Both cases of assisting (electro-osmotic and poiseulle flow are in same direction) and opposing flow (the individual flows are in opposite direction) cases are taken care of. Enhancement of Sherwood due to electro-osmotic flow for a non-porous conduit is also quantified. Effects if non-Newtonian rheology on Sherwood number enhancement are observed. PMID:24404046

  12. Melting of highly oriented fiber DNA subjected to osmotic pressure.

    PubMed

    Wildes, Andrew; Khadeeva, Liya; Trewby, William; Valle-Orero, Jessica; Studer, Andrew; Garden, Jean-Luc; Peyrard, Michel

    2015-03-26

    A pilot study of the possibility to investigate temperature-dependent neutron scattering from fiber-DNA in solution is presented. The study aims to establish the feasibility of experiments to probe the influence of spatial confinement on the structural correlation and the formation of denatured bubbles in DNA during the melting transition. Calorimetry and neutron scattering experiments on fiber samples immersed in solutions of poly(ethylene glycol) (PEG) prove that the melting transition occurs in these samples, that the transition is reversible to some degree, and that the transition is broader in temperature than for humidified fiber samples. The PEG solutions apply an osmotic pressure that maintains the fiber orientation, establishing the feasibility of future scattering experiments to study the melting transition in these samples.

  13. Astrocytes Are an Early Target in Osmotic Demyelination Syndrome

    PubMed Central

    Nicaise, Charles; Soupart, Alain; Boom, Alain; Schiettecatte, Johan; Pochet, Roland; Brion, Jean Pierre

    2011-01-01

    Abrupt osmotic changes during rapid correction of chronic hyponatremia result in demyelinative brain lesions, but the sequence of events linking rapid osmotic changes to myelin loss is not yet understood. Here, in a rat model of osmotic demyelination syndrome, we found that massive astrocyte death occurred after rapid correction of hyponatremia, delineating the regions of future myelin loss. Astrocyte death caused a disruption of the astrocyte-oligodendrocyte network, rapidly upregulated inflammatory cytokines genes, and increased serum S100B, which predicted clinical manifestations and outcome of osmotic demyelination. These results support a model for the pathophysiology of osmotic brain injury in which rapid correction of hyponatremia triggers apoptosis in astrocytes followed by a loss of trophic communication between astrocytes and oligodendrocytes, secondary inflammation, microglial activation, and finally demyelination. PMID:21885671

  14. Modeling of laboratory experiments determining the chemico-osmotic, hydraulic and diffusion properties of sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2008-12-01

    properties of clay-rich materials have been demonstrated in laboratory experiments. However, it remains inconclusive whether chemical osmosis can retain the pressure disequilibrium and so influence groundwater flow in a geologic time scale. Therefore, systematic research involving field-scale investigations of pressure and salinity distributions and experimental estimations of the chemico-osmotic, hydraulic and diffusive properties of formation media is required. This study focuses on the development of a laboratory experimental system and the analytical solutions to estimate the chemico-osmotic, hydraulic and diffusive properties of formation media. The experimental system consists of a flexible-wall permeameter cell that loads confining pressures, along with a closed fluid circuit to perform osmotic, hydraulic and diffusion experiments under background fluid pressures. This experimental design enables simulating underground conditions at the depths required for safety assessments of geological waste disposal. The effectiveness of the experimental system and the analytical solutions are demonstrated with a set of osmotic, hydraulic and diffusion experiments performed using sedimentary rocks.

  15. Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Marbach, Sophie; Bocquet, Lydéric

    2017-05-01

    In this paper, we explore osmotic transport by means of molecular dynamics (MD) simulations. We first consider osmosis through a membrane and investigate the reflection coefficient of an imperfectly semi-permeable membrane, in the dilute and high concentration regimes. We then explore the diffusio-osmotic flow of a solute-solvent fluid adjacent to a solid surface, driven by a chemical potential gradient parallel to the surface. We propose a novel non-equilibrium MD (NEMD) methodology to simulate diffusio-osmosis, by imposing an external force on every particle, which properly mimics the chemical potential gradient on the solute in spite of the periodic boundary conditions. This NEMD method is validated theoretically on the basis of linear-response theory by matching the mobility with their Green-Kubo expressions. Finally, we apply the framework to more realistic systems, namely, a water-ethanol mixture in contact with a silica or a graphene surface.

  16. Causes and consequences of high osmotic potentials in epiphytic higher plants.

    PubMed

    Martin, Craig E; Lin, T C; Lin, K C; Hsu, C C; Chiou, W L

    2004-10-01

    Past reports of the water relations of epiphytes, particularly bromeliads, indicate that tissue osmotic potentials in these tropical and subtropical plants are very high (close to zero) and are similar to values for aquatic plants. This is puzzling because several ecophysiological studies have revealed a high degree of drought stress tolerance in some of these epiphytes. The goal of this study was two-fold: (1) to increase the number of epiphytic taxa sampled for tissue osmotic potentials; and (2) to explain the apparent discrepancy in the significance of the tissue water relations and tolerance of drought stress in epiphytes. Tissue osmotic potentials of 30 species of epiphytic ferns, lycophytes, and orchids were measured in a subtropical rain forest in northeastern Taiwan. Nearly all values were less negative than -1.0 MPa, in line with all previous data for epiphytes. It is argued that such high osmotic potentials, indicative of low solute concentrations, are the result of environmental constraints of the epiphytic habitat on productivity of these plants, and that low rates of photosynthesis and transpiration delay the onset of turgor loss in the tissues of epiphytes such that they appear to be very drought-stress tolerant. Maintenance of photosynthetic activity long into drought periods is ascribed to low rates of transpiration and, hence, delayed tissue desiccation, and hydration of the photosynthetic tissue at the expense of water from the water-storage parenchyma.

  17. Electro-osmotic flows in rectangular cavities

    NASA Astrophysics Data System (ADS)

    Meleshko, Viatcheslav; Trofimchuk, Alexandre; Gourjii, Alexandre; Bezym'yana, Elina

    2010-11-01

    The talk presents the results of investigation of the microfluidics mixing processes in a rectangular cavity flows induced by elctro-osmotic excitation. Enhanced mixing plays an important role in biological and chemical pharmaceutics analysis in microfluidics systems. Analytical solution is presented for the velocity field in the cavity under various electric potential distributions. The location of the periodic points in the flow are accurately established and the structure of stable and unstable manifolds is discussed. The optimal form of excitation is suggested in order to obtain most effective mixing regime in the cavity. The regular and chaotic regions are identified under various condition of excitation. Finally, we compare numerical and analytical solutions with the results of laboratory experiments for real microfluidic flows.

  18. OSMOTIC AND METABOLIC ALTERATIONS OF MITOCHONDRIAL SIZE.

    PubMed

    LYNN, W S; FORTNEY, S; BROWN, R H

    1964-10-01

    Sustained contraction (dehydration) of rat liver mitochondria can be readily produced by increasing the tonicity of the outside media, provided Ca(++) is removed by EDTA, fatty acids are removed by albumin, and a source of chemical energy (mitochondrial substrate or ATP) is present. This was demonstrated both gravimetrically and turbidimetrically. It was also demonstrated that the net movement of sucrose and H(2)O under altered conditions of tonicity in mitochondria was dependent on the state of the mitochondria; e.g., in the presence of EDTA, diffusion was blocked, both into and out of mitochondria, whereas, in the presence of EDTA and electron-transport substrates, movement of sucrose and water out of mitochondria was increased. In the presence of Ca(++), gramicidin, or fatty acids, diffusion of sucrose into and out of mitochondria is very rapid. Mitochondria obey osmotic law only after Ca(++) and fatty acids are removed from them.

  19. Electro-osmotic flow in polygonal ducts.

    PubMed

    Wang, Chang-Yi; Chang, Chien-Cheng

    2011-06-01

    The paper presents semi-analytical solutions to electro-osmotic (EO) flow through polygonal ducts under the Debye-Hückel approximation. Analytical series solutions assisted with numerical collocations are found to yield very fast convergence. The solutions have practical applications as the pores of EO membranes are mostly hexagonal, stacked densely in a beehive-like matrix. In addition, we develop simple asymptotic approximations that would be applicable to all EO tube flows of small as well as large dimensionless electrokinetic width. This facilitates investigation of analytical structures of general EO flows in all shapes of tubes, including the present geometries. In particular, for thick electrical double layers, the flow rate of EO is related to the corresponding viscous Poiseuille flow rate, while for thin electrical double layers, the flow rate is shown to be characterized by the cross-sectional area and the perimeter length of the tubes.

  20. Osmotic mechanism of the loop extrusion process

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  1. OSMOTIC AND METABOLIC ALTERATIONS OF MITOCHONDRIAL SIZE

    PubMed Central

    Lynn, William S.; Fortney, Sydney; Brown, Rose H.

    1964-01-01

    Sustained contraction (dehydration) of rat liver mitochondria can be readily produced by increasing the tonicity of the outside media, provided Ca++ is removed by EDTA, fatty acids are removed by albumin, and a source of chemical energy (mitochondrial substrate or ATP) is present. This was demonstrated both gravimetrically and turbidimetrically. It was also demonstrated that the net movement of sucrose and H2O under altered conditions of tonicity in mitochondria was dependent on the state of the mitochondria; e.g., in the presence of EDTA, diffusion was blocked, both into and out of mitochondria, whereas, in the presence of EDTA and electron-transport substrates, movement of sucrose and water out of mitochondria was increased. In the presence of Ca++, gramicidin, or fatty acids, diffusion of sucrose into and out of mitochondria is very rapid. Mitochondria obey osmotic law only after Ca++ and fatty acids are removed from them. PMID:14228514

  2. Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels

    PubMed Central

    Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin

    2017-01-01

    Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675

  3. Solute coupled diffusion in osmotically driven membrane processes.

    PubMed

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  4. Effect of osmotic pressure to bioimpedance indexes of erythrocyte suspensions

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Nikolaev, D. V.; Malahov, M. V.; Smirnov, A. V.

    2012-12-01

    In the paper we studied effects of osmotic modification of red blood cells on bioimpedance parameters of erythrocyte suspension. The Cole parameters: the extracellular (Re) and intracellular (Ri) fluid resistance, the Alpha parameter, the characteristic frequency (Fchar) and the cell membranes capacitance (Cm) of concentrated erythrocyte suspensions were measured by bioimpedance analyser in the frequency range 5 - 500 kHz. Erythrocytes were incubated in hypo-, hyper- and isoosmotic solutions to achieve changes in cell volume. It was found that Re and Alpha increased in the suspensions with low osmolarity and decreased in the hypertonic suspensions. Ri, Fchar and Cm were higher in the hyperosmotic and were lower in the hypoosmotic suspensions. Correlations of all BIS parameters with MCV were obtained, but multiple regression analysis showed that only Alpha parameter was independently related to MCV (β=0.77, p=0.01). Thus Alpha parameter may be related the mean corpuscular volume of cells.

  5. A Case of Osmotic Demyelination Presenting with Severe Hypernatremia

    PubMed Central

    Han, Min Jee; Kim, Do Hyoung; Kim, Young Hwa; Yang, In Mo; Park, Joon Hyung

    2015-01-01

    Osmotic demyelination syndrome is a demyelinating disorder associated with rapid correction of hyponatremia. But, it rarely occurs in acute hypernatremia, and it leads to permanent neurologic symptoms and is associated with high mortality. A 44-year-old woman treated with alternative medicine was admitted with a history of drowsy mental status. Severe hypernatremia (197mEq/L) with hyperosmolality (415mOsm/kgH2O) was evident initially and magnetic resonance imaging revealed a high signal intensity lesion in the pons, consistent with central pontine myelinolysis. She was treated with 0.45% saline and 5% dextrose water and intravenous corticosteroids. Serum sodium normalized and her clinical course gradually improved. Brain lesion of myelinolysis also improved in a follow-up imaging study. This is the first report of a successful treatment of hypernatremia caused by iatrogenic salt intake, and it confirms the importance of adequate fluid supplementation in severe hypernatremia. PMID:26240598

  6. Application of the multisolute osmotic virial equation to solutions containing electrolytes.

    PubMed

    Prickett, Richelle C; Elliott, Janet A W; McGann, Locksley E

    2011-12-15

    The prediction of multisolute solution behavior of solutions containing electrolytes is important in many areas of research, including cryopreservation. In this study, the use of a novel form of the osmotic virial equation for multisolute solutions containing an electrolyte is investigated and compared to a rigorous electrolyte solution theory, the Pitzer-Debye-Huckel equation. For aqueous solutions containing a small molecule (either dimethyl sulfoxide or glycerol) and sodium chloride, the multisolute osmotic virial equation, which utilizes only two parameters to capture the electrolyte solution behavior, is shown to be as accurate as the Pitzer-Debye-Huckel equation, which utilizes six empirical parameters and multiple functions to capture the electrolyte solution behavior. In addition, an approach based on the multisolute osmotic virial equation to investigate the effect of electrolyte concentration on macromolecule solution behavior is presented and applied to aqueous solutions of hydroxyethyl starch and sodium chloride. The multisolute osmotic virial equation is shown to be an accurate, straightforward predictive solution theory for important multisolute solutions containing electrolytes.

  7. Design and evaluation of osmotic pump-based controlled release system of Ambroxol Hydrochloride.

    PubMed

    Cheng, Xiongkai; Sun, Min; Gao, Yan; Cao, Fengliang; Zhai, Guangxi

    2011-08-01

    The purpose of the present study was to design and evaluate an osmotic pump-based drug delivery system for controlling the release of Ambroxol Hydrochloride (Amb). Citric acid, lactose and polyethylene glycol 6000 (PEG 6000) were employed as osmotic agents. Surelease EC containing polyethylene glycol 400 (PEG 400) controlling the membrane porosity was used as semi-permeable membrane. The formulation of tablet core was optimized by orthogonal design and evaluated by weighted mark method. The influences of the amount of PEG 400 and membrane thickness on Amb release were investigated. The optimal osmotic pump tablet (OPT) was evaluated in different release media and at different stirring rates. The major release power confirmed was osmotic pressure. The release of Amb from OPT was verified at a rate of approximately zero-order, and cumulative release percentage at 12?h was 92.6%. The relative bioavailability of Amb OPT in rabbits relative to the commercial sustained capsule was 109.6%. Our results showed that Amb OPT could be a practical preparation with a good prospect.

  8. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    PubMed Central

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  9. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    PubMed

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s < T(2) < 0.06 s, and the rapid one of T(2) < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface.

  10. Iodine contributes to osmotic acclimatisation in the kelp Laminaria digitata (Phaeophyceae).

    PubMed

    Nitschke, Udo; Stengel, Dagmar B

    2014-02-01

    Iodide (I⁻) retained by the brown macroalga Laminaria digitata at millimolar levels, possesses antioxidant activities, but the wider physiological significance of its accumulation remains poorly understood. In its natural habitat in the lower intertidal, L. digitata experiences salinity changes and osmotic homeostasis is achieved by regulating the organic osmolyte mannitol. However, I⁻ may also holds an osmotic function. Here, impacts of hypo- and hypersaline conditions on I⁻ release from, and accumulation by, L. digitata were assessed. Additionally, mannitol accumulation was determined at high salinities, and physiological responses to externally elevated iodine concentrations and salinities were characterised by chl a fluorometry. Net I⁻ release rates increased with decreasing salinity. I⁻ was accumulated at normal (35 S A) and high salinities (50 S A); this coincided with enhanced rETRmax and qP causing pronounced photoprotection capabilities via NPQ. At 50 S A elevated tissue iodine levels impeded the well-established response of mannitol accumulation and prevented photoinhibition. Contrarily, low tissue iodine levels limited photoprotection capabilities and resulted in photoinhibition at 50 S A, even though mannitol was accumulated. The results indicate a, so far, undescribed osmotic function of I⁻ in L. digitata and, thus, multifunctional principles of this halogen in kelps. The osmotic function of mannitol may have been substituted by that of I⁻ under hypersaline conditions, suggesting a complementary role of inorganic and organic solutes under salinity stress. This study also provides first evidence that iodine accumulation in L. digitata positively affects photo-physiology.

  11. The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis.

    PubMed

    Anderson, Wayne H; Coakley, Raymond D; Button, Brian; Henderson, Ashley G; Zeman, Kirby L; Alexis, Neil E; Peden, David B; Lazarowski, Eduardo R; Davis, C William; Bailey, Summer; Fuller, Fred; Almond, Martha; Qaqish, Bahjat; Bordonali, Elena; Rubinstein, Michael; Bennett, William D; Kesimer, Mehmet; Boucher, Richard C

    2015-07-15

    Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.

  12. The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis

    PubMed Central

    Coakley, Raymond D.; Button, Brian; Henderson, Ashley G.; Zeman, Kirby L.; Alexis, Neil E.; Peden, David B.; Lazarowski, Eduardo R.; Davis, C. William; Bailey, Summer; Fuller, Fred; Almond, Martha; Qaqish, Bahjat; Bordonali, Elena; Rubinstein, Michael; Bennett, William D.; Kesimer, Mehmet; Boucher, Richard C.

    2015-01-01

    Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. Objectives: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. Methods: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. Measurements and Results: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. Conclusions: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis. PMID:25909230

  13. Osmotic water permeability diversification in primary trophoblast cultures from aquaporin 1-deficient pregnant mice.

    PubMed

    Sha, Xiao-Yan; Liu, Hui-Shu; Ma, Tong-Hui

    2015-09-01

    Aquaporins (AQP) are water channel proteins, and some play an important role in maternal-fetal fluid exchange. The present study aimed to measure the osmotic water permeability in primary cultures of trophoblast cells from AQP1-deficient (AQP1(-/-) ) pregnant mice and to define the quantitative role of AQP1 in water transport across the trophoblast plasma membrane. Trophoblast cells were obtained from placental tissue cell culture of AQP1(-/-) pregnant mice and were characterized by cytokeratin 7 immunostaining. The expression of the AQP1 gene in trophoblast cells of wild-type (AQP1(+/+) ) mice was confirmed by immunofluorescence. The osmotic water permeability of trophoblast plasma membranes was measured by a calcein fluorescence quenching method in response to osmotic gradients. A primary cell culture system for trophoblasts was successfully established. Immunofluorescence showed the expression of AQP1 in the trophoblast cell membrane of AQP1(+/+) mice. The osmotic water permeability of AQP1(-/-) trophoblast cells was significantly lower than that in AQP1(+/+) trophoblast cells, in response to both hypotonic and hypertonic challenges. The results suggest an important role of AQP1-mediated plasma membrane water permeability in maternal-fetal fluid balance and also provide a potential direction for the identification of therapeutic targets for the treatment of abnormalities in amniotic fluid volume. © 2015 Japan Society of Obstetrics and Gynecology.

  14. Thyroid hormones regulate the onset of osmotic activity of rat liver mitochondria after birth.

    PubMed

    Almeida, A; Lopez-Mediavilla, C; Medina, J M

    1997-02-01

    The effect of thyroid hormone deprivation on the osmotic activity of liver mitochondria from early newborn rats was studied. Experimentally induced hypothyroidism prevented the increase in the osmotic activity of mitochondria observed immediately after birth. Osmotic activity was restored by T4 and T3 treatment to hypothyroid newborns but not when this treatment was supplemented with cycloheximide. Under the same circumstances, streptomycin had no effect. Hypothyroidism abolished the change in the slope of the osmotic curve (plot of inverse absorbance of mitochondrial suspensions incubated in sucrose solutions vs. inverse sucrose concentration) observed in mitochondria from euthyroid newborns at 110-120 mOsm sucrose, suggesting that hypothyroidism prevents the formation of tight physical connections between mitochondrial outer and inner membranes. Thyroid hormone deprivation increased the passive permeability of the mitochondrial inner membrane to protons, resulting in a decreased respiratory control ratio. Hypothyroidism prevented the sharp decrease in the affinity of mitochondria for ATP observed in euthyroid newborns immediately after birth. These results corroborate our previous suggestion (Endocrinology, 1995, 136:4448) that, during the early neonatal period, thyroid hormones control the synthesis of some nucleus-coded protein(s) involved in the assembly of F0,F1-ATPase.

  15. Equilibrium and dynamic osmotic behaviour of aqueous solutions with varied concentration at constant and variable volume.

    PubMed

    Minkov, Ivan L; Manev, Emil D; Sazdanova, Svetla V; Kolikov, Kiril H

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05-0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment.

  16. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals.

    PubMed

    Shu, Lie-Bo; Ding, Wei; Wu, Jin-Hong; Feng, Fang-Jun; Luo, Li-Jun; Mei, Han-Wei

    2010-11-01

    Following the idea of partial root-zone drying (PRD) in crop cultivation, the morphological and physiological responses to partial root osmotic stress (PROS) and whole root osmotic stress (WROS) were investigated in rice. WROS caused stress symptoms like leaf rolling and membrane leakage. PROS stimulated stress signals, but did not cause severe leaf damage. By proteomic analysis, a total of 58 proteins showed differential expression after one or both treatments, and functional classification of these proteins suggests that stress signals regulate photosynthesis, carbohydrate and energy metabolism. Two other proteins (anthranilate synthase and submergence-induced nickel-binding protein) were upregulated only in the PROS plants, indicating their important roles in stress resistance. Additionally, more enzymes were involved in stress defense, redox homeostasis, lignin and ethylene synthesis in WROS leaves, suggesting a more comprehensive regulatory mechanism induced by osmotic stress. This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals.

  17. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.

    2017-04-01

    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.

  18. Differential Osmotic Behavior of Water Components in Living Skeletal Muscle Resolved by 1H-NMR

    PubMed Central

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-01-01

    Using frog sartorius muscle, we observed transverse relaxation processes of 1H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T2 > 0.4 s, the slow one of T2 ∼ 0.15 s, the intermediate one of 0.03 s < T2 < 0.06 s, and the rapid one of T2 < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T2 toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T2 values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  19. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock.

    PubMed

    Yoo, Gursong; Park, Won-Kun; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2012-11-01

    High-cost downstream process is a major bottleneck for producing microalgal biodiesel at reasonable price. Conventional lipid extraction process necessitates biomass drying process, which requires substantial amount of energy. In this regard, lipid extraction from wet biomass must be an attractive solution. However, it is almost impossible to recover lipid directly from wet microalgae with current technology. In this study, we conceived osmotic shock treatment as a novel method to extract lipid efficiently. Osmotic shock treatment was applied directly to wet Chlamydomonas reinhardtii biomass with water content >99%, along with both polar and non-polar organic solvents. Our results demonstrated that osmotic shock could increase lipid recovery approximately 2 times. We also investigated whether the presence of cell wall or different cell stages could have any impact on lipid recovery. Cell wall-less mutant stains and senescent cell phase could display significantly increased lipid recovery. Taken together, our results suggested that osmotic shock is a promising technique for wet lipid extraction from microalgal biomass and successfully determined that specific manipulation of biomass in certain cell phase could enhance lipid recovery further.

  20. Hypo-osmotic shock induces nuclear export and proteasome-dependent decrease of UBL5

    SciTech Connect

    Hatanaka, Ken; Ikegami, Koji; Takagi, Hiroshi; Setou, Mitsutoshi . E-mail: setou@nips.ac.jp

    2006-11-24

    The osmolarity of body fluid is strictly controlled through the action of diuretic hormones, which are secreted in the hypothalamus. In the mammalian brain, ubiquitin-like 5 (UBL5) is expressed in oxytocin- and vasopressin-positive neurons in the hypothalamus, and these neurons play a role in regulating osmolarity. We examined the dynamics of UBL5 levels in response to hyper- or hypo-osmotic conditions. Hypo-osmotic conditions led to significantly reduced levels of UBL5 both in brain slices from the hypothalamus and in NIH-3T3 cells. This decrease in UBL5 was transcription-independent and proteasome-dependent. Time-course immunocytochemical studies using exogenous UBL5 revealed that the protein was exported from the nucleus under hypo-osmotic conditions and decreased in a proteasome-dependent manner. This report is the first to describe changes in the intracellular and subcellular localization of UBL5 in response to hypo-osmotic conditions. Our results imply osmoregulation of UBL5.

