Protein osmotic pressure gradients and microvascular reflection coefficients.
Drake, R E; Dhother, S; Teague, R A; Gabel, J C
1997-08-01
Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.
A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.
ERIC Educational Resources Information Center
Feher, Joseph J.; Ford, George D.
1995-01-01
Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…
Osmotic water transport in aquaporins: evidence for a stochastic mechanism
Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna
2013-01-01
We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676
Basic determinants of epicardial transudation.
Stewart, R H; Rohn, D A; Allen, S J; Laine, G A
1997-09-01
Myocardial edema formation, which has been shown to compromise cardiac function, and increased epicardial transudation (pericardial effusion) have been shown to occur after elevation of myocardial venous and lymphatic outflow pressures. The purposes of this study were to estimate the hydraulic conductance and osmotic reflection coefficient for the epicardium and to determine the effect of coronary sinus hypertension and cardiac lymphatic obstruction on epicardial fluid flux (JV,e/Ae). A Plexiglas hemispheric capsule was attached to the left ventricular epicardial surface of anesthetized dogs. JV,e/Ae was determined over 30-min periods for three intracapsular pressures (-5, -15, and -25 mmHg) and two intracapsular solutions exerting colloid osmotic pressures of 7.0 and 2.0 mmHg. Hydraulic conductance was estimated to be 3.7 +/- 0.5 microliters.h-1.cm-2.mmHg-1. An osmotic reflection coefficient of 0.9 was calculated from the difference in JV,e/Ae of 16.5 +/- 8.4 microliters.h-1.cm-2 between the two solutions. Graded coronary sinus hypertension induced a linear increase in JV,e/Ae, which was significantly greater in dogs without cardiac lymphatic occlusion than in those with occlusion.
NASA Astrophysics Data System (ADS)
Sahu, Jyoti; Juvekar, Vinay A.
2018-05-01
Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.
1987-07-29
Osmotic and Activity Coefficients for Aqueous Methane Sulfonic Acid Solutions at 25 deg C," J. Chem. and Eng. Data 18... osmotic coefficient and MSA activity coefficient have been measured by Coving- ton et al. (1973). The water vapor pressure of the solution can be obtained...from f2L(M) M_ (7)6.5 x 10" where -f is the activity coefficient . Values of the osmotic coefficient and activity coefficient (from
A three-compartment model of osmotic water exchange in the lung microvasculature.
Seale, K T; Harris, T R
2000-08-01
A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.
A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions
Lewus, Rachael A.; Levy, Nicholas E.; Lenhoff, Abraham M.; Sandler, Stanley I.
2018-01-01
Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. PMID:25378269
Non-ideal Solution Thermodynamics of Cytoplasm
Ross-Rodriguez, Lisa U.; McGann, Locksley E.
2012-01-01
Quantitative description of the non-ideal solution thermodynamics of the cytoplasm of a living mammalian cell is critically necessary in mathematical modeling of cryobiology and desiccation and other fields where the passive osmotic response of a cell plays a role. In the solution thermodynamics osmotic virial equation, the quadratic correction to the linear ideal, dilute solution theory is described by the second osmotic virial coefficient. Herein we report, for the first time, intracellular solution second osmotic virial coefficients for four cell types [TF-1 hematopoietic stem cells, human umbilical vein endothelial cells (HUVEC), porcine hepatocytes, and porcine chondrocytes] and further report second osmotic virial coefficients indistinguishable from zero (for the concentration range studied) for human hepatocytes and mouse oocytes. PMID:23840923
NASA Astrophysics Data System (ADS)
Shekaari, Hemayat; Mousavi, Sedighehnaz S.; Mansoori, Yagoub
2009-04-01
Osmotic coefficients, {φ}, electrical conductance data, Λ, and refractive indices, n D, of aqueous solutions of the ionic liquid, 1-pentyl-3-methylimidazolium chloride [PnMIm]Cl have been measured at T = (298.15, 308.15, 318.15, and 328.15) K. Measurements of osmotic coefficients were carried out by the vapor-pressure osmometry method (VPO). Osmotic coefficient values show that ion-solvent interactions are stronger at lower temperature. The osmotic coefficients were correlated to the Pitzer-ion interaction and modified NRTL (MNRTL) models. From these data, mean molal activity coefficients, γ±, and excess Gibbs free energies, G E, have been calculated. Electrical conductance data have been applied for determination of association constants, K a, and limiting molar conductances, Λ 0, using the low concentration chemical model (lcCM). Calculated ion-association constant, K a, values show that ion-association effects increase at high temperatures which is in agreement with osmotic coefficient results. Experimental results of refractive indices for the binary system are reported, and have been fitted by a polynomial expansion.
Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.
Tessier, Peter M; Lenhoff, Abraham M; Sandler, Stanley I
2002-01-01
Weak protein interactions are often characterized in terms of the osmotic second virial coefficient (B(22)), which has been shown to correlate with protein phase behavior, such as crystallization. Traditional methods for measuring B(22), such as static light scattering, are too expensive in terms of both time and protein to allow extensive exploration of the effects of solution conditions on B(22). In this work we have measured protein interactions using self-interaction chromatography, in which protein is immobilized on chromatographic particles and the retention of the same protein is measured in isocratic elution. The relative retention of the protein reflects the average protein interactions, which we have related to the second virial coefficient via statistical mechanics. We obtain quantitative agreement between virial coefficients measured by self-interaction chromatography and traditional characterization methods for both lysozyme and chymotrypsinogen over a wide range of pH and ionic strengths, yet self-interaction chromatography requires at least an order of magnitude less time and protein than other methods. The method thus holds significant promise for the characterization of protein interactions requiring only commonly available laboratory equipment, little specialized expertise, and relatively small investments of both time and protein. PMID:11867474
Miller, Mark S; Lay, Wesley K; Li, Shuxiang; Hacker, William C; An, Jiadi; Ren, Jianlan; Elcock, Adrian H
2017-04-11
There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparametrize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications-some previously reported by others and some that are new to this study-are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parametrization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields' descriptions of solute-solute interactions and further demonstrates that modifications to van der Waals parameters provide a simple route to optimizing agreement with experiment.
Miller, Mark S.; Lay, Wesley K.; Li, Shuxiang; Hacker, William C.; An, Jiadi; Ren, Jianlan; Elcock, Adrian H.
2017-01-01
There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparameterize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications – some previously reported by others and some that are new to this study – are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parameterization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields’ descriptions of solute-solute interactions, and further demonstrates that modifications to van der Waals parameters provides a simple route to optimizing agreement with experiment. PMID:28296391
Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme
Moon, Y. U.; Anderson, C. O.; Blanch, H. W.; ...
2000-03-27
Experimental data at 25 °C are reported for osmotic pressures of aqueous solutions containing lysozyme and any one of the following salts: ammonium sulfate, ammonium oxalate and ammonium phosphate at ionic strength 1 or 3M. Data were obtained using a Wescor Colloid Membrane Osmometer at lysozyme concentrations from about 4 to 20 grams per liter at pH 4, 7 or 8. Osmotic second virial coefficients for lysozyme were calculated from the osmotic-pressure data. All coefficients were negative, increasing in magnitude with ionic strength. Furthermore, tesults are insensitive to the nature of the anion, but rise slightly in magnitude as themore » size of the anion increases.« less
Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François
2017-10-19
Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.
Refilling of a Hydraulically Isolated Embolized Xylem Vessel: Model Calculations
VESALA, TIMO; HÖLTTÄ, TEEMU; PERÄMÄKI, MARTTI; NIKINMAA, EERO
2003-01-01
When they are hydraulically isolated, embolized xylem vessels can be refilled, while adjacent vessels remain under tension. This implies that the pressure of water in the refilling vessel must be equal to the bubble gas pressure, which sets physical constraints for recovery. A model of water exudation into the cylindrical vessel and of bubble dissolution based on the assumption of hydraulic isolation is developed. Refilling is made possible by the turgor of the living cells adjacent to the refilling vessel, and by a reflection coefficient below 1 for the exchange of solutes across the interface between the vessel and the adjacent cells. No active transport of solutes is assumed. Living cells are also capable of importing water from the water‐conducting vessels. The most limiting factors were found to be the osmotic potential of living cells and the ratio of the volume of the adjacent living cells to that of the embolized vessel. With values for these of 1·5 MPa and 1, respectively, refilling times were in the order of hours for a broad range of possible values of water conductivity coefficients and effective diffusion distances for dissolved air, when the xylem water tension was below 0·6 MPa and constant. Inclusion of the daily pattern for xylem tension improved the simulations. The simulated gas pressure within the refilling vessel was in accordance with recent experimental results. The study shows that the refilling process is physically possible under hydraulic isolation, while water in surrounding vessels is under negative pressure. However, the osmotic potentials in the refilling vessel tend to be large (in the order of 1 MPa). Only if the xylem water tension is, at most, twice atmospheric pressure, the reflection coefficient remains close to 1 (0·95) and the ratio of the volume of the adjacent living cells to that of the embolized vessel is about 2, does the osmotic potential stay below 0·4 MPa. PMID:12588721
Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.
Curry, M R; Shachar-Hill, B; Hill, A E
2001-05-15
The Kedem-Katchalsky (KK) equations are often used to obtain information about the osmotic properties and conductance of channels to water. Using human red cell membranes, in which the osmotic flow is dominated by Aquaporin-1, we show here that compared to NaCl the reflexion coefficient of the channel for methylurea, when corrected for solute volume exchange and for the water permeability of the lipid membrane, is 0.54. The channels are impermeable to these two solutes which would seem to rule out flow interaction and require a reflexion coefficient close to 1.0 for both. Thus, two solutes can give very different osmotic flow rates through a semi-permeable pore, a result at variance with both classical theory and the KK formulation. The use of KK equations to analyze osmotic volume changes, which results in a single hybrid reflexion coefficient for each solute, may explain the discrepancy in the literature between such results and those where the equations have not been employed. Osmotic reflexion coefficients substantially different from 1.0 cannot be ascribed to the participation of other 'hidden' parallel aqueous channels consistently with known properties of the membrane. Furthermore, we show that this difference cannot be due to second-order effects, such as a solute-specific interaction with water in only part of the channel, because the osmosis is linear with driving force down to zero solute concentration, a finding which also rules out the involvement of unstirred-layer effects. Reflexion coefficients smaller than 1.0 do not necessitate water-solute flow interaction in permeable aqueous channels; rather, the osmotic behaviour of impermeable molecular-sized pores can be explained by differences in the fundamental nature of water flow in regions either accessible or inaccessible to solute, created by a varying cross-section of the channel.
Miller, Mark S.; Lay, Wesley K.
2016-01-01
Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117
McBride, Devin W.; Rodgers, Victor G. J.
2013-01-01
The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733
1993-02-01
coefficient of water in the 3.2.3.2 Experimental Procedures and liquid phase Measurements Y2 activity coefficient of HC! In the liquid plhase (I) If one of...m 801.4499 + -109729.4/TI D - -296.8485 + 31565.01/1’ is the osmotic coefficient of KOH and The osmotic coefficient or KOH as a function or molarity...this area. optimized to fit the Perry’s Handbook data on HCI/H 2O binary equilibrium. 4-16 TAflLIA1 VAPOUR PRESSURE DATA ()F HCI/lIF/112 0 SOLUTIONS
Hydrodynamics of steady state phloem transport with radial leakage of solute
Cabrita, Paulo; Thorpe, Michael; Huber, Gregor
2013-01-01
Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189
NASA Astrophysics Data System (ADS)
Fu, Li; Merabia, Samy; Joly, Laurent
2017-11-01
Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.
Fu, Li; Merabia, Samy; Joly, Laurent
2017-11-24
Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.
Kalyuzhnyi, Yu V; Vlachy, Vojko; Dill, Ken A
2010-06-21
We use the AMSA, associative mean spherical theory of associative fluids, to study ion-ion interactions in explicit water. We model water molecules as hard spheres with four off-center square-well sites and ions as charged hard spheres with sticky sites that bind to water molecules or other ions. We consider alkali halide salts. The choice of model parameters is based on two premises: (i) The strength of the interaction between a monovalent ion and a water molecule is inversely proportional to the ionic (crystal) diameter sigma(i). Smaller ions bind to water more strongly than larger ions do, taking into account the asymmetry of the cation-water and anion-water interactions. (ii) The number of contacts an ion can make is proportional to sigma2(i). In short, small ions bind waters strongly, but only a few of them. Large ions bind waters weakly, but many of them. When both a monovalent cation and anion are large, it yields a small osmotic coefficient of the salt, since the water molecules avoid the space in between large ions. On the other hand, salts formed from one small and one large ion remain hydrated and their osmotic coefficient is high. The osmotic coefficients, calculated using this model in combination with the integral equation theory developed for associative fluids, follow the experimental trends, including the unusual behavior of caesium salts.
Elmoazzen, Heidi Y.; Elliott, Janet A.W.; McGann, Locksley E.
2009-01-01
The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations. PMID:19348741
2010-01-01
Starting from the original theoretical descriptions of osmotically induced water volume flow in membrane systems, a convenient procedure to determine the osmotic water permeability coefficient (Pos) and the relative nonosmotic volume (β) of individual protoplasts is presented. Measurements performed on protoplasts prepared from pollen grains and pollen tubes of Lilium longiflorum cv. Thunb. and from mesophyll cells of Nicotiana tabacum L. and Arabidopsis thaliana revealed low values for the osmotic water permeability coefficient in the range 5–20 μm · s−1 with significant differences in Pos, depending on whether β is considered or not. The value of β was determined using two different methods: by interpolation from Boyle-van’t Hoff plots or by fitting a solution of the theoretical equation for water volume flow to the whole volume transients measured during osmotic swelling. The values determined with the second method were less affected by the heterogeneity of the protoplast samples and were around 30% of the respective isoosmotic protoplast volume. It is therefore important to consider nonosmotic volume in the calculation of Pos as plant protoplasts behave as nonideal osmometers. PMID:17568979
Osmosis in Cortical Collecting Tubules
Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.
1974-01-01
This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the cell layer available for water transport, possibly due in part to transcellular shunting of osmotic flow; and second, such cellular constraints resulted in relatively small, approximately 15%, underestimates of Pf. PMID:4846767
The osmotic virial formulation of the free energy of polymer mixing.
Bosse, August W; Douglas, Jack F
2015-09-14
We derive an alternative formulation of the free energy of polymer mixing in terms of an osmotic virial expansion. Starting from a generalized free energy of mixing, and the assumption that the internal energy of mixing is analytic in the polymer composition variable, we demonstrate that the free energy of mixing can be represented as an infinite series in the osmotic virial coefficients. This osmotic virial formulation is consistent with, but more general than, a relationship derived for polymer blends with structured monomers by Dudowicz, Freed, and Douglas [J. Chem. Phys. 116, 9983 (2002)] and Douglas, Dudowicz, and Freed [J. Chem. Phys. 127, 224901 (2007)].
Jiang, Hao; Adidharma, Hertanto
2014-11-07
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.
2009-01-01
Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less
Control of rabbit dura mater optical properties with osmotical liquids
NASA Astrophysics Data System (ADS)
Yao, Lei; Cheng, Haiying; Luo, Qingming; Zhang, Wei; Zeng, Shaoqun; Tuchin, Valery V.
2002-04-01
An experimental study of controlling the optical properties of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using video camera and spectrometer was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) on transmittance (in vitro) and reflectance (in vivo) spectra of rabbit dura mater were reported. The significant decreasing of the reflectance and increasing of the transmittance of dura mater under action of osmotical solutions were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.
Osmotic dehydration of Braeburn variety apples in the production of sustainable food products
NASA Astrophysics Data System (ADS)
Ciurzyńska, Agnieszka; Cichowska, Joanna; Kowalska, Hanna; Czajkowska, Kinga; Lenart, Andrzej
2018-01-01
The aim of this work was to investigate the effects of osmotic dehydration conditions on the properties of osmotically pre-treated dried apples. The scope of research included analysing the most important mass exchange coefficients, i.e. water loss, solid gain, reduced water content and water activity, as well as colour changes of the obtained dried product. In the study, apples were osmotically dehydrated in one of two 60% solutions: sucrose or sucrose with an addition of chokeberry juice concentrate, for 30 and 120 min, in temperatures of 40 and 60°C. Ultrasound was also used during the first 30 min of the dehydration process. After osmotic pre-treatment, apples were subjected to innovative convective drying with the puffing effect, and to freeze-drying. Temperature and dehydration time increased the effectiveness of mass exchange during osmotic dehydration. The addition of chokeberry juice concentrate to standard sucrose solution and the use of ultrasound did not change the value of solid gain and reduced water content. Water activity of the dried apple tissue was not significantly changed after osmotic dehydration, while changes in colour were significant.
Osmotic effects of polyethylene glycol.
Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S
1988-04-01
Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Adidharma, Hertanto, E-mail: adidharm@uwyo.edu
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must thereforemore » be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.« less
OSMOTIC PROPERTIES OF HUMAN RED CELLS.
SAVITZ, D; SIDEL, V W; SOLOMON, A K
1964-09-01
The hematocrit method as a technique for determining red cell volume under anisotonic conditions has been reexamined and has been shown, with appropriate corrections for trapped plasma, to provide a true measure of cell volume. Cell volume changes in response to equilibration in anisotonic media were found to be much less than those predicted for an ideal osmometer; this anomalous behavior cannot be explained by solute leakage or by the changing osmotic coefficient of hemoglobin, but is quantitatively accounted for by the hypothesis that 20 per cent of intracellular water is bound to hemoglobin and is unavailable for participation in osmotic shifts.
Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)
NASA Astrophysics Data System (ADS)
Li, Xiaojin; Qu, Shuguo; Yu, Hongmei; Hou, Ming; Shao, Zhigang; Yi, Baolian
Water-flow rate across Nafion membrane in SPE electrolyzer cells was measured and modelled. From the analysis of water transport mechanisms in SPE water electrolysis, the water-flow rate through membrane can be described by the electro-osmotic drag. The calculated electro-osmotic drag coefficients, n d, for the membrane in SPE electrolysis cells at different temperatures were compared with literature and in good agreement with those of Ge et al. and Ise et al. To describe the water-flow rate through membrane more accurately, a linear fit of n d as a function of temperature for the membrane in SPE water electrolysis was proposed in this paper. This paper studied the membrane water-flow rate experimentally and mathematically, which is of importance in the designing and optimization of the process of SPE water electrolysis. This paper also provided a novel method for measuring the electro-osmotic drag coefficient of Nafion membrane in contact with liquid water, acid and methanol solutions, etc.
Wang, Tzu-Yu; Fang, Che-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong
2009-03-28
The effects of macromolecular architecture on the osmotic pressure pi and virial coefficients (B(2) and B(3)) of star and comb polymers in good solvents are studied by dissipative particle dynamics simulations for both dilute and semiconcentrated regimes. The dependence of the osmotic pressure on polymer concentration is directly calculated by considering two reservoirs separated by a semipermeable, fictitious membrane. Our simulation results show that the ratios A(n+1) identical with B(n+1)/R(g)(3n) are essentially constant and A(2) and A(3) are arm number (f) dependent, where R(g) is zero-density radius of gyration. The value of dimensionless virial ratio g = A(3)/A(2)(2) increases with arm number of stars whereas it is essentially arm number independent for comb polymers. In semiconcentrated regime the scaling relation between osmotic pressure and volume fraction, pi proportional to phi(lambda), still holds for both star and comb polymers. For comb polymers, the exponent lambda is close to lambda(*) (approximately = 2.73 for linear chains) and is independent of the arm number. However, for star polymers, the exponent lambda deviates from lambda(*) and actually grows with increasing the arm number. This may be attributed to the significant ternary interactions near the star core in the many-arm systems.
Thermo-Osmotic Flow in Thin Films.
Bregulla, Andreas P; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank
2016-05-06
We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
Stark, Austin C.; Andrews, Casey T.
2013-01-01
Coarse-grained (CG) simulation methods are now widely used to model the structure and dynamics of large biomolecular systems. One important issue for using such methods – especially with regard to using them to model, for example, intracellular environments – is to demonstrate that they can reproduce experimental data on the thermodynamics of protein-protein interactions in aqueous solutions. To examine this issue, we describe here simulations performed using the popular coarse-grained MARTINI force field, aimed at computing the thermodynamics of lysozyme and chymotrypsinogen self-interactions in aqueous solution. Using molecular dynamics simulations to compute potentials of mean force between a pair of protein molecules, we show that the original parameterization of the MARTINI force field is likely to significantly overestimate the strength of protein-protein interactions to the extent that the computed osmotic second virial coefficients are orders of magnitude more negative than experimental estimates. We then show that a simple down-scaling of the van der Waals parameters that describe the interactions between protein pseudo-atoms can bring the simulated thermodynamics into much closer agreement with experiment. Overall, the work shows that it is feasible to test explicit-solvent CG force fields directly against thermodynamic data for proteins in aqueous solutions, and highlights the potential usefulness of osmotic second virial coefficient measurements for fully parameterizing such force fields. PMID:24223529
Stark, Austin C; Andrews, Casey T; Elcock, Adrian H
2013-09-10
Coarse-grained (CG) simulation methods are now widely used to model the structure and dynamics of large biomolecular systems. One important issue for using such methods - especially with regard to using them to model, for example, intracellular environments - is to demonstrate that they can reproduce experimental data on the thermodynamics of protein-protein interactions in aqueous solutions. To examine this issue, we describe here simulations performed using the popular coarse-grained MARTINI force field, aimed at computing the thermodynamics of lysozyme and chymotrypsinogen self-interactions in aqueous solution. Using molecular dynamics simulations to compute potentials of mean force between a pair of protein molecules, we show that the original parameterization of the MARTINI force field is likely to significantly overestimate the strength of protein-protein interactions to the extent that the computed osmotic second virial coefficients are orders of magnitude more negative than experimental estimates. We then show that a simple down-scaling of the van der Waals parameters that describe the interactions between protein pseudo-atoms can bring the simulated thermodynamics into much closer agreement with experiment. Overall, the work shows that it is feasible to test explicit-solvent CG force fields directly against thermodynamic data for proteins in aqueous solutions, and highlights the potential usefulness of osmotic second virial coefficient measurements for fully parameterizing such force fields.
Plasma protein osmotic pressure equations and nomogram for sheep.
Yamada, S; Grady, M K; Licko, V; Staub, N C
1991-08-01
The equations developed by Landis and Pappenheimer (Handbook of Physiology. Circulation, 1963, p. 961-1034) for calculating the protein osmotic pressure of human plasma proteins have been frequently used for other animal species without regard to the fractional albumin concentration or correction for protein-protein interaction. Using an electronic osmometer, we remeasured the protein osmotic pressure of purified sheep albumin and sheep plasma partially depleted of albumin. We measured protein osmotic pressures of serial dilutions over the concentration range 0-180 g/l for albumin and 0-100 g/l for the albumin-depleted proteins at room temperature (26 degrees C). Using a nonlinear least squares parameter-fitting computer program, we obtained the equation of best fit for purified albumin, and then we used that equation together with the measured albumin fraction to obtain the best-fit equation for the nonalbumin proteins. The equation for albumin is IIcmH2O,39 degrees C = 0.382C + 0.0028C2 + 0.000013C3, where C is albumin concentration in g/l. The equation for the nonalbumin fraction is IIcmH2O,39 degrees C = 0.119C + 0.0016C2. Up to 200- and 100-g/l protein concentration, respectively, these equations give the least standard error of the estimate for each of the virial coefficients. The computed number-average molecular weight for the nonalbumin proteins is 222,000. Using the new equations, we constructed a nomogram, based on the one of Nitta and co-workers (Tohoku J. Exp. Med. 135: 43-49, 1981). We tested the nomogram using 144 random samples of sheep plasma and lymph from 31 sheep. We obtained a correlation coefficient of 0.99 between the measured and nomogram estimates of protein osmotic pressure.
Hydration of Kr(aq) in dilute and concentrated solutions
Chaudhari, Mangesh I.; Sabo, Dubravko; Pratt, Lawrence R.; ...
2014-10-13
Molecular dynamics simulations of water with both multi-Kr and single Kr atomic solutes are carried out to implement quasi-chemical theory evaluation of the hydration free energy of Kr(aq). This approach obtains free energy differences reflecting Kr–Kr interactions at higher concentrations. Those differences are negative changes in hydration free energies with increasing concentrations at constant pressure. The changes are due to a slight reduction of packing contributions in the higher concentration case. The observed Kr–Kr distributions, analyzed with the extrapolation procedure of Krüger et al., yield a modestly attractive osmotic second virial coefficient, B2 ≈ -60 cm 3/mol. Moreover, the thermodynamicmore » analysis interconnecting these two approaches shows that they are closely consistent with each other, providing support for both approaches.« less
Molecular origins of osmotic second virial coefficients of proteins.
Neal, B L; Asthagiri, D; Lenhoff, A M
1998-01-01
The thermodynamic properties of protein solutions are determined by the molecular interactions involving both solvent and solute molecules. A quantitative understanding of the relationship would facilitate more systematic procedures for manipulating the properties in a process environment. In this work the molecular basis for the osmotic second virial coefficient, B22, is studied; osmotic effects are critical in membrane transport, and the value of B22 has also been shown to correlate with protein crystallization behavior. The calculations here account for steric, electrostatic, and short-range interactions, with the structural and functional anisotropy of the protein molecules explicitly accounted for. The orientational dependence of the protein interactions is seen to have a pronounced effect on the calculations; in particular, the relatively few protein-protein configurations in which the apposing surfaces display geometric complementarity contribute disproportionately strongly to B22. The importance of electrostatic interactions is also amplified in these high-complementarity configurations. The significance of molecular recognition in determining B22 can explain the correlation with crystallization behavior, and it suggests that alteration of local molecular geometry can help in manipulating protein solution behavior. The results also have implications for the role of protein interactions in biological self-organization. PMID:9788942
NASA Astrophysics Data System (ADS)
Sergievskii, V. V.; Rudakov, A. M.
2006-11-01
An analysis of the accepted methods for calculating the activity coefficients for the components of binary aqueous solutions was performed. It was demonstrated that the use of the osmotic coefficients in auxiliary calculations decreases the accuracy of estimates of the activity coefficients. The possibility of calculating the activity coefficient of the solute from the concentration dependence of the water activity was examined. It was established that, for weak electrolytes, the interpretation of data on heterogeneous equilibria within the framework of the standard assumption that the dissociation is complete encounters serious difficulties.
Rat hepatocytes transport water mainly via a non-channel-mediated pathway.
Yano, M; Marinelli, R A; Roberts, S K; Balan, V; Pham, L; Tarara, J E; de Groen, P C; LaRusso, N F
1996-03-22
During bile formation by the liver, large volumes of water are transported across two epithelial barriers consisting of hepatocytes and cholangiocytes (i.e. intrahepatic bile duct epithelial cells). We recently reported that a water channel, aquaporin-channel-forming integral protein of 28 kDa, is present in cholangiocytes and suggested that it plays a major role in water transport by these cells. Since the mechanisms of water transport across hepatocytes remain obscure, we performed physiological, molecular, and biochemical studies on hepatocytes to determine if they also contain water channels. Water permeability was studied by exposing isolated rat hepatocytes to buffers of different osmolarity and measuring cell volume by quantitative phase contrast, fluorescence and laser scanning confocal microscopy. Using this method, hepatocytes exposed to hypotonic buffers at 23 degrees C increased their cell volume in a time and osmolarity-dependent manner with an osmotic water permeability coefficient of 66.4 x 10(-4) cm/s. In studies done at 10 degrees C, the osmotic water permeability coefficient decreased by 55% (p < 0.001, at 23 degrees C; t test). The derived activation energy from these studies was 12.8 kcal/mol. After incubation of hepatocytes with amphotericin B at 10 degrees C, the osmotic water permeability coefficient increased by 198% (p < 0.001) and the activation energy value decreased to 3.6 kcal/mol, consistent with the insertion of artificial water channels into the hepatocyte plasma membrane. Reverse transcriptase polymerase chain reaction with hepatocyte RNA as template did not produce cDNAs for three of the known water channels. Both the cholesterol content and the cholesterol/phospholipid ratio of hepatocyte plasma membranes were significantly (p < 0.005) less than those of cholangiocytes; membrane fluidity of hepatocytes estimated by measuring steady-state anisotropy was higher than that of cholangiocytes. Our data suggests that the osmotic flow of water across hepatocyte membranes occurs mainly by diffusion via the lipid bilayer (not by permeation through water channels as in cholangiocytes).
NASA Astrophysics Data System (ADS)
Yokokawa, Takumi; Nishidate, Izumi
2016-04-01
We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.
Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L
2015-09-01
The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.
Kiani, Hosein; Karimi, Farzaneh; Labbafi, Mohsen; Fathi, Morteza
2018-06-01
The objective of this paper was to study the moisture and salt diffusivity during ultrasonic assisted-osmotic dehydration of cucumbers. Experimental measurements of moisture and salt concentration versus time were carried out and an inverse numerical method was performed by coupling a CFD package (OpenFOAM) with a parameter estimation software (DAKOTA) to determine mass transfer coefficients. A good agreement between experimental and numerical results was observed. Mass transfer coefficients were from 3.5 × 10 -9 to 7 × 10 -9 m/s for water and from 4.8 × 10 -9 m/s to 7.4 × 10 -9 m/s for salt at different conditions (diffusion coefficients of around 3.5 × 10 -12 -11.5 × 10 -12 m 2 /s for water and 5 × 10 -12 m/s-12 × 10 -12 m 2 /s for salt). Ultrasound irradiation could increase the mass transfer coefficient. The values obtained by this method were closer to the actual data. The inverse simulation method can be an accurate technique to study the mass transfer phenomena during food processing. Copyright © 2018 Elsevier B.V. All rights reserved.
Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules
NASA Astrophysics Data System (ADS)
Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.
2014-01-01
Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.
Niu, Dan; Zhao, Gang; Liu, Xiaoli; Zhou, Ping; Cao, Yunxia
2016-03-01
High-survival-rate cryopreservation of endothelial cells plays a critical role in vascular tissue engineering, while optimization of osmotic injuries is the first step toward successful cryopreservation. We designed a low-cost, easy-to-use, microfluidics-based microperfusion chamber to investigate the osmotic responses of human umbilical vein endothelial cells (HUVECs) at different temperatures, and then optimized the protocols for using cryoprotective agents (CPAs) to minimize osmotic injuries and improve processes before freezing and after thawing. The fundamental cryobiological parameters were measured using the microperfusion chamber, and then, the optimized protocols using these parameters were confirmed by survival evaluation and cell proliferation experiments. It was revealed for the first time that HUVECs have an unusually small permeability coefficient for Me2SO. Even at the concentrations well established for slow freezing of cells (1.5 M), one-step removal of CPAs for HUVECs might result in inevitable osmotic injuries, indicating that multiple-step removal is essential. Further experiments revealed that multistep removal of 1.5 M Me2SO at 25°C was the best protocol investigated, in good agreement with theory. These results should prove invaluable for optimization of cryopreservation protocols of HUVECs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita
To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of themore » Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.« less
Persson, Johan; Morsing, Peter; Grände, Per-Olof
2004-03-01
Vasopeptidase inhibition is a new antihypertensive approach combining inhibition of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), but severe oedema, mainly angio-oedema, has been reported. As ACE and NEP catalyse degradation of the permeability-increasing peptide bradykinin, and NEP also catalyses degradation of permeability-increasing peptides such as atrial natriuretic peptide, substance P, endothelin-1 and angiotensin II, vasopeptidase inhibition may increase microvascular permeability. To analyse the effects of vasopeptidase inhibition on permeability. The study was performed on the autoperfused cat calf skeletal muscle, evaluating the effects on fluid and protein permeability of a clinically relevant dose of the vasopeptidase inhibitor, omapatrilat. The effects were compared with those of the vehicle, of selective ACE and NEP inhibition, and of omapatrilat during bradykinin receptor blockade. Effects on fluid permeability were determined with a capillary filtration coefficient (CFC) technique, and effects on protein permeability were assessed from changes in the osmotic reflection coefficient for albumin. After 1.5 h of intravenous infusion of omapatrilat (0.35 mg/kg per hour), mean arterial pressure was reduced from 114 mmHg to 86 mmHg (P < 0.01) and skeletal muscle vascular resistance was reduced from 14.5 peripheral resistance units (PRU) to 11.5 PRU (P < 0.05). CFC was increased by 22% (P < 0.01) and the reflection coefficient was decreased by 17% (P < 0.01). Infusion of vehicle had no effects. Inhibition of NEP increased permeability without affecting blood pressure, whereas ACE inhibition decreased blood pressure without affecting permeability. The increase in permeability associated with omapatrilat was reduced by bradykinin blockade. A clinically relevant antihypertensive dose of omapatrilat reduces vascular resistance and increases fluid and protein permeability, the permeability effect more by inhibition of NEP than by inhibition of ACE, by a mechanism involving bradykinin.
