Science.gov

Sample records for osteoarthritic cancellous bone

  1. Cancellous structure of tarsal bones.

    PubMed Central

    Sinha, D N

    1985-01-01

    The internal structure of the tarsal bones has been studied to investigate their cancellous architecture. It is revealed that these bones have fine and coarse meshworks and even a tendency for obliteration of the trabecular pattern in the bones lying distal to this midtarsal joint. Internal structure of the talus does not show an arched pattern of bony lamellae. An increased density of bony lamellae in the internal structure of the navicular bone could result from excessive stress, enforced by its close relationship to the three cuneiform bones. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:4066465

  2. Estimation of In vivo Cancellous Bone Elasticity

    NASA Astrophysics Data System (ADS)

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi

    2009-07-01

    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  3. A Sheep Model for Cancellous Bone Healing

    PubMed Central

    Malhotra, Angad; Pelletier, Matthew Henry; Yu, Yan; Christou, Chris; Walsh, William Robert

    2014-01-01

    Appropriate well-characterized bone defect animal models remain essential for preclinical research. This pilot study demonstrates a relevant animal model for cancellous bone defect healing. Three different defect diameters (8, 11, 14 mm) of fixed depth (25 mm) were compared in both skeletally immature (18-month-old) and aged sheep (5-year-old). In each animal, four defects were surgically created and placed in the cancellous bone of the medial distal femoral and proximal tibial epiphyses bilaterally. Animals were euthanized at 4 weeks post-operatively to assess early healing and any biological response. Defect sites were graded radiographically, and new bone formation quantified using μCT and histomorphometry. Fibrous tissue was found within the central region in most of the defects with woven bone normally forming near the periphery of the defect. Bone volume fraction [bone volume (BV)/TV] significantly decreased with an increasing defect diameter. Actual BV, however, increased with defect diameter. Bone ingrowth was lower for all defect diameters in the aged group. This pilot study proposes that the surgical creation of 11 mm diameter defects in the proximal tibial and distal femoral epiphyses of aged sheep is a suitable large animal model to study early healing of cancellous bone defects. The refined model allows for the placement of four separate bone defects per animal and encourages a reduction in animal numbers required for preclinical research. PMID:25593961

  4. Cadmium content of human cancellous bone

    SciTech Connect

    Knuuttila, M.; Lappalainen, R.; Olkkonen, H.; Lammi, S.; Albava, E.M.

    1982-09-01

    The cadmium content of human cancellous bone was related to age, sex, bone loss, physical properties, and elemental composition. Bone specimens from the anterior iliac crest were collected from 88 cadavers with a normal mineral status, and from 50 cadavers which had bone loss from chronic diseases and immobilization. The element concentrations were analyzed using atomic absorption spectrophotometry. Bone fluoride levels were determined with the ion specific electrode, the mineral density with the gamma ray attenuation method, and the compressive strength with a strain transducer. The data were analyzed using multiple linear regression analysis. The mean cadmium content of 0.22 +/- 0.16 ..mu..g/g dry weight (+/- SD) in the samples did not change with age and its content was slightly greater in males than in females. Furthermore, no statistically significant relationship was found in cadmium content to bone loss changes or to the calcium content of bone. The cadmium content had a high statistically significant positive correlation with the strontium and nickel content.

  5. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip.

    PubMed

    Fazzalari, N L; Parkinson, I H

    1997-04-01

    Primary osteoarthritis of the hip results in changes to the architecture of subchondral cancellous bone. These changes in architecture occur through the action of osteoclasts and osteoblasts in selectively removing and adding bone. The quantitative description of the bone architecture helps in understanding the etiology of primary osteoarthritis. Fractal analysis is a method for describing complex shapes, which is expressed numerically as the fractal dimension. A box counting method was used, where the perimeter of binary profiles of cancellous bone samples was measured for different box sizes. The fractal dimension was the absolute value of the slope of the straight line segments from the plot of the log number of boxes versus the log box size. Cancellous bone samples from two subchondral regions, superior and inferomedial, to the fovea were analyzed from primary severe osteoarthritic specimens taken following total hip replacement surgery (n = 19, aged 51-80 years) and autopsy controls (n = 25, aged 18-90 years). There were three straight line segments identified on the log-log plot, for each subject, indicating a fractal dimension over three different ranges of scale. The results show that in the superior region there is a highly significant difference between the groups (p < 0.0001) for fractal 1 and pivot point 2. The histomorphometry shows significant differences for bone volume/total volume, bone surface/total volume, trabecular separation, and osteoid surface/total volume between groups. In the inferomedial region fractal 1 and fractal 2 are significantly different. For the histomorphometry, trabecular thickness and eroded surface/total volume are significantly different between the groups. The pivot points, i.e., the box size at which the fractal dimension changes, were of similar magnitude to the trabecular thickness and trabecular separation. These data suggest that the fractal geometry analysis of cancellous bone identifies architectural features not

  6. Transversely Isotropic Elasticity Imaging of Cancellous Bone

    PubMed Central

    Shore, Spencer W.; Barbone, Paul E.; Oberai, Assad A.; Morgan, Elise F.

    2012-01-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ε12 is necessary to reconstruct C1212), and the application of regularization is shown to improve accuracy. Finally, the effects

  7. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally

  8. Permeability study of cancellous bone and its idealised structures.

    PubMed

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas

    2015-01-01

    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones.

  9. Three-dimensional microarchitecture of adolescent cancellous bone.

    PubMed

    Ding, Ming; Danielsen, Carl Christian; Hvid, Ivan; Overgaard, Søren

    2012-11-01

    This study investigated microarchitectural, mechanical, collagen and mineral properties of normal adolescent cancellous bone, and compared them with adult and aging cancellous bone, to obtain more insight into the subchondral bone adaptations during development and growth. Twenty-three human proximal tibiae were harvested and divided into 3 groups according to their ages: adolescence (9 to 17 years, n=6), young adult (18 to 24 years, n=9), and adult (25 to 30 years, n=8). Twelve cubic cancellous bone samples with dimensions of 8×8×8 mm(3) were produced from each tibia, 6 from each medial and lateral condyle. These samples were micro-CT scanned (vivaCT 40, Scanco Medical AG, Switzerland) resulting in cubic voxel sizes of 10.5*10.5*10.5 μm(3). Microarchitectural properties were calculated. The samples were then tested in compression followed by collagen and mineral determination. Interestingly, the adolescent cancellous bone had similar bone volume fraction (BV/TV), structure type (plate, rod or mixtures), and connectivity (3-D trabecular networks) as the adult cancellous bone. The adolescent cancellous bone had significantly lower bone surface density (bone surface per total volume of specimen) but higher collagen concentration (collagen weight per dry weight of specimen) than the adult cancellous bone; and significant greater trabecular separation (mean distance between trabeculae), significant lower trabecular number (number of trabeculae per volume), tissue density (dry weight per volume of bone matrix excluding marrow space) and mineral concentration (ash weight per dry weight of specimen) than the young adult and adult cancellous bones. Despite these differences, ultimate stress and failure energy were not significantly different among the three groups, only the Young's modulus in anterior-posterior direction was significantly lower in adolescence. Apparent density appears to be the single best predictor of mechanical properties. In conclusion, adolescent

  10. Preoperative Periarticular Knee Bone Mineral Density in Osteoarthritic Patients Undergoing TKA

    PubMed Central

    Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Todoroki, Koji; Ezawa, Nobukazu; Toyabe, Shin-ichi

    2016-01-01

    Background: Preoperative periarticular bone quality is affected by joint loading. The purpose of this study was to determine the periarticular bone mineral density of the knee joint of patients undergoing total knee arthroplasty, and whether the location of the load-bearing axis correlates with the measured bone mineral density. Materials and Methods: The bone mineral densities of the medial and lateral femoral condyles and the medial and lateral tibial condyles were analyzed in consecutive 116 osteoarthritic patients (130 knees) by dual energy x-ray absorptiometry. Results: The median bone mineral density values in the condyles were 1.138 in femoral medial, 0.767 in femoral lateral, 1.056 in tibial medial, and 0.714 in tibial lateral. The medial condyles showed significantly higher bone mineral densities than the lateral condyles in both the femur and tibia. In addition, the femoral medial showed significantly higher bone mineral density levels than the tibial medial, and the femoral lateral condyle had higher bone mineral density levels than the tibial lateral. The bone mineral density Medial/Lateral ratio was significantly negatively correlated with the location (tibial medial edge 0%, lateral edge 100%) of the load-bearing axis in the femur and tibia. Conclusion: Preoperative bone mineral density values may provide against the changes in bone mineral density after total knee arthroplasty by reflecting the correlation with joint loading axis. These results help explain why total knee arthroplasty has such good long-term clinical outcomes with a low frequency of component loosening and periarticular fractures despite a high degree of postoperative bone loss. PMID:27583058

  11. [Primary cancellous bone formation around micro-chambered beads].

    PubMed

    Draenert, M E; Draenert, Y; Draenert, K; Pohlemann, T; Erler, M

    2014-01-01

    The question has been raised whether benign bone defects in patients can be treated with bone forming osteoconductive ceramics achieving primarily a cancellous bone scaffold, which is under load from the beginning. Ten reconstructions were performed in 9patients (6women and 3male), with a mean age of 49 (25-65)years, suffering a high variety of epi- and metaphyseal defects, four tibial fractures, two calcaneal fractures, one pathological phalangeal fracture, one chondroma of the distal femur and two open-wedge osteotomies were filled with micro-chambered ceramic beads of 4 and 6mm in diameter. The mean follow up was 22 (7- 8)months. X-rays and CT-scans formed the basis for the evaluation of the reconstruction of the cancellous bone scaffolds. All cancellous structures were rebuilt, if completely filled with bone-forming elements. If the filling was incomplete, no physiological cancellous bone scaffold resulted. The β-TCP micro-chambered beads were completely reabsorbed or sandwich-like incorporated at the time of evaluation. The HA micro-chambered beads revealed a contrast enhancement and were integrated in the osseous construction of the bone scaffold. Primary cancellous bone formation can be achieved with osteoconductive ceramic micro-chambered beads and can be combined with any osteosynthesis for stable fixation. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  12. Effect of tibial dyschondroplasia on broiler growth and cancellous bone mechanical properties.

    PubMed

    Capps, S G

    1998-01-01

    The increased incidence of leg abnormalities, particularly tibial dyschondroplasia, in chickens could be related to changes in tibiotarsal cancellous bone properties. To explore this hypothesis, the relationship between lesion occurrence and various tibiotarsal growth parameters, and subchondral bone strength characteristics was investigated. A higher elastic modulus, meaning the cancellous bone was more rigid, was seen for tibiotarsal cancellous bone with lesions. Microfractures in cancellous bone, particularly in the medial growth plate region, may lead to overall bone conformation changes and therefore to lameness.

  13. The anisotropic Hooke's law for cancellous bone and wood.

    PubMed

    Yang, G; Kabel, J; van Rietbergen, B; Odgaard, A; Huiskes, R; Cowin, S C

    A method of data analysis for a set of elastic constant measurements is applied to data bases for wood and cancellous bone. For these materials the identification of the type of elastic symmetry is complicated by the variable composition of the material. The data analysis method permits the identification of the type of elastic symmetry to be accomplished independent of the examination of the variable composition. This method of analysis may be applied to any set of elastic constant measurements, but is illustrated here by application to hardwoods and softwoods, and to an extraordinary data base of cancellous bone elastic constants. The solid volume fraction or bulk density is the compositional variable for the elastic constants of these natural materials. The final results are the solid volume fraction dependent orthotropic Hooke's law for cancellous bone and a bulk density dependent one for hardwoods and softwoods.

  14. Mechanisms for attenuation in cancellous-bone-mimicking phantoms.

    PubMed

    Wear, Keith A

    2008-11-01

    Broadband ultrasound attenuation (BUA) in cancellous bone is useful for prediction of osteoporotic fracture risk, but its causes are not well understood. To investigate attenuation mechanisms, 9 cancellous-bone-mimicking phantoms containing nylon filaments (simulating bone trabeculae) embedded within soft-tissue-mimicking fluid (simulating marrow) were interrogated. The measurements of frequency-dependent attenuation coefficient had 3 separable components: 1) a linear (with frequency) component attributable to absorption in the soft-tissue-mimicking fluid, 2) a quasilinear (with frequency) component, which may include absorption in and longitudinal-shear mode conversion by the nylon filaments, and 3) a nonlinear (with frequency) component, which may be attributable to longitudinal-longitudinal scattering by the nylon filaments. The slope of total linear (with frequency) attenuation coefficient (sum of components #1 and #2) versus frequency was found to increase linearly with volume fraction, consistent with reported measurements on cancellous bone. Backscatter coefficient measurements in the 9 phantoms supported the claim that the nonlinear (with frequency) component of attenuation coefficient (component #3) was closely associated with longitudinal-longitudinal scattering. This work represents the first experimental separation of these 3 components of attenuation in cancellous bone-mimicking phantoms.

  15. Effect of thermodisinfection on mechanic parameters of cancellous bone.

    PubMed

    Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander

    2016-09-01

    Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p < 0.05 was significant. Shear modulus was significantly reduced by thermodisinfection to 1.02 ± 0.31 GPa from 1.28 ± 0.68 GPa for unprocessed cancellous bone (p = 0.029) since thermodisinfection reduced pressure modulus not significantly from 6.30 ± 4.72 GPa for native specimens to 4.97 ± 2.23 GPa and maximum bending force was 270.03 ± 116.68 N for native and 228.80 ± 70.49 N for thermodisinfected cancellous bone. Shear and pressure modulus were reduced by thermodisinfection around 20 % and maximum bending force was impaired by about 15 % compared with native cancellous bone since only the reduction of shear modulus reached significance. The results suggest that thermodisinfection similarly affects different mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.

  16. Experimental models for cancellous bone healing in the rat

    PubMed Central

    Bernhardsson, Magnus; Sandberg, Olof; Aspenberg, Per

    2015-01-01

    Background and purpose — Cancellous bone appears to heal by mechanisms different from shaft fracture healing. There is a paucity of animal models for fractures in cancellous bone, especially with mechanical evaluation. One proposed model consists of a screw in the proximal tibia of rodents, evaluated by pull-out testing. We evaluated this model in rats by comparing it to the healing of empty drill holes, in order to explain its relevance for fracture healing in cancellous bone. To determine the sensitivity to external influences, we also compared the response to drugs that influence bone healing. Methods — Mechanical fixation of the screws was measured by pull-out test and related to the density of the new bone formed around similar, but radiolucent, PMMA screws. The pull-out force was also related to the bone density in drill holes at various time points, as measured by microCT. Results — The initial bone formation was similar in drill holes and around the screw, and appeared to be reflected by the pull-out force. Both models responded similarly to alendronate or teriparatide (PTH). Later, the models became different as the bone that initially filled the drill hole was resorbed to restore the bone marrow cavity, whereas on the implant surface a thin layer of bone remained, making it change gradually from a trauma-related model to an implant fixation model. Interpretation — The similar initial bone formation in the different models suggests that pull-out testing in the screw model is relevant for assessment of metaphyseal bone healing. The subsequent remodeling would not be of clinical relevance in either model. PMID:26200395

  17. Postoperative irradiation of fresh autogenic cancellous bone grafts

    SciTech Connect

    Schwartz, H.C.; Leake, D.L.; Kagan, A.R.; Snow, H.; Pizzoferrato, A.

    1986-01-01

    Discontinuity defects were created in the mandibles of dogs and then reconstructed immediately with fresh autogenic cancellous bone grafts and Dacron-urethane prostheses. The grafts were irradiated to a total dose of 5000 rads after waiting intervals of between 3 and 12 weeks. Nonirradiated grafts served as controls. The grafts were evaluated clinically, radiographically, and histologically. There was complete incorporation of all grafts, regardless of the interval between surgery and radiotherapy. There were no soft-tissue complications. The controls were distinguishable from the irradiated grafts only by the presence of hematopoietic bone marrow. Fibrofatty marrow was observed in the irradiated grafts. Theoretical support for this technique is found in the biology of cancellous bone grafting and the pathology of radiation injury. In view of the difficulties associated with mandibular bone grafting in preoperatively irradiated patients, a new method of reconstructing selected cancer patients who require both mandibular resection and radiotherapy is suggested.

  18. [Alloplastic cancellous bone replacement and fibrin glue in hand surgery].

    PubMed

    Wolter, T P; Fuchs, P; Pallua, N

    2010-10-01

    Alloplastic replacement of cancellous bone is being increasingly used in the clinical setting. The use in hand surgery, however, is only sparsely documented. We report about the use of micro- and macroporous biphasic calicium phosphate granulate (Tricos (®)) in combination with fibrin sealant (Tissucol (®)) in six patients undergoing surgery of the hand involving cancellous bone deficits. The indications ranged from carpal stabilisation to DIP athrodesis. Follow-up time was up to 15 months. Because cancellous bone harvesting could be avoided, morbidity and the extent of surgery could be reduced in all patients. Healing was uneventful and the clinical course as documented by X-ray controls, toleration of physiotherapeutic exercises and stability was analogous to that of conventional surgery involving cancellous bone grafting. These first results indicate that alloplastic replacement of spongiosa grafts, especially by micro- and macroporous biphasic calcium phosphate granulate can possibly be successfully used in surgery of the hand. The extent of bony remodelling still needs to be determined by further examination. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Comparison of failure characteristics of a range of cancellous bone-bone cement composites.

    PubMed

    Lucksanasombool, P; Higgs, W A J; Ignat, M; Higgs, R J E D; Swain, M V

    2003-01-01

    Over the past decade, orthopedic surgery has embraced an increase in the depth of cement penetration into the adjacent cancellous bone structure. The resultant interdigitation transforms this zone into a thick layer of continuous interpenetrating composite material. The failure behavior of the composite formed with a number of potential bone cements with different bonding ability was investigated. The cancellous bone-cement composites exhibit considerable resistance to crack extension, and in situ optical observation indicates that the contribution of the cancellous bone is analogous to that of a typical fiber bridging process. The critical stress intensity factor and the work of fracture have been used to quantify the failure characteristics of the cancellous bone-cement composites. The nature of the crack propagation through these cement-bone composites was also captured via optical microscopy, and scanning electron microscopic images were taken of the failure surfaces. The R-curve behavior, or crack extension characteristic, of the cancellous bone-cement composite was also determined. The interesting outcome is that the cancellous bone-PMMA (poly-methylmethacrylate) composite, despite the absence of chemical bonding with bone, required the highest energy to fracture. In addition, the dimensional stability of the cement has a great effect on the interface.

  20. Microstructural Assessment of Cancellous Bone Using 3D Microtomography

    NASA Astrophysics Data System (ADS)

    Silva, A. M. H.; Alves, J. M.; Da Silva, O. L.; Silva Junior, N. F.; Gazziro, M.; Pereira, J. C.; Lasso, P. R. O.; Vaz, C. M. P.; Pereira, C. A. M.; Leiva, T. P.; Guarniero, R.

    2011-09-01

    Cancellous bones have a porous microstructure and can be modeled as linear elastic solid, heterogeneous and anisotropic. Few studies regarding the morphometric analysis of trabecular bone samples with 3D microtomography have been published so far. The technique has spread worldwide for the characterization of trabecular structures in studies related to bone quality and its relationship with metabolic diseases bone like osteoporosis. In our study cancellous bone samples with cubic and cylindrical geometry were extracted from bovine femur were used to investigate the structural arrangement of bone through high resolution x-ray 3D microtomography (μCT). Four trabecular microstructural parameters (tissue volume, bone volume, bone volume fraction and tissue surface) were measured by 2D (stereological method) and 3D morphometric analysis using the software CTan Analyser supplied by the manufacturer of the microtomograph (SkyScan, model 1172, Belgium). The measurements were done in three main directions (superior-inferior, medial-lateral and anterior-posterior) to investigate the correlation between the 2D and 3D morphometric analysis. The results show a high correlation between the analysis. The x-ray 3D microtomography technique has a great potential for the assessment of bone quality.

  1. Minerals form a continuum phase in mature cancellous bone.

    PubMed

    Chen, Po-Yu; Toroian, Damon; Price, Paul A; McKittrick, Joanna

    2011-05-01

    Bone is a hierarchically structured composite consisting of a protein phase (type I collagen) and a mineral phase (carbonated apatite). The objective of this study was to investigate the hierarchical structure of mineral in mature bone. A method to completely deproteinize bone without altering the original structure is developed, and the completion is confirmed by protein analysis techniques. Stereoscopy and field emission electron microscopy are used to examine the structural features from submillimeter- to micrometer- to nanometer-length scales of bovine femur cancellous bone. Stereoscopic images of fully deproteinized and demineralized bovine femur cancellous bone samples show that fine trabecular architecture is unaltered and the microstructural features are preserved, indicating the structural integrity of mineral and protein constituents. SEM revealed that bone minerals are fused together and form a sheet-like structure in a coherent manner with collagen fibrils. Well-organized pore systems are observed at varying hierarchical levels. Mineral sheets are peeled off and folded after compressive deformation, implying strong connection between individual crystallites. Results were compared with commercially available heat-deproteinized bone (Bio-Oss(®)), and evidence showed consistency in bone mineral structure. A two-phase interpenetrating composite model of mature bone is proposed and discussed.

  2. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats.

    PubMed

    Silva, R V; Camilli, J A; Bertran, C A; Moreira, N H

    2005-03-01

    Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The objective of this study was to evaluate the repair of bone defects by autogenous cancellous bone grafts or porous bioceramic discs of hydroxyapatite/phosphate cement mixture. Two 5-mm diameter defects were made in the skulls of rats and filled with the bioceramic material or cancellous bone. The rats were sacrificed 2, 4, 8 and 24 weeks after surgery and tissue samples were analyzed by radiography and histology. By the 24th week, the defects filled with autogenous cancellous bone grafts or bioceramic material showed similar volumes of bone tissue within the defect. However, defects treated with bioceramic material were almost completely closed as a result of the joining of ceramic fragments and the neoformed bone tissue, while those filled with autogenous grafts showed several areas filled with connective tissue. These results indicated that the osteointegration of bioceramic fragments allowed the reconstruction of parietal bone defects without the need for a bone graft.