  1. Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa.

    PubMed

    Guthrie, H D; Liu, J; Critser, J K

    2002-12-01

    This study was conducted to determine the osmotic properties of bull spermatozoa, including the effects of osmotic stress and cryoprotectant agent (CPA) addition and removal, on sperm motility. Semen from beef bulls was collected by electroejaculation and extended 1:3 in TL-Hepes containing 100 micro g/ml pyruvate and 6 mg/ml BSA. In solutions of 150-1200 mOsmolal (mOsm), bull spermatozoa behaved as linear osmometers (r(2) = 0.97) with an osmotically inactive cell volume of 61%. The isosmotic cell volume was 23.5 micro m(3). Motility was determined after exposure to anisosmotic solutions ranging from 35 to 2400 mOsm and after return to isosmotic conditions. Retention of at least 90% of isosmotic motility could be maintained only between 270-360 mOsm. Bull spermatozoa were calculated to retain 90% of their isosmotic motility at 92-103% of their isosmotic cell volume. Motility following a one-step addition and removal of 1 M glycerol, dimethyl sulfoxide, and ethylene glycol was reduced by 31%, 90%, and 6%, respectively, compared with CPA addition only. These data indicate that, during bull spermatozoa cryopreservation, osmotically driven cell volume excursions must be limited by exposure to a very narrow range that may be facilitated by the use of ethylene glycol as a CPA.

  2. Accumulation of glycerophosphocholine (GPC) by renal cells: Osmotic regulation of GPC:choline phosphodiesterase

    SciTech Connect

    Zablocki, K.; Miller, S.P.F.; Garcia-Perez, A.; Burg, M.B. )

    1991-09-01

    Although GPC has long been recognized as a degradation product of phosphatidylcholine, only recently is there wide appreciation of its role as a compatible and counteracting osmolyte that protects cells from osmotic stress. GPC is osmotically regulated in renal cells. Its level varies directly with extracellular osmolality. Cells in the kidney medulla in vivo and in renal epithelial cell cultures (MDCK) accumulate large amounts of GPC when exposed to high concentrations of NaCl and urea. Osmotic regulation of GPC requires choline in the medium, presumably as a precursor for synthesis of GPC. Choline transport into the cells, however, is not osmoregulated. The purpose of the present studies was to use MDCK cell cultures as a defined model to distinguish whether osmotically induced accumulation of GPC results from increased GPC synthesis or decreased GPC disappearance. The rate of incorporation of {sup 14}C from ({sup 14}C)choline into GPC, the steady-state GPC synthesis rate, and the activity of phospholipase A{sub 2} are not increased by high NaCl and urea. In fact all are decreased by approximately one-third. Therefore, the authors find no evidence that high NaCl and urea increases the GPC synthesis rate. They conclude that high NaCl and urea increase the level of GPC by inhibiting its enzymatic degradation.

  3. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    PubMed Central

    Mahindroo, Neeraj; Dhar, K. L.

    2014-01-01

    The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin) exhibited optimum solubility (56.25 mg/mL) for osmotic controlled delivery. Asymmetric membrane capsules (AMCs) were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1), glycerol (X2), and NaCl (X3) which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1) and correlation coefficient of drug release (Y2)). The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release) of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium. PMID:24605053

  4. Reparameterization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations.

    PubMed

    Miller, Mark S; Lay, Wesley Kayser; Li, Shuxiang; Hacker, William Charles; An, Jiadi; Ren, Jianlan; Elcock, Adrian Hamilton

    2017-03-15

    There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparameterize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications - some previously reported by others and some that are new to this study - are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parameterization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields' descriptions of solute-solute interactions, and further demonstrates that modifications to van der

  5. Reparameterization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.; Li, Shuxiang; Hacker, William C.; An, Jiadi; Ren, Jianlan; Elcock, Adrian H.

    2017-01-01

    There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparameterize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications – some previously reported by others and some that are new to this study – are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parameterization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields’ descriptions of solute-solute interactions, and further demonstrates that modifications to

  6. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532.

    PubMed Central

    Jewell, J B; Kashket, E R

    1991-01-01

    We reported previously that, when exposed to high osmotic pressure, Lactobacillus acidophilus IFO 3532 cells accumulated N,N,N-trimethylglycine (glycine betaine), which serves as a compatible intracellular solute. When grown in medium with high osmotic pressure, these cells also accumulated one amino acid, proline. The uptake of [3H]proline by resting, glucose-energized cells was stimulated by increasing the osmotic pressure of the assay medium with 0.5 to 1.0 M KCl, 1.0 M NaCl, or 0.5 M sucrose. The accumulated [3H]proline was not metabolized further. In contrast, there was no osmotic stimulation of [3H]leucine uptake. The uptake of proline was activated rather than induced by exposure of the cells to high osmotic pressure. Only one proline transport system could be discerned from kinetics plots. The affinity of the carrier for proline remained constant over a range of osmotic pressures from 650 to 1,910 mosM (Kt, 7.8 to 15.5 mM). The Vmax, however, increased from 15 nmol/min/mg of dry weight in 0.5 M sucrose to 27 and 40 nmol/min/mg of dry weight in 0.5 M KCl and in 1.0 M KCl or NaCl, respectively. The efflux of proline from preloaded cells occurred rapidly when the osmotic pressure of the suspending buffer was lowered. PMID:1786048

  7. Osmotic significance of glycerol accumulation in exponentially growing yeasts.

    PubMed Central

    Reed, R H; Chudek, J A; Foster, R; Gadd, G M

    1987-01-01

    Natural-abundance 13C-nuclear magnetic resonance spectroscopy has shown glycerol to be the major osmotically significant low-molecular-weight solute in exponentially growing, salt-stressed cells of the yeasts Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Debaromyces hansenii. Measurement of the intracellular nonosmotic volume (i.e., the fraction of the cell that is osmotically unresponsive) by using the Boyle-van't Hoff relationship (for nonturgid cells, the osmotic volume is directly proportional to the reciprocal of the external osmotic pressure) showed that the nonosmotic volume represented up to 53% of the total cell volume; the highest values were recorded in media with maximum added NaCl. Determinations of intracellular glycerol levels with respect to cell osmotic volumes showed that increases in intracellular glycerol may counterbalance up to 95% of the external osmotic pressure due to added NaCl. The lack of other organic osmotica in 13C-nuclear magnetic resonance spectra indicates that inorganic ions may constitute the remaining component of intracellular osmotic pressure. PMID:3314706

  8. The effect of cell size distribution on predicted osmotic responses of cells.

    PubMed

    Elmoazzen, H Y; Chan, C C V; Acker, J P; Elliott, J A W; McGann, L E

    2005-01-01

    An understanding of the kinetics of the osmotic response of cells is important in understanding permeability properties of cell membranes and predicting cell responses during exposure to anisotonic conditions. Traditionally, a mathematical model of cell osmotic response is obtained by applying mass transport and Boyle-vant Hoff equations using numerical methods. In the usual application of these equations, it is assumed that all cells are the same size equal to the mean or mode of the population. However, biological cells (even if they had identical membranes and hence identical permeability characteristics--which they do not) have a distribution in cell size and will therefore shrink or swell at different rates when exposed to anisotonic conditions. A population of cells may therefore exhibit a different average osmotic response than that of a single cell. In this study, a mathematical model using mass transport and Boyle-van't Hoff equations was applied to measured size distributions of cells. Chinese hamster fibroblast cells (V-79W) and Madin-Darby canine kidney cells (MDCK), were placed in hypertonic solutions and the kinetics of cell shrinkage were monitored. Consistent with the theoretical predictions, the size distributions of these cells were found to change over time, therefore the selection of the measure of central tendency for the population may affect the calculated osmotic parameters. After examining three different average volumes (mean, median, and mode) using four different theoretical cell size distributions, it was determined that, for the assumptions used in this study, the mean or median were the best measures of central tendency to describe osmotic volume changes in cell suspensions.

  9. Osmotic virial coefficients of hydroxyethyl starch from aqueous hydroxyethyl starch-sodium chloride vapor pressure osmometry.

    PubMed

    Cheng, Jingjiang; Gier, Martin; Ross-Rodriguez, Lisa U; Prasad, Vinay; Elliott, Janet A W; Sputtek, Andreas

    2013-09-05

    Hydroxyethyl starch (HES) is an important industrial additive in the paper, textile, food, and cosmetic industries and has been shown to be an effective cryoprotectant for red blood cells; however, little is known about its thermodynamic solution properties. In many applications, in particular those in biology, HES is used in an aqueous solution with sodium chloride (NaCl). The osmotic virial solution thermodynamics approach accurately captures the dependence of osmolality on molality for many types of solutes in aqueous systems, including electrolytes, sugars, alcohols, proteins, and starches. Elliott et al. proposed mixing rules for the osmotic virial equation to be used for osmolality of multisolute aqueous solutions [Elliott, J. A. W.; et al. J. Phys. Chem. B 2007, 111, 1775-1785] and recently applied this approach to the fitting of one set of aqueous HES-NaCl solution data reported by Jochem and Körber [Cryobiology 1987, 24, 513-536], indicating that the HES osmotic virial coefficients are dependent on HES-to-NaCl mass ratios. The current study reports new aqueous HES-NaCl vapor pressure osmometry data which are analyzed using the osmotic virial equation. HES modifications were measured after dialysis (membrane cut off: 10,000 g/mol) and freeze-drying using vapor pressure osmometry at different mass ratios of HES to NaCl for HES up to 50% and NaCl up to 25% with three different HES modifications (weight average molecular weights [g/mol]/degree of substitution: 40,000/0.5; 200,000/0.5; 450,000/0.7). Equations were then fit to the data to provide a model for HES osmotic virial coefficient dependence on mass ratio of HES to NaCl. The osmolality data of the three HES modifications were accurately described over a broad range of HES-to-NaCl mass ratios using only four parameters, illustrating the power of the osmotic virial approach in analyzing complex data sets. As expected, the second osmotic virial coefficients increase with molecular weight of the HES and

  10. Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm.

    PubMed

    Si, Wei; Benson, James D; Men, Hongsheng; Critser, John K

    2006-12-01

    Osmotic stress is an important factor that can result in cell damage during cryopreservation. The objectives of this study were to determine: (1) isosmotic sperm cell volume; (2) osmotically inactive volume; (3) osmotic tolerance limits of rat sperm; and (4) the effects of addition and removal of glycerol (Gly), ethylene glycol (EG), propylene glycol (PG) or dimethyl sulfoxide (Me(2)SO) on rat sperm function. Sperm from Fischer 344 and Sprague-Dawley rats were used in this study. An electronic particle counter was used to measure the cell volume of rat sperm. Computer-assisted sperm motility analysis and flow-cytometric analysis were used to assess sperm motility, plasma membrane and acrosomal integrity. The isosmotic sperm cell volumes of the two strains were 37.0+/-0.1 and 36.2+/-0.2 microm(3), respectively. Rat sperm behaved as linear osmometers from 260 to 450 mOsm, and the osmotically inactive sperm volumes of the two strains were 79.8+/-1.5% and 81.4+/-2.2%, respectively. Rat sperm have very limited osmotic tolerances. The sperm motility and the sperm plasma membranes of both strains were sensitive to anisosmotic treatments, but the acrosomes of both strains were more sensitive to hyposmotic than hyperosmotic conditions. The one-step addition and removal of Me(2)SO showed the most deleterious effect on rat sperm motility, plasma membrane integrity, and acrosomal integrity among the four cryoprotectants. These data characterizing rat sperm osmotic behavior, osmotic and cryoprotectant tolerance will be used to design cryopreservation protocols for rat sperm.

  11. Controlled release of ziprasidone solid dispersion systems from osmotic pump tablets with enhanced bioavailability in the fasted state.

    PubMed

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2015-01-01

    The purpose of this work was to develop a controlled release of ziprasidone with no food effect by the osmotic release strategy. The solution of ziprasidone and poloxamer188 (P188) with different weight ratios was spray-dried to form solid dispersion of ziprasidone (SD-ZIP). The SD-ZIP was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (X-RD) and solubility testing. The SD-ZIP osmotic pump tablets were prepared by wet granulation method. The effect of formulation variables on the release characteristic was investigated. The SD-ZIP osmotic pump tablets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation Zeldox® as a control. The results of DSC and X-RD indicated that ziprasidone resides in P188 with no crystalline changes. Solubility studies demonstrated that the solubility of SD-ZIP was substantially improved compared to ziprasidone and physical mixtures of ziprasidone and P188. The optimized formulation and drug release profiles of SD-ZIP osmotic pump tablets in different medium were obtained which showed typical osmotically controlled release and could fitted to zero-order kinetics with good linear correlation. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolong actions and no food effect was achieved simultaneously in SD-ZIP osmotic pump tablet compared with Zeldox®. The SD-ZIP osmotic pump tablet could be able to enhance the bioavailability in the fasted state and showed sustained release with prolonged actions.

  12. [Design push-pull osmotic pump tablets of famotidine based on an expert system for the formulation design of osmotic pump of poor water-soluble drug].

    PubMed

    Zhang, Zhi-Hong; Jin, Jie; Zhang, Hong-Wu; Xin, Wei; Jia, Guo-Bin; Wu, Wen-Fang; Pan, Wei-San

    2011-01-01

    The purpose of this study is to design push-pull osmotic pump (PPOP) tablets of famotidine using the expert system for the formulation design of osmotic pump of poor water-soluble drug which had been established by the authors. Firstly, the parameters which were requisite of the system input were obtained from literatures and experimental tests. Then the parameters were input into the system, and the program was run. The system displayed the designed formulations sequential. Finally, famotidine PPOP was prepared according to the designed formulations and the in vitro dissolution was carried out. It was found out that the target formulation of famotidine PPOP which could release for 24 hours was obtained in a very short period. Meanwhile, the practicability of the established expert system was proved.

  13. On the osmotically unresponsive water compartment in cells.

    PubMed

    Fullerton, Gary D; Kanal, Kalpana M; Cameron, Ivan L

    2006-01-01

    Differences in colligative properties (freezing point, boiling point, vapor pressure and osmotic behavior) between water in living cells and pure bulk water were investigated by re-evaluating reports of the osmotic behavior of mammalian cells. In five different animal cells, osmotically unresponsive water (OUW) values ranged from 1.1 to 2.2 g per g dry mass. Detailed analysis of human red blood cell (RBC) data indicates a major role for hemoglobin OUW-values, aggregation and packing in cell volume regulation that can be explained for the first time in relevant molecular terms.

  14. Controlled release of cyclosporine A self-nanoemulsifying systems from osmotic pump tablets: near zero-order release and pharmacokinetics in dogs.

    PubMed

    Zhang, Xi; Yi, Yueneng; Qi, Jianping; Lu, Yi; Tian, Zhiqiang; Xie, Yunchang; Yuan, Hailong; Wu, Wei

    2013-08-16

    It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS.

  15. Effect of transitioning from extended-release methylphenidate onto osmotic, controlled-release methylphenidate in children/adolescents with ADHD: results of a 3-month non-interventional study.

    PubMed

    Wolff, Christian; Alfred, Adam; Lindermüller, Anton; Rettig, Klaus; Mattejat, Fritz; Gerwe, Martin; Slawik, Lara; Schäuble, Barbara

    2011-01-01

    To explore the clinical outcomes of children/adolescents with ADHD who transitioned from extended-release methylphenidate (ER MPH, Medikinet Retard) to osmotic release oral system (OROS) MPH (Concerta). Medikinet Retard is a registered trade name of Medice, Bad Iserlohn, Germany. Concerta is a registered trade name of Janssen-Cilag GmbH, Neuss, Germany. This prospective, non-interventional study included patients aged 6 to 18 years with a confirmed diagnosis of ADHD who experienced insufficient clinical response and/or poor tolerability on ER MPH. Patients transitioned onto OROS MPH and were followed for 12 weeks. Symptoms, functional outcome, health-related quality of life, safety and tolerability were assessed. 180 patients were included in the intention-to-treat analysis. The mean ER MPH dose before switching was 28.2 mg/day; mean OROS MPH starting dose was 38.1 mg/day, increasing to 41.2 mg/day at the final visit. Mean treatment duration was 79.49 ± 24.22 days (median 85; range 7-136). Several symptomatic and functional outcomes under OROS MPH treatment changed from baseline and included the Conners' Parent Rating Scale (CPRS; -11.7 ± 11.3; p < 0.0001), C-GAS (12.3 ± 15.2; p < 0.0001) and ILC-LQ0-28 (parents' rating 2.9 ± 4.3 and patients' rating 2.8 ± 3.8; both p < 0.0001). Improvements in social interactions, playing with other children, doing household chores, or school homework, going to bed, and behavior towards visitors/at visits were noted (p < 0.0001). Approximately 40% of patients reported better sleep quality and appetite (p < 0.0001), and 72.8% expressed satisfaction with OROS MPH therapy compared to previous ER MPH. OROS MPH was well tolerated; the most common AEs after switching, with an incidence >2% and possibly related to therapy, were involuntary muscle contractions (tics; 8.9%), insomnia (7.2%) and anorexia (5.0%). No relevant changes in body weight or vital signs were observed. Three patients reported four serious AEs, but none were

  16. The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics.

    PubMed

    Lin, Jieting; Liang, Hebin; Yan, Junwei; Luo, Lixin

    2017-09-25

    Tetragenococcus halophilus is a moderate halophilic bacterium which was widely used in fermentation processes, growing in a broad range of salinity conditions, and can survive a saturated 26.47% w/w NaCl concentration. However, the mechanism of this outstanding ability to acclimate to extracellular osmotic stress still remains unknown. The current study firstly conducted a quantitative proteomic analysis to identify alterations of the cellular proteome under both hypo-osmotic and hyper-osmotic stress conditions. A total of 1405 proteins were identified and differentially accumulated proteins were analyzed, further functional annotations were performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The results revealed that both hypo- and hyper-osmotic stresses have prominent impacts on the synthesis of proteins involving in multiple cellular functions. Further analyses of the differentially accumulated proteins suggested that the adaptation strategies T. halophilus applies to deal with hypo- and hyper-osmotic stress conditions may be distinct. Comparison of the differentially accumulated proteins in both transcriptomic and proteomic study indicated the existence of post-transcriptional modification during salinity adaptation of T. halophilus. The current study generated a proteomic atlas of differentially accumulated proteins under both hypo- and hyper-osmotic stress conditions, provided an overview of the molecular mechanism of osmotic acclimation of T. halophilus. The current study aimed to reveal how the moderately halophilic Tetragenococcus halophilus adapt to extracellular salinity stress, which is the first proteomic study analyzing the differences in proteome of Tetragenococcus halophilus between hypo- and hyper-osmotic stress to our knowledge. By analyzing the differences in the accumulating levels of the proteome via isobaric labeling-based quantitative proteomic study, we identified proteins with significantly different accumulation

  17. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    SciTech Connect

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-15

    } using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.

  18. Osmotic diuresis due to urea as the cause of hypernatraemia in critically ill patients.

    PubMed

    Lindner, Gregor; Schwarz, Christoph; Funk, Georg-Christian

    2012-03-01

    Hypernatraemia is common in critically ill patients and has been shown to be an independent predictor of mortality. Osmotic urea diuresis can cause hypernatraemia due to significant water losses but is often not diagnosed. Free water clearance (FWC) and electrolyte free water clearance (EFWC) were proposed to quantify renal water handling. We aimed to (i) identify patients with hypernatraemia due to osmotic urea diuresis and (ii) investigate whether FWC and EFWC are helpful in identifying renal loss of free water. In this retrospective study, we screened a registry for patients, who experienced intensive care unit (ICU)-acquired hypernatraemia. Among them, patients with hypernatraemia due to osmotic urea diuresis were detected by a case-by-case review. Total fluid and electrolyte balances together with FWC and EFWC were calculated for days of rising serum sodium and stable serum sodium. We identified seven patients (10% of patients with ICU-acquired hypernatraemia) with osmotic diuresis due to urea. All patients were intubated during development of hypernatraemia and received enteral nutrition. The median highest serum sodium level of 153 mmol (Q1: 151-Q3: 155 mmol/L) was reached after a 5-day period of rise in serum sodium. During this period, FWC was -904 mL/day (Q1: -1574-Q3: -572), indicating renal water retention, while EFWC was 1419 mL/day (Q1: 1052-Q3: 1923), showing renal water loss. While FWC did not differ between time of stable serum sodium and development of hypernatraemia, EFWC was significantly higher during rise in serum sodium. Osmotic urea diuresis is a common cause of hypernatraemia in the ICU. EFWC was useful in the differential diagnosis of polyuria during rising serum sodium levels, while FWC was misleading.

  19. Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals.

    PubMed Central

    Verheul, A; Glaasker, E; Poolman, B; Abee, T

    1997-01-01

    The naturally occurring compatible solutes betaine and L-carnitine allow the food-borne pathogen Listeria monocytogenes to adjust to environments of high osmotic strength. Previously, it was demonstrated that L. monocytogenes possesses an ATP-dependent L-carnitine transporter (A. Verheul, F. M. Rombouts, R. R. Beumer, and T. Abee, J. Bacteriol. 177:3205-3212, 1995). The present study reveals that betaine and L-carnitine are taken up by separate highly specific transport systems and support a secondary transport mechanism for betaine uptake in L. monocytogenes. The initial uptake rates of betaine and L-carnitine are not influenced by an osmotic upshock, but the duration of transport of both osmolytes is directly related to the osmotic strength of the medium. Regulation of uptake of both betaine and L-carnitine is subject to inhibition by preaccumulated solute. Internal betaine inhibits not only transport of external betaine but also that of L-carnitine and, similarly, internal L-carnitine inhibits transport of both betaine and L-carnitine. The inhibition is alleviated upon osmotic upshock, which suggests that alterations in membrane structure are transmitted to the allosteric binding sites for betaine and L-carnitine of both transporters at the inner surface of the membrane. Upon osmotic downshock, betaine and L-carnitine are rapidly released by L. monocytogenes as a consequence of activation of a channel-like activity. The osmolyte-sensing mechanism described is new and is consistent with various unexplained observations of osmoregulation in other bacteria. PMID:9371443

  20. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality.

  1. Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet.

    PubMed

    Qin, Chao; He, Wei; Zhu, Chunli; Wu, Mengmeng; Jin, Zhu; Zhang, Qiang; Wang, Guangji; Yin, Lifang

    2014-05-15

    The marketed compound tablet of metformin hydrochloride (MH) and repaglinide (RG) exhibits perfect multidrug therapeutic effect of type 2 diabetes. However, due to the short half life of the drugs, the tablet has to be administered 2 to 3 times a day, causing inconvenience to patient and fluctuations of plasma concentration. Here, a sandwiched osmotic pump tablet was developed to deliver the two drugs simultaneously at zero-order rate, in which MH and RG were loaded in different layers separated by a push layer. The osmotic pump tablet was prepared by a combination of three tableting procedure and film coating method. The factors including type and amount of propellant, osmotic active agents, amount of porogenic agent, coating weight, orifice diameter were optimized. The pharmacokinetic study was performed in beagle dogs, and the drug concentration in plasma samples was assayed by HPLC-MS/MS method. Simultaneous, controlled release of MH and RG in the first 12 and 8h was achieved from the optimized formulation. A significantly decreased Cmax, prolonged Tmax and satisfactory bioavailability of the osmotic pump tablet were obtained, and a good in vivo-in vitro correlation of the two drugs was also established. In summary, the sandwiched osmotic pump tablet released the MH and RG simultaneously at zero-order rate, and exhibited significant sustained release effect in vivo and good in vivo-in vitro correlation. The designed controlled release system for MH and RG proposed a promising replacement for the marked compound product in the therapy of type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Use of scoring to induce reproducible drug delivery from osmotic pulsatile tablets.