Dagade, Dilip H; Shetake, Poonam K; Patil, Kesharsingh J
2007-07-05
The density and osmotic coefficient data for solutions of 15-crown-5 (15C5) in water and in CCl4 solvent systems at 298.15 K have been reported using techniques of densitometry and vapor pressure osmometry in the concentration range of 0.01-2 mol kg-1. The data are used to obtain apparent molar and partial molar volumes, activity coefficients of the components as a function of 15C5 concentration. Using the literature heat of dilution data for aqueous system, it has become possible to calculate entropy of mixing (DeltaS(mix)), excess entropy of solution (DeltaS(E)), and partial molar entropies of the components at different concentrations. The results of all these are compared to those obtained for aqueous 18-crown-6 solutions reported earlier. It has been observed that the partial molar volume of 15C5 goes through a minimum and that of water goes through a maximum at approximately 1.2 mol kg(-1) in aqueous solutions whereas the opposite is true in CCl4 medium but at approximately 0.5 mol kg(-1). The osmotic and activity coefficients of 15C5 and excess free energy change for solution exhibit distinct differences in the two solvent systems studied. These results have been explained in terms of hydrophobic hydration and interactions in aqueous solution while weak solvophobic association of 15C5 molecules in CCl4 solutions is proposed. The data are further subjected to analysis by applying McMillan-Mayer and Kirkwood-Buff theories of solutions. The analysis shows that osmotic second virial coefficient value for 15C5 is marginally less than that of 18C6 indicating that reduction in ring flexibility does not affect the energetics of the interactions much in aqueous solution while the same gets influenced much in nonpolar solvent CCl4.
Dynamics of osmosis in a porous medium.
Cardoso, Silvana S S; Cartwright, Julyan H E
2014-11-01
We derive from kinetic theory, fluid mechanics and thermodynamics the minimal continuum-level equations governing the flow of a binary, non-electrolytic mixture in an isotropic porous medium with osmotic effects. For dilute mixtures, these equations are linear and in this limit provide a theoretical basis for the widely used semi-empirical relations of Kedem & Katchalsky (Kedem & Katchalsky 1958 Biochim. Biophys. Acta 27, 229-246 (doi:10.1016/0006-3002(58)90330-5), which have hitherto been validated experimentally but not theoretically. The above linearity between the fluxes and the driving forces breaks down for concentrated or non-ideal mixtures, for which our equations go beyond the Kedem-Katchalsky formulation. We show that the heretofore empirical solute permeability coefficient reflects the momentum transfer between the solute molecules that are rejected at a pore entrance and the solvent molecules entering the pore space; it can be related to the inefficiency of a Maxwellian demi-demon.
The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles.
Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo
2016-01-01
Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient ( P f ) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, P f determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast P f . We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites ( P f / P s ), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements, which very likely involve considerable cell volume changes within seconds to hours.
The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles
Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo
2016-01-01
Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements, which very likely involve considerable cell volume changes within seconds to hours. PMID:27695468
Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects
NASA Astrophysics Data System (ADS)
Revil, A.
2017-05-01
A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
Mehta, Chirag M; White, Edward T; Litster, James D
2013-01-01
Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.
Concentration polarization of hyaluronan on the surface of the synovial lining of infused joints
Lu, Y; Levick, JR; Wang, W
2004-01-01
Hyaluronan (HA) in joints conserves the lubricating synovial fluid by making trans-synovial fluid escape almost insensitive to pressure elevation (e.g. effusions, joint flexion). This phenomenon, ‘outflow buffering’, was discovered during HA infusion into the rabbit knee joint cavity. It was also found that HA is partially reflected by the joint lining (molecular sieving), and that the reflected fraction R decreases as trans-synovial filtration rate Q is increased. It was postulated therefore that outflow buffering is mediated by HA reflection. Reflection creates a HA concentration polarization layer, the osmotic pressure of which opposes fluid loss. A steady-state, cross-flow ultrafiltration model was previously used to explain the outflow buffering and negative R-vs.-Q relation. However, the steady-state, cross-perfusion assumptions restricted the model's applicability for an infused, dead-end cavity or a non-infused joint during cyclical motion. We therefore developed a new, non-steady-state model which describes the time course of dead-end, partial HA ultrafiltration. The model describes the progressive build-up of a HA concentration polarization layer at the synovial surface over time. Using experimental parameter values, the model successfully accounts for the observed negative R-vs.-Q relation and shows that the HA reflected fraction (R) also depends on HA diffusivity, membrane area expansion and the synovial HA reflection coefficient. The non-steady-state model thus explains existing experimental work, and it is a key stage in understanding synovial fluid turnover in intact, moving, human joints or osteoarthritic joints treated by HA injections. PMID:15579541
External solution driving forces for isotonic fluid absorption in proximal tubules.
Andreoli, T E; Schafer, J A
1979-02-01
We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
Coakley, Raymond D.; Button, Brian; Henderson, Ashley G.; Zeman, Kirby L.; Alexis, Neil E.; Peden, David B.; Lazarowski, Eduardo R.; Davis, C. William; Bailey, Summer; Fuller, Fred; Almond, Martha; Qaqish, Bahjat; Bordonali, Elena; Rubinstein, Michael; Bennett, William D.; Kesimer, Mehmet; Boucher, Richard C.
2015-01-01
Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. Objectives: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. Methods: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. Measurements and Results: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. Conclusions: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis. PMID:25909230
Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
Doster, Wolfgang; Longeville, Stéphane
2007-08-15
The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.
Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang
2018-01-01
The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2 ) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.
Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe
2013-01-01
Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650
Effects of plasma proteins on sieving of tracer macromolecules in glomerular basement membrane.
Lazzara, M J; Deen, W M
2001-11-01
It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at physiological levels, and it was suggested that most of this increase might have been the result of steric interactions between BSA and the tracers (5). To test this hypothesis, we extended the theory for the sieving of macromolecular tracers to account for the presence of a second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing the sieving coefficient. The magnitude of this partitioning effect depends on solute size and membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone explained only about one-third of the observed increase in the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For protein mixtures, the theoretical effect of 6 g/dl BSA on the partitioning of spherical tracers was indistinguishable from that of 3 g/dl BSA and 3 g/dl IgG. This suggests that for partitioning and sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass concentration matching that of total plasma protein. The effect of plasma proteins on tracer partitioning is expected to influence sieving not only in isolated GBM but also in intact glomerular capillaries in vivo.
Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods.
Vargas, F F
1968-01-01
The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 +/- 0.8.10(-8) cm/sec cm H(2)O in perfused axons and 3.2 +/- 0.6.10(-8) cm/sec cm H(2)O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 +/- 0.6 x 10(-10) cm/sec cm H(2)O and 4.8 +/- 0.9 x 10(-10) cm/sec cm H(2)O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed.
Broadbent, Amber L; Fell, Rob J; Codd, Sarah L; Lightley, Kim A; Konagurthu, Sanjay; Koehler-King, Dory G; Seymour, Joseph D
2010-09-15
The hydration of 4 mg Cardura XL (Pfizer), a commercially available gastrointestinal therapeutic system (GITS) tablet, was investigated using magnetic resonance imaging (MRI). A short echo time (T(e)=2.81 ms) technique for MRI of the hydration of a GITS tablet was implemented. From the MR images, signal intensity profiles were generated and interpreted in the context of diffusive and osmotic transport mechanisms. A distinct transition from diffusive to osmotic transport was measured at a timescale relevant to the measured drug release time. Diffusion and osmotic rate coefficients for water in the drug and polymer sweller layers of the tablet were quantified. Spin-lattice T(1) and spin-spin T(2) relaxation times of the water signal from within the tablet were measured as a function of hydration time in order to incorporate the effects of relaxation into interpretation of signal intensity and provide unique information on the distribution of water in different physical and chemical environments within the tablet. Copyright 2010 Elsevier B.V. All rights reserved.
Osmotic Water Permeability of Isolated Protoplasts. Modifications during Development1
Ramahaleo, Tiana; Morillon, Raphaël; Alexandre, Joël; Lassalles, Jean-Paul
1999-01-01
A transference chamber was developed to measure the osmotic water permeability coefficient (Pos) in protoplasts 40 to 120 μm in diameter. The protoplast was held by a micropipette and submitted to a steep osmotic gradient created in the transference chamber. Pos was derived from the changes in protoplast dimensions, as measured using a light microscope. Permeabilities were in the range 1 to 1000 μm s−1 for the various types of protoplasts tested. The precision for Pos was ≤40%, and within this limit, no asymmetry in the water fluxes was observed. Measurements on protoplasts isolated from 2- to 5-d-old roots revealed a dramatic increase in Pos during root development. A shift in Pos from 10 to 500 μm s−1 occurred within less than 48 h. This phenomenon was found in maize (Zea mays), wheat (Triticum aestivum), and rape (Brassica napus) roots. These results show that early developmental processes modify water-transport properties of the plasma membrane, and that the transference chamber is adapted to the study of water-transport mechanisms in native membranes. PMID:10069827
Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaron D. Wilson; Christopher J. Orme
2014-12-01
Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonicmore » acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.« less
Cytoplasmic involvement in ADH-mediated osmosis across toad urinary bladder.
DiBona, D R
1983-11-01
Several lines of investigation have suggested that antidiuretic hormone (ADH) may have direct effects on the cytoskeletal organization of granular epithelial cells in the toad urinary bladder. To some extent, these effects are in concert with the well-established action of ADH on the hydraulic permeability of the mucosal plasma membrane, but it appears that other conformational adjustments (largely cytoplasmic) may be of comparable importance. The thrust of this review is that the hormone brings about a general restructuring of the granular cells so that the epithelium as a whole may function efficiently as an osmotic pathway. Details of cytoskeletal changes are far from clear as yet, but interference with or modulation of these particular effects infer that cytoplasmic organization is the seat of feedback control of osmotic flow rate, the basis for viability in the presence of dramatic cytosolic dilution and a major factor in the observed disparity in osmotic and diffusional permeability coefficients. In the interest of stimulating new thoughts and experiments in this area, a number of preliminary findings have been freely cited.
NASA Astrophysics Data System (ADS)
Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz
2018-04-01
Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.
Activity coefficients from molecular simulations using the OPAS method
NASA Astrophysics Data System (ADS)
Kohns, Maximilian; Horsch, Martin; Hasse, Hans
2017-10-01
A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.
Naftalin, R J; Tripathi, S
1985-01-01
Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in both directions by brief direct current pulses. The short latency of onset and cessation of flow (less than 2 s), absence of polarization potentials, and high electro-osmotic coefficients (range 50-520 mol water F-1), together with the presence of streaming potentials during osmotically generated water flows indicate electro-osmotic water flow through hydrated channels in the tight junctions and/or lateral intercellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3989717
Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
Hammel, H T; Schlegel, Whitney M
2005-01-01
In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to include the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure.
Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan
2015-01-01
In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.
NASA Astrophysics Data System (ADS)
Marcus, Yizhak
2018-06-01
The effect of ions on the structure of water in dilute solutions, whether they are structure-makers or structure-breakers, is manifested also in the volatility of the water. For more than 40 uni-univalent electrolytes, there is a linearly increasing relationship between 2φ(m = 0.4) - φ(m = 0.2), where φ is the osmotic coefficient and m is the molality, and the difference between the viscosity B-coefficients of the cation and anion. Exceptions to this relationship are electrolytes with highly structure-making anions and with hydrophobic cations.
Filtration Coefficient of the Axon Membrane As Measured with Hydrostatic and Osmotic Methods
Vargas, Fernando F.
1968-01-01
The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 ± 0.8.10-8 cm/sec cm H2O in perfused axons and 3.2 ± 0.6.10-8 cm/sec cm H2O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 ± 0.6 x 10-10 cm/sec cm H2O and 4.8 ± 0.9 x 10-10 cm/sec cm H2O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed. PMID:5642470
Poroelasticity-driven lubrication in hydrogel interfaces.
Reale, Erik R; Dunn, Alison C
2017-01-04
It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m -2 , as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe C . A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter R. Zalupski; Rocklan McDowell; Simon L. Clegg
Isopiestic vapor pressures were measured at 298.15 K for aqueous NaNO3 + Eu(NO3)3 solutions, using NaCl(aq) as the reference standard. Measurements were made for both binary (single salt) solutions and for ternary solutions of the following NaNO3 ionic strength fractions: 0.05995, 0.08749, 0.16084, 0.27709, and 0.36313 over the water activity range 0.8951 = aw = 0.9832. (These ionic strength fractions correspond to NaNO3 molality fractions 0.27675, 0.36519, 0.53489, 0.69695, and 0.77381, respectively.) The results, and those of other studies for the two pure aqueous solutions, were used to determine the Pitzer model parameters for aqueous Eu(NO3)3 for molalities up tomore » 3 mol kg–1 and the two ternary (mixture) parameters ?Eu,Na = 0.367 ± 0.0035 and ?Eu,Na,NO3 = -0.0743 ± 0.0014. Some deviations of the measurements from the fitted model, of the order of +0.0075 in the osmotic coefficient, were noted for mixtures containing less than about 1 mol kg–1 total NO3–. The use of the mixture parameters in the Pitzer model yields predicted trace activity coefficients of Eu3+ in 1 mol kg–1 aqueous NaNO3 almost a factor of 2 greater than if they are omitted.« less
Effects of vasopressin on the isolated perfused human collecting tubule.
Yanagawa, N; Trizna, W; Bar-Khayim, Y; Fine, L G
1981-05-01
Cortical collecting tubules (CCT) were dissected from the surviving normal tissue of human kidneys removed at operation for either carcinoma or calculus. These CCT's were perfused in vitro shortly after the nephrectomy was performed. Transtubular potential differences in different tubules varied from +3.2 to -2.0 mV and were reduced towards zero by lowering the temperature or by adding ouabain to the bath. In the absence of vasopressin, tubules were essentially impermeable to water with extremely low net water fluxes even in the presence of a transtubular osmotic gradient. Addition of vasopressin to the bath caused the transtubular osmotic water permeability coefficient to increase to values of 125, 175, and 155 X 10(-4) cm/sec in three tubules thus studied. These results demonstrate close similarities between the human CCT and the more extensively studied rabbit CCT.
Some Peculiarities of Water Transport through Plasticized Nonporous Membranes
Marian, S.; Jagur-Grodzinski, J.; Kedem, O.; Vofsi, D.
1970-01-01
“Liquid” and “plasticized” solvent membranes are of interest as possible analogues of biological systems. Semipermeable homogeneous films are prepared by plasticizing polyvinylchloride with organic phosphates. Water permeability of such films is relatively high. For a material containing 70% of 1.4-dihydroxyphenyl-bis(dibutylphosphate), the diffusion coefficient of water at room temperature was estimated to be about 1 × 10-6 cm2/sec. Conditioning of a plasticized membrane, under the osmotic gradient of solution of sodium nitrate, leads to profound changes in its morphology and to a drastic increase of its water permeability. The induced changes are reversible to a large extent. Their reversibility in various solutions may be correlated with the respective differences in permselectivity. The structure of expanded membranes and the mechanism of changes taking place under the osmotic gradients are discussed. ImagesFigure 2 PMID:5496907
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.
2000-01-01
Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.
Calculating the thermodynamic properties of aqueous solutions of alkali metal carboxylates
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.; Zhukova, T. V.
2014-06-01
A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.
Braziel, S; Sullivan, K; Lee, S
2018-01-29
Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.
Quigley, A; Williams, D R
2016-08-12
Self-interaction chromatography (SIC) has established itself as an important experimental technique for the measurement of the second osmotic virial coefficients B22. B22 data are critical for understanding a range of protein solution phenomena, particularly aggregation and crystallisation. A key limitation to the more extensive use of SIC is the need to develop a method for immobilising each specific protein of interest onto a chromatographic support. This requirement is both a time and protein consuming constraint, which means that SIC cannot be used as a high throughput method for screening a wide range of proteins and their variants. Here an experimental framework is presented for estimating B22 values using Similar Interaction Chromatography (SimIC). This work uses experimental B23 and B32 data for lysozyme, lactoferrin, catalase and concanavalin A to reliably estimate B22 using arithmetic mean field approximations and is demonstrated to give good agreement with SIC measurements of B22 for the same proteins. SimIC could form the basis of a rapid protein variant screening methods to assess the developability of protein therapeutic candidates for industrial and academic researchers with respect to aggregation behaviour by eluting target proteins through a series of well-characterised protein immobilized reference columns. Copyright © 2016. Published by Elsevier B.V.
Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe
2005-12-08
This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).
Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua
2008-05-14
A density functional theory (DFT) in the framework of cell model is proposed to calculate the structural and thermodynamic properties of aqueous DNA-electrolyte solution with finite DNA concentrations. The hard-sphere contribution to the excess Helmholtz energy functional is derived from the modified fundamental measure theory, and the electrostatic interaction is evaluated through a quadratic functional Taylor expansion around a uniform fluid. The electroneutrality in the cell leads to a variational equation with a constraint. Since the reference fluid is selected to be a bulk phase, the Lagrange multiplier proves to be the potential drop across the cell boundary (Donnan potential). The ion profiles and electrostatic potential profiles in the cell are calculated from the present DFT-cell model. Our DFT-cell model gives better prediction of ion profiles than the Poisson-Boltzmann (PB)- or modified PB-cell models when compared to the molecular simulation data. The effects of polyelectrolyte concentration, ion size, and added-salt concentration on the electrostatic potential difference between the DNA surface and the cell boundary are investigated. The expression of osmotic coefficient is derived from the general formula of grand potential. The osmotic coefficients predicted by the DFT are lower than the PB results and are closer to the simulation results and experimental data.
Tailoring magnetic nanoparticle for transformers application.
Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C
2010-02-01
In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
The equilibrium sedimentation of hyaluronic acid and of two synthetic polymers
Nichol, L. W.; Ogston, A. G.; Preston, B. N.
1967-01-01
1. The method of equilibrium sedimentation has been investigated as an alternative to osmotic-pressure measurement for determining thermodynamic properties of polymer solutions at relatively high concentrations. 2. The simplifications that must be made in the theoretical treatment are discussed. 3. Measurements have been made on samples of polyethylene glycol, neutralized polymethacrylic acid and hyaluronic acid. With the first and third, values of the `non-ideality coefficients' have been obtained that agree with those obtained from osmotic measurements on the same materials. 4. Evidence has been obtained of the presence in hyaluronic acid preparations of a fraction that has either a lower degree of thermodynamic non-ideality or a higher density increment than the bulk of the sample. This fraction is not protein. ImagesFig. 3.Fig. 4.Fig. 5.Fig. 7.Fig. 8.Fig. 9.Fig. 11.Fig. 12.Fig. 13.Fig. 14. PMID:6029600
Brownian dynamics of sterically-stabilized colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, W.E.; Radke, C.J.; Denn, M.M.
1994-02-01
One application where microstructure plays a critical role is in the production of specialty ceramics, where colloidal suspensions act as precursors; here the microstructure influences the structural, thermal, optical and electrical properties of the ceramic products. Using Brownian dynamics, equilibrium and dynamic properties are calculated for colloidal suspensions that are stabilized through the Milner, Witten and Cates (1988) steric potential. Results are reported for osmotic pressures, radial distributions functions, static structure factors, and self-diffusion coefficients. The sterically-stabilized systems are also approximated by equivalent hard spheres, with good agreement for osmotic pressure and long-range structure. The suitability of the potential tomore » model the behavior of a real system is explored by comparing static structure factors calculated from Brownian dynamics simulations to those measured using SANS. Finally, the effects of Hamaker and hydrodynamic forces on calculated properties are investigated.« less
Osmotic and Salted Brush Phase of Polyelectrolyte Brushes
NASA Astrophysics Data System (ADS)
Helm, Christane A.; Ahrens, Heiko; Förster, Stephan
2004-03-01
Amphiphilic block copolymers consisting of a fluid hydrophobic Poly(ethyletylene) (PEE), and a Poly(styrenesulfonate) (PSS) part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic blocks of PEE_114PSS_83 and PEE_144PSS_136 constitute a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush with counterion incorporation. A slight thickness increase on monolayer compression is found which can be explained by the strong stretching of the brushes. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area (exponent -1/3), and with the salt concentration (exponent ca. -1/5). With Grazing Incidence Diffraction, the lateral order of the polyelectrolyte chains can be detected.
Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian
2013-01-01
Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20–25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration. PMID:24303184
Masson, Patrick; Lushchekina, Sofya; Schopfer, Lawrence M; Lockridge, Oksana
2013-09-15
CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E'. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈10⁸ M⁻¹·min⁻¹). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp⁷⁰ in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E', indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E'. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His⁴³⁸, leading to the less reactive form E'.
Effects of High Pressure on Membrane Ion Binding and Transport.
1980-12-31
diffusion in red cell membranes have appar- ent activation volumes of 40 ml/mol in agreement with data on liposomes, and ,6) perturbations in osmotic...Extrapolated to the Red Cell? (page 15) B. Pressure Dependence of Butanol Diffusion (page 17) C. Development of a High Pressure Stop-Flow (page 19...page 16 Figure 3 -- Pressure effect on the diffusion coefficient n-butanol in packed human red cells ................... page 18 Figure 9
Pleural effusions and diseases of the pleura.
Noone, K E
1985-09-01
There are four factors that govern fluid movement to or from the pleural space: hydrostatic pressure, colloid osmotic pressure, filtration coefficient, and lymphatic function. When any of these factors are altered, fluid accumulates within the pleural space. Congestive heart failure, pancreatitis, neoplasia, hypoalbuminemia, and pulmonary thromboembolism can evoke pleural effusions by altering normal fluid transport mechanisms. This approach to pleural effusion helps to explain fluid accumulation. Chylothorax, hemothorax, and empyema are also covered in the article.
Peritoneal fluid transport in CAPD patients with different transport rates of small solutes.
Sobiecka, Danuta; Waniewski, Jacek; Weryński, Andrzej; Lindholm, Bengt
2004-01-01
Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. 44 CAPD patients were placed in low (n = 6), low-average (n = 13), high-average (n = 19), and high (n = 6) transport groups according to a modified peritoneal equilibration test (PET). The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker.The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: (1) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; (2) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and (3) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (K(BD)) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb-Randerson-Farrell model. The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher K(BD) for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded unrealistic values of fluid transport parameters that differed from those estimated by models OS and P. The K(BD) values for small solutes were significantly different among the groups, and did not correlate with fluid transport parameters for model OS. The difference in fluid transport between the different transport groups was due only to the differences in the rate of disappearance of the overall osmotic pressure of the dialysate, which was a combined result of the transport rate of glucose and other small solutes. Although the glucose gradient is the major factor influencing ultrafiltration rate, other solutes, such as urea, are also of importance. The counteractive effect of plasma small solutes on transcapillary ultrafiltration was found to be especially notable in low transport patients. Thus, glucose gradient alone should not be considered the only force that shapes the ultrafiltration profile during peritoneal dialysis. We did not find any correlations between diffusive mass transport coefficients for small solutes and fluid transport parameters such as osmotic conductance or fluid and volume marker absorption. We may thus conclude that the pathway(s) for fluid transport appears to be partly independent from the pathway(s) for small solute transport, which supports the hypothesis of different pore types for fluid and solute transport.
The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter.
Yeste, Marc; Briz, Mailo; Pinart, Elisabeth; Sancho, Sílvia; Bussalleu, Eva; Bonet, Sergi
2010-06-01
Predicting the fertility outcome of ejaculates is very important in the field of porcine reproduction. The aims of this study were to determine the effects of different osmotic treatments on boar spermatozoa and to correlate them with fertility and prolificacy, assessed as non-return rates within 60 days (NRR(60d)) of the first inseminations, and litter size (LS), respectively. Sperm samples (n=100) from one hundred healthy Piétrain boars were used to assess 48 treatments combining different osmolalities (ranged between 100 and 4000 mOsm kg(-1)), different compounds used to prepare anisotonic solutions, and two different modalities: return and non-return to isotonic conditions. Sperm quality was evaluated before and after applying the treatments on the basis of analyses of sperm viability, motility, morphology and percentages of acrosome-intact spermatozoa. Statistical analyses were performed using a one-way ANOVA and post hoc Tukey's test, linear regression analyses (Pearson correlation and multiple regression) and Jackknife cross-validation. Although three conventional parameters: sperm viability, sperm morphology and the percentages of acrosome-intact spermatozoa were significantly correlated with NRR(60d) and with LS, their respective osmotic tolerance parameters (defined for each parameter and treatment regarding with negative control) presented a higher Pearson coefficient with both fertility and prolificacy in three treatments (150 mOsm kg(-1) with non-return to isotonic conditions, 200 mOsm kg(-1) with return and 500 mOsm kg(-1) using sodium citrate and non-return to isotonic conditions). We conclude that osmotic resistance in sperm viability, sperm morphology and acrosome-intactness in the treatments mentioned above could be assessed along with classical parameters to better predict the fertilising ability of a given ejaculate. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Using wave intensity analysis to determine local reflection coefficient in flexible tubes.
Li, Ye; Parker, Kim H; Khir, Ashraf W
2016-09-06
It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the method and assess its potential clinical use. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.
The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less
NASA Astrophysics Data System (ADS)
Ye, Qian; Jiang, Yikun; Lin, Haoze
2017-03-01
In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.
NASA Astrophysics Data System (ADS)
Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.
2017-06-01
The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.
Bolin, Greta; Dubansky, Benjamin; Burggren, Warren W
2017-02-01
The metanephric kidneys of the chicken embryo, along with the chorioallantoic membrane, process water and ions to maintain osmoregulatory homeostasis. We hypothesized that changes in relative humidity (RH) and thus osmotic conditions during embryogenesis would alter the developmental trajectory of embryonic kidney function. White leghorn chicken eggs were incubated at one of 25-30% relative humidity, 55-60% relative humidity, and 85-90% relative humidity. Embryos were sampled at days 10, 12, 14, 16, and 18 to examine embryo and kidney mass, glomerular characteristics, body fluid osmolalities, hematological properties, and whole embryo oxygen consumption. Low and especially high RH elevated mortality, which was reflected in a 10-20% lower embryo mass on D18. Low RH altered several glomerular characteristics by day 18, including increased numbers of glomeruli per kidney, increased glomerular perfusion, and increased total glomerular volume, all indicating potentially increased functional kidney capacity. Hematological variables and plasma and amniotic fluid osmolalities remained within normal physiological values. However, the allantoic, amniotic and cloacal fluids had a significant increase in osmolality at most developmental points sampled. Embryonic oxygen consumption increased relative to control at both low and high relative humidities on Day 18, reflecting the increased metabolic costs of osmotic stress. Major differences in both renal structure and performance associated with changes in incubation humidity occurred after establishment of the metanephric kidney and persisted into late development, and likely into the postnatal period. These data indicate that the avian embryo deserves to be further investigated as a promising model for fetal programming of osmoregulatory function, and renal remodeling during osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.
The classical equation of state of fully ionized plasmas
NASA Astrophysics Data System (ADS)
Eisa, Dalia Ahmed
2011-03-01
The aim of this paper is to calculate the analytical form of the equation of state until the third virial coefficient of a classical system interacting via an effective potential of fully Ionized Plasmas. The excess osmotic pressure is represented in the forms of a convergent series expansions in terms of the plasma Parameter μ _{ab} = {{{e_a e_b χ } over {DKT}}}, where χ2 is the square of the inverse Debye radius. We consider only the thermal equilibrium plasma.
Farinas, J; Verkman, A S
1996-12-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.
NASA Astrophysics Data System (ADS)
Moon, Gi Jong; Yang, Yu Dong; Oh, Jung Min; Kang, In Seok
2017-11-01
Osmotic pressure plays an important role in the processes of charging and discharging of lithium batteries. In this work, osmotic pressure of the ionic liquids confined inside a nanoslit is calculated by using both MD simulation and continuum approach. In the case of MD simulation, an ionic liquid is modeled as singly charged spheres with a short-ranged repulsive Lennard-Jones potential. The radii of the spheres are 0.5nm, reflecting the symmetry of ion sizes for simplicity. The simulation box size is 11nm×11nm×7.5nm with 1050 ion pairs. The concentration of ionic liquid is about 1.922mol/L, and the total charge on an individual wall varies from +/-60e(7.944 μm/cm2) to +/-600e(79.44 μm/cm2) . In the case of continuum approach, we classify the problems according to the correlation length and steric factor, and considered the four separate cases: 1) zero correlation length and zero steric factor, 2) zero correlation length and non-zero steric factor, 3) non-zero correlation length and zero steric factor, and 4) non-zero correlation and non-zero steric factor. Better understanding of the osmotic pressure of ionic liquids confined inside a nanoslit can be achieved by comparing the results of MD simulation and continuum approach. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP: Ministry of Science, ICT & Future Planning) (No. 2017R1D1A1B05035211).
Ruas, Alexandre; Bernard, Olivier; Caniffi, Barbara; Simonin, Jean-Pierre; Turq, Pierre; Blum, Lesser; Moisy, Philippe
2006-02-23
This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of uranyl nitrate at 25 degrees C. A new resolution of the binding mean spherical approximation (BIMSA) theory, taking into account 1-1 and also 1-2 complex formation, is developed and used to reproduce, from a simple procedure, experimental uranyl nitrate osmotic coefficient variation with concentration. For better consistency of the theory, binary uranyl perchlorate and chloride osmotic coefficients are also calculated. Comparison of calculated and experimental values is made. The possibility of regarding the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O as a "simple" solution (in the sense of Zdanovskii, Stokes, and Robinson) is examined from water activity and density measurements. Also, an analysis of existing uranyl nitrate binary data is proposed and compared with our obtained data. On the basis of the concept of "simple" solution, values for density and water activity for the binary system UO(2)(NO(3))(2)/H(2)O are proposed in a concentration range on which uranyl nitrate precipitates from measurements on concentrated solutions of the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O. This new set of binary data is "fictive" in the sense that the real binary system is not stable chemically. Finally, a new, interesting predictive capability of the BIMSA theory is shown.
Influence of macromolecular precipitants on phase behavior of monoclonal antibodies.
Rakel, Natalie; Galm, Lara; Bauer, Katharina Christin; Hubbuch, Juergen
2015-01-01
For the successful application of protein crystallization as a downstream step, a profound knowledge of protein phase behavior in solutions is needed. Therefore, a systematic screening was conducted to analyze the influence of macromolecular precipitants in the form of polyethylene glycol (PEG). First, the influence of molecular weight and concentration of PEG at different pH-values were investigated and analyzed in three-dimensional (3-D) phase diagrams to find appropriate conditions in terms of a fast kinetic and crystal size for downstream processing. In comparison to the use of salts as precipitant, PEG was more suitable to obtain compact 3-D crystals over a broad range of conditions, whereby the molecular weight of PEG is, besides the pH-value, the most important parameter. Second, osmotic second virial coefficients as parameters for protein interactions are experimentally determined with static light scattering to gain a deep insight view in the phase behavior on a molecular basis. The PEG-protein solutions were analyzed as a pseudo-one-compartment system. As the precipitant is also a macromolecule, the new approach of analyzing cross-interactions between the protein and the macromolecule PEG in form of the osmotic second cross-virial coefficient (B23 ) was applied. Both parameters help to understand the protein phase behavior. However, a predictive description of protein phase behavior for systems consisting of monoclonal antibodies and PEG as precipitant is not possible, as kinetic phenomena and concentration dependencies were not taken into account. © 2014 American Institute of Chemical Engineers.
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
Role of Osmotic Adjustment in Plant Productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebre, G.M.
2001-01-11
Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, butmore » requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar clones (P. trichocurpa Torr. & Gray x P: deltoides Bartr., TD and P. deltoides x P. nigra L., DN), we determined the TD clone, which was more productive during the first three years, had slightly lower osmotic potential than the DN clone, and also indicated a small osmotic adjustment compared with the DN hybrid. However, the productivity differences were negligible by the fifth growing season. In a separate study with several P. deltoides clones, we did not observe a consistent relationship between growth and osmotic adjustment. Some clones that had low osmotic potential and osmotic adjustment were as productive as another clone that had high osmotic potential. The least productive clone also had low osmotic potential and osmotic adjustment. The absence of a correlation may have been partly due to the fact that all clones were capable of osmotic adjustment and had low osmotic potential. In a study involving an inbred three-generation TD F{sub 2} pedigree (family 331), we did not observe a correlation between relative growth rate and osmotic potential or osmotic adjustment. However, when clones that exhibited osmotic adjustment were analyzed, there was a negative correlation between growth and osmotic potential, indicating clones with lower osmotic potential were more productive. This was observed only in clones that were exposed to drought. Although the absolute osmotic potential varied by growing environment, the relative ranking among progenies remains generally the same, suggesting that osmotic potential is genetically controlled. We have identified a quantitative trait locus for osmotic potential in another three-generation TD F{sub 2} pedigree (family 822). Unlike the many studies in agricultural crops, most of the forest tree studies were not based on plants exposed to severe stress to determine the role of osmotic adjustment. Future studies should consider using clones that are known to be productive but have contrasting osmotic adjustment capability as well as clones with contrasting growth and osmotic adjustment.« less
The chrysanthemum leaf and root transcript profiling in response to salinity stress.
Cheng, Peilei; Gao, Jiaojiao; Feng, Yitong; Zhang, Zixin; Liu, Yanan; Fang, Weimin; Chen, Sumei; Chen, Fadi; Jiang, Jiafu
2018-06-23
RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (>132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport and homeostasis, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate ABA signaling. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ma, Wei-Ming
1997-06-01
An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.
Monitoring single-cell bioenergetics via the coarsening of emulsion droplets
Boitard, L.; Cottinet, D.; Kleinschmitt, C.; Bremond, N.; Baudry, J.; Yvert, G.; Bibette, J.