  3. Cancellous Screws Are Biomechanically Superior to Cortical Screws in Metaphyseal Bone.

    PubMed

    Wang, Tim; Boone, Christopher; Behn, Anthony W; Ledesma, Justin B; Bishop, Julius A

    2016-09-01

    Cancellous screws are designed to optimize fixation in metaphyseal bone environments; however, certain clinical situations may require the substitution of cortical screws for use in cancellous bone, such as anatomic constraints, fragment size, or available instrumentation. This study compares the biomechanical properties of commercially available cortical and cancellous screw designs in a synthetic model representing various bone densities. Commercially available, fully threaded, 4.0-mm outer-diameter cortical and cancellous screws were tested in terms of pullout strength and maximum insertion torque in standard-density and osteoporotic cancellous bone models. Pullout strength and maximum insertion torque were both found to be greater for cancellous screws than cortical screws in all synthetic densities tested. The magnitude of difference in pullout strength between cortical and cancellous screws increased with decreasing synthetic bone density. Screw displacement prior to failure and total energy absorbed during pullout strength testing were also significantly greater for cancellous screws in osteoporotic models. Stiffness was greater for cancellous screws in standard and osteoporotic models. Cancellous screws have biomechanical advantages over cortical screws when used in metaphyseal bone, implying the ability to both achieve greater compression and resist displacement at the screw-plate interface. Surgeons should preferentially use cancellous over cortical screws in metaphyseal environments where cortical bone is insufficient for fixation. [Orthopedics.2016; 39(5):e828-e832.]. Copyright 2016, SLACK Incorporated.

  4. Cancellous and cortical bone imaging by reflected tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P

    2001-01-01

    This paper deals with the inverse scattering problem observed when ultrasonic waves are used to analyze biological media. The objective is to image cancellous and cortical bone by ultrasonic reflected tomography (URT). Because strong contrast and high absorbance bodies such as bones cannot be imaged at usual ultrasonic high frequencies (> 1 MHz), we adapted for low-frequency URT (< 1 MHz) our tomographic set-up and reconstruction and acquisition tools, previously developed for weakly scattered media. Indeed, when the frequency of the transducer decreases, the penetration length of the wave increases, which unfortunately makes resolution poor, inappropriate for bone imagery. To improve resolution, we extend the generalized inversion in the complementary bandwidth of the electro-acoustic set-up (Papoulis deconvolution). This resolution enhancement for human porous vertebrae and human and animal femur showed that high-resolution images can be obtained with low-frequency URT.

  5. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  6. Hyaluronic acid reverses the abnormal synthetic activity of human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Lajeunesse, Daniel; Delalandre, Aline; Martel-Pelletier, Johanne; Pelletier, Jean Pierre

    2003-10-01

    The underlying mechanisms responsible for both cartilage loss and subchondral bone changes in osteoarthritis (OA) remain unknown. It is becoming recognized that the extracellular matrix influences the metabolism of cells both in vivo and in vitro and can modify their responses to external stimuli. Indeed, the glycosaminoglycan/proteoglycan matrix is of major importance for the proliferation and/or differentiation of a number of cells. Here, we determined the potential role of hyaluronic acid (HA) of increasing molecular weight (MW) to alter the expression of metabolic markers and cytokine production by human osteoarthritic (OA) subchondral osteoblasts (Ob). Both 1,25(OH)(2)D(3)-induced alkaline phosphatase activity (ALPase) and osteocalcin release were increased in OA Ob when compared to normal. HA reduced osteocalcin release in OA Ob at MW of 300 and above, whereas HA failed to significantly modify ALPase. Parathyroid hormone (PTH) stimulated cyclic AMP (cAMP) formation by OA Ob. HA had a biphasic effect on this PTH-dependent activity, totally inhibiting cAMP formation at MW of 300 and 800. HA of increasing MW progressively reduced the levels of Prostaglandin E(2) (PGE(2)) and interleukin-6 (IL-6) produced by OA Ob. Interestingly, urokinase plasminogen activator (uPA) and and PA inhibitor-1 (PAI-1) levels were not significantly affected by HA of increasing MW; however, the PAI-1 to uPA ratio showed a slight, yet nonsignificant increase. Surprisingly, uPA activity was increased in OA Ob under the same conditions. Last, HA had no effect on the production of insulin-like growth factor-1 by these cells. Our data suggest that high MW HA can modify cellular parameters in OA Ob that are increased when compared to normal. The effect of HA on inflammatory mediators, such as PGE(2) and IL-6, and on uPA activity is more striking at higher MW as well. Taken together, these results could suggest that HA of increasing MW has positive effects on OA Ob by modifying their

  7. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Tachibana, Ryosuke O

    2014-03-01

    An ultrasonic pulse propagating in cancellous bone can be separated into two waves depending on the condition of the specimen. These two waves, which are called the fast wave and the slow wave, provide important information for the diagnosis of osteoporosis. The present study proposes to utilize a signal processing method that extracts the instantaneous frequency (IF) of waveforms from multiple spectral channels. The instantaneous frequency was expected to be able to show detailed time-frequency properties of ultrasonic waves being transmitted through cancellous bone. The employed method, termed the multichannel instantaneous frequency (MCIF) method, showed robustness against background noise as compared to the IF that was directly derived from the original waveform. The extracted IF revealed that the frequency of the fast wave was affected by both the propagation distance within the specimen and the bone density, independently. On the other hand, the alternation of the center frequency of the originally transmitted wave did not produce proportional changes in the extracted IF values of the fast waves, suggesting that the fast wave IF mainly reflected the thickness of the specimens. These findings may provide the possibility of obtaining a more precise diagnosis of osteoporosis.

  8. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.

    PubMed

    Arens, Daniel; Rothstock, Stephan; Windolf, Markus; Boger, Andreas

    2011-11-01

    The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. This might be one reason for fractures at the adjacent vertebrae following this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize PMMA bone cements with a reduced Young's modulus by adding bone marrow. Bone cements were produced by combining PMMA with various volume fractions of freshly harvested bone marrow from sheep. Porosity, Young's modulus, yield strength, polymerization temperature, setting time and cement viscosity of different cement modifications were investigated. The samples generated comprised pores with diameters in the range of 30-250 μm leading to porosity up to 51%. Compared to the control cement, Young's modulus and yield strength decreased from 1830 to 740 MPa and from 58 to 23 MPa respectively by adding 7.5 ml bone marrow to 23 ml premixed cement. The polymerization temperature decreased from 61 to 38 ∘C for cement modification with 7.5 ml of bone marrow. Setting times of the modified cements were lower in comparison to the regular cement (28 min). Setting times increased with higher amounts of added bone marrow from around 16-25 min. The initial viscosities of the modified cements were higher in comparison to the control cement leading to a lower risk of extravasation. The hardening times followed the same trend as the setting times. In conclusion, blending bone marrow with acrylic bone cement seems to be a promising method to increase the compliance of PMMA cement for use in cancellous bone augmentation in osteoporotic patients due to its modified mechanical properties, lower polymerization temperature and elevated initial viscosity.

  9. Cancellous bone homograft storage with aluminium-polyethylene bags.

    PubMed

    Meana, A; Martinez, R; Cañal, P; Arriaga, M J; Román, F San; Llames, S; Orós, C; Moreno, A; Fernandez, C

    2006-01-01

    In order to transport and cryopreserve human tissues, it is essential to have an easy-to-use recipient where tissues can be kept in sterile conditions. Here we show the results obtained by using Macopharma's tissue freezing bags, an aluminium-polyethylene multilayer bag, in our tissue bank of the Centro Comunitario de Sangre y Tejidos de Asturias. Five hundred and twenty-seven cancellous bone homografts were obtained from hospitals located 120 km around our Bank. The homografts were submitted to bacteriological controls and sent to our bank in these bags. They were stored at -70 degrees C and sent in dry ice to about 50 hospitals, where the tissue was bacteriologically controlled and grafted. Furthermore, the behaviour of these bags at -140 degrees C (vapour nitrogen) or -196 degrees C (liquid nitrogen) was tested. Our results indicate that Macopharma aluminium-polyethylene bags are suitable for the transporting and cryopreserving of cancellous bone homografts. These bags could also be used for keeping tissues in nitrogen containers.

  10. A method for isolating high quality RNA from mouse cortical and cancellous bone.

    PubMed

    Kelly, Natalie H; Schimenti, John C; Patrick Ross, F; van der Meulen, Marjolein C H

    2014-11-01

    The high incidence of fragility fractures in cortico-cancellous bone locations, plus the fact that individual skeletal sites exhibit different responsiveness to load and disease, emphasizes the need to document separately gene expression in cortical and cancellous bone. A further confounding factor is marrow contamination since its high cellularity may effect gene expression measurements. We isolated RNA from cortical and cancellous bone of intact mouse tibiae, and also after marrow removal by flushing or centrifugation. RNA isolated from cancellous bone by each method was sufficient for gene expression analysis. Centrifugation removed contaminating cells more efficiently than flushing, as indexed by histology and decreased expression of Icam4, a highly expressed erythroid gene. In contrast, centrifuged cortical bone had 12- and 13- fold higher expression of the bone-related genes Col1a1 and Bglap, while levels in marrow-free cancellous bone were 30- and 31-fold higher when compared to bone where marrow was left intact. Furthermore, cortical bone had higher expression of Col1a1 and Bglap than cancellous bone. Thus, RNA isolated by this novel approach can reveal site-specific changes in gene expression in cortical and cancellous bone sites.

  11. Mechanical Properties of a Single Cancellous Bone Trabeculae Taken from Bovine Femur

    NASA Astrophysics Data System (ADS)

    Enoki, Shinichi; Sato, Mitsuhiro; Tanaka, Kazuto; Katayama, Tsutao

    The increase of patients with osteoporosis is becoming a social problem, thus it is an urgent issue to find its prevention and treatment methods. Since cancellous bone is metabolically more active than cortical bone, cancellous bone is often used for diagnosis of osteoporosis and has received much attention within the study of bone. Bone is a hierarchically structured material and its mechanical properties vary at different structural levels, therefore it is important to break down the mechanical testing of bone according to the various levels within bone material. Mechanical properties of cancellous bone is said to be depended on quantities and orientation of trabecular bone. It is supposed that mechanical properties of trabecular bone are constant without depending on any structural arrangement and parts. However, such assumption has not been established in studies of trabecular bone. Furthermore test results have a large margin of error caused by insufficient shape assessment. In this study, three point bending tests of single cancellous bone trabeculae extracted from bovine femur were conducted to evaluate the effects of directions to the femur major axis direction on the mechanical properties. X-ray μCT was used to obtain shape of trabecular bone specimens. Furthermore compression tests of cancellous bone specimens, which were extracted in 10mm cubic geometry, were conducted for evaluation of directional properties.There were small difference in the elastic modulus of the trabecular bones which were extracted in parallel and in perpendicular to the major axis of femur. Considering from the results that the cancellous bone specimens, which were extracted in 10mm cubic geometry, have different elastic properties depending on the tested directions; the bone structure has larger influence than bone material property on the mechanical properties of cancellous bone.

  12. Constitutive models for impacted morsellised cortico-cancellous bone.

    PubMed

    Phillips, Andrew; Pankaj, Pankaj; May, Fraser; Taylor, Kenneth; Howie, Colin; Usmani, Asif

    2006-03-01

    Constitutive models are developed, based on the results of confined compression testing, to describe the visco-elastic, and non-linear elasto-plastic behaviour of morsellised cortico-cancellous bone (MCB). It is found that the elastic modulus, E of MCB can be expressed as a linear function of the applied pressure, p. E varied from 3 to 30N/mm(2) for pressures up to 1N/mm(2). The visco-elastic behaviour of MCB can be described using a fourth-order Prony series. The plastic behaviour of MCB can be described using a Drucker Prager Cap (DPC) yield criterion, in which consolidation behaviour is described using an exponential function. The developed relationships allow MCB to be included in a realistic manner in finite element models, for example of the acetabular construct, following revision hip arthroplasty, carried out using the Slooff-Ling impaction grafting technique.

  13. Finite element prediction of fatigue damage growth in cancellous bone.

    PubMed

    Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S

    2016-01-01

    Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.

  14. Two-wave behavior under various conditions of transition area from cancellous bone to cortical bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami

    2014-07-01

    The two-wave phenomenon, the wave separation of a single ultrasonic pulse in cancellous bone, is expected to be a useful tool for the diagnosis of osteoporosis. However, because actual bone has a complicated structure, precise studies on the effect of transition conditions between cortical and cancellous parts are required. This study investigated how the transition condition influenced the two-wave generation using three-dimensional X-ray CT images of an equine radius and a three-dimensional simulation technique. As a result, any changes in the boundary between cortical part and trabecular part, which gives the actual complex structure of bone, did not eliminate the generation of either the primary wave or the secondary wave at least in the condition of clear trabecular alignment. The results led us to the possibility of using the two-wave phenomenon in a diagnostic system for osteoporosis in cases of a complex boundary.

  15. Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    PubMed Central

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706

  16. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.

    PubMed

    Lambers, Floor M; Bouman, Amanda R; Rimnac, Clare M; Hernandez, Christopher J

    2013-01-01

    Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumulation and mechanical failure is not well understood. The aim of the current study was to determine how microdamage accumulates in human vertebral cancellous bone subjected to cyclic fatigue loading. Cancellous bone cores (n = 32) from the third lumbar vertebra of 16 donors (10 male, 6 female, age 76 ± 8.8, mean ± SD) were subjected to compressive cyclic loading at σ/E0 = 0.0035 (where σ is stress and E0 is the initial Young's modulus). Cyclic loading was suspended before failure at one of seven different amounts of loading and specimens were stained for microdamage using lead uranyl acetate. Damage volume fraction (DV/BV) varied from 0.8 ± 0.5% (no loading) to 3.4 ± 2.1% (fatigue-loaded to complete failure) and was linearly related to the reductions in Young's modulus caused by fatigue loading (r(2) = 0.60, p<0.01). The relationship between reductions in Young's modulus and proportion of fatigue life was nonlinear and suggests that most microdamage generation occurs late in fatigue loading, during the tertiary phase. Our results indicate that human vertebral cancellous bone tissue with a DV/BV of 1.5% is expected to have, on average, a Young's modulus 31% lower than the same tissue without microdamage and is able to withstand 92% fewer cycles before failure than the same tissue without microdamage. Hence, even small amounts of microscopic tissue damage in human vertebral cancellous bone may have large effects on subsequent biomechanical performance.

  17. Microdamage Caused by Fatigue Loading in Human Cancellous Bone: Relationship to Reductions in Bone Biomechanical Performance

    PubMed Central

    Lambers, Floor M.; Bouman, Amanda R.; Rimnac, Clare M.; Hernandez, Christopher J.

    2013-01-01

    Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumulation and mechanical failure is not well understood. The aim of the current study was to determine how microdamage accumulates in human vertebral cancellous bone subjected to cyclic fatigue loading. Cancellous bone cores (n = 32) from the third lumbar vertebra of 16 donors (10 male, 6 female, age 76±8.8, mean ± SD) were subjected to compressive cyclic loading at σ/E0 = 0.0035 (where σ is stress and E0 is the initial Young’s modulus). Cyclic loading was suspended before failure at one of seven different amounts of loading and specimens were stained for microdamage using lead uranyl acetate. Damage volume fraction (DV/BV) varied from 0.8±0.5% (no loading) to 3.4±2.1% (fatigue-loaded to complete failure) and was linearly related to the reductions in Young’s modulus caused by fatigue loading (r2 = 0.60, p<0.01). The relationship between reductions in Young’s modulus and proportion of fatigue life was nonlinear and suggests that most microdamage generation occurs late in fatigue loading, during the tertiary phase. Our results indicate that human vertebral cancellous bone tissue with a DV/BV of 1.5% is expected to have, on average, a Young’s modulus 31% lower than the same tissue without microdamage and is able to withstand 92% fewer cycles before failure than the same tissue without microdamage. Hence, even small amounts of microscopic tissue damage in human vertebral cancellous bone may have large effects on subsequent biomechanical performance. PMID:24386247

  18. Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting.

    PubMed

    Harvanová, Denisa; Hornák, Slavomír; Amrichová, Judita; Spaková, Tímea; Mikes, Jaromír; Plsíková, Jana; Ledecký, Valent; Rosocha, Ján

    2014-09-01

    Avian osteoblasts have been isolated particularly from chicken embryo, but data about other functional tissue sources of adult avian osteoblast precursors are missing. The method of preparation of pigeon osteoblasts is described in this study. We demonstrate that pigeon cancellous bone derived osteoblasts have particular proliferative capacity in vitro in comparison to mammalian species and developed endogenous ALP. Calcium deposits formation in vitro was confirmed by alizarin red staining. Only a few studies have attempted to investigate bone grafting and treatment of bone loss in birds. Lack of autologous bone grafts in birds has prompted investigation into the use of avian xenografts for bone augmentation. Here we present a method of xenografting of ostrich demineralised cancellous bone scaffold seeded with allogeneic adult pigeon osteoblasts. Ostrich demineralised cancellous bone scaffold supported proliferation of pigeon osteoblasts during two weeks of co - cultivation in vitro. Scanning electron microscopy demonstrated homogeneous adult pigeon osteoblasts attachment and distribution on the surface of xenogeneic ostrich demineralised cancellous bone. Our preliminary in vitro results indicate that demineralised cancellous bone from ostrich tibia could provide an effective biological support for growth and proliferation of allogeneic osteoblasts derived from cancellous bone of pigeons.

  19. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.

    PubMed

    Kameo, Yoshitaka; Adachi, Taiji

    2014-08-01

    Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.

  20. Morphometric Comparison of the Lumbar Cancellous Bone of Sheep, Deer, and Humans

    PubMed Central

    Wang, Yang; Liu, Guomin; Li, Ting; Xiao, Yanlong; Han, Qing; Xu, Randong; Li, Youqiong

    2010-01-01

    To investigate the feasibility of using deer and sheep as animal models for the human spine, we compared the microarchitectural dimensions of the deer and sheep spines and with human data. To this end, we adopted the traditional bone tissue morphometric method, using figure analysis software for quantitative analysis of 2D images of bone tissue. Compared with those of humans, the lumbar cancellous bone of deer and sheep has higher microarchitectural indices, more densely packed bone trabeculae, lower porosity, and higher bone mass. Despite specific differences in various morphologic indices, the anisotropy of lumbar cancellous bone in deer and sheep shows the same trend as that in humans. PMID:21262123

  1. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone.

    PubMed

    Vafaeian, B; El-Rich, M; El-Bialy, T; Adeeb, S

    2014-08-01

    Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone.

  2. Prostaglandin E2 Restores Cancellous Bone to Immobilized Limb and Adds Bone to Overloaded Limb in Right Hindlimb Immobilization Rats

    NASA Technical Reports Server (NTRS)

    Li, M.; Jee, W. S. S.; Ke, H. Z.; Liang, X. G.; Lin, B. Y.; Ma, Y. F.; Setterberg, R. B.

    1993-01-01

    The purpose of this study was to determine whether prostaglandin E2 (PGE2) can restore cancellous bone mass and architecture to osteopenic, continuously immobilized (IM), proximal tibial metaphysis (PTM) in female rats. The right hindlimb of three and one-half-month-old Sprague-Dawley female rats were immobilized by right hindlimb immobilization (RHLI) in which the right hindlimb was underloaded and the contralateral left limb was overloaded during ambulation. After 4 or 12 weeks of RHLI, the rats were treated with 3 or 6 mg PGE2/kg/day and RHLI for 8 or 16 weeks. Bone histomorphometry was performed on microradiographs of PTM. Immobilization (IM) induced a transient cancellous bone loss and decreased trabecular thickness, number and node density, and increased free end density that established a new steady state after 4 weeks of IM. Three or 6 mg PGE2/kg/d for 8 weeks beginning at 4 or 12 weeks of IM completely restored cancellous bone mass (+127 to +188 percent) and structure to the age-related control levels in spite of continuous IM. Another 8 weeks of treatment maintained bone mass and architecture at these levels. No differences in cancellous bone mass and architecture were found between the overloaded PTM or RHLI rats and the age-related controls. However, 3 and 6 mg/kg/d of PGE2 treatment started at 4 or 12 weeks for 8 weeks significantly increased cancellous bone mass in the overloaded PTM (+45 to +74% of untreated controls), and another 8 weeks of treatment maintained bone mass at these levels. Our findings indicate that daily 3 or 6 mg PGE2/kg/d treatment restores and maintains PTM cancellous bone mass in continuously immobilized (right) tibiae, and adds and maintains extra bone to slightly overloaded PTM cancellous bone in female rats.

  3. Effect of surgical fit on integration of cancellous bone and implant cortical bone shear strength for a porous titanium.

    PubMed

    Bertollo, Nicky; Matsubara, Masaaki; Shinoda, Tsuyoshi; Chen, Dong; Kumar, Mukesh; Walsh, William R

    2011-10-01

    Porous scaffold dowels of Ti(6)Al(4)V were prepared and implanted into cancellous and cortical bone sites in adult sheep. Cancellous implants were examined under gap, line-to-line, and press-fit conditions, whereas line-to-line implantation was used in cortical sites. Cortical shear strength increased significantly with time and reached 26.1 ± 8.6 MPa at 12 weeks, accompanied by a concomitant increase in bone integration and remodeling. In cancellous sites, bone integration was well established at 4 and 12 weeks under conditions of press-fit and line-to-line match between implant and surgical defect. New bone growth was also found in the gap conditions, although to a lesser extent. These findings suggest that the porous Ti(6)Al(4)V could prove an effective scaffold material for uncemented fixation in cortical and cancellous sites.