    PubMed

    Rahemba, Tara Ryan; Bell, Samuel; Connolly, Emilia K; Waterman, Kenneth C

    2009-01-01

    An osmotic-controlled pulsatile delivery technology was developed for targeted drug delivery. This novel system consists of a tablet core surrounded by an osmotic coating that has been mechanically compromised in strategic locations to facilitate reliable drug release at a given time point after administration. The tablet core contains a high drug load in addition to several osmotic agents and swellable polymers, and the surrounding mechanically-compromised osmotic coating consists of a semipermeable membrane that has been scored with a razor blade in several key locations. The components in the tablet core attract water into the core, causing it to swell and propagate the scores in the coating along the length of the tablet. After the scores have fully propagated, the coating bursts open, releasing the tablet core's contents, including the drug, into the surrounding media. The variables that were investigated in this study included the configuration of the scores in the coating, the length of the scores, and the distance between the scores. The delivery system developed in this work is able to generate a reproducible dissolution profile consisting of a specific targeted lag time, between five minutes and two hours, followed by immediate release of the drug from the core. The performance of the system was validated in vitro using the drug salicylic acid. Unlike previously developed osmotic pulsatile delivery systems, the present system is able to accommodate higher drug loading levels, it is easier to manufacture, and has demonstrated more reproducible burst times (i.e. burst time) than several other pulsatile systems.

  3. DMSP Uptake and Retention by Natural Marine Bacteria Relieves Osmotic Stress

    NASA Astrophysics Data System (ADS)

    Motard-Coté, J.; Kiene, R. P.

    2016-02-01

    Dimethylsulfoniopropionate (DMSP) is synthesized and used by many marine phytoplankton species as an osmolyte. Grazing on phytoplankton results in formation of extracellular dissolved DMSP (DMSPd), which is rapidly taken up by bacterioplankton and used as an important carbon and sulfur source. Previous studies have, however, shown that some of the dissolved DMSP (DMSPd) in seawater is taken up by bacterioplankton and not degraded. We tested the hypothesis that retention of untransformed DMSP in cells provides some benefits to marine bacteria. In experiments with coastal seawater filtrates containing mainly bacteria, acute osmotic stresses of +5 and +10 ppt NaCl significantly inhibited bacterial production (BP) over 6 h, while the availability of 20 nM DMSPd relieved most of the BP inhibition. Partial relief of salt-induced inhibition of BP was observed with DMSPd concentrations as low as 2.5 nM, and DMSP was more effective at relieving osmotic stress than other low molecular weight compounds tested. Osmotic stresses resulted in a faster and greater overall uptake of DMSPd and accumulation of untransformed DMSP in bacterial cells (DMSPcell). Retained DMSP reached osmotically-significant intracellular concentrations of 54 mM in salt stressed bacterial populations. Retention of DMSP was accompanied by a lower production of methanethiol (MeSH), suggesting a down regulation of the demethylation/demethylation pathway under osmotic stress. These results show that estuarine bacterioplankton can use DMSP as an osmoprotectant, retaining up to 54% of the available dissolved DMSP untransformed in their cells. This benefit provided by DMSP may help explain why some DMSP is retained in bacteria in the ocean, even under unchanging salinity. This retention slows down the cycling of DMSP, with potential implications for the trophic transfer of DMSP through the food web and its contributions to sulfur and carbon fluxes in the ocean.

  4. Osmotic Adjustment of Cultured Tobacco Cells (Nicotiana tabacum var. Samsum) Grown on Sodium Chloride 1

    PubMed Central

    Heyser, James W.; Nabors, Murray W.

    1981-01-01

    Tobacco cell cultures (var. Samsum) were grown on increasing levels of NaCl to select variants for increased salt tolerance. The osmotic adjustment of NaCl-adapted and nonadapted cell lines was studied. Both cell lines were grown on modified Linsmaier and Skoog medium with or without NaCl. Few differences were found in the response of adapted and nonadapted lines to NaCl. The concentrations of sugars, Na+, Cl−, and NO3− were identical in the cells and medium. Potassium and amino acids were accumulated by the cells. All of the above solutes accounted for 80 to 90% of the osmotic potential for both cell lines when grown on basal medium with or without NaCl. The osmotic potential of growing cells was always 1 to 3 bars more negative than that of the medium. During the first 10 days culture, the cells hydrolyzed the 117 millimolar sucrose present in the fresh media, and the media became more negative by 3 bars. Growing cells absorbed and metabolized the sugars, NH4+, and NO3− during the next 25 days, and the osmotic potential of the media and cells became less negative. The addition of 130 millimolar NaCl made the media and cells osmotically more negative by 6 bars throughout the growth cycle, as compared with cells growing on basal medium. The efflux of cellular solutes during distilled H2O washes was resolved into two components. The fast component (0.6 to 1.7 minutes half-time) included solutes of the free space and cytoplasm, whereas the slow component (1.6 to 4.9 hours half-time) represented the vacuolar solutes. Sodium and Cl− were present in the vacuole. No differences were observed in the solute efflux between the adapted and nonadapted cell lines. PMID:16661743

  5. Maximal Load of the Vitamin B12 Transport System: A Study on Mice Treated for Four Weeks with High-Dose Vitamin B12 or Cobinamide

    PubMed Central

    Lildballe, Dorte L.; Mutti, Elena; Birn, Henrik; Nexo, Ebba

    2012-01-01

    Several studies suggest that the vitamin B12 (B12) transport system can be used for the cellular delivery of B12-conjugated drugs, also in long-term treatment Whether this strategy will affect the endogenous metabolism of B12 is not known. To study the effect of treatment with excess B12 or an inert derivative, we established a mouse model using implanted osmotic minipumps to deliver saline, cobinamide (Cbi) (4.25 nmol/h), or B12 (1.75 nmol/h) for 27 days (n = 7 in each group). B12 content and markers of B12 metabolism were analysed in plasma, urine, kidney, liver, and salivary glands. Both Cbi and B12 treatment saturated the transcobalamin protein in mouse plasma. Cbi decreased the content of B12 in tissues to 33–50% of the level in control animals but did not influence any of the markers examined. B12 treatment increased the tissue B12 level up to 350%. In addition, the transcript levels for methylenetetrahydrofolate reductase in kidneys and for transcobalamin and transcobalamin receptor in the salivary glands were reduced. Our study confirms the feasibility of delivering drugs through the B12 transport system but emphasises that B12 status should be monitored because there is a risk of decreasing the transport of endogenous B12. This risk may lead to B12 deficiency during prolonged treatment. PMID:23049711

  6. Maximal load of the vitamin B12 transport system: a study on mice treated for four weeks with high-dose vitamin B12 or cobinamide.

    PubMed

    Lildballe, Dorte L; Mutti, Elena; Birn, Henrik; Nexo, Ebba

    2012-01-01

    Several studies suggest that the vitamin B12 (B12) transport system can be used for the cellular delivery of B12-conjugated drugs, also in long-term treatment Whether this strategy will affect the endogenous metabolism of B12 is not known. To study the effect of treatment with excess B12 or an inert derivative, we established a mouse model using implanted osmotic minipumps to deliver saline, cobinamide (Cbi) (4.25 nmol/h), or B12 (1.75 nmol/h) for 27 days (n = 7 in each group). B12 content and markers of B12 metabolism were analysed in plasma, urine, kidney, liver, and salivary glands. Both Cbi and B12 treatment saturated the transcobalamin protein in mouse plasma. Cbi decreased the content of B12 in tissues to 33-50% of the level in control animals but did not influence any of the markers examined. B12 treatment increased the tissue B12 level up to 350%. In addition, the transcript levels for methylenetetrahydrofolate reductase in kidneys and for transcobalamin and transcobalamin receptor in the salivary glands were reduced. Our study confirms the feasibility of delivering drugs through the B12 transport system but emphasises that B12 status should be monitored because there is a risk of decreasing the transport of endogenous B12. This risk may lead to B12 deficiency during prolonged treatment.

  7. Feasibility of localized immunosuppression: 1. Exploratory studies with glucocorticoids in a biohybrid device designed for cell transplantation.

    PubMed

    Buchwald, P; Bocca, N; Marzorati, S; Hochhaus, G; Bodor, N; Stabler, C; Kenyon, N S; Inverardi, L; Molano, R D; Ricordi, C; Pileggi, A

    2010-06-01

    Emerging biotechnologies, such as the use of biohybrid devices for cellular therapies, are showing increasing therapeutic promise for the treatment of various diseases, including type 1 diabetes mellitus. The functionality of such devices could be greatly enhanced if successful localized immunosuppression regimens could be established, since they would eliminate the many otherwise unavoidable side effects of currently used systemic immunosuppressive therapies. The existence of local immune privilege at some specialized tissues, such as the eye, CNS, or pregnant uterus, supports the feasibility of localized immunomodulation, and such an approach is particularly well-suited for cell transplant therapies where all transplanted tissue is localized within a device. Following the success of syngeneic transplantation in a subcutaneous prevascularized device as a bioartificial pancreas in a rodent model, we now report the first results of exploratory in vivo islet allograft studies in rats using locally delivered glucocorticoids (dexamethasone phosphate and the soft steroid loteprednol etabonate). Following in vitro assessments, in silico drug distribution models were used to establish tentative therapeutic dose ranges. Sustained local delivery was achieved via implantable osmotic mini-pumps through a central sprinkler, as well as with a sustained-delivery formulation for loteprednol etabonate using poly(D,L-lactic) acid (PLA) microspheres. Doses delivered locally were approximately hundred-fold smaller than those typically used in systemic treatments. While several solubility, stability, and implantation problems still remain to be addressed, both compounds showed promise in their ability to prolong graft survival after tapering of systemic immunosuppression, compared to control groups.

  8. Studies of embryotoxicity and the incidence of external malformations after continuous intravenous infusion of alpha-chaconine in pregnant rats.

    PubMed

    Hellenäs, K E; Cekan, E; Slanina, P; Bergman, K

    1992-05-01

    Embryotoxicity and effects on the incidence of external malformations of the major potato glycoalkaloid alpha-chaconine (alpha-cha) were studied in rats. Pregnant Sprague-Dawley rats (n = 17) were given a continuous intravenous infusion of alpha-cha via implanted osmotic minipumps (1.7 mg/kg/day), to maintain a stable blood concentration on days 6-13 of gestation. Control animals received physiological saline solution or were left untreated, respectively. Blood serum levels of alpha-cha were monitored at selected time intervals during the treatment using a specific HPLC method. The foetal body weights and the number of resorbed or dead foetuses per litter in the alpha-cha treated group were not significantly different from the control groups. No case of malformation was detected among 143 foetuses inspected in the treated group. The average maternal blood serum concentration of alpha-cha measured during the experiment was 340 ng/ml. This is more than 20 times the average peak serum level previously reported for human volunteers after intake of potatoes with a total glycoalkaloid content at the upper safe limit for acute adverse effects. The results support the view that potato glycoalkaloids, at levels normally found in potatoes, do not present a risk for teratogenicity in humans.

  9. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    SciTech Connect

    Wullschleger, S.D. ); Oosterhuis, D.M. )

    1991-09-01

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leaf water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.

  10. Osmotic Factors of Dehardening in Cornus florida L. 1

    PubMed Central

    Williams, Jerry M.; Williams, Robert J.

    1976-01-01

    The killing temperature for cortical cells from the flowering dogwood changes abruptly from −25 C to −15 C during dehardening. Cell sap concentration, minimum critical cell volume, and osmotically inactive cell volume show a progressive change during dehardening, but only cell sap concentration is correlated directly with the killing temperature, showing the same step change. There is a limit to the extent to which hardy dogwood cells can be osmotically reduced in volume. Beyond this limiting volume, the extracellular osmotically can be increased without further volume reduction. Ultimately the cell succumbs, presumably to an osmotic pressure gradient. Nonhardy cells do not exhibit this resistance to shrinkage. The ability to resist volume reduction is probably a crucial factor in the freezing resistance of dogwood cortical cells. Images PMID:16659656

  11. Osmotic factors of dehardening in cornus Florida L.

    PubMed

    Williams, J M; Williams, R J

    1976-09-01

    The killing temperature for cortical cells from the flowering dogwood changes abruptly from -25 C to -15 C during dehardening. Cell sap concentration, minimum critical cell volume, and osmotically inactive cell volume show a progressive change during dehardening, but only cell sap concentration is correlated directly with the killing temperature, showing the same step change. There is a limit to the extent to which hardy dogwood cells can be osmotically reduced in volume. Beyond this limiting volume, the extracellular osmotically can be increased without further volume reduction. Ultimately the cell succumbs, presumably to an osmotic pressure gradient. Nonhardy cells do not exhibit this resistance to shrinkage. The ability to resist volume reduction is probably a crucial factor in the freezing resistance of dogwood cortical cells.

  12. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b...

  13. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b...

  14. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b...

  15. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b...

  16. Osmotic second virial cross coefficients for star and linear polystyrenes

    SciTech Connect

    Striolo, Alberto; Prausnitz, John M. [Chemical Engineering Department, University of California, Berkeley, Berkeley, California 94720

    2000-08-15

    Experimental osmotic second virial cross coefficients are reported for linear and 8-arm star polystyrenes in three solvents: toluene, cyclohexane, and methylcyclohexane. The osmotic second virial cross coefficient for 8-arm star and linear polystyrene is always positive and within the osmotic second virial coefficients measured for the single polymers. The positive cross coefficient indicates net repulsion between the two different polymers in dilute solution. The extent of repulsion is greatest in toluene and least in cyclohexane. To relate the macroscopic second virial coefficient to microscopic interactions, the potential of mean force between linear and 6-arm star polymers was computed by molecular simulation. The interaction between nonbonded polymer segments is given by a square-well potential. Well width was set equal to one half of the segment diameter. Different solvent conditions were investigated by using different well depths. Potentials of mean force were then used to compute the osmotic second virial cross coefficients. (c) 2000 American Institute of Physics.

  17. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  18. Exposure to ozone and erythrocyte osmotic resistance in the rat

    SciTech Connect

    Ikemi, Y.; Ohmori, K.; Ito, T.; Osaka, F.; Matuura, Y. )

    1992-10-01

    In order to learn the biological effect of photochemical oxidants on living bodies, we exposed newborn and adult rats, of both sexes, to ozone at a concentration of 0.25 ppm, which can be encountered in an urban environment, and then measured the osmotic resistance of their erythrocytes. The results of experiments using newborn rats indicated a positive increase in the osmotic resistance of erythrocytes in whole blood following ozone exposure for 4 weeks. An increase in the osmotic resistance of erythrocytes in the top part obtained by centrifugation was observed following ozone exposure for 12 weeks. This tendency was especially evident among male rats. On the other hand, no increase in the osmotic resistance of erythrocytes was recognized in the adult animals which had been exposed to the same concentration of ozone for 18 months.

  19. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    SciTech Connect

    Fritz, S.J.

    2001-08-29

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures.

  20. Kinetics of the Osmotic Hydration of Chickpeas

    NASA Astrophysics Data System (ADS)

    Pinto, Gabriel; Esin, Ali

    2004-04-01

    An experiment examining the swelling of chickpeas as they are soaked in water is presented to introduce students to topics such as osmotic flow, mass transfer, diffusion, kinetics of hydration, modeling, and estimation of activation energy. The experiment may be performed by students at home, at the laboratory, or directly by the professor. Experimental data are analyzed using an empirical model (Peleg equation) for the description of moisture sorption curves for different foods soaked in water. The proposed experiment needs inexpensive hardware. The equations that fit adequately with experimental data allow the calculation of initial hydration rates at different temperatures, and subsequently, the estimation of the activation energy, E a , of the process. The obtained value of E a (19.5 ± 0.9 kJ/mol) shows a process controlled by diffusion and not by chemical reaction. It was also observed that, for a given temperature, the increase in concentration of NaCl in the immersion solution results in the decrease of hydration kinetics.

  1. Movement disorders and the osmotic demyelination syndrome.

    PubMed

    de Souza, Aaron

    2013-08-01

    With the advent of MRI, osmotic demyelination syndromes (ODS) are increasingly recognised to affect varied sites in the brain in addition to the classical central pontine lesion. Striatal involvement is seen in a large proportion of cases and results in a wide variety of movement disorders. Movement disorders and cognitive problems resulting from ODS affecting the basal ganglia may occur early in the course of the illness, or may present as delayed manifestations after the patient survives the acute phase. Such delayed symptoms may evolve over time, and may even progress despite treatment. Improved survival of patients in the last few decades due to better intensive care has led to an increase in the incidence of such delayed manifestations of ODS. While the outcome of ODS is not as dismal as hitherto believed - with the acute akinetic-rigid syndrome associated with striatal myelinolysis often responding to dopaminergic therapy - the delayed symptoms often prove refractory to medical therapy. This article presents a review of the epidemiology, pathophysiology, clinical features, imaging, and therapy of movement disorders associated with involvement of the basal ganglia in ODS. A comprehensive review of 54 previously published cases of movement disorders due to ODS, and a video recording depicting the spectrum of delayed movement disorders seen after recovery from ODS are also presented.

  2. Osmotic regulation of airway reactivity by epithelium.

    PubMed

    Fedan, J S; Yuan, L X; Chang, V C; Viola, J O; Cutler, D; Pettit, L L

    1999-05-01

    Inhalation of nonisotonic solutions can elicit pulmonary obstruction in asthmatic airways. We evaluated the hypothesis that the respiratory epithelium is involved in responses of the airways to nonisotonic solutions using the guinea pig isolated, perfused trachea preparation to restrict applied agents to the mucosal (intraluminal) or serosal (extraluminal) surface of the airway. In methacholine-contracted tracheae, intraluminally applied NaCl or KCl equipotently caused relaxation that was unaffected by the cyclo-oxygenase inhibitor, indomethacin, but was attenuated by removal of the epithelium and Na+ and Cl- channel blockers. Na+-K+-2Cl- cotransporter and nitric oxide synthase blockers caused a slight inhibition of relaxation, whereas Na+,K+-pump inhibition produced a small potentiation. Intraluminal hyperosmolar KCl and NaCl inhibited contractions in response to intra- or extraluminally applied methacholine, as well as neurogenic cholinergic contractions elicited with electric field stimulation (+/- indomethacin). Extraluminally applied NaCl and KCl elicited epithelium-dependent relaxation (which for KCl was followed by contraction). In contrast to the effects of hyperosmolarity, intraluminal hypo-osmolarity caused papaverine-inhibitable contractions (+/- epithelium). These findings suggest that the epithelium is an osmotic sensor which, through the release of epithelium-derived relaxing factor, can regulate airway diameter by modulating smooth muscle responsiveness and excitatory neurotransmission.

  3. Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments

    SciTech Connect

    Tschaplinski, Timothy J; Tuskan, Gerald A; Sewell, Mitchell; Gebre, G; Todd Jr, Donald E; Pendley, Carrie D

    2006-01-01

    Elucidation of the mechanisms of dehydration tolerance in popular (Populus sp.) trees will permit development of biochemical and molecular indicators to indentify dehydration-tolerant genotypes during genetic selection. The objectives of the study were to characterize the degree of phenotypic variation in osmotic potential (a determinant of dehydration tolerance), determine the relationship between osmotic potential at full turgor and relative growth rate, and identify quantitative trait loci (QTL) for osmotic potential in an advanced-generation, interpsecific popular pedigree established in contrasting environments.

  4. The use of ELISA to monitor amplified hemolysis by the combined action of osmotic stress and radiation: potential applications.

    PubMed

    Chatterjee, Saurabh; Premachandran, Sudha; Bagewadikar, R S; Poduval, T B

    2005-03-01

    A new assay has been developed to study the osmotic fragility of red blood cells (RBCs) and the involvement of oxygen-derived free radicals and other oxidant species in causing human red blood cell hemolysis. The amount of hemoglobin released into the supernatant, which is a measure of human red blood cell hemolysis, is monitored using an ELISA reader. This ELISA-based osmotic fragility test compared well with the established osmotic fragility test, with the added advantage of significantly reduced time and the requirement of only 60 mul of blood. This small amount of blood was collected fresh by finger puncture and was immediately diluted 50 times with PBS, thus eliminating the use of anticoagulants and the subsequent washings. Since exposure of RBCs to 400 Gy gamma radiation caused less than 5% hemolysis 24 h after irradiation, the RBC hemolysis induced by gamma radiation was amplified by irradiating the cell in hypotonic saline. The method was validated by examining the protective effect of Trolox, an analog of vitamin E and reduced glutathione (GSH), a well-known radioprotector, against human RBC hemolysis caused by the combined action of radiation and osmotic stress. Trolox, a known membrane stabilizer and an antioxidant, and GSH offered significant protection. This new method, which is simple and requires significantly less time and fewer RBCs, may offer the ability to study the effects of antioxidants and membrane stabilizers on human red blood cell hemolysis induced by radiation and oxidative stress and assess the osmotic fragility of erythrocytes.

  5. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    PubMed Central

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  6. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats

    NASA Astrophysics Data System (ADS)

    Ferreira-Rodríguez, Noé; Pardo, Isabel

    2016-07-01

    Corbicula fluminea arrived in the Miño Estuary in 1989 and, from there, colonized more than 150 km upstream. Our aim was to test the capacity of C. fluminea to cope with osmotic stress conditions previously to invade new freshwater habitats through estuaries. Based on previously collected information, the experiment aims to study the response of the species to marine osmotic stress, evaluated by survival and behaviour. Experiments determined the resistance by the species to various levels of osmotic stress, and recovery time after exposure to high salinity levels, representative of the temporal and spatial salinity variation existing in the estuary. Under osmotic stress the semi-maximum response was reached after 19 days exposure. The species tolerance range, measured by individual maintained activity, was at salinity ∼20 when exposed to winter temperatures, while when animals were exposed to summer ones its tolerance was reduced to salinity lower than 15. C. fluminea show a large physiological flexibility to cope with salinity variations in estuaries. In summer, the temperature increases the metabolic rate thus making the species more vulnerable to osmotic stress exposure. These findings are relevant to preventing new invasions through ship ballast waters ensuring complete mortality if individuals are retained for >26 days.

  7. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses.

    PubMed

    Chen, Hui; Lu, Yan; Jiang, Jian-Guo

    2012-01-01

    The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments.

  8. ABA- and ethylene-mediated responses in osmotically stressed tomato are regulated by the TSS2 and TOS1 loci.

    PubMed

    Rosado, Abel; Amaya, Iraida; Valpuesta, Victoriano; Cuartero, Jesús; Botella, Miguel A; Borsani, Omar

    2006-01-01

    The study of mutants impaired in the sensitivity or synthesis of abscisic acid (ABA) has become a powerful tool to analyse the interactions occurring between the ABA and ethylene signalling pathways, with potential to change the traditional view of the role of ABA as just being involved in growth inhibition. The tss2 tomato mutant, which is hypersensitive to NaCl and osmotic stress, shows enhanced growth inhibition in the presence of exogenous ABA. The tos1 tomato mutant is also hypersensitive to osmotic stress, but in contrast to tss2, shows decreased sensitivity to ABA. Surprisingly, blocking ethylene signalling suppresses the growth defect of tss2 seedlings on ABA, NaCl, and osmotic stress, but not the osmotic hypersensitivity of tos1. The ethylene production of tss2 seedlings is increased compared with that of control seedlings under osmotic stress. In addition, the tss2 plants are hypersensitive to root growth inhibition by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This suggests that, in addition to ABA regulation, TSS2 acts as a negative regulator of endogenous ethylene accumulation. As previously shown in Arabidopsis, it is shown here that extensive cross-talk occurs between the ABA and ethylene signalling pathways in tomato and that the TSS2 and TOS1 loci appear as regulators of this cross-talk.