2012-01-01
Microorganisms are widely used to generate valuable products, and their efficiency is a major industrial focus. Bioreactors are typically composed of billions of cells, and available measurements only reflect the overall performance of the population. However, cells do not equally contribute, and process optimization would therefore benefit from monitoring this intrapopulation diversity. Such monitoring has so far remained difficult because of the inability to probe concentration changes at the single-cell level. Here, we unlock this limitation by taking advantage of the osmotically driven water flux between a droplet containing a living cell toward surrounding empty droplets, within a concentrated inverse emulsion. With proper formulation, excreted products are far more soluble within the continuous hydrophobic phase compared to initial nutrients (carbohydrates and salts). Fast diffusion of products induces an osmotic mismatch, which further relaxes due to slower diffusion of water through hydrophobic interfaces. By measuring droplet volume variations, we can deduce the metabolic activity down to isolated single cells. As a proof of concept, we present the first direct measurement of the maintenance energy of individual yeast cells. This method does not require any added probes and can in principle apply to any osmotically sensitive bioactivity, opening new routes for screening, and sorting large libraries of microorganisms and biomolecules. PMID:22538813
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
Katju, Vaishali; Packard, Lucille B; Keightley, Peter D
2018-04-01
The consequences of mutations for population fitness depends on their individual selection coefficients and the effective population size. An earlier study of Caenorhabditis elegans spontaneous mutation accumulation lines evolved for 409 generations at three population sizes found that N e = 1 populations declined significantly in fitness whereas the fitness of larger populations (N e = 5, 50) was indistinguishable from the ancestral control under benign conditions. To test if larger MA populations harbor a load of cryptic deleterious mutations that are obscured under benign laboratory conditions, we measured fitness under osmotic stress via exposure to hypersaline conditions. The fitness of N e = 1 lines exhibited a further decline under osmotic stress compared to benign conditions. However, the fitness of larger populations remained indistinguishable from that of the ancestral control. The average effects of deleterious mutations in N e = 1 lines were estimated to be 22% for productivity and 14% for survivorship, exceeding values previously detected under benign conditions. Our results suggest that fitness decline is due to large effect mutations that are rapidly removed via selection even in small populations, with implications for conservation practices. Genetic stochasticity may not be as potent and immediate a threat to the persistence of small populations as other demographic and environmental stochastic factors. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Janecek, Jirí; Netz, Roland R
2009-02-21
Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.
Whittembury, G; González, E; Hernández, C S; Gutiérrez, A M; Echevarría, M
1997-06-27
Proximal straight tubule (PST) were dissected from rabbit kidneys, held with crimping pipettes in a chamber bathed in a buffered mannitol isosmotic solution (MBS, 295 mOsm/kg). Tubule cell volume changes with time (dV/Adt) after steps in MBS osmolality (delta Cs) were monitored on line with an inverted microscope, a TV camera and an image processor. Reflection coefficients sigma and osmotic permeability coefficients, Pos, for several solutes were measured using two methods. Method 1: sigma was calculated from the delta Csiso of impermeant and permeant solutes at which (dV/Adt)t-->0 = 0 (i.e., by a null point method). It is denoted as sigma 1. sigma 1 = 1.00 for mannitol (M), raffinose (R), sucrose (S), glycerol (G), acetamide (A) and urea (U). With formamide (F), sigma 1, Formamide = 0.62 +/- 0.05. These findings confirm our previous value of dp = 4.5 A for the diameter of the selectivity filter of the basolateral PST cell membrane water channel AQP1. Method 2: PST were exposed for 20 s to MBS made hyperosmotic by addition of a delta Cs of 35 mOsm/kg of R, S, M, G, A and U. Cells shrunk within 500 ms of t = 0 to their osmometric volume and remained shrunk for the 20 s of the osmotic challenge. Pos was measured from the shrinking curves. P(os) = 3000 +/- 25 microns/s with R, S, M, G, A and U. Method 2 also allowed to calculate sigma, denoted as sigma 2. sigma 2 = 1.00 for R, S, M, G, A and U. By contrast, the shrinking curve produced by a delta Cs of 35 mOsm/kg F was 1/5th to 1/6th slower and smaller (i.e., subosmometric) than that produced by a delta Cs of 35 mOsm/kg R, S, M, G, A and U. Furthermore, with F cells did not remain shrunk but recovered their original volume within 3 s. P(os) (measured with F) is denoted as P(os)*, P(os)* = 480 +/- 30 microns/s. sigma 2, Formamide = 0.16 +/- 0.01. Use of sigma 1, sigma 2 and P(os)* values in Hill's equations for the bimodal theory of osmosis leads to n = 2-9. Where n is the number of water molecules single filling within the channel selectivity filter, whose length must lie within 6 to 27 A, a value significantly lower than our previous value calculated from the P(os)/Pd* ratio.
Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D
2017-09-15
Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l -1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J
2013-12-19
The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand-KBr complex in aqueous medium.
Coleman, P J; Scott, D; Mason, R M; Levick, J R
1999-01-01
1. The effect of a rooster comb hyaluronan (3.6-4.0 g l-1) of similar chain length to rabbit synovial fluid hyaluronan, on the trans-synovial escape of fluid from the joint cavity in the steady state ( 8d s) was studied in 29 rabbit knees at controlled intra-articular pressures (Pj). 2. Rooster hyaluronan caused the pressure-flow relation to flatten out as pressure was raised. At 10-20 cmH2O the slope of the quasi-plateau, 0.05 +/- 0.01 microliter min-1 cmH2O-1 (mean +/- s.e.m.), was 1/39th that for Ringer solution (1.94 +/- 0.01 microliter 2O-1 ). 3. Bovine synovial fluid had a similar effect to hyaluronan in Ringer solution. 4. The quasi-plateau was caused by increasing opposition to outflow; the pressure required to drive unit outflow increased 4.4-fold between 5 and 20 cmH2O. The increased opposition to outflow at 20 cmH2O was equivalent to an effective osmotic pressure of 13-17 cmH2O at the interface. Since the infusate's osmotic pressure was only 0.9 cmH2O, this implied concentration polarization to 15-18 g l-1 hyaluronan at the interface. 5. Mechanical perforation of the lining, or enzymatic degradation of the interstitial matrix by chymopapain, abolished the quasi-plateau. Hydrational expansion of the matrix by approximately 2-fold did not. The increased opposition to outflow was reversible by washing out the hyaluronan, or by reducing Pj. It was unaffected by interruption of tissue blood flow or synoviocyte oxidative metabolism. These properties are compatible with a concentration polarization mechanism, i.e. flow-induced concentration of hyaluronan at the synovial interface due to molecular reflection. 6. A concentration polarization theory was developed for a partially reflected solute. Numerical solutions supported the feasibility of this osmotic explanation of the quasi-plateau. Additional mechanisms may also be involved. 7. It is concluded that native-size hyaluronan helps to retain synovial fluid in the joint cavity when pressure is raised and acts, at least in part, by exerting osmotic pressure at the interface between synovial matrix and a concentration polarization layer.
Coleman, P J; Scott, D; Mason, R M; Levick, J R
1999-01-01
The effect of a rooster comb hyaluronan (3.6–4.0 g l−1) of similar chain length to rabbit synovial fluid hyaluronan, on the trans-synovial escape of fluid from the joint cavity in the steady state (Q̇s) was studied in 29 rabbit knees at controlled intra-articular pressures (Pj).Rooster hyaluronan caused the pressure-flow relation to flatten out as pressure was raised. At 10–20 cmH2O the slope of the quasi-plateau, 0.05 ± 0.01 μl min−1 cmH2O−1 (mean ±s.e.m.), was 1/39th that for Ringer solution (1.94 ± 0.01 μl min−1 cmH2O−1).Bovine synovial fluid had a similar effect to hyaluronan in Ringer solution.The quasi-plateau was caused by increasing opposition to outflow; the pressure required to drive unit outflow increased 4.4-fold between 5 and 20 cmH2O. The increased opposition to outflow at 20 cmH2O was equivalent to an effective osmotic pressure of 13–17 cmH2O at the interface. Since the infusate's osmotic pressure was only 0.9 cmH2O, this implied concentration polarization to 15–18 g l−1 hyaluronan at the interface.Mechanical perforation of the lining, or enzymatic degradation of the interstitial matrix by chymopapain, abolished the quasi-plateau. Hydrational expansion of the matrix by /2-fold did not. The increased opposition to outflow was reversible by washing out the hyaluronan, or by reducing Pj. It was unaffected by interruption of tissue blood flow or synoviocyte oxidative metabolism. These properties are compatible with a concentration polarization mechanism, i.e. flow-induced concentration of hyaluronan at the synovial interface due to molecular reflection.A concentration polarization theory was developed for a partially reflected solute. Numerical solutions supported the feasibility of this osmotic explanation of the quasi-plateau. Additional mechanisms may also be involved.It is concluded that native-size hyaluronan helps to retain synovial fluid in the joint cavity when pressure is raised and acts, at least in part, by exerting osmotic pressure at the interface between synovial matrix and a concentration polarization layer. PMID:9831732
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance
Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.
2015-01-01
ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
Chi, Eva Y.; Krishnan, Sampathkumar; Kendrick, Brent S.; Chang, Byeong S.; Carpenter, John F.; Randolph, Theodore W.
2003-01-01
We studied the non-native aggregation of recombinant human granulocyte stimulating factor (rhGCSF) in solution conditions where native rhGCSF is both conformationally stable compared to its unfolded state and at concentrations well below its solubility limit. Aggregation of rhGCSF first involves the perturbation of its native structure to form a structurally expanded transition state, followed by assembly process to form an irreversible aggregate. The energy barriers of the two steps are reflected in the experimentally measured values of free energy of unfolding (ΔGunf) and osmotic second virial coefficient (B22), respectively. Under solution conditions where rhGCSF conformational stability dominates (i.e., large ΔGunf and negative B22), the first step is rate-limiting, and increasing ΔGunf (e.g., by the addition of sucrose) decreases aggregation. In solutions where colloidal stability is high (i.e., large and positive B22 values) the second step is rate-limiting, and solution conditions (e.g., low pH and low ionic strength) that increase repulsive interactions between protein molecules are effective at reducing aggregation. rhGCSF aggregation is thus controlled by both conformational stability and colloidal stability, and depending on the solution conditions, either could be rate-limiting. PMID:12717013
The role of the reflection coefficient in precision measurement of ultrasonic attenuation
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1984-01-01
Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.
Theory and simulation of electrolyte mixtures
NASA Astrophysics Data System (ADS)
Lee, B. Hribar; Vlachy, V.; Bhuiyan, L. B.; Outhwaite, C. W.; Molero, M.
Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10-4 to 1.0 M, and in a few cases up to I = M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w0 and w1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KCl and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KCl-KF mixture.
Farinas, J; Verkman, A S
1996-01-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:8968620
Parrow, Nermi L; Tu, Hongbin; Nichols, James; Violet, Pierre-Christian; Pittman, Corinne A; Fitzhugh, Courtney; Fleming, Robert E; Mohandas, Narla; Tisdale, John F; Levine, Mark
2017-06-01
Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA 2 . To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA 2 . Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA 2 . These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA 2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort. Copyright © 2017. Published by Elsevier Inc.
CD4(+)/CD8(+) T-lymphocyte Ratio: Effects of Rehydration before Exercise in Dehydrated Men
NASA Technical Reports Server (NTRS)
Greenleaf, John E.; Jackson, Catherine G. R.; Lawless, Desales
1995-01-01
Effects of fluid ingestion on CD4+/CD8+ T-lymphocyte cell ratios were measured in four dehydrated men (ages 30-46 yr) before and after 70 min of supine submaximal (71 % VO(sub 2max) lower extremity cycle exercise. Just before exercise, Evans blue dye was injected for measurement of plasma volume. The subjects then drank one of six fluid formulations (12 ml/kg) in 3-4 min. All six mean post-hydration (pre-exercise) CD4+/CD8+ ratios (Becton-Dickinson Fluorescence Activated Cell Sorter and FACScan Consort-30 software program were below the normal range of 1.2-1.5; mean (+/- SE) and range were 0.77 +/- 0.12 and 0.39-1.15, respectively. The post-exercise ratios increased: mean = 1.36 =/- 0.15 (P less than 0.05) and range = 0.98-1.98. Regression of mean CD4+/CD8+ ratios on mean plasma osmolality resulted in pre- and post-exercise correlation coefficients of -0.76 (P less than 0.10) and -0.92 (P less than 0.01), respectively. The decreased pre-exercise ratios (after drinking) were probably not caused by the Evans blue dye but appeared to be associated more with the stress (osmotic) of dehydration. The increased post-exercise ratios to normal levels accompanied the rehydration and were not due to the varied electrolyte and osmotic concentrations of the ingested fluids or to the varied vascular volume shifts during exercise. Thus, the level of subject hydration and plasma osmotality may be factors involved in the mechanism of immune system modulation induced by exercise.
Evidence against functionally significant aquaporin expression in mitochondria.
Yang, Baoxue; Zhao, Dan; Verkman, A S
2006-06-16
Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.
Recent experimental data may point to a greater role for osmotic pressures in the subsurface
Neuzil, C.E.; Provost, A.M.
2009-01-01
Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.
The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution.
Lech, Krzysztof; Michalska, Anna; Wojdyło, Aneta; Nowicka, Paulina; Figiel, Adam
2017-12-16
The osmotic dehydration (OD) process consists of the removal of water from a material during which the solids from the osmotic solution are transported to the material by osmosis. This process is commonly performed in sucrose and salt solutions. Taking into account that a relatively high consumption of those substances might have a negative effect on human health, attempts have been made to search for alternatives that can be used for osmotic dehydration. One of these is an application of chokeberry juice with proven beneficial properties to human health. This study aimed to evaluate the physicochemical properties of the OD solution (chokeberry juice concentrate) before and after the osmotic dehydration of carrot and zucchini. The total polyphenolics content, antioxidant capacity (ABTS, FRAP), dynamic viscosity, density, and water activity were examined in relation to the juice concentration used for the osmotic solution before and after the OD process. During the osmotic dehydration process, the concentration of the chokeberry juice decreased. Compounds with lower molecular weight and lower antioxidant capacity present in concentrated chokeberry juice had a stronger influence on the exchange of compounds during the OD process in carrot and zucchini. The water activity of the osmotic solution increased after the osmotic dehydration process. It was concluded that the osmotic solution after the OD process might be successfully re-used as a product with high quality for i.e. juice production.
Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua
2011-01-01
Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. PMID:21610183
Temperature Dependence of Mineral Solubility in Water. Part 3. Alkaline and Alkaline Earth Sulfates
NASA Astrophysics Data System (ADS)
Krumgalz, B. S.
2018-06-01
The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.
Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides
NASA Astrophysics Data System (ADS)
Krumgalz, B. S.
2018-03-01
Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.
Stability of casein micelles in milk
NASA Astrophysics Data System (ADS)
Tuinier, R.; de Kruif, C. G.
2002-07-01
Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.
Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R
2013-12-17
The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 < 0) and become more attractive with increasing temperature (ΔB2/ΔT < 0) in the temperature range 300 K ≤ T ≤ 360 K. Thus, these hydrophobic interactions are attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.
Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.
Barat, J M; Barrera, C; Frías, J M; Fito, P
2007-03-01
Previous results on apple tissue equilibration during osmotic dehydration showed that, at very long processing times, the solute concentrations of the fruit liquid phase and the osmotic solution were the same. In the present study, changes in apple liquid phase composition throughout equilibrium in osmotic dehydration were analyzed and modeled. Results showed that, by the time osmosed samples reached the maximum weight and volume loss, solute concentration of the fruit liquid phase was higher than that of the osmotic solution. The reported overconcentration could be explained in terms of the apple structure shrinkage that occurred during the osmotic dehydration with highly concentrated osmotic solutions due to the elastic response of the food structure to the loss of water and intake of solutes. The fruit liquid phase overconcentration rate was observed to depend on the concentration of the osmotic solution, the processing temperature, the sample size, and shape of the cellular tissue.
Hydration of nonelectrolytes in binary aqueous solutions
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.
2010-10-01
Literature data on the thermodynamic properties of binary aqueous solutions of nonelectrolytes that show negative deviations from Raoult's law due largely to the contribution of the hydration of the solute are briefly surveyed. Attention is focused on simulating the thermodynamic properties of solutions using equations of the cluster model. It is shown that the model is based on the assumption that there exists a distribution of stoichiometric hydrates over hydration numbers. In terms of the theory of ideal associated solutions, the equations for activity coefficients, osmotic coefficients, vapor pressure, and excess thermodynamic functions (volume, Gibbs energy, enthalpy, entropy) are obtained in analytical form. Basic parameters in the equations are the hydration numbers of the nonelectrolyte (the mathematical expectation of the distribution of hydrates) and the dispersions of the distribution. It is concluded that the model equations adequately describe the thermodynamic properties of a wide range of nonelectrolytes partly or completely soluble in water.
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.
Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P
2015-07-28
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.
Analytical study of the reflection and transmission coefficient of the submarine interface
NASA Astrophysics Data System (ADS)
Zhang, Guangli; Hao, Chongtao; Yao, Chen
2018-05-01
The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.
Desmopressin resistant nocturnal polyuria secondary to increased nocturnal osmotic excretion.
Dehoorne, Jo L; Raes, Ann M; van Laecke, Erik; Hoebeke, Piet; Vande Walle, Johan G
2006-08-01
We investigated the role of increased solute excretion in children with desmopressin resistant nocturnal enuresis and nocturnal polyuria. A total of 42 children with monosymptomatic nocturnal enuresis and significant nocturnal polyuria with high nocturnal urinary osmolality (more than 850 mmol/l) were not responding to desmopressin. A 24-hour urinary concentration profile was obtained with measurement of urine volume, osmolality, osmotic excretion and creatinine. The control group consisted of 100 children without enuresis. Based on osmotic excretion patients were classified into 3 groups. Group 1 had 24-hour increased osmotic excretion, most likely secondary to a high renal osmotic load. This was probably diet related since 11 of these 12 patients were obese. Group 2 had increased osmotic excretion in the evening and night, probably due to a high renal osmotic load caused by the diet characteristics of the evening meal. Group 3 had deficient osmotic excretion during the day, secondary to extremely low fluid intake to compensate for small bladder capacity. Nocturnal polyuria with high urinary osmolality in our patients with desmopressin resistant monosymptomatic nocturnal enuresis is related to abnormal increased osmotic excretion. This may be explained by their fluid and diet habits, eg daytime fluid restriction, and high protein and salt intake.
Siderius, Daniel W; Krekelberg, William P; Roberts, Christopher J; Shen, Vincent K
2012-05-07
Protein-protein interactions in solution may be quantified by the osmotic second virial coefficient (OSVC), which can be measured by various experimental techniques including light scattering. Analysis of Rayleigh light scattering measurements from such experiments requires identification of a scattering volume and the thermodynamic constraints imposed on that volume, i.e., the statistical mechanical ensemble in which light scattering occurs. Depending on the set of constraints imposed on the scattering volume, one can obtain either an apparent OSVC, A(2,app), or the true thermodynamic OSVC, B(22)(osm), that is rigorously defined in solution theory [M. A. Blanco, E. Sahin, Y. Li, and C. J. Roberts, J. Chem. Phys. 134, 225103 (2011)]. However, it is unclear to what extent A(2,app) and B(22)(osm) differ, which may have implications on the physical interpretation of OSVC measurements from light scattering experiments. In this paper, we use the multicomponent hard-sphere model and a well-known equation of state to directly compare A(2,app) and B(22)(osm). Our results from the hard-sphere equation of state indicate that A(2,app) underestimates B(22)(osm), but in a systematic manner that may be explained using fundamental thermodynamic expressions for the two OSVCs. The difference between A(2,app) and B(22)(osm) may be quantitatively significant, but may also be obscured in experimental application by statistical uncertainty or non-steric interactions. Consequently, the two OSVCs that arise in the analysis of light scattering measurements do formally differ, but in a manner that may not be detectable in actual application.
Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock†
Krantz, Marcus; Nordlander, Bodil; Valadi, Hadi; Johansson, Mikael; Gustafsson, Lena; Hohmann, Stefan
2004-01-01
Yeast cells adapt to hyperosmotic shock by accumulating glycerol and altering expression of hundreds of genes. This transcriptional response of Saccharomyces cerevisiae to osmotic shock encompasses genes whose products are implicated in protection from oxidative damage. We addressed the question of whether osmotic shock caused oxidative stress. Osmotic shock did not result in the generation of detectable levels of reactive oxygen species (ROS). To preclude any generation of ROS, osmotic shock treatments were performed in anaerobic cultures. Global gene expression response profiles were compared by employing a novel two-dimensional cluster analysis. The transcriptional profiles following osmotic shock under anaerobic and aerobic conditions were qualitatively very similar. In particular, it appeared that expression of the oxidative stress genes was stimulated upon osmotic shock even if there was no apparent need for their function. Interestingly, cells adapted to osmotic shock much more rapidly under anaerobiosis, and the signaling as well as the transcriptional response was clearly attenuated under these conditions. This more rapid adaptation is due to an enhanced glycerol production capacity in anaerobic cells, which is caused by the need for glycerol production in redox balancing. Artificially enhanced glycerol production led to an attenuated response even under aerobic conditions. These observations demonstrate the crucial role of glycerol accumulation and turgor recovery in determining the period of osmotic shock-induced signaling and the profile of cellular adaptation to osmotic shock. PMID:15590813
Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric; ...
2016-08-15
How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric
How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less
Spherocytosis - osmotic fragility; Thalassemia - osmotic fragility ... done to detect conditions called hereditary spherocytosis and thalassemia . Hereditary spherocytosis makes red blood cells more fragile ...
Characterizing the reflectivity of handheld display devices.
Liu, Peter; Badano, Aldo
2014-08-01
With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements, both luminance and illuminance increased as the size of the display window decreased. The TG18 method does not account for this variability. The authors conclude that the method requires a definitive description of the back panel used in the light source setup. The methods described in the TG18 document may need to be improved to provide consistent comparisons of desktop monitors, phones, and tablets.
Farstad, Marit; Kvalheim, Venny Lise; Husby, Paul
2005-08-01
Hypothermic cardiopulmonary bypass is associated with increased fluid extravasation. This study aimed to compare whether iso-oncotic priming solutions, in contrast to crystalloids, could reduce the cold-induced fluid extravasation during cardiopulmonary bypass in piglets. Three groups were studied: the control group (CT group; n = 10), the albumin group (Alb group; n = 7), and the hydroxyethyl starch group (HES group; n = 7). Prime (1000 mL) and supplemental fluid were acetated Ringer solution, 4% albumin, and 6% hydroxyethyl starch, respectively. After 1 hour of normothermic cardiopulmonary bypass, hypothermic cardiopulmonary bypass (cooling to 28 degrees C within 15 minutes) was initiated and continued to 90 minutes. Fluid needs, plasma volume, changes in colloid osmotic pressure in plasma and interstitial fluid, hematocrit levels, and tissue water content were recorded, and protein masses and fluid extravasation rates were calculated. Colloid osmotic pressure in plasma decreased immediately after the start of cardiopulmonary bypass in the CT group but remained stable in the Alb and HES groups. Colloid osmotic pressure in interstitial fluid tended to decrease in the CT group and remained unchanged in the Alb group, whereas a slight increase was observed in the HES group. Immediately after the start of cooling, fluid extravasation rates increased from 0.15 +/- 0.10 to 0.64 +/- 0.12 mL . kg -1 . min -1 in the CT group, whereas no such increase was observed in the Alb and HES groups. The changes in fluid extravasation rates were reflected by corresponding changes in tissue water content. The use of albumin or hydroxyethyl starch as prime to preserve the colloid osmotic pressure during cardiopulmonary bypass causes a reduction in the cold-induced fluid extravasation compared with that seen with crystalloids. Albumin seems more effective than hydroxyethyl starch to limit cold-induced fluid shifts during cardiopulmonary bypass.
Fluctuation of Ultrafiltration Coefficient of Hemodialysis Membrane During Reuse
NASA Astrophysics Data System (ADS)
Arif, Idam; Christin
2010-12-01
Hemodialysis treatment for patient with kidney failure is to regulate body fluid and to excrete waste products of metabolism. The patient blood and the dialyzing solution (dialysate) are flowed counter currently in a dialyzer to allow volume flux of fluid and diffusion of solutes from the blood to the dialysate through a semipermiable membrane. The volume flux of fluid depends on the hydrostatic and the osmotic pressure difference between the blood and the dialysate. It also depends on the membrane parameter that represents how the membrane allows the fluid and the solutes to move across as a result of the pressure difference, known as the ultrafiltration coefficient Kuf. The coefficient depends on the number and the radius of membrane pores for the movement of the fluids and the solutes across the membrane. The measured membrane ultrafiltration coefficient of reused dialyzer shows fluctuation between one uses to another without any significant trend of change. This indicates that the cleaning process carried out before reuse does not cause perfect removal of clots that happen in the previous use. Therefore the unblocked pores are forced to work hardly to obtain targeted volume flux in a certain time of treatment. This may increase the unblocked pore radius. Reuse is stopped when there is indication of blood leakage during the hemodialysis treatment.
Dielectric characterization of hot-mix asphalt at the smart road using GPR
NASA Astrophysics Data System (ADS)
Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.
2000-04-01
To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.
A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure
ERIC Educational Resources Information Center
Marvel, Stephen C.; Kepler, Megan V.
2009-01-01
It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…
Use of osmotic dehydration to improve fruits and vegetables quality during processing.
Maftoonazad, Neda
2010-11-01
Osmotic treatment describes a preparation step to further processing of foods involving simultaneous transient moisture loss and solids gain when immersing in osmotic solutions, resulting in partial drying and improving the overall quality of food products. The different aspects of the osmotic dehydration (OD) technology namely the solutes employed, solutions characteristics used, process variables influence, as well as, the quality characteristics of the osmodehydrated products will be discussed in this review. As the process is carried out at mild temperatures and the moisture is removed by a liquid diffusion process, phase change that would be present in the other drying processes will be avoided, resulting in high quality products and may also lead to substantial energy savings. To optimize this process, modeling of the mass transfer phenomenon can improve high product quality. Several techniques such as microwave heating, vacuum, high pressure, pulsed electric field, etc. may be employed during or after osmotic treatment to enhance performance of the osmotic dehydration. Moreover new technologies used in osmotic dehydration will be discussed. Patents on osmotic dehydration of fruits and vegetables are also discussed in this article.
Preparation and In Vitro/In Vivo Evaluation of Vinpocetine Elementary Osmotic Pump System
Ning, Meiying; Zhou, Yue; Chen, Guojun; Mei, Xingguo
2011-01-01
Preparation and in vitro and in vivo evaluation of vinpocetine (VIN) elementary osmotic pump (EOP) formulations were investigated. A method for the preparation of VIN elementary osmotic pump tablet was obtained by adding organic acid additives to increase VIN solubility. VIN was used as the active pharmaceutical ingredient, lactose and mannitol as osmotic agent. Citric acid was used as increasing API solubility and without resulting in the API degradation. It is found that the VIN release rate was increasing with the citric acid amount at a constant range. Cellulose acetate 398-3 was employed as semipermeable membrane containing polyethylene glycol 6000 and diethyl-o-phthalate as pore-forming agent and plasticizer for controlling membrane permeability. In addition, a clear difference between the pharmacokinetic patterns of VIN immediate release and VIN elementary osmotic pump formulations was revealed. The area under the plasma concentration-time curve after oral administration of elementary osmotic pump formulations was equivalent to VIN immediate release formulation. Furthermore, significant differences found for mean residence time, elimination half-life, and elimination rate constant values corroborated prolonged release of VIN from elementary osmotic pump formulations. These results suggest that the VIN osmotic pump controlled release tablets have marked controlled release characters and the VIN osmotic pump controlled release tablets and the normal tablets were bioequivalent. PMID:21577257
Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress
Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian
2016-01-01
Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance. PMID:27861528
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wullschleger, S.D.; Oosterhuis, D.M.
Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leafmore » water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.« less
Reduced Osmotic Potential Inhibition of Photosynthesis 1
Berkowitz, Gerald A.; Gibbs, Martin
1983-01-01
The effects of reduced reaction medium osmotic potential (0.67 molar sorbitol as compared to a control treatment with 0.33 molar sorbitol) on the enzymic steps of the photosynthetic carbon reduction cycle were investigated using isolated spinach (Spinacia oleracea L. var Longstanding Bloomsdale) chloroplasts. Reversal of reduced osmotic potential inhibition of photosynthetic rates by a stromal alkalating agent (NH4Cl) was associated with specific steps of the cycle. Low osmotic potential induced stromal acidification was found to be facilitated by osmotically induced chloroplast shrinkage. However, the action of the alkalating agent was found not to be associated with reversal of osmotically induced morphological changes of the stromal compartment. Labeled metabolite analyses indicated that the osmotic stress treatment caused the substrate for fructose 1,6-bisphosphatase (FBPase) to build up in the absence of NH4Cl, and the substrate for phosphoribulokinase to increase in the presence of NH4Cl. These data were interpreted as indicating that the most severe effect of osmotic stress on photosynthesis is at the site of FBPase, and that this inhibition is mediated by osmotically induced stromal acidification. Phosphoribulokinase activity inhibition at the low osmotic potential treatment was apparently less severe and not mediated by stromal acidification. A third site of osmotic inhibition, which was reversed by NH4Cl, and therefore was assumed to be mediated by stromal acidification, was at the step of ribulose 1,5-bisphosphate carboxylase. Additions of NH4Cl also enhanced the activity of the pH-insensitive phase of the photosynthetic carbon reduction cycle, 3-phosphoglyceric acid reduction, at the stress treatment. This effect was thought to be mediated by the removal of the block at FBPase. A model was proposed to outline the relative severity of osmotic stress effects at various sites of the photosynthetic carbon reduction cycle. Images Fig. 1 PMID:16663127
Brusilow, Saul W; Cooper, Arthur J L
2011-11-01
Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure, is a contributing factor: the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Case report. Johns Hopkins Hospital. A 22-yr-old woman who, 36 hrs before admission, ingested 15 g acetaminophen was admitted to the Johns Hopkins Hospital. She was treated with N-acetylcysteine. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hrs after ingestion when she became confused, irritable, and agitated. She was intubated, ventilated, and placed on lactulose. Shortly thereafter, she was noncommunicative, unresponsive to painful stimuli, and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure was made. She improved very slowly until 180 hrs after ingestion when she moved all extremities. She woke up shortly thereafter. Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in acute liver failure, the patient's plasma ammonia peaked when she exhibited no obvious neurologic deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurologic status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high but began to normalize several hours after plasma ammonia had returned to normal. The patient only started to recover as her plasma glutamine began to return to normal. We suggest that the biochemical data are consistent with the osmotic gliopathy theory--high plasma ammonia leads to high plasma glutamine--an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for acute liver failure.
Brusilow, Saul W; Cooper, Arthur J.L.
2011-01-01
Objective Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure (ALF), is a contributing factor – the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Design Case report. Setting Johns Hopkins Hospital. Patient A 22-year old white female who, 36 hours prior to admission, ingested 15 grams of acetaminophen was admitted to the Johns Hopkins Hospital. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hours after ingestion when she became confused, irritable and agitated. Interventions She was intubated, ventilated and placed on lactulose. Shortly thereafter she was non-communicative, unresponsive to painful stimuli and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure (ICP) was made. She improved very slowly until 180 hours after ingestion when she moved all extremities. She woke up shortly thereafter. Measurements and main results Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in ALF the patient’s plasma ammonia peaked when she exhibited no obvious neurological deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurological status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high, but began to normalize several hours after plasma ammonia had returned to normal. The patient only commenced to recover as her plasma glutamine began to return to normal. Conclusions We suggest that the biochemical data are consistent with the osmotic gliopathy theory – high plasma ammonia leads to high plasma glutamine – an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for ALF. PMID:21705899
Laser marking of contrast images for optical read-out systems
NASA Astrophysics Data System (ADS)
Yulmetova, O. S.; Tumanova, M. A.
2017-11-01
In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.
1992-09-01
A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.
NASA Astrophysics Data System (ADS)
Yao, Lingxing; Mori, Yoichiro
2017-12-01
Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.
2008-05-01
Equations relating osmotic, mean ionic activity, and water activity coefficients to electrolyte concentrations in binary aqueous solutions were substantiated within the framework of cluster concepts. The model includes the contribution to solution nonideality of electrostatic interactions in terms of the Debye-Hückel theory along with hydration and association of salts via relations containing hydration and association numbers in the standard states. According to the description of data on 54 aqueous solutions of 1-1 electrolytes, this model should be given preference compared with the most extensively used NRTL, NRTL-NRF, Wilson, and Pitzer models.
High purity silica reflective heat shield development
NASA Technical Reports Server (NTRS)
Blome, J. C.; Drennan, D. N.; Schmitt, R. J.
1974-01-01
Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.
Investigations of ionospheric sporadic Es layer using oblique sounding method
NASA Astrophysics Data System (ADS)
Minullin, R.
The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model. Using this model the averaged Es layer filling coefficients for particular season of the year can be forecasted in case of given sounding frequency, path length, and voltage threshold.
BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the illuminating light and hence the reflection coefficient signal as well The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Osmotic propulsion: the osmotic motor.
Córdova-Figueroa, Ubaldo M; Brady, John F
2008-04-18
A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.
Osmotic Propulsion: The Osmotic Motor
NASA Astrophysics Data System (ADS)
Córdova-Figueroa, Ubaldo M.; Brady, John F.
2008-04-01
A model for self-propulsion of a colloidal particle—the osmotic motor—immersed in a dispersion of “bath” particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.
Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer
NASA Astrophysics Data System (ADS)
Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun
2015-10-01
Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.