  4. Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1β-induced osteoarthritic chondrocytes

    PubMed Central

    Suh, Hyung Joo; Lee, Hyunji; Min, Byung Jung; Jung, Sung Ug

    2016-01-01

    BACKGROUND/OBJECTIVES We investigated the anti-osteoarthritic effects of deer bone extract on the gene expressions of matrix metalloproteinases (MMPs) and collagen type II (COL2) in interleukin-1β-induced osteoarthritis (OA) chondrocytes. MATERIALS/METHODS Primary rabbit chondrocytes were treated as follows: CON (PBS treatment), NC (IL-1β treatment), PC (IL-1β + 100 µg/mL glucosamine sulphate/chondroitin sulphate mixture), and DB (IL-1β + 100 µg/mL deer bone extract). RESULTS The results of the cell viability assay indicated that deer bone extract at doses ranging from 100 to 500 µg/mL inhibits cell death in chondrocytes induced by IL-1β. Deer bone extract was able to significantly recover the mRNA expression of COL2 that was down-regulated by IL-1β (NC: 0.79 vs. DB: 0.87, P < 0.05) and significantly decrease the mRNA expression of MMP-3 (NC: 2.24 vs. DB: 1.75) and -13 (NC: 1.28 vs. DB: 0.89) in OA chondrocytes (P < 0.05). CONCLUSIONS We concluded that deer bone extract induces accumulation of COL2 through the down-regulation of MMPs in IL-1β-induced OA chondrocytes. Our results suggest that deer bone extract, which contains various components related to OA, including chondroitin sulphate, may possess anti-osteoarthritic properties and be of value in inhibiting the pathogenesis of OA. PMID:27909553

  5. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.

    PubMed

    Goff, M G; Lambers, F M; Nguyen, T M; Sung, J; Rimnac, C M; Hernandez, C J

    2015-10-01

    Impaired bone toughness is increasingly recognized as a contributor to fragility fractures. At the tissue level, toughness is related to the ability of bone tissue to resist the development of microscopic cracks or other tissue damage. While most of our understanding of microdamage is derived from studies of cortical bone, the majority of fragility fractures occur in regions of the skeleton dominated by cancellous bone. The development of tissue microdamage in cancellous bone may differ from that in cortical bone due to differences in microstructure and tissue ultrastructure. To gain insight into how microdamage accumulates in cancellous bone we determined the changes in number, size and location of microdamage sites following different amounts of cyclic compressive loading. Human vertebral cancellous bone specimens (n=32, 10 male donors, 6 female donors, age 76 ± 8.8, mean ± SD) were subjected to sub-failure cyclic compressive loading and microdamage was evaluated in three-dimensions. Only a few large microdamage sites (the largest 10%) accounted for 70% of all microdamage caused by cyclic loading. The number of large microdamage sites was a better predictor of reductions in Young's modulus caused by cyclic loading than overall damage volume fraction (DV/BV). The majority of microdamage volume (69.12 ± 7.04%) was located more than 30 μm (the average erosion depth) from trabecular surfaces, suggesting that microdamage occurs primarily within interstitial regions of cancellous bone. Additionally, microdamage was less likely to be near resorption cavities than other bone surfaces (p<0.05), challenging the idea that stress risers caused by resorption cavities influence fatigue failure of cancellous bone. Together, these findings suggest that reductions in apparent level mechanical performance during fatigue loading are the result of only a few large microdamage sites and that microdamage accumulation in fatigue is likely dominated by heterogeneity in tissue

  6. Effect of medullary cavity in cancellous bone on two-wave phenomenon

    NASA Astrophysics Data System (ADS)

    Hachiken, Takuma; Nakanishi, Shoko; Matsukawa, Mami

    2016-07-01

    Osteoporotic patients have a larger medullary cavity in their cancellous bone than healthy people. In this study, the effect of the medullary cavity on the two-wave phenomenon was experimentally investigated using a cancellous bone model and a radius bone model. In the cancellous bone model, with the increase in hole (medullary cavity) diameter, the amplitudes of the fast waves became smaller, whereas the amplitudes of the slow waves became larger. In the radius bone model, the fast wave overlapped with the circumferential wave. The slow wave became larger with increasing hole diameter. The analysis of the slow wave thus seems to be useful for the in vivo diagnosis of the degree of osteoporosis.

  7. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  8. Histomorphometric analysis following augmentation of the anterior atrophic maxilla with cancellous bone block allograft.

    PubMed

    Nissan, Joseph; Marilena, Vered; Gross, Ora; Mardinger, Ofer; Chaushu, Gavriel

    2012-01-01

    Grafting with bone blocks may be required to restore the alveolar process in extremely atrophic maxillae prior to implant placement to ensure both function and esthetics. The present study was conducted to histologically and histomorphometrically evaluate the application of allograft cancellous bone blocks for the augmentation of the anterior atrophic maxilla. Consecutive patients with severe atrophy in the anterior maxilla underwent augmentation with cancellous bone block allografts. Bony deficiencies of at least 3 mm horizontally and up to 3 mm vertically according to computed tomographic para-axial reconstructions served as inclusion criteria. After 6 months, implants were placed and a cylindric sample core from the graft area was collected. All specimens were prepared for histologic and histomorphometric examination. Forty patients were included in the study. Eighty-three implants were placed in bone that was augmented with 60 cancellous freeze-dried bone block allografts. The implant survival rate was 98.8%. Mean follow-up was 48 ± 22 months (range, 14 to 82 months). The mean percentage of newly formed bone was 33% ± 18%, that of the residual cancellous block allograft was 26% ± 17%, and marrow and connective tissue comprised 41% ± 2%. Statistically significant histomorphometric differences regarding newly formed bone and residual cancellous block allograft were found between younger (< 40 years) and older (≥ 40 years) patients, respectively. Age did not appear to influence the percentage of marrow and connective tissue. Cancellous bone block allograft is biocompatible and osteoconductive, permitting new bone formation following augmentation of extremely atrophic anterior maxillae in a two-stage implant placement procedure. New bone formation was age-dependent.

  9. Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males

    PubMed Central

    Findlay, David; Chehade, Mellick; Tsangari, Helen; Neale, Susan; Hay, Shelley; Hopwood, Blair; Pannach, Susan; O'Loughlin, Peter; Fazzalari, Nicola

    2008-01-01

    Introduction The relationship of circulating levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) with the expression of these molecules in bone has not been established. The objective of this study was to measure, in humans, the serum levels of RANKL and OPG, and the corresponding levels in bone of mRNA encoding these proteins. Methods Fasting blood samples were obtained on the day of surgery from patients presenting for hip replacement surgery for primary osteoarthritis (OA). Intraoperatively, samples of intertrochanteric trabecular bone were collected for analysis of OPG and RANKL mRNA, using real time RT-PCR. Samples were obtained from 40 patients (15 men with age range 50 to 79 years, and 25 women with age range 47 to 87 years). Serum total RANKL and free OPG levels were measured using ELISA. Results Serum OPG levels increased over the age range of this cohort. In the men RANKL mRNA levels were positively related to age, whereas serum RANKL levels were negatively related to age. Again, in the men serum RANKL levels were inversely related (r = -0.70, P = 0.007) to RANKL mRNA levels. Also in the male group, RANKL mRNA levels were associated with a number of indices of bone structure (bone volume fraction relative to bone tissue volume, specific surface of bone relative to bone tissue volume, and trabecular thickness), bone remodelling (eroded surface and osteoid surface), and biochemical markers of bone turnover (serum alkaline phosphatase and osteocalcin, and urinary deoxypyridinoline). Conclusion This is the first report to show a relationship between serum RANKL and the expression of RANKL mRNA in bone. PMID:18182105

  10. Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-05-01

    To investigate the influence of decreased mechanical loading on the density and mechanical properties of the cancellous bone of the human mandibular condyle. Destructive compressive mechanical tests were performed on cancellous bone specimens.Background. Reduced masticatory function in edentate people leads to a reduction of forces acting on the mandible. As bone reacts to its mechanical environment a change in its material properties can be expected. Cylindrical bone specimens were obtained from dentate and edentate embalmed cadavers. Mechanical parameters were determined in the axial and in the transverse directions. Subsequently, density parameters were determined according to a method based on Archimedes' principle. The apparent density and volume fraction of the bone were about 18% lower in the edentate group; no age-related effect on density was found. The decrease of bone in the edentate group was associated with a lower stiffness and strength (about 22% and 28%, respectively). The ultimate strain, however, did not differ between the two groups. Both groups had similar mechanical anisotropy; in axial loading the bone was stiffer and stronger than in transverse loading. Reduced mechanical load had affected the density and herewith the mechanical properties of condylar cancellous bone, but not its anisotropy. The change in material properties of the cancellous bone after loss of teeth indicate that the mandibular condyle is sensitive for changes in its mechanical environment. Therefore, changes in mechanical loading of the condyle have to be accounted for in surgical procedures of the mandible.

  11. Temporal Changes of Microarchitectural and Mechanical Parameters of Cancellous Bone in the Osteoporotic Rabbit

    PubMed Central

    Wen, Xin-Xin; Xu, Chao; Wang, Fa-Qi; Feng, Ya-Fei; Zhao, Xiong; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    This study was aimed at elucidating the temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit model induced by ovariectomy (OVX) combined with glucocorticoid (GC) administration. Osteoporotic (OP) group received bilateral OVX combined with injections of GC, while sham group only received sham operation. Cancellous bone quality in vertebrae and femoral condyles in each group was assessed by DXA, μCT, nanoindentation, and biomechanical tests at pre-OVX and 4, 6, and 8 weeks after injection. With regard to femoral condyles, nanoindentation test could detect significant decline in tissue modulus and hardness at 4 weeks. However, BMD and microarchitecture of femoral condylar cancellous bone changed significantly at 6 weeks. In vertebrae, BMD, microarchitecture, nanoindentation, and biomechanical tests changed significantly at 4 weeks. Our data demonstrated that temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit were significant. The temporal changes of cancellous bone in different anatomical sites might be different. The nanoindentation method could detect the changes of bone quality at an earlier stage at both femoral condyle and vertebra in the osteoporotic rabbit model than other methods (μCT, BMD). PMID:25918705

  12. Reproducibility of techniques using Archimedes' principle in measuring cancellous bone volume.

    PubMed

    Zou, L; Bloebaum, R D; Bachus, K N

    1997-01-01

    Researchers have been interested in developing techniques to accurately and reproducibly measure the volume fraction of cancellous bone. Historically bone researchers have used Archimedes' principle with water to measure the volume fraction of cancellous bone. Preliminary results in our lab suggested that the calibrated water technique did not provide reproducible results. Because of this difficulty, it was decided to compare the conventional water method to a water with surfactant and a helium method using a micropycnometer. The water/surfactant and the helium methods were attempts to improve the fluid penetration into the small voids present in the cancellous bone structure. In order to compare the reproducibility of the new methods with the conventional water method, 16 cancellous bone specimens were obtained from femoral condyles of human and greyhound dog femora. The volume fraction measurements on each specimen were repeated three times with all three techniques. The results showed that the helium displacement method was more than an order of magnitudes more reproducible than the two other water methods (p < 0.05). Statistical analysis also showed that the conventional water method produced the lowest reproducibility (p < 0.05). The data from this study indicate that the helium displacement technique is a very useful, rapid and reproducible tool for quantitatively characterizing anisotropic porous tissue structures such as cancellous bone.

  13. A new bone banking technique to maintain osteoblast viability in frozen human iliac cancellous bone.

    PubMed

    Oh, Jung-Hwan; Zöller, Joachim E; Kübler, Alexander

    2002-06-01

    The aim of this study was to develop a new cryopreservation technique to maintain the osteoblast viability in frozen iliac bone and to prove cell viability using cell culture techniques. Human iliac cancellous bones were frozen with and without 10% Me(2)SO at -80 degrees C. The tubes were kept in a -80 degrees C freezer for at least 2 days. After the storage period, the frozen bone was thawed by placing the tube in a 37 degrees C water bath. A serial enzymatic digestion technique using 0.2% collagenase was employed to isolate osteoblast-like cells from the bone. The cells that were released were inoculated into tissue culture flasks containing DMEM supplemented with 10% FCS. They were incubated at 37 degrees C in a humidified atmosphere of 95% air and 5% CO(2). Cells of the second passage were plated at a density of 5 x 10(3)cells/cm(2) in a 24-well plate and used for characterization. For characterization, WST-1 assay, determination of alkaline phosphatase, Type I collagen assay, osteocalcin assay, and von Kossa staining were used. The assays were performed at 3, 6, 9, and 12 days after plating the cells. Based on the results of this study, we conclude that the osteoblast-like cells in the frozen bone can survive, only when the bone is frozen with cryoprotectants to prevent injury during freezing and thawing.

  14. [Bone density in osteoarthritic femoral heads: quantitative assessment by histomorphologic and histomorphometric analysis].

    PubMed

    Zhao, Jian-fei; Fornasier, Victor L

    2003-05-01

    To determine whether bone density is related to osteoarthritis and to compare osteoarthritis with osteoporotic fracture of the femoral neck. All 165 femoral heads removed at joint replacement surgery were divided into 4 groups according to radiographic features of hip (osteophytes, subchondral sclerosis, cysts and femoral head deformity). The individual femoral head was divided into 5 zones histologically. Sections were studied histomorphologically, and quantitation was performed using the computer-assisted system to determine the bone density of the femoral head. The values of bone density in weight-bearing, super lateral non weight-bearing (SL) and inferior medial non weight-bearing (IM) areas after femoral neck fracture in patients with osteoarthritis were lower than normal. The values of bone density in weight bearing area were increased in patients with osteoarthritis in all four groups but lower than normal in one group (I), and higher than normal in other 2 groups (III, IV). The values of bone density in SL and IM areas except IM area in group IV were lower than normal (P > 0.05). The values of bone density in the central area in the 4 groups were relatively consistent and normal. The density of Haversian canals was increased in the 4 groups indicating osteoporosis of the femoral head. The average age of patients with femoral neck fracture associated with OA (group I) was significantly higher than that of group II, III, IV (P < 0.05). Bone density is different in the femoral head and neck. Dividing the weight bearing joint into distinct zones is a method for laboratory and clinical study. Femoral neck fracture associated with OA was caused by osteoporosis which is related to the age of the patient. The data of this study can be regarded as a potential indicator of implant/host bone relations with morphological, morphometric implications.

  15. Histomorphometric analysis after maxillary sinus floor augmentation using cancellous bone-block allograft.

    PubMed

    Chaushu, Gavriel; Vered, Marilena; Mardinger, Ofer; Nissan, Joseph

    2010-08-01

    Cancellous bone-block allografts may contribute to improved initial implant stability during sinus augmentation in cases with posterior atrophic maxillary ridge height < or =4 mm. The present study histologically and histomorphometrically evaluates the application of cancellous bone-block allografts for maxillary sinus-floor augmentation. Thirty-one consecutive patients, 16 females and 15 males (age range, 25 to 65 years; mean age: 54 +/- 9 years) underwent sinus augmentation with simultaneous implant placement with cancellous bone-block allografts. After 9 months, a second-stage surgery was performed. The previous window location was determined. A cylindrical sample core was collected. All specimens were prepared for histologic and histomorphometric examinations. Seventy-two of 76 implants were clinically osseointegrated (94.7%). All patients received a fixed implant-supported prosthesis. The mean t values of newly formed bone, residual cancellous bone-block allograft, marrow and connective tissue were 26.1% +/- 15% (range: 10% to 58%); 24.7% +/- 19.4% (range: 0.6% to 71%), and 49.2% +/- 20.4% (range: 14.9% to 78.9%), respectively. No statistically significant histomorphometric differences regarding newly formed bone were found between genders (27.02% in males versus 25.68% in females; P = 0.446), ages (29.82% in subjects < or =40 years old versus 24.43% in subjects >40 years old; P = 0.293), presence of membrane perforations (25.5% in non-perforated sinuses versus 27.3% in perforated sinuses; P = 0.427), and residual alveolar bone height (25.85% for residual alveolar bone height <2 mm versus 26.48% for residual alveolar bone height of 2 to 4 mm; P = 0.473). The cancellous bone-block allograft is biocompatible and osteoconductive and permits new bone formation in sinus augmentations with simultaneous implant-placement procedures in extremely atrophic posterior maxillae.

  16. Specimen size effect in the volumetric shrinkage of cancellous bone measured at two levels of dehydration.

    PubMed

    Lievers, W Brent; Lee, Victoria; Arsenault, Simon M; Waldman, Stephen D; Pilkey, A Keith

    2007-01-01

    Water is commonly removed from bone to study its effect on mechanical behaviour; however, dehydration also alters the bone structure. To make matters worse, measuring structural changes in cancellous bone is complicated by a number of factors. Therefore, the goals of this study were to address these issues by (1) comparing Archimedes' method and a helium pycnometer as methods for measuring cancellous bone volume; (2) measuring the apparent dimensional and volumetric tissue shrinkage of cancellous bone at two levels of dehydration; and, (3) identifying whether a size effect exists in cancellous bone shrinkage. Cylindrical specimens (3, 5 and 8.3 mm diameters) of cancellous bone were taken from the distal bovine femur. The apparent dimensions of each cylindrical specimen were measured in a fully hydrated state (HYD), after drying at room temperature (AIR), and after oven drying at 105 degrees C (OVEN). Tissue volume measurements for those three hydration states were obtained using both a helium pycnometer and Archimedes' method. Aluminium foams, which mimic the cancellous structure, were used as controls. The results suggest that the helium pycnometer and Archimedes' method yield identical results in the HYD and AIR states, but that Archimedes' method under-predicts the nominal OVEN volume by incorporating the collagen-apatite porosity. A distinct size effect on volumetric shrinkage is observed (p<0.025) using the pycnometer in both AIR and OVEN states. Apparent dimensional shrinkage (2% and 7%) at the two dehydration levels is much smaller than the measured volumetric tissue shrinkage (16% and 29%), which results in a reduced dehydrated bone volume fraction.

  17. Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models.

    PubMed

    Pagani, Stefania; Borsari, Veronica; Veronesi, Francesca; Ferrari, Andrea; Cepollaro, Simona; Torricelli, Paola; Filardo, Giuseppe; Fini, Milena

    2017-06-01

    Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications. J. Cell. Physiol. 232: 1478-1488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Evaluation of a novel reconstituted bone xenograft using processed bovine cancellous bone in combination with purified bovine bone morphogenetic protein.

    PubMed

    Long, Bi; Dan, Li; Jian, Liu; Yunyu, Hu; Shu, He; Zhi, Yuan

    2012-01-01

    Xenogeneic grafting represents an alternative to autogenous grafting in osseous reconstruction and exhibits many beneficial properties. However, the usefulness of xenogeneic bone relies on necessary processing procedures for removing antigens and viruses, and preserving biological activities simultaneously. By chemical treatment of bovine cancellous bone to make it an antigen-free scaffold, and extraction of bone morphogenetic protein (BMP) from bovine cortical bone, followed by recombination of the scaffold with the BMP, we developed a new grafting material, reconstituted bone xenograft (RBX). In this study, scanning electron microscope and energy dispersive X-ray were first employed to observe the structure and components of RBX. Then the biomechanical property was evaluated by applying compression in a materials testing machine. Subsequently, the immunologic evaluation was performed by measuring galactose-alpha-1,3-galactose (α-gal) epitope in vivo and proinflammatory cytokine (TNF-α) secreted by human monocytic cell line (THP-1) in vitro. Finally, this RBX was implanted into segmental radial defects in a rabbit model, and its ability to treat large bone defects was specifically evaluated. Although the compressive strength of RBX was 10% lower than that of unprocessed bovine cancellous bone (UBCB), the basic porous structure and natural components were still kept in this composite. The α-gal xenoantigen level was significantly lower in RBX (P < 0.05) compared with UBCB. Moreover, the TNF-α level was significantly (P < 0.05) reduced compared with UBCB when THP-1 was exposed to RBX. On the other hand, RBX appeared to induce cartilage formation from immature cell populations and resulted in osteogenesis through endochondral-like ossification from 4 to 12 weeks in repairing segmental bone defects. These results demonstrate that RBX, with its natural microstructure and components, certain mechanical strength and strong osteoinductivity without evoking immune

  19. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    NASA Astrophysics Data System (ADS)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  20. Alfacalcidol increases cancellous bone in low turnover, fatty marrow sites in aged, orchidectomized rats.

    PubMed

    Tian, X Y; Chen, H Y; Setterberg, R B; Li, M; Jee, W S S

    2009-01-01

    The objectives of this study were to determine the responses of cancellous bone in the distal tibial metaphysis (DTM), a low turnover, fatty (yellow) marrow site, to sham-aged, orchidectomy (ORX) and alfacalcidol treatment in sham-aged and ORX rats. Eighteen-month-old male sham and ORX rats were treated with 0.1 and 0.2 microg/kg alfacalcidol 5 days/wk p.o. for 12 weeks, double fluorescent labeled, and the DTM were processed for bone histomorphometry analyses. The current study found the DTM in sham-aged male rats were resistant to age-related and ORX-induced cancellous bone loss and alfacalcidol-induced bone gain, findings that differ from that in the proximal tibial metaphysis (PTM) and lumbar vertebral body (LVB), two high turnover, red marrow bone sites. However, alfacalcidol treatment increased DTM bone mass in ORX rats where bone turnover was elevated by androgen deficiency. These results in concert with the previously positive findings in red marrow bone sites following alfacalcidol treatment suggest that alfacalcidol is more effective in increasing cancellous bone mass in the skeletal sites with higher bone turnover.

  1. Some basic relationships between density values in cancellous and cortical bone.

    PubMed

    Zioupos, Peter; Cook, Richard B; Hutchinson, John R

    2008-01-01

    Density is a salient property of bone and plays a crucial role in determining the mechanical properties of both its cancellous and cortical structural forms. Density is defined in a number of ways at either the bone tissue (D(app), apparent) or the bone material level (D(mat), material). The concept of density is relatively simple, but measuring it in the context of bone is a complex issue. The third dimension of the problem is the concept of porosity, or BV/TV (ratio of bone material volume over tissue volume). Recent investigations from our laboratory have revealed an interdependence of D(app) and D(mat) in the cancellous bone of at least four different cohorts of human patients. To clarify the underlying causes of this behaviour, we produced here equivalent relationships from specimens originating from cortical and cancellous areas of the same bone. Plots of D(app) vs. D(mat) showed that D(mat) was not a monotonic function of increasing D(app), but instead showed a 'boomerang'-like pattern. By empirically dissecting the data in two regions for D(app) above and below a value equal to 1.3gcm(-3), we were able to objectively isolate the bone in trabecular and compact forms. Our findings may have implications not only for the segregation of bone in these two structural forms, but also for the mechanobiological and physiological processes that govern the regulation of compact and trabecular bone areas.