  9. Neurites outgrowth and amino acids levels in goldfish retina under hypo-osmotic or hyper-osmotic conditions.

    PubMed

    Cubillán, Lisbeth; Obregón, Francisco; Lima, Lucimey

    2012-02-01

    Amino acids are known to play relevant roles as osmolytes in various tissues, including the retina. Taurine is one of these active molecules. In addition, taurine stimulates outgrowth from the goldfish retina by mechanisms that include extracellular matrix, calcium fluxes and protein phosphorylation. The present report aims to explore the effect of medium osmolarity on goldfish retinal outgrowth and the possible modifications produced by changing eye osmolarity on amino acid levels in the retina. Goldfish retinal explants were obtained 10 days after crush of the optic nerve and cultured under iso-, hypo- or hyper-osmotic conditions. Hypo-osmotic medium was prepared by diluting the solutions 10% twice, preserving fetal calf serum concentration. Hyper-osmotic medium was done by adding 50 or 100 mM urea or mannitol. Evaluation of length and density of neurites was performed 5 days after plating. Outgrowth was reduced in hypo- and in hyper-osmotic conditions. Taurine, 4 mM, increased length and density of neurites in iso-osmotic, and produced stimulatory effects under both hyper-osmotic conditions. The in vivo modification of osmolarity by intraocular injection of water or 100 mM urea modified levels of free amino acids in the retina. Taurine and aspartate retinal levels increased in a time-dependent manner after hypo- and hyper-osmotic solution injections. Serine, threonine, arginine, γ-aminobutyric acid, alanine and tyrosine were elevated in hyper-osmotic conditions. Outgrowth in vitro, after in vivo osmolarity changes, was higher in the absence of taurine, but did not increase in the presence of the amino acid. The fact that certain outgrowth took place in these conditions support that the impairment was not due to tissue damage. Rather, the effects might be related to the cascade of kinase events described during osmolarity variations. The time course under these conditions produced adjustments in ganglion cells probably related to taurine transporter, and

  10. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    NASA Astrophysics Data System (ADS)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  11. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels.

    PubMed

    Hariadi, Yuda; Marandon, Karl; Tian, Yu; Jacobsen, Sven-Erik; Shabala, Sergey

    2011-01-01

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

  12. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels

    PubMed Central

    Hariadi, Yuda; Marandon, Karl; Tian, Yu; Jacobsen, Sven-Erik; Shabala, Sergey

    2011-01-01

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0–500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na+, K+, and Cl–) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K+ and lower Na+ levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K+ progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K+ in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na+ content, suggesting either a very strict control of xylem Na+ loading or an efficient Na+ removal from leaves. A very strong correlation between NaCl-induced K+ and H+ fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H+-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K+ leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na+ sequestration, control of Na+ and K+ xylem loading, and their transport to the shoot. PMID:20732880

  13. Development of a novel osmotically driven drug delivery system for weakly basic drugs.

    PubMed

    Guthmann, C; Lipp, R; Wagner, T; Kranz, H

    2008-06-01

    The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients

  14. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    PubMed Central

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  15. [Osmotic modification of thermal damage in Escherichia coli bacteria at various pH values of the media].

    PubMed

    Morozov, I I; Petin, V G

    2000-01-01

    A study was made of the influence of media with different osmotic pressure on cell survival and on optic density of supernatants from Escherichia coli B/r and E. coli Bs-1 cell suspensions heated under different pH values of media. Hyperthermia induced cell death accompanied with the loss of optically active (lambda = 260 nm) material. Both cell damage effects were increased in acid and alkaline conditions, compared to neutral condition of heating. Hypertonic media results in a decrease in thermic cell death and loss of cell substances. Under this condition, the protection influence of high osmotic pressure was seen to increase significantly in acid and alkaline conditions of heating, compared to neutral condition. It has been proposed that a higher thermal damage of microorganisms in acid and alkaline beating conditions and protection influence of hypertonic media, especially expressed in acid and alkaline medium, is caused to a great extent by the status of osmotic cell homeostasis.

  16. [EFFECT OF OSMOTIC AND OXIDATIVE STRESS ON STRAINS OF GENOVARIANTS OF VIBRIO CHOLERAE EL TOR BIOVAR].

    PubMed

    Zadnova, S P; Plekhanov, N A; Krepostnova, I M; Erokhin, P S; Smirnova, N I

    2015-01-01

    Study the effect of osmotic and oxidative stress on survivability and changes in phenotypic and genetic properties of strains of genovariants of V. cholerae El Tor biovar. 22 strains of V. cholerae El Tor biovar were used in the study. Phenotypic properties of strains were studied in LB medium with the addition of the appropriate ingredients. Surface structures of cells were studied using scanning probe microscope "Solver P47-PRO". PCR was carried out using specific primers in "Tercic" amplificator. After 60 minutes of incubation in 3 M solution of NaCl and after 6 minutes in 20 mM solution of hydrogen peroxide, the amount of surviving cells of genovariants was, respectively, 3.0 - 25.0 and 4.3 - 7.6 times higher than for typical strains. One of the mechanisms of increased resistance of genovariants to high concentrations of salt was associated with the production of an extra exopolysaccharide layer on the cell surface at earlier periods than in typical strains. Osmotic stress results in a reversible reduction of mobility in strains of genovariants of V. cholerae El Tor biovar. Osmotic and oxidative stress was revealed to result in a loss of a number of mobile genetic elements in strains of genovariants. Genovariants of V. cholerae El Tor biovar, that had caused cholera outbreaks in Russia in 1993 -2001, in contrast to typical strains, isolated in 1970 - 1990, are more resistant to th effect of osmotic and oxidative stress, that, probably, facilitates their higher survivability in both the environment and macroorganism.

  17. An osmotic mechanism for exocytosis from dissociated chromaffin cells.

    PubMed

    Pollard, H B; Pazoles, C J; Creutz, C E; Scott, J H; Zinder, O; Hotchkiss, A

    1984-01-25

    Dissociated chromaffin cells from bovine adrenal medulla were stimulated to secrete epinephrine and dopamine beta-hydroxylase with a variety of secretagogues in a study designed to test the hypothesis that the chemiosmotic lysis reaction of isolated chromaffin granules might in some way be related to the mechanism of release during exocytosis. Increasing the osmotic strength of the incubation medium with either NaCl or sucrose led to suppression of secretion of epinephrine from the cells regardless of whether secretion was induced with veratridine or acetylcholine. Suppression of secretion was approximately exponential with respect to osmotic strength. Epinephrine secretion occurred only if the medium contained a permeant anion such as chloride, and secretion induced by veratridine was suppressed when Na isethionate replaced NaCl in the medium. In an extensive study with different monovalent anions veratridine supported epinephrine secretion according to the following activity series: Br-, I-, NO3- greater than methylsulfate, SCN- greater than Cl greater than acetate much greater than isethionate. A similar series, except for the potency of NO3-, was observed with A23187 as agonist. In general, the anion series for granule lysis was analogous. However, there was a poor quantitative correlation between the anion dependence of chemiosmotic granule lysis and the anion dependence of cell secretion. Anion transport inhibitors such as probenecid and pyridoxal phosphate also inhibited secretion while the stilbene disulfonates were inactive. The ineffectiveness of the stilbene disulfonates further distinguished chemiosmotic granule lysis from cell secretion. Secretion of catecholamines, induced by veratridine or nicotine, a cholinergic agonist, was suppressed when NaCl in the medium was replaced by isosmotic sucrose and unexpectedly low levels of dopamine beta-hydroxylase were observed in some cases. In sum, these properties of secreting chromaffin cells resembled some

  18. Osmotic stress responses of individual white oak (Quercus section, Quercus subgenus) genotypes cultured in vitro.

    PubMed

    Demeter, Zita; Kanalas, Péter; Máthé, Csaba; Cseke, Klára; Szőllősi, Erzsébet; M-Hamvas, Márta; Jámbrik, Katalin; Kiss, Zoltán; Mészáros, Ilona

    2014-01-15

    White oaks (Quercus section, Quercus subgenus) are widely distributed in Europe. Quercus petraea (sessile oak), an economically important species is predicted to be affected by climate change. Q. pubescens (pubescent oak) and Q. virgiliana (Italian pubescent oak) are economically less important, drought tolerant species. Frequent hybridization of white oaks was observed and currently the introgression of Q. pubescens and Q. virgiliana in non-mediterranean regions of Europe has been reported. Our goal was to use tissue cultures established from individual trees of the above taxa and their putative hybrids, all present in the forest stand of Síkfőkút LTER Research Area (NE Hungary) as simple experimental model systems for studying drought/osmotic stress tolerance. Tissue cultures are more suitable models for such studies, than seedlings, because they are genetically identical to the parent plants. Polyethylene glycol (PEG6000) treatments were used for this purpose. The identification of taxa was based on leaf morphological traits and microsatellite analysis and showed that Q. petraea is genetically distinct to all other taxa examined. We established six callus lines of Quercus. As expected, in Q. petraea cultures PEG6000 induced severe loss of fresh weight and the ability to recover after removal of the osmoticum, which was not characteristic for Q. pubescens and Q. virgiliana. Putative hybrids exhibited an intermediate response to osmotic stress. Activity gels showed the increase of single-strand preferring (SSP) nuclease and no significant change of guaiacol-peroxidase activities in drought-sensitive genotypes/cultures and no significant increase of SSP nuclease activities accompanied with increases of guaiacol-peroxidase activities in drought-tolerant ones. This indicates that drought/osmotic stress tolerance is associated to increased capacity of scavenging reactive oxygen species and hence less susceptibility to DNA damage. Our results confirm that tissue

  19. The value of osmotic conductance and free water transport in the prediction of encapsulating peritoneal sclerosis.

    PubMed

    Sampimon, Denise E; Barreto, Deirisa Lopes; Coester, Annemieke M; Struijk, Dirk G; Krediet, Raymond T

    2014-01-01

    Qualitative assessments in long-term patients and in those with encapsulating peritoneal sclerosis (EPS) have shown that impaired osmotic conductance is likely a factor contributing to the presence of ultrafiltration failure in those individuals. In the present study, we investigated the value of osmotic conductance, its components LpA and the reflection coefficient sigma, and free water transport (FWT) in 12 patients with EPS, in 21 patients with long-term ultrafiltration failure, and in 26 time-restricted control subjects with normal ultrafiltration. A decrease in all parameters was observed during a period of 4 years in patients with EPS and ultrafiltration failure, with FWT showing the largest difference between all three groups; however, the receiver operating curves showed that only FWT appeared to be a significant predictor of EPS. Because its measurement is simple, FWT should be included in the regular assessment of peritoneal function.

  20. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials.

    PubMed

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-10-15

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.

  1. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  2. Charge Inversion and Flow Reversal in a Nanochannel Electro-osmotic Flow

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2004-05-01

    Ion distribution and velocity profiles for electro-osmotic flow in a 3.49nm wide slit channel with a surface charge density of -0.285 C/m2 are studied using molecular dynamics simulations. Simulation results indicate that the concentration of the co-ion exceeds that of the counterion in the region 0.53nm away from the channel wall, and the electro-osmotic flow is in the opposite direction to that predicted by the classical continuum theory. The charge inversion is mainly caused by the molecular nature of water and ions. The flow reversal is caused by the immobilization of counterions adsorbed on the channel wall and due to the charge inversion phenomena.

  3. Concomitant Production of Lipids and Carotenoids in Rhodosporidium toruloides under Osmotic Stress Using Response Surface Methodology

    PubMed Central

    Singh, Gunjan; Jawed, Arshad; Paul, Debarati; Bandyopadhyay, Kalyan K.; Kumari, Abha; Haque, Shafiul

    2016-01-01

    As a replacement to existing fossil fuels, biofuels, have proven their worth; however, their widespread use is limited due to inconsistent yields, higher costs and poor productivity. An oleaginous yeast, Rhodosporidium toruloides has been reported to accumulate substantial amounts of lipids (that can be converted to biofuels) and therefore, it was selected for study and optimization. Apart from lipids, R. toruloides is also reported to produce carotene that can be used as a therapeutic agent. In this study, the culture medium was statistically modeled and optimized for concomitant production of lipids and carotenoids and for improving and maximizing the productivity of lipids as well as carotenes. The two metabolites were expressed differentially in the growth cycle of the organism. Culture medium components were simultaneously varied at five different levels using statistical modeling employing response surface methodology (RSM). Osmotic stress was introduced in order to simulate saline conditions and optimize the carotenoid as well as lipid production process, to be used in conditions with high salt contents. We observed a 10% (w/v) increase in carotenoid production in initial experiments under osmotic stress due to high salt concentration, while the increase in lipid synthesis was not pronounced. In this study, we demonstrate 36.2% (w/v) lipid production and 27.2% (w/v) carotenoid production, under osmotic stress with high salt concentrations, for the first time. PMID:27826295

  4. Ionic Origin of Electro-osmotic Flow Hysteresis

    NASA Astrophysics Data System (ADS)

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-02-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

  5. Structure and osmotic pressure of ionic microgel dispersions

    SciTech Connect

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  6. Ionic Origin of Electro-osmotic Flow Hysteresis

    PubMed Central

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-01-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field. PMID:26923197

  7. Osmotic water transport in aquaporins: evidence for a stochastic mechanism

    PubMed Central

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna

    2013-01-01

    We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676

  8. An Aversive Response to Osmotic Upshift in Caenorhabditis elegans.

    PubMed

    Yu, Jingyi; Yang, Wenxing; Liu, He; Hao, Yingsong; Zhang, Yun

    2017-01-01

    Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.

  9. An Aversive Response to Osmotic Upshift in Caenorhabditis elegans

    PubMed Central

    Yu, Jingyi; Liu, He

    2017-01-01

    Abstract Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity. PMID:28451641

  10. Modelling of mass transfer kinetic in osmotic dehydration of kiwifruit

    NASA Astrophysics Data System (ADS)

    Jabrayili, Sharokh; Farzaneh, Vahid; Zare, Zahra; Bakhshabadi, Hamid; Babazadeh, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel S.

    2016-04-01

    Osmotic dehydration characteristics of kiwifruit were predicted by different activation functions of an artificial neural network. Osmotic solution concentration (y1), osmotic solution temperature (y2), and immersion time (y3) were considered as the input parameters and solid gain value (x1) and water loss value (x2) were selected as the outlet parameters of the network. The result showed that logarithm sigmoid activation function has greater performance than tangent hyperbolic activation function for the prediction of osmotic dehydration parameters of kiwifruit. The minimum mean relative error for the solid gain and water loss parameters with one hidden layer and 19 nods were 0.00574 and 0.0062% for logarithm sigmoid activation function, respectively, which introduced logarithm sigmoid function as a more appropriate tool in the prediction of the osmotic dehydration of kiwifruit slices. As a result, it is concluded that this network is capable in the prediction of solid gain and water loss parameters (responses) with the correlation coefficient values of 0.986 and 0.989, respectively.

  11. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    PubMed Central

    2011-01-01

    Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional

  12. Irreversible injury of isolated adult rat myocytes. Osmotic fragility during metabolic inhibition.

    PubMed Central

    Ganote, C. E.; Vander Heide, R. S.

    1988-01-01

    Isolated myocytes can be established as a valid model for studying changes in cytoskeletal proteins during the development of irreversible injury only if isolated cells develop lesions similar to those that occur during irreversible injury to intact hearts, specifically osmotic fragility and subsarcolemmal blebs. In the first experiment, isolated cells were irreversibly injured by metabolic inhibition with 5 mM Iodoacetic acid (IAA) and 6 mM amobarbital (Amy). Osmotic fragility of control and injured cells was determined by comparing the rates of development of trypan blue permeability during 60 minutes of isotonic or hypotonic (50% reduction in osmolality) incubations. Cell morphology was monitored by light and electron microscopy. Control cells remained elongated and excluded trypan blue. Metabolically inhibited cells rapidly contracted to a nearly square shape. The inhibited squared cells initially excluded trypan blue, but during 60 minutes of incubation became permeable to trypan blue. Cells in hypotonic buffer developed blue staining at a more rapid rate than cells in isotonic buffer, indicating increased osmotic fragility. In a second experiment, control and inhibited cells were first incubated for 25 minutes in isotonic buffer and then in either isotonic or hypotonic buffer. In this experiment, inhibited cells also developed more extensive and rapid permeability increases when transferred to the hypotonic buffer than cells maintained in the isotonic buffer. In both experiments, increased permeability of cells to trypan blue was accompanied by formation of subsarcolemmal blebs along the lateral cell border and at the intercalated disks. The results show that metabolically inhibited, isolated myocytes do exhibit morphologic lesions and increased osmotic fragility properties similar to those reported during anoxic or ischemic injury to intact hearts. Therefore, isolated myocytes may be a useful model with which to study cytoskeletal-sarcolemmal membrane

  13. Induced charge electro-osmotic concentration gradient generator

    PubMed Central

    Jain, Mranal; Yeung, Anthony; Nandakumar, K.

    2010-01-01

    Biomolecule gradients play an important role in the understanding of various biological processes. Typically, biological cells are exposed to linear and nonlinear concentration gradients and their response is studied for understanding cell growth, cell migration, and cell differentiation mechanisms. Recent studies have demonstrated the use of microfluidic devices for precise and stable concentration gradient generation. However, most of the reported devices are geometrically complex and lack dynamic controllability. In this work, a novel microfluidic gradient generator is presented which utilizes the induced charge electro-osmosis (ICEO) by introducing conducting obstacle in the microchannel. With the ICEO flow component, significant transverse convection can be generated within the microchannel, which can, in turn, be used to create nonlinear as well as asymmetric gradients. The characteristics of the developed concentration gradient are dependent on the interplay between fixed charge electro-osmotic and ICEO flows. It is shown that the proposed device can switch between linear and nonlinear gradients by just altering the applied electric field. Finally, the formation of user-defined concentration profiles (linear, convex, and concave) is demonstrated by varying the conducting obstacle size. PMID:20644679

  14. Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats.

    PubMed

    Oztürk, Bahar; Ozdemir, Semra

    2015-12-01

    Aluminum (Al) is a nonessential, toxic element to which humans are constantly exposed as a result of an increase in industrialization and improving technology practices. The aim of the study was to investigate the effects of different durations and doses of Al exposure on serum and tissue element levels and erythrocyte osmotic fragility in rats. A total of 40 male Wistar Albino rats were divided into five groups: control, group I (3 weeks, 8 mg/kg), group II (6 weeks, 8 mg/kg), group III (3 weeks, 16 mg/kg), and group IV (6 weeks, 16 mg/kg). Al chloride (AlCl3) was injected intraperitoneally (i.p.) five times a week. At the end of the experimental period, levels of Al, iron (Fe), copper (Cu), and zinc (Zn) in serum, liver, and kidney tissues were measured using inductively coupled plasma optical emission spectrometry. Osmotic fragility was determined using a spectrophotometer. The results of the experiment indicate that Al induced a statistically significant increase in Al and Fe concentrations in liver and serum as well as in Cu in the kidney. The Fe concentration in serum and kidney tissues was significantly lower in all the groups. As a result of our study, it may be concluded that tissue Al accumulation may lead to an increase in osmotic fragility of erythrocytes and abnormal trace element levels. © The Author(s) 2013.

  15. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    PubMed Central

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  16. In vitro-in vivo evaluation of nanosuspension release from subcutaneously implantable osmotic pumps.

    PubMed

    Hill, A; Geissler, S; Meyring, M; Hecht, S; Weigandt, M; Mäder, K

    2013-07-15

    Utilizing poorly soluble drug candidates in pharmacokinetic studies remains challenging in preclinical drug development. We investigated a nanosuspension-based delivery system to achieve constant drug plasma levels by applying the nanoparticles via subcutaneously implanted micro-osmotic pumps. Various nanosuspension formulations were characterized in vitro prior to Alzet® pump release by means of dynamic light scattering (DLS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and rheological measurements. In vitro formulation release was checked by HPLC/UV. The in vivo experiments compared plasma-concentration time profiles of subcutaneously injected nanosuspensions with those of formulations delivered by pumps. Two Poloxamer 338 containing nanosuspensions with different viscosities were found to be stable over observation time, physically resistant against biorelevant media and showed only a low amorphous part after preparation. The more viscous nanosuspension with 31.65 mPas revealed in vitro the expected zero-order release, while the low viscous formulation with 2.18 mPas showed first order release. In in vivo experiments, the higher viscous nanosuspension released from osmotic pumps exhibited elevated plasma levels compared to the lower viscous formulation. Compared to bolus injected nanosuspensions constant plasma levels could be maintained by adapting the viscosity of the nanosuspension. Subcutaneously implanted osmotic pumps prove to be a valuable delivery system for nanosuspensions in pharmacokinetic studies by consideration of the key parameter viscosity in release kinetics.

  17. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    PubMed

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-08-08

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  18. Physcomitrella patens DNA methyltransferase 2 is required for recovery from salt and osmotic stress.

    PubMed

    Arya, Deepshikha; Kapoor, Sanjay; Kapoor, Meenu

    2016-02-01

    DNA methyltransferase 2 (DNMT2) unlike other members of the cytosine DNA methyltransferase gene family has dual substrate specificity and it methylates cytosines in both the DNA and transfer RNA (tRNA). Its role in plants, however, has remained obscure to date. In this study, we demonstrate that DNMT2 from Physcomitrella patens accumulates in a temporal manner under salt and osmotic stress showing maximum accumulation during recovery, i.e. 24 h after plants are transferred to normal growth medium. Therefore, to study its role in stress tolerance, we generated PpDNMT2 targeted knockout plants (ppdnmt2ko). Mutant plants show increased sensitivity to salt and osmotic stress and are unable to recover even after 21 days of growth on optimal growth media. ppdnmt2ko, however, accumulate normal levels of dehydrin-like and small heat shock protein encoding transcripts under stress but show dramatic reduction in levels of tRNA(A) (sp-) (GUC) . The levels of tRNA(A) (sp-) (GUC) , in contrast, increase ~ 25-30-fold in ppdnmt2ko under non-stress conditions and > 1200-fold in wild-type plants under stress. The role of PpDNMT2 in modulating biogenesis/stability of tRNA(A) (sp-) (GUC) under salt and osmotic stress is discussed in the light of these observations.

  19. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NASA Astrophysics Data System (ADS)

    Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.

    2015-05-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.

  20. Detection of osmotic damages in GRP boat hulls

    NASA Astrophysics Data System (ADS)

    Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.

    2013-09-01

    Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.

  1. Arabidopsis Reduces Growth Under Osmotic Stress by Decreasing SPEECHLESS Protein

    PubMed Central

    Kumari, Archana; Jewaria, Pawan K.; Bergmann, Dominique C.; Kakimoto, Tatsuo

    2014-01-01

    Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK–SPEECHLESS core developmental pathway. PMID:25381317

  2. Nanofluidic Osmotic Diodes: Theory and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Picallo, Clara B.; Gravelle, Simon; Joly, Laurent; Charlaix, Elisabeth; Bocquet, Lydéric

    2013-12-01

    Osmosis describes the flow of water across semipermeable membranes powered by the chemical free energy extracted from salinity gradients. While osmosis can be expressed in simple terms via the van ’t Hoff ideal gas formula for the osmotic pressure, it is a complex phenomenon taking its roots in the subtle interactions occurring at the scale of the membrane nanopores. Here we use new opportunities offered by nanofluidic systems to create an osmotic diode exhibiting asymmetric water flow under reversal of osmotic driving. We show that a surface charge asymmetry built on a nanochannel surface leads to nonlinear couplings between water flow and the ion dynamics, which are capable of water flow rectification. This phenomenon opens new opportunities for water purification and complex flow control in nanochannels.

  3. The colloid osmotic pressures of invertebrate body fluids.

    PubMed

    Mangum, C P; Johansen, K

    1975-12-01

    Colloid osmotic pressures of the body fluids of twenty invertebrate species were measured directly. The results, which are generally lower than predicted values for the same species, pertain to several physiological questions: (1) they do not quantitatively explain the frequently observed hyperosmoticity of body fluids in species believed to be osmoconformers, indicating that the condition cannot be merely a consequence of a Gibbs-Donnan equilibrium; (2) the excess of hydrostatic over colloid osmotic pressure is very small. This result supports the hypothesis that the oxygen transport function of bloods with extracellular haemocyanins and haem proteins is limited by their colligative properties; (3) the pressure relationships and the absence of colloid osmotic activity in urine indicates that filtration contributes to urine formation in several species.