Am Ende, Mary Tanya; Miller, Lee A
2007-02-01
An asymmetric membrane (AM) tablet was developed for a soluble model compound to study the in vitro drug release mechanisms in challenge conditions, including osmotic gradients, concentration gradients, and under potential coating failure modes. Porous, semipermable membrane integrity may be compromised by a high fat meal or by the presence of a defect in the coating that could cause a safety concern about dose-dumping. The osmotic and diffusional release mechanisms of the AM tablet were independently shut down such that their individual contribution to the overall drug release was measured. Shut off of osmotic and diffusional release was accomplished by performing dissolution studies into receptor solutions with osmotic pressure above the internal core osmotic pressure and into receptor solutions saturated with drug, respectively. The effect of coating failure modes on in vitro drug release from the AM tablet was assessed through a simulated high-fat meal and by intentionally compromising the coating integrity. The predominant drug release mechanism for the AM tablet was osmotic and accounted for approximately 90-95% of the total release. Osmotic release was shutoff when the receptor media osmotic pressure exceeded 76 atm. Diffusional release of the soluble drug amounted to 5-10% of the total release mechanism. The observed negative in vitro food effect was attributed to the increased osmotic pressure from the high fat meal when compared to the predicted release rates in sucrose media with the same osmotic pressure. This suppression in drug release rate due to a high fat meal is not anticipated to affect in vivo performance of the dosage form, as the rise in pressure is short-lived. Drug release from the AM system studied was determined to be robust to varying and extreme challenge conditions. The conditions investigated included varying pH, agitation rate, media osmotic pressure, media saturated with drug to eliminate the concentration gradient, simulated high fat meal, and intentionally placed film coating defects. Osmotic and diffusional shut off experiments suggest that the mechanism governing drug release is a combination of osmotic and diffusional at approximately 90-95% and 5-10%, respectively. In addition, the coating failure mode studies revealed this formulation and design is not significantly affected by a high fat meal or by an intentionally placed defect in the film coating, and more specifically, did not result in a burst of drug release.
Self-assembly of silk fibroin under osmotic stress
NASA Astrophysics Data System (ADS)
Sohn, Sungkyun
The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic stress technique. Microscopic and thermodynamic details of this self-assembly process along the spinline have been assessed. Formation of a needle-shaped molecular lath under appropriate osmotic stress was found. Silk I degree of hydration of silk gland was quantitatively estimated by image analysis of optical micrographs and the numbers varied from 2.2 to 2.7 depending on the region in the gland. Osmotic pressure in the gland was also estimated by equilibration method.
Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.
Sagers, Jason D; Haberman, Michael R; Wilson, Preston S
2013-09-01
Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.
Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.
2016-05-01
Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.
Janez, A; Worrall, D S; Imamura, T; Sharma, P M; Olefsky, J M
2000-09-01
Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.
Development of hyper osmotic resistant CHO host cells for enhanced antibody production.
Kamachi, Yasuharu; Omasa, Takeshi
2018-04-01
Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James
2017-04-01
We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Synchronous delivery of felodipine and metoprolol tartrate using monolithic osmotic pump technology.
Zhao, Shiqing; Yu, Fanglin; Liu, Nan; Di, Zhong; Yan, Kun; Liu, Yan; Li, Ying; Zhang, Hui; Yang, Yang; Yang, Zhenbo; Li, Zhiping; Mei, Xingguo
2016-11-01
The synchronous sustained-release of two drugs was desired urgently for patients needing combination therapy in long term. However, sophisticated technologies were used generally to realize the simultaneous delivery of two drugs especially those with different physico-chemical properties. The purpose of this study was to obtain the concurrent release of felodipine and metoprolol tartrate, two drugs with completely different solubilities, in a simple monolithic osmotic pump system (FMOP). Two types of blocking agents were used in monolithic osmotic pump tablets and the synchronous sustained-release of FMOP was acquired in vitro. The tablets were also administered to beagle dogs and the plasma levels of FMOP were determined by HPLC-MS/MS. The pharmacokinetic parameters were calculated using a non-compartmental model. Cmax of both felodipine and metoprolol from the osmotic pump tablets were lower, tmax and mean residence time of both felodipine and metoprolol from the osmotic pump tablets were longer significantly than those from immediate release tablets. These results verified prolonged release of felodipine and metoprolol tartrate from osmotic pump formulations. The similar absorption rate between felodipine and metoprolol in beagles was also obtained by this osmotic pump formulation. Therefore, it could be supposed that the accordant release of two drugs with completely different solubilities may be realized just by using monolithic osmotic pump technology.
Wang, Zhen-Yu; Gehring, Chris; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming
2015-01-01
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1. PMID:25416474
Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light
NASA Astrophysics Data System (ADS)
Kniazkov, A. V.
2016-04-01
Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.
Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A
2014-08-20
We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.
Gaffney, Eamonn A.; Doblaré, Manuel
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease characterized by progressive weakness, muscle atrophy, and fasciculation. This fact results in a continuous degeneration and dysfunction of articular soft tissues. Specifically, cartilage is an avascular and nonneural connective tissue that allows smooth motion in diarthrodial joints. Due to the avascular nature of cartilage tissue, cells nutrition and by-product exchange are intermittently occurring during joint motions. Reduced mobility results in a change of proteoglycan density, osmotic pressure, and permeability of the tissue. This work aims to demonstrate the abnormal cartilage deformation in progressive immobilized articular cartilage for ALS patients. For this aim a novel 3D mechano-electrochemical model based on the triphasic theory for charged hydrated soft tissues is developed. ALS patient parameters such as tissue porosity, osmotic coefficient, and fixed anions were incorporated. Considering different mobility reduction of each phase of the disease, results predicted the degree of tissue degeneration and the reduction of its capacity for deformation. The present model can be a useful tool to predict the evolution of joints in ALS patients and the necessity of including specific cartilage protectors, drugs, or maintenance physical activities as part of the symptomatic treatment in amyotrophic lateral sclerosis. PMID:24991537
Szokol, Miklos; Priksz, Daniel; Bombicz, Mariann; Varga, Balazs; Kovacs, Arpad; Fulop, Gabor Aron; Csipo, Tamas; Posa, Aniko; Toth, Attila; Papp, Zoltan; Szilvassy, Zoltan; Juhasz, Bela
2017-10-12
The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.
Post-traumatic changes in, and effect of colloid osmotic pressure on the distribution of body water.
Böck, J C; Barker, B C; Clinton, A G; Wilson, M B; Lewis, F R
1989-09-01
The aim of this study was to define the post-traumatic changes in body fluid compartments and to evaluate the effect of plasma colloid osmotic pressure (COP) on the partitioning of body fluid between these compartments. Forty-two measurements of plasma volume (green dye), extracellular volume (bromine), and total body water (deuterium) were done in ten traumatized patients (mean Injury Severity Score, ISS, = 34) and 23 similar control studies were done in eight healthy volunteers who were in stable fluid balance. Interstitial volume, intracellular volume, and blood volume were calculated from measured fluid spaces and hematocrit; COP was directly measured. Studies in volunteers on consecutive days indicated good reproducibility, with coefficients of variation equal to 3.5% for COP, 6.3% for plasma volume, 4.5% for extracellular volume, and 4.9% for total body water. COP values extended over the entire range seen clinically, from 10 to 30 mmHg. Interstitial volume was increased by 55% in patients, but intracellular volume was decreased by 10%. We conclude (1) that posttraumatic peripheral edema resulting from hemodilution is located in the interstitial compartment, with no intracellular space expansion; and (2) that interstitial volume, but not intracellular volume, is closely related to plasma COP.
Charged Polymer Brushes: Counterion Incorporation and Scaling Relations
NASA Astrophysics Data System (ADS)
Ahrens, Heiko; Förster, Stephan; Helm, Christiane A.
1998-11-01
Amphiphilic block copolymers consisting of a fluid hydrophobic and a polyelectrolyte part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic block is a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush of constant thickness, independent of grafting density and with stochiometric counter ion incorporation. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area and the salt concentration (corrected for excluded volume interactions) with an exponent -1/3.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
NASA Astrophysics Data System (ADS)
Couture, O.; Cherin, E.; Foster, F. S.
2007-07-01
A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.
NASA Technical Reports Server (NTRS)
Gordy, R. S.
1972-01-01
An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.
Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.
Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim
2018-06-13
A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.
Safrai, Eli; Ishai, Paul Ben; Caduff, Andreas; Puzenko, Alexander; Polsman, Alexander; Agranat, Aharon J; Feldman, Yuri
2012-07-01
Recent work has demonstrated that the reflection coefficient of human skin in the frequency range from 95 to 110 GHz (W band) mirrors the temporal relaxation of stress induced by physical exercise. In this work, we extend these findings to show that in the event of a subtle trigger to stress, such as mental activity, a similar picture of response emerges. Furthermore, the findings are extended to cover not only the W band (75-110 GHz), but also the frequency band from 110 to 170 GHz (D band). We demonstrate that mental stress, induced by the Stroop effect and recorded by the galvanic skin response (GSR), can be correlated to the reflection coefficient in the aforementioned frequency bands. Intriguingly, a light physical stress caused by repeated hand gripping clearly showed an elevated stress level in the GSR signal, but was largely unnoted in the reflection coefficient in the D band. The implication of this observation requires further validation. Copyright © 2011 Wiley Periodicals, Inc.
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.
We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria
Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; ...
2014-08-20
We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less
Techniques for estimating Space Station aerodynamic characteristics
NASA Technical Reports Server (NTRS)
Thomas, Richard E.
1993-01-01
A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.
The effects of osmotic stress on the structure and function of the cell nucleus.
Finan, John D; Guilak, Farshid
2010-02-15
Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.
Isobaric Inert Gas Counterdiffusion,
1982-11-01
solubility coefficient . Helium is 0.006 and nitrogen is about 0.012. Q. Are those lipid solubilities? A. Those are aqueous . Here is theN 2 into helium...was aqueous rather than fat. We did:’t, worry about solubility coefficients , either -- if they play a part, it will only be to make bubbles come more...reflection coefficient , sometimes interpreted as the fraction of the solute molecules which are reflected upon striking the barrier. Assuming that tissue
Effect of surface deposits on electromagnetic waves propagating in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1990-01-01
A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Effect of solution non-ideality on erythrocyte volume regulation.
Levin, R L; Cravalho, E G; Huggins, C E
1977-03-01
A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.
ms 2: A molecular simulation tool for thermodynamic properties, release 3.0
NASA Astrophysics Data System (ADS)
Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran
2017-12-01
A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.
Liu, Xin; Shu, Xuewen
2017-08-20
All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.
2016-03-01
We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.
Whitehead, Andrew; Roach, Jennifer L; Zhang, Shujun; Galvez, Fernando
2012-04-15
The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.
Popli, Subhash; Tzamaloukas, Antonios H; Ing, Todd S
2014-01-01
Hypernatremia may result from inadequate water intake, excessive water loss or a combination of the two. Osmotic diuresis leads to losses of both solute and water. The relationship between solute and water losses determines the resulting changes in serum osmolality and sodium concentration. Total solute loss is routinely higher than loss of water in osmotic diuresis. Theoretically, then, decreases in serum osmolality (and serum sodium concentration) should follow. In clinical situations of osmotic diuresis, however, reduction in osmolality can take place, but not reduction in serum sodium concentration. It is of note that serum sodium concentration changes are related to urinary losses of sodium and potassium but not to the loss of total solute. In osmotic diuresis, the combined loss of sodium and potassium per liter of urine is lower than the concurrent serum sodium level. Consequently, hypernatremia can ensue. A patient who presented with osmotic diuresis and hypernatremia is described here. In this patient, we have shown that electrolyte-free water clearance is a better index of the effect of osmotic diuresis on serum sodium concentration than the classic solute-free water clearance.
Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
1999-01-01
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways. PMID:9880362
A squeeze-type osmotic tablet for controlled delivery of nifedipine.
Park, Jung Soo; Shin, Jun Hyun; Lee, Dong Hun; Kim, Moon Suk; Rhee, John M; Lee, Hai Bang; Khang, Gilson
2008-01-01
Osmotic delivery systems are based on osmotic driving force. Nifedipine tablets, available under the trade names Procardia XL (Pfizer) and Adalat (Bayer), are commercialized drug-delivery systems of an elemental osmotic pump that the push-pull osmotic tablet operates successfully in delivering water-insoluble drugs. For the improvement of the release pattern and the solubility of the drug, we developed a squeeze-type osmotic tablet (SQT) for nifedipine as a model drug. The SQT was composed of one or more ring type of squeeze-push layer (squeeze-disc) and a centered drug core. Squeeze-discs were stacked up with different physicochemical properties with gradient such as viscosity, swelling ratio and water absorption ratio using the osmotic agents from a disc of bottom to top. The present work investigated the effect of different preparation factors, such as hydrophilic polymers, the molecular weight of polymers, coating process, orifice size and types of excipient on release performance of nifedipine. With the purpose of delivering water-insoluble nifedipine at an approximate zero-order rate and step-function rate for 24 h, SQT has been successfully prepared, and significantly improved in the release rate and patterns in comparison with the Adalat push-pull system in vitro release features.
Osmotic dehydration of fruits and vegetables: a review.
Yadav, Ashok Kumar; Singh, Satya Vir
2014-09-01
The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents.
Osmotic Drug Delivery System as a Part of Modified Release Dosage Form
Keraliya, Rajesh A.; Patel, Chirag; Patel, Pranav; Keraliya, Vipul; Soni, Tejal G.; Patel, Rajnikant C.; Patel, M. M.
2012-01-01
Conventional drug delivery systems are known to provide an immediate release of drug, in which one can not control the release of the drug and can not maintain effective concentration at the target site for longer time. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. The historical development of osmotic systems includes development of the Rose-Nelson pump, the Higuchi-Leeper pumps, the Alzet and Osmet systems, the elementary osmotic pump, and the push-pull system. Recent advances include development of the controlled porosity osmotic pump, and systems based on asymmetric membranes. This paper highlights the principle of osmosis, materials used for fabrication of pumps, types of pumps, advantages, disadvantages, and marketed products of this system. PMID:22852100
Wray, Derek; Ramaswamy, Hosahalli S
2016-08-01
Despite osmotic dehydration being a cost effective process for moisture removal, the cost implications of making, regenerating, and properly disposing of the spent osmotic solutions contributes greatly to the economic feasibility of the drying operation. The potential for recycling of osmotic solutions and their use for creation of a novel product was explored using microwave-osmotic dehydration under continuous flow spray (MWODS) conditions. Identical runs were repeated 10 times to determine the progressive physical and compositional effects of the thermal treatment and leaching from the cranberry samples. The microbiological stability and constant drying performance indicated that MWODS would be well suited for employing recycled solutions. While the anthocyanin content of the solution never approached that of cranberry juice concentrate, it is demonstrated that the spent syrup can infuse these health positive components into another product (apple). This study found that re-using osmotic solutions is a viable option to reduce cost in future MWODS applications, with no detriment to product quality and potential to use the spent solution for novel products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Levenson, Robert; DeMartini, Daniel G.; Morse, Daniel E.
2017-10-01
Discovery that reflectin proteins fill the dynamically tunable Bragg lamellae in the reflective skin cells of certain squids has prompted efforts to design new reflectin-inspired systems for dynamic photonics. But new insights into the actual role and mechanism of action of the reflectins constrain and better define the opportunities and limitations for rationally designing optical systems with reflectin-based components. We and our colleagues have discovered that the reflectins function as a signal-controlled molecular machine, regulating an osmotic motor that tunes the thickness, spacing, and refractive index of the tunable, membrane-bound Bragg lamellae in the iridocytes of the loliginid squids. The tunable reflectin proteins, characterized by a variable number of highly conserved peptide domains interspersed with positively charged linker segments, are restricted in intra- and inter-chain contacts by Coulombic repulsion. Physiologically, this inhibition is progressively overcome by charge-neutralization resulting from acetylcholine (neurotransmitter)-induced, site-specific phosphorylation, triggering the simultaneous activation and progressive tuning of reflectance from red to blue. Details of this process have been resolved through in vitro analyses of purified recombinant reflectins, controlling charge-neutralization by pH-titration or mutation as surrogates for the in vivo phosphorylation. Results of these analyses have shown that neutralization overcoming the Coulombic inhibition reversibly and cyclably triggers condensation and secondary folding of the reflectins, with the emergence of previously cryptic, phase-segregated hydrophobic domains enabling hierarchical assembly. This tunable, reversible, and cyclable assembly regulates the Gibbs-Donnan mediated osmotic shrinking or swelling of the Bragg lamellae that tunes the brightness and color of reflected light. Our most recent studies have revealed a direct relationship between the extent of charge neutralization and the size of the reflectin assemblies, further explaining the synergistic effects on the intensity and wavelength of reflected light. Mutational analyses show that the "switch" controlling reflectins' structural transitions is distributed along the protein, while detailed comparisons of the sequences and structures of the recently evolved tunable reflectins to those of their ancestral, non-tunable homologs are helping to identify the specific structural determinants governing tunability.
Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio
2013-12-01
It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle-ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress-strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle-ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.
Fenske, Wiebke K; Schnyder, Ingeborg; Koch, Gilbert; Walti, Carla; Pfister, Marc; Kopp, Peter; Fassnacht, Martin; Strauss, Konrad; Christ-Crain, Mirjam
2018-02-01
Copeptin is the C-terminal fragment of the arginine vasopressin (AVP) prohormone whose measurement is more robust than that of AVP. Similar release and clearance characteristics have been suggested promoting copeptin as a surrogate marker. To characterize the physiology of osmotically regulated copeptin release and its half-life in direct comparison with plasma AVP. Ninety-one healthy volunteers underwent a standardized three-phase test protocol including (1) osmotic stimulation into the hypertonic range by hypertonic-saline infusion followed by osmotic suppression via (2) oral water load and (3) subsequent glucose infusion. Plasma copeptin, AVP, serum sodium, and osmolality levels were measured in regular intervals. In phase 1, an increase in median osmotic pressure [289 (286; 291) to 311 (309; 314) mOsm/kg H2O] caused similar release kinetics of plasma copeptin [4 (3.1; 6) to 29.3 (18.6; 48.2) pmol/L] and AVP [1 (0.7; 1.6) to 10.3 (6.8; 18.8) pg/mL]. Subsequent osmotic suppression to 298 (295; 301) mOsm/kg at the end of phase 3 revealed markedly different decay kinetics between both peptides-an estimated initial half-life of copeptin being approximately 2 times longer than that of AVP (26 vs 12 minutes). Copeptin is released in equimolar amounts with AVP in response to osmotic stimulation, suggesting its high potential as an AVP surrogate for differentiation of osmotic disorders. Furthermore, we here describe the decay kinetics of copeptin in response to osmotic depression enabling to identify a half-life for copeptin in direct comparison with AVP. Copyright © 2017 Endocrine Society
Effect of surface deposits on electromagnetic propagation in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1991-01-01
A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.
Sackin, H; Boulpaep, E L
1975-12-01
Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.
Electro-osmotic mobility of non-Newtonian fluids
Zhao, Cunlu; Yang, Chun
2011-01-01
Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161
Preparation of monolithic osmotic pump system by coating the indented core tablet.
Liu, Longxiao; Che, Binjie
2006-10-01
A method for the preparation of monolithic osmotic pump tablet was obtained by coating the indented core tablet compressed by the punch with a needle. Atenolol was used as the model drug, sodium chloride as osmotic agent and polyethylene oxide as suspending agent. Ethyl cellulose was employed as semipermeable membrane containing polyethylene glycol 400 as plasticizer for controlling membrane permeability. The formulation of atenolol osmotic pump tablet was optimized by orthogonal design and evaluated by similarity factor (f2). The optimal formulation was evaluated in various release media and agitation rates. Indentation size of core tablet hardly affected drug release in the range of (1.00-1.14) mm. The optimal osmotic tablet was found to be able to deliver atenolol at an approximately constant rate up to 24h, independent of both release media and agitation rate. The method that is simplified by coating the indented core tablet with the elimination of laser drilling may be promising in the field of the preparation of osmotic pump tablet.
Yu, Yuanshan; Jin, Tony Z; Fan, Xuetong; Wu, Jijun
2018-01-15
Fresh blueberries were pretreated by pulsed electric fields (PEF) or thermal pretreatment and then were subject to osmotic dehydration. The changes in contents of anthocyanins, predominantly phenolic acids and flavonols, total phenolics, polyphenol oxidase (PPO) activity and antioxidant activity in the blueberry samples during pretreatment and osmotic dehydration were investigated. Biochemical degradation and physical migration of these nutritive compounds from fruits to osmotic solutions were observed during the pretreatments and osmotic dehydration. PEF pretreated samples had the least degradation loss but the most migration loss of these compounds compared to thermally pretreated and control samples. Higher rates of water loss and solid gain during osmotic dehydration were also obtained by PEF pretreatment, reducing the dehydration time from 130 to 48h. PEF pretreated and dehydrated fruits showed superior appearance to thermally pretreated and control samples. Therefore, PEF pretreatment is a preferred technology that balances nutritive quality, appearance, and dehydration rate. Published by Elsevier Ltd.
Fu, Li; Merabia, Samy; Joly, Laurent
2018-04-19
Following our recent theoretical prediction of the giant thermo-osmotic response of the water-graphene interface, we explore the practical implementation of waste heat harvesting with carbon-based membranes, focusing on model membranes of carbon nanotubes (CNT). To that aim, we combine molecular dynamics simulations and an analytical model considering the details of hydrodynamics in the membrane and at the tube entrances. The analytical model and the simulation results match quantitatively, highlighting the need to take into account both thermodynamics and hydrodynamics to predict thermo-osmotic flows through membranes. We show that, despite viscous entrance effects and a thermal short-circuit mechanism, CNT membranes can generate very fast thermo-osmotic flows, which can overcome the osmotic pressure of seawater. We then show that in small tubes confinement has a complex effect on the flow and can even reverse the flow direction. Beyond CNT membranes, our analytical model can guide the search for other membranes to generate fast and robust thermo-osmotic flows.
Electromagnetic reflection from multi-layered snow models
NASA Technical Reports Server (NTRS)
Linlor, W. I.; Jiracek, G. R.
1975-01-01
The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.
Properties of seismic absorption induced reflections
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2018-05-01
Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.
The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli
Landis, Lenore; Xu, Jimin; Johnson, Reid C.
1999-01-01
Transcription of the P1 promoter of the Escherichia coli proP gene, which encodes a transporter of osmoprotectants, is strongly induced by a shift to hyperosmotic media. Unlike most other osmotically regulated promoters, the induction occurs for a brief period of time, corresponding to the replacement of intracellular K+ glutamate with osmoprotecting compounds. This burst of proP transcription is correlated with the osmolarity-dependent binding of the cAMP receptor protein CRP to a site within the proP P1 promoter. We show that CRP–cAMP functions as an osmotically sensitive repressor of proP P1 transcription in vitro. Binding of CRP to the proP promoter in vivo is transiently destabilized after a hyperosmotic shift with kinetics that correspond to the derepression of transcription, whereas Fis and Lac repressor binding is not osmotically sensitive. Similar osmotic regulation of proP P1 transcription by the CRP* mutant implies that binding of cAMP is not responsible for the unusual osmotic sensitivity of CRP activity. Osmotic regulation of CRP activity is not limited to proP. Activation of the lac promoter by CRP is also transiently inhibited after an osmotic upshift, as is the binding of CRP to the galΔ4 P1 promoter. These findings suggest that CRP functions in certain contexts to regulate gene expression in response to osmotic changes, in addition to its role in catabolite control. PMID:10601034
The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli.
Landis, L; Xu, J; Johnson, R C
1999-12-01
Transcription of the P1 promoter of the Escherichia coli proP gene, which encodes a transporter of osmoprotectants, is strongly induced by a shift to hyperosmotic media. Unlike most other osmotically regulated promoters, the induction occurs for a brief period of time, corresponding to the replacement of intracellular K(+) glutamate with osmoprotecting compounds. This burst of proP transcription is correlated with the osmolarity-dependent binding of the cAMP receptor protein CRP to a site within the proP P1 promoter. We show that CRP-cAMP functions as an osmotically sensitive repressor of proP P1 transcription in vitro. Binding of CRP to the proP promoter in vivo is transiently destabilized after a hyperosmotic shift with kinetics that correspond to the derepression of transcription, whereas Fis and Lac repressor binding is not osmotically sensitive. Similar osmotic regulation of proP P1 transcription by the CRP* mutant implies that binding of cAMP is not responsible for the unusual osmotic sensitivity of CRP activity. Osmotic regulation of CRP activity is not limited to proP. Activation of the lac promoter by CRP is also transiently inhibited after an osmotic upshift, as is the binding of CRP to the galdelta4P1 promoter. These findings suggest that CRP functions in certain contexts to regulate gene expression in response to osmotic changes, in addition to its role in catabolite control.
Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.
1990-01-01
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295
Zhang, Xi; Yi, Yueneng; Qi, Jianping; Lu, Yi; Tian, Zhiqiang; Xie, Yunchang; Yuan, Hailong; Wu, Wei
2013-08-16
It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS. Copyright © 2013 Elsevier B.V. All rights reserved.
Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish.
Whitehead, Andrew; Zhang, Shujun; Roach, Jennifer L; Galvez, Fernando
2013-07-01
Environmental salinity presents a key barrier to dispersal for most aquatic organisms, and adaptation to alternate osmotic environments likely enables species diversification. Little is known of the functional basis for derived tolerance to environmental salinity. We integrate comparative physiology and functional genomics to explore the mechanistic underpinnings of evolved variation in osmotic plasticity within and among two species of killifish; Fundulus majalis harbours the ancestral mainly salt-tolerant phenotype, whereas Fundulus heteroclitus harbours a derived physiology that retains extreme salt tolerance but with expanded osmotic plasticity towards the freshwater end of the osmotic continuum. Common-garden comparative hypo-osmotic challenge experiments show that F. heteroclitus is capable of remodelling gill epithelia more quickly and at more extreme osmotic challenge than F. majalis. We detect an unusual pattern of baseline transcriptome divergence, where neutral evolutionary processes appear to govern expression divergence within species, but patterns of divergence for these genes between species do not follow neutral expectations. During acclimation, genome expression profiling identifies mechanisms of acclimation-associated response that are conserved within the genus including regulation of paracellular permeability. In contrast, several responses vary among species including those putatively associated with cell volume regulation, and these same mechanisms are targets for adaptive physiological divergence along osmotic gradients within F. heteroclitus. As such, the genomic and physiological mechanisms that are associated with adaptive fine-tuning within species also contribute to macro-evolutionary divergence as species diversify across osmotic niches. © 2013 John Wiley & Sons Ltd.
Development and optimization of buspirone oral osmotic pump tablet
Derakhshandeh, K.; berenji, M. Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump–based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794
Development and optimization of buspirone oral osmotic pump tablet.
Derakhshandeh, K; Berenji, M Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Altintas, A.
1988-01-01
A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1994-01-01
Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)
Eckhard, A; Müller, M; Salt, A; Smolders, J; Rask-Andersen, H; Löwenheim, H
2014-10-01
The cochlear duct epithelium (CDE) constitutes a tight barrier that effectively separates the inner ear fluids, endolymph and perilymph, thereby maintaining distinct ionic and osmotic gradients that are essential for auditory function. However, in vivo experiments have demonstrated that the CDE allows for rapid water exchange between fluid compartments. The molecular mechanism governing water permeation across the CDE remains elusive. We computationally determined the diffusional (PD) and osmotic (Pf) water permeability coefficients for the mammalian CDE based on in silico simulations of cochlear water dynamics integrating previously derived in vivo experimental data on fluid flow with expression sites of molecular water channels (aquaporins, AQPs). The PD of the entire CDE (PD = 8.18 × 10(-5) cm s(-1)) and its individual partitions including Reissner's membrane (PD = 12.06 × 10(-5) cm s(-1)) and the organ of Corti (PD = 10.2 × 10(-5) cm s(-1)) were similar to other epithelia with AQP-facilitated water permeation. The Pf of the CDE (Pf = 6.15 × 10(-4) cm s(-1)) was also in the range of other epithelia while an exceptionally high Pf was determined for an epithelial subdomain of outer sulcus cells in the cochlear apex co-expressing AQP4 and AQP5 (OSCs; Pf = 156.90 × 10(-3) cm s(-1)). The Pf/PD ratios of the CDE (Pf/PD = 7.52) and OSCs (Pf/PD = 242.02) indicate an aqueous pore-facilitated water exchange and reveal a high-transfer region or "water shunt" in the cochlear apex. This "water shunt" explains experimentally determined phenomena of endolymphatic longitudinal flow towards the cochlear apex. The water permeability coefficients of the CDE emphasise the physiological and pathophysiological relevance of water dynamics in the cochlea in particular for endolymphatic hydrops and Ménière's disease.
Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh
2012-01-01
The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718
Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.
Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas
2017-04-01
The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).
Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan
2018-04-16
The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.
NASA Astrophysics Data System (ADS)
Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun
2015-09-01
Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.
Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions
Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F.; de Pablo, Juan J.
2008-01-01
Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory–Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory–Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions. PMID:19045224
Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.
Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F; de Pablo, Juan J
2008-10-21
Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory-Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory-Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, R.G.; Verkman, A.S.
1989-01-24
A quantitative description of transmembrane water transport requires specification of osmotic (Pf) and diffusional (Pd) water permeability coefficients. Methodology has been developed to measure Pf and Pd simultaneously on the basis of the sensitivity and rapid response of the fluorophore aminonaphthalenetrisulfonic acid (ANTS) to solution H2O/D2O content. Cells loaded with ANTS in an H2O buffer were subjected to an inward osmotic gradient with a D2O buffer in a stopped-flow apparatus. The time courses of cell volume (giving Pf) and H2O/D2O content (giving Pd) were recorded with dual photomultiplier detection of scattered light intensity and ANTS fluorescence, respectively. The method wasmore » validated by using sealed red cell ghosts and artificial liposomes reconstituted with the pore-forming agent gramicidin D. At 25 degrees C, red cell ghost Pf was 0.021 cm/s with Pd 0.005 cm/s (H2O/D2O exchange time 7.9 ms). Pf and Pd were inhibited by 90% and 45% upon addition of 0.5 mM HgCl2. The activation energy for Pd increased from 5.1 kcal/mol to 10 kcal/mol with addition of HgCl2 (18-35 degrees C). In 90% phosphatidylcholine (PC)/10% cholesterol liposomes prepared by bath sonication and exclusion chromatography, Pf and Pd were 5.1 X 10(-4) and 6.3 X 10(-4) cm/s, respectively (23 degrees C). Addition of gramicidin D (0.1 micrograms/mg of PC) resulted in a further increment in Pf and Pd of 7 X 10(-4) and 3 X 10(-4) cm/s, respectively. These results validate the new methodology and demonstrate its utility for rapid determination of Pf/Pd in biological membranes and in liposomes reconstituted with water channels.« less
Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields
NASA Astrophysics Data System (ADS)
Fu, Jinxin; Ou-Yang, H. Daniel
2014-09-01
Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.
Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith
2016-07-01
Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The osmotic stress response of split influenza vaccine particles in an acidic environment.
Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D
2014-12-01
Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.
Saar, Galit; Shinar, Hadassah; Navon, Gil
2007-04-01
One of the functions of articular cartilage is to withstand recurrent pressure applied in everyday life. In previous studies, osmotic pressure has been used to mimic the effects of mechanical pressure. In the present study, the response of the collagen network of intact and proteoglycans (PG)-depleted cartilage to mechanical and osmotic pressures is compared. The technique used is one-dimensional (2)H double quantum filtered spectroscopic MRI, which gives information about the degree of order and the density of the collagen fibers at the different locations throughout the intact tissue. For the nonpressurized plugs, the depletion had no effect on these parameters. Major differences were found in the zones near the bone between the effects of the two types of application of pressure for both intact and depleted plugs. While the order is lost in these zones as a result of mechanical load, it is preserved under osmotic pressure. For both intact and PG-depleted plugs under osmotic stress most of the collagen fibers become disordered. Our results indicate that different modes of strain are produced by unidirectional mechanical load and the isotropic osmotic stress. Thus, osmotic stress cannot serve as a model for the effect of load on cartilage in vivo.
Shelate, Pragna; Dave, Divyang
2016-01-01
The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247
PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES
Tedeschi, Henry; James, Joseph M.; Anthony, William
1963-01-01
Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105
Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang
2017-03-01
The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.
NASA Astrophysics Data System (ADS)
Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh
2016-08-01
The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.
Faleiros, Rogério Oliveira; Furriel, Rosa P M; McNamara, John Campbell
2017-10-01
Palaemonid shrimps exhibit numerous adaptive strategies, both in their life cycles and in biochemical, physiological, morphological and behavioral characteristics that reflect the wide variety of habitats in which they occur, including species that are of particular interest when analyzing adaptive osmoregulatory strategies. The present investigation evaluates the short- (hours) and long-term (days) time courses of responses of two palaemonid shrimps from separate yet overlapping osmotic niches, Palaemon northropi (marine) and Macrobrachium acanthurus (diadromous, fresh water), to differential salinity challenges at distinct levels of structural organization: (i) transcriptional, analyzing quantitative expression of gill mRNAs that encode for subunits of the Na + /K + -ATPase and V(H + )-ATPase ion transporters; (ii) translational, examining the kinetic behavior of gill Na + /K + -ATPase specific activity; and (iii) systemic, accompanying consequent adjustment of hemolymph osmolality. Palaemon northropi is an excellent hyper-hypo-osmoregulator in dilute and concentrated seawater, respectively. Macrobrachium acanthurus is a strong hyper-regulator in fresh water and hypo-regulates hemolymph osmolality and particularly [Cl - ] in brackish water. Hemolymph hyper-regulation in fresh water (Macrobrachium acanthurus) and dilute seawater (Palaemon northropi) is underlain by augmented expression of both the gill Na + /K + -ATPase and V(H + )-ATPase. In contrast, in neither species is hypo-regulation sustained by changes in Na + /K + -ATPase mRNA expression levels, but rather by regulating enzyme specific activity. The integrated time course of Na + /K + - and V(H + )-ATPase expression and Na + /K + -ATPase activity in the gills of these palaemonid shrimps during acclimation to different salinities reveals versatility in their levels of regulation, and in the roles of these ion transporting pumps in sustaining processes of hyper- and hypo-osmotic and chloride regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Interpreting spectral unmixing coefficients: From spectral weights to mass fractions
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian
2018-01-01
It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.