  2. Anabolic Responses of an Adult Cancellous Bone Site to Prostaglandin E2 in the Rat

    NASA Technical Reports Server (NTRS)

    Ito, Hiroshi; Ke, Hua Zhu; Jee, Webster S. S.; Sakou, Takashi

    1993-01-01

    The objects of this study were to determine: (1) the response of a non-growing cancellous bone site to daily prostaglandin E2 (PGE2) administration; and (2) the differences in the effects of daily PGE2, administration in growing (proximal tibial metaphysis, PTM) and non-growing cancellous bone sites (distal tibial metaphysis, DTM). Seven-month-old male Sprague-Dawley rats were given daily subcutaneous injections of 0, 1, 3 and 6 mg PGE2/kg per day for 60, 120 and 180 days. The static and dynamic histomorphometric analyses were performed on double-fluorescent labeled undecalcified distal tibial metaphyses (DTM). No age-related changes were found in static and dynamic histomorphometry of DTM cancellous bone between 7 and 13 months of age. The DTM of 7-month-old (basal controls) rats consisted of a 24.5 +/- 7.61%-metaphyseal cancellous bone mass, and a thick trabeculae (92 +/- 12 micro-m). It also had a very low tissue-base bone formation rate (3.0 +/- 7.31%/year). Exogenous PGE2 administration produced the following transient changes in a dose-response manner between zero and 60 days: (1) increased trabecular bone mass and improved architecture (increased trabecular bone area, width and number, and decreased trabecular separation); (2) increased trabecular interconnections: (3) increased bone formation parameters; and (4) decreased eroded perimeter. A new steady state with more cancellous bone mass and higher bone turnover was observed from day 60 onward, The elevated bone mass induced by the first 60 days of PGE2 treatment was maintained by another 60 and 120 days with continuous daily PGE2 treatment. When these findings were compared to those previously reported for the PTM, we found that the DTM was much more responsive to PGE2 treatment than the PTM. Percent trabecular bone area and tissue based bone formation rate increased significantly more in DTM as compared to PTM after the 60 days of 6 mg PGE2 treatment. These observations indicate that a non

  3. Anabolic Responses of an Adult Cancellous Bone Site to Prostaglandin E2 in the Rat

    NASA Technical Reports Server (NTRS)

    Ito, Hiroshi; Ke, Hua Zhu; Jee, Webster S. S.; Sakou, Takashi

    1993-01-01

    The objects of this study were to determine: (1) the response of a non-growing cancellous bone site to daily prostaglandin E2 (PGE2) administration; and (2) the differences in the effects of daily PGE2, administration in growing (proximal tibial metaphysis, PTM) and non-growing cancellous bone sites (distal tibial metaphysis, DTM). Seven-month-old male Sprague-Dawley rats were given daily subcutaneous injections of 0, 1, 3 and 6 mg PGE2/kg per day for 60, 120 and 180 days. The static and dynamic histomorphometric analyses were performed on double-fluorescent labeled undecalcified distal tibial metaphyses (DTM). No age-related changes were found in static and dynamic histomorphometry of DTM cancellous bone between 7 and 13 months of age. The DTM of 7-month-old (basal controls) rats consisted of a 24.5 +/- 7.61%-metaphyseal cancellous bone mass, and a thick trabeculae (92 +/- 12 micro-m). It also had a very low tissue-base bone formation rate (3.0 +/- 7.31%/year). Exogenous PGE2 administration produced the following transient changes in a dose-response manner between zero and 60 days: (1) increased trabecular bone mass and improved architecture (increased trabecular bone area, width and number, and decreased trabecular separation); (2) increased trabecular interconnections: (3) increased bone formation parameters; and (4) decreased eroded perimeter. A new steady state with more cancellous bone mass and higher bone turnover was observed from day 60 onward, The elevated bone mass induced by the first 60 days of PGE2 treatment was maintained by another 60 and 120 days with continuous daily PGE2 treatment. When these findings were compared to those previously reported for the PTM, we found that the DTM was much more responsive to PGE2 treatment than the PTM. Percent trabecular bone area and tissue based bone formation rate increased significantly more in DTM as compared to PTM after the 60 days of 6 mg PGE2 treatment. These observations indicate that a non

  4. Distribution of vitamin K2 in subchondral bone in osteoarthritic knee joints.

    PubMed

    Ishii, Yoshinori; Noguchi, Hideo; Takeda, Mitsuhiro; Sato, Junko; Yamamoto, Noriaki; Wakabayashi, Hiroyuki; Kanda, Junkichi; Toyabe, Shin-ichi

    2013-08-01

    Vitamin K may have multiple effects on articular cartilage and subchondral bone that could modulate the pathogenesis of osteoarthritis (OA). The purpose of this study was to evaluate the distribution of vitamin K2 in harvested bones obtained during total knee arthroplasty in knee OA patients. High-performance liquid chromatography was used to measure vitamin K2 in harvested bones obtained during 58 TKA procedures. Vitamin K2 levels were analysed in the medial (FM) and lateral (FL) femoral condyles and in the medial (TM) and lateral (TL) tibial condyles. There was significantly more vitamin K2 in the lateral femoral and tibial condyles than in the corresponding medial condyles (FL vs. FM, p < 0.0001; TL vs. TM, p < 0.0001). There was significantly more vitamin K2 in the FL than in the TL (p = 0.003), and in the FM, vitamin K2 levels were higher than those of the TM, although this was not significant (n.s.). There were no significant differences in vitamin K2 levels in men versus women nor was there a significant correlation with age. This study suggested that vitamin K2 might affect bone turnover since medial condyles showing advanced OA had lower vitamin K2 levels, while lateral condyles showing less advanced OA contained more vitamin K2. Gender and age were not correlated with vitamin K2 localization. All cases had Grade IV OA, and this study suggested that OA grade might be important in controlling the vitamin K2 levels in human bones.

  5. Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.

    PubMed

    Malak, Sharif F F; Anderson, Iain A

    2008-07-01

    Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.

  6. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.

    PubMed

    Lee, Kang Il; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo

    2007-01-07

    The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s(-1) (angle-dependent Biot model) and 36.1 m s(-1) (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 degrees , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s(-1) (angle-dependent Biot model) and 240.8 m s(-1) (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone.

  7. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints.

    PubMed

    Pan, Jun; Wang, Bin; Li, Wen; Zhou, Xiaozhou; Scherr, Thomas; Yang, Yunyi; Price, Christopher; Wang, Liyun

    2012-08-01

    Osteoarthritis (OA) is a degenerative joint disease and one of the leading causes of disability in the United States and across the world. As a disease of the whole joint, OA exhibits a complicated etiology with risk factors including, but not limited to, ageing, altered joint loading, and injury. Subchondral bone is hypothesized to be involved in OA development. However, direct evidence supporting this is lacking. We previously detected measurable transport of solute across the mineralized calcified cartilage in normal joints, suggesting a potential cross-talk between subchondral bone and cartilage. Whether this cross-talk exists in OA has not been established yet. Using two models that induced OA by either ageing or surgery (destabilization of medial meniscus, DMM), we tested the hypothesis that increased cross-talk occurs in OA. We quantified the diffusivity of sodium fluorescein (mol. wt. 376Da), a marker of small-sized signaling molecules, within calcified joint matrix using our newly developed fluorescence loss induced by photobleaching (FLIP) method. Tracer diffusivity was found to be 0.30±0.17 and 0.33±0.20μm(2)/s within the calcified cartilage and 0.12±0.04 and 0.07±0.03μm(2)/s across the osteochondral interface in the aged (20-24-month-old, n=4) and DMM OA joints (5-month-old, n=5), respectively, which were comparable to the control values for the contralateral non-operated joints in the DMM mice (0.48±0.13 and 0.12±0.06μm(2)/s). Although we did not detect significant changes in tissue matrix permeability in OA joints, we found i) an increased number of vessels invading the calcified cartilage (and sometimes approaching the tidemark) in the aged (+100%) and DMM (+50%) joints relative to the normal age controls; and ii) a 60% thinning of the subchondral bone and calcified cartilage layers in the aged joints (with no significant changes detected in the DMM joints). These results suggested that the capacity for cross-talk between subchondral bone

  8. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.

  9. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.

  10. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM.

  11. Changed morphology and mechanical properties of cancellous bone in the mandibular condyles of edentate people.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2004-03-01

    Since edentate subjects have a reduced masticatory function, it can be expected that the morphology of the cancellous bone of their mandibular condyles has changed according to the altered mechanical environment. In the present study, the morphology of cylindrical cancellous bone specimens of the mandibular condyles of edentate subjects (n = 25) was compared with that of dentate subjects (n = 24) by means of micro-computed tomography and by the application of Archimedes' principle. Stiffness and strength were determined by destructive mechanical testing. Compared with dentate subjects, it appeared that, in edentate subjects, the bone was less dense and the trabecular structure was less plate-like. The regression models of stiffness and strength built from bone volume fraction and the trabecular orientation relative to the axis of the specimen were similar for both dentate and edentate subjects. This indicates that, under reduced mechanical load, the fundamental relationship between bone morphology and mechanical properties does not change.

  12. Calculation of Cancellous Bone Elastic Properties with the Polarization-based FFT Iterative Scheme.

    PubMed

    Colabella, Lucas; Ibarra Pino, Ariel Alejandro; Ballarre, Josefina; Kowalczyk, Piotr; Cisilino, Adrián Pablo

    2017-03-07

    The FFT based method, originally introduced by Moulinec and Suquet in 1994 has gained popularity for computing homogenized properties of composites. In this work, the method is used for the computational homogenization of the elastic properties of cancellous bone. To the authors' knowledge, this is the first study where the FFT scheme is applied to bone mechanics. The performance of the method is analyzed for artificial and natural bone samples of two species: bovine femoral heads and implanted femurs of Hokkaido rats. Model geometries are constructed using data from X-ray tomographies and the bone tissue elastic properties are measured using micro and nanoindentation tests. Computed results are in excellent agreement with those available in the literature. The study shows the suitability of the method to accurately estimate the fully anisotropic elastic response of cancellous bone. Guidelines are provided for the construction of the models and the setting of the algorithm.

  13. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  14. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  15. Dynamic Simulations of Cancellous Bone Resorption Around Orthopaedic Fixative Implants

    DTIC Science & Technology

    2007-11-02

    surrounding bone , and, thereby, alleviate commonly observed conditions of loosening and failure of plate fixations due to stress shielding [1], [2]. II...axisymmetrical model of a bone cylinder with an outer cortical surface and an inner trabecular bulk (Fig. 1). A screw is inserted perpendicularly to the bone ...adaptation. Fig. 1. The idealized axisymmetrical model of a bone cylinder with an outer cortical surface and an inner trabecular bulk. The finite

  16. Fractal properties of cancellous bone of the iliac crest in vertebral crush fracture.

    PubMed

    Fazzalari, N L; Parkinson, I H

    1998-07-01

    Fractal analysis is a method for describing complex shapes, including the cancellous structure of bone. It describes the surface texture and form of individual trabecular profiles and the overall cancellous structure. Sixty-four postmenopausal women with symptoms of back pain were referred for investigation for osteoporosis. The patients were divided into two groups for comparison: vertebral crush fracture (n = 31, mean age 68.58 +/- 6.47 years), and no vertebral crush fracture (n = 33, mean age 63.36 +/- 7.21 years). Cores of cancellous bone, 3 mm in diameter, were taken from the iliac crest and sectioned. A box-counting method implemented on an image analyzer was used to measure the fractal dimension. Three fractal dimensions describing trabecular surface texture (fractal 1), trabecular shape (fractal 2), and trabecular arrangement (fractal 3) were measured, indicating that cancellous bone has sectional self-similarity. Conventional histomorphometry was also performed on the samples. The results show that fractal 2 is significantly lower in the vertebral crush fracture group than in the nonfracture group (1.15 +/- 0.10 < 1.23 +/- 0.090, p < 0.0013). The histomorphometric analysis shows that bone surface total volume (p < 0.0002), trabecular number (p < 0.0001), and osteoid surface bone surface (p < 0.028) are significantly lower in the fracture group than the nonfracture group. Eroded surface/bone surface (p < 0.056) follows this trend, whereas trabecular separation (p < 0.001) is significantly higher in the fracture group than in the nonfracture group. Fractal 1 and fractal 3 were not significantly different between study groups. The fractal dimension detects changes in the cancellous architecture and gives information about iliac bone transformation in postmenopausal women with vertebral fracture.

  17. Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone.

    PubMed

    Tkachenko, Evgeniy V; Slyfield, Craig R; Tomlinson, Ryan E; Daggett, Justin R; Wilson, David L; Hernandez, Christopher John

    2009-09-01

    Cavities formed by osteoclasts on the surface of cancellous bone during bone remodeling (resorption cavities) are believed to act as stress risers and impair cancellous bone strength and stiffness. Although resorption cavities are readily detected as eroded surfaces in histology sections, identification of resorption cavities in three-dimensional images of cancellous bone has been rare. Here we use sub-micrometer resolution images of rat lumbar vertebral cancellous bone obtained through serial milling (n=5) to determine how measures of the number and surface area of resorption cavities are influenced by image resolution. Three-dimensional images of a 1 mm cube of cancellous bone were collected at 0.7x0.7x5.0 microm/voxel using fluorescence based serial milling and uniformly coarsened to four other resolutions ranging from 1.4x1.4x5.0 to 11.2x11.2x10 microm/voxel. Cavities were identified in the three-dimensional image as an indentation on the cancellous bone surface and were confirmed as eroded surfaces by viewing two-dimensional cross-sections (mimicking histology techniques). The number of cavities observed in the 0.7x0.7x5.0 microm/voxel images (22.0+/-1.43, mean+/-SD) was not significantly different from that in the 1.4x1.4x5.0 microm/voxel images (19.2+/-2.59) and an average of 79% of the cavities observed at both of these resolutions were coincident. However, at lower resolutions, cavity detection was confounded by low sensitivity (<20%) and high false positive rates (>40%). Our results demonstrate that when image voxel size exceeds 1.4x1.4x5.0 microm/voxel identification of resorption cavities by bone surface morphology is highly inaccurate. Experimental and computational studies of resorption cavities in three-dimensional images of cancellous bone may therefore require images to be collected at resolutions of 1.4 microm/pixel in-plane or better to ensure consistent identification of resorption cavities.

  18. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  19. 3-D localization of non-radioactive strontium in osteoarthritic bone: Role in the dynamic labeling of bone pathological changes.

    PubMed

    Panahifar, Arash; Cooper, David M L; Doschak, Michael R

    2015-11-01

    The study objective was to visualize regions of bone that undergo pathological mineralization and/or remodeling during pathogenesis of osteoarthritis, by employing non-radioactive strontium as a dynamic tracer of bone turnover. Post traumatic osteoarthritis was surgically induced in skeletally mature rats, followed by in vivo micro-CT imaging for 12 weeks to assess bone micro-structural changes. Rats either received strontium ranelate daily for the entire course of study or only last 10 days before euthanization. Distribution of strontium in bone was assessed in two and three dimensions, using electron probe micro-analysis (EPMA) and synchrotron dual energy K-edge subtraction micro-CT (SRμCT), respectively. Considerable early formation of osteophytes around the collateral ligament attachments and margins of articulating surfaces were observed, followed by subchondral sclerosis at the later stages. Accordingly, strontium was heavily incorporated by mineralizing osteophytes at 4, 8, and 12 weeks post-surgery, whereas subchondral bone only incorporated strontium between weeks 8-12.This study showed low dose stable strontium can effectively serve as a dynamic tracer of bone turnover to study pathological bone micro-structural changes, at resolution higher than nuclear medicine. Co-administration of strontium during therapeutic drug intervention may show enormous utility in assessing the efficacy of those compounds upon adaptive bone physiology.

  20. Relationship of Bone Mineralization Density Distribution (BMDD) in Cortical and Cancellous Bone Within the Iliac Crest of Healthy Premenopausal Women

    PubMed Central

    Dempster, D. W.; Zhou, Hua; Roschger, P.; Fratzl-Zelman, N.; Fratzl, P.; Silverberg, S. J.; Shane, E.; Cohen, A.; Stein, E.; Nickolas, T. L.; Recker, R. R.; Lappe, J.; Bilezikian, J. P.; Klaushofer, K.

    2015-01-01

    Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25–48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.CaWidth), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.CaMean). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.CaHigh) and positively with the percentage of lowly mineralized bone areas (Ct.CaLow). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD. PMID:25134800

  1. Effects of gas produced by degradation of Mg-Zn-Zr Alloy on cancellous bone tissue.

    PubMed

    Wang, Jingbo; Jiang, Hongfeng; Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao

    2015-10-01

    Mg-Zn-Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P<0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg-Zn-Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects.

    PubMed

    Gogolewski, Sylwester; Gorna, Katarzyna

    2007-01-01

    Porous scaffolds were produced from newly designed biodegradable, segmented aliphatic polyurethanes of various chemical compositions and hydrophilic-to-hydrophobic segment ratios. The scaffolds were implanted into monocortical defects in the iliac crest of healthy sheep for 6 months. The resected cortex was not repositioned. The ilium defects, which were not implanted with polyurethane scaffolds, were used as controls. In none of the control defects was there bone regeneration at the time of euthanasia. The defects implanted with porous scaffolds from polyurethanes were healed to varying extents with cancellous bone. The structure of the regenerated cancellous bone was radiographically denser than the structure of native bone. New bone that was formed in the scaffolds with a higher amount of hydrophilic component contained more calcium phosphate deposit than the bone formed in the scaffolds with a lower amount of the hydrophilic component. There was no new cortex formed over the defect, but a thin layer of soft tissue covered the newly formed cancellous bone. (c) 2006 Wiley Periodicals, Inc.

  3. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone.

    PubMed

    Hoffmeister, Brent K; Holt, Andrew P; Kaste, Sue C

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  4. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng-Meng; Jee, Webster S. S.; Ke, Hua-Zhu; Lin, Bai-Yun; Li, Qing-Nan; Li, Xiao-Jian

    1992-01-01

    Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 tLm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at I and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobiliza- tion. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in

  5. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng Meng; Jee, Webster S. S.; Ke, Hua Zhu; Lin, Bia Yun; Li, Qing Nan; Li, Xiao Jian

    1992-01-01

    Two-and-a half month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 micron sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55% to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59%c at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9 month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated

  6. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng Meng; Jee, Webster S. S.; Ke, Hua Zhu; Lin, Bia Yun; Li, Qing Nan; Li, Xiao Jian

    1992-01-01

    Two-and-a half month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 micron sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55% to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59%c at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9 month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated

  7. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng-Meng; Jee, Webster S. S.; Ke, Hua-Zhu; Lin, Bai-Yun; Li, Qing-Nan; Li, Xiao-Jian

    1992-01-01

    Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 tLm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at I and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobiliza- tion. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in

  8. Cavitary acetabular defects treated with morselized cancellous bone graft and cementless cups

    PubMed Central

    Pereira, G. C.T.; Kubiak, E. N.; Levine, B.; Chen, F. S.

    2006-01-01

    The use of impacted morselized cancellous bone grafts in conjunction with cementless hemispherical acetabular cups for treatment of AAOS type II acetabular cavitary deficiencies was evaluated in a retrospective study of 23 primary and 24 revision total hip arthroplasties, at a mean follow-up of 7.9 and 8.1 years, respectively. All primary hips received autografts, while all revision hips received allografts. Modified Harris Hip Scores for primary and revision hip replacements increased from a pre-operative mean of 37 and 47 to a postoperative mean of 90 and 86, respectively. All 23 autografts and 23 out of 24 cancellous allografts were radiographically incorporated without evidence of resorption. There were no instances of infection, component migration, or cases requiring subsequent acetabular revision. We conclude that impacted morselized cancellous bone-graft augmentation of cementless cups is a viable surgical option for AAOS type II cavitary acetabular defects. PMID:16988799

  9. Early Detection of Tibial Cartilage Degradation and Cancellous Bone Loss in an Ovariectomized Rat Model.

    PubMed

    Wang, Yinong; Liu, Zhiwei; Wang, Qing; Feng, Qianjin; Chen, Wufan

    2017-01-01

    This study aimed to investigate degradation of the articular cartilage and loss of the cancellous bone in an ovariectomized (OVX) rat model simulating early human menopausal stage. Fourteen health female Sprague-Dawley rats were randomly divided into two groups (n = 7 per group): an OVX group that underwent bilateral ovariectomy to create an OVX model with low estrogen levels and a sham group in which only the periovarian fatty tissue was exteriorized. All the animals were sacrificed at 3 weeks after ovariectomy. The left tibiae were harvested. The articular cartilage at medial tibial plateau (MTP) and lateral tibial plateau (LTP) was assessed with quantitative high-frequency ultrasound. The cancellous bone was evaluated with micro-CT. The results indicated that, in comparison with the sham rats, the OVX rats exhibited significant alterations in acoustic parameters of the articular cartilage but insignificant changes in microarchitectural parameters of the cancellous bone in early stage of low estrogen levels. The results of this study suggest that cartilage degradation induced by estrogen reduction was detected earlier with quantitative ultrasound than that of the cancellous bone loss in 3 wk OVX rats.

  10. Early Detection of Tibial Cartilage Degradation and Cancellous Bone Loss in an Ovariectomized Rat Model

    PubMed Central

    Wang, Yinong; Liu, Zhiwei; Chen, Wufan

    2017-01-01

    This study aimed to investigate degradation of the articular cartilage and loss of the cancellous bone in an ovariectomized (OVX) rat model simulating early human menopausal stage. Fourteen health female Sprague-Dawley rats were randomly divided into two groups (n = 7 per group): an OVX group that underwent bilateral ovariectomy to create an OVX model with low estrogen levels and a sham group in which only the periovarian fatty tissue was exteriorized. All the animals were sacrificed at 3 weeks after ovariectomy. The left tibiae were harvested. The articular cartilage at medial tibial plateau (MTP) and lateral tibial plateau (LTP) was assessed with quantitative high-frequency ultrasound. The cancellous bone was evaluated with micro-CT. The results indicated that, in comparison with the sham rats, the OVX rats exhibited significant alterations in acoustic parameters of the articular cartilage but insignificant changes in microarchitectural parameters of the cancellous bone in early stage of low estrogen levels. The results of this study suggest that cartilage degradation induced by estrogen reduction was detected earlier with quantitative ultrasound than that of the cancellous bone loss in 3 wk OVX rats. PMID:28182095

  11. Ovariectomy Enhances Mechanical Load-Induced Solute Transport around Osteocytes in Rat Cancellous Bone

    PubMed Central

    Ciani, Cesare; Sharma, Divya; Doty, Stephen B.; Fritton, Susannah P.