  4. Folding propensity of intrinsically disordered proteins by osmotic stress

    SciTech Connect

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; Pino, James C.; Chennubhotla, S. Chakra; Ramanathan, Arvind; O'Neill, Hugh Michael; Berthelier, Valerie; Stanley, Christopher B.

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  5. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  6. Increased erythrocytic osmotic fragility in anemic domestic shorthair and purebred cats

    PubMed Central

    Tritschler, C.; Mizukami, K.; Raj, K.; Giger, U.

    2015-01-01

    Objectives Increased erythrocytic osmotic fragility and splenomegaly were reported in anemic Abyssinian and Somali cats. Here we report about this condition in anemic domestic shorthair cats and two other breeds and describe common features of the clinicopathological profiles, management and outcomes. Animals and Methods Anemic cats, other than Abyssinians and Somalis. The erythrocytic osmotic fragility test was performed, known causes of anemia were excluded, the illness was followed, and medical records were reviewed. Results Twelve neutered cats were first found to be anemic between 0.5-9 years of age. Pallor, lethargy, inappetence, pica, weight loss and splenomegaly were commonly observed. A moderate to severe macrocytic and hypochromic anemia with variable regeneration was noted. Infectious disease screening, direct Coombs’, and pyruvate kinase DNA mutation test results were negative. Freshly drawn blood did not appear hemolyzed but became progressively lyzed during storage at 4°C. The sigmoid osmotic fragility curves were moderately to severely right shifted indicating erythrocytic fragility at 20°C. Cross-correction studies indicated an intrinsic red cell effect rather than plasma effect. Most cats were treated with immunosuppressive doses of prednisolone and doxycycline with variable responses. Five cats with recurrent or persistent anemia responded well to splenectomy. However, two had occasional recurrence of severe anemia: one was found to be Bartonella vinsonii positive during one episode and responded to azithromycin and prednisolone, while the other cat had two episodes of severe anemia of unknown cause. Finally, six cats were euthanized within 1 month and 7 years after initial presentation. Histopathology of 6 spleens revealed mainly congestion and extramedullary hematopoiesis. Conclusions and Relevance Similar to Abyssinian and Somali cats, domestic shorthair and cats of other breeds can also develop severe erythrocytic osmotic fragility with

  7. Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.J.; McNab, W.W.; Wildenschild, D.; Ruiz, R.; Elsholz, A.

    1999-11-22

    The coupled-flow phenomenon, electro-osmosis, whereby water flow results from an applied electrical potential gradient, is being used at Lawrence Livermore National Laboratory to induce water flow through deep (25-40 meters below surface) fine-grained sediments. The scoping work described here lays the groundwork for implementation of this technology to remediate solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) measured in-situ between two 37 m deep wells, 3 m apart of 2.3 x 10{sup -9} m{sup 2}/s-V is in good agreement with the value determined from bench-top studies on the core extracted from one of the wells of 0.94 {+-} 0.29 x 10{sup -9} m{sup 2}/s-V. Hydraulic conductivity (k{sub h}) of the same core is measured to be 2.03 {+-} 0.36 x 10{sup -10} m/s. Thus, a voltage gradient of 1 V/cm produces an effective hydraulic conductivity of {approx}1 x 10{sup -7} m/s; an increase in conductivity of nearly three orders of magnitude.

  8. The renal medullary interstitium: focus on osmotic hypertonicity.

    PubMed

    Sadowski, Janusz; Dobrowolski, Leszek

    2003-03-01

    1. There has been continued interest in the functional role of the renal medullary interstitium and intense research in this area has furnished new information regarding the extent, dynamics and mechanisms determining fluctuations in medullary osmotic hypertonicity. 2. Any change in the tonicity (interstitial solute concentration) indicates an imbalance of the rate of solute delivery to the interstitium (by tubular transport) and solute removal therefrom (by the microcirculation). It is often difficult to establish whether alteration of the delivery or removal triggered the change in medullary tissue tonicity. 3. Newer in vivo studies have confirmed earlier predictions and indirect evidence indicating that the rate of NaCl transport in the ascending limb of the loop of Henle is the major determinant of medullary ionic hypertonicity. 4. The hypothesis of a 'washout' of medullary solutes during increased medullary blood flow (MBF) has been re-evaluated. A novel experimental approach has provided direct evidence of a modest dissipation of medullary solutes with increasing MBF and a modest accumulation of solutes with decreasing MBF. 5. Increasing evidence is reviewed indicating that medullary tonicity is not only a regulated variable, but also that it may itself modulate the activity of multiple local endocrine and paracrine control systems and thereby affect local microcirculation and the function of medullary interstitial and tubular cells.

  9. [PHYSIOLOGICAL APPROACH TO RESTORING OSMOTIC HOMEOSTASIS IN RATS WITH HYPERNATREMIA].

    PubMed

    Golosova, D V; Kutina, A V; Marina, A S; Karavashkina, T A; Natochin, Yu V

    2015-07-01

    The aim of the study was a search of physiological approach to restoring osmotic homeostasis in rats with hypernatremia. Intraperitoneal administration of 1.8 ml/100 g BW 2.5% NaCl solution to Wistar rats induced hyperosmia (306 +/- 1 mOsm/kg H2O) and hypernatremia (150.3 +/- 0.3 mM in 60 min of experiment), increase in urinary sodium excretion (from 8 +/- 1 to 230 +/- 10 micromol/100 g BW for 2 h). Under these conditions enhancement of natriuresis up to 465 +/- 29 micromol/100 g BW and 667 +/- 24 micromol/100 g BW for 2 h was observed after injections of vasopressin analogue, deamino-vasotocin (dAVT, 0.05 microg/100 g BW), or loop diuretic, furosemide (1 mg/100 g BW), respectively. dAVT-induced natriuresis was accompanied by increase in solute-free water reabsorption; serum osmolality (301 +/- 1 mOsm/kg H2O) and sodium concentration (145.8 +/- 0.5 mM) were close to normal values by 60 min of experiment. Furosemide caused relatively greater excretion of water, than sodium; hypernatremia (150.2 +/- 0.4 mM) and hyperosmia (311 +/- 1 mOsm/kg H2O) persisted during 60 min of experiment. Thus, in rats with hypernatremia dAVT due to decrease in renal sodium reabsorption and increase in solute-free water reabsorption promotes recovery of serum osmolality and sodium concentration.

  10. Osmotic, controlled-release methylphenidate for the treatment of ADHD.

    PubMed

    Coghill, David; Seth, Sarah

    2006-10-01

    Methylphenidate (MPH) is the most commonly used and best-studied stimulant medication for attention-deficit hyperactivity disorder. However, its short duration of action usually results in a requirement to administer multiple daily doses in order to achieve optimal clinical benefit. Although a wax-matrix-based SR formulation of MPH has been available since the 1990s, it was not well accepted into clinical practice. The variable absorption profile and lack of an immediate-release component results in a slower onset of action compared with immediate-release MPH. Hence, there was a need to develop alternative longer-lasting preparations of MPH that were as efficacious as IR MPH, but which also addressed the problems inherent in multiple daily dosing. An osmotic, controlled-release (OROS) formulation of MPH HCl has been developed over the past 10 years for once-daily administration. OROS MPH has been widely accepted by clinicians and is now the most widely prescribed MPH product in North America. Clinical trials have shown OROS MPH to have a continued action over a 12-h period, to be superior to placebo and to be as effective as immediate-release MPH dosed three times daily, in reducing symptoms of attention-deficit hyperactivity disorder, with similar incidence of side effects. There have been a smaller number of trials comparing OROS MPH with non-stimulant treatments, such as atomoxetine.

  11. Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors.

    PubMed

    Hou, Dianxun; Lu, Lu; Sun, Dongya; Ge, Zheng; Huang, Xia; Cath, Tzahi Y; Ren, Zhiyong Jason

    2017-05-01

    This study demonstrates that by incorporating a microbial electrochemical unit into an anaerobic osmotic membrane bioreactor (AnOMBR), the system addressed several challenges faced by traditional anaerobic membrane bioreactors and recovered biogas, nitrogen, and phosphorus while maintaining high effluent quality with low dissolved methane. The microbial recovery cell (MRC)-AnOMBR system showed excellent organic (>93%) and phosphorus removal (>99%) and maintained effluent COD below 20 mg/L. Furthermore, the reactor effectively recovered up to 65% PO4(3-) and 45% NH4(+) from the influent, which can be further improved if membranes with higher selectivity are used. Nutrients removal from bulk solution mitigated NH4(+) penetration to the draw solution and reduced scaling potential caused by PO4(3-). The maximum methane yield was 0.19 L CH4/g COD, and low methane (<2.5 mL CH4/L) was detected in the effluent. Further improvement can be made by increasing charge efficiency for better nutrient and energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel.

    PubMed

    Gurnev, Philip A; Harries, Daniel; Parsegian, V Adrian; Bezrukov, Sergey M

    2010-11-17

    We study the effect of osmotic stress, exerted by salts, on carbohydrate binding to the sugar-specific bacterial channel maltoporin. When the channel is reconstituted into planar lipid bilayers, single events of its occlusion by sugar are seen as transient interruptions in the flow of small ions. We find that, for most salts, changes in the free energy of maltoporin-sugar binding vary linearly with solution osmotic pressure. Such a change in binding with solution osmolarity indicates that for each salt a constant number of salt-excluding water molecules is released upon sugar-maltoporin association at all salt concentrations. We find that larger numbers of water molecules are released upon binding of the cyclic carbohydrate β-cyclodextrin (CD) than upon binding of the corresponding linear homologue maltoheptaose (m7). Remarkably, the extent to which salts affect the binding constants and rates depends sensitively on the type of salt; dehydration in solutions of different anions corresponds to the Hofmeister series. In sodium sulfate solutions, CD and m7 respectively release about 120 and 35 salt-excluding water molecules; in sodium chloride solutions, 35 and 15 waters. No water release is observed with sodium bromide. Finally, by adding adamantane, known to form an inclusion complex with CD, we can infer that CD not only dehydrates but also undergoes a conformational change upon binding to the channel. As a practical outcome, our results also demonstrate how osmotic stress can improve single-molecule detection of different solutes using protein-based nanopores.

  13. Controlled delivery of nanosuspensions from osmotic pumps: zero order and non-zero order kinetics.

    PubMed

    Hill, Alexandra; Geissler, Simon; Weigandt, Markus; Mäder, Karsten

    2012-03-28

    Nanosuspensions have gained great interest in the last decade as a formulation tool for poorly soluble drugs. By decreasing particle sizes nanosuspensions enhance dissolution rate and bioavailability of the active pharmaceutical ingredient. Micro-osmotic pumps are widely used in experimental pharmacology and offer a tool of interest for the sustained release of nanosuspensions via the intraperitoneal or subcutaneous application site. The purpose of the present study was to investigate in-vitro the influence of (1) nanosuspension viscosity, (2) pump orifice position and (3) formulation osmolality on the delivery behavior of formulations in implantable osmotic systems. Therefore fenofibrate nanosuspension, methylene blue and fluorescein sodium solutions were chosen as model formulations. They were released in water or isotonic saline solution and drug/dye concentrations were determined by HPLC/UV. Release of nanosuspension particles in low viscous formulations resulted in a burst whereas increasing the viscosity led to the expected zero order delivery. Pumps with upward-positioned orifices released the nanosuspension in a zero order manner. Within the release of dyes, constant delivery could be ensured up to an osmolality of 486 mO sm/kg; above this value premature release of formulation was observed. The results indicate the requirement of in-vitro experiments prior to in-vivo animal testing for determining the release profiles of osmotic pumps.

  14. Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidylcholine liposomes.

    PubMed

    Blok, M C; van Deenen, L L; De Gier, J

    1976-04-16

    Aspects of osmotic properties of liposomes, prepared from synthetic lecithin, above, at and below the gel to liquid crystalline phase transition temperature are described. The experiments show that liposomal membranes with their lipids in the gel state are still permeable to water. The rate of water permeation changes drastically on passing the transition temperature. The water permeation has activation energies of 9.5 +/- 1.28 and 26.4 +/- 0.9 kcal/mol above and below the transition temperature, respectively, indicating that the diffusion processes take place by different mechanisms. With respect to the barrier properties of the liposomes in the vicinity of the transition temperature, the following conclusions can be made. (1) Studying the osmotic shrinkage of liposomes at a fixed temperature near the transition point, the experiments indicate that dimyristoyl phosphatidylcholine membranes are highly permeable to glucose under these conditions, where liquid and solid domains co-exist. Under the same conditions the osmotic experiments did not indicate a strong increase in glucose permeability of dipalmitoyl phosphatidylcholine membranes as compared to the situation above and below the transition temperature. (2) On the other hand, perturbations of the phase equilibrium by temperature varations resulted in a marked increase of the glucose permeation through dipalmitoyl phosphatidylcholine bilayers. Once a new phase equilibrium of liquid and solid regions is established the permeation rate of glucose is much less.

  15. Both water intoxication and osmotic BBB disruption increase brain water content in rats.

    PubMed

    Kozler, P; Riljak, V; Pokorný, J

    2013-01-01

    Our previous experiments revealed that water intoxication and osmotic BBB disruption in the rat allow penetration of high-molecular substances into the brain and that resulting changes in the internal environment of the CNS lead to pathological development, such as the loss of integrity of myelin. The aim of the present study was to determine whether the previously described phenomena are associated with increased water content in the brain. To answer the question following methods were used: a) water intoxication: intraperitoneal administration of distilled water, b) osmotic BBB disruption: application of mannitol (20 %) selectively into the internal carotid artery, c) brain wet weight was measured after decapitation, and subsequently (after six days in thermostat set at 86 °C) the dry weight were estimated d) in animals with 20 % and 30 % hyperhydration the degree of myelin deterioration was estimated e) animal locomotor activity was tested by continuous behavior tracking and analysis. Brain water content after water intoxication and following the administration of mannitol was higher than in the control group. Different degrees of hyperhydration led to different levels of brain water content and to different degrees of myelin impairment. Hyperhydration corresponding to 20 % of the body weight brought about lower locomotor activity. Increased water content in the brain after the BBB osmotic disruption is surprising because this method is frequently used in the clinical practice.

  16. NPY up-regulation in the tadpole brain of Euphlyctis cyanophlyctis during osmotic stress.

    PubMed

    Heigrujam, Elizabeth; Ali, Ishfaq; Bhargava, Shobha

    2017-09-15

    Most of the amphibians breed in temporary ponds vulnerable to occasional desiccation, thus, leaving their larvae exposed to stressful fluctuations in various environmental parameters including salinity. These animals possess a well suited central adaptive mechanism to adapt to these alterations. Neuropeptide Y (NPY), a 36 amino acid neurotransmitter, has been reported to antagonize various neuropsychological consequences of stress within the mammalian brain. Osmotic regulation of NPY in the hypothalamo-neurohypophysial pathway of mammalian brain is also known. Although the molecule possesses an extensive distribution in the brain of amphibians, its functional association is not well understood. We have investigated the endogenous response of NPY-ergic system to osmotically stressful conditions in the brain of Indian skipper frog-Euphlyctis cyanophlyctis tadpoles. Using Immunohistochemistry, we observed an up-regulation of NPY immunoreactivity (NPY-ir) in the brain of tadpoles exposed to stressful salt concentrations. A significant increase of NPY-ir occurred in the pallium and septum regions of telencephalon; preoptic area, epithalamic, thalamic and hypothalamic parts of diencephalon. Most of the regions are implicated in the modulation of stress and anxiety related brain functions and have also been shown to respond to the salinity stress in mammals. In addition, NPY producing neurons in pre-optic and hypothalamic parts show a close co-existence with the vasopressin-ergic neurons. Thus, our study suggests a possible role of NPY in stabilizing the neuro-endocrinological consequences of osmotic stress in an amphibian brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    PubMed

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  18. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti

    SciTech Connect

    Smith, L.T.; Pocard, J.A.; Bernard, T.; Le Rudulier, D.

    1988-07-01

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, the authors used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, /sup 14/C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.

  19. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti.

    PubMed Central

    Smith, L T; Pocard, J A; Bernard, T; Le Rudulier, D

    1988-01-01

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, we used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared. PMID:3290197

  20. Monte Carlo simulation for the optical transmittance in biological tissues during the action of osmotic agents

    NASA Astrophysics Data System (ADS)

    Oliveira, L.; Lage, Armindo

    2005-06-01

    Computational methods have been used with great application to biomedical optics. The events created by the interaction of radiation with biological materials can easily be translated to computer languages with the objective of producing simulation techniques to be used prior to physical intervention. The addition of biocompatible and hyper osmotic agents to several types of biological tissues has proven the enhancement of transparency to radiation flux by reduction of material's optical properties. The evolutionary behavior of the agent's action in the tissue samples before saturation has been observed by numerous researchers but has never been described mathematically. In the present work we will describe the application of Monte Carlo simulation to estimate the evolutionary states of optical transparency of biological tissues when immersed in an osmotic solution. We begin our study with typical values for the optical properties of rabbit muscle and proceed by reducing the absorption and scattering coefficients independently and simultaneously. The results show the number of transmitted, absorbed, scattered and reflected photons in different stages of the action of a generic osmotic agent over a small and well defined tissue sample.

  1. Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel

    NASA Astrophysics Data System (ADS)

    Gurnev, Philip A.; Harries, Daniel; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2010-11-01

    We study the effect of osmotic stress, exerted by salts, on carbohydrate binding to the sugar-specific bacterial channel maltoporin. When the channel is reconstituted into planar lipid bilayers, single events of its occlusion by sugar are seen as transient interruptions in the flow of small ions. We find that, for most salts, changes in the free energy of maltoporin-sugar binding vary linearly with solution osmotic pressure. Such a change in binding with solution osmolarity indicates that for each salt a constant number of salt-excluding water molecules is released upon sugar-maltoporin association at all salt concentrations. We find that larger numbers of water molecules are released upon binding of the cyclic carbohydrate β-cyclodextrin (CD) than upon binding of the corresponding linear homologue maltoheptaose (m7). Remarkably, the extent to which salts affect the binding constants and rates depends sensitively on the type of salt; dehydration in solutions of different anions corresponds to the Hofmeister series. In sodium sulfate solutions, CD and m7 respectively release about 120 and 35 salt-excluding water molecules; in sodium chloride solutions, 35 and 15 waters. No water release is observed with sodium bromide. Finally, by adding adamantane, known to form an inclusion complex with CD, we can infer that CD not only dehydrates but also undergoes a conformational change upon binding to the channel. As a practical outcome, our results also demonstrate how osmotic stress can improve single-molecule detection of different solutes using protein-based nanopores.

  2. NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar).

    PubMed

    Lorgen, Marlene; Jorgensen, Even H; Jordan, William C; Martin, Samuel A M; Hazlerigg, David G

    2017-02-01

    The anadromous Atlantic salmon utilizes both fresh and salt water (FW and SW) habitats during its life cycle. The parr-smolt transformation (PST) is an important developmental transition from a FW adapted juvenile parr to a SW adapted smolt. Physiological changes in osmoregulatory tissues, particularly the gill, are key in maintaining effective ion regulation during PST. Changes are initiated prior to SW exposure (preparative phase), and are completed when smolts enter the sea (activational phase) where osmotic stress may directly stimulate changes in gene expression. In this paper we identify 4 nuclear factor of activated T cells (NFAT5, an osmotic stress transcription factor) paralogues in Atlantic salmon, which showed strong homology in characterized functional domains with those identified in other vertebrates. Two of the identified paralogues (NFAT5b1 and NFAT5b2) showed increased expression following transfer from FW to SW. This effect was largest in parr that were maintained under short day photoperiod, and showed the highest increases in chloride ion levels in response to SW exposure. The results of this study suggest that NFAT5 is involved in the osmotic stress response of Atlantic salmon. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Concentration of Tea Extracts by Osmotic Evaporation: Optimisation of Process Parameters and Effect on Antioxidant Activity

    PubMed Central

    Marques, Marisa P.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    In this work, the concentration process of three different tea extracts (medicinal Rosil No. 6, Black, and Forest Fruit teas) using the osmotic evaporation (OE) process, was studied. The effect of the OE process on the content of phenolic compounds and antioxidant activity was evaluated. The concentration process was carried out in a hollow-fibre membrane contactor with an effective surface area of 0.54 m2. The tea extract was circulated through the shell side of the contactor, while a concentrated osmotic solution (CaCl2 5 M) was circulated inside the fibres. The flux, the driving force, and the mass transfer coefficient were evaluated. A decrease of the water flux over time was observed and was attributed only to the decrease of the driving force, caused by the dilution of the osmotic solution. Using a surface area/feed volume ratio of 774 m2·m−3, it is possible to reach a tea concentration of 40% (w/w) in 5 h, with a constant water flux and without losing the phenolic content and antioxidant potential in most teas. PMID:28036043

  4. Osmotic Stress Regulates the Strength and Kinetics of Sugar Binding to Maltoporin Channel

    PubMed Central

    Gurnev, Philip A; Harries, Daniel; Parsegian, V Adrian; Bezrukov, Sergey M

    2011-01-01

    We study the effect of osmotic stress, exerted by salts, on carbohydrate binding to the sugar-specific bacterial channel maltoporin. When the channel is reconstituted into planar lipid bilayers, single events of its occlusion by sugar are seen as transient interruptions in the flow of small ions. We find that, for most salts, changes in the free energy of maltoporin-sugar binding vary linearly with solution osmotic pressure. Such a change in binding with solution osmolarity indicates that for each salt a constant number of salt-excluding water molecules is released upon sugar-maltoporin association at all salt concentrations. We find that larger numbers of water molecules are released upon binding of the cyclic carbohydrate β-cyclodextrin (CD) than upon binding of the corresponding linear homologue maltoheptaose (m7). Remarkably, the extent to which salts affect the binding constant depends sensitively on the type of salt; dehydration in solutions of different anions corresponds to the Hofmeister series. In sodium sulfate solutions, CD and m7 respectively release about 120 and 35 water molecules; in sodium chloride solutions, 35 and 15 waters. No water release is observed with sodium bromide. Finally, by adding adamantane, known to form an inclusion complex with CD, we can infer that CD not only dehydrates but also undergoes a conformational change upon binding to the channel. Our results demonstrate how osmotic stress can improve single-molecule detection of different solutes using protein-based nanopores. PMID:21339598

  5. Osmotic swelling characteristics of glial cells in the murine hippocampus, cerebellum, and retina in situ.

    PubMed

    Hirrlinger, Petra G; Wurm, Antje; Hirrlinger, Johannes; Bringmann, Andreas; Reichenbach, Andreas

    2008-05-01

    Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling-inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.

  6. Antioxidant status, erythrocyte membrane lipid peroxidation and osmotic fragility in malignant lymphoma patients.

    PubMed

    Abou-Seif, M A; Rabia, A; Nasr, M

    2000-08-01

    We studied erythrocyte and leukocyte superoxide dismutase and catalase activities, erythrocyte malondialdehyde (MDA) and osmotic fragility and plasma L-ascorbic acid and L-dehydroascorbic acid levels in adult patients with acute lymphoblastic leukemia (ALL), Hodgkin's disease (HD) and non-Hodgkin's lymphoma (NHL) before and after treatment. SOD activity was elevated in leukocytes of ALL and HD patients before treatment, and borderlike-significantly elevated in leukocytes of the same patients after treatment in comparison to the control subjects. SOD activity was not changed in NHL patients before or after chemotherapy. Erythrocyte superoxide dismutase and catalase activities were elevated in the three groups of lymphomas before and after treatment. MDA level and osmotic fragility of red blood cells of patients with lymphomas were increased before and after treatment in comparison to the control group. Plasma L-ascorbic acid concentrations were decreased, whereas L-dehydroascorbic acid concentrations were increased in ALL, HD and NHL patients before and after treatment. There were also significant differences in the activities of the antioxidant enzymes, concentrations of antioxidants, MDA and osmotic fragility in the most of the malignant lymphoma patients. The present data suggest that hematological complications and autoimmune hemolytic anemia might be attributed to the oxidative stress produced by malignant lymphomas.