NASA Astrophysics Data System (ADS)
Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.
2009-08-01
Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.
Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2008-03-01
This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.
Quantitative characterization of turbidity by radiative transfer based reflectance imaging
Tian, Peng; Chen, Cheng; Jin, Jiahong; Hong, Heng; Lu, Jun Q.; Hu, Xin-Hua
2018-01-01
A new and noncontact approach of multispectral reflectance imaging has been developed to inversely determine the absorption coefficient of μa, the scattering coefficient of μs and the anisotropy factor g of a turbid target from one measured reflectance image. The incident beam was profiled with a diffuse reflectance standard for deriving both measured and calculated reflectance images. A GPU implemented Monte Carlo code was developed to determine the parameters with a conjugate gradient descent algorithm and the existence of unique solutions was shown. We noninvasively determined embedded region thickness in heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative reflectance imaging. PMID:29760971
Sadeghi, Rahmat; Ebrahimi, Nosaibah
2011-11-17
A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.
NASA Astrophysics Data System (ADS)
Christov, Christomir
2007-07-01
The isopiestic method has been used to determine the osmotic coefficients of the binary solutions NaBr-H 2O (from 0.745 to 5.953 mol kg -1) and KBr-H 2O (from 0.741 to 5.683 mol kg -1) at the temperature t = 50 °C. Sodium chloride solutions have been used as isopiestic reference standards. The isopiestic results obtained have been combined with all other experimental thermodynamic quantities available in literature (osmotic coefficients, water activities, bromide mineral's solubilities) to construct a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems from dilute to high solution concentration within the 0-300 °C temperature range. The Harvie and Weare [Harvie C., and Weare J. (1980) The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-Cl-SO 4-H 2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta44, 981-997] solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer [Pitzer K. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.77, 268-277] is employed. The model for binary systems is validated by comparing activity coefficient predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solutions model due to data insufficiencies are discussed. This model expands the variable temperature sodium-potassium model of Greenberg and Moller [Greenberg J., and Moller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO 4-H 2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta53, 2503-2518] by evaluating Br - pure electrolyte and mixing solution parameters and the chemical potentials of three bromide solid phases: NaBr-2H 2O (cr), NaBr (cr) and KBr (cr).
Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels
NASA Astrophysics Data System (ADS)
Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik
2002-11-01
The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Lu, Renfu
2005-11-01
Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.
Multilayered models for electromagnetic reflection amplitudes
NASA Technical Reports Server (NTRS)
Linlor, W. I.
1976-01-01
The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.
BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition
NASA Astrophysics Data System (ADS)
Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.
1981-12-01
An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.
Osmotic Power: A Fresh Look at an Old Experiment
ERIC Educational Resources Information Center
Dugdale, Pam
2014-01-01
Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…
An Aversive Response to Osmotic Upshift in Caenorhabditis elegans.
Yu, Jingyi; Yang, Wenxing; Liu, He; Hao, Yingsong; Zhang, Yun
2017-01-01
Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans , changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.
Arbuscular mycorrhiza effects on plant performance under osmotic stress.
Santander, Christian; Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Olave, Jorge; Cartes, Paula; Borie, Fernando; Cornejo, Pablo
2017-10-01
At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
NASA Astrophysics Data System (ADS)
Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei
2018-03-01
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
Determination of optical coefficients of biological tissue from a single integrating-sphere
NASA Astrophysics Data System (ADS)
Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang
2012-01-01
The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.
Determination of optical band gap of powder-form nanomaterials with improved accuracy
NASA Astrophysics Data System (ADS)
Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul
2017-10-01
Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.
Efficiency of Osmotic Dehydration of Apples in Polyols Solutions.
Cichowska, Joanna; Żubernik, Joanna; Czyżewski, Jakub; Kowalska, Hanna; Witrowa-Rajchert, Dorota
2018-02-17
The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.
Cirelli, Damián; Jagels, Richard; Tyree, Melvin T
2008-08-01
Two theories have been proposed to explain how high positive pressures are developed in sugar maple stems when temperatures fluctuate around freezing. The Milburn-O'Malley theory proposes that pressure development is purely physical and does not require living cells or sucrose. The osmotic theory invokes the involvement of living cells and sucrose to generate an osmotic pressure difference between fibers and vessels, which are assumed to be separated by an osmotic barrier. We analyzed wood of Acer saccharum Marsh., Juglans cinerea L. and Betula papyrifera Marsh. (all generate positive pressures) examining three critical components of the osmotic model: pits in cell walls, selectivity of the osmotic barrier and stability of air bubbles under positive xylem pressure. We examined the distribution and type of pits directly by light and scanning electron microscopy (SEM), and indirectly by perfusion of branch segments with fluorescent dyes with molecular masses similar to sucrose. The latter approach allowed us to use osmotic surrogates for sucrose that could be tracked by epifluorescence. Infusion experiments were used to assess the compartmentalization of sucrose and to determine the behavior of gas bubbles as predicted by Fick's and Henry's laws. The SEM images of sugar maple revealed a lack of pitting between fibers and vessels but connections between fiber-tracheids and vessels were present. Fluorescein-perfusion experiments demonstrated that large molecules do not diffuse into libriform fibers but are confined within the domain of vessels, parenchyma and fiber-tracheids. Results of the infusion experiments were in agreement with those of the fluorescein perfusions and further indicated the necessity of a compartmentalized osmolyte to drive stem pressure, as well as the inability of air bubbles to maintain such pressure because of instability. These results support the osmotic model and demonstrate that the secondary cell wall is an effective osmotic barrier for molecules larger than 300 g mol(-1).
NASA Astrophysics Data System (ADS)
Cao, Bin; Liao, Ningfang; Li, Yasheng; Cheng, Haobo
2017-05-01
The use of spectral reflectance as fundamental color information finds application in diverse fields related to imaging. Many approaches use training sets to train the algorithm used for color classification. In this context, we note that the modification of training sets obviously impacts the accuracy of reflectance reconstruction based on classical reflectance reconstruction methods. Different modifying criteria are not always consistent with each other, since they have different emphases; spectral reflectance similarity focuses on the deviation of reconstructed reflectance, whereas colorimetric similarity emphasizes human perception. We present a method to improve the accuracy of the reconstructed spectral reflectance by adaptively combining colorimetric and spectral reflectance similarities. The different exponential factors of the weighting coefficients were investigated. The spectral reflectance reconstructed by the proposed method exhibits considerable improvements in terms of the root-mean-square error and goodness-of-fit coefficient of the spectral reflectance errors as well as color differences under different illuminants. Our method is applicable to diverse areas such as textiles, printing, art, and other industries.
Adibkia, Khosro; Ghanbarzadeh, Saeed; Shokri, Mohammad Hosein; Arami, Zahra; Arash, Zeinab; Shokri, Javad
2014-06-01
The major problem associated with conventional drug delivery systems is unpredictable plasma concentrations. The aim of this study was to design a controlled porosity osmotic pump (CPOP) of diltiazem hydrochloride to deliver the drug in a controlled manner. CPOP tablets were prepared by incorporation of drug in the core and subsequent coating with cellulose acetate as semi-permeable membrane. Non-ionic surfactants were applied as pore-formers as well. The effect of pore-formers concentration on the in vitro release of diltiazem was also studied. The formulations were compared based on four comparative parameters, namely, total drug released after 24 h (D24 h), lag-time (tL), squared correlation coefficient of zero order equation (RSQzero) and mean percent deviation from zero order kinetic (MPDzero). Results of scanning electron microscopy studies exhibited formation of pores in the membrane from where the drug release occurred. It was revealed that drug release rate was directly proportional to the concentration of the pore-formers. The value of D24 h in the formulations containing Tween 80 (10%) and Brij 35 (5%) were found to be more than 94.9%, and drug release followed zero order kinetic (RSQzero > 0.99 and MPDzero < 8%) with acceptable tL (lower than 1 h).
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
Limitations of quantitative analysis of deep crustal seismic reflection data: Examples from GLIMPCE
Lee, Myung W.; Hutchinson, Deborah R.
1992-01-01
Amplitude preservation in seismic reflection data can be obtained by a relative true amplitude (RTA) processing technique in which the relative strength of reflection amplitudes is preserved vertically as well as horizontally, after compensating for amplitude distortion by near-surface effects and propagation effects. Quantitative analysis of relative true amplitudes of the Great Lakes International Multidisciplinary Program on Crustal Evolution seismic data is hampered by large uncertainties in estimates of the water bottom reflection coefficient and the vertical amplitude correction and by inadequate noise suppression. Processing techniques such as deconvolution, F-K filtering, and migration significantly change the overall shape of amplitude curves and hence calculation of reflection coefficients and average reflectance. Thus lithological interpretation of deep crustal seismic data based on the absolute value of estimated reflection strength alone is meaningless. The relative strength of individual events, however, is preserved on curves generated at different stages in the processing. We suggest that qualitative comparisons of relative strength, if used carefully, provide a meaningful measure of variations in reflectivity. Simple theoretical models indicate that peg-leg multiples rather than water bottom multiples are the most severe source of noise contamination. These multiples are extremely difficult to remove when the water bottom reflection coefficient is large (>0.6), a condition that exists beneath parts of Lake Superior and most of Lake Huron.
Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation
Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; Tidor, Bruce
2005-01-01
The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation type and pattern, as measured by a standard statistical description of copolymerization, are found to have a negligible influence on CS osmotic pressure, which depends principally on the mean volumetric fixed charge density. The intrinsic backbone stiffness characteristic of polysaccharides such as CS, however, is demonstrated to contribute significantly to its osmotic pressure behavior, which is similar to that of a solution of charged rods for the 20-disaccharide chains considered. Steric excluded volume is found to play a negligible role in determining CS osmotic pressure at physiological ionic strength due to the dominance of repulsive intermolecular electrostatic interactions that maintain chains maximally spaced in that regime, whereas at high ionic-strength steric interactions become dominant due to electrostatic screening. Osmotic pressure predictions are compared to experimental data and to well-established theoretical models including the Donnan theory and the Poisson-Boltzmann cylindrical cell model. PMID:16055525
Smith, L T; Smith, G M; Madkour, M A
1990-01-01
We have investigated the mechanism of osmotic stress adaptation (osmoregulation) in Agrobacterium tumefaciens biotype I (salt-tolerant) and biotype II (salt-sensitive) strains. Using natural-abundance 13C nuclear magnetic resonance spectroscopy, we identified all organic solutes that accumulated to significant levels in osmotically stressed cultures. When stressed, biotype I strains (C58, NT1, and A348) accumulated glutamate and a novel disaccharide, beta-fructofuranosyl-alpha-mannopyranoside, commonly known as mannosucrose. In the salt-sensitive biotype II strain K84, glutamate was observed but mannosucrose was not. We speculate that mannosucrose confers the extra osmotic tolerance observed in the biotype I strains. In addition to identifying the osmoregulated solutes that this species synthesizes, we investigated the ability of A. tumefaciens to utilize the powerful osmotic stress protectant glycine betaine when it is supplied in the medium. Results from growth experiments, nuclear magnetic resonance spectroscopy, and a 14C labeling experiment demonstrated that in the absence of osmotic stress, glycine betaine was metabolized, while in stressed cultures, glycine betaine accumulated intracellularly and conferred enhanced osmotic stress tolerance. Furthermore, when glycine betaine was taken up in stressed cells, its accumulation caused the intracellular concentration of mannosucrose to drop significantly. The possible role of osmoregulation of A. tumefaciens in the transformation of plants is discussed. PMID:2254260
Mass transfer kinetics during osmotic dehydration of pomegranate arils.
Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati
2011-01-01
The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.
Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan
2014-03-21
Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.
2016-01-01
We evaluated the individual and combined effects of salinity and alkalinity on gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure in Luciobarbus capito. Increasing salinity concentrations (5, 8, 11, and 14 g/L) were associated with an initial increase and then decrease in L. capito gill Na+/K+-ATPase activity. Activity was affected by the difference between internal and external Na+ ion concentrations and osmotic pressure (P < 0.05). Both plasma ion (Na+, K+, and Cl−) concentration and osmotic pressure increased significantly (P < 0.05). An increase in alkalinity (15, 30, 45, and 60 mM) caused a significant increase in plasma K+ and urea nitrogen concentrations (P < 0.05) but had no effect on either plasma osmotic pressure or gill filament ATPase activity. In the two-factor experiment, the saline-alkaline interaction caused a significant increase in plasma ion (Na+, Cl−, and urea nitrogen) and osmotic pressure (P < 0.05). Variance analysis revealed that salinity, alkalinity, and their interaction significantly affected osmotic pressure, with salinity being most affected, followed by alkalinity, and their interaction. Gill filament ATPase activity increased at first and then decreased; peak values were observed in the orthogonal experiment group at a salinity of 8 g/L and alkalinity of 30 mM. PMID:27981049
[Spectral reflectance characteristics and modeling of typical Takyr Solonetzs water content].
Zhang, Jun-hua; Jia, Ke-li
2015-03-01
Based on the analysis of the spectral reflectance of the typical Takyr Solonetzs soil in Ningxia, the relationship of soil water content and spectral reflectance was determined, and a quantitative model for the prediction of soil water content was constructed. The results showed that soil spectral reflectance decreased with the increasing soil water content when it was below the water holding capacity but increased with the increasing soil water content when it was higher than the water holding capacity. Soil water content presented significantly negative correlation with original reflectance (r), smooth reflectance (R), logarithm of reflectance (IgR), and positive correlation with the reciprocal of R and logarithm of reciprocal [lg (1/R)]. The correlation coefficient of soil water content and R in the whole wavelength was 0.0013, 0.0397 higher than r and lgR, respectively. Average correlation coefficient of soil water content with 1/R and [lg (1/R)] at the wavelength of 950-1000 nm was 0.2350 higher than that of 400-950 nm. The relationships of soil water content with the first derivate differential (R') , the first derivate differential of logarithm (lgR)' and the first derivate differential of logarithm of reciprocal [lg(1/R)]' were unstable. Base on the coefficients of r, lg(1/R), R' and (lgR)', different regression models were established to predict soil water content, and the coefficients of determination were 0.7610, 0.8184, 0.8524 and 0.8255, respectively. The determination coefficient for power function model of R'. reached 0.9447, while the fitting degree between the predicted value based on this model and on-site measured value was 0.8279. The model of R' had the highest fitted accuracy, while that of r had the lowest one. The results could provide a scientific basis for soil water content prediction and field irrigation in the Takyr Solonetzs region.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1999-01-01
A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.
Teixeira Lins, Cíntia Maria; Rodrigues de Souza, Edivan; Farias de Melo, Hidelblandi; Silva Souza Paulino, Martha Katharinne; Dourado Magalhães, Pablo Rugero; Yago de Carvalho Leal, Lucas; Bentzen Santos, Hugo Rafael
2018-03-01
The survival of Atriplex nummularia plants in saline environments is possible mainly due to the presence of salt-accumulating epidermal vesicles. Commonly, destructive methods, such as plant material maceration and subsequent reading in osmometers, are employed in studies on water relations and osmotic adjustment and are inconvenient due to their underestimation of the total water potential inside the cells, which can cause overestimation of an osmotic adjustment that is not present. As a result, methods that preserve leaf structure, such as pressure-volume (P-V) curves, which take into consideration only the salts that compose the symplastic solution, are more adequate. Thus, the main objectives of this study were to evaluate the effect of determination methods of osmotic potential (Ψ o ) in Atriplex nummularia through destructive and leaf structure-preserving techniques and to determine the water relations of the species under increasing NaCl concentrations. Plants were subjected to daily irrigations, maintaining soil moisture at 80% of field capacity, with solutions of increasing NaCl concentration (0, 0.05, 0.1, 0.2, 0.25 and 0.3 M) for 84 days. Water potential, osmotic potential and osmotic adjustment were determined. In addition, P-V curves were constructed using pressure chambers. Water and osmotic potentials decreased linearly with increasing NaCl concentration in the irrigation solution. The main discrepancies observed were related to the osmotic adjustments determined through maceration and P-V curves. Based on the present research, it was possible to conclude that in studies with species that have salt-accumulating vesicles in the epidermis, such as the plants in the genus Atriplex, constructing P-V curves is more adequate than destructive methods. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Ball, B A; Vo, A
2001-01-01
Osmotic stress attributed to differences in the relative permeability of cryoprotectants, such as glycerol and water, appears to be an important factor in cryodamage. The objective of this study was to characterize the osmotic tolerance of equine spermatozoa, and to evaluate the effects of addition and removal of cryoprotectants from equine spermatozoa on their motility, and membrane and acrosomal integrity, as well as their mitochondrial membrane potential. Equine spermatozoa had a limited osmotic tolerance to anisosmotic conditions. Although the addition of increasing concentrations of glycerol decreased the motility and viability of equine spermatozoa, the rapid removal of glycerol by dilution in isosmotic media resulted in an even greater decline in motility and viability compared with spermatozoa maintained under anisosmotic conditions. Likewise, the addition and rapid removal of 1.0 M glycerol, ethylene glycol, dimethylsulfoxide, or propylene glycol resulted in a significant decline in sperm motility and viability. Among these cryoprotectants, ethylene glycol had the least detrimental effect on either viability or motility of spermatozoa following the rapid addition and removal of these cryoprotectants. These data demonstrate that equine spermatozoa have a limited osmotic tolerance compared with published reports for mouse or human spermatozoa, and appear to be more similar to boar spermatozoa in their osmotic tolerance. Of the 4 cryoprotectants evaluated in equine spermatozoa, the addition and removal of glycerol resulted in a more marked osmotic stress as indicated by alterations in motility, viability, and acrosomal integrity. These data suggest that alternative cryoprotectants should be considered for cryopreservation of equine spermatozoa in order to reduce osmotic stress associated with the addition of these agents during semen freezing.
Kumar, Pramod; Singh, Sanjay; Mishra, Brahmeshwar
2008-09-01
Colon targeted delivery systems of metronidazole (MTZ) based on osmotic technology were developed. The developed systems consisted of osmotic core (drug, osmotic agent and wicking agent), coated with semipermeable membrane (SPM) containing guar gum as pore former, coated core were then further coated with enteric coating to protect the system from acidic environment of stomach. The effect of various formulation variables namely the level of wicking agent (sodium lauryl sulphate), osmotic agent in the osmotic core, the level of pore former (guar gum) in SPM, and the thickness of SPM, were studied on physical parameters and drug release characteristics of developed formulations. MTZ release was inversely proportional to SPM thickness, but directly related to the level of pore former, wicking agent and osmotic agent. On the other hand burst strength of the exhausted shells was decreased with the increase in level of pore former in the membrane but increased with the increase in the thickness of SPM. The drug release from the developed formulations was independent of pH, and agitation intensity, but dependent on the osmotic pressure of the release media. The thickness of enteric coating could prevent formation of delivery pores before contact with simulated colonic fluid, but had no effect on drug release. Result of SEM studies showed the formation of in-situ delivery pores in the membrane from where the drug release occurred, and the number of pores formed were directly related to the initial level of pore former (guar gum) in SPM. The manufacturing procedure was found to be reproducible and formulations were found to be stable during 3 months of accelerated stability studies.
Liu, Longxiao; Wang, Jinchao; Zhu, Suyan
2007-04-01
The preparation of an osmotic pump tablet was simplified by elimination of laser drilling using prazosin hydrochloride as the model drug. The osmotic pump system was obtained by coating the indented core tablet compressed by the punch with a needle. A multiple regression equation was achieved with the experimental data of core tablet formulations, and then the formulation was optimized. The influences of the indentation size of the core tablet, environmental media, and agitation rate on drug release profile were investigated. The optimal osmotic pump tablet was found to deliver prazosin hydrochloride at an approximately constant rate up to 24 hr, and independent on both release media and agitation rate. Indentation size of core tablet hardly affected drug release in the range of 0.80-1.15 mm. The method that is simplified by elimination of laser drilling may be promising for preparation of an osmotic pump tablet.
Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants.
Chung, Eunsook; Kim, Soo-Yong; Yi, So Young; Choi, Doil
2003-06-30
Osmotic stress-related genes were selected from an EST database constructed from 7 cDNA libraries from different tissues of the hot pepper. A full-length cDNA of Capsicum annuum dehydrin (Cadhn), a late embryogenesis abundant (lea) gene, was selected from the 5' single pass sequenced cDNA clones and sequenced. The deduced polypeptide has 87% identity with potato dehydrin C17, but very little identity with the dehydrin genes of other organisms. It contains a serine-tract (S-segment) and 3 conserved lysine-rich domains (K-segments). Southern blot analysis showed that 2 copies are present in the hot pepper genome. Cadhn was induced by osmotic stress in leaf tissues as well as by the application of abscisic acid. The RNA was most abundant in green fruit. The expression of several osmotic stress-related genes was examined and Cadhn proved to be the most abundantly expressed of these in response to osmotic stress.
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, David J.; Anex, Deon S.; Yan, Chao; Dadoo, Rajeev; Zare, Richard N.
1999-01-01
Method and apparatus for controlling precisely the composition and delivery of liquid at sub-.mu.L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-.mu.L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column.
NASA Technical Reports Server (NTRS)
Ville, J. M.; Silcox, R. J.
1980-01-01
The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction.
Tohmyoh, Hironori; Sakamoto, Yuhei
2015-11-01
This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.
Quantifying Errors in Jet Noise Research Due to Microphone Support Reflection
NASA Technical Reports Server (NTRS)
Nallasamy, Nambi; Bridges, James
2002-01-01
The reflection coefficient of a microphone support structure used insist noise testing is documented through tests performed in the anechoic AeroAcoustic Propulsion Laboratory. The tests involve the acquisition of acoustic data from a microphone mounted in the support structure while noise is generated from a known broadband source. The ratio of reflected signal amplitude to the original signal amplitude is determined by performing an auto-correlation function on the data. The documentation of the reflection coefficients is one component of the validation of jet noise data acquired using the given microphone support structure. Finally. two forms of acoustic material were applied to the microphone support structure to determine their effectiveness in reducing reflections which give rise to bias errors in the microphone measurements.
Spectral radiative properties of a living human body
NASA Astrophysics Data System (ADS)
Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.
1986-09-01
Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.
Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2016-07-01
We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1976-01-01
The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.
An Aversive Response to Osmotic Upshift in Caenorhabditis elegans
Yu, Jingyi; Liu, He
2017-01-01
Abstract Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity. PMID:28451641
Slama, Hichem; Fery, Patrick; Verheulpen, Denis; Vanzeveren, Nathalie; Van Bogaert, Patrick
2015-07-01
Long-acting medications have been developed and approved for use in the treatment of attention-deficit hyperactivity disorder (ADHD). These compounds are intended to optimize and maintain symptoms control throughout the day. We tested prolonged effects of osmotic-release oral system methylphenidate on both attention and inhibition, in the late afternoon. A double-blind, randomized, placebo-controlled study was conducted in 36 boys (7-12 years) with ADHD and 40 typically developing children. The ADHD children received an individualized dose of placebo or osmotic-release oral system methylphenidate. They were tested about 8 hours after taking with 2 continuous performance tests (continuous performance test-X [CPT-X] and continuous performance test-AX [CPT-AX]) and a counting Stroop. A positive effect of osmotic-release oral system methylphenidate was present in CPT-AX with faster and less variable reaction times under osmotic-release oral system methylphenidate than under placebo, and no difference with typically developing children. In the counting Stroop, we found a decreased interference with osmotic-release oral system methylphenidate but no difference between children with ADHD under placebo and typically developing children. © The Author(s) 2014.
Structure and osmotic pressure of ionic microgel dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, Mary M.; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050; Chung, Jun Kyung
We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute bothmore » macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.« less
The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase
NASA Astrophysics Data System (ADS)
Rajapaksha Mudalige, Ajith Rathnaweera
Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40% PEG did not change compared to the SOD structure in water. It therefore appears that under the conditions of our simulations MD could not describe the experimentally observed effects of macromolecular crowding. In a separate project, we measured the rate of diffusive transport in excised porcine corneal stroma using FCS for fluorescent labeled dextran molecules with hydrodynamic radii ranging from 1.3 to 34 nm. Dextran molecules diffuse more slowly in cornea as compared to buffer solution. The reduction in diffusion coefficient is modest however (67% smaller), and is uniform over the range of sizes that we measured. Diffusion coefficients measured parallel vs. perpendicular to the collagen lamellae were indistinguishable. This indicates that diffusion in the corneal stroma is not highly anisotropic. Delivery of therapeutic agents to the eye requires efficient transport through cellular and extracellular barriers. Our measurements bring important insights into how macromolecular and nanoparticle therapeutics might permeate through the eyes.
Rocha, Antonino S.; Kokko, Juha P.
1973-01-01
Transport of NaCl and water was examined in the rabbit medullary thick ascending limb of Henle (ALH) by perfusing isolated segments of these nephrons in vitro. Osmotic water permeability was evaluated by perfusing tubules against imposed osmotic gradients. In these experiments the net transport of fluid remained at zero when segments of thick ALH were perfused with isotonic ultrafiltrate in a bath of rabbit serum in which the serum osmolality was increased by the addition of either 239±8 mosmol/liter of raffinose or 232±17 mosmol of NaCl indicating that the thick ascending limb of Henle is impermeant to osmotic flow of water. When these tubules were perfused at slow rates with isosmolal ultrafiltrate of same rabbit serum as used for the bath, the effluent osmolality was consistently lowered to concentrations less than the perfusate and the bath. That this decrease in collected fluid osmolality represented salt transport was demonstrated in a separate set of experiments in which it was shown that the sodium and chloride concentrations decreased to 0.79±0.02 and 0.77±0.02 respectively when compared with the perfusion fluid concentrations. In each instance the simultaneously determined transtubular potential difference (PD) revealed the lumen to be positive with the magnitude dependent on the perfusion rate. At flow rates above 2 nl·min-1, the mean transtubular PD was stable and equal to 6.70±0.34 mv. At stop-flow conditions this PD became more positive. Ouabain and cooling reversibly decreased the magnitude of this PD. The transtubular PD remained positive, 3.3±0.2 mV, when complete substitution of Na by choline was carried out in both the perfusion fluid and the bathing media. These results are interpreted to indicate that the active transport process is primarily an electrogenic chloride mechanism. The isotopic permeability coefficient for Na was 6.27±0.38 × 10-5 cm·s-1 indicating that the thick ALH is approximately as permeable to Na as the proximal convoluted tubule. The chloride permeability coefficient for the thick ALH was 1.06±0.12 × 10-5 cm·s-1 which is significantly less than the chloride permeability of the proximal tubule. These data demonstrate that the medullary thick ascending limb of Henle is water impermeable while having the capacity for active outward solute transport as a consequence of an electrogenic chloride pump. The combination of these characteristics allows this segment to generate a dilute tubular fluid and participate as the principal energy source for the overall operation of the countercurrent multiplication system. Images PMID:4685086
NASA Astrophysics Data System (ADS)
Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.
1992-10-01
The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.
Shelf-life extension of gilthead seabream fillets by osmotic treatment and antimicrobial agents.
Tsironi, T N; Taoukis, P S
2012-02-01
The objectives of the study were to evaluate the effect of selected antimicrobial agents on the shelf life of osmotically pretreated gilthead seabream and to establish reliable kinetic equations for shelf-life determination validated in dynamic conditions. Fresh gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% high dextrose equivalent maltodextrin (HDM, DE 47) plus 5% NaCl and 0·5% carvacrol, 0·5% glucono-δ-lactone or 1% Citrox (commercial antimicrobial mix). Untreated and treated slices were aerobically packed and stored isothermally (0-15°C). Microbial growth and quality-related chemical indices were modelled as functions of temperature. Models were validated at dynamic storage conditions. Osmotic pretreatment with the use of antimicrobials led to significant shelf-life extension of fillets, in terms of microbial growth and organoleptic deterioration. The shelf life was 7 days for control samples at 5°C. The osmotic pretreatment with carvacrol, glucono-δ-lactone and Citrox allowed for shelf-life extension by 8, 10 and 5 days at 5°C, respectively. The results of the study show the potential of adding carvacrol, glucono-δ-lactone or Citrox in the osmotic solution to extend the shelf life and improve commercial value of chilled osmotically pretreated fish products. The developed models can be a reliable tool for predicting the shelf life of fresh or minimally processed gilthead seabream fillets in the real chill chain. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng
2018-05-25
Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tschaplinski, T.J.; Hanson, P.J.; Norby, R.J.
1991-05-01
Since osmotic adjustment to water stress requires carbon assimilation during stress, the stimulation of photosynthesis by elevated CO{sub 2} may enhance osmotic adjustment. Osmotic adjustment of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.), sugar maple (Acer saccharum Marsh.), yellow-poplar (Liriodendron tulipifera L.), and northern red oak (Quercus rubra L.) to water stress was assessed under ambient and elevated CO{sub 2} (ambient +300 {mu}L L{sup {minus}1}), with seedlings grown in 8-L pots in four open-top chambers, fitted with rain exclusion canopies. Trees were subjected to repeated water stress cycles over a six-week period. Well-watered trees were watered daily tomore » maintain a soil matric potential > {minus}0.3 MPa, whereas stressed trees were watered when soil matric potential declined to < {minus}0.9 MPa. Gas exchange and water relations were monitored at the depth of stress and after rewatering. All species displayed an increase in leaf-level water-use efficiency (net photosynthesis/transpiration). Leaves of sycamore and sweetgum displayed an adjustment in osmotic potential at saturation (pressure-volume analysis) of 0.3 MPa and 0.6 MPa, respectively. Elevated CO{sub 2} did not enhance osmotic adjustment in leaves of any of the species studied. Studies to characterize organic solute concentrations in roots are ongoing to determine if osmotic adjustment occurred in the roots.« less
Retrieval of background surface reflectance with BRD components from pre-running BRDF
NASA Astrophysics Data System (ADS)
Choi, Sungwon; Lee, Kyeong-Sang; Jin, Donghyun; Lee, Darae; Han, Kyung-Soo
2016-10-01
Many countries try to launch satellite to observe the Earth surface. As important of surface remote sensing is increased, the reflectance of surface is a core parameter of the ground climate. But observing the reflectance of surface by satellite have weakness such as temporal resolution and being affected by view or solar angles. The bidirectional effects of the surface reflectance may make many noises to the time series. These noises can lead to make errors when determining surface reflectance. To correct bidirectional error of surface reflectance, using correction model for normalized the sensor data is necessary. A Bidirectional Reflectance Distribution Function (BRDF) is making accuracy higher method to correct scattering (Isotropic scattering, Geometric scattering, Volumetric scattering). To correct bidirectional error of surface reflectance, BRDF was used in this study. To correct bidirectional error of surface reflectance, we apply Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. And we apply 2 steps for retrieving Background Surface Reflectance (BSR). The first step is retrieving Bidirectional Reflectance Distribution (BRD) coefficients. Before retrieving BSR, we did pre-running BRDF to retrieve BRD coefficients to correct scatterings (Isotropic scattering, Geometric scattering, Volumetric scattering). In pre-running BRDF, we apply BRDF with observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get BRD coefficients for calculating scattering. After that, we apply BRDF again in the opposite direction with BRD coefficients and angular data to retrieve BSR as a second step. As a result, BSR has very similar reflectance to one of VGT-S1. And reflectance in BSR is shown adequate. The highest reflectance of BSR is not over 0.4μm in blue channel, 0.45μm in red channel, 0.55μm in NIR channel. And for validation we compare reflectance of clear sky pixel from SPOT/VGT status map data. As a result of comparing BSR with VGT-S1, bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. They are very reasonable results, so we confirm that BSR is similar to VGT-S1. And weakness of this study is missing pixel in BSR which are observed less time to retrieve BRD components. If missing pixels are filled, BSR is better to retrieve surface products with more accuracy. And we think that after filling the missing pixel and being more accurate, it can be useful data to retrieve surface product which made by surface reflectance like cloud masking and retrieving aerosol.
Terdale, Santosh S; Dagade, Dilip H; Patil, Kesharsingh J
2007-12-06
Data on osmotic coefficients have been obtained for a binary aqueous solution of two drugs, namely, promazine hydrochloride (PZ) and chlorpromazine hydrochloride (CPZ) using a vapor pressure osmometer at 298.15 K. The observed critical micelle concentration (cmc) agrees excellently with the available literature data. The measurements are extended to aqueous ternary solutions containing fixed a concentration of alpha-cyclodextrin (alpha-CD) of 0.1 mol kg(-1) and varied concentrations (approximately 0.005-0.2 mol kg(-1)) of drugs at 298.15 K. It has been found that the cmc values increase by the addition of alpha-CD. The mean molal activity coefficients of the ions and the activity coefficient of alpha-CD in binary as well as ternary solutions were obtained, which have been further used to calculate the excess Gibbs free energies and transfer Gibbs free energies. The lowering of the activity coefficients of ions and of alpha-CD is attributed to the existence of host-guest (inclusion)-type complex equilibria. It is suggested that CPZ forms 2:1 and 1:1 complexed species with alpha-CD, while PZ forms only 1:1 complexed species. The salting constant (ks) values are determined at 298.15 K for promazine-alpha-CD and chlorpromazine-alpha-CD complexes, respectively, by following the method based on the application of the McMillan-Mayer theory of virial coefficients to transfer free energy data. It is noted that the presence of chlorine in the drug molecule imparts better complexing capacity, the effect of which gets attenuated as a result of hydrophobic interaction. The results are discussed from the point of view of associative equilibria before the cmc and complexed equilibria for binary and ternary solutions, respectively.