    2014-01-01

    To test if osteoporosis alters mechanical load-induced interstitial fluid flow in bone, this study examined the combined effect of estrogen deficiency and external loading on solute transport around osteocytes. An in vivo tracer, FITC-labeled bovine serum albumin, was injected into anaesthetized ovariectomized and control female Sprague Dawley rats before the right tibia was subjected to a controlled, physiological, non-invasive sinusoidal load to mimic walking. Tracer movement through the lacunar-canalicular system surrounding osteocytes was quantified in cortical and cancellous bone from the proximal tibia using confocal microscopy, with the non-loaded tibia serving as internal control. Overall, the application of mechanical loading increased the percentage of osteocyte lacunae labeled with injected tracer, and ovariectomy further enhanced movement of tracer. An analysis of separate regions demonstrated that ovariectomy enhanced in vivo transport of the injected tracer in the cancellous bone of the tibial epiphysis and metaphysis but not in the cortical bone of the metaphysis. These findings show that bone changes due to reduced estrogen levels alter convectional transport around osteocytes in cancellous bone and demonstrate a functional difference of interstitial fluid flow around osteocytes in estrogen-deficient rats undergoing the same physical activity as controls. The altered interstitial fluid flow around osteocytes is likely related to nanostructural matrix-mineral level differences recently demonstrated at the lacunar-canalicular surface of estrogen-deficient rats, which could affect the transmission of mechanical loads to the osteocyte. PMID:24316418

  12. Numerical simulation of wave propagation in cancellous bone.

    PubMed

    Padilla, F; Bossy, E; Haiat, G; Jenson, F; Laugier, P

    2006-12-22

    Numerical simulation of wave propagation is performed through 31 3D volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and are used as the input geometry in a simulation software developed in our laboratory. The simulation algorithm accounts for propagation into both the saturating fluid and bone but absorption is not taken into account. We show that 3D simulation predicts phenomena observed experimentally in trabecular bones : linear frequency dependence of attenuation, increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow wave depending on the orientation of the trabecular network compared to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in very close agreement with the experimental one measured on the same specimens. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.

  13. Cefazolin and linezolid penetration into sternal cancellous bone during coronary artery bypass grafting.

    PubMed

    Andreas, Martin; Zeitlinger, Markus; Wisser, Wilfried; Jaeger, Walter; Maier-Salamon, Alexandra; Thalhammer, Florian; Kocher, Alfred; Hiesmayr, Joerg-Michael; Laufer, Guenther; Hutschala, Doris

    2015-11-01

    Deep sternal wound infection is a severe complication after cardiac surgery. Insufficient antibiotic target site concentrations may account for variable success of perioperative prophylaxis. Therefore, we measured perioperative penetration of cefazolin and of linezolid into sternal cancellous bone after sternotomy in coronary artery bypass grafting (CABG) patients by in vivo microdialysis. Nine patients underwent CABG using a skeletonized left internal mammary artery. Standard antibiotic prophylaxis consisted of 4 g cefazolin prior to skin incision and additional 2 g during skin closure. In addition, 600 mg of linezolid were administered prior to skin incision and after 12 h for study purposes. Two microdialysis probes were inserted into the sternal cancellous bone (left and right side) after sternotomy. First mean peak cefazolin and linezolid plasma concentrations were 273 ± 92 µg/ml and 22.1 ± 8.9 µg/ml, respectively. Mean peak concentrations of antibiotics in sternal cancellous bone on the left and right sternal side were 112 ± 59 µg/ml and 159 ± 118 µg/ml for cefazolin and 10.9 ± 4.0 µg/ml and 12.6 ± 6.1 µg/ml for linezolid, respectively. Cefazolin exceeded the required tissue concentrations for relevant pathogens by far, but linezolid did not gain effective tissue concentrations in all patients for some relevant pathogens. Mammary artery harvesting had no significant effect on antibiotic tissue penetration. Direct measurement of antibiotic concentration in sternal cancellous bone with in vivo microdialysis is technically demanding but safe and feasible. We could demonstrate sufficient antibiotic coverage with our standard cefazolin-dosing regimen in the sternal cancellous bone during cardiac surgery. Mammary artery harvesting had no clinically relevant effect on tissue penetration. Linezolid concentrations were not sufficient for some relevant pathogens. © The Author 2014. Published by Oxford University Press on behalf of the European Association

  14. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis.

    PubMed

    Nazarian, Ara; von Stechow, Dietrich; Zurakowski, David; Müller, Ralph; Snyder, Brian D

    2008-12-01

    Preventing nontraumatic fractures in millions of patients with osteoporosis or metastatic cancer may significantly reduce the associated morbidity and reduce health-care expenditures incurred by these fractures. Predicting fracture occurrence requires an accurate understanding of the relationship between bone structure and the mechanical properties governing bone fracture that can be readily measured. The aim of this study was to test the hypothesis that a single analytic relationship with either bone tissue mineral density or bone volume fraction (BV/TV) as independent variables could predict the strength and stiffness of normal and pathologic cancellous bone affected by osteoporosis or metastatic cancer. After obtaining institutional review board approval and informed consent, 15 patients underwent excisional biopsy of metastatic prostate, breast, lung, ovarian, or colon cancer from the spine and/or femur to obtain 41 metastatic cancer specimens. In addition, 96 noncancer specimens were excised from 43 age- and site-matched cadavers. All specimens were imaged using micro-computed tomography (micro-CT) and backscatter emission imaging and tested mechanically by uniaxial compression and nanoindentation. The minimum BV/TV, measured using quantitative micro-CT, accounted for 84% of the variation in bone stiffness and strength for all cancellous bone specimens. While relationships relating bone density to strength and stiffness have been derived empirically for normal and osteoporotic bone, these relationships have not been applied to skeletal metastases. This simple analytic relationship will facilitate large-scale screening and prediction of fracture risk for normal and pathologic cancellous bone using clinical CT systems to determine the load capacity of bones altered by metastatic cancer, osteoporosis, or both.

  15. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone.

    PubMed

    Park, Jin-Woo; Kurashima, Kazuya; Tustusmi, Yusuke; An, Chang-Hyeon; Suh, Jo-Young; Doi, Hisashi; Nomura, Naoyuki; Noda, Kazuhiko; Hanawa, Takao

    2011-08-01

    Immobilization of RGD peptides on titanium (Ti) surfaces enhances implant bone healing by promoting early osteoblastic cell attachment and subsequent differentiation by facilitating integrin binding. Our previous studies have demonstrated the efficacy of RGD peptide immobilization on Ti surfaces through the electrodeposition of poly(ethylene glycol) (PEG) (RGD/PEG/Ti), which exhibited good chemical stability and bonding. The RGD/PEG/Ti surface promoted differentiation and mineralization of pre-osteoblasts. This study investigated the in vivo bone healing capacity of the RGD/PEG/Ti surface for biomedical application as a more osteoconductive implant surface in dentistry. The RGD/PEG/Ti surface was produced on an osteoconductive implant surface, i.e. the grit blasted micro-rough surface of a commercial oral implant. The osteoconductivity of the RGD/PEG/Ti surface was compared by histomorphometric evaluation with an RGD peptide-coated surface obtained by simple adsorption in rabbit cancellous bone after 2 and 4 weeks healing. The RGD/PEG/Ti implants displayed a high degree of direct bone apposition in cancellous bone and achieved greater active bone apposition, even in areas of poor surrounding bone. Significant increases in the bone to implant contact percentage were observed for RGD/PEG/Ti implants compared with RGD-coated Ti implants obtained by simple adsorption both after 2 and 4 weeks healing (P<0.05). These results demonstrate that RGD peptide immobilization on a Ti surface through electrodeposited PEG may be an effective method for enhancing bone healing with commercial micro-rough surface oral implants in cancellous bone by achieving rapid bone apposition on the implant surface.

  16. Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores.

    PubMed

    Wu, Dengke; Li, Xin; Tao, Cheng; Dai, Ruchun; Ni, Jiangdong; Liao, Eryuan

    2015-01-01

    This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanning, we obtained the analysis parameters of microstructural properties of cancellous bone. Through morphometric observations, fatigue tests and compression tests, we obtained parameters of mechanical properties of cancellous bones. Relevant Pearson analysis was performed to investigate the association between the fracture probability and the microstructure and mechanical properties of femoral bone trabecula in patients. Fifteen risk factors in FRAX were compared between OP and OA patients. FRAX hip fracture risk score and major osteoporotic in OP and OA patients were significantly different. FRAX was associated with tissue bone mineral density and volumetric bone mineral density. Our study suggests that the probabilities of major osteoporotic and hip fracture using FRAX is associated with bone mass but not with micro bone quality.

  17. Optimized demineralization of human cancellous bone by application of a vacuum.

    PubMed

    Eagle, Mark J; Rooney, Paul; Kearney, John N

    2015-07-01

    Human demineralized bone matrix derived from cortical bone is used by surgeons due to its ability to promote bone formation. There is also a need for shaped demineralized bone matrices made from cancellous bone, where the properties of the material allow its insertion into defects, therefore acting as a void filler and scaffold onto which new bone can form. In this study, we report that demineralized bone sponges were prepared by dissecting and cutting knee bone into cancellous bone cubes of 1 cm(3) . These cubes were then taken through a series of warm water washes, some with sonication, centrifugation, and two decontamination chemical washes. The cubes were optimally demineralized into sponges with 0.5N hydrochloric acid under vacuum with constant pH measurement. Demineralization was confirmed by quantitative measurement of calcium and qualitatively by compression. The sponges were freeze dried before terminal sterilisation with a target dose of 25 kGy gamma radiation whilst frozen. Samples of the sponges were histologically examined for calcium and collagen and also tested for osteoinductivity. Data showed well defined collagen staining in the sponges, with little residual calcium. Sponges from two out of three donors demonstrated osteoinductivity when implanted into the muscle of an athymic mouse.

  18. Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores

    PubMed Central

    Wu, Dengke; Li, Xin; Tao, Cheng; Dai, Ruchun; Ni, Jiangdong; Liao, Eryuan

    2015-01-01

    This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanning, we obtained the analysis parameters of microstructural properties of cancellous bone. Through morphometric observations, fatigue tests and compression tests, we obtained parameters of mechanical properties of cancellous bones. Relevant Pearson analysis was performed to investigate the association between the fracture probability and the microstructure and mechanical properties of femoral bone trabecula in patients. Fifteen risk factors in FRAX were compared between OP and OA patients. FRAX hip fracture risk score and major osteoporotic in OP and OA patients were significantly different. FRAX was associated with tissue bone mineral density and volumetric bone mineral density. Our study suggests that the probabilities of major osteoporotic and hip fracture using FRAX is associated with bone mass but not with micro bone quality. PMID:26064297

  19. Mineral status and mechanical properties of cancellous bone exposed to hydrogen peroxide for various time periods.

    PubMed

    Li, Dan; Bi, Long; Meng, Guolin; Wang, Jun; Lv, Rong; Liu, Min; Liu, Jian; Hu, Yunyu

    2011-02-01

    Processed cancellous bone has been regarded as one alternative for the treatment of bone defects. In order to avoid immunogenic effects and preserve the natural properties of the bone, the optimal processing method should be determined. To observe the influence of hydrogen peroxide on the mineral status and mechanical properties of cancellous bone for various time periods and find the optimal processing time. Cancellous bone granules from bovine femur condyles were treated with 30% hydrogen dioxide for 0, 12, 24, 36, 48, 60 and 72 h separately. The microstructure and mineral content of the granules were evaluated by ash analysis, Micro-CT, scanning electron micrograph and energy dispersive X-ray. The biomechanical properties were analyzed by applying cranial-caudal compression in a materials testing machine. With increasing exposure to hydrogen peroxide, the BMD and BMC of granules gradually decreased, and the Ca/P molar ratios clearly increased (P < 0.05). Meanwhile, the mineral content of the granules increased from 48.5 ± 1.3 to 79.5 ± 2.1%. Substantial decreases in the strength of the granules were observed, and after 48 h severe decreases were noted. The decrease in strength was also evident after normalizing the parameters to the cross-sectional area. Granules of bovine cancellous bone matrix should be processed by hydrogen peroxide for 12 to 36 h to fulfill the basic requirements of a bone tissue engineering scaffold. These granules could potentially be useful during orthopedic operations.

  20. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.

    PubMed

    Boger, Andreas; Bohner, Marc; Heini, Paul; Schwieger, Karsten; Schneider, Erich

    2008-11-01

    Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).

  1. Fractal analysis of lumbar vertebral cancellous bone architecture.

    PubMed

    Feltrin, G P; Macchi, V; Saccavini, C; Tosi, E; Dus, C; Fassina, A; Parenti, A; De Caro, R

    2001-11-01

    Osteoporosis is characterized by bone mineral density (BMD) decreasing and spongy bone rearrangement with consequent loss of elasticity and increased bone fragility. Quantitative computed tomography (QCT) quantifies bone mineral content but does not describe spongy architecture. Analysis of trabecular pattern may provide additional information to evaluate osteoporosis. The aim of this study was to determine whether the fractal analysis of the microradiography of lumbar vertebrae provides a reliable assessment of bone texture, which correlates with the BMD. The lumbar segment of the spine was removed from 22 cadavers with no history of back pain and examined with standard x-ray, traditional tomography, and quantitative computed tomography to measure BMD. The fractal dimension, which quantifies the image fractal complexity, was calculated on microradiographs of axial sections of the fourth lumbar vertebra to determine its characteristic spongy network. The relationship between the values of the BMD and those of the fractal dimension was evaluated by linear regression and a statistically significant correlation (R = 0.96) was found. These findings suggest that the application of fractal analysis to radiological analyses can provide valuable information on the trabecular pattern of vertebrae. Thus, fractal dimensions of trabecular bone structure should be considered as a supplement to BMD evaluation in the assessment of osteoporosis.

  2. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    PubMed

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  3. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure

    PubMed Central

    Torres, Ashley M.; Matheny, Jonathan B.; Keaveny, Tony M.; Taylor, David; Rimnac, Clare M.; Hernandez, Christopher J.

    2016-01-01

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure. PMID:26929343

  4. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.

    PubMed

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Mizuno, Katsunori; Sato, Toru

    2015-04-01

    The received signal in through-transmission ultrasound measurements of cancellous bone consists of two longitudinal waves, called the fast and slow waves. Analysis of these fast and slow waves may reveal characteristics of the cancellous bone that would be good indicators of osteoporosis. Because the two waves often overlap, decomposition of the received signal is an important problem in the characterization of bone quality. This study proposes a fast and accurate decomposition method based on the frequency domain interferometry imaging method with a modified wave transfer function that uses a phase rotation parameter. The proposed method accurately characterized the fast and slow waves in the experimental study, and the residual intensity, which was normalized with respect to the received signal intensity, was less than -20 dB over the bone specimen thickness range from 6 to 15 mm. In the simulation study, the residual intensity was less than -20 dB over the specimen thickness range from 3 to 8 mm. Decomposition of a single received signal takes only 5 s using a laptop personal computer with a single central processing unit. The proposed method has great potential to provide accurate and rapid measurements of indicators of osteoporosis in cancellous bone.

  5. Reduced tissue-level stiffness and mineralization in osteoporotic cancellous bone

    PubMed Central

    Kim, Grace; Cole, Jacqueline H.; Boskey, Adele L.; Baker, Shefford P.; van der Meulen, Marjolein C. H.

    2014-01-01

    Osteoporosis alters bone mass and composition ultimately increasing the fragility of primarily cancellous skeletal sites; however, effects of osteoporosis on tissue-level mechanical properties of cancellous bone are unknown. Dual-energy x-ray absorptiometry (DXA) scans are the clinical standard for diagnosing osteoporosis though changes in cancellous bone mass and mineralization are difficult to separate using this method. The goal of this study was to investigate possible difference in tissue-level properties with osteoporosis as defined by donor T-scores. Spine segments from Caucasian female cadavers (58–92 yrs) were used. A T-score for each donor was calculated from DXA scans to determine osteoporotic status. Tissue level composition and mechanical properties of vertebrae adjacent to the scan region were measured using nanoindentation and Raman spectroscopy. Based on T-scores, six samples were in the Osteoporotic group (58–74 yrs) and four samples were in the Not Osteoporotic group (65–92 yrs). The indentation modulus and mineral to matrix ratio (mineral:matrix) were lower in the Osteoporotic group than the Not Osteoporotic group. Mineral:matrix ratio decreased with age (r2 = 0.35, p = 0.05), and the indentation modulus increased with a real bone mineral density (aBMD) (r2 = 0.41, p = 0.04). This study is the first to examine cancellous bone composition and mechanical properties from a fracture prone location with osteoporosis. We found differences in tissue composition and mechanical properties with osteoporosis that could contribute to increased fragility in addition to changes in trabecular architecture and bone volume. PMID:24888692

  6. Deer bone extract suppresses articular cartilage damage induced by monosodium iodoacetate in osteoarthritic rats: an in vivo micro-computed tomography study.

    PubMed

    Lee, Hyunji; Park, Yooheon; Ahn, Chang Won; Park, Soo Hyun; Jung, Eun Young; Suh, Hyung Joo

    2014-06-01

    We evaluated the anti-osteoarthritic effects of deer bone extract on articular cartilage damage by using micro-computed tomography (micro-CT) in monosodium iodoacetate (MIA)-induced osteoarthritis (OA) in rats. Male Wistar rats (6 weeks of age) were randomly divided into 5 groups (10 rats/group): sham control (SC; PBS injection+PBS 1 mL treatment); negative control (NC; MIA injection+PBS 1 mL treatment); positive control (PC; MIA injection+250 mg/kg glucosamine sulfate/chondroitin sulfate mixture treatment); low dose (LDB; MIA injection+250 mg/kg deer bone extract treatment); and high dose (HDB; MIA injection+500 mg/kg deer bone extract treatment). After 50 days of treatment, we observed that the administration of deer bone extract protected against bone destruction and reduced the number of erosion lacunae. When deer bone extract was administered, the trabecular thickness distribution (Tb.Th) (LDB: 75.9 μm, HDB: 80.7 μm vs. NC: 48.0 μm) and the trabecular bone volume fraction ratio (BV/TV) (LDB: 43.8%, HDB: 48.2% vs. NC: 39.1%) were significantly restored. Additionally, the trabecular separation (Tb.Sp) increase caused by MIA was decreased significantly with the administration of deer bone extract (LDB: 73.4 μm, HDB: 81.2 μm vs. NC: 112.0 μm). We concluded that the oral administration of deer bone extract effectively relieved the morphological changes induced by MIA injection in an animal model.

  7. Systemic intermittent parathyroid hormone treatment improves osseointegration of press-fit inserted implants in cancellous bone

    PubMed Central

    2012-01-01

    Background and purpose Intermittent administration of parathyroid hormone (PTH) has an anabolic effect on bone, as confirmed in human osteoporosis studies, distraction osteogenesis, and fracture healing. PTH in rat models leads to improved fixation of implants in low-density bone or screw insertion transcortically. Material and methods We examined the effect of human PTH (1–34) on the cancellous osseointegration of unloaded implants inserted press-fit in intact bone of higher animal species. 20 dogs were randomized to treatment with human PTH (1–34), 5 μg/kg/day subcutaneously, or placebo for 4 weeks starting on the day after insertion of a cylindrical porous coated plasma-sprayed titanium alloy implant in the proximal metaphyseal cancellous bone of tibia. Osseointegration was evaluated by histomorphometry and fixation by push-out test to failure. Results Surface fraction of woven bone at the implant interface was statistically significantly higher in the PTH group by 1.4 fold with (median (interquartile range) 15% (13–18)) in the PTH group and 11% (7–13) in control. The fraction of lamellar bone was unaltered. No significant difference in bone or fibrous tissue was observed in the circumferential regions of 0–500, 500–1,000, and 1,000–2,000 μm around the implant. Mechanically, the implants treated with PTH showed no significant differences in total energy absorption, maximum shear stiffness, or maximum shear strength. Interpretation Intermittent treatment with PTH (1–34) improved xhistological osseointegration of a prosthesis inserted press-fit at surgery in cancellous bone, with no additional improvement of the initial mechanical fixation at this time point. PMID:22880714

  8. Systemic intermittent parathyroid hormone treatment improves osseointegration of press-fit inserted implants in cancellous bone.

    PubMed

    Daugaard, Henrik; Elmengaard, Brian; Andreassen, Troels Torp; Lamberg, Anders; Bechtold, Joan Elisabeth; Soballe, Kjeld

    2012-08-01

    Intermittent administration of parathyroid hormone (PTH) has an anabolic effect on bone, as confirmed in human osteoporosis studies, distraction osteogenesis, and fracture healing. PTH in rat models leads to improved fixation of implants in low-density bone or screw insertion transcortically. We examined the effect of human PTH (1-34) on the cancellous osseointegration of unloaded implants inserted press-fit in intact bone of higher animal species. 20 dogs were randomized to treatment with human PTH (1-34), 5 μg/kg/day subcutaneously, or placebo for 4 weeks starting on the day after insertion of a cylindrical porous coated plasma-sprayed titanium alloy implant in the proximal metaphyseal cancellous bone of tibia. Osseointegration was evaluated by histomorphometry and fixation by push-out test to failure. Surface fraction of woven bone at the implant interface was statistically significantly higher in the PTH group by 1.4 fold with (median (interquartile range) 15% (13-18)) in the PTH group and 11% (7-13) in control. The fraction of lamellar bone was unaltered. No significant difference in bone or fibrous tissue was observed in the circumferential regions of 0-500, 500-1,000, and 1,000-2,000 μm around the implant. Mechanically, the implants treated with PTH showed no significant differences in total energy absorption, maximum shear stiffness, or maximum shear strength. Intermittent treatment with PTH (1-34) improved histological osseointegration of a prosthesis inserted press-fit at surgery in cancellous bone, with no additional improvement of the initial mechanical fixation at this time point.

  9. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    PubMed

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  10. Numerical investigation of ultrasound reflection and backscatter measurements in cancellous bone on various receiving areas.