  7. Trehalose enhances osmotic tolerance and suppresses lysophosphatidylcholine-induced acrosome reaction in ram spermatozoon.

    PubMed

    Ahmad, E; Naseer, Z; Aksoy, M; Küçük, N; Uçan, U; Serin, I; Ceylan, A

    2015-09-01

    This study was aimed to investigate the influence of trehalose on osmotic tolerance and the ability of ram spermatozoon to undergo acrosome reaction induced by lysophosphatidylcholine (LPC). In experiment 1, the diluted ejaculates were exposed to anisosmotic fructose solutions (70, 500, 750 and 1000 mOsm l(-1) ) with or without 50 mm trehalose. The presence of trehalose in hyperosmotic conditions enhanced (P < 0.05) the percentage of live, live-intact and intact spermatozoa. Similarly, trehalose enhanced (P < 0.05) the live and live-intact spermatozoa during hypo-osmotic conditions. In experiment 2, the centrifuged ejaculates were diluted with TCG only or TCG containing either 50 or 100 mm trehalose. The acrosome reaction was induced by LPC. The percentage of acrosome-reacted spermatozoon was less (P < 0.05) in trehalose-supplemented groups compared to control. In experiment 3, the ejaculates were cryopreserved in an extender containing 0 mm (control), 50 mm or 100 mm trehalose. Supplementation of extender with trehalose, either 50 mm or 100 mm, enhanced the cryosurvival rate (P < 0.05) compared to the control. In conclusion, the presence of trehalose in anisosmotic conditions enhances the osmotic tolerance, cryosurvival rate of ram spermatozoon and suppresses their ability to undergo LPC and cryo-induced acrosome reaction.

  8. Design and Development of Clopidogrel Bisulfate Gastroretentive Osmotic Formulation Using Quality by Design Tools.

    PubMed

    Desai, Nilesh; Purohit, Ravindra

    2017-02-28

    Clopidogrel bisulfate (CBS) is antiplatelet drug and it is becoming a drug of choice in the treatment and management of prevention of heart attacks and strokes. CBS is stable and soluble in acidic pH; therefore, retention in stomach for prolonged period appears to be beneficial for controlling the bioavailability. The gastroretentive osmotic system (GROS) facilitates prolonged retention of drug in stomach and provides zero-order drug release. A complex formulation like GROS poses many challenges, and QbD tools can help in designing robust formulation which takes all aspects of product and process development in order to deliver a robust product. The GROS was formulated in three steps: core tablet, osmotic tablet, and gastroretentive osmotic tablet. The design of experiment was used for screening and optimization of formulation and process-related parameters. The dissolution study was carried out to analyze the release pattern of tablet. The optimized batch O-4 showed cumulative drug release of 19.43, 30.49, 64.41, and 85.11% at 2, 4, 8, and 12 h which is in the range of QTPP predictions. The novel technique of GROS was implemented successfully which demonstrates robust design giving consistent and desired results.

  9. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation.

    PubMed

    Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2017-07-10

    The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.

  10. Influence of power ultrasound on the main quality properties and cell viability of osmotic dehydrated cranberries.

    PubMed

    Nowacka, Malgorzata; Fijalkowska, Aleksandra; Wiktor, Artur; Dadan, Magdalena; Tylewicz, Urszula; Dalla Rosa, Marco; Witrowa-Rajchert, Dorota

    2017-07-21

    The aim of the study was to investigate the effect of ultrasound treatment in two osmotic solutions, carried out at different time, on some physical properties, antioxidant activity and cell survival of cranberries. Ultrasound treatment was conducted at 21kHz for 30 and 60min in liquid medium: 61.5% sucrose solution and 30% sucrose solution with 0.1% steviol glycosides addition. Some samples before the ultrasound treatment were subjected to cutting or blanching. The results showed that dry matter content and concentration of the dissolved substances increased during ultrasound treatment in osmotic solution, however higher value was observed for treatment in 61.5% sucrose solution and for longer time. Water activity and volume of cranberries did not change after the ultrasonic treatment. Combined treatment led to colour and antioxidant activity alterations as well. A cell viability of whole and cut samples decreased after 60min of osmotic treatment and completely lost in the blanched samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress.

    PubMed

    Sunny-Roberts, E O; Knorr, D

    2008-02-01

    Environmental osmotic changes are one of the stresses live probiotics may encounter either in their natural habitats or as a result of usage in food formulations and processing. Response to osmotic stress, induced by sucrose, of the probiotic strain Lactobacillus rhamnosus VTT E-97800 (E800) was investigated. The fluorescence-based approach used, by combined staining with caboxyfluorescein (cFDA) and propidium iodide (PI) could give insights on the osmotic-induced changes of microbial esterase activity and membrane integrity; also the extrusion of intracellular accumulated carboxyfluorescein (cF) upon energizing with glucose. Comparison of the flowcytometric viability assessment with the conventional culture techniques revealed that sucrose-stressed cells had a slight loss of culturability (logN/N(0) approximately -0.3) at 1.2 and 1.5M sucrose concentration though they could perform an enzymatic conversion of cFDA into cF. The presence of such metabolically active bacteria in food might be critical as they may excrete toxic or food spoilage metabolites. Moreover, the perturbation of cF extrusion activities became a limiting factor for reproductive capacities. There was no change in the cell morphology. These results proved the ability of the strain of study to tolerate sucrose, even at extreme concentrations and these must be taken into consideration for its usage in the formulation/processing of sugar-based foods, e.g. jams, candies, etc.

  12. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.

    PubMed

    Tschaplinski, Timothy J.; Gebre, G. Michael; Shirshac, Terri L.

    1998-05-01

    Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy

  13. Randomized, 6-Week, Placebo-Controlled Study of Treatment for Adult Attention-Deficit/Hyperactivity Disorder: Individualized Dosing of Osmotic-Release Oral System (OROS) Methylphenidate With a Goal of Symptom Remission.

    PubMed

    Goodman, David W; Starr, H Lynn; Ma, Yi-Wen; Rostain, Anthony L; Ascher, Steve; Armstrong, Robert B

    2017-01-01

    To evaluate the efficacy and safety of individualized dosing within the approved dose range for osmotic-release oral system (OROS) methylphenidate hydrochloride in adults with attention-deficit/hyperactivity disorder (ADHD). A double-blind, 6-week trial was conducted between July 2009 and February 2010 at 35 US sites. Adults with ADHD (DSM-IV diagnostic criteria) and a screening ADHD Investigator Symptom Rating Scale (AISRS) score > 24 were randomly assigned to OROS methylphenidate 18 mg or matching placebo. Treatment dose could be increased at 18 mg increments, up to 72 mg/d, until an optimal dose was achieved. AISRS score changes from baseline to end point (primary outcome) were analyzed using analysis of covariance. At baseline, the intent-to-treat population of 169 OROS methylphenidate and 172 placebo subjects (mean age = 35.8 years) had mean (standard deviation [SD]) AISRS scores of 37.8 (6.94) and 37.0 (7.51), respectively. OROS methylphenidate-treated subjects exhibited a significantly greater mean (SD) AISRS score improvement than placebo subjects (-17.1 [12.44] vs -11.7 [13.30]; P < .001). In general, OROS methylphenidate-treated subjects experienced greater improvements than placebo subjects in secondary measures of symptom frequency, cognitive function, work productivity, and quality-of-life. Little effect of OROS methylphenidate was observed in exploratory sleep assessments. The adverse event pattern was similar to previous reports of stimulants in adults with ADHD. OROS methylphenidate treatment with individualized doses titrated to achieve symptom remission demonstrated greater ADHD symptom reduction than placebo treatment. These data support the overall efficacy of OROS methylphenidate treatment in the management of adults with ADHD and provide new possibilities for additional intervention. ClinicalTrials.gov identifier: NCT00937040.

  14. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  15. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    PubMed

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log (P < 0.05). Increasing concentrations of osmotic compounds improved the effect, but there was a trade-off with increasing solution viscosity, whereby low-molecular-mass compounds (sucrose, 400-Da PEG) worked better than higher-mass compounds (maltodextrin, 3,350-Da PEG). Ten other A. baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity (r(2) > 0.82; P < 0.002), and the relationship was generalizable for biofilms formed by A. baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics.IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against

  16. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  17. Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7m-beta-CD.

    PubMed

    Okimoto, K; Ohike, A; Ibuki, R; Aoki, O; Ohnishi, N; Irie, T; Uekama, K; Rajewski, R A; Stella, V J

    1999-04-01

    The purpose of this study was to develop a controlled-porosity osmotic pump tablet (OPT) which exhibits pH-independent release profiles for a basic drug using a sulfobutyl ether-beta-cyclodextrin, (SBE)7m-beta-CD, which acts as both a solubilizer and as an osmotic agent. Chlorpromazine free base (CLP) was chosen as a model drug for this study. The release of CLP from osmotic pump tablets was studied in vitro. In vivo absorption of CLP from the OPT was evaluated in male beagle dogs. The CLP release profile from an OPT prepared from a core tablet composed of a 1:10 molar ratio of CLP to (SBE)7m-beta-CD was pH-independent, and was controlled by modulating the membrane thickness of the OPT. Another cyclodextrin, hydroxypropyl-beta-cyclodextrin (HP-beta-CD), and a sugar mixture of lactose and fructose resulted in pH-dependent release at the same molar ratio. An in vivo absorption study in dogs with an OPT containing (SBE)7m-beta-CD correlated very well with the in vitro release profiles using the Japanese Pharmacopoeia dissolution method. In addition to serving as a solubilizer and osmotic agent, (SBE)7m-beta-CD can also serve as the controlling agent for pH independent release of CLP from OPTs. This system successfully modified the in vivo input rate of CLP without compromising oral bioavailability.

  18. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; Nadia Arias; Frederick C. Meinzer; Guillermo. Goldstein

    2012-01-01

    Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential, osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance across species throughout the year, and assessed tissue damage by subzero...

  19. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium

    PubMed Central

    Cheng, Xi; Pinsky, Peter M.

    2015-01-01

    The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK) equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea. PMID:26719894

  20. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.

    PubMed

    Tan, Youhua; Sun, Dong; Wang, Jinzhi; Huang, Wenhao

    2010-07-01

    The physiological functions of human red blood cells (RBCs) play a crucial role to human health and are greatly influenced by their mechanical properties. Any alteration of the cell mechanics may cause human diseases. The osmotic condition is an important factor to the physiological environment, but its effect on RBCs has been little studied. To investigate this effect, robotic manipulation technology with optical tweezers is utilized in this paper to characterize the mechanical properties of RBCs in different osmotic conditions. The effectiveness of this technology is demonstrated first in the manipulation of microbeads. Then the optical tweezers are used to stretch RBCs to acquire the force-deformation relationships. To extract cell properties from the experimental data, a mechanical model is developed for RBCs in hypotonic conditions by extending our previous work , and the finite element model is utilized for RBCs in isotonic and hypertonic conditions. Through comparing the modeling results to the experimental data, the shear moduli of RBCs in different osmotic solutions are characterized, which shows that the cell stiffness increases with elevated osmolality. Furthermore, the property variation and potential biomedical significance of this study are discussed. In conclusion, this study indicates that the osmotic stress has a significant effect on the cell properties of human RBCs, which may provide insight into the pathology analysis and therapy of some human diseases.

  1. Osmotic adjustment, symplast volume, and nonstomatally mediated water stress inhibition of photosynthesis in wheat.

    PubMed

    Gupta, A S; Berkowitz, G A

    1987-12-01

    At low water potential (psi(w)), dehydration reduces the symplast volume of leaf tissue. The effect of this reduction on photosynthetic capacity was investigated. The influence of osmotic adjustment on this relationship was also examined. To examine these relationships, comparative studies were undertaken on two wheat cultivars, one that osmotically adjusts in response to water deficits (;Condor'), and one that lacks this capacity (;Capelle Desprez'). During a 9-day stress cycle, when water was withheld from plants grown in a growth chamber, the relative water content of leaves declined by 30% in both cultivars. Leaf osmotic potential (psi(s)) declined to a greater degree in Condor plants. Measuring psi(s) at full turgor indicated that osmotic adjustment occurred in stressed Condor, but not in Capelle plants. Two methods were used to examine the degree of symplast (i.e. protoplast) volume reduction in tissue rapidly equilibrated to increasingly low psi(w). Both techniques gave similar results. With well-watered plants, symplast volume reduction from the maximum (found at high psi(w) for each cultivar) was the same for Condor and Capelle. After a stress cycle, volume was maintained to a greater degree at low psi(w) in Condor leaf tissue than in Capelle. Nonstomatally controlled photosynthesis was inhibited to the same degree at low psi(w) in leaf tissue prepared from well-watered Condor and Capelle plants. However, photosynthetic capacity was maintained to a greater degree at low psi(w) in tissue prepared from stressed Condor plants than in tissue from stressed Capelle plants. Net CO(2) uptake in attached leaves was monitored using an infrared gas analyzer. These studies indicated that in water stressed plants, photosynthesis was 106.5% higher in Condor than Capelle at ambient [CO(2)] and 21.8% higher at elevated external [CO(2)]. The results presented in this report were interpreted as consistent with the hypothesis that there is a causal association between

  2. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  3. Osmotic generation of 'anomalous' fluid pressures in geological environments

    USGS Publications Warehouse

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  4. Biochemical basis of osmotic potential for several hardwood species

    SciTech Connect

    Shirshac, T.L.; Gebre, G.M.; Tschaplinski, T.J.

    1995-06-01

    Metabolite concentrations in leaves of several tree species in an upland oak forest were characterized to determine the biochemical basis of species differences in osmotic potential at saturation. Hydrologic treatments at the site included ambient, wet (+33% throughfall precipitation), and dry (-33% throughfall precipitation). All samples collected from the ambient plot in May have been analyzed for free primary amino acids, inorganic ions, soluble carbohydrates, phenolic compounds, and organic acids. In all species, free primary amino acids accounted for less than 1% of the total solute pool. Dogwood had the lowest total solute concentration (687 {mu}mol/g dw), corresponding to the highest osmotic potential at saturation (-1.05 MPa). Understory red maple, sugar maple, scarlet oak, white oak, and overstory red maple had increasing total solute concentrations, with chestnut oak having the highest solute concentration (1126 {mu}mol/g dw) and the lowest osmotic potential (-1.76 MPa). Osmotic adjustment to water stress was evident in chestnut oak in the dry treatment throughout the growing season--up to a 0.21 MPa difference in the dry plot relative to the ambient plot in September. The data on carbohydrate concentrations, however, only partially account for the adjustments. Given that inorganic ions constituted almost 50% of the total solute pool in chestnut oak in May, any large solute adjustment would likely result from changes in inorganic ions.

  5. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    PubMed

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  6. Electro-osmotically driven liquid delivery method and apparatus

    DOEpatents

    Rakestraw, David J.; Anex, Deon S.; Yan, Chao; Dadoo, Rajeev; Zare, Richard N.

    1999-01-01

    Method and apparatus for controlling precisely the composition and delivery of liquid at sub-.mu.L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-.mu.L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column.

  7. Density-Gradient Determination of Osmotic Potential in Plant Cells

    ERIC Educational Resources Information Center

    Nabors, Murray W.

    1973-01-01

    Describes a method for measuring osmotic potential which is suitable for high school and college biology classes. This method introduces students to the hard-to-visualize technique of using density gradients to separate cells or cell constituents of differing densities. (JR)

  8. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  9. Wet-spinning of osmotically stressed silk fibroin.

    PubMed

    Sohn, Sungkyun; Gido, Samuel P

    2009-08-10

    Based on the phase diagram constructed for water-silk fibroin-LiBr using the osmotic stress method, wet-spinning of osmotically stressed, regenerated Bombyx mori silk fibroin was performed, without the necessity of using expensive or toxic organic solvents. The osmotic stress was applied to prestructure the regenerated silk fibroin molecule from its original random coil state to a more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Various starting points for spinning were selected from the phase diagram to evaluate the spinning performance and also physical properties of fibers produced. Monofilament fiber with a diameter of 20 microm was produced. It was found that the fibers whose starting point in the phase diagram were around the phase boundary between silk I and silk II, at very low LiBr concentrations, showed the best spinning process stability and physical properties. This underpins the prediction that the enhanced control over structure and phase behavior using the osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers.

  10. Density-Gradient Determination of Osmotic Potential in Plant Cells

    ERIC Educational Resources Information Center

    Nabors, Murray W.

    1973-01-01

    Describes a method for measuring osmotic potential which is suitable for high school and college biology classes. This method introduces students to the hard-to-visualize technique of using density gradients to separate cells or cell constituents of differing densities. (JR)

  11. Electro-osmotically driven liquid delivery method and apparatus

    DOEpatents

    Rakestraw, D.J.; Anex, D.S.; Yan, C.; Dadoo, R.; Zare, R.N.

    1999-08-24

    Method and apparatus are disclosed for controlling precisely the composition and delivery of liquid at sub-{micro}L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-{micro}L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column. 4 figs.

  12. Osmotically Induced Reversible Transitions in Lipid-DNA Mesophases

    PubMed Central

    Danino, Dganit; Kesselman, Ellina; Saper, Gadiel; Petrache, Horia I.; Harries, Daniel

    2009-01-01

    We follow the effect of osmotic pressure on isoelectric complexes that self-assemble from mixtures of DNA and mixed neutral and cationic lipids. Using small angle x-ray diffraction and freeze-fracture cryo-electron microscopy, we find that lamellar complexes known to form in aqueous solutions can reversibly transition to hexagonal mesophases under high enough osmotic stress exerted by adding a neutral polymer. Using molecular spacings derived from x-ray diffraction, we estimate the reversible osmotic pressure-volume (Π-V) work needed to induce this transition. We find that the transition free energy is comparable to the work required to elastically bend lipid layers around DNA. Consistent with this, the required work is significantly lowered by an addition of hexanol, which is known to soften lipid bilayers. Our findings not only help to resolve the free-energy contributions associated with lipid-DNA complex formation, but they also demonstrate the importance that osmotic stress can have to the macromolecular phase geometry in realistic biological environments. PMID:19348739

  13. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  14. Osmotically induced reversible transitions in lipid-DNA mesophases.

    PubMed

    Danino, Dganit; Kesselman, Ellina; Saper, Gadiel; Petrache, Horia I; Harries, Daniel

    2009-04-08

    We follow the effect of osmotic pressure on isoelectric complexes that self-assemble from mixtures of DNA and mixed neutral and cationic lipids. Using small angle x-ray diffraction and freeze-fracture cryo-electron microscopy, we find that lamellar complexes known to form in aqueous solutions can reversibly transition to hexagonal mesophases under high enough osmotic stress exerted by adding a neutral polymer. Using molecular spacings derived from x-ray diffraction, we estimate the reversible osmotic pressure-volume (Pi-V) work needed to induce this transition. We find that the transition free energy is comparable to the work required to elastically bend lipid layers around DNA. Consistent with this, the required work is significantly lowered by an addition of hexanol, which is known to soften lipid bilayers. Our findings not only help to resolve the free-energy contributions associated with lipid-DNA complex formation, but they also demonstrate the importance that osmotic stress can have to the macromolecular phase geometry in realistic biological environments.

  15. Electro-osmotic infusion for joule heating soil remediation techniques

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    1999-01-01

    Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.

  16. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  17. Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana

    PubMed Central

    Hu, Wei; Ding, Zehong; Tie, Weiwei; Yan, Yan; Liu, Yang; Wu, Chunlai; Liu, Juhua; Wang, Jiashui; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2017-01-01

    The growth, development, and production of banana plants are constrained by multiple abiotic stressors. However, it remains elusive for the tolerance mechanisms of banana responding to multiple abiotic stresses. In this study, we found that Fen Jiao (FJ) was more tolerant to osmotic, cold, and salt stresses than BaXi Jiao (BX) by phenotypic and physiological analyses. Comparative transcriptomic analyses highlighted stress tolerance genes that either specifically regulated in FJ or changed more than twofold in FJ relative to BX after treatments. In total, 933, 1644, and 133 stress tolerance genes were identified after osmotic, cold, and salt treatments, respectively. Further integrated analyses found that 30 tolerance genes, including transcription factor, heat shock protein, and E3 ubiquitin protein ligase, could be commonly regulated by osmotic, cold, and salt stresses. Finally, ABA and ROS signaling networks were found to be more active in FJ than in BX under osmotic, cold, and salt treatments, which may contribute to the strong stress tolerances of FJ. Together, this study provides new insights into the tolerance mechanism of banana responding to multiple stresses, thus leading to potential applications in the genetic improvement of multiple abiotic stress tolerances in banana. PMID:28223714

  18. Stabilization of liposomes in frozen solutions through control of osmotic flow and internal solution freezing by trehalose.

    PubMed

    Izutsu, Ken-ichi; Yomota, Chikako; Kawanishi, Toru

    2011-07-01

    The purpose of this study was to elucidate the effect of trehalose distribution across the membrane on the freeze-related physical changes of liposome suspensions and their functional stability upon freeze-thawing. Cooling thermal analysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposome suspensions showed exotherm peaks of bulk (-15 °C to -25 °C) and intraliposomal (approx. -45 °C) solution freezing initiated by heterogeneous and homogeneous ice nucleation, respectively. The extent of the intraliposomal solution freezing exotherm depended on liposome size, lipid composition, cosolutes, and thermal history, suggesting that osmotic dehydration occurred due to the increasing difference in solute concentrations across the membrane. A freeze-thawing study of carboxyfluorescein-encapsulated liposomes suggested that controlling the osmotic properties to avoid the freeze-induced intraliposomal solution loss either by rapid cooling of suspensions containing trehalose in both sides of the membrane (retention of the intraliposomal supercooled solution) or by cooling of suspensions containing trehalose in the extraliposomal media prior to freezing (e.g., osmotic shrinkage) led to higher retention of the water-soluble marker. Evaluation and control of the osmotically mediated freezing behavior by optimizing the formulation and process factors should be relevant to the cryopreservation and freeze-drying of liposomes.

  19. Electro-osmotic flow in a wavy microchannel: Coherence between the electric potential and the wall shape function

    NASA Astrophysics Data System (ADS)

    Shu, Y. C.; Chang, C. C.; Chen, Y. S.; Wang, C. Y.

    2010-08-01

    The electro-osmotic flow through a wavy microchannel is studied under the Debye-Hückel approximation. An analytic solution by perturbation with appropriate averaging is carried out up to the second-order in terms of the small amplitude of corrugation. It is shown that the wavelength and phase difference of the corrugations can be utilized to control the flow relative to the case of flat walls. In particular, for thick electric double layers the electro-osmotic flow can be enhanced at long-wavelength corrugations because of the coherence between the electric potential and the wall shape function. Notably, these findings are not restricted to small amplitudes of corrugation. By applying the Ritz method to solve for the electro-osmotic flow, it is found that the enhancement becomes even greater (up to 30%) with increases in corrugation. Moreover, the nonlinear Poisson-Boltzmann equation is solved by finite difference to study the electro-osmotic flow in terms of the relative strength of the zeta potential. The issue of overlapped electric double layers when they are very thick is also discussed. The relative flow rate is shown to increase under the following conditions: (i) completely out-of-phase corrugations with long wavelength and large amplitude, (ii) small zeta potential, and (iii) slight overlapping of electric double layers.