Replacing backscattering with reduced scattering. A better formulation of reflectance function?
NASA Astrophysics Data System (ADS)
Piskozub, Jacek; McKee, David; Freda, Wlodzimierz
2014-05-01
Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.
Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M.
2017-01-01
Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca2+) on the process of adventitious rooting in cucumber (Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca2+. The application of Ca2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca2+/CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na2WO4) and sodium azide (NaN3). This gives an indication that Ca2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca2+/CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic stress through improving the photosynthetic performance of leaves and activating antioxidative system in plants. PMID:29021804
Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M
2017-01-01
Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic stress through improving the photosynthetic performance of leaves and activating antioxidative system in plants.
Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities
Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E.; Omsland, Anders
2017-01-01
ABSTRACT Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log (P < 0.05). Increasing concentrations of osmotic compounds improved the effect, but there was a trade-off with increasing solution viscosity, whereby low-molecular-mass compounds (sucrose, 400-Da PEG) worked better than higher-mass compounds (maltodextrin, 3,350-Da PEG). Ten other A. baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity (r2 > 0.82; P < 0.002), and the relationship was generalizable for biofilms formed by A. baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of osmotic compounds and antibiotics against surface biofilms communities. PMID:28733283
Cochrane, T T; Cochrane, T A
2016-01-01
To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were subsequently used to estimate Nf values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors' equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Following work to measure the relative densities of aqueous solutions for the calculation of Nf values and the determination of definitive t values up to and beyond bodily temperatures, the authors' equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.
NASA Astrophysics Data System (ADS)
Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li
2018-05-01
Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.
Cerebral Blood Flow and Cerebral Edema in Rats With Diabetic Ketoacidosis
Yuen, Natalie; Anderson, Steven E.; Glaser, Nicole; Tancredi, Daniel J.; O'Donnell, Martha E.
2008-01-01
OBJECTIVE— Cerebral edema (CE) is a potentially life-threatening complication of diabetic ketoacidosis (DKA) in children. Osmotic fluctuations during DKA treatment have been considered responsible, but recent data instead suggest that cerebral hypoperfusion may be involved and that activation of cerebral ion transporters may occur. Diminished cerebral blood flow (CBF) during DKA, however, has not been previously demonstrated. We investigated CBF and edema formation in a rat model of DKA and determined the effects of bumetanide, an inhibitor of Na-K-Cl cotransport. RESEARCH DESIGN AND METHODS— Juvenile rats with streptozotocin-induced DKA were treated with intravenous saline and insulin, similar to human treatment protocols. CBF was determined by magnetic resonance (MR) perfusion–weighted imaging before and during treatment, and CE was assessed by determining apparent diffusion coefficients (ADCs) using MR diffusion–weighted imaging. RESULTS— CBF was significantly reduced in DKA and was responsive to alterations in pCO2. ADC values were reduced, consistent with cell swelling. The reduction in ADCs correlated with dehydration, as reflected in blood urea nitrogen concentrations. Bumetanide caused a rapid rise in ADCs of DKA rats without significantly changing CBF, while saline/insulin caused a rapid rise in CBF and a gradual rise in ADCs. DKA rats treated with bumetanide plus saline/insulin showed a trend toward more rapid rise in cortical ADCs and a larger rise in striatal CBF than those observed with saline/insulin alone. CONCLUSIONS— These data demonstrate that CE in DKA is accompanied by cerebral hypoperfusion before treatment and suggest that blocking Na-K-Cl cotransport may reduce cerebral cell swelling. PMID:18633109
Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney
Sackin, H; Boulpaep, EL
1975-01-01
Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761
Choi, Jee Woong; Dahl, Peter H; Goff, John A
2008-09-01
Acoustic bottom-interacting measurements from the Shallow Water '06 experiment experiment (frequency range 1-20 kHz) are presented. These are co-located with coring and stratigraphic studies showing a thin (approximately 20 cm) higher sound speed layer overlaying a thicker (approximately 20 m) lower sound speed layer ending at a high-impedance reflector (R reflector). Reflections from the R reflector and analysis of the bottom reflection coefficient magnitude for the upper two sediment layers confirm both these features. Geoacoustic parameters are estimated, dispersion effects addressed, and forward modeling using the parabolic wave equation undertaken. The reflection coefficient measurements suggest a nonlinear attenuation law for the thin layer of sandy sediments.
On Sound Reflection in Superfluid
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-02-01
We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
NASA Astrophysics Data System (ADS)
Avrutskiĭ, I. A.; Sychugov, V. A.
1989-02-01
The problem of reflection of light from the surface of an amplifying corrugated waveguide is solved. An increase in the waveguide gain increases considerably the reflection coefficient and reduces the spectral width of the reflection peak.
Osmotically Induced Reversible Transitions in Lipid-DNA Mesophases
Danino, Dganit; Kesselman, Ellina; Saper, Gadiel; Petrache, Horia I.; Harries, Daniel
2009-01-01
We follow the effect of osmotic pressure on isoelectric complexes that self-assemble from mixtures of DNA and mixed neutral and cationic lipids. Using small angle x-ray diffraction and freeze-fracture cryo-electron microscopy, we find that lamellar complexes known to form in aqueous solutions can reversibly transition to hexagonal mesophases under high enough osmotic stress exerted by adding a neutral polymer. Using molecular spacings derived from x-ray diffraction, we estimate the reversible osmotic pressure-volume (Π-V) work needed to induce this transition. We find that the transition free energy is comparable to the work required to elastically bend lipid layers around DNA. Consistent with this, the required work is significantly lowered by an addition of hexanol, which is known to soften lipid bilayers. Our findings not only help to resolve the free-energy contributions associated with lipid-DNA complex formation, but they also demonstrate the importance that osmotic stress can have to the macromolecular phase geometry in realistic biological environments. PMID:19348739
Turnbull, Jessica; Lumsden, Daniel; Siddiqui, Ata; Lin, Jean-Pierre; Lim, Ming
2013-04-01
Central and extrapontine myelinolysis are collectively known as osmotic demyelination syndrome. This encephalopathic illness has been well documented in the adult literature, occurring most commonly in the context of chronic alcoholism, correction of hyponatraemia and liver transplantation. Aetiology and outcome in the paediatric population are less well understood. Two cases of osmotic demyelination syndrome occurring in children with transient severe hypophosphataemia during the course of their illness are presented. Both had very different neurological outcomes, but the changes of central and extrapontine myelinolysis were apparent on neuroimaging. Sixty-one cases in the paediatric literature were then reviewed. We summarize aetiology and outcome in paediatric cases of osmotic demyelination syndrome and postulate a role for hypophosphataemia as a contributing factor in the development of these sometimes devastating conditions. Hypophosphataemia may contribute to the risk of developing osmotic demyelination syndrome in at-risk paediatric patients and further study of this association should be undertaken. ©2012 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.
Recent development in osmotic dehydration of fruit and vegetables: a review.
Chandra, Suresh; Kumari, Durvesh
2015-01-01
Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products.
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, D.J.; Anex, D.S.; Yan, C.; Dadoo, R.; Zare, R.N.
1999-08-24
Method and apparatus are disclosed for controlling precisely the composition and delivery of liquid at sub-{micro}L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-{micro}L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column. 4 figs.
Hypo-osmotic shock induces nuclear export and proteasome-dependent decrease of UBL5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatanaka, Ken; Precursory Research for Embryonic Science and Technology; Laboratory of Neurobiophysics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
2006-11-24
The osmolarity of body fluid is strictly controlled through the action of diuretic hormones, which are secreted in the hypothalamus. In the mammalian brain, ubiquitin-like 5 (UBL5) is expressed in oxytocin- and vasopressin-positive neurons in the hypothalamus, and these neurons play a role in regulating osmolarity. We examined the dynamics of UBL5 levels in response to hyper- or hypo-osmotic conditions. Hypo-osmotic conditions led to significantly reduced levels of UBL5 both in brain slices from the hypothalamus and in NIH-3T3 cells. This decrease in UBL5 was transcription-independent and proteasome-dependent. Time-course immunocytochemical studies using exogenous UBL5 revealed that the protein was exportedmore » from the nucleus under hypo-osmotic conditions and decreased in a proteasome-dependent manner. This report is the first to describe changes in the intracellular and subcellular localization of UBL5 in response to hypo-osmotic conditions. Our results imply osmoregulation of UBL5.« less
Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: A comparison.
Ahumada, M; Calderon, C; Alvarez, C; Lanio, M E; Lissi, E A
2015-05-01
DPPC and DPPC:SM large unilamellar vesicles (LUVs), prepared by extrusion, readily respond to osmotic shocks (hypo- and hyper-osmotic) by water influx/efflux (evaluated by changes in turbidity) and by entrapped calcein liberation (measured by an increase in dye fluorescence intensity). On the other hand, small unilamellar vesicles (SUVs) prepared by sonication are almost osmotically insensitive. LUVs water transport, both in hypo- and hyper-osmotic conditions, takes place faster than calcein ejection towards the external solvent. Similarly, response to a hypotonic imbalance is faster than that associated to a hypertonic stress. This difference is particularly noticeable for the increase in calcein fluorescence intensity and can be related to the large reorganization of the bilayer needed to form pores and/or to adsorb the dye to the inner leaflet of the vesicle after water efflux. Conversely, addition of SM to the vesicles barely modify the rate of calcein permeation across the bilayer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Role of aquaporin and sodium channel in pleural water movement.
Jiang, Jinjun; Hu, Jie; Bai, Chunxue
2003-12-16
The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.
Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L
NASA Technical Reports Server (NTRS)
Goliber, T. E.; Feldman, L. J.
1989-01-01
Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.
Size effects of pore density and solute size on water osmosis through nanoporous membrane.
Zhao, Kuiwen; Wu, Huiying
2012-11-15
Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.
Zorrilla-Fontanesi, Yasmín; Rouard, Mathieu; Cenci, Alberto; Kissel, Ewaut; Do, Hien; Dubois, Emeric; Nidelet, Sabine; Roux, Nicolas; Swennen, Rony; Carpentier, Sebastien Christian
2016-01-01
To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70–84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress. PMID:26935041
Soares, Julio C M; Folmer, Vanderlei; Da Rocha, João B T; Nogueira, Cristina W
2014-05-01
Diabetic status is associated with an increase on oxidative stress markers in humans and animal models. We have investigated the in vitro effects of high concentrations of glucose on the profile of oxidative stress and osmotic fragility of blood from control and diabetic patients; we considered whether its antioxidant properties could afford some protection against glucose-induced osmotic fragility, and whether ebselen could act as an inhibitor of hemoglobin glycation. Raising blood glucose to 5-100 mmol/L resulted in a concentration-dependent increase of glycated hemoglobin (HbA1c; P < 0.001) and thiobarbituric acid reactive species (TBA-RS) content (P < 0.004). Non-protein SH groups (NPSH) also increased significantly as the concentration of glucose increased up to 30 mmol/L (P < 0.001). The osmotic fragility was more pronounced in blood of uncontrolled diabetic patients than in these non-diabetic subjects. Ebselen significantly reduced the glucose-induced increase in osmotic fragility and inhibited HbA1c formation (P < 0.0001). These results indicate that blood from patients with uncontrolled diabetes are more sensitive to osmotic shock than from patients with controlled diabetes and control subjects in relation to increased production of free radicals in vivo. © 2014 International Federation for Cell Biology.
Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure
Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet
2014-01-01
The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808
Casein Micelle Dispersions under Osmotic Stress
Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard
2009-01-01
Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314
Song, Qun-Li; Li, Ping; Li, Yu-Min
2012-01-01
A method for the preparation of porosity osmotic pump granules was obtained by modulating carvedilol solubility with tartaric acid. Controlled porosity of the membrane was accomplished by the use of pore-forming agent in the coating. In this study, carvedilol was chosen as a model drug with an aim to develop a zero-order release system; tartaric acid was used as the solubility promoter; NaCl was used as the osmotic agent; cellulose acetate (CA) was used as the materials of semipermeable membrane; and PEG-400 was used as the pore-forming agent in the semipermeable membrane. The influence of different factors or levels on the in vitro release was studied. In order to simulate the gastrointestinal tract environments, two kinds of pH media (pH 1.5 and 6.8) on drug release were studied in this research, respectively. This porosity osmotic pump was optimized by single factor design experiments, and it was found to deliver carvedilol at a zero-order rate within 12 h and controlled release for 24 h. We drew a conclusion that the solubility-modulated porosity osmotic pump system is simple to prepare and might be used for the preparation of osmotic pump system of other poorly water-soluble drugs with alkaline or acid groups.
López de Frutos, Laura; Cebolla, Jorge J; Irún, Pilar; Köhler, Ralf; Giraldo, Pilar
2018-05-01
Erythrocyte volume regulation and membrane elasticity are essential for adaptation to osmotic and mechanical stress, and life span. Here, we evaluated whether defective cholesterol trafficking caused by the rare lysosomal storages diseases (LSDs), Niemann-Pick type C (NPC) and Lysosomal acid lipase (LAL) deficiency (LALD) impairs these properties. Moreover, we tested whether measurements of cholesterol membrane content and osmotic resistance serve as a screening test for these LSDs. Patients were genotyped for mutations in NPC1, NPC2, or LIPA genes. We measured LSD plasma biomarkers and LAL activity. Red blood cells (RBC) membrane cholesterol content was evaluated in 73 subjects. Osmotic resistance tests (ORT) were conducted in 121 blood samples from LSD suspected patients and controls. We did not find statistically significant differences between RBC cholesterol content between subjects and controls. However, the ORT, particularly at 0.49% (w/v) hypotonic sodium chloride solution, revealed a significant higher osmotic resistance in LSDs patients than in controls. We established a cut-off value of ≤51% of haemolysis with sensibility and specificity values of 80% and 70%, respectively. NPC and LALD do not alter cholesterol content in the RBC membrane but increase osmotic resistance. Therefore, ORT serves as screening test for the studied LSDs. Copyright © 2018 Elsevier B.V. All rights reserved.
Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L
2017-08-23
Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.
Casein micelle dispersions under osmotic stress.
Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard
2009-01-01
Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their kappa-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.
Ben-Hayyim, Gozal
1987-01-01
Salt-tolerant selected cells of Shamouti orange (Citrus sinensis) and Sour orange (Citrus aurantium) grew considerably better than nonselected cells at any NaCl concentration tested up to 200 millimolar. Also, the growth response of each treatment was identical in the two species. However, the performance of cells of the two species under osmotic stress induced by polyethylene glycol (PEG), which is presumably a nonabsorbed osmoticum, was significantly different. The nonselected Shamouti cell lines were significantly more sensitive to osmotic stress than the selected cells. The salt adapted Shamouti cells were apparently also adapted to osmotic stress induced by PEG. In Sour orange, however, the selected lines had no advantage over the nonselected line in response to osmotic stress induced by PEG. This response was also similar quantitatively to the response of the selected salt-tolerant Shamouti cell line. It seems that the tolerance to salt in Shamouti, a partial salt excluder, involves an osmotic adaptation, whereas in Sour orange, a salt accumulator, such an adaptation apparently does not occur. PEG-induced osmotic stress causes an increase in the percent dry weight of salt-sensitive and salt-tolerant cells of both species. No such increase was found under salt stress. The size of control and stressed cells is not significantly different. PMID:16665715
Erlitzki, Noa; Huang, Kenneth; Xhani, Suela; Farahat, Abdelbasset A; Kumar, Arvind; Boykin, David W; Poon, Gregory M K
2017-12-01
Previous investigations of sequence-specific DNA binding by model minor groove-binding compounds showed that the ligand/DNA complex was destabilized in the presence of compatible co-solutes. Inhibition was interpreted in terms of osmotic stress theory as the uptake of significant numbers of excess water molecules from bulk solvent upon complex formation. Here, we interrogated the AT-specific DNA complex formed with the symmetric heterocyclic diamidine DB1976 as a model for minor groove DNA recognition using both ionic (NaCl) and non-ionic cosolutes (ethylene glycol, glycine betaine, maltose, nicotinamide, urea). While the non-ionic cosolutes all destabilized the ligand/DNA complex, their quantitative effects were heterogeneous in a cosolute- and salt-dependent manner. Perturbation with NaCl in the absence of non-ionic cosolute showed that preferential hydration water was released upon formation of the DB1976/DNA complex. As salt probes counter-ion release from charged groups such as the DNA backbone, we propose that the preferential hydration uptake in DB1976/DNA binding observed in the presence of osmolytes reflects the exchange of preferentially bound cosolute with hydration water in the environs of the bound DNA, rather than a net uptake of hydration waters by the complex. Copyright © 2017 Elsevier B.V. All rights reserved.
3D printing of tablets containing multiple drugs with defined release profiles.
Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J
2015-10-30
We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.
[Preparation of ondansetron hydrochloride osmotic pump tablets and their in vitro drug release].
Zheng, Hang-sheng; Bi, Dian-zhou
2005-12-01
To prepare ondansetron hydrochloride osmotic pump tablets (OND-OPT) and investigate their in vitro drug release behavior. OND-OPT were prepared with a single punch press and pan coating technique. Osmotic active agents and plasticizer of coating film were chosen by drug release tests. The effects of the number, position and direction of drug release orifice on release behavior were investigated. The relation between drug release duration and thickness of coating film, PEG content of coating film and size of drug release orifice was established by uniform design experiment. The surface morphological change of coating film before and after drug release test was observed by scanning electron microscopy. The osmotic pumping release mechanism of OND-OPT was confirmed by drug release test with high osmotic pressure medium. Lactose-mannitol (1:2) was chosen as osmotic active agents and PEG400 as plasticizer of coating film. The direction of drug release orifice had great effect on the drug release of OND-OPT without HPMC, and had no effect on the drug release of OND-OPT with HPMC. The OND-OPT with one drug release orifice at the centre of the coating film on one surface of tablet released their drug with little fluctuation. The drug release duration of OND-OPT correlated with thickness of coating film and PEG content of coating film, and didn't correlate significantly with the size of drug release orifice. OND-OPT released their drug with osmotic pumping mechanism predominantly. OND-OPT are able to realize ideal controlled drug release.
Contrasting physiological responses of six eucalyptus species to water deficit.
Merchant, Andrew; Callister, Andrew; Arndt, Stefan; Tausz, Michael; Adams, Mark
2007-12-01
The genus Eucalyptus occupies a broad ecological range, forming the dominant canopy in many Australian ecosystems. Many Eucalyptus species are renowned for tolerance to aridity, yet inter-specific variation in physiological traits, particularly water relations parameters, contributing to this tolerance is weakly characterized only in a limited taxonomic range. The study tests the hypothesis that differences in the distribution of Eucalyptus species is related to cellular water relations. Six eucalypt species originating from (1) contrasting environments for aridity and (2) diverse taxonomic groups were grown in pots and subjected to the effects of water deficit over a 10-week period. Water potential, relative water content and osmotic parameters were analysed by using pressure-volume curves and related to gas exchange, photosynthesis and biomass. The six eucalypt species differed in response to water deficit. Most significantly, species from high rainfall environments (E. obliqua, E. rubida) and the phreatophyte (E. camaldulensis) had lower osmotic potential under water deficit via accumulation of cellular osmotica (osmotic adjustment). In contrast, species from low rainfall environments (E. cladocalyx, E. polyanthemos and E. tricarpa) had lower osmotic potential through a combination of both constitutive solutes and osmotic adjustment, combined with reductions in leaf water content. It is demonstrated that osmotic adjustment is a common response to water deficit in six eucalypt species. In addition, significant inter-specific variation in osmotic potential correlates with species distribution in environments where water is scarce. This provides a physiological explanation for aridity tolerance and emphasizes the need to identify osmolytes that accumulate under stress in the genus Eucalyptus.
de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.
2014-01-01
The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015
Choi, Hyo-Jick; Song, Jae-Min; Bondy, Brian J.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.
2015-01-01
Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (E a = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination. PMID:26230936
Pallarés, Susana; Arribas, Paula; Bilton, David T.; Millán, Andrés; Velasco, Josefa
2015-01-01
A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh—hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal’s haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg-1). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg-1) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm-1, respectively, and maintained osmotic gradients over 3500 mosmol kg-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient. PMID:25886355
Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2011-12-01
In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.
Bonatsou, Stamatoula; Iliopoulos, Vasilis; Mallouchos, Athanasios; Gogou, Eleni; Oikonomopoulou, Vasiliki; Krokida, Magdalini; Taoukis, Petros; Panagou, Efstathios Z
2017-05-01
This study examined the effect of osmotic dehydration of Kalamata natural black olives as pre-fermentation treatment in combination with partial substitution of NaCl by monosodium glutamate (MSG) on the fermentation profile of olives. Osmotic dehydration was undertaken by immersing the olives in 70% (w/w) glucose syrup overnight at room temperature. Further on, three different mixtures of NaCl and MSG with/without prior osmotic dehydration of olives were investigated, namely (i) 6.65% NaCl - 0.35% MSG (5% substitution), (ii) 6.30% NaCl - 0.70% MSG (10% substitution), (iii) 5.95% NaCl - 1.05% MSG (15% substitution), and (iv) 7% NaCl without osmotic dehydration (control treatment). Changes in the microbial association (lactic acid bacteria [LAB], yeasts, Enterobacteriaceae), pH, titratable acidity, organic acids, sugars, and volatile compounds in the brine were analyzed for a period of 4 months. The final product was subjected to sensory analysis and the content of MSG in olives was determined. Results demonstrated that osmotic dehydration of olives prior to brining led to vigorous lactic acid processes as indicated by the obtained values of pH (3.7-4.1) and acidity (0.7-0.8%) regardless of the amount of MSG used. However, in non-osmotically dehydrated olives, the highest substitution level of MSG resulted in a final pH (4.5) that was beyond specification for this type of olives. MSG was degraded in the brines being almost completely converted to γ-aminobutyric acid (GABA) at the end of fermentation. Finally, the sensory assessment of fermented olives with/without osmotic dehydration and at all levels of MSG did not show any deviation compared to the control treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow
NASA Astrophysics Data System (ADS)
Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.
2008-03-01
The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.
Including scattering within the room acoustics diffusion model: An analytical approach.
Foy, Cédric; Picaut, Judicaël; Valeau, Vincent
2016-10-01
Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.
NASA Astrophysics Data System (ADS)
Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.
2016-01-01
An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Interference effects in phased beam tracing using exact half-space solutions.
Boucher, Matthew A; Pluymers, Bert; Desmet, Wim
2016-12-01
Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.
2000-08-29
adaptation . Invertebrate organisms as ancient and varied as coelenterates [hydra: (Grimmelikhuijzen et aI., 1982)], gastropods [the land-living mollusks...mammalian salt and water homeostasis. To further define central nervous system adaptation to osmotic challenges, transcription ofAVP and vasopressin Ib...long-term adaptation to an III osmotic challenge. Compared to rats maintained on tap water, salt-drinking rats had increased levels ofAVP and Vt.,R
Molecular understanding of osmosis in semipermeable membranes.
Raghunathan, A V; Aluru, N R
2006-07-14
We investigate single-file osmosis of water through a semipermeable membrane with an uncharged, a positively and a negatively charged nanopore. Molecular dynamics simulations indicate that the osmotic flux through a negatively charged pore (J_) is higher compared to the osmotic flux in a positively charged pore (J+) followed by the osmotic flux in the uncharged pore (J(0)), i.e., J_ > J+ > J(0). The molecular mechanisms governing osmosis, steady state osmosis, and the observed osmotic flux dependence on the nanopore charge are explained by computing all the molecular interactions involved and identifying the molecular interactions that play an important role during and after osmosis. This study helps in a fundamental understanding of osmosis and in the design of advanced nanoporous membranes for various applications of osmosis.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan
2008-01-01
SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638
Detection of osmotic damages in GRP boat hulls
NASA Astrophysics Data System (ADS)
Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.
2013-09-01
Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, T. T., E-mail: agteca@hotmail.com; Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz
Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their newmore » equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f} using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.« less
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann
2009-02-01
Pancreatic adenocarcinoma has a five-year survival rate of only 4%, largely because an effective procedure for early detection has not been developed. In this study, mathematical modeling of reflectance and fluorescence spectra was utilized to quantitatively characterize differences between normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma. Initial attempts at separating the spectra of different tissue types involved dividing fluorescence by reflectance, and removing absorption artifacts by applying a "reverse Beer-Lambert factor" when the absorption coefficient was modeled as a linear combination of the extinction coefficients of oxy- and deoxy-hemoglobin. These procedures demonstrated the need for a more complete mathematical model to quantitatively describe fluorescence and reflectance for minimally-invasive fiber-based optical diagnostics in the pancreas.
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Kouyoumjian, R. G.
1974-01-01
The diffraction of a TM sub o surface wave by a terminated dielectric slab which is flush mounted in a perfectly conducting surface is studied. The incident surface wave gives rise to waves reflected and diffracted by the termination; these reflected and diffracted fields may be expressed in terms of the geometrical theory of diffraction by introducing surface wave reflection and diffraction coefficients which are associated with the termination. In this investigation, the surface wave reflection and diffraction coefficients have been deduced from a formally exact solution to this canonical problem. The solution is obtained by a combination of the generalized scattering matrix technique and function theoretic methods.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy
2018-06-01
The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.
Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole
NASA Astrophysics Data System (ADS)
Huang, Lu; Chen, Juhua; Wang, Yongjiu
2018-06-01
In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.
Finite-floe wave reflection and transmission coefficients from a semi-infinite model
NASA Astrophysics Data System (ADS)
Meylan, Michael; Squire, Vernon A.
1993-07-01
A model to describe the reflection and transmission of ocean waves by a single ice floe is developed from the semi-infinite model of Fox and Squire (1990, 1991). This is done by considering the coefficients for the transition from ice to water in the semi-infinite case in terms of those from water to ice. Finite-floe reflection and transmission coefficients, R and T, respectively, are then found as the solution of a set of four simple simultaneous equations. The properties of R and T are investigated, and examples of their absolute values are given for several geometries. |R| compares well with the predictions of a precise model in the case of deep water. These results suggest that the analytical model described has applications to defining the sea state within marginal ice zones, given the floe size and ice thickness distributions and the incoming sea wave spectrum.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
Huang, Tengfang; Jander, Georg
2017-10-01
Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of the osmotic stress.
Mapping osmotic adjustment in an advanced back-cross inbred population of rice.
Robin, S; Pathan, M S; Courtois, B; Lafitte, R; Carandang, S; Lanceras, S; Amante, M; Nguyen, H T; Li, Z
2003-11-01
Osmotic adjustment is one of several characters putatively associated with drought tolerance in rice. Indica cultivars are known to have a greater capacity for osmotic adjustment than japonica cultivars. We developed an advanced back-cross population using an indica donor, IR62266-42-6-2, to introgress osmotic adjustment into an elite japonica cultivar, IR60080-46A. One hundred and fifty BC(3)F(3) families were genotyped using microsatellites and RFLP markers, and a few candidate genes. We evaluated osmotic adjustment in these lines under greenhouse conditions using the re-hydration technique. Using the composite interval mapping technique, we detected 14 QTLs located on chromosomes 1, 2, 3, 4, 5, 7, 8 and 10 that together explained 58% of the phenotypic variability. Most, but not all, of the alleles with positive effects came from the donor parent. On chromosome 8, two QTLs were associated in repulsion. The QTL locations were in good agreement with previous studies on this trait on rice and in other cereals. Some BC(3)F(3) lines carried the favorable alleles at the two markers flanking up to four QTLs. Intercrossing these lines followed by marker-aided selection in their progenies will be necessary to recover lines with levels of osmotic adjustment equal to the donor parent. The advanced back-cross strategy appeared to be an appropriate method to accelerate the process of introgressing interesting traits into elite material.
Vandegehuchte, Maurits W; Guyot, Adrien; Hubeau, Michiel; De Swaef, Tom; Lockington, David A; Steppe, Kathy
2014-09-01
Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.
Tsironi, Theofania N; Taoukis, Petros S
2010-05-01
The objective of the study was the kinetic modeling of the effect of storage temperature on the quality and shelf life of chilled fish, modified atmosphere-packed (MAP), and osmotically pretreated with the addition of nisin as antimicrobial agent. Fresh gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% high dextrose equivalent maltodextrin (DE 47) plus 5% NaCl. Water loss, solid gain, salt content, and water activity were monitored throughout treatment and treatment conditions were selected for the shelf life study. Untreated and osmotically pretreated slices with and without nisin (2 x 10(4) IU/100 g osmotic solution), packed in air or modified atmosphere (50% CO(2)-50% air), and stored at controlled isothermal conditions (0, 5, 10, and 15 degrees C) were studied. Quality assessment and modeling were based on growth of several microbial indices, total volatile nitrogen, trimethylamine nitrogen, lipid oxidation (TBARS), and sensory scoring. Temperature dependence of quality loss rates was modeled by the Arrhenius equation, validated under dynamic conditions. Pretreated samples showed improved quality stability during subsequent refrigerated storage, in terms of microbial growth, chemical changes, and organoleptic degradation. Osmotic pretreatment with the addition of nisin in combination with MAP was the most effective treatment resulting in significant shelf life extension of gilthead seabream fillets (48 days compared to 10 days for the control at 0 degrees C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luettge, U.; Nobel, P.S.
1984-07-01
Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO/sub 2/ fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Juelich pressure probe where a smallmore » oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO/sub 2/ fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants. 13 references, 4 figures.« less
Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration
2017-01-01
Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949
Solomon, Aharon; Bandhakavi, Sricharan; Jabbar, Sean; Shah, Rena; Beitel, Greg J; Morimoto, Richard I
2004-01-01
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments. PMID:15166144
NASA Technical Reports Server (NTRS)
Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.
1986-01-01
We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.
NASA Astrophysics Data System (ADS)
Dehghannya, Jalal; Gorbani, Rasoul; Ghanbarzadeh, Babak
2017-07-01
Discoloration and browning are caused primarily by various reactions, including Maillard condensation of hexoses and amino components, phenol polymerization and pigment destruction. Convective drying can be combined with various pretreatments to help reduce undesired color changes and improve color parameters of dried products. In this study, effects of ultrasound-assisted osmotic dehydration as a pretreatment before convective drying on color parameters of Mirabelle plum were investigated. Variations of L* (lightness), a* (redness/greenness), b* (yellowness/blueness), total color change (ΔE), chroma, hue angle and browning index values were presented versus drying time during convective drying of control and pretreated Mirabelle plums as influenced by ultrasonication time, osmotic solution concentration and immersion time in osmotic solution. Samples pretreated with ultrasound for 30 min and osmotic solution concentration of 70% had a more desirable color among all other pretreated samples, with the closest L*, a* and b* values to the fresh one, showing that ultrasound and osmotic dehydration are beneficial to the color of final products after drying.
Ganote, Charles E.; Grantham, Jared J.; Moses, Harold L.; Burg, Maurice B.; Orloff, Jack
1968-01-01
Isolated cortical collecting tubules from rabbit kidney were studied during perfusion with solutions made either isotonic or hypotonic to the external bathing medium. Examination of living tubules revealed a reversible increase in thickness of the cellular layer, prominence of lateral cell membranes, and formation of intracellular vacuoles during periods of vasopressin-induced osmotic water transport. Examination in the electron microscope revealed that vasopressin induced no changes in cell structure in collecting tubules in the absence of an osmotic difference and significant bulk water flow across the tubule wall. In contrast, tubules fixed during vasopressin-induced periods of high osmotic water transport showed prominent dilatation of lateral intercellular spaces, bulging of apical cell membranes into the tubular lumen, and formation of intracellular vacuoles. It is concluded that the ultrastructural changes are secondary to transepithelial bulk water flow and not to a direct effect of vasopressin on the cells, and that vasopressin induces osmotic flow by increasing water permeability of the luminal cell membrane. The lateral intercellular spaces may be part of the pathway for osmotically induced transepithelial bulk water flow. PMID:4867134
NASA Astrophysics Data System (ADS)
Jayanthi, Harikishan
The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.
NASA Astrophysics Data System (ADS)
Kuranov, Roman V.; Sapozhnikova, Veronika V.; Prough, Donald S.; Cicenaite, Inga; Esenaliev, Rinat O.
2006-08-01
Recently, our in vivo studies demonstrated a strong correlation between blood glucose concentration and the slope of the optical coherence tomography (OCT) signal when the probing beam was scanned over a straight line. To improve the sensitivity of OCT for blood glucose monitoring, two-dimensional (2D) lateral scanning of the OCT probing beam was proposed. Depth-dependent changes in pig skin properties with variation of blood glucose concentration were revealed due to significant suppression of speckle noise and motion artefacts in 2D scanning mode. The correlation coefficient of the OCT signal slope with blood glucose concentration varied periodically in the range from -0.9 to +0.9 depending on depth. The period of variation of the correlation coefficient was 100-150 µm that corresponded to the distance between neighbour collagen bundles. We also observed a decrease of skin thickness by 10 ± 7.5 µm with an increase of blood glucose concentration by 277 ± 56 mg dl-1. Mechanisms of glucose-induced changes in skin properties owing to tissue layer shift caused by dehydration associated with the glucose osmotic effect were considered.
Thermo-osmosis in Membrane Systems: A Review
NASA Astrophysics Data System (ADS)
Barragán, V. María; Kjelstrup, Signe
2017-06-01
We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.
NASA Astrophysics Data System (ADS)
Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae
2018-07-01
It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.