    PubMed

    Hosokawa, Atsushi

    2014-07-01

    In this study, new ultrasound reflection and backscatter measurements in cancellous bone using a membrane-type hydrophone are proposed. A membrane hydrophone made of a piezoelectric polymer film mounted on an annular frame allows an incident ultrasound wave to pass through its aperture because it has no backing material. Therefore, in measurements using the membrane hydrophone, the receiving area could be located independently from the transmitting area. In addition, the size and shape of the receiving area, which corresponded to those of the electrode deposited on the piezoelectric film, could be arranged in various ways. To investigate the validity of the proposed measurements, before bench-top experiments, the reflected and backscattered waves from cancellous bone were numerically simulated using a finite-difference time-domain method. The reflection and backscatter parameters were measured on various receiving areas, and their correlation coefficients with the structural parameters in the cancellous bone were derived. The simulated results suggested that appropriate receiving areas for the reflection and backscatter measurements could exist and that the proposed measurements could be more effective for evaluating bone properties than conventional measurements.

  11. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone

    PubMed Central

    Anderson, Christian C.; Marutyan, Karen R.; Holland, Mark R.; Wear, Keith A.; Miller, James G.

    2008-01-01

    Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency (negative dispersion) that is inconsistent with the causality-imposed Kramers–Kronig relations. In the current study, interfering wave modes similar to those observed in bone are shown to potentially contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model, and experimental results are used to aid in simulating multiple-mode wave propagation through cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive dispersion using plausible velocities and amplitudes, and then summing the individual modes to create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave forms can exhibit negative dispersion when analyzed conventionally under the assumption that only one wave is present, even when the individual interfering waves exhibit positive dispersions in accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when little or no visual evidence of interference exists in the time-domain data. Understanding the mechanisms responsible for the observed negative dispersion could aid in determining the true material properties of cancellous bone, as opposed to the apparent properties measured using conventional data analysis techniques. PMID:19045668

  12. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  13. Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher

  14. External fixation and cancellous bone grafting for Kienböck's disease: a preliminary report.

    PubMed

    Zelouf, D S; Ruby, L K

    1996-09-01

    Between 1985 and 1990, 17 patients with histologically proven Kienböck's disease (Lichtman stages I, II, and III) underwent a combination of cancellous bone grafting to the lunate and external fixation across the wrist. All 17 patients were available for review with a minimum follow-up of 2 years (average, 47 years). Based on pain, functional status, range of motion, and grip strength (Mayo wrist score), there were 6 excellent, 6 good, 2 fair, and 3 poor results (2 of whom required further surgery). An overall success rate of 71% (12 of 17) was achieved. Ten patients underwent postoperative magnetic resonance scanning, and in 5, some improvement in signal intensity was demonstrated. The combination of cancellous bone grafting and external fixation is an alternative treatment for Kienböck's disease.

  15. The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Ta, Dean; Fujita, Fuminori; Hachiken, Takuma; Matsukawa, Mami; Mizuno, Katsunori; Wang, Weiqi

    2014-02-01

    To investigate the relationship between ultrasonic backscatter and trabecular microstructure, ultrasonic backscatter measurements were performed on cylindrical bovine cancellous bone samples in vitro. The backscatter signals from different specimen angles were obtained by rotating the specimen at various central frequencies. The backscatter signal varied a lot as the specimen angle changed. The main trabecular alignment (MTA) orientation was estimated by the maximum of signal energy and integrated reflection coefficient, or the minor axis of fitted ellipse for apparent integrated backscatter and the backscattered spectrum centroid frequency versus specimen angle. The degree of anisotropy (DA) was estimated by the eccentricity of the fitted ellipse with highly significant correlations. The MTA orientation and DA value estimation method proposed in this study is useful for ultrasonic cancellous bone assessment.

  16. The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms.

    PubMed

    Wear, Keith A

    2009-02-01

    Frequency-dependent phase velocity was measured in eight cancellous-bone-mimicking phantoms consisting of suspensions of randomly oriented nylon filaments (simulating trabeculae) in a soft-tissue-mimicking medium (simulating marrow). Trabecular thicknesses ranged from 152 to 356 mum. Volume fractions of nylon filament material ranged from 0% to 10%. Phase velocity varied approximately linearly with frequency over the range from 300 to 700 kHz. The increase in phase velocity (compared with phase velocity in a phantom containing no filaments) at 500 kHz was approximately proportional to volume fraction occupied by nylon filaments. The derivative of phase velocity with respect to frequency was negative and exhibited nonlinear, monotonically decreasing dependence on volume fraction. The dependencies of phase velocity and its derivative on volume fraction in these phantoms were similar to those reported in previous studies on (1) human cancellous bone and (2) phantoms consisting of parallel nylon wires immersed in water.

  17. Early tissue responses to zoledronate, locally delivered by bone screw, into a compromised cancellous bone site: a pilot study

    PubMed Central

    2014-01-01

    Background In fracture treatment, adequate fixation of implants is crucial to long-term clinical performance. Bisphosphonates (BP), potent inhibitors of osteoclastic bone resorption, are known to increase peri-implant bone mass and accelerate primary fixation. However, adverse effects are associated with systemic use of BPs. Thus, Zoledronic acid (ZOL) a potent BP was loaded on bone screws and evaluated in a local delivery model. Whilst mid- to long-term effects are already reported, early cellular events occurring at the implant/bone interface are not well described. The present study investigated early tissue responses to ZOL locally delivered, by bone screw, into a compromised cancellous bone site. Methods ZOL was immobilized on fibrinogen coated titanium screws. Using a bilateral approach, ZOL loaded test and non-loaded control screws were implanted into femoral condyle bone defects, created by an overdrilling technique. Histological analyses of the local tissue effects such as new bone formation and osteointegration were performed at days 1, 5 and 10. Results Histological evaluation of the five day ZOL group, demonstrated a higher osseous differentiation trend. At ten days an early influx of mesenchymal and osteoprogenitor cells was seen and a higher level of cellular proliferation and differentiation (p < 5%). In the ZOL group bone-to-screw contact and bone volume values within the defect tended to increase. Local drug release did not induce any adverse cellular effects. Conclusion This study indicates that local ZOL delivery into a compromised cancellous bone site actively supports peri-implant osteogenesis, positively affecting mesenchymal cells, at earlier time points than previously reported in the literature. PMID:24656151

  18. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  19. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-09-01

    As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.

  20. Ultrasonic attenuation in parallel-nylon-wire cancellous-bone-mimicking phantoms.

    PubMed

    Wear, Keith A

    2008-12-01

    Attenuation coefficients between 1.5 and 3.5 MHz were measured on four parallel-nylon-wire arrays (simulating cancellous bone) with four different wire diameters (150, 200, 250, and 300 microm). Interwire spacing was 800 microm for all four parallel-nylon-wire arrays. The measured frequency dependencies of attenuation were consistent with theoretical predications based on Faran's theory, which considers the component of attenuation due to scattering of longitudinal waves.

  1. Vitamin D and ibandronate prevent cancellous bone loss associated with binge alcohol treatment in male rats.

    PubMed

    Wezeman, Frederick H; Juknelis, Dainius; Himes, Ryan; Callaci, John J

    2007-10-01

    Decreased bone mass and bone strength can result from excess alcohol consumption in humans and alcohol treatment in the rat. Although the specific mechanism is unknown, the damaging effects of alcohol abuse modulate the bone remodeling cycle and increase bone turnover. Chronic alcohol consumption models have shown an inhibition of bone formation. We previously reported that binge alcohol treatment increases bone resorption and that alcohol-induced damage can be prevented by treatments with intermittent parathyroid hormone and bisphosphonates. In this study, we hypothesized that an effective dose of vitamin D (cholecalciferol) or a single dose of ibandronate would prevent bone loss caused by binge alcohol treatment in male rats. Forty-eight adult (450 gram) male Sprague-Dawley rats were randomly assigned to 6 treatment groups (n=8): (a) saline i.p., 3 days/week (C); (b) binge alcohol, 3 g/kg i.p., 3 days/week (A); (c) vitamin D, 5,000 IU/kg daily s.c. (D); (d) binge alcohol and vitamin D (AD); (e) ibandronate (120 microg, given as a single i.p. injection (I)); and (f) alcohol and ibandronate (AI) . After 4 weeks of treatment, proximal tibia and L3 and L4 vertebrae were analyzed for bone mineral density (BMD) by quantitative computerized tomography and compressive strength-to-failure using an Instron materials testing machine. Type I collagen cross-linked c-telopeptide, calcium, and 25-OH vitamin D levels were measured in serum collected at the time of sacrifice. Binge alcohol significantly decreased cancellous BMD by 58% in tibia and 23% in lumbar spine (p<0.05). Binge alcohol treatment decreased L3 and L4 compressive strength-to-failure by 21% (p<.05). Treatment with vitamin D at 5,000 IU/kg/day prevented alcohol-induced bone loss, significantly increasing both tibial and vertebral cancellous BMD values (161% increase in tibia and 40% increase in vertebra, respectively, p<0.05) compared to alcohol alone groups. Pre-treatment with the single dose of 120 microg

  2. Photoacoustic and ultrasound imaging of cancellous bone tissue

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W. Y.; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ˜1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  3. Photoacoustic and ultrasound imaging of cancellous bone tissue.

    PubMed

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  4. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  5. Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix

    PubMed Central

    Rashmi; Pathak, Rekha; Amarpal; Aithal, H. P.; Kinjavdekar, P.; Pawde, A. M.; Tiwari, A. K.; Sangeetha, P.; Tamilmahan, P.; Manzoor, A. B.

    2017-01-01

    Aim: The aim of this study was to generate composite bone graft and investigate the rabbit fetal osteoblasts adhesion, proliferation and penetration on acellular matrices of cancellous bone. Materials and Methods: Acellular cancellous bone was prepared and developed as in the previous study with little modification. These matrices were decellularized by rapid freeze and thaw cycle. To remove the cell debris, they were then treated with hydrogen peroxide (3%) and ethanol to remove antigenic cellular and nuclear materials from the scaffold. Primary osteoblast cells were harvested from 20 to 22 days old rabbit fetal long and calvarial bone. These cells were cultured and characterized using a specific marker. The third passaged fetal osteoblast cells were then seeded on the scaffold and incubated for 14 days. The growth pattern of the cells was observed. Scanning electron microscope and hematoxylin and eosin staining were used to investigate cells proliferation. Results: The cells were found to be growing well on the surface of the scaffold and were also present in good numbers with the matrix filopodial extensions upto inside of the core of the tissue. Conclusion: Thus, a viable composite scaffold of bone could be developed which has a great potential in the field of bone tissue engineering. PMID:28344398

  6. Comparison of cancellous bone-derived cell proliferation in autologous human and fetal bovine serum.

    PubMed

    McAlinden, M G; Wilson, D J

    2000-01-01

    Conventionally, culture medium is supplemented with fetal bovine serum (FBS): such serum presents potential risks of foreign protein contamination and transmission of viral or prion-related disease if used in culture of cells intended for human reimplantation. As it has been suggested that a composite of cultured human cancellous bone-derived cells and a bone graft substitute may present a solution to the well-recognized complications and limited availability associated with harvest of fresh bone graft, this study aimed to compare the proliferative response of human cancellous bone-derived cells supplemented with FBS or autologous human serum (AHS) to determine whether AHS is a practical alternative. Explant cultures were established using greater trochanter trabecular bone from 10 consenting patients (aged 57-84) undergoing total hip arthroplasty. At the same time, serum was harvested. The cells were characterized by alkaline phosphatase expression and by in vitro mineralization in enhanced medium. At confluence, cells were aliquoted into multiwell plates and grown for 9 days in medium supplemented with 5%, 10%, 15%, or 20% AHS or 10% FBS. Proliferative response was determined by a crystal violet dye binding assay. There was no significant difference between proliferation in 5% AHS and 10% FBS. However, 10%, 15%, and 20% AHS all produced significantly greater proliferation than 10% FBS. The proliferative response was dose related. FBS is said to be rich in growth and attachment factors, which is why it is widely used in tissue culture. These results suggest that species specificity, even when using adult serum, outweighs these advantages. It should therefore be considered as a prerequisite for any program involving reimplantation of cultured human cells. Clinical trials of cultured human cancellous bone-derived cells have now begun.

  7. Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws.

    PubMed

    Seebeck, J; Goldhahn, J; Städele, H; Messmer, P; Morlock, M M; Schneider, E

    2004-11-01

    Internal fixators are a new class of implants designed to preserve the periosteal blood supply of the bone. In contrast to conventional plate fixation in which the screws have spherical heads and are loaded mainly by axial pullout forces, screws in internal fixators are "locked" within the plate and therefore subjected to axial as well as bending loads. In this study the ultimate loads of screws of a commercially available internal fixator system were tested in a pullout (n = 72) and cantilever bending mode (n = 72) in metaphyseal and diaphyseal regions of four pairs of human tibiae with different bone qualities. Cortical thickness and cancellous bone density were determined at the screw insertion sites. Stepwise multiple linear regression revealed that cortical thickness and cancellous density can explain 93% and 98% of the variance of the ultimate load of the screws in an axial pullout and cantilever bending mode. Screws in internal fixators are better suited to transmit shear forces and thereby make better use of the strength potential of bone than screws used in conventional plate fixation: this is especially advantageous when bone strength is reduced, e.g. due to osteoporosis.

  8. Determining the modulus of intact bovine vertebral cancellous bone tissue: Development and validation of a protocol

    NASA Astrophysics Data System (ADS)

    Engbretson, Andrew Craig

    Cancellous, or spongy, bone accounts for nearly 80% of the human skeleton's internal surface area, despite comprising only 20% of its mass. It is made up of a network of struts and plates that provide lightweight internal support to mammalian bones. In addition, it often serves as the main interface between the skeletal system and implanted devices such as artificial hips, knees, and fracture fixation devices. However, hip arthroplasties can succumb to loosening of the implant due to bone resorption, which is thought to be caused by a mismatch in both apparent and real stiffness between the device and the surrounding bone. Many studies have attempted to determine the Young's modulus of cancellous bone tissue, but the results are far from being in agreement. Reported values range from less than 1 to nearly 20 GPa. In addition, the small size of trabeculae has made dissection and testing a challenge. In this thesis, whole individual trabeculae from a bovine lumbar spine were tested in three-point bending to determine their Young's modulus using custom-made equipment to fit a miniature single-axis testing device. The device itself was validated by testing materials with moduli ranging from 1 to 200 GPa. The structure of the cancellous bone and the morphology of the individual struts were determined using micro x-ray computed tomography (muXCT). Individual struts were manually isolated from slices made using a low-speed saw under constant lubrication and measured under a stereomicroscope. Samples exhibiting no machined surfaces (and thus deemed to be whole, or "uncut" were compared to struts that had been cut by the saw during sectioning. Validation showed that the system was capable of determining the modulus of materials that were approximately five times stiffer than the expected cancellous modulus (copper, at 115 GPa) to within 10% of published values. This gave confidence in the results for bone. The modulus of the "uncut" specimens was found to be 15.28 2.26 GPa

  9. Vertebrae cancellous bone strength measurements by an osteopenetrometer

    NASA Astrophysics Data System (ADS)

    Logins, V.; Pontaga, I.; Saulgozis, J.

    1996-07-01

    The penetration strength of trabecular bone tissue of human lumbar vertebrae was determined in vitro by the osteopenetrometer. The tests were performed in the frontal, middle, and back third of the vertebra body lateral side, in the upper and lower terminal plates, and in the processus spinosus in three vertebrae of the age group 1 (19-25 years), four vertebrae of the group 2 (40-60 years), and four of the group 3 (61-75 years). The data obtained show that the penetration of strength of the human lumbar vertebrae diminishes with age nonuniformly: the most expressed decrease appears in the frontal and middle parts of the lateral side and in the processus spinosus, but very little change appears under the terminal plates. The significant correlation between the penetration strength in the processus spinosus and in the vertebrae body could be useful for diagnostics of the vertebra state in vivo. According to the measured penetration strength in the processus spinosus, it is possible to indirectly estimate its value in the vertebra body.

  10. Does cancellous screw insertion torque depend on bone mineral density and/or microarchitecture?

    PubMed

    Ab-Lazid, Rosidah; Perilli, Egon; Ryan, Melissa K; Costi, John J; Reynolds, Karen J

    2014-01-22

    During insertion of a cancellous bone screw, the torque level reaches a plateau, at the engagement of all the screw threads prior to the screw head contact. This plateau torque (T(Plateau)) was found to be a good predictor of the insertion failure torque (stripping) and also exhibited strong positive correlations with areal bone mineral density (aBMD) in ovine bone. However, correlations between T(Plateau) and aBMD, as well as correlations between T(Plateau) and bone microarchitecture, have never been explored in human bone. The aim of this study was to determine whether T(Plateau), a predictor of insertion failure torque, depends on aBMD and/or bone microarchitecture in human femoral heads. Fifty-two excised human femoral heads were obtained. The aBMD and microarchitecture of each specimen were evaluated using dual X-ray Absorptiometry and micro-computed tomography. A cancellous screw was inserted into specimens using an automated micro-mechanical test device, and T(Plateau) was calculated from the insertion profile. T(Plateau) exhibited the strongest correlation with the structure model index (SMI, R=-0.82, p<0.001), followed by bone volume fraction (BV/TV, R=0.80, p<0.01) and aBMD (R=0.76, p<0.01). Stepwise forward regression analysis showed an increase for the prediction of T(Plateau) when aBMD was combined with microarchitectural parameters, i.e., aBMD combined with SMI (R(2) increased from 0.58 to 0.72) and aBMD combined with BV/TV and BS/TV (R(2) increased from 0.58 to 0.74). In conclusion, T(Plateau), a strong predictor for insertion failure torque, is significantly dependent on bone microarchitecture (particularly SMI and BV/TV) and aBMD.

  11. Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats

    PubMed Central

    Conley, Melissa N.; Roberts, Cooper; Sharpton, Thomas J.; Iwaniec, Urszula T.

    2017-01-01

    Scope Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age‐related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Methods and results Six‐month‐old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham‐operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low‐dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high‐dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose‐dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. Conclusion These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. PMID:28087899

  12. Outcome of subtalar fusion using bovine cancellous bone graft: a retrospective case series.

    PubMed

    Patil, Sunit; Auyeung, Jeff; Gower, Andrew

    2011-01-01

    Solvent preserved bovine cancellous bone graft (Tutobone(®)) has been promoted as an alternative to autologous bone graft. The aim of our study was to compare the outcomes of subtalar fusion in patients in whom Tutobone(®) was used with the outcomes in patients in whom it was not used. This was a retrospective comparative study. Tutobone(®) was used in 9 patients in the test group. Of these repairs, 6 were isolated subtalar fusions, and 3 were performed as a part of triple arthrodesis. A total of 17 patients were included in the control group; 4 underwent autologous iliac crest grafting and 13 received a local bone graft from excised joint surfaces. At 12 months after surgery, 8 of the 9 in the Tutobone(®) group had persistent pain and radiologic signs of nonunion confirmed on computed tomography scan. All 17 in the other group had successful clinical and radiologic fusion at 12 months. We believe this is sufficient evidence to advise against the use of bovine cancellous bone graft material for subtalar fusion surgery.

  13. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic.

    PubMed

    Giesen, E B; Ding, M; Dalstra, M; van Eijden, T M

    2001-06-01

    The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed on cylindrical specimens (n=47) obtained from the condyles of 24 embalmed cadavers. Two loading directions were examined, i.e., a direction coinciding with the predominant orientation of the plate-like trabeculae (axial loading) and a direction perpendicular to the plate-like trabeculae (transverse loading). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them and the apparent density and volume fraction. The anisotropic mechanical properties can possibly be considered as a mechanical adaptation to the loading of the condyle in vivo.

  14. Augmentation of the rat jaw with autogeneic cortico-cancellous bone grafts and guided tissue regeneration.

    PubMed

    Donos, Nikolaos; Kostopoulos, Lambros; Karring, Thorkild

    2002-04-01

    The aim of the present study was to evaluate the effect of augmenting the maxillary alveolar ridge and the lateral aspect of the mandible with onlay autogeneic cortico-cancellous bone grafts that were covered with e-PTFE membranes. The experiment was carried out in 51 rats. In 15 rats, the edentulous maxillary jaw between the incisor and the first molar was augmented by means of an autogeneic ischiac bone graft that was fixed with a gold-coated microimplant. In one side, the graft was covered with an e-PTFE membrane, while the other side, which served as control, was treated without a membrane. In the other 36 rats, the lateral aspect of the mandible was augmented in both sides by means of an autogeneic ischiac bone graft that was fixed with a gold-coated or a titanium microimplant. In one side, the augmented area was covered with an e-PTFE membrane, while the contralateral side was treated without a membrane. Histological analysis at 60, 120 and 180 days after augmentation of the maxilla showed that, in the case of the test sites (where most of the membranes were either exposed or lost), the bone grafts presented extensive resorption and there was a lack of bone continuity between the graft and the recipient site. Similar findings were made at the non-membrane-treated control sides. In the case of augmentation of the mandible with membranes, the bone grafts were not resorbed, but were integrated into newly formed bone at the recipient site. In the control sides, the grafts presented varying degrees of resorption and integration into the recipient bone. It is concluded that, in comparison to bone grafting alone, onlay ischiac bone grafting combined with guided tissue regeneration eliminates the risk of bone graft resorption and ensures integration of the graft into newly formed bone at the recipient site, provided that closure of the operated area can be maintained during healing.

  15. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    PubMed Central

    Patel, Purvi SD; Shepherd, Duncan ET; Hukins, David WL

    2008-01-01

    Background Polyurethane (PU) foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP) bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm) and of different densities (0.09, 0.16 and 0.32 g.cm-3), to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern. PMID:18844988

  16. Variability of the pullout strength of cancellous bone screws with cement augmentation.

    PubMed

    Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S

    2015-06-01

    Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Microstructures and properties of cancellous bone of avascular necrosis of femoral heads

    NASA Astrophysics Data System (ADS)

    Yao, Xuefeng; Wang, Peng; Dai, Ruchun; Yeh, Hsien Yang

    2010-03-01

    The aim of this study is to investigate microscopic structure and characterize cancellous bone of avascular necrosis of the femoral head (ANFH). The rabbit model of the ANFH is established. The histopathologic features are studied successfully. The differences between the steroid-injection group (S.G.) and the controlled group (C.G.) are examined, including the weight of rabbits, the hematological examination and the three-dimensional structures. It is found that the plasma levels of cholesterol (CHO), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in S.G. are lower than those in C.G. when the triglyceride (TG) increased in the S.G.; but the bone mineral content (BMC) and the structural model index (SMI) of the organ and tissue decreased significantly in S.G. Three-dimensional structures of the femoral head are obtained using micro-computed tomography (CT) scanning and the mechanical model is established to analyze the influences of these structural changes on the mechanical properties of the cancellous bone.