  20. Carrizo citrange Plants Do Not Require the Presence of Roots to Modulate the Response to Osmotic Stress

    PubMed Central

    Pérez-Clemente, Rosa M.; Montoliu, Almudena; Zandalinas, Sara I.; de Ollas, Carlos; Gómez-Cadenas, Aurelio

    2012-01-01

    The study of the effects of a specific stress condition on the performance of plants grown under field conditions is difficult due to interactions among multiple abiotic and biotic factors affecting the system. In vitro tissue-culture-based techniques allow the study of each adverse condition independently and also make possible to investigate the performance of genotypes of interest under stress conditions avoiding the effect of the root. In this paper, the response of Carrizo citrange, a commercial citrus rootstock, to osmotic stress was evaluated by culturing in vitro intact plants and micropropagated shoots. The osmotic stress was generated by adding two different concentrations of polyethyleneglycol to the culture media. Different parameters such as plant performance, organ length, antioxidant activities, and endogenous contents of proline, malondialdehyde, and hormones were determined. Differently to that observed under high salinity, when subjected to osmotic stress conditions, Carrizo citrange showed increased endogenous levels of MDA, proline, and ABA. These results evidence that the mechanisms of response of Carrizo citrange to saline or osmotic stress are different. The presence of roots was not necessary to activate any of the plant responses which indicates that the organs involved in the stress perception and signaling depends on the type of adverse condition to which plants are subjected. PMID:22919353

  1. Carrizo citrange plants do not require the presence of roots to modulate the response to osmotic stress.

    PubMed

    Pérez-Clemente, Rosa M; Montoliu, Almudena; Zandalinas, Sara I; de Ollas, Carlos; Gómez-Cadenas, Aurelio

    2012-01-01

    The study of the effects of a specific stress condition on the performance of plants grown under field conditions is difficult due to interactions among multiple abiotic and biotic factors affecting the system. In vitro tissue-culture-based techniques allow the study of each adverse condition independently and also make possible to investigate the performance of genotypes of interest under stress conditions avoiding the effect of the root. In this paper, the response of Carrizo citrange, a commercial citrus rootstock, to osmotic stress was evaluated by culturing in vitro intact plants and micropropagated shoots. The osmotic stress was generated by adding two different concentrations of polyethyleneglycol to the culture media. Different parameters such as plant performance, organ length, antioxidant activities, and endogenous contents of proline, malondialdehyde, and hormones were determined. Differently to that observed under high salinity, when subjected to osmotic stress conditions, Carrizo citrange showed increased endogenous levels of MDA, proline, and ABA. These results evidence that the mechanisms of response of Carrizo citrange to saline or osmotic stress are different. The presence of roots was not necessary to activate any of the plant responses which indicates that the organs involved in the stress perception and signaling depends on the type of adverse condition to which plants are subjected.

  2. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    ERIC Educational Resources Information Center

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  3. Stimulation of glutamine transport by osmotic stress in Escherichia coli K-12.

    PubMed Central

    Gehring, K; Hofnung, M; Nikaido, H

    1990-01-01

    Osmotic stress produced by high concentrations of sucrose stimulated the high-affinity transport of glutamine in Escherichia coli cells. Glutamine transport via a low-affinity system was not affected. Osmotic stress produced by NaCl, in contrast, inhibited the transport of glutamine and some other amino acids. Maltose transport was strongly inhibited by osmotic stress. PMID:2198275

  4. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    ERIC Educational Resources Information Center

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  5. [Effects of 6-BA and AsA on photosynthesis photoinhibition of attached poplar leaves under osmotic stress of root].

    PubMed

    Feng, Yulong; Ma, Yongshuang; Feng, Zhili

    2004-12-01

    In order to know more about the relationships between photosynthesis photoinhibition and reactive oxygen species metabolism, the effects of 6-benzyladenine (6-BA) and ascorbate (AsA) on net photosynthetic rate (Pn), apparent quantum yield (AQY), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities, O2-* generation rate, and H2O2 and malondialdehyde (MDA) contents were studied with attached leaves of poplar clone seedlings under osmotic stress of root. Under osmotic stress, the photosynthesis photoinhibition of attached poplar leaves, judged by the significant decrease of Pn and AQY, was aggravated, and the balance of reactive oxygen species metabolism was destroyed. The superoxide dismutase (SOD) activity increased, but ascorbate peroxidase (APX) activity decreased. In the meantime, the O2-* generation rate and the contents of H2O2 and malondialdehyde (MDA) increased. When osmotic stressed poplar seedlings were pretreated with 6-BA and AsA, the activities of SOD and APX increased, O2-* generation rate and H2O2 and MDA contents decreased, and photosynthesis photoinhibition was alleviated. The contents of reactive oxygen species and MDA in poplar leaves were negatively correlated with net photosynthetic rate and apparent quantum yield. It's indicated that the photosynthesis photoinhibition of attached leaves of poplar clone seedlings had intrinsic relations with the accumulation of reactive oxygen species under osmotic stress of root, and the alleviation effects of 6-BA and AsA on photosynthesis photoinhibition were related to their promotion effects to the scavenging system of reactive oxygen species.

  6. Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit.

    PubMed

    Zhou, Qiang; Yu, Bingjun

    2010-06-01

    Osmotic adjustment and alteration of polyamines (PAs) have been suggested to play roles in plant adaptation to water deficit/drought stress. In this study, the changes in cell intactness, photosynthesis, compatible solutes and PAs [including putrescine (Put), spermidine (Spd) and spermine (Spm) each in free, conjugated and bound forms] were investigated in leaves of vetiver grass exposed to different intensity of water deficit stress and subsequent rewatering. The results showed that, when vetiver grass was exposed to the moderate (20% and 40% PEG-6000 solutions) and severe (60% PEG solution) water deficit for 6days, the plant injury degree (expressed as the parameters of plant growth, cell membrane integrity, water relations and photosynthesis) increased and contents of free and conjugated Put decreased with the rise of PEG concentration. Under the moderate water deficit, the plants could survive by the reduced osmotic potential (psi(s)), increased free and conjugated Spd and Spm in leaves. After subsequent rewatering, the osmotic balance was re-established, most of the above investigated physiological parameters were fully or partly recovered to the control levels. However, it was not the case for the severely-stressed and rewatering plants. It indicates that, vetiver grass can cope well with the moderate water deficit/drought stress by using the strategies of osmotic adjustment and maintenance of total contents of free, conjugated and bound PAs in leaves.

  7. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.

    PubMed

    Borgohain, Gargi; Paul, Sandip

    2016-03-10

    Classical molecular dynamics simulation of GB1 peptide (a 16-residue β-hairpin) in different osmotic environments is studied. Urea is used for denaturation of the peptide, and trimethylamine-N-oxide (TMAO) is used to offset the effect of urea. Protein-urea electrostatic interactions are found to play a major role in protein-denaturation. To emphasize on protein protecting action of TMAO against urea, two different models of TMAO are used, viz., the Kast model and the Osmotic model. We observe that the Osmotic model of TMAO gives the best protection to counteract urea's action when used in ratio 1:2 of urea:TMAO (i.e., reverse ratio). This is because the presence of TMAO makes urea-protein electrostatic interactions more unfavorable. Preferential solvation of TMAO molecules by urea (and water) molecules is also observed, which causes depletion in the number of urea molecules in the vicinity of the protein. The calculations of intraprotein hydrogen bonds between different residues of protein further reveal the breaking of backbone hydrogen bonds of residues 2 and 15 in the presence of urea, and the same is preserved in the presence of TMAO. Free energy landscapes show that the narrowest distribution is obtained for the osmotic TMAO model when used in reverse ratio.

  8. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.

    PubMed

    Pichrtová, Martina; Hájek, Tomáš; Elster, Josef

    2014-08-01

    Zygnema is a genus of filamentous green algae belonging to the class of Zygnematophyceae (Streptophyta). In the Arctic, it typically forms extensive mats in habitats that regularly dry out during summer, and therefore, mechanisms of stress resistance are expected. We investigated its natural populations with respect to production of specialized desiccation-resistant cells and osmotic acclimation. Six populations in various stages of natural desiccation were selected, from wet biomass floating in water to dried paper-like crusts. After rewetting, plasmolysis and osmotic stress effects were studied using hypertonic sorbitol solutions, and the physiological state was estimated using chlorophyll a fluorescence parameters. All populations of Zygnema sp. formed stationary-phase cells filled with storage products. In green algal research, such cells are traditionally called akinetes. However, the populations differed in their reaction to osmotic stress. Whereas the wet-collected samples were strongly impaired, the osmotic stress resistance of the naturally dried samples was comparable to that of true aeroterrestrial algae. We showed that arctic populations of Zygnema acclimate well to natural desiccation via hardening that is mediated by slow desiccation. As no other types of specialized cells were observed, we assume that the naturally hardened akinetes also play a key role in winter survival. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Induction of labor in patients with an unfavorable cervix after a cesarean using an osmotic dilator versus vaginal prostaglandin.

    PubMed

    Maier, Josefine T; Metz, Melanie; Watermann, Nina; Li, Linna; Schalinski, Elisabeth; Gauger, Ulrich; Rath, Werner; Hellmeyer, Lars

    2017-06-26

    Trial of labor after cesarean (TOLAC) is a viable option for safe delivery. In some cases cervical ripening and subsequent labor induction is necessary. However, the commonly used prostaglandins are not licensed in this subgroup of patients and are associated with an increased risk of uterine rupture. This cohort study compares maternal and neonatal outcomes of TOLAC in women (n=82) requiring cervical ripening agents (osmotic dilator vs. prostaglandins). The initial Bishop scores (BSs) were 2 (0-5) and 3 (0-5) (osmotic dilator and prostaglandin group, respectively). In this retrospective analysis, Fisher's exact test, the Kruskal-Wallis rank sum test and Pearson's chi-squared test were utilized. Vaginal birth rate (including operative delivery) was 55% (18/33) in the osmotic dilator group vs. 51% (25/49) in the dinoprostone group (P 0.886). Between 97% and 92% (32/33 and 45/49) (100%, 100%) of neonates had an Apgar score of >8 after 1 min (5, 10 min, respectively). The time between administration of the agent and onset of labor was 36 and 17.1 h (mean, Dilapan-S® group, dinoprostone group, respectively). Time from onset of labor to delivery was similar in both groups with 4.4 and 4.9 h (mean, Dilapan-S® group, dinoprostone group, respectively). Patients receiving cervical ripening with Dilapan-S® required oxytocin in 97% (32/33) of cases. Some patients presented with spontaneous onset of labor, mostly in the dinoprostone group (24/49, 49%). Amniotomy was performed in 64% and 49% (21/33 and 24/49) of cases (Dilapan-S® group and dinoprostone group, respectively). This pilot study examines the application of an osmotic dilator for cervical ripening to promote vaginal delivery in women who previously delivered via cesarean section. In our experience, the osmotic dilator gives obstetricians a chance to perform induction of labor in these women.

  10. Misoprostol 1 to 3 h preprocedure vs. overnight osmotic dilators prior to early second-trimester surgical abortion.

    PubMed

    Ramesh, Shanthi; Roston, Alicia; Zimmerman, Lindsay; Patel, Ashlesha; Lichtenberg, E Steve; Chor, Julie

    2015-09-01

    We sought to compare the effectiveness of at least 1 h of 400 mcg of buccal misoprostol to overnight osmotic dilators for early second-trimester surgical abortion cervical preparation. We conducted a retrospective cohort study, reviewing 145 consecutive charts to compare procedure duration for women who received 400 mcg of buccal misoprostol at least 1 h preprocedure vs. overnight osmotic dilators before dilation and evacuation between 14 weeks, 0 days and 15 weeks, 6 days' gestation. Primary outcome was procedure duration and secondary outcomes included maximum mechanical dilator size, estimated blood loss and side effects. Sixty-four women (44.1%) received buccal misoprostol (mean 1.6 h), and 81 women (55.9%) received overnight osmotic dilators. Groups did not differ regarding mean gestational age or gynecologic history. All procedures in both groups were completed. Procedure duration was not significantly different between the misoprostol and osmotic dilator groups (median 11.0 min vs. 10.0 min, p=.22), even after multivariable linear regression (p=.17). The mean total cervical preparation duration was 1.6 h for women in the misoprostol group compared to 20.3 h in the osmotic dilator group (p<.001). Secondary outcomes did not differ between groups. We found that at least 1 h of preprocedure misoprostol decreased the duration of cervical preparation for early second-trimester procedures performed by an experienced surgeon. In this small, retrospective review, at least 1 h of preprocedure buccal misoprostol decreased the duration from cervical preparation initiation to procedure completion in early second-trimester procedures performed by an experienced surgeon. These results should be considered as a pilot evaluation, and further prospective study is needed to further clarify whether this short interval could be applied in general practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  12. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  13. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems

    PubMed Central

    Vishwakarma, Abhaypratap; Raghavendra, Agepati S.; Padmasree, Kollipara

    2016-01-01

    The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m–2 s–1 at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated

  14. Assessment of pharmacokinetics and pharmacodynamic effects related to abuse potential of a unique oral osmotic-controlled extended-release methylphenidate formulation in humans.

    PubMed

    Parasrampuria, Dolly A; Schoedel, Kerri A; Schuller, Reinhard; Gu, Joan; Ciccone, Patrick; Silber, Steven A; Sellers, Edward M

    2007-12-01

    This was a double-blind, placebo-controlled, randomized, 5-period crossover study in 49 healthy subjects with a history of light (occasional) recreational stimulant use, to evaluate the abuse-related subjective effects of oral osmotic-controlled extended-release methylphenidate with comparable doses of immediate-release methylphenidate. Healthy subjects with a history of light recreational stimulant use were enrolled in the study if they demonstrated a positive response to a 20-mg dose of d-amphetamine and a negative placebo response. Enrolled subjects received single doses of placebo, 54 and 108 mg osmotic-controlled extended-release methylphenidate, and 50 and 90 mg immediate-release methylphenidate. For each treatment, pharmacokinetics, pharmacodynamics, and safety were assessed for 24 hours. Subjective data were collected through standard questionnaires and visual analog scales for positive, stimulant, negative, and other effects. Immediate-release and osmotic-controlled extended-release methylphenidate produced expected plasma concentration-time profiles of d-methylphenidate. Both doses of immediate-release methylphenidate (50 and 90 mg) produced statistically significantly higher subjective effects (eg, positive, stimulant) with respect to placebo for all measures. The higher osmotic-controlled extended-release methylphenidate dose of 108 mg also produced statistically significant differences from placebo for most measures. However, the most commonly prescribed therapeutic dose of osmotic-controlled extended-release methylphenidate (54 mg) did not produce significant differences from placebo for most measures. In addition, for comparable dose levels, osmotic-controlled extended-release methylphenidate produced lower positive and stimulant subjective effects than immediate-release methylphenidate, and low-dose immediate-release methylphenidate (50 mg) produced greater subjective effects than high-dose osmotic-controlled extended-release methylphenidate, with

  15. Effect of altered precipitation on osmotic potentials of several species in a forest ecosystem

    SciTech Connect

    Gebre, G.M.; Shirshac, T.L.; Gunderson, C.A.

    1995-06-01

    The effect of altered precipitation on osmotic potential of several species in an upland oak forest was investigated. Leaf samples were collected from a treatment whose precipitation was either unaltered (ambient) or altered by intercepting 33% of throughfall (dry) and diverting it to another treatment (wet). Treatment as well as species differences in osmotic potential at saturation were evident with the oaks generally exhibiting lower osmotic potentials than sugar maple, red maple, dogwood, and black gum. Leaves of chestnut oak had lower osmotic potentials than other species, throughout the growing season. Osmotic potential at saturation of chestnut oak leaves collected in August increased in response to an increase in soil moisture content. The osmotic potential of dogwood leaves declined in the dry treatment, with the largest osmotic adjustment occurring in June, coinciding with the period of greatest drought. Among the species sampled from May to September; only chestnut oak, white oak, and sugar maple continued to lower their osmotic potentials in the dry treatment. These first year data indicate that a 33% reduction of the throughfall precipitation was sufficient to alter water relations of some species and identify those species capable of osmotic adjustment to drought. Chestnut oak trees lowered their osmotic potentials sooner than other species and maintained lower baseline osmotic potentials at saturation, indicative of their drought tolerance capability.

  16. Design of an osmotic pressure sensor for sensing an osmotically active substance

    NASA Astrophysics Data System (ADS)

    Ch, Nagesh; Paily, Roy P.

    2015-04-01

    A pressure sensor based on the osmosis principle has been designed and demonstrated successfully for the sensing of the concentration levels of an osmotically active substance. The device is fabricated using the bulk micro-machining technique on a silicon on insulator (SOI) substrate. The substrate has a square cavity on the bottom side to fill with the reference glucose solution and a silicon (Si) membrane on the top side for the actuation. Two sets of devices, having membrane thicknesses of 10 µm and 25 µm, but the same area of 3 mm ×3 mm, are fabricated. The cavity is filled with a glucose solution of 100 mg dL-1 and it is sealed with a semi-permeable membrane made up of cellulose acetate material. The glucose solution is employed to prove the functionality of the device and it is tested for different glucose concentration levels, ranging from 50 mg dL-1 to 450 mg dL-1. The output voltage obtained for the corresponding glucose concentration levels ranges from -6.7 mV to 22.7 mV for the 10 µm device and from -1.7 mV to 4 mV for the 25 µm device. The device operation was simulated using the finite element method (FEM) and the finite volume method (FVM), and the simulation and experimental results match closely. A response time of 40 min is obtained in the case of the 10 µm device compared to one of 30 min for the 25 µm device. The response times obtained for these devices are found to be small compared to those in similar works based on the osmosis principle. This pressure sensor has the potential to provide controlled drug delivery if it can be integrated with other microfluidic devices.

  17. Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?

    PubMed

    van der Leeden, Mieke C

    2005-11-22

    The mussel adhesive protein Mefp-1, under physiological conditions, presumably has a self-avoiding random walk conformation with helix-like or turned deca-peptide segments. Such a conformation may coil up under osmotic pressure induced by surrounding macromolecules. As a consequence, the orientation of the 3,4-dihydroxy-phenylalanine groups (dopa), essential for the adhesive strength as well as the cohesive strength in Mefp-1, will be altered. Changing the concentration of the protein itself or of different-type surrounding macromolecules may therefore be a tool to control the protein's adhesive activity. The effect of osmotic pressure on the conformation and dopa reactivity of Mefp-1 is studied by the addition of (poly)ethylene oxide (PEO) as a model macromolecule (Mw = 100 kD). From UV-spectroscopy measurements, it can be concluded that dopa reactivity in Mefp-1 changes with increasing PEO concentration. Fitting of the measured absorbance intensity data of the oxidation product dopaquinone versus time with a kinetic model points to the decreased accessibility of dopa groups in the Mefp-1 structure, a faster oxidation, and diminished cross linking under the influence of increasing PEO concentration up to 2.4 g/L, corresponding to an osmotic pressure of approximately 73 Pa. At higher PEO concentrations, the accessibility of the dopa groups for oxidation as well as cross-link formation decreases until about 20% of the dopa groups are oxidized at a PEO concentration of 3.8 g/L, corresponding to an osmotic pressure of approximately 113 Pa. FTIR measurements on the basis of amide I shifts qualitatively point to a transition to a more continuously turned structure of Mefp-1 in the presence of PEO. Therefore, it seems that conformational changes caused by variations of osmotic pressure determine the extent of steric hindrance of the dopa groups and hence the adhesive reactivity of Mefp-1.

  18. Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots.

    PubMed

    Kolbert, Zsuzsanna; Ortega, Leandro; Erdei, László

    2010-01-01

    Nitric oxide (NO) is undoubtedly a potential signal molecule in diverse developmental processes and stress responses. Despite our extensive knowledge about the role of NO in physiological and stress responses, the source of this gaseous molecule is still unresolved. The aim of this study was to investigate the potential role of nitrate reductase (NR) as the source of NO accumulation in the root system of wild-type and NR-deficient nia1, nia2 mutant Arabidopsis plants under osmotic stress conditions induced by a polyethylene glycol (PEG 6000) treatment. Reduction of primary root (PR) length was detected as the effect of osmotic stress in wild-type and NR-deficient plants. We found that osmotic stress-induced lateral root (LR) initiation in wild-type, but not in NR-mutant plants. High levels of NO formation occurred in roots of Col-1 plants as the effect of PEG treatment. The mammalian nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) had no effect on LR initiation or NO generation, while tungstate, an NR inhibitor, inhibited the later phase of osmotic stress-induced NO accumulation and slightly decreased the LR development. In nia1, nia2 roots, the PEG treatment induced the first phase of NO production, but later NO production was inhibited. We conclude that the first phase of PEG-induced NO generation is not dependent on NOS-like or NR activity. It is also suggested that the activity of NR in roots is required for the later phase of osmotic stress-induced NO formation.

  19. Osmotic properties of Limulus seawaters and organ cultures: an unrecognized issue.

    PubMed

    Lim-Kessler, Corrinne C M; Bolbecker, Amanda R; Li, Jia; Wasserman, Gerald S

    2008-01-01

    Excised eyes of the horseshoe crab (Limulus polyphemus) have long provided robust preparations for fundamental studies of the visual neuroscience of photoreceptors. Such preparations are particularly useful for immersion in perfusion chambers whose perfusate can be varied as needed. Little attention has been paid in the past to the osmotic properties of such perfusates because they have generally been virtually isotonic with natural seawater. We here report that (1) some recent Limulus studies have used organ culture perfusates that are severely hypotonic and (2) that that fact has not been adequately disclosed.

  20. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed Central

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-01-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. PMID:24879770

  1. Same-day synthetic osmotic dilators compared with overnight laminaria before abortion at 14-18 weeks of gestation: a randomized controlled trial.

    PubMed

    Newmann, Sara J; Sokoloff, Abby; Tharyil, Mithu; Illangasekare, Tushani; Steinauer, Jody E; Drey, Eleanor A

    2014-02-01

    To increase access to early second-trimester surgical abortion by determining noninferiority of same-day synthetic osmotic dilators compared with overnight Laminaria for cervical preparation before early second-trimester dilation and evacuation. We enrolled women between 14 and 18 weeks of gestation and randomized them to same-day synthetic osmotic dilators or overnight Laminaria. Study participants and clinicians were blinded to group assignment. The primary outcome was procedure duration. The trial was powered to assess noninferiority of synthetic osmotic dilators to exclude a mean difference of 5 minutes or longer. We enrolled 72 patients: 36 were randomized to same-day synthetic osmotic dilators and 36 to overnight Laminaria. Mean procedure duration was 8.1 and 5.9 minutes, respectively, with a mean difference of 2.1 minutes (97.5% confidence interval -0.3 to 4.5). Same-day synthetic osmotic dilators resulted in less initial cervical dilation than overnight Laminaria (mean circumference 48 compared with 60 mm Pratt, P<.001) and required more mechanical dilation (69% compared with 27%, P=.001). There was no difference in complications, all of which were minor, or in the median procedural difficulty score rated by physicians. Most patients in both groups would choose a same-day procedure if necessary in the future. Despite less initial cervical dilation and a greater need for mechanical dilation, same-day synthetic osmotic dilators are not inferior to overnight Laminaria with respect to procedure duration. Same-day osmotic dilation is preferred by patients and may be a reasonable alternative to overnight Laminaria for cervical preparation before early second-trimester dilation and evacuation. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00775983. I.

  2. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Formulation and evaluation of controlled porosity osmotic pump for oral delivery of ketorolac.