NASA Astrophysics Data System (ADS)
Khadzhi, P. I.; Lyakhomskaya, K. D.
1999-10-01
The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.
Relation between lowered colloid osmotic pressure, respiratory failure, and death.
Tonnesen, A S; Gabel, J C; McLeavey, C A
1977-01-01
Plasma colloid osmotic pressure was measured each day in 84 intensive care unit patients. Probit analysis demonstrated a direct relationship between colloid osmotic pressure (COP) and survival. The COP associated with a 50% survival rate was 15.0 torr. COP was higher in survivors than in nonsurvivors without respiratory failure and in patients who recovered from respiratory failure. We conclude that lowered COP is associated with an elevated mortality rate. However, the relationship to death is not explained by the relationship to respiratory failure.
Starnes, B J; Self, D R
1999-01-01
This article develops two previous research efforts. William J. Winston (1994, 1995) has proposed a set of strategies by which health care organizations can benefit from forging strategic alliances. Raadt and Self (1997) have proposed a classification model of alliances including horizontal, vertical, internal, and osmotic. In the second of two articles, this paper presents a model of vertical, internal, and osmotic alliances. Advantages and disadvantages of each are discussed. Finally, the complete alliance system model is presented.
The numerical simulation of Lamb wave propagation in laser welding of stainless steel
NASA Astrophysics Data System (ADS)
Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang
2017-12-01
In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,
Kucner, Anna; Papiewska, Agnieszka; Klewicki, Robert; Sójka, Michał; Klewicka, Elżbieta
2014-01-01
Osmotic dehydration is a process of the partial removal of water which is based on immersion of material having cellular structure in a hypertonic solution. Osmotic dehydration is used as a pretreatment for the dehydration of foods before they are subjected to further processing such as freezing, freeze drying, vacuum drying. Management of spent syrup is one of the most important problems related to osmotic dewatering. Osmotic solutions are heavily polluted with of carbohydrates, remains of the dehydrated material and microorganisms. The aim of this study was to determine the effect of thermal treatment on the content of phenolic compounds and the microbiological quality of sucrose solution used in 15 cycles of osmotic dehydration of highbush blueberry (Vaccinium corymbosum L.) fruits. The tested material was 65.0 ±0.5°Brix sucrose solution used for 15 cycles of osmotic dehydration of highbush blueberry (Vaccinium corymbosum L.). Osmotic dehydration was conducted at 40°C for 120 min using fruits previously subjected to enzymatic pretreatment. The thermal treatment of sucrose solution was conducted at 70, 80, 90, 100 and 115°C for 20, 40 and 60 s. The sucrose solution was analysed in terms of total polyphenols, particular polyphenols using high performance liquid chromatography and microbiological analysis was subjected. Thermal treatment at 70-115°C for 20 s caused degradation of 8.5% to 12.7% of polyphenols, while as much as 23.1% of polyphenols were degraded at 115°C after 60 s. The present paper proposes heating parameters that are optimal from the point of view of phenolic compound retention and microbiological quality: thermal treatment of syrup at 100°C for 40 s. Under these conditions, total polyphenols retention was 94.5%, while the retention of individual phenolic compounds varied from 89.2% to 37.2%, and that of flavan-3-ols amounted to 89.5%. The studied manner of syrup treatment eliminated the problem of syrup contamination with yeasts and molds (reducing their levels to less than 1 CFU/mL).
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.
A comprehensive analysis of surface acoustic wave reflections
NASA Astrophysics Data System (ADS)
Robinson, H.; Hahn, Y.; Gau, J. N.
1989-06-01
A thorough study of the perturbative and variational approaches is carried out for the surface acoustic wave reflection problem. We have shown that the perturbation treatment by Datta and Hunsinger and potentially powerful variational formulation by Chen and Haus [IEEE Trans. Sonics Ultrason. SU-32, 395 (1985)] are mutually consistent. In their common region of validity, these two approaches yield nearly identical results for the reflection coefficients and velocity shifts due to metal finger and groove overlays. Term-by-term comparison of the mass- and stress-loading effects, and also the electric shorting effect, is carried out to provide a coherent picture of the reflection phenomena. The on- and off-resonance behavior of the reflection coefficient can be described correctly using either one of these theories, with proper inclusion of the overlay shape dependence. A new term for electric shorting is derived for groove overlays.
Measurement of thermal neutrons reflection coefficients for two-layer reflectors.
Azimkhani, S; Zolfagharpour, F; Ziaie, F
2018-05-01
In this research, thermal neutrons albedo coefficients and relative number of excess counts have been measured experimentally for different thicknesses of two-layer reflectors by using 241 Am-Be neutron source (5.2Ci) and BF 3 detector. Our used reflectors consist of two-layer which are combinations of water, graphite, polyethylene, and lead materials. Experimental results reveal that thermal neutron reflection coefficients slightly increased by addition of the second layer. The maximum value of growth for thermal neutrons albedo is obtained for lead-polyethylene compound (0.72 ± 0.01). Also, there is suitable agreement between the experimental values and simulation results by using MCNPX code. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhanced absorption of TM waves in conductive nanoparticles structure
NASA Astrophysics Data System (ADS)
Mousa, H. M.; Shabat, M. M.; Ouda, A. K.; Schaadt, D. M.
2018-05-01
This paper tackles anti-reflection coating structure for silicon solar cell where conductive nanoparticle (CNP) film is sandwiched between a semi-infinite glass cover and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. We also illustrated the dependence of the absorption, transmission and reflection coefficients on several angles of incidence of the transverse magnetic polarized (TM) waves. We found out that reflection decreases by the increase of incident angle to 50∘. If nanoparticles are suitably located and sized at gab width of 3.5 nm, unit cell of 250 nm and CNP layer thickness of 150 nm, the absorptivity of the structure achieves 100%.
Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Peng, Suping
2016-01-01
This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.
Scaling Theory of Polyelectrolyte Nanogels
NASA Astrophysics Data System (ADS)
Qu, Li-Jian
2017-08-01
The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014
Methods to increase the rate of mass transfer during osmotic dehydration of foods.
Chwastek, Anna
2014-01-01
Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.
Castro-Rodriguez, J. A.; Salazar-Lindo, E.; Leon-Barua, R.
1997-01-01
Clinical features and laboratory tests that determine carbohydrate in faeces were evaluated to determine which was best able to distinguish between osmotic and secretory diarrhoea in infants and children. For this purpose 80 boys aged 3 to 24 months, with acute watery diarrhoea, were studied prospectively. The faecal osmolar gap (FOG) was calculated as: serum osmolarity − [2 × (faecal sodium + potassium concentration)]. Fifty eight patients were classified as having predominantly osmotic diarrhoea (FOG >100 mosmol/l), and 22 as having predominantly secretory diarrhoea (FOG ⩽100 mosmol/l). The two groups were comparable in their clinical features on admission, in the results of blood and urine tests, and in the evolution of their diarrhoeal illness. Evidence of steatorrhoea (by positive Sudan III test) and of acid faecal pH on admission were significantly more frequent in patients with osmotic diarrhoea. Mean (SD) faecal osmolarity was not significantly different between the two groups (319 (80) mosmol/l in secretory diarrhoea v 361 (123) mosmol/l in osmotic diarrhoea). Tests for reducing substances in faeces such as Benedict's test—with and without hydrolysis—and glucose strip, all showed a positive and significant association with osmotic diarrhoea (p <0.05, <0.025, <0.05, respectively). The presence of excess reducing substances (Benedict's test with hydrolysis >++) on admission was the most sensitive and specific test with the best predictive value for differentiating between the two types of watery diarrhoea. PMID:9370895
El-Zahaby, Sally A; AbouGhaly, Mohamed H H; Abdelbary, Ghada A; El-Gazayerly, Omaima N
2017-06-08
Solid self-nanoemulsifying (S-SNEDDS) asymmetrically coated osmotic tablets of the poorly water-soluble drug Vinpocetine (VNP) were designed. The aim was to control the release of VNP by the osmotic technology taking advantage of the solubility and bioavailability-enhancing capacity of S-SNEDDS. Liquid SNEDDS loaded with 2.5 mg VNP composed of Maisine™ 35-1, Transcutol ® HP, and Cremophor ® EL was adsorbed on the solid carrier Aeroperl ® . S-SNEDDS was mixed with the osmotic tablet excipients (sodium chloride, Avicel ® , HPMC-K4M, PVP-K30, and Lubripharm ® ), then directly compressed to form the core tablet. The tablets were dip coated and mechanically drilled. A 3 2 *2 1 full factorial design was adopted. The independent variables were: type of coating material (X 1 ), concentration of coating solution (X 2 ), and number of drills (X 3 ). The dependent variables included % release at 2 h (Y 1 ), at 4 h (Y 2 ), and at 8 h (Y 3 ). The in vivo performance of the optimum formula was assessed in rabbits. Zero-order VNP release was obtained by the single drilled 1.5% Opadry ® CA coated osmotic tablets and twofold increase in VNP bioavailability was achieved. The combination of SNEDDS and osmotic pump tablet system was successful in enhancing the solubility and absorption of VNP as well as controlling its release.
Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions.
Bahtz, Jana; Gunes, Deniz Z; Hughes, Eric; Pokorny, Lea; Riesch, Francesca; Syrbe, Axel; Fischer, Peter; Windhab, Erich J
2015-05-19
This contribution reports on the mass transport kinetics of osmotically imbalanced water-in-oil-in-water (W1/O/W2) emulsions. Although frequently studied, the control of mass transport in W1/O/W2 emulsions is still challenging. We describe a microfluidics-based method to systematically investigate the impact of various parameters, such as osmotic pressure gradient, oil phase viscosity, and temperature, on the mass transport. Combined with optical microscopy analyses, we are able to identify and decouple the various mechanisms, which control the dynamic droplet size of osmotically imbalanced W1/O/W2 emulsions. So, swelling kinetics curves with a very high accuracy are generated, giving a basis for quantifying the kinetic aspects of transport. Two sequential swelling stages, i.e., a lag stage and an osmotically dominated stage, with different mass transport mechanisms are identified. The determination and interpretation of the different stages are the prerequisite to control and trigger the swelling process. We show evidence that both mass transport mechanisms can be decoupled from each other. Rapid osmotically driven mass transport only takes place in a second stage induced by structural changes of the oil phase in a lag stage, which allow an osmotic exchange between both water phases. Such structural changes are strongly facilitated by spontaneous water-in-oil emulsification. The duration of the lag stage is pressure-independent but significantly influenced by the oil phase viscosity and temperature.
Development of apple chips technology
NASA Astrophysics Data System (ADS)
Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Samborska, Kinga; Tywonek, Małgorzata; Lenart, Andrzej
2018-05-01
For develop of apple chips technology without chemical preservation osmotic dehydration in cherry or apple juice concentrates or fructooligosaccharide solutions and convection drying were used. Studies included the effect of dehydration on the mass transfer in apples and the quality of the final product. The temperature, type of osmotic solution and its concentration were changeable. The fruit were tested on mass transfer indicators, stability (water activity), texture (breaking test) and nutritional value (polyphenol content, acidity). Sensory evaluation was also performed. On this basis, the verification of all options was made and the most acceptable samples were selected. Concentration of osmotic solutions at 25°Brix limited solids gain in apples. Under these conditions, the phenomenon of osmosis caused 8-10 times greater water loss than solids gain. Increasing the concentration of solutions up to 50°Brix had a significantly greater impact on mass exchange in apples, compared to increasing the temperature from 40 to 60 °C. Osmotic dehydration before drying did not significantly affect the water activity but increase of the temperature negatively affected on breaking force of the chips. Chips obtained by osmotic dehydration of apples in a cherry concentrate solution contained significantly more polyphenols, and were characterized by a higher acidity than the variants obtained by dehydration in concentrated apple juice. Furthermore, they were marked by red color which has been thought as part of the attractiveness of the product. The least sensory acceptable chips were prepared using osmotic pre-treatment in cherry concentrated juice solution with the addition of fructooligosaccharide.
Cold Osmotic Shock in Saccharomyces cerevisiae
Patching, J. W.; Rose, A. H.
1971-01-01
Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201
The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum.
Karley, A J; Ashford, D A; Minto, L M; Pritchard, J; Douglas, A E
2005-12-01
The osmotic pressure of the body fluids of aphids is lower than in their diet of plant phloem sap. It is hypothesised that aphids reduce the osmotic pressure of ingested food by sucrase-mediated hydrolysis of dietary sucrose to glucose and fructose, and the polymerisation of glucose into oligosaccharides of low osmotic pressure per hexose unit. To test this hypothesis, the impact of the alpha-glucosidase inhibitor acarbose on the sugar relations and osmoregulation of aphids was explored. Acarbose inhibited sucrase activity in gut homogenates and the production of monosaccharides and oligosaccharides in the honeydew of live aphids. Acarbose caused an increase in the haemolymph osmotic pressure for aphids reared on a diet (containing 0.75 M sucrose) hyperosmotic to the haemolymph and not on the isoosmotic diet containing 0.2 M sucrose. It did not affect aphid feeding rate over 2 days, except at high concentrations on 0.75 M sucrose diet, and this may have been a secondary consequence of osmotic dysfunction. Acarbose-treated aphids died prematurely. With 5 microM dietary acarbose, mean survivorship on 0.2 M sucrose diet was 4.2 days, not significantly different from starved aphids, indicating that, although these aphids fed, they were deprived of utilisable carbon; and on 0.75 M sucrose diet, mean survivorship was just 2.8 days, probably as a consequence of osmotic failure. It is concluded that the aphid gut sucrase activity is essential for osmoregulation of aphids ingesting food hyperosmotic to their body fluids.
Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.
Devuyst, O
2010-01-01
Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haplo-insufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.
On the possibility of spectroscopic cancer diagnostics
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.
1993-07-01
The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.
VizieR Online Data Catalog: Absolute Refletivity of Jupiter and Saturn (Mendikoa+ 2017)
NASA Astrophysics Data System (ADS)
Mendikoa, I.; Sanchez-Lavega, A.; Perez-Hoyos, S.; Hueso, R.; Rojas, J. F.; Lopez-Santiago, J.
2017-08-01
Overall mean absolute reflectivity I/F of Jupiter and Saturn. Scans at central meridian are given versus latitude from observations at Calar Alto observatory between 2012 and 2016. In addition, Minnaert coefficients (I/F)0 and k are given, determining the I/F variation with the cosines of the incidence and emission angles, where (I/F)0 represents the absolute reflectivity in absence of darkening effects at nadir viewing and k is the limb-darkening coefficient. (12 data files).
Theoretical calculations of the self-reflection coefficients for some species of ions
NASA Astrophysics Data System (ADS)
Luo, Z. M.; Gou, C.; Hou, Q.
2002-06-01
The bipartition model of ion transport has been applied to study the self-reflection coefficients of some species of ion beams which are normally incident to a surface. The computational results has been compared with the results taken from Eckstein and Biersack and the compilation data given by Thomas, Janev and Smith. It was found that there are in reasonable agreement between the results given by the bipartition model and the results given by Monte Carlo method.
NASA Astrophysics Data System (ADS)
Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.
2017-01-01
In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.
2009-10-09
trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was
The plasticity of extracellular fluid homeostasis in insects.
Beyenbach, Klaus W
2016-09-01
In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.
Bucarey, Sergio A.; Penn, Kevin; Paul, Lauren; Fenical, William
2012-01-01
Marine actinomycetes in the genus Salinispora fail to grow when seawater is replaced with deionized (DI) water in complex growth media. While bioinformatic analyses have led to the identification of a number of candidate marine adaptation genes, there is currently no experimental evidence to support the genetic basis for the osmotic requirements associated with this taxon. One hypothesis is that the lineage-specific loss of mscL is responsible for the failure of strains to grow in media prepared with DI water. The mscL gene encodes a conserved transmembrane protein that reduces turgor pressure under conditions of acute osmotic downshock. In the present study, the mscL gene from a Micromonospora strain capable of growth on media prepared with DI water was transformed into S. tropica strain CNB-440. The single-copy, chromosomal genetic complementation yielded a recombinant Salinispora mscL+ strain that demonstrated an increased capacity to survive osmotic downshock. The enhanced survival of the S. tropica transformant provides experimental evidence that the loss of mscL is associated with the failure of Salinispora spp. to grow in low-osmotic-strength media. PMID:22492446
Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani
2015-05-01
The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.
Electro-osmotic infusion for joule heating soil remediation techniques
Carrigan, Charles R.; Nitao, John J.
1999-01-01
Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.
Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.
Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida
2016-10-01
The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sharma, P. K.; Knuth, E. L.
1977-01-01
Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.
A new fifth parameter for transverse isotropy III: reflection and transmission coefficients
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2018-04-01
The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan
2018-01-22
Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.
[Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].
Kuleshova, L G; Gordienko, E A; Kovalenko, I F
2014-01-01
We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.
Neuwelt, E A; Maravilla, K R; Frenkel, E P; Rapaport, S I; Hill, S A; Barnett, P A
1979-01-01
The present study describes a canine model of transient reversible blood-brain barrier disruption with hyperosmolar mannitol infusion into the internal carotid artery. Studies in this model show that osmotic blood-brain barrier disruption before intracarotid infusion of methotrexate results in markedly elevated (therapeutic) levels of drug in the ipsilateral cerebral hemisphere. Levels in the cerebrospinal fluid correlate poorly and inconsistently with brain levels. Computerized tomograms in this canine model provide a noninvasive monitor of the degree, time-course, and localization of osmotic blood-brain barrier disruption. Images PMID:457877
Sasakawa, S; Tokunaga, E; Hasegawa, G; Nakagawa, S
1977-09-01
The coil planet centrifuge (CPC) can be used to measure the osmotic fragility of erythrocytes. Fragility measured by this method alters when different salts are used. The CPC and Parpart methods were used to measure the changes during storage in red cell osmotic fragility in ACD or CPD blood with or without adenine. More marked changes were detected by the CPC method, especially in old cells. The changes of fragility of erythrocytes during storage seem to occur mainly in old cells. Adenine is effective in preventing such changes.
Goufo, Piebiep; Moutinho-Pereira, José M; Jorge, Tiago F; Correia, Carlos M; Oliveira, Manuela R; Rosa, Eduardo A S; António, Carla; Trindade, Henrique
2017-01-01
Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment vs. osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted.
King, Michelle A; Clanton, Thomas L; Laitano, Orlando
2016-01-15
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. Copyright © 2016 the American Physiological Society.
Goufo, Piebiep; Moutinho-Pereira, José M.; Jorge, Tiago F.; Correia, Carlos M.; Oliveira, Manuela R.; Rosa, Eduardo A. S.; António, Carla; Trindade, Henrique
2017-01-01
Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment vs. osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted. PMID:28473840
Bushe, Chris; Day, Kathleen; Reed, Victoria; Karlsdotter, Kristina; Berggren, Lovisa; Pitcher, Ashley; Televantou, Foula; Haynes, Virginia
2016-05-01
The lack of head-to-head clinical studies powered to compare atomoxetine and osmotic release oral system (OROS) methylphenidate necessitates treatment comparison by methods that include indirect evidence such as network meta-analysis (NMA). A NMA assessing the relative treatment effects of atomoxetine and OROS methylphenidate in adults with attention-deficit/hyperactivity disorder (ADHD) was conducted. Studies were identified by systematic literature review. Analyses summarised improvements in efficacy, measured by ADHD-specific scales, using Cohen'sdto calculate the standardised mean difference (SMD), and all cause discontinuations. Results showed effect sizes (SMD, 95% credible interval (CrI)) relative to placebo that did not differ significantly between atomoxetine (0.46, 0.36-0.56) and OROS methylphenidate (0.51, 0.40-0.63) in clinical studies of up to 12 weeks' duration (SMD, 95% CrI for atomoxetine versus OROS methylphenidate: -0.05, -0.18-0.08). Patients treated with these medications responded better than those given placebo across all analyses. There was also no significant difference in discontinuation rates between atomoxetine and OROS methylphenidate (odds ratio, 95% CrI: 0.85, 0.53-1.35). Between-study heterogeneity was low overall. Results of this NMA suggest that the efficacy of atomoxetine and OROS methylphenidate in adults does not differ significantly. Clinical guidelines may require amendment to reflect these recent data. © The Author(s) 2016.
Physiological Response of Lactobacillus plantarum to Salt and Nonelectrolyte Stress
Glaasker, Erwin; Tjan, Frans S. B.; Ter Steeg, Pieter F.; Konings, Wil N.; Poolman, Bert
1998-01-01
In this report, we compared the effects on the growth of Lactobacillus plantarum of raising the medium molarity by high concentrations of KCl or NaCl and iso-osmotic concentrations of nonionic compounds. Analysis of cellular extracts for organic constituents by nuclear magnetic resonance spectroscopy showed that salt-stressed cells do not contain detectable amounts of organic osmolytes, whereas sugar-stressed cells contain sugar (and some sugar-derived) compounds. The cytoplasmic concentrations of lactose and sucrose in growing cells are always similar to the concentrations in the medium. By using the activity of the glycine betaine transport system as a measure of hyperosmotic conditions, we show that, in contrast to KCl and NaCl, high concentrations of sugars (lactose or sucrose) impose only a transient osmotic stress because external and internal sugars equilibrate after some time. Analysis of lactose (and sucrose) uptake also indicates that the corresponding transport systems are neither significantly induced nor activated directly by hyperosmotic conditions. The systems operate by facilitated diffusion and have very high apparent affinity constants for transport (>50 mM for lactose), which explains why low sugar concentrations do not protect against hyperosmotic conditions. We conclude that the more severe growth inhibition by salt stress than by equiosmolal concentrations of sugars reflects the inability of the cells to accumulate K+ (or Na+) to levels high enough to restore turgor as well as deleterious effects of the electrolytes intracellularly. PMID:9721316
Nguyen, Hoa T; Meir, Patrick; Wolfe, Joe; Mencuccini, Maurizio; Ball, Marilyn C
2017-07-01
A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m -2 s -1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport. © 2016 John Wiley & Sons Ltd.
Material For Self-Q-Switching Mirrors For Solid State Laser (MSMSSL)
NASA Astrophysics Data System (ADS)
Wolf, L.; Walocha, J.; Drobnik, A.
1983-09-01
Vanadium dioxide (V02) film exhibits semiconductor-to-metal transition at temperature, Tt near 340 K. The transition is accompanied by changes in optical transmission and relection. In this paper the reflected light spectra were experimentally determined at the two temperatures below and above Tt (300 and 360 K) using film thickness as the parameter. Then we calculated the ratio, Kλ , of reflection coefficient, Rm, in metallic phase to reflection coefficient, Rsc, in semiconductor phase. The film for which the maximum Kλ was observed at λ =1.06μm applied as a mirror in Nd:glass laser. The laser generated giant pulse with duration time at about 50 ns.
Hosten, Bernard; Moreau, Ludovic; Castaings, Michel
2007-06-01
The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.
Yang, Tongren; Yao, Sufei; Hao, Lin; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai
2016-11-01
Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H 2 O 2 ) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.
Dileanis, Peter D.; Groeneveld, David P.
1989-01-01
A substantial quantity of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by ground-water withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depends on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near Bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume technique was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus verm iculatus , and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 MPa (megapascal) lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that Atriplex torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 MPa) than C. nauseosus or Artemisia tridentata (about -2.5 MPa), which allows them to function in drier soil environments.
Dileanis, Peter D.; Groeneveld, D.P.
1988-01-01
A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)
Stolarz, Maria; Dziubinska, Halina
2017-01-01
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN. PMID:29093722
Sorin, Elise; Etienne, Philippe; Maillard, Anne; Zamarreño, Angel-Mari; Garcia-Mina, José-Maria; Arkoun, Mustapha; Jamois, Frank; Cruz, Florence; Yvin, Jean-Claude; Ourry, Alain
2015-10-01
Identification of early sulphur (S) deficiency indicators is important for species such as Brassica napus, an S-demanding crop in which yield and the nutritional quality of seeds are negatively affected by S deficiency. Because S is mostly stored as SO4 (2-) in leaf cell vacuoles and can be mobilized during S deficiency, this study investigated the impact of S deprivation on leaf osmotic potential in order to identify compensation processes. Plants were exposed for 28 days to S or to chlorine deprivation in order to differentiate osmotic and metabolic responses. While chlorine deprivation had no significant effects on growth, osmotic potential and nitrogen metabolism, Brassica napus revealed two response periods to S deprivation. The first one occurred during the first 13 days during which plant growth was maintained as a result of vacuolar SO4 (2-) mobilization. In the meantime, leaf osmotic potential of S-deprived plants remained similar to control plants despite a reduction in the SO4 (2-) osmotic contribution, which was fully compensated by an increase in NO3 (-), PO4 (3-) and Cl(-) accumulation. The second response occurred after 13 days of S deprivation with a significant reduction in growth, leaf osmotic potential, NO3 (-) uptake and NO3 (-) reductase activity, whereas amino acids and NO3 (-) were accumulated. This kinetic analysis of S deprivation suggested that a ([Cl(-)]+[NO3 (-)]+[PO4 (3-)]):[SO4 (2-)] ratio could provide a relevant indicator of S deficiency, modified nearly as early as the over-expression of genes encoding SO4 (2-) tonoplastic or plasmalemmal transporters, with the added advantage that it can be easily quantified under field conditions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Effect of sodium chloride gradients on water flux in rat descending vasa recta.
Pallone, T L
1991-01-01
In the hydropenic kidney, volume efflux from descending vasa recta (DVR) occurs despite an intracapillary oncotic pressure that exceeds hydraulic pressure. That finding has been attributed to small solute gradients which may provide an additional osmotic driving force favoring water transport from DVR plasma to the papillary interstitium. To test this hypothesis, axial gradients of NaCl and urea in the papilla were eliminated by administration of furosemide and saline. DVR were then blocked with paraffin and microperfused at 10 nl/min with a buffer containing albumin, fluorescein isothiocyanate labeled dextran (FITC-Dx), 22Na, and NaCl in a concentration of 0 (hypotonic to the interstitium), 161 (isotonic) or 322 mM (hypertonic). Collectate was obtained from the perfused DVR by micropuncture and the collectate-to-perfusate ratios of FITC-Dx and 22Na were measured. A mathematical model was employed to determine DVR permeability (Ps) and reflection coefficient to NaCl (sigma NaCl). The rate of transport of water from the DVR lumen to the papillary interstitium was 2.8 +/- 0.3 (Nv = 22), -0.19 +/- 0.4 (Nv = 15), and -2.3 +/- 0.3 nl/min (Nv = 21) (mean +/- SE) when perfusate NaCl was 0, 161, or 322 mM, respectively (Nv = number of DVR perfused). The collectate-to-perfusate 22Na concentration ratios were 0.34 +/- 0.04, 0.36 +/- 0.04 and 0.37 +/- 0.03 for those groups, respectively. Based on these data, Ps is calculated to be 60.4 x 10(-5) +/- 4.0 x 10(-5) cm/s and sigma NaCl less than 0.05. The results of this study confirm that transcapillary NaCl concentrations gradients induce water movement across the wall of the DVR.
NASA Astrophysics Data System (ADS)
Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo
2017-03-01
We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Hinghofer-Szalkay, H.; Roessler, A.; Farrell, P. A.; Loomis, J. L.; Fedele, M. J.; West, J.; Cowell, S. A.; Bowley, Susan M. (Technical Monitor)
2000-01-01
Dissociation between beverage sodium [Na(+)] and osmotic [Osm] concentrations for increasing plasma volume (PV, hypervolemia) appears to refute the high theoretical correlation between plasma [pNa(+)] and [pOsm].
Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten
2009-01-05
The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.
Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review.
Muñiz-Becerá, Sahylin; Méndez-Lagunas, Lilia L; Rodríguez-Ramírez, Juan
2017-10-01
While various mechanisms have been proposed for the water transfer during osmotic dehydration (OD), little progress has been made to understand the mechanisms of solute transfer during osmotic dehydration. The transfer of solutes has been often described only by the diffusion mechanism; however, numerous evidences suggest the participation of a variety of mechanisms. This review deals with the main issues of solute transfer in the OD of vegetables. In this context, several studies suggest that during OD of fruits and vegetables, the migration of solutes is not influenced by diffusion. Thus, new theories that may explain the solute transport are analyzed, considering the influence of the plant microstructure and its interaction with the physicochemical properties of osmotic liquid media. In particular, the surface adhesion phenomenon is analyzed and discussed, as a possible mechanism present during the transfer of solutes in OD. © 2017 Institute of Food Technologists®.
Development and evaluation of an automatic method for the study of platelet osmotic response.
Gigout, T; Blondel, W; Didelon, J; Latger, V; Dumas, D; Schooneman, F; Stoltz, J F
1999-01-01
Study of the osmotic resistance to hypotonic medium of platelets has often been suggested as a global test to assess the viability of these cells in transfusion or to study modification during haematological pathologies. A number of authors have analysed the behaviour of platelets in hypotonic media by a variety of methods (cell count, determinations of substances released, morphology, etc.), but most studies are currently based on the so-called "Hypotonic Shock Response" test (HSR). In this study, the authors describe a new automated and reproducible apparatus, called fragilimeter, using slow dialysis to assess platelet osmotic resistance. The variations in light transmission through a platelet suspension according to ionic strength are linked to the change in cellular volume and lysis and characterise the osmotic behaviour of the cells. The results revealed the good reproducibility and sensibility of the technique. This apparatus allows also the realisation of the "HSR" test.
Arabidopsis Reduces Growth Under Osmotic Stress by Decreasing SPEECHLESS Protein
Kumari, Archana; Jewaria, Pawan K.; Bergmann, Dominique C.; Kakimoto, Tatsuo
2014-01-01
Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK–SPEECHLESS core developmental pathway. PMID:25381317
NASA Technical Reports Server (NTRS)
Cho, Y. C.
1983-01-01
Rigorous solutions are presented for sound diffraction in a circular cylinder with axial discontinuities of the wall admittance (or impedance). Analytical expressions are derived for the reflection and the transmission coefficients for duct modes. The results are discussed quantitatively in the limits of small admittance shifts (delta) and of low frequencies (ka). One of the results is the low frequency behavior of the reflection coefficient R(o) sub 00 of the fundamental mode. For the mode of a hardwall duct reflected from the junction with a softwall duct, (R(o) sub oo yields - (1-square root of (ka) square root of (2/i delta)); this result is in contrast to the frequency dependence of the reflection from the open end of a hardwall duct, for which R(o) sub oo yields - 1-(ka) squared/2 .
Use of complex frequency plane to design broadband and sub-wavelength absorbers.
Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V
2016-06-01
The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.
Reflectance confocal microscopy of optical phantoms
Jacques, Steven L.; Wang, Bo; Samatham, Ravikant
2012-01-01
A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively. PMID:22741065
NASA Astrophysics Data System (ADS)
Tanaka, Satoru; Tkalčić, Hrvoje
2015-12-01
Frequency-dependent reflection coefficients of P waves at the inner core boundary (ICB) are estimated from the spectral ratios of PKiKP and PcP waves observed by the high-sensitivity seismograph network (Hi-net) in Japan. The corresponding PKiKP reflection locations at the ICB are distributed beneath the western Pacific. At frequencies where noise levels are sufficiently low, spectra of reflection coefficients show four distinct sets of characteristics: a flat spectrum, a spectrum with a significant spectral hole at approximately 1 or 3 Hz, a spectrum with a strong peak at approximately 2 or 3 Hz, and a spectrum containing both a sharp peak and a significant hole. The variety in observed spectra suggests complex lateral variations in ICB properties. To explain the measured differences in frequency characteristics of ICB reflection coefficients, we conduct 2D finite difference simulations of seismic wavefields near the ICB. The models tested in our simulations include a liquid layer and a solid layer above the ICB, as well as sinusoidal and spike-shaped ICB topography with varying heights and scale lengths. We find that the existence of a layer above the ICB can be excluded as a possible explanation for the observed spectra. Furthermore, we find that an ICB topographic model with wavelengths and heights of several kilometers is too extreme to explain our measurements. However, restricting the ICB topography to wavelengths and heights of 1.0-1.5 km can explain the observed frequency-related phenomena. The existence of laterally varying topography may be a sign of lateral variations in inner core solidification.
A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability
Kedem, O.; Katchalsky, A.
1961-01-01
A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes. PMID:13752127
NASA Astrophysics Data System (ADS)
Chakrabarti, Aloknath; Mohapatra, Smrutiranjan
2013-09-01
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
Gerhardt, Paul N. M.; Tombras Smith, Linda; Smith, Gary M.