  18. Managment of frontal sinus fracture: obliteration sinus with cancellous bone graft.

    PubMed

    Muminagic, Sahib; Masic, Tarik; Babajic, Emina; Asotic, Mithat

    2011-01-01

    Frontal sinus fractures make up about 2-15% of all facial fractures.This is relatively low frequency of occurrence, but it has a large potential of complication and may involve not only the frontal sinuse but more importantly the brain and the eyes. The management depends of the complexity. If anterior wall is fractured with grossly involved nasofrontal duct (NFD) in the injury it is paramount to occlude NFD. Very often, sinus obliteration is done at the same time. In our expirience autogenous cancellous bone graft is considered to be the best grafting material. It has the less short - or long-term complications and the donor site morbidity is insignificant.

  19. Harvest of cortico-cancellous intramedullary femoral bone graft using the Reamer-Irrigator-Aspirator (RIA).

    PubMed

    Masquelet, A-C; Benko, P E; Mathevon, H; Hannouche, D; Obert, L

    2012-04-01

    The "Reamer-Irrigator-Aspirator" (RIA) is a device that provides continuous irrigation and aspiration during intramedullary reaming of long bones. The RIA system is first used to collect the reaming material from medullary cavities, a thick paste of finely morselized osseous particles containing significantly elevated levels of stem cells and growth factors as reported by quantitative analyses. The volume of bone graft material available from an adult femur corresponds to the amount of cancellous bone graft obtained from both the anterior and posterior iliac crests. The assembly and technicalities of the RIA system require a training period to prevent any femoral fracture, which appears to be the major RIA-related complication. The elective indications for RIA bone grafting are filling of bone defects in the epiphyseal and metaphyseal regions. Diaphyseal defects may also be managed using the RIA system provided the graft is placed in a constrained system (induced membrane) to prevent dispersion of the graft into the surrounding soft tissues and is aerated with a porous material to promote its revascularization. Other RIA indications include debriding intramedullary infections and reaming for intramedullary nailing of long bone fractures to reduce the risk of fat embolization.

  20. Mechanical Failure Begins Preferentially Near Resorption Cavities in Human Vertebral Cancellous Bone Under Compression

    PubMed Central

    Slyfield, C.R.; Tkachenko, E.V.; Fischer, S.E.; Ehlert, K.M.; Yi, I. H.; Jekir, M. G.; O’Brien, R. G.; Keaveny, T.M.; Hernandez, C.J.

    2012-01-01

    Summary The amount of bone turnover in the body has been implicated as a factor that can influence fracture risk and bone strength. Here we test the idea that remodeling cavities promote local tissue failure by determining if microscopic tissue damage (microdamage) caused by controlled loading in vitro is more likely to form near resorption cavities. Specimens of human vertebral cancellous bone (L4, 7 male and 2 female, age 70 ± 10, mean ± SD) were loaded in compression to the yield point, stained for microscopic tissue damage and submitted to three-dimensional fluorescent imaging using serial milling (image voxel size 0.7 × 0.7 × 5.0 µm). We found the resulting damage volume per bone volume (DV/BV) was correlated with percent eroded surface (p < 0.01, r2 = 0.65), demonstrating that whole specimen measures of resorption cavities and microdamage are related. Locations of microdamage were more than two times as likely to have a neighboring resorption cavity than randomly selected sites without microdamage (relative risk 2.39, 95% confidence interval of relative risk: 2.09 – 2.73), indicating a spatial association between resorption cavities and microdamage at the local level. Individual microdamage sites were 48,700 (40,100; 62,700) µm3 in size (median, 25th and 75th percentiles). That microdamage was associated with resorption cavities when measured at the whole specimen level as well as at the local level provides strong evidence that resorption cavities play a role in mechanical failure processes of cancellous bone and therefore have the potential to influence resistance to clinical fracture. PMID:22426306

  1. Comparative Biomechanical and Microstructural Analysis of Native versus Peracetic Acid-Ethanol Treated Cancellous Bone Graft

    PubMed Central

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG. PMID:24678514

  2. Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft.

    PubMed

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Gelinsky, Michael; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at -20 °C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.

  3. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone

    PubMed Central

    Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.

    2011-01-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378

  4. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.

    PubMed

    Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G

    2011-10-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone.

  5. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone.

    PubMed

    Bilhan, H; Geckili, O; Mumcu, E; Bozdag, E; Sünbüloğlu, E; Kutay, O

    2010-12-01

    Achievement of primary stability during surgical placement of dental implants is one of the most important factors for successful osseointegration depending on various anatomical, surgical and implant-related factors. Resonance frequency analysis (RFA) has been shown as a non-invasive and objective technique for measuring the stability of implants. The aim of this study was to evaluate the effect of some surgical and implant-related factors in enhancing primary stability and to estimate a correlation between RFA and insertion torque (IT) in proximal regions of cow ribs representing cancellous bone. Fifteen implant beds were prepared in the most proximal region of six fresh cow ribs. Ninety implants with three different shapes and two different diameters were placed with two different surgical techniques, and the primary stability was compared using RFA and IT. Significantly higher RFA and IT values were achieved when under-dimensioned drilling was used as the surgical method (P<0·01); significantly higher IT values were obtained with the use of wider implants (P<0·01) and partially conical Astra Tech implants showed the highest IT values (P<0·01). When all the implants were considered, significant correlations between the IT and RFA values were noted (%40·6, P<0·05). Partially conical implants with a wide diameter to be placed with the modified surgical technique proposed appear to be useful in enhancing the primary stability in cancellous bone.

  6. Finite element models predict the location of microdamage in cancellous bone following uniaxial loading.

    PubMed

    Goff, M G; Lambers, F M; Sorna, R M; Keaveny, T M; Hernandez, C J

    2015-11-26

    High-resolution finite element models derived from micro-computed tomography images are often used to study the effects of trabecular microarchitecture and loading mode on tissue stress, but the degree to which existing finite element methods correctly predict the location of tissue failure is not well characterized. In the current study, we determined the relationship between the location of highly strained tissue, as determined from high-resolution finite element models, and the location of tissue microdamage, as determined from three-dimensional fluoroscopy imaging, which was performed after the microdamage was generated in-vitro by mechanical testing. Fourteen specimens of human vertebral cancellous bone were assessed (8 male donors, 2 female donors, 47-78 years of age). Regions of stained microdamage, were 50-75% more likely to form in highly strained tissue (principal strains exceeding 0.4%) than elsewhere, and generally the locations of the regions of microdamage were significantly correlated (p<0.05) with the locations of highly strained tissue. This spatial correlation was stronger for the largest regions of microdamage (≥1,000,000μm(3) in volume); 87% of large regions of microdamage were located near highly strained tissue. Together, these findings demonstrate that there is a strong correlation between regions of microdamage and regions of high strain in human cancellous bone, particularly for the biomechanically more important large instances of microdamage.

  7. SURGICAL TREATMENT FOR INFECTED LONG BONE DEFECTS AFTER LIMB-THREATENING TRAUMA: APPLICATION OF LOCKED PLATE AND AUTOGENOUS CANCELLOUS BONE GRAFT

    PubMed Central

    KAWAKAMI, RYOICHI; KONNO, SHIN-ICHI; EJIRI, SOICHI; HATASHITA, SATOSHI

    2015-01-01

    ABSTRACT Background: Treatment strategies for bone defects include free bone grafting, distraction osteogenesis, and vascularized bone grafting. Because bone defect morphology is often irregular, selecting treatment strategies may be difficult. With the Masquelet technique, a fracture site is bridged and fixed with a locking plate after treating deep infection with antibiotic-containing cement, and a free cancellous bone-graft is concomitantly placed into the defects. This procedure avoids excessive bone resection. Methods:We studied 6 patients who underwent surgical treatment for deep infection occurring after extremity trauma (2004 through 2009). Ages at surgery ranged from 29 to 59 years (largest age group: 30 s). Mean follow-up was 50.7 months (minimum/maximum: 36/72 months). One patient had complete amputation of the upper extremity, 3 open forearm fractures, 1 closed supracondylar femur fracture, and 1 open tibia fracture. In all patients, bone defects were filled with antibiotic-containing cement beads after infected site debridement. If bacterial culture of infected sites during curettage was positive, surgery was repeated to refill bone defects with antibiotic-containing cement beads. After confirmation of negative bacterial culture, osteosynthesis was performed, in which bone defects were bridged and fixed with locking plates. Concomitantly, crushed cancellous bone grafts harvested from the autogenous ilium was placed in the bone defects. Results: Time from bone grafting and plate fixation to bone union was at least 3 and at most 6 months, 4 months on average. Infection relapsed in one patient with methicillin-resistant Staphylococcus aureus, necessitating vascularized fibular grafting which achieved bone union. No patients showed implant loosening or breakage or infection relapse after the last surgery during follow-up. Conclusion: The advantage of cancellous bone grafting include applicability to relatively large bone defects, simple surgical procedure

  8. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia

    PubMed Central

    Yang, Haisheng; Embry, Rachel E.; Main, Russell P.

    2017-01-01

    The skeleton’s osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles. PMID:28076363

  9. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia.

    PubMed

    Yang, Haisheng; Embry, Rachel E; Main, Russell P

    2017-01-01

    The skeleton's osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles.

  10. Cancellous impaction bone grafting of acetabular defects in complex primary and revision total hip arthroplasty.

    PubMed

    Patil, Nilesh; Hwang, Katherine; Goodman, Stuart B

    2012-03-07

    The reconstruction of major acetabular bone defects during revision, conversion, and primary total hip arthroplasties (THAs) is challenging. We reviewed a consecutive series of 168 THAs (108 revisions, 8 conversions, and 52 primary THAs) performed by 1 surgeon (S.B.G.) between 1997 and 2008 using impaction bone grafting for acetabular reconstruction. Autograft, cancellous allograft croutons, and demineralized bone matrix were used to fill bone defects as needed. The acetabular bone deficiency was classified according to the American Academy of Orthopaedic Surgeons: type I, segmental deficiency with significant rim defect; type II, cavitary defects medially or posteriorly; type III, combined cavitary and segmental deficiency; type IV, pelvic discontinuity; and type V, arthrodesis. According to this method, 56 hips had type I, 31 hips had type II, 48 hips had type III, and 27 hips had type IV deficiencies. Of the 168 patients, 19 subsequently died of causes unrelated to the THA, and 11 were lost to follow-up. All patients had at least 2 years of follow-up. Average Harris Hip Score improved from 45.5±17.9 preoperatively to 81.1±16.5 postoperatively (P<.05) for revision THAs, from 40.0±11.3 preoperatively to 85.0±12.8 postoperatively (P<.05) for conversion THAs, and from 42.3±14.9 preoperatively to 85.0±12.0 postoperatively (P<.05) for primary THAs. All impaction grafted bone (allograft, autograft, or a combination) incorporated radiographically, thus restoring bone stock. Complications included 1 early infection, which was managed successfully with debridement and liner exchange, and 2 late infections that were managed successfully with staged revision. Two revisions required subsequent re-revision for late loosening. Two hip dislocations occurred, 1 of which required surgical treatment to place a constrained liner. Copyright 2012, SLACK Incorporated.

  11. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    PubMed

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  12. Effects of glucocorticoid on BMD, micro-architecture and biomechanics of cancellous and cortical bone mass in OVX rabbits.

    PubMed

    Liu, Xuli; Lei, Wei; Wu, Zixiang; Cui, Yi; Han, Baojun; Fu, Suochao; Jiang, Changli

    2012-01-01

    The incidence of osteoporosis continues to increase with progressively aging populations. The purpose of this study was to detect the effects of glucocorticoid (GC) treatment on bone mineral density (BMD), biomechanical strength and micro-architecture in cancellous and cortical bone in ovariectomized (OVX) rabbits. Twenty adult female New Zealand white rabbits were randomly divided into three groups. The OVX-GC group (n=8) received a bilateral ovariectomy first and then daily GC treatment (methylprednisolone sodium succinate, 1mg/kg/day) for 4 weeks beginning 2 weeks after ovariectomy treatment. The OVX group (n=4) received a bilateral ovariectomy without GC treatment. The sham group (n=8) only received the sham operation. BMD was determined prior to and 6 weeks after the operation in the spine. Six weeks after the operation, the animals were sacrificed, and cancellous bone specimens were harvested from the femoral condyle and lumbar vertebrae. Cortical bone specimens were obtained from the femoral midshaft. The femoral specimens were scanned for apparent BMD. All specimens were tested mechanically and analyzed by microcompute tomography (micro-CT). In cancellous bone, GC treatment resulted in significant decreases in BMD, bone biomechanical strength and micro-architecture parameters in lumbar vertebrae. Similar trends in BMD and micro-architectural changes were also observed in the femoral condyle in the OVX-GC group compared with the sham group. However, there was no significant decline in any parameter in either lumbar vertebrae or femoral condyle in the OVX group. Similarly, no significant difference was found in any parameter in cortical bone among the three groups. Thus, the 4-week GC treatment in OVX rabbits could result in a significant bone loss in cancellous bone but not in cortical bone. This model is comparable to the osteoporosis-related changes in humans. OVX alone was not sufficient to induce osteoporosis.

  13. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food

  14. A biomechanical study on fixation stability with twin hook or lag screw in artificial cancellous bone.

    PubMed

    Olsson, O; Tanner, K E; Ceder, L; Ryd, L

    2002-01-01

    The twin hook has been developed as an alternative to the conventional lag screw to be combined with a barrelled side-plate in the treatment of trochanteric hip fractures. With two oppositely directed apical hooks introduced into the subchondral bone of the femoral head, the twin hook provides different stabilising properties to the lag screw. The femoral head purchase of the twin hook and the lag screw were compared in a biomechanical study using artificial cancellous bone, and responses to axial and torsional loading was determined. A distinct yield point in load and torque was noted for the lag screw, representing failure of the laminas supporting the threads. For the twin hook, gradual increase of load and torque occurred during impaction of the bone supporting the hooks. The peak loads and torques were higher for the lag screw, but were similar for both devices after 8 mm deformation. The stiffness was higher for the lag screw, but in counter-clockwise rotation the stiffness for the lag screw was negligible. The twin hook appeared to provide fixation stability comparable to that offered by the lag screw, but with conceivable advantages in terms of a deformation response involving bone impaction and gradually increasing stability.

  15. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    PubMed

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  16. The truss structure of cancellous bone. Morphological basis of the function of load transmission of the synovial joint.

    PubMed

    Wang, Y; Bi, W

    1995-01-01

    The structure of cancellous bone of synovial joints was studied under the scanning electron microscope in 4 young cadavers. It was discovered that in all specimens, the cancellous bone beneath the whole coverage of the articular cartilage had a honeycomb pattern in appearance formed by many arched trabeculae running in different directions, and that the major orientation of the arched trabeculae was toward the articular surface. The arms of one arched trabecula extended in different directions, forming the tops of other arched trabeculae; the direction of the collagen fibers conformed circumferentially with that of the arch, but the collagen fibers at the intermediate part of the common arm of the adjacent arched trabeculae crossed in a woven pattern, passing from one trabecula to another. It enables the whole end of the articular bone to have the capacity of integral deformation. That is the foundation of the character of compliance which is essential to the contact of the articular surfaces changing from incongrouity to total congrouity during normal load transmission. This special type of construction is just like the truss structure in the architectural engineering, and therefore the authors suggest to name it the "Truss Structure" of the cancellous bone. The relationship between integral deformation and the following two factors, compliance and incongrouity of the articular surface provides an explanation that the truss structure of the cancellous bone is the morphological basis of high load-bearing capacity and character of compliance of the synovial joint.

  17. Variability of Tissue Mineral Density Can Determine Physiological Creep of Human Vertebral Cancellous Bone

    PubMed Central

    Kim, Do-Gyoon; Shertok, Daniel; Tee, Boon Ching; Yeni, Yener N.

    2011-01-01

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877±2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797±1391 με). A strong positive linear correlation was found between creep and residual strain (r=0.94, p<0.001). The current results showed that smaller thickness, larger surface area, greater connectivity of trabeculae, less mean tissue mineral density (TMD, represented by gray levels) and higher variability of TMD are associated with increasing logarithmic creep rate. The TMD variability (GLCOV) was the strongest correlate of creep rate (r=0.79, p<0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. PMID:21481880

  18. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.

    PubMed

    Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N

    2011-06-03

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p < 0.001). The current results showed that smaller thickness, larger surface area, greater connectivity of trabeculae, less mean tissue mineral density (TMD, represented by gray levels) and higher variability of TMD are associated with increasing logarithmic creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. A one-year study.

    PubMed Central

    Lafage, M H; Balena, R; Battle, M A; Shea, M; Seedor, J G; Klein, H; Hayes, W C; Rodan, G A

    1995-01-01

    Fluoride stimulates trabecular bone formation, whereas bisphosphonates reduce bone resorption and turnover. Fracture prevention has not been convincingly demonstrated for either treatment so far. We compared the effects of 1-yr treatment of 9-mo-old minipigs with sodium fluoride (NaF, 2 mg/kg/d p.o.) or alendronate (ALN, 4 amino-1-hydroxybutylidene bisphosphonate monosodium, 1 mg/kg/d p.o.) on the biomechanical and histomorphometric properties of pig bones. As expected, NaF increased and ALN decreased bone turnover, but in these normal animals neither changed mean bone volume. NaF reduced the strength of cancellous bone from the L4 vertebra, relative to control animals, and the stiffness (resistance to deformation) of the femora, relative to the ALN group. In the ALN-treated animals, there was a strong positive correlation between bone strength and L5 cancellous bone volume, but no such correlation was observed in the NaF group. Furthermore, the modulus (resistance to deformation of the tissue) was inversely related to NaF content and there was a relative decrease in bone strength above 0.25 mg NaF/g bone. Moreover, within the range of changes measured in this study, there was an inverse correlation between bone turnover, estimated as the percentage of osteoid surface, and modulus. These findings have relevant implications regarding the use of these agents for osteoporosis therapy. PMID:7738180

  20. Fully Threaded Versus Partially Threaded Screws: Determining Shear in Cancellous Bone Fixation.

    PubMed

    Downey, Michael W; Kosmopoulos, Victor; Carpenter, Brian B

    2015-01-01

    Many researchers have studied and compared various forms of intraosseous fixation. No studies have examined the effects of shear through stiffness and failure strength of a fully threaded versus a partially threaded screw. Our hypothesis was that the fully threaded lag screw technique would provide greater shear strength and resistance. Thirty-six synthetic sawbone blocks were used to test screw fixation. In group 1 (n = 9), 2 blocks were fixed together using a fully threaded 4.0-mm stainless steel cancellous bone screw and the lag technique. In group 2 (n = 8), 2 blocks were fixed together using the standard manufacturer-recommended method for inserting 4.0-mm partially threaded stainless steel cancellous bone screws. The constructs were then mechanically tested. Shear was applied by compressing each construct at an axial displacement rate of 0.5 mm/s until failure. The fully threaded screw had a significantly greater (p = .026) initial stiffness (106.4 ± 15.8 N/mm) than the partially threaded screw (80.1 ± 27.5 N/mm). The yield load and displacement for the fully threaded group (429.4 ± 11.7 N and 7.2 ± 0.35 mm) were 64% and 67% greater than those for the partially threaded screw group (261.4 ± 26.1 N and 4.3 ± 1.03 mm), respectively. The results of the present study have demonstrated the importance of a full-thread construct to prevent shear and to decrease strain at the fracture. The confirmation of our hypothesis questions the future need and use of partially threaded screws for cancellous bone fixation. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts.

    PubMed

    Tardif, Ginette; Hum, David; Pelletier, Jean-Pierre; Boileau, Christelle; Ranger, Pierre; Martel-Pelletier, Johanne

    2004-08-01

    To compare gene expression in normal and osteoarthritic (OA) human chondrocytes using microarray technology. Of the novel genes identified, we selected follistatin, a bone morphogenetic protein (BMP) antagonist, and investigated its expression/regulation as well as that of 3 other antagonists, gremlin, chordin, and noggin, in normal and OA chondrocytes and synovial fibroblasts. Basal and induced gene expression were determined using real-time polymerase chain reaction. Gene regulation was monitored following treatment with inflammatory, antiinflammatory, growth, and developmental factors. Follistatin protein production was measured using a specific enzyme-linked immunosorbent assay, and localization of follistatin and gremlin in cartilage was determined by immunohistochemical analysis. All BMP antagonists except noggin were expressed in chondrocytes and synovial fibroblasts. Follistatin and gremlin were significantly up-regulated in OA chondrocytes but not in OA synovial fibroblasts. Chordin was weakly expressed in normal and OA cells. Production of follistatin protein paralleled the gene expression pattern. Follistatin and gremlin were expressed preferentially by the chondrocytes at the superficial layers of cartilage. Tumor necrosis factor alpha and interferon-gamma significantly stimulated follistatin expression but down-regulated expression of gremlin. Interleukin-1beta (IL-1beta) had no effect on follistatin but reduced gremlin expression. Conversely, BMP-2 and BMP-4 significantly stimulated expression of gremlin but down-regulated that of follistatin. IL-13, dexamethasone, transforming growth factor beta1, basic fibroblast growth factor, platelet-derived growth factor type BB, and endothelial cell growth factor down-regulated the expression of both antagonists. This study is the first to show the possible involvement of follistatin and gremlin in OA pathophysiology. The increased activin/BMP-binding activities of these antagonists could affect tissue

  2. Cellular survival of human marrow during placement of marrow-cancellous bone grafts.

    PubMed

    Marx, R E; Snyder, R M; Kline, S N

    1979-10-01

    The survival of human marrow cells during the placement of marrow-cancellous bone grafts was studied by three independent viability assays. Marrow cells are resistant cells able to survive the surgical harvest from the ilium. Salt solutions such as normal saline solution and 5% dextrose in water (D5W) were superior to tissue culture medium, the serum of the patients, and several other solutions in supporting the survival of the graft cells. High survival rates of marrow cells stored in normal saline solution and D5W for four hours or less established that 95% to 100% live cells can be transplanted even with long delays between harvest and placement of the graft.

  3. Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model.

    PubMed

    Guo, Xiasheng; Zhang, Dong; Gong, Xiufen

    2007-01-07

    A weak scattering model based on small perturbations in a binary mixture is developed to estimate the ultrasonic scattering from human cancellous bone, which is modelled as a random isotropic continuum containing identical scatters. Ultrasonic scattering is determined by both velocity fluctuation and density fluctuation, when k(2)a(2) < 1 is satisfied. Two kinds of trabeculae thickness distributions, i.e. even distribution and Gauss distribution, are applied in the calculation of attenuation and backscattering. Frequency dependence of the backscatter coefficient is found to be Af(3.13) and Af(2.84) with the Gauss distribution and an even distribution, respectively. Both backscattering and attenuation change significantly against porosity for the case of high porosity. The predicted results are close to the measured ones from the literature. The errors of this theoretical model are also discussed in this paper.

  4. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  5. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  6. Multicolor flow cytometry-based cellular phenotyping identifies osteoprogenitors and inflammatory cells in the osteoarthritic subchondral bone marrow compartment.

    PubMed

    Pippenger, B E; Duhr, R; Muraro, M G; Pagenstert, G I; Hügle, T; Geurts, J

    2015-11-01

    The cellular component of subchondral bone is thought to be responsible for aberrant bone remodeling in osteoarthritis (OA). Direct phenotypical analysis of the cellular compartment is critical to better understand the OA disease process. This study provides proof-of-principle for flow cytometry-based phenotyping of isolated subchondral trabecular bone (STB) marrow cells without prior use of cell culture techniques. Tibial plateaus were obtained from OA patients undergoing total knee arthroplasty. Subchondral bone chips were digested with collagenase IA and single cell suspensions were directly phenotyped using flow cytometry. Cells were analyzed for the expression of alkaline phosphatase (ALP) as osteoblast/osteoprogenitor marker and monocyte/macrophage markers (CD14, CD68, HLA-DR, CD115). MTT staining revealed abundant viable cells in the bone marrow compartment of STB prior to digestion, which were efficiently released by collagenase. Within the CD45-negative cell fraction, approximately 20% of the cells were positive for the early osteoblast/osteoprogenitor marker ALP. Within the CD45+ hematopoietic cell fraction, the majority of cells were of monocytic origin (>80%) displaying strong surface expression of CD14. Discreet macrophage populations (CD14+/HLA-DR+/CD68+) and putative osteoclast progenitors (CD45+/HLA-DR-/CD115+) were unequivocally identified. Osteoblast, macrophage and osteoclast progenitor presence in the subchondral bone unit (SBU) was confirmed by (immuno)histochemical staining for osteocalcin, CD68 and tartrate-resistant acid phosphatase, respectively. Flow cytometric analysis is a valuable methodology to study the cellular compartment of STB marrow. This method provides a proof of principle that the whole resident cell population can be directly phenotypically characterized without the prior use of cell culture techniques. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Human scaphoid non-unions exhibit increased osteoclast activity compared to adjacent cancellous bone.

    PubMed

    Schira, Jessica; Schulte, Matthias; Döbele, Carmen; Wallner, Christoph; Abraham, Stephanie; Daigeler, Adrien; Kneser, Ulrich; Lehnhardt, Marcus; Behr, Björn

    2015-12-01

    Scaphoid bones have a high prevalence for non-union. Even with adequate treatment, bone regeneration may not occur in certain instances. Although this condition is well described, the molecular pathology of scaphoid non-unions is still poorly defined. In this study, gene expression of osteogenic and angiogenic growth and transcription factors as well as inflammatory mediators were analysed in human scaphoid non-unions and intraindividually compared to adjacent autologous cancellous bone from the distal radius. In addition, histology and immunohistochemical stainings were performed to verify qRT-PCR data. Gene expression analysis revealed a significant up-regulation of RANKL, ALP, CYCLIN D1, MMP-13, OPG, NFATc1, TGF-β and WNT5A in scaphoid non-unions. Interestingly, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in non-unions. Moreover, WNT5A was highly up-regulated in all non-union samples. TRAP staining confirmed the observation of induced osteoclastogenesis in non-unions. With respect to genes related to osteogenesis, alkaline phosphatase was significantly up-regulated in scaphoid non-unions. No differences were detectable for other osteogenic genes such as RUNX-2 or BMP-2. Importantly, we did not detect differences in angiogenesis between scaphoid non-unions and controls in both gene expression and immunohistochemistry. Summarized, our data indicate increased osteoclast activity in scaphoid non-unions possibly as a result of the alterations in RANKL, TGF-β and WNT5A expression levels. These data increase our understanding for the reduced bone regeneration capacity present in scaphoid non-unions and may translate into the identification of new therapeutic targets to avoid secondary damages and prevent occurrence of non-unions to scaphoid bones. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    PubMed

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants.

  9. Micro-Finite Element analysis will overestimate the compressive stiffness of fractured cancellous bone.

    PubMed

    Arias-Moreno, Andrés Julián; Ito, Keita; van Rietbergen, Bert

    2016-09-06

    Recently, micro-Finite Element (micro-FE) analysis based on High Resolution peripheral Quantitative CT (HRpQCT) images was introduced to quantify the state of fracture healing (de Jong et al., 2014). That study suggested that the direct post-fracture stiffness may be overestimated by micro-FE. The aim of this study was to investigate this further by measuring the loss in stiffness of cancellous bone samples under compressive loading and to compare this with predictions based on micro-FE analyses and bone microstructural and fracture morphology. Sixty porcine trabecular cores were micro-CT scanned and tested in compression before and after inducing a fracture in 4 different manners. The loss in stiffness as measured in the experiment was compared to that calculated from micro-FE analysis. Additionally, bone morphology parameters and fracture thickness were calculated. The experimentally measured loss in stiffness ranged from 37% to 80%. The losses calculated from the micro-FE analyses were lower and ranged from 36% to 61%, while in one case an increase in stiffness was calculated. For 2 of the 4 experiments, the results of the experiment and micro-FE analyses were significantly different. Only for very smooth fractures good agreement was obtained between FE and experimental results. The loss in stiffness did not correlate with any investigated bone morphology parameter or the thickness of the fracture region. It was concluded that micro-FE analysis can severely overestimate the stiffness of fractured bone depending on the type of fracture, but in the case of smooth fractures good estimates are possible.

  10. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.

    PubMed

    Wear, Keith A

    2013-04-01

    The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.

  11. Effects of sodium hydroxide, sodium hypochlorite, and gaseous hydrogen peroxide on the natural properties of cancellous bone.

    PubMed

    Bi, Long; Li, De-Cheng; Huang, Zhao-Song; Yuan, Zhi

    2013-07-01

    Processed xenegeneic cancellous bone represents an alternative to bone autograft. In order to observe the effects of present prion inactivation treatments on the natural properties of xenogeneic cancellous bones, we treated bovine bone granules with sodium hydroxide (NaOH), sodium hypochlorite (NaOCl), and gaseous hydrogen peroxide (gH2 O2 ) respectively in this study. The microstructure, composition, and mineral content of the granules were evaluated by scanning electron micrograph, energy dispersive X-ray spectroscopy, ash analysis, and micro-computed tomography. The biomechanical property was analyzed by a materials testing machine. The cytocompatibility was evaluated by using a mouse fibroblast cell line (3T3). The microstructure, organic content, and mechanical strength were dramatically altered at the surface of bone in both NaOH- and NaOCl-treated groups, but not in the gH2 O2 -treated group. Compared with the gH2 O2 -treated group, attachment and proliferation of 3T3 were reduced in either NaOH- or NaOCl-treated groups. As the consequence, gH2 O2 treatment may be a useful approach of disinfection for the preparation of natural cancellous bone with well-preserved structural, mechanical, and biological properties. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.

    PubMed

    Rubin, C; Turner, A S; Mallinckrodt, C; Jerome, C; McLeod, K; Bain, S

    2002-03-01

    Departing from the premise that it is the large-amplitude signals inherent to intense functional activity that define bone morphology, we propose that it is the far lower magnitude, high-frequency mechanical signals that continually barrage the skeleton during longer term activities such as standing, which regulate skeletal architecture. To examine this hypothesis, we proposed that brief exposure to slight elevations in these endogenous mechanical signals would suffice to increase bone mass in those bones subject to the stimulus. This was tested by exposing the hind limbs of adult female sheep (n = 9) to 20 min/day of low-level (0.3g), high-frequency (30 Hz) mechanical signals, sufficient to induce a peak of approximately 5 microstrain (micro epsilon) in the tibia. Following euthanasia, peripheral quantitative computed tomography (pQCT) was used to segregate the cortical shell from the trabecular envelope of the proximal femur, revealing a 34.2% increase in bone density in the experimental animals as compared with controls (p = 0.01). Histomorphometric examination of the femur supported these density measurements, with bone volume per total volume increasing by 32% (p = 0.04). This density increase was achieved by two separate strategies: trabecular spacing decreased by 36.1% (p = 0.02), whereas trabecular number increased by 45.6% (p = 0.01), indicating the formation of cancellous bone de novo. There were no significant differences in the radii of animals subject to the stimulus, indicating that the adaptive response was local rather than systemic. The anabolic potential of the signal was evident only in trabecular bone, and there were no differences, as measured by any assay, in the cortical bone. These data suggest that subtle mechanical signals generated during predominant activities such as posture may be potent determinants of skeletal morphology. Given that these strain levels are three orders of magnitude below strains that can damage bone tissue, we

  13. Does peripheral quantitative computed tomography ignore tissue density of cancellous bone?

    PubMed

    Banse, X; Devogelaer, J P

    2002-01-01

    The purpose of this work was to determine the capacity of peripheral quantitative computed tomography (pQCT) to accurately measure the true physical properties of vertebral cancellous bone samples and to predict their stiffness. pQCT bone mineral density (BMD) was first measured in ideal conditions. Ten cubic specimens of vertebral cancellous bone (10 x 10 x 10 mm) were washed with a water jet, defatted, and scanned in saline after elimination of air bubbles; thirteen slices were obtained. Seventy-one unprepared cylindrical samples were scanned in more realistic conditions, which allow further biomechanical testing. After extraction from the vertebral body, the samples were pushed into a plastic tube (no effort was made to remove the marrow or air bubbles), and only four slices were obtained to reduce the duration of scan. For the 81 samples, the true bone volume fraction (BV/TV, %), true apparent density (rho(app), g/cm(3)), and tissue density (rho(tiss), g/cm(3)) (an indicator of the degree of mineralization of the matrix) were then measured using Archimedes principle. rho(app) was closely correlated to BV/TV (r(2) = 0.97). rho(tiss) (1.58 +/- 0.08 g/cm(2)) was almost constant but had some influence on rho(app) (r(2) = 0.03, p < 0.001). The pQCT BMD predicted accurately rho(app) (r(2) = 0.96) and BV/TV (r(2) = 0.93) for the cylinders. For the cubes, in ideal conditions, the same correlations were even better (r(2) > 0.99, both). Analysis of covariance indicated no difference (p > 0.05) in the regressions due to preparation of the samples. The stiffness was better predicted by the true rho(app) (r(2) = 0.87) than by BV/TV (r(2) = 0.83), indicating that stiffness was influenced by small differences in the tissue density. Consequently, the correlation between pQCT BMD and stiffness was excellent (r(2) = 0.84). The fact that pQCT did not ignore this tissue density information compensated for the inaccuracies linked to realistic scanning conditions of the cylinder.

  14. Biomechanical effectiveness of cortical bone thickness on orthodontic microimplant stability: an evaluation based on the load share between cortical and cancellous bone.

    PubMed

    Alrbata, Raed H; Yu, Wonjae; Kyung, Hee-Moon

    2014-08-01

    The aim of this study was to determine the appropriate range of cortical bone thickness (CBT) for supporting an orthodontic microimplant. Analysis of an orthodontic microimplant subjected to a horizontal force of 2N was performed using a nonlinear finite element method. The peak stresses in the cortical bone of 6 bone specimens (6 base models) with CBT of 0.5, 0.75, 1.0, 1.5, 2.0, and 3.0 mm, respectively, were analyzed. Assuming that the biomechanical effectiveness of cortical and cancellous bone is determined by the portion of the orthodontic force that each bone component takes up, we defined the ratios of the orthodontic force divided between the cortical and cancellous bone as load share ratios (LSR): ie, LSRcortical and LSRcancellous. Along with the base models, imaginary models created by removal of the cancellous bone from the base model bone specimens were analyzed in parallel; the imaginary models were designed so that the cortical bone alone took up all of the orthodontic force. By comparing the peak stresses in the imaginary and base models, the ratios of orthodontic force taken up by the cancellous and cortical bone (LSRcancellous and LSRcortical) were calculated. The highest stress concentration occurred near the fulcrum where the orthodontic microimplant, undergoing tipping, presses the cortical bone surface in the direction of the force. Overall, the increase in CBT resulted in a decrease of the peak stress in the cortical bone. The decrease of stress, however, was not significant when the CBT was > 2.0 mm. LSR analysis showed that the cancellous bone has a substantial role in resisting the orthodontic force in cases of CBT ≤1.0 mm. Its role, however, declined rapidly with an increase of CBT and virtually disappeared at CBT values > 2.0 mm. LSRcortical was approximately 95% (LSRcancellous was 5%) at CBT = 1.5 mm and almost 100% at CBT = 2.0 mm, indicating that virtually all of the orthodontic force is transmitted to the cortical bone at CBT values

  15. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species.

    PubMed

    Mullender, M G; Huiskes, R; Versleyen, H; Buma, P

    1996-11-01

    The species-specific relationships between trabecular morphology and osteocyte density were investigated in the femoral heads of 30 adult animals of five mammalian species (rat, rabbit, Rhesus monkey, pig, and cow). Our hypothesis is that osteocytes are mechanosensory cells and are involved in the regulation of bone remodeling. According to the predictions from a simulation model, this hypothesis implies that the influencing distance of osteocytes, together with the magnitude of the mechanical loads, determines the thickness of trabeculae and that the number of osteocytes primarily affects the rate of bone remodeling. The number of osteocytes per bone volume ranged from 93,200 mm-3 in rat to 31,900 mm-3 in bovine cancellous bone. Osteocyte density was inversely related to the size of the species. Since basal metabolic output is related to body mass, we speculate that osteocyte density may be related to metabolic rates. Trabecular thickness was larger in the cow than in the other species, but the range of variation between species was relatively small. This agrees with the hypothesis that trabecular thickness is limited by the domain that can be regulated by an osteocyte and that this domain is of similar size regardless of the species. Only in the rat was trabecular thickness considerably smaller than in the other species. This is probably due to the presence of the cartilaginous growth plate in the femoral head of the rat. The relationships with species are different for osteocyte density than for morphometric parameters. Hence, our data support our hypothesis that osteocyte density is not directly associated with the macroscopic trabecular architecture.

  16. Chondrogenic Potential of Peripheral Blood Derived Mesenchymal Stem Cells Seeded on Demineralized Cancellous Bone Scaffolds

    PubMed Central

    Wang, Shao-Jie; Jiang, Dong; Zhang, Zheng-Zheng; Huang, Ai-Bing; Qi, Yan-Song; Wang, Hai-Jun; Zhang, Ji-Ying; Yu, Jia-Kuo

    2016-01-01

    As a cell source with large quantity and easy access, peripheral blood mesenchymal stem cells (PBMSCs) were isolated and seeded in porcine demineralized cancellous bone (DCB) scaffolds, cultured in chondrogenic medium and evaluated for in vitro chondrogenesis. Bone marrow MSCs (BMMSCs) and articular cartilage chondrocytes (ACCs) underwent the same process as controls. The morphology, viability and proliferation of PBMSCs in DCB scaffolds were similar to those of BMMSCs and ACCs. PBMSCs and BMMSCs showed similar chondrogenesis potential with consistent production of COL 2 and SOX 9 protein and increased COL 2 and AGC mRNA expressions at week 3 but the COL 2 protein production was still less than that of ACCs. Minimal increase of hypertrophic markers was found in all groups. Relatively higher ALP and lower COL 10 mRNA expressions were found in both MSCs groups at week 3 than that in ACCs, whereas no significant difference of COL 1 and SOX 9 mRNA and MMP 13 protein was found among all groups. To conclude, PBMSCs shared similar proliferation and chondrogenic potential with BMMSCs in DCB scaffolds and could be an alternative to BMMSCs for cartilage tissue engineering. Further optimization of chondrogenesis system is needed regardless of the promising results. PMID:27821864

  17. Investigation of the influence of reflection on the attenuation of cancellous bone.

    PubMed

    Klinge, Sandra; Hackl, Klaus; Gilbert, Robert P

    2013-01-01

    The model proposed in this paper is based on the fact that the reflection might have a significant contribution to the attenuation of the acoustic waves propagating through the cancellous bone. The numerical implementation of the mentioned effect is realized by the development of a new representative volume element that includes an infinitesimally thin 'transient' layer on the contact surface of the bone and the marrow. This layer serves to model the amplitude transformation of the incident wave by the transition through media with different acoustic impedances and to take into account the energy loss due to the reflection. The proposed representative volume element together with the multiscale finite element is used to simulate the wave propagation and to evaluate the attenuation coefficient for samples with different effective densities in the dependence of the applied excitation frequency. The obtained numerical values show a very good agreement with the experimental results. Moreover, the model enables the determination of the upper and the lower bound for the attenuation coefficient.

  18. Direct Assessment of Articular Cartilage and Underlying Subchondral Bone Reveals a Progressive Gene Expression Change in Human Osteoarthritic Knees

    PubMed Central

    Chou, Ching-Heng; Lee, Chian-Her; Lu, Liang-Suei; Song, I-Wen; Chuang, Hui-Ping; Kuo, San-Yuan; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Kraus, Virginia Byers; Wu, Chia-Chun; Lee, Ming Ta Michael

    2013-01-01

    Objective To evaluate the interaction of articular cartilage (AC) and subchondral bone (SB) through analysis of osteoarthritis (OA)-related genes of site-matched tissue. Design We developed a novel method for isolating site-matched overlying AC and underlying SB from three and four regions of interest respectively from the human knee tibial plateau (n=50). For each site, the severity of cartilage changes of OA were assessed histologically, and the severity of bone abnormalities were assessed by microcomputed tomography. An RNA isolation procedure was optimized that yielded high quality RNA from site-matched AC and SB tibial regions. Q-PCR analysis was performed to evaluate gene expression of 61 OA-associated genes for correlation with cartilage integrity and bone structure parameters. Results A total of 27 (44%) genes were coordinately up or down regulated in both tissues. The expression levels of 19 genes were statistically significantly correlated with the severity of AC degeneration and changes of SB structure; these included: ADAMTS1, ASPN, BMP6, BMPER, CCL2, CCL8, COL5A1, COL6A3, COL7A1, COL16A1, FRZB, GDF10, MMP3, OGN, OMD, POSTN, PTGES, TNFSF11 and WNT1. Conclusions These results provide a strategy for identifying targets whose modification may have the potential to ameliorate pathological alterations and progression of disease in both AC and SB simultaneously. In addition, this is the first study, to our knowledge, to overcome the major difficulties related to isolation of high quality RNA from site-matched joint tissues. We expect this method to facilitate advances in our understanding of the coordinated molecular responses of the whole joint organ. PMID:23220557

  19. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the Osteoarthritis Initiative.

    PubMed

    Bowes, Michael A; McLure, Stewart Wd; Wolstenholme, Christopher Bh; Vincent, Graham R; Williams, Sophie; Grainger, Andrew; Conaghan, Philip G

    2016-10-01

    The aetiology of bone marrow lesions (BMLs) in knee osteoarthritis (OA) is poorly understood. We employed three-dimensional (3D) active appearance modelling (AAM) to study the spatial distribution of BMLs in an OA cohort and compare this with the distribution of denuded cartilage. Participants were selected from the Osteoarthritis Initiative progressor cohort with Kellgren-Lawrence scores ≥2, medial joint space narrowing and osteophytes. OA and ligamentous BMLs and articular cartilage were manually segmented. Bone surfaces were automatically segmented by AAM. Cartilage thickness of <0.5 mm was defined as denuded and ≥0.5-1.5 mm as severely damaged. Non-quantitative assessment and 3D population maps were used for analysing the comparative position of BMLs and damaged cartilage. 88 participants were included, 45 men, mean age (SD) was 61.3 (9.9) years and mean body mass index was 31.1 (4.6) kg/m(2). 227 OA and 107 ligamentous BMLs were identified in 86.4% and 73.8% of participants; OA BMLs were larger. Denuded cartilage was predominantly confined to a central region on the medial femur and tibia, and the lateral facet of the trochlear femur. 67% of BMLs were colocated with denuded cartilage and a further 21% with severe cartilage damage. In the remaining 12%, 25/28 were associated with cartilage defects. 74% of all BMLs were directly opposing (kissing) another BML across the joint. There was an almost exclusive relationship between the location of OA BML and cartilage denudation, which itself had a clear spatial pattern. We propose that OA, ligamentous and traumatic BMLs represent a bone response to abnormal loading. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    . Thus, both low and high doses of heavy ion irradiation cause time dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state.

  1. Mechanical behaviour of Bioactive Glass granules and morselized cancellous bone allograft in load bearing defects.

    PubMed

    Hulsen, D J W; Geurts, J; van Gestel, N A P; van Rietbergen, B; Arts, J J

    2016-05-03

    Bioactive Glass (BAG) granules are osteoconductive and possess unique antibacterial properties for a synthetic biomaterial. To assess the applicability of BAG granules in load-bearing defects, the aim was to compare mechanical behaviour of graft layers consisting of BAG granules and morselized cancellous bone allograft in different volume mixtures under clinically relevant conditions. The graft layers were mechanically tested, using two mechanical testing modalities with simulated physiological loading conditions: highly controllable confined compression tests (CCT) and more clinically realistic in situ compression tests (ISCT) in cadaveric porcine bone defects. Graft layer impaction strain, residual strain, aggregate modulus, and creep strain were determined in CCT. Graft layer porosity