    PubMed

    Dasankoppa, Fatima Sanjeri; Ningangowdar, Mahesh; Sholapur, Hasanpasha

    2012-12-01

    The osmotic drug delivery systems suitable for oral administration typically consist of a compressed tablet core that is coated with a semipermeable membrane that has an orifice drilled on it by means of a laser beam or mechanical drill. Ketorolac is a nonsteroidal agent with powerful analgesic. Oral bioavailability of ketorolac was reported to be 90% with very low hepatic first-pass elimination; the biological half-life of 4-6 hours requires frequent administration to maintain the therapeutic effect. The aim of the current study was to design a controlled porosity osmotic pump (CPOP)based drug delivery system for controlled release of an NSAID agent, ketorolac tromethamine, which is expected to improve patient compliance due to reduced frequency; it also eliminates the need for complicated and expensive laser drilling and maintain continuous therapeutic concentration. The CPOP was designed containing pore-forming water-soluble additives in the coating membrane, which after coming in contact with water, dissolve, resulting in an in situ formation of a micro porous structure. The effect of different formulation variables, namely level of pore former (PVP), plasticizer (dibutyl phthalate) in the membrane, and membrane weight gain were studied. Drug release was inversely proportional to the membrane weight but directly related to the initial concentration of pore former (PVP) in the membrane. Drug release was independent of pH and agitational intensity, but dependent on the osmotic pressure of the release media. Based on the in vitro dissolution profile, formulation F3C1 (containing 0.5 g PVP and 1 g dibutyl phthalate in coating membrane) exhibited Peppas kinetic with Fickian diffusion-controlled release mechanism with a drug release of 93.67% in 12 hours and hence it was selected as optimized formulation. SEM studies showed the formation of pores in the membrane. The formulations were stable after 3 months of accelerated stability studies. CPOP was designed for

  4. Defining colloid osmotic pressure and the relationship between blood proteins and colloid osmotic pressure in dairy cows and calves.

    PubMed

    Kish, Jennifer L; McGuirk, Sheila M; Friedrichs, Kristen R; Peek, Simon F

    2016-09-01

    To establish the reference interval for colloid osmotic pressure (COP) in neonatal and adult cattle and to investigate associations between COP and total protein, albumin, or globulin in the two populations sampled. Cross-sectional observational study. Animals were sampled on commercial dairy farms in Southern Wisconsin, and samples were processed and analyzed in a clinical pathology laboratory at a university teaching hospital. Forty adult lactating Holstein cows between 2 and 4 years of age and 40 healthy Holstein calves of both sexes between 2 and 7 days of age. Adult cows were sampled by coccygeal venipuncture into standard heparinized vacutainer tubes, calves were sampled by jugular venipuncture also into heparinized vacutainer tubes. For adult cows, the mean COP was 22.52 mm Hg, with a standard deviation of 1.0. For calves, the mean COP was 19.6 mm Hg, with a standard deviation of 1.9. Good correlation was demonstrated in adults between COP and albumin concentrations (r(2) = 0.72) and between COP and both total protein concentration (r(2) = 0.74) and globulin (r(2) = 0.65) in calves. For adults, regression plots established best fit relationships of COP = 0.472 (albumin) + 6.49, whereas for calves, two regression equations could be described; COP = 0.305 (globulin) + 8.62, and 0.268 (total plasma protein) + 2.73. Suggested normal ranges (mean ± 2 standard deviations) for COP in adult lactating dairy cows and calves between 2 and 7 days of age were 21-25 mm Hg and 17-23 mm Hg, respectively. © Veterinary Emergency and Critical Care Society 2016.

  5. Modeling microbial spoilage and quality of gilthead seabream fillets: combined effect of osmotic pretreatment, modified atmosphere packaging, and nisin on shelf life.

    PubMed

    Tsironi, Theofania N; Taoukis, Petros S

    2010-05-01

    The objective of the study was the kinetic modeling of the effect of storage temperature on the quality and shelf life of chilled fish, modified atmosphere-packed (MAP), and osmotically pretreated with the addition of nisin as antimicrobial agent. Fresh gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% high dextrose equivalent maltodextrin (DE 47) plus 5% NaCl. Water loss, solid gain, salt content, and water activity were monitored throughout treatment and treatment conditions were selected for the shelf life study. Untreated and osmotically pretreated slices with and without nisin (2 x 10(4) IU/100 g osmotic solution), packed in air or modified atmosphere (50% CO(2)-50% air), and stored at controlled isothermal conditions (0, 5, 10, and 15 degrees C) were studied. Quality assessment and modeling were based on growth of several microbial indices, total volatile nitrogen, trimethylamine nitrogen, lipid oxidation (TBARS), and sensory scoring. Temperature dependence of quality loss rates was modeled by the Arrhenius equation, validated under dynamic conditions. Pretreated samples showed improved quality stability during subsequent refrigerated storage, in terms of microbial growth, chemical changes, and organoleptic degradation. Osmotic pretreatment with the addition of nisin in combination with MAP was the most effective treatment resulting in significant shelf life extension of gilthead seabream fillets (48 days compared to 10 days for the control at 0 degrees C).

  6. Extensional instability in electro-osmotic microflows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Bryce, R. M.; Freeman, M. R.

    2010-03-01

    Fluid transport in microfluidic systems typically is laminar due to the low Reynolds number characteristic of the flow. The inclusion of suspended polymers imparts elasticity to fluids, allowing instabilities to be excited when substantial polymer stretching occurs. For high molecular weight polymer chains we find that flow velocities achievable by standard electro-osmotic pumping are sufficient to excite extensional instabilities in dilute polymer solutions. We observe a dependence in measured fluctuations on polymer concentration which plateaus at a threshold corresponding to the onset of significant molecular crowding in macromolecular solutions; plateauing occurs well below the overlap concentration. Our results show that electro-osmotic flows of complex fluids are disturbed from the steady regime, suggesting potential for enhanced mixing and requiring care in modeling the flow of complex liquids such as biopolymer suspensions.

  7. Organic ionic salt draw solutions for osmotic membrane bioreactors.

    PubMed

    Bowden, Katie S; Achilli, Andrea; Childress, Amy E

    2012-10-01

    This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Osmotic surveillance mediates rapid wound closure through nucleotide release

    PubMed Central

    Gault, William J.; Enyedi, Balázs

    2014-01-01

    Osmotic cues from the environment mediate rapid detection of epithelial breaches by leukocytes in larval zebrafish tail fins. Using intravital luminescence and fluorescence microscopy, we now show that osmolarity differences between the interstitial fluid and the external environment trigger ATP release at tail fin wounds to initiate rapid wound closure through long-range activation of basal epithelial cell motility. Extracellular nucleotide breakdown, at least in part mediated by ecto-nucleoside triphosphate diphosphohydrolase 3 (Entpd3), restricts the range and duration of osmotically induced cell migration after injury. Thus, in zebrafish larvae, wound repair is driven by an autoregulatory circuit that generates pro-migratory tissue signals as a function of environmental exposure of the inside of the tissue. PMID:25533845

  9. Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores.

    PubMed

    Michelin-Jamois, Millan; Picard, Cyril; Vigier, Gérard; Charlaix, Elisabeth

    2015-07-17

    The forced intrusion of water in hydrophobic nanoporous pulverulent material is of interest for quick storage of energy. With nanometric pores the energy storage capacity is controlled by interfacial phenomena. With subnanometric pores, we demonstrate that a breakdown occurs with the emergence of molecular exclusion as a leading contribution. This bulk exclusion effect leads to an osmotic contribution to the pressure that can reach levels never previously sustained. We illustrate, on various electrolytes and different microporous materials, that a simple osmotic pressure law accounts quantitatively for the enhancement of the intrusion and extrusion pressures governing the forced wetting and spontaneous drying of the nanopores. Using electrolyte solutions, energy storage and power capacities can be widely enhanced.

  10. Electro-osmotic flow of semidilute polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Uematsu, Yuki; Araki, Takeaki

    2013-09-01

    We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.

  11. Growth of protein crystals in hydrogels prevents osmotic shock.

    PubMed

    Sugiyama, Shigeru; Maruyama, Mihoko; Sazaki, Gen; Hirose, Mika; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi

    2012-04-04

    High-throughput protein X-ray crystallography offers a significant opportunity to facilitate drug discovery. The most reliable approach is to determine the three-dimensional structure of the protein-ligand complex by soaking the ligand in apo crystals. However, protein apo crystals produced by conventional crystallization in a solution are fatally damaged by osmotic shock during soaking. To overcome this difficulty, we present a novel technique for growing protein crystals in a high-concentration hydrogel that is completely gellified and exhibits high strength. This technique allowed us essentially to increase the mechanical stability of the crystals, preventing serious damage to the crystals caused by osmotic shock. Thus, this method may accelerate structure-based drug discoveries.

  12. Electro-osmotically induced convection at a permselective membrane

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2000-08-01

    The paper is concerned with convection at an ion exchange electrodialysis membrane induced by nonequilibrium electro-osmosis in the course of concentration polarization under the passage of electric current through the membrane. Derivation of nonequilibrium electro-osmotic slip condition is recapitulated along with the linear stability analysis of quiescent electrodiffusion through a flat ion exchange membrane. Results of numerical calculation for nonlinear steady state convection, developing from the respective instability, are reported along with those for a slightly wavy membrane. Besides these results, we report those of time dependent calculations for periodic and chaotic oscillations, resulting from instability of the respective steady state flows, and also the results of recent experiments with modified membranes. These latter rule in favor of electro-osmotic versus bulk electroconvective origin of overlimiting conductance through ion exchange membranes.

  13. Characterization of osmotically induced filaments of Salmonella enterica.

    PubMed

    Pratt, Zachary L; Chen, Bingming; Czuprynski, Charles J; Wong, Amy C L; Kaspar, Charles W

    2012-09-01

    Salmonella enterica forms aseptate filaments with multiple nucleoids when cultured in hyperosmotic conditions. These osmotic-induced filaments are viable and form single colonies on agar plates even though they contain multiple genomes and have the potential to divide into multiple daughter cells. Introducing filaments that are formed during osmotic stress into culture conditions without additional humectants results in the formation of septa and their division into individual cells, which could present challenges to retrospective analyses of infectious dose and risk assessments. We sought to characterize the underlying mechanisms of osmotic-induced filament formation. The concentration of proteins and chromosomal DNA in filaments and control cells was similar when standardized by biomass. Furthermore, penicillin-binding proteins in the membrane of salmonellae were active in vitro. The activity of penicillin-binding protein 2 was greater in filaments than in control cells, suggesting that it may have a role in osmotic-induced filament formation. Filaments contained more ATP than did control cells in standardized cell suspensions, though the levels of two F(0)F(1)-ATP synthase subunits were reduced. Furthermore, filaments could septate and divide within 8 h in 0.2 × Luria-Bertani broth at 23°C, while nonfilamentous control cells did not replicate. Based upon the ability of filaments to septate and divide in this diluted broth, a method was developed to enumerate by plate count the number of individual, viable cells within a population of filaments. This method could aid in retrospective analyses of infectious dose of filamented salmonellae.

  14. A computer simulation of the classic experiment on osmosis and osmotic pressure

    SciTech Connect

    Murad, S. ); Powles, J.G. )

    1993-11-01

    A novel computer simulation technique for studying fluids in confined geometries has been developed and used to replicate Pfeffer's experiment on osmosis in semipermeable membranes in 1877. Our results confirm the validity of van't Hoff's famous relationship for osmotic pressure over a wide range of concentrations, and also clearly establish its validity even for molecular systems. We believe this is the first theoretical validation of this result for such a wide range of concentrations, where no explicit assumption of ideality is made for the interactions of the solute molecules.

  15. Size and stability of liposomes: a possible role of hydration and osmotic forces.

    PubMed

    Sabín, J; Prieto, G; Ruso, J M; Hidalgo-Alvarez, R; Sarmiento, F

    2006-08-01

    Dynamic light scattering and electrophoretic mobility measurements have been used to characterize the size, size distribution and zeta potentials (zeta-potentials) of egg yolk phosphatidylcholine (EYPC) liposomes in the presence of monovalent ions ( Na(+) and K(+)). To study the stability of liposomes the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been extended by introducing the hydrated radius of the adsorbed ions onto the liposome surfaces. The decrease of liposome size is explained on the basis of the membrane impermeability to some ions which generate osmotic forces, which leads to evacuate water from liposome inside.

  16. Time Periodic Electro-Osmotic-Flow of Jeffrey Fluid in a Circular Microtube

    NASA Astrophysics Data System (ADS)

    Jian, Y. J.; Liu, Q. S.; Duan, H. Z.; Chang, L.; Yang, L. G.

    2011-09-01

    Flow behavior of time periodic electro-osmotic flow (EOF) of non-Newtonian (Jeffrey) fluids in a circular microtube is investigated based on a linearized Poisson-Boltzmann equation, together with the Cauchy momentum equation and the Jeffrey constitutive equation. Taking near-wall depletion effects of macromolecules into account, we divided the flow region into skimming layer and the bulk. Analytical solutions of EOF velocity distribution are obtained. By numerical computations, the influences of the related parameters on the velocity amplitude are studied.

  17. Impact of osmotic stress on protein diffusion in Lactococcus lactis.

    PubMed

    Mika, Jacek T; Schavemaker, Paul E; Krasnikov, Victor; Poolman, Bert

    2014-11-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ∼ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria.

  18. Osmotic water transport with glucose in GLUT2 and SGLT.

    PubMed

    Naftalin, Richard J

    2008-05-15

    Carrier-mediated water cotransport is currently a favored explanation for water movement against an osmotic gradient. The vestibule within the central pore of Na(+)-dependent cotransporters or GLUT2 provides the necessary precondition for an osmotic mechanism, explaining this phenomenon without carriers. Simulating equilibrative glucose inflow via the narrow external orifice of GLUT2 raises vestibular tonicity relative to the external solution. Vestibular hypertonicity causes osmotic water inflow, which raises vestibular hydrostatic pressure and forces water, salt, and glucose into the outer cytosolic layer via its wide endofacial exit. Glucose uptake via GLUT2 also raises oocyte tonicity. Glucose exit from preloaded cells depletes the vestibule of glucose, making it hypotonic and thereby inducing water efflux. Inhibiting glucose exit with phloretin reestablishes vestibular hypertonicity, as it reequilibrates with the cytosolic glucose and net water inflow recommences. Simulated Na(+)-glucose cotransport demonstrates that active glucose accumulation within the vestibule generates water flows simultaneously with the onset of glucose flow and before any flow external to the transporter caused by hypertonicity in the outer cytosolic layers. The molar ratio of water/glucose flow is seen now to relate to the ratio of hydraulic and glucose permeability rather than to water storage capacity of putative water carriers.

  19. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.

  20. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE PAGES

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  1. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    PubMed

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.

  3. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABAAR Signaling

    PubMed Central

    Cesetti, Tiziana; Ciccolini, Francesca; Li, Yuting

    2012-01-01

    Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered. PMID:22319472

  4. Folding propensity of intrinsically disordered proteins by osmotic stress†

    PubMed Central

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; Pino, James C.; Chennubhotla, S. Chakra; Ramanathan, Arvind; O’Neill, Hugh M.; Berthelier, Valerie

    2017-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR) separate from their mutual binding. Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain α-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. By focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding. PMID:27752679

  5. Transient pearling and vesiculation of membrane tubes under osmotic gradients.

    PubMed

    Sanborn, Jeremy; Oglecka, Kamila; Kraut, Rachel S; Parikh, Atul N

    2013-01-01

    We report the experimental observation of osmotically induced transient pearling instabilities in vesicular membranes. Giant phospholipid vesicles subjected to negative osmotic gradient, which drives the influx of water in to the vesicular interior, produces transient cylindrical protrusions. These protrusions exhibit a remarkable pearling intermediate, which facilitates their subsequent retraction. The pearling front propagates from the distal free end of the protrusion toward the vesicular source and accompanies gradual shortening of the protrusion via pearl-pearl coalescence. Real-time introduction of a positive osmotic gradient, on the other hand, drives vigorous shape fluctuations, which in turn produce cylindrical, prolate- and pear-shaped intermediates presumably due to an increased vesicular area relative to the encapsulated volume. These intermediates transiently produce a pearled state prior to their fission. In both cases, the transient pearling state gives rise to an array of stable spherical daughter vesicles, which may be connected to one another by fine tethers not resolved in our experiments. These results may have implications for self-reproduction in primitive, protein-free, cells.

  6. Active osmotic exchanger for advanced filtration at the nano scale

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  7. Does Osmotic Stress Affect Natural Product Expression in Fungi?

    PubMed

    Overy, David; Correa, Hebelin; Roullier, Catherine; Chi, Wei-Chiung; Pang, Ka-Lai; Rateb, Mostafa; Ebel, Rainer; Shang, Zhuo; Capon, Rob; Bills, Gerald; Kerr, Russell

    2017-08-13

    The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.

  8. Inhibition of chloroplastic respiration by osmotic dehydration. [Spinacia oleracea L

    SciTech Connect

    Willeford, K.O.; Ahluwalia, K.J.K.; Gibbs, M. )

    1989-04-01

    The respiratory capacity of isolated spinach (Spinacia oleracea L.) chloroplasts, measured as the rate of {sup 14}CO{sub 2} evolved from the oxidative pentose phosphate cycle in darkened chloroplasts exogenously supplied with ({sup 14}C)glucose, was progressively diminished by escalating osmotic dehydration with betaine or sorbitol. Comparing the inhibitions of CO{sub 2} evolution generated by osmotic dehydration in chloroplasts given C-1 and C-6 labeled glucose, 54% and 84%, respectively, indicates that osmotic dehydration effects to a greater extent the recycling of the oxidative pentose phosphate intermediates, fructose-6P and glyceraldehyde-3P. Respiratory inhibition in the darkened chloroplast could be alleviated by addition of NH{sub 4}Cl (a stromal alkylating agent), iodoacetamide (an inhibitor of glyceraldehyde-3P dehydrogenase), or glycolate-2P (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiratory inhibition in the darkened chloroplast occurs at the fructose 1,6-bisphosphatase/phosphofructokinase junction.

  9. Decreased brain reward function during nicotine withdrawal in C57BL6 mice: evidence from intracranial self-stimulation (ICSS) studies.

    PubMed

    Johnson, Paul M; Hollander, Jonathan A; Kenny, Paul J

    2008-09-01

    Deficits in brain reward function during nicotine withdrawal may serve as an important substrate for negative reinforcement that contributes to the persistence of the tobacco habit in human smokers. The ability to assess withdrawal-associated reward deficits in genetically modified mice may facilitate understanding of the neurobiological mechanisms of nicotine dependence. Here, we assessed the effects of nicotine withdrawal on brain reward function in mice, as measured by intracranial self-stimulation (ICSS) thresholds. Male C57BL6 mice were trained in a discrete-trial current-threshold ICSS procedure until stable reward thresholds were obtained. Mice then received experimenter-administered saline or nicotine (2 mg/kg/injection salt; x4 daily) injections for 7 consecutive days, and ICSS thresholds assessed for 3 days after cessation of injections. Thresholds were unaltered in nicotine- and saline-treated mice after cessation of injections, indicating that this treatment regimen was not sufficient to induce withdrawal-associated reward deficits. Next, mice were implanted subcutaneously with osmotic minipumps delivering a constant daily amount of saline or nicotine (24 mg/kg/day; free-base), with pumps surgically removed 13 days later. The nicotinic receptor antagonist mecamylamine (2 mg/kg) elevated ICSS thresholds in nicotine- but not saline-treated mice when administered 8-10 days after pump implantation. Similarly, reward thresholds were elevated in nicotine-treated mice 12-72 h after minipump removal. These data demonstrate that antagonist-precipitated or spontaneous withdrawal from nicotine delivered via osmotic minipumps induced reward deficits in mice. Further, these findings highlight the potential utility of the ICSS procedure for assessing this important affective component of nicotine withdrawal in genetically modified mice.

  10. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers

    PubMed Central

    2017-01-01

    This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins. PMID:28151958

  11. The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter.

    PubMed

    Yeste, Marc; Briz, Mailo; Pinart, Elisabeth; Sancho, Sílvia; Bussalleu, Eva; Bonet, Sergi

    2010-06-01

    Predicting the fertility outcome of ejaculates is very important in the field of porcine reproduction. The aims of this study were to determine the effects of different osmotic treatments on boar spermatozoa and to correlate them with fertility and prolificacy, assessed as non-return rates within 60 days (NRR(60d)) of the first inseminations, and litter size (LS), respectively. Sperm samples (n=100) from one hundred healthy Piétrain boars were used to assess 48 treatments combining different osmolalities (ranged between 100 and 4000 mOsm kg(-1)), different compounds used to prepare anisotonic solutions, and two different modalities: return and non-return to isotonic conditions. Sperm quality was evaluated before and after applying the treatments on the basis of analyses of sperm viability, motility, morphology and percentages of acrosome-intact spermatozoa. Statistical analyses were performed using a one-way ANOVA and post hoc Tukey's test, linear regression analyses (Pearson correlation and multiple regression) and Jackknife cross-validation. Although three conventional parameters: sperm viability, sperm morphology and the percentages of acrosome-intact spermatozoa were significantly correlated with NRR(60d) and with LS, their respective osmotic tolerance parameters (defined for each parameter and treatment regarding with negative control) presented a higher Pearson coefficient with both fertility and prolificacy in three treatments (150 mOsm kg(-1) with non-return to isotonic conditions, 200 mOsm kg(-1) with return and 500 mOsm kg(-1) using sodium citrate and non-return to isotonic conditions). We conclude that osmotic resistance in sperm viability, sperm morphology and acrosome-intactness in the treatments mentioned above could be assessed along with classical parameters to better predict the fertilising ability of a given ejaculate.

  12. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Changes in Osmotic Pressure and Mucilage during Low-Temperature Acclimation of Opuntia ficus-indica.

    PubMed

    Goldstein, G; Nobel, P S

    1991-11-01

    Opuntia ficus-indica, a Crassulacean acid metabolism plant cultivated for its fruits and cladodes, was used to examine chemical and physiological events accompanying low-temperature acclimation. Changes in osmotic pressure, water content, low molecular weight solutes, and extracellular mucilage were monitored in the photosynthetic chlorenchyma and the water-storage parenchyma when plants maintained at day/night air temperatures of 30/20 degrees C were shifted to 10/0 degrees C. An increase in osmotic pressure of 0.13 megapascal occurred after 13 days at 10/0 degrees C. Synthesis of glucose, fructose, and glycerol accounted for most of the observed increase in osmotic pressure during the low-temperature acclimation. Extracellular mucilage and the relative apoplastic water content increased by 24 and 10%, respectively, during exposure to low temperatures. These increases apparently favor the extracellular nucleation of ice closer to the equilibrium freezing temperature for plants at 10/0 degrees C, which could make the cellular dehydration more gradual and less damaging. Nuclear magnetic resonance studies helped elucidate the cellular processes during ice formation, such as those revealed by changes in the relaxation times of two water fractions in the chlorenchyma. The latter results suggested a restricted mobility of intracellular water and an increased mobility of extracellular water for plants at 10/0 degrees C compared with those at 30/20 degrees C. Increased mobility of extracellular water could facilitate extracellular ice growth and thus delay the potentially lethal intracellular freezing during low-temperature acclimation.

  14. Osmotic modulation of stimulus-evoked responses in the rat supraoptic nucleus.

    PubMed

    Bhumbra, G S; Orlans, H O; Dyball, R E J

    2008-04-01

    Neural information is conveyed by action potentials along axons to downstream synaptic targets. Synapses permit functionally relevant modulation of the information transmitted by converging inputs. Previous studies have measured the amount of information associated with a given stimulus based either on spike counts or on the relative frequencies of spike sequences represented as binary strings. Here we apply information theory to the phase-interval stimulus histogram (PhISH) to measure the extent of the stimulus-evoked response using the statistical relationship between each interspike interval and its phase within the stimulus cycle. We used the PhISH as a novel approach to investigate how different osmotic states affect the flow of information through the osmoreceptor complex of the hypothalamus. The amount of information conveyed from one (afferent) element of the complex, the anteroventral region of the third ventricle (AV3V), to another (an efferent element), the supraoptic nucleus, was increased by hypertonic stimulation (intravenous mannitol, z = 4.39, P < 0.001) and decreased by hypotonic stimulation (intragastric water, z = -3.37, P < 0.001). Supraoptic responses to AV3V stimulation differed from those that follow stimu