2000-01-01
Listeria monocytogenes is a foodborne pathogen known for its tolerance to conditions of osmotic and chill stress. Accumulation of glycine betaine has been found to be important in the organism's tolerance to both of these stresses. A procedure was developed for the purification of membranes from L. monocytogenes cells in which the putative ATP-driven glycine betaine permease glycine betaine porter II (Gbu) is functional. As is the case for the L. monocytogenes sodium-driven glycine betaine uptake system (glycine betaine porter I), uptake in this vesicle system was dependent on energization by ascorbate-phenazine methosulfate. Vesicles lacking the gbu gene product had no uptake activity. Transport by this porter did not require sodium ion and could be driven only weakly by artificial gradients. Uptake rates could be manipulated under conditions not affecting secondary transport but known to affect ATPase activity. The system was shown to be both osmotically activated and cryoactivated. Under conditions of osmotic activation, the system exhibited Arrhenius-type behavior although the uptake rates were profoundly affected by the physical state of the membrane, with breaks in Arrhenius curves at approximately 10 and 18°C. In the absence of osmotic activation, the permease could be activated by decreasing temperature within the range of 15 to 4°C. Kinetic analyses of the permease at 30°C revealed Km values for glycine betaine of 1.2 and 2.9 μM with Vmax values of 2,200 and 3,700 pmol/min · mg of protein under conditions of optimal osmotic activation as mediated by KCl and sucrose, respectively. PMID:10762257
Vaas, Lea A I; Marheine, Maja; Seufert, Stephanie; Schumacher, Heinz Martin; Kiesecker, Heiko; Heine-Dobbernack, Elke
2012-06-01
Although many genes are supposed to be a part of plant cell tolerance mechanisms against osmotic or salt stress, their influence on tolerance towards stress during cryopreservation procedures has rarely been investigated. For instance, the overexpression of the pathogenesis-related gene 10a (pr-10a) leads to improved osmotic tolerance in a transgenic cell culture of Solanum tuberosum cv. Désirée. In this study, a cryopreservation method, consisting of osmotic pretreatment, cryoprotection with DMSO and controlled-rate freezing, was used to characterize the relation between cryopreservation success and pr-10a expression in suspension cultures of S. tuberosum wild-type cells and cells overexpressing pathogenesis-related protein 10a (Pr-10a). By varying the sorbitol concentration, thus modifying the strength of the osmotic stress during the pretreatment phase, it can be shown that the wild type can successfully be cryopreserved only in a relatively narrow range of sorbitol concentrations, while the pr-10a overexpression leads to an enhanced cryopreservation success over the whole range of applied sorbitol concentrations. Together with transcription data we show that the pr-10a overexpression causes an enhanced osmotic tolerance, which in turn leads to enhanced cryopreservability, but also indicates a role of pr-10a in signal transduction. An increased cryopreservability of the transgenic cell line occurs for pretreatments longer than 24 h. Since both genotypes, characterized by distinct baseline levels of expression, exhibited similar patterns of expression induction, the induction of pr-10a appears to be a key step in the stress signal transduction of plant cells under osmotic stress.
Osmotic characteristics and fertility of murine spermatozoa collected in different solutions.
Si, Wei; Men, Hongsheng; Benson, James D; Critser, John K
2009-02-01
Osmotic stress is an important factor that can result in cell damage during cryopreservation. Before ejaculation or collection for cryopreservation, murine spermatozoa are stored in epididymal fluid, a physiologically hyperosmotic environment (approximately 415 mmol/kg). The objectives of this study were to determine the osmotic tolerance limits of sperm motion parameters of ICR and C57BL/6 mouse spermatozoa collected in isosmotic (290 mmol/kg) and hyperosmotic (415 mmol/kg) media, and the effect of the osmolality of sperm collection media on sperm fertility after cryopreservation. Our results indicate that murine spermatozoa collected in media with different osmolalities (290 and 415 mmol/kg Dulbecco's phosphate buffered saline (DPBS)) appeared to have different osmotic tolerances for the maintenance of sperm motility and other motion parameters in both mouse strains. The hypo- and hyperosmotic treatments decreased motility and affected other motion parameters of spermatozoa collected in 290 mmol/kg DPBS. The extent of the change of motion parameters after treatments corresponded with the levels of osmotic stress. However, for spermatozoa collected in 415 mmol/kg DPBS, exposure to 290 mmol/kg DPBS tended to increase sperm motility and the quality of their motion parameters. The osmolality of sperm collection medium can affect murine sperm fertility. Spermatozoa collected in 415 mmol/kg medium showed higher fertility compared with spermatozoa collected in 290 mmol/kg as assessed by IVF. Results characterizing murine sperm osmotic tolerance collected in media with different osmolalities from different strains and the effect of collection media osmolality on sperm fertility after cryopreservation will be useful in designing cryopreservation protocols.
Meneghel, Julie; Passot, Stéphanie; Dupont, Sébastien; Fonseca, Fernanda
2017-02-01
Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.
Liedtke, Wolfgang; Tobin, David M.; Bargmann, Cornelia I.; Friedman, Jeffrey M.
2003-01-01
All animals detect osmotic and mechanical stimuli, but the molecular basis for these responses is incompletely understood. The vertebrate transient receptor potential channel vanilloid subfamily 4 (TRPV4) (VR-OAC) cation channel has been suggested to be an osmo/mechanosensory channel. To assess its function in vivo, we expressed TRPV4 in Caenorhabditis elegans sensory neurons and examined its ability to generate behavioral responses to sensory stimuli. C. elegans ASH neurons function as polymodal sensory neurons that generate a characteristic escape behavior in response to mechanical, osmotic, or olfactory stimuli. These behaviors require the TRPV channel OSM-9 because osm-9 mutants do not avoid nose touch, high osmolarity, or noxious odors. Expression of mammalian TRPV4 in ASH neurons of osm-9 worms restored avoidance responses to hypertonicity and nose touch, but not the response to odorant repellents. Mutations known to reduce TRPV4 channel activity also reduced its ability to direct nematode avoidance behavior. TRPV4 function in ASH required the endogenous C. elegans osmotic and nose touch avoidance genes ocr-2, odr-3, osm-10, and glr-1, indicating that TRPV4 is integrated into the normal ASH sensory apparatus. The osmotic and mechanical avoidance responses of TRPV4-expressing animals were different in their sensitivity and temperature dependence from the responses of wild-type animals, suggesting that the TRPV4 channel confers its characteristic properties on the transgenic animals' behavior. These results provide evidence that TRPV4 can function as a component of an osmotic/mechanical sensor in vivo. PMID:14581619
Martos-Sitcha, Juan Antonio; Mancera, Juan Miguel; Calduch-Giner, Josep Alvar; Yúfera, Manuel; Martínez-Rodríguez, Gonzalo; Pérez-Sánchez, Jaume
2016-01-01
A custom microarray was used for the transcriptomic profiling of liver, gills and hypothalamus in response to hypo- (38‰ → 5‰) or hyper- (38‰ → 55‰) osmotic challenges (7 days after salinity transfer) in gilthead sea bream (Sparus aurata) juveniles. The total number of differentially expressed genes was 777. Among them, 341 and 310 were differentially expressed in liver after hypo- and hyper-osmotic challenges, respectively. The magnitude of changes was lower in gills and hypothalamus with around 131 and 160 responsive genes in at least one osmotic stress condition, respectively. Regardless of tissue, a number of genes were equally regulated in either hypo- and hyper-osmotic challenges: 127 out of 524 in liver, 11 out of 131 in gills and 19 out of 160 in hypothalamus. In liver and gills, functional analysis of differentially expressed genes recognized two major clusters of overlapping canonical pathways that were mostly related to “Energy Metabolism” and “Oxidative Stress”. The later cluster was represented in all the analyzed tissues, including the hypothalamus, where differentially expressed genes related to “Cell and tissue architecture” were also over-represented. Overall the response for “Energy Metabolism” was the up-regulation, whereas for oxidative stress-related genes the type of response was highly dependent of tissue. These results support common and different osmoregulatory responses in the three analyzed tissues, helping to load new allostatic conditions or even to return to basal levels after hypo- or hyper-osmotic challenges according to the different physiological role of each tissue. PMID:26828928
Osmotic Adjustment in Cotton (Gossypium hirsutum L.) Leaves and Roots in Response to Water Stress 1
Oosterhuis, Derrick M.; Wullschleger, Stan D.
1987-01-01
The relative magnitude of adjustment in osmotic potential (ψs) of water-stressed cotton (Gossypium hirsutum L.) leaves and roots was studied using plants raised in pots of sand and grown in a growth chamber. One and three water-stress preconditioning cycles were imposed by withholding water, and the subsequent adjustment in solute potential upon relief of the stress and complete rehydration was monitored with thermocouple psychrometers. Both leaves and roots exhibited a substantial adjustment in ψs in response to water stress with the former exhibiting the larger absolute adjustment. The osmotic adjustment of leaves was 0.41 megapascal compared to 0.19 megapascal in the roots. The roots, however, exhibited much larger percentage osmotic adjustments of 46 and 63% in the one and three stress cycles, respectively, compared to 22 and 40% in the leaves in similar stress cycles. The osmotically adjusted condition of leaves and roots decreased after relief of the single cycle stress to about half the initial value within 3 days, and to the well-watered control level within 6 days. In contrast, increasing the number of water-stress preconditioning cycles resulted in significant percentage osmotic adjustment still being present after 6 days in roots but not in the leaves. The decrease in ψs of leaves persisted longer in field-grown cotton plants compared to plants of the same age grown in the growth chamber. The advantage of decreased ψs in leaves and roots of water-stressed cotton plants was associated with the maintenance of turgor during periods of decreasing water potentials. PMID:16665577
Electro-Optic Beam Steering Using Non-Linear Organic Materials
1993-08-01
York (SUNY), Buffalo, for potential application to the Hughes electro - optic beam deflector device. Evaluations include electro - optic coefficient...response time, transmission, and resistivity. Electro - optic coefficient measurements were made at 633 nm using a simple reflection technique. The
Reflection and transmission for layered composite materials
NASA Technical Reports Server (NTRS)
Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.
1991-01-01
A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.
Phase-resolved reflectance spectroscopy on layered turbid media
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.
1995-05-01
In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.
Mechanisms of anionic detergent-induced hemolysis.
Chernitsky, E; Senkovich, O
1998-09-01
The effect of osmotic protectors (sucrose and polyethylene glycols) and of a decrease in the detergent concentration at different points of hemolysis of human erythrocytes by sodium dodecyl sulphate on the shape of kinetic curves of hemolysis were studied. It is shown that slow detergent-induced hemolysis follows the colloid-osmotic mechanisms. Evidence is provided that rapid hemolysis by sodium dodecyl sulphate is caused by opening of large pores sufficient for the release of hemoglobin molecules rather than by the colloid-osmotic mechanism, and that the kinetics of hemolysis is mainly determined by time dependence of the opening probability of these pores.
Effects of osmotic pressure in the extracellular matrix on tissue deformation.
Lu, Y; Parker, K H; Wang, W
2006-06-15
In soft tissues, large molecules such as proteoglycans trapped in the extracellular matrix (ECM) generate high levels of osmotic pressure to counter-balance external pressures. The semi-permeable matrix and fixed negative charges on these molecules serve to promote the swelling of tissues when there is an imbalance of molecular concentrations. Structural molecules, such as collagen fibres, form a network of stretch-resistant matrix, which prevents tissue from over-swelling and keeps tissue integrity. However, collagen makes little contribution to load bearing; the osmotic pressure in the ECM is the main contributor balancing external pressures. Although there have been a number of studies on tissue deformation, there is no rigorous analysis focusing on the contribution of the osmotic pressure in the ECM on the viscoelastic behaviour of soft tissues. Furthermore, most previous works were carried out based on the assumption of infinitesimal deformation, whereas tissue deformation is finite under physiological conditions. In the current study, a simplified mathematical model is proposed. Analytic solutions for solute distribution in the ECM and the free-moving boundary were derived by solving integro-differential equations under constant and dynamic loading conditions. Osmotic pressure in the ECM is found to contribute significantly to the viscoelastic characteristics of soft tissues during their deformation.
Effect of medium osmolarity and taurine on neuritic outgrowth from goldfish retinal explants.
Cubillán, Lisbeth; Obregón, Francisco; Lima, Lucimey
2009-01-01
Taurine stimulates outgrowth of goldfish retinal explants in a concentration- and time-dependent manner, an effect related to calcium movement and protein phosphorylation. Since taurine is an osmoregulator in the central nervous system, and osmolality might influence regeneration, the purpose of this work was to evaluate the possible effect of hypo-osmolality on basal outgrowth and on the trophic action of the amino acid. Accordingly, goldfish retinal explants obtained after crushing the optic nerve were cultured in iso- and hypo-osmotic medium, the latter achieved by diluting the medium 10% 24 and 72 h after plating. The length and density of the neurites, measured after 5 days in culture, were significantly lower in the hypo- than in the iso-osmotic medium. Taurine stimulated the outgrowth under both conditions, but the percentage of increase was greater in iso-osmotic medium. Taurine concentration, determined by HPLC, did not significantly change in explants. Co-administration of beta-alanine and taurine impaired the trophic effect of taurine to a greater extent in the iso- than in hypo-osmotic medium, indicating a possible differential interaction with the taurine transporter which could be altered by osmotic stress. The exact mechanism of outgrowth regulation by hypotonicity requires further clarification, taking into considering possible modification of the taurine transporter.
Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin
2017-01-01
Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675
NASA Technical Reports Server (NTRS)
Kashani, A. H.; Chen, B. M.; Grinnell, A. D.
2001-01-01
Hyperosmotic solutions cause markedly enhanced spontaneous quantal release of neurotransmitter from many nerve terminals. The mechanism of this enhancement is unknown. We have investigated this phenomenon at the frog neuromuscular junction with the aim of determining the degree to which it resembles the modulation of release by stretch, which has been shown to be mediated by mechanical tension on integrins.The hypertonicity enhancement, like the stretch effect, does not require Ca2+ influx or release from internal stores, although internal release may contribute to the effect. The hypertonicity effect is sharply reduced (but not eliminated) by peptides containing the RGD sequence, which compete with native ligands for integrin bonds.There is co-variance in the magnitude of the stretch and osmotic effects; that is, individual terminals exhibiting a large stretch effect also show strong enhancement by hypertonicity, and vice versa. The stretch and osmotic enhancements also can partially occlude each other.There remain some clear-cut differences between osmotic and stretch forms of modulation: the larger range of enhancement by hypertonic solutions, the relative lack of effect of osmolarity on evoked release, and the reported higher temperature sensitivity of osmotic enhancement. Nevertheless, our data strongly implicate integrins in a significant fraction of the osmotic enhancement, possibly acting via the same mechanism as stretch modulation.
Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.
2017-04-01
A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.
Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z
2007-05-15
Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.
Osmotic generation of 'anomalous' fluid pressures in geological environments
Neuzii, C.E.
2000-01-01
Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.
Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.
Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F
2008-07-01
This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.
Oladejo, Ayobami Olayemi; Ma, Haile
2016-08-01
Sweet potato is a highly nutritious tuber crop that is rich in β-carotene. Osmotic dehydration is a pretreatment method for drying of fruit and vegetables. Recently, ultrasound technology has been applied in food processing because of its numerous advantages which include time saving, little damage to the quality of the food. Thus, there is need to investigate and optimise the process parameters [frequency (20-50 kHz), time (10-30 min) and sucrose concentration (20-60% w/v)] for ultrasound-assisted osmotic dehydration of sweet potato using response surface methodology. The optimised values obtained were frequency of 33.93 kHz, time of 30 min and sucrose concentration of 35.69% (w/v) to give predicted values of 21.62, 4.40 and 17.23% for water loss, solid gain and weight reduction, respectively. The water loss and weight reduction increased when the ultrasound frequency increased from 20 to 35 kHz and then decreased as the frequency increased from 35 to 50 kHz. The results from this work show that low ultrasound frequency favours the osmotic dehydration of sweet potato and also reduces the use of raw material (sucrose) needed for the osmotic dehydration of sweet potato. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Borgohain, Gargi; Paul, Sandip
2016-03-10
Classical molecular dynamics simulation of GB1 peptide (a 16-residue β-hairpin) in different osmotic environments is studied. Urea is used for denaturation of the peptide, and trimethylamine-N-oxide (TMAO) is used to offset the effect of urea. Protein-urea electrostatic interactions are found to play a major role in protein-denaturation. To emphasize on protein protecting action of TMAO against urea, two different models of TMAO are used, viz., the Kast model and the Osmotic model. We observe that the Osmotic model of TMAO gives the best protection to counteract urea's action when used in ratio 1:2 of urea:TMAO (i.e., reverse ratio). This is because the presence of TMAO makes urea-protein electrostatic interactions more unfavorable. Preferential solvation of TMAO molecules by urea (and water) molecules is also observed, which causes depletion in the number of urea molecules in the vicinity of the protein. The calculations of intraprotein hydrogen bonds between different residues of protein further reveal the breaking of backbone hydrogen bonds of residues 2 and 15 in the presence of urea, and the same is preserved in the presence of TMAO. Free energy landscapes show that the narrowest distribution is obtained for the osmotic TMAO model when used in reverse ratio.
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo; Matthies, Larry; Bellutta, Paolo
2011-01-01
A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.
NASA Astrophysics Data System (ADS)
Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko
2014-01-01
To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.
Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.
Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D
2000-03-20
The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.
Konstantinov effect in helium II
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-04-01
The reflection of first and second sound waves by a rigid flat wall in helium II is considered. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at oblique incidence.
Combination of acoustical radiosity and the image source method.
Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn
2013-06-01
A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy.
Light propagation in tissues with controlled optical properties
NASA Astrophysics Data System (ADS)
Tuchin, Valery V.; Maksimova, Irina L.; Zimnyakov, Dmitry A.; Kon, Irina L.; Mavlyutov, Albert H.; Mishin, Alexey A.
1997-10-01
Theoretical and computer modeling approaches, such as Mie theory, radiative transfer theory, diffusion wave correlation spectroscopy, and Monte Carlo simulation were used to analyze tissue optics during a process of optical clearing due to refractive index matching. Continuous wave transmittance and forward scattering measurement as well as intensity correlation experiments were used to monitor tissue structural and optical properties. As a control, tissue samples of the human sclera were taken. Osmotically active solutions, such as Trazograph, glucose, and polyethylene glycol, were used as chemicals. A characteristic time response of human scleral optical clearing the range 3 to 10 min was determined. The diffusion coefficients describing the permeability of the scleral samples to Trazograph were experimentally estimated; the average value was DT approximately equals (0.9 +/- 0.5) X 10-5 cm2/s. The results are general and can be used to describe many other fibrous tissues.
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.
Kazayama, Yuki; Teshima, Tetsuhiko; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro
2016-01-19
Vesicles composed of phospholipids (liposomes) have attracted interest as artificial cell models and have been widely studied to explore lipid-lipid and lipid-protein interactions. However, the size dispersity of liposomes prepared by conventional methods was a major problem that inhibited their use in high-throughput analyses based on monodisperse liposomes. In this study, we developed an integrative microfluidic device that enables both the size-based selection and trapping of liposomes. This device consists of hydrodynamic selection and trapping channels in series, which made it possible to successfully produce an array of more than 60 monodisperse liposomes from a polydisperse liposome suspension with a narrow size distribution (the coefficient of variation was less than 12%). We successfully observed a size-dependent response of the liposomes to sequential osmotic stimuli, which had not clarified so far, by using this device. Our device will be a powerful tool to facilitate the statistical analysis of liposome dynamics.
Shpin'kova, V N; Nikol'skaia, K A; Gershteĭn, L M
2000-01-01
The influence of weak disturbances (up to 300 microT) of natural magnetic field on the protein metabolism in neurons of sensomotor cortex (layers III and V) in Wistar rats upon learning in a complex maze was studied. It was found that sensomotor neurons were very sensitive to weak disturbances of magnetic field. The protein content increased, while the nucleus-cytoplasm ratio and osmotic state of neurons remained unchanged. The specificity of neuron's reaction manifested itself in a sharp increase of nucleus and cytoplasm dimensions. In associative neurons (layer III), both the nucleus and cytoplasm were involved in the response; in efferent neurons (layer V), only nuclear parameters changed. The variance coefficients of all parameters of protein metabolism in sensomotor neurons, independently of their functional properties, were much higher than in control, which resulted in a wide diversity of cytochemical response.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-01-01
Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.
Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian
2017-04-01
Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13.1 ug/cm2, while mean correlation coefficient is 0.81). Underestimation of high chlorophyll content, which is due to underestimation of reflectance in the visible region of PROSPECT, is partially corrected or alleviated. Improvements are particularly noticeable for leaves with high surface reflectance or high chlorophyll content, which both lead to large proportions of surface reflectance to the total leaf reflectance.
Plant responsiveness to root–root communication of stress cues
Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel
2012-01-01
Background and Aims Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Methods Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. Key Results In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction. Conclusions The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios. PMID:22408186
Plant responsiveness to root-root communication of stress cues.
Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel
2012-07-01
Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.
[Reconstruction in plastic surgery using osmotic tissue expanders].
Gronovich, Yoav; Binenboym, Rami; Retchkiman, Meir; Eizenman, Nirit; Lotan, Adi; Stuchiner, Barak; Tuchman, Izhak
2015-03-01
Tissue expander is a major reconstructive modality. Its main disadvantages include: long and inconvenient period of inflation with temporary deformity of the surrounding tissue. Osmotic expander was developed in order to eliminate some of these limitations. It is a self-filling device which absorbs fluids in order to achieve tissue expansion faster. We present our experience with 28 consecutive cases of tissue reconstruction using osmotic expanders. We wish to emphasize the main advantages and limitations of this device. The present study was launched in May 2008, until April 2014, for twenty eight patients, median age 26 years with reconstructions using an osmotic expander (total of 35 expanders). The reasons for using tissue expander included large congenital nevi (75%) and scars. In all of the cases, the operative and post-operative management was uneventful. During the expansion period, there were 2 outpatient clinical visits. The average expansion time was 9 weeks. In 11% (three patients) there was partial extrusion of the expander. In all other cases there were no complications and the final aesthetic results were satisfying. Osmotic expander is an advanced modality for tissue reconstruction. The final shape and size are precisely predictable. Its initial small size allows for a small surgical incision and short overall operating time. The expansion period is shorter and more convenient for the patient. Its main disadvantage includes the inability to control the filling rate and the need to remove the expander in case of damage to the overlying tissue. Osmotic expander is a reliable tool for tissue expansion. It allows for a satisfying aesthetic result in a shorter period of time and with less inconvenience to the patient.
Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar
2017-01-01
Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Growth of the Maize Primary Root at Low Water Potentials 1
Sharp, Robert E.; Hsiao, Theodore C.; Silk, Wendy Kuhn
1990-01-01
Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process. PMID:16667622
Yamada, K; Tamura, Y; Yoshida, S
1989-08-01
We examined the effect of CRH administration on the response of plasma arginine vasopressin (AVP) induced by an osmotic stimulus in six normal subjects and five patients with hypocorticotropinism without overt diabetes insipidus (four patients with Sheehan's syndrome and one with idiopathic pituitary dwarfism with ACTH deficiency). Hypertonic saline infusion (855 mmol/L saline solutions at a rate of 205 mumol/kg.min for 10 min) increased plasma AVP 5.7-fold (P less than 0.01) in normal subjects and 2.4-fold (P less than 0.05) in the patients. CRH administration significantly augmented the plasma AVP response to the osmotic stimulus in the normal subjects, but not in the patients with hypocorticotropinism. CRH administration alone did not influence plasma AVP. These findings suggest that a central CRH-related mechanism(s) was at least partly involved in the augmentation of AVP release. Based on the relatively low plasma AVP response to the osmotic stimulus in patients and their lower plasma AVP levels and higher plasma osmolality under basal conditions, we suggest that patients with hypocorticotropinism have partial diabetes insipidus, in which impairment of central CRH action might be, at least in part, involved. The response of plasma AVP to the osmotic stimulus was attenuated significantly when the patients were given cortisol. Since basal PRA, plasma aldosterone, plasma osmolality, hematocrit, body weight, mean blood pressure, and heart rate were similar with and without cortisol administration, this effect of cortisol may have been due to central suppression of the AVP response to the osmotic stimulus.
Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce
2014-10-01
The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU. © 2014 Scandinavian Plant Physiology Society.
Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H
2015-05-01
Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
DMSP Uptake and Retention by Natural Marine Bacteria Relieves Osmotic Stress
NASA Astrophysics Data System (ADS)
Motard-Coté, J.; Kiene, R. P.
2016-02-01
Dimethylsulfoniopropionate (DMSP) is synthesized and used by many marine phytoplankton species as an osmolyte. Grazing on phytoplankton results in formation of extracellular dissolved DMSP (DMSPd), which is rapidly taken up by bacterioplankton and used as an important carbon and sulfur source. Previous studies have, however, shown that some of the dissolved DMSP (DMSPd) in seawater is taken up by bacterioplankton and not degraded. We tested the hypothesis that retention of untransformed DMSP in cells provides some benefits to marine bacteria. In experiments with coastal seawater filtrates containing mainly bacteria, acute osmotic stresses of +5 and +10 ppt NaCl significantly inhibited bacterial production (BP) over 6 h, while the availability of 20 nM DMSPd relieved most of the BP inhibition. Partial relief of salt-induced inhibition of BP was observed with DMSPd concentrations as low as 2.5 nM, and DMSP was more effective at relieving osmotic stress than other low molecular weight compounds tested. Osmotic stresses resulted in a faster and greater overall uptake of DMSPd and accumulation of untransformed DMSP in bacterial cells (DMSPcell). Retained DMSP reached osmotically-significant intracellular concentrations of 54 mM in salt stressed bacterial populations. Retention of DMSP was accompanied by a lower production of methanethiol (MeSH), suggesting a down regulation of the demethylation/demethylation pathway under osmotic stress. These results show that estuarine bacterioplankton can use DMSP as an osmoprotectant, retaining up to 54% of the available dissolved DMSP untransformed in their cells. This benefit provided by DMSP may help explain why some DMSP is retained in bacteria in the ocean, even under unchanging salinity. This retention slows down the cycling of DMSP, with potential implications for the trophic transfer of DMSP through the food web and its contributions to sulfur and carbon fluxes in the ocean.
Semipermeability Evolution of Wakkanai Mudstones During Isotropic Compression
NASA Astrophysics Data System (ADS)
Takeda, M.; Manaka, M.
2015-12-01
Precise identification of major processes that influence groundwater flow system is of fundamental importance for the performance assessment of waste disposal in subsurface. In the characterization of groundwater flow system, gravity- and pressure-driven flows have been conventionally assumed as dominant processes. However, recent studies have suggested that argillites can act as semipermeable membranes and they can cause chemically driven flow, i.e., chemical osmosis, under salinity gradients, which may generate erratic pore pressures in argillaceous formations. In order to identify the possibility that chemical osmosis is involved in erratic pore pressure generations in argillaceous formations, it is essential to measure the semipermeability of formation media; however, in the measurements of semipermeability, little consideration has been given to the stresses that the formation media would have experienced in past geologic processes. This study investigates the influence of stress history on the semipermeability of an argillite by an experimental approach. A series of chemical osmosis experiments were performed on Wakkanai mudstones to measure the evolution of semipermeability during loading and unloading confining pressure cycles. The osmotic efficiency, which represents the semipermeability, was estimated at each confining pressure. The results show that the osmotic efficiency increases almost linearly with increasing confining pressure; however, the increased osmotic efficiency does not recover during unloading unless the confining pressure is almost relieved. The observed unrecoverable change in osmotic efficiency may have an important implication on the evaluation of chemical osmosis in argillaceous formations that have been exposed to large stresses in past geologic processes. If the osmotic efficiency increased by the past stress can remain unchanged to date, the osmotic efficiency should be measured at the past highest stress rather than the current in-situ stress. Otherwise, the effect of chemical osmosis on the pore pressure generation would be underestimated.
Al-Quraan, Nisreen A; Sartawe, Fatima Al-Batool; Qaryouti, Muien M
2013-07-15
The molecular response of plants to abiotic stresses has been considered a process mainly involved in the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings have suggested new layers of regulation and complexity. Upstream molecular mechanisms are involved in the plant response to abiotic stress. Plants gain resistance to abiotic stress by reprogramming metabolism and gene expression. GABA is proposed to be a signaling molecule involved in nitrogen metabolism, regulating the cytosolic pH, and protection against oxidative damage in response to various abiotic stresses. The aim of our study was to examine the role of the GABA shunt pathway-specific response in five wheat (Triticum aestivum L.) cultivars (Hurani 75, Sham I, Acsad 65, Um Qayes and Nodsieh) to salt and osmotic stress in terms of seed germination, seedling growth, oxidative damage (malondialdehyde (MDA) accumulation), and characterization of the glutamate decarboxylse gene (GAD) m-RNA level were determined using RT-PCR techniques. Our data showed a marked increase in GABA, MDA and GAD m-RNA levels under salt and osmotic stress in the five wheat cultivars. Um Qayes cultivar showed the highest germination percentage, GABA accumulation, and MDA level under salt and osmotic stresses. The marked increase in GAD gene expression explains the high accumulation of the GABA level under both stresses. Our results indicated that the GABA shunt is a key signaling and metabolic pathway that allows wheat to adapt to salt and osmotic stress. Based on our data, the Um Qayes wheat cultivar is the cultivar most recommended to be grown in soil with high salt and osmotic contents. Copyright © 2013 Elsevier GmbH. All rights reserved.
Shen, Chun-Ying; Xu, Guang-Hui; Chen, Shi-Xuan; Song, Li-Zhen; Li, Mei-Jing; Wang, Li-Li; Zhu, Yan; Lv, Wei-Tao; Gong, Zhi-Zhong; Liu, Chun-Ming; Deng, Xin
2014-01-01
Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species. PMID:24851859
PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.
Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes
2016-08-01
The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Correlation of second virial coefficient with solubility for proteins in salt solutions.
Mehta, Chirag M; White, Edward T; Litster, James D
2012-01-01
In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Osmosis in Poisoned Plant Cells.
ERIC Educational Resources Information Center
Tatina, Robert
1998-01-01
Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…
21 CFR 862.2730 - Osmometer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...
21 CFR 862.2730 - Osmometer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...
21 CFR 862.2730 - Osmometer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...
21 CFR 862.2730 - Osmometer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...
Relationship between osmotic pressure of the blood and secretion of sweat
NASA Technical Reports Server (NTRS)
Montuori, A.
1978-01-01
Experiments with cats show that the thermic secretion of sweat represents a specific case of a general law: The central nervous apparatus that controls the secretion of sweat begins to function when the osmotic pressure of the blood drops below normal.
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2011 CFR
2011-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2012 CFR
2012-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2014 CFR
2014-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2013 CFR
2013-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2010 CFR
2010-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.T.; Pocard, J.A.; Bernard, T.
1988-07-01
Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, the authors used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, /sup 14/C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but notmore » those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.« less
Cribb, Peter H.; Olfert, Ernest A.; Reynolds, F. Barry
1986-01-01
A Doberman-German Shepherd cross-bred male dog, previously diagnosed as malignant hyperthermia susceptible, was mated to an unrelated nonsusceptible German Shepherd cross-bred female. The resultant litter was subjected to hematological, biochemical and erythrocyte osmotic fragility testing in an endeavor to predict the susceptibility of individuals to malignant hyperthermia. Laboratory evaluations were repeated at one year of age and the litter subjected to the halothane challenge test. No significant difference in erythrocyte osmotic fragility was found between malignant hyperthermia susceptible and nonsusceptible siblings at six weeks or at one year of age. Erythrocyte osmotic fragility, in both malignant hyperthermia susceptible and nonsusceptible animals, increased between six weeks and one year of age. Dantrolene sodium was an effective treatment for malignant hyperthermia in the dog when administered early in an episode and in adequate dosage. The initial sign of a malignant hyperthermia episode was a very rapid increase in end tidal partial pressure of carbon dioxide. This finding reinforces the value of capnographic monitoring in anesthesia. PMID:17422730
Augmented water binding and low cellular water content in erythrocytes of camel and camelids.
Bogner, P; Csutora, P; Cameron, I L; Wheatley, D N; Miseta, A
1998-12-01
We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.
Numerical approach to describe complementary drying of banana slices osmotically dehydrated
NASA Astrophysics Data System (ADS)
da Silva Júnior, Aluízio Freire; da Silva, Wilton Pereira; de Farias Aires, Juarez Everton; Farias Aires, Kalina Lígia C. A.
2018-02-01
In this work, diffusion model was used to describe the water loss in the complementary drying process of cylindrical slices of banana pretreated by osmotic dehydration. A numerical solution has been proposed for the diffusion equation in cylindrical coordinates, which was obtained through the Finite Volume Method. The diffusion equation was discretized assuming that the effective water diffusivity and the dimensions of a finite cylinder may vary; also considering the boundary condition of the third kind. The banana slices were cut in length of about 1.00 cm and average radius 1.70 cm before osmotic pretreatment, and completed the pretreatment with length of about 0.74 cm and average radius 1.40 cm. The complementary drying was carried out in a kiln with circulation and air exchange. Drying temperatures were the same as used in the osmotic pretreatment (40 to 70 °C). The proposed model described well the water loss, with good statistical indicators for all fits.
Augmented water binding and low cellular water content in erythrocytes of camel and camelids.
Bogner, P; Csutora, P; Cameron, I L; Wheatley, D N; Miseta, A
1998-01-01
We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments. PMID:9826628
Osmotic stress response in the wine yeast Dekkera bruxellensis.
Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta
2013-12-01
Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.
Folding propensity of intrinsically disordered proteins by osmotic stress
Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...
2016-10-11
Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less
The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol.
Przybylo, M; Procek, J; Hof, M; Langner, M
2014-02-01
Lipid bilayer properties are quantified with a variety of arbitrary selected parameters such as molecular packing and dynamics, electrostatic potentials or permeability. In the paper we determined the effect of phloretin and 6-ketocholestanol (dipole potential modifying agents) on the membrane hydration and efficiency of the trans-membrane water flow. The dynamics of water molecules within the lipid bilayer interface was evaluated using solvent relaxation method, whereas the osmotically induced trans-membrane water flux was estimated with the stopped-flow method using the liposome shrinkage kinetics. The presence of phloretin or 6-ketocholestanol resulted in a change of both, the interfacial hydration level and osmotically driven water fluxes. Specifically, the presence of 6-ketocholestanol reduced the amount and mobility of water in the membrane interface. It also slows the osmotically induced water flow. The interfacial hydration change caused by phloretin was much smaller and the effect on osmotically induced water flow was opposite to that of 6-ketocholestanol. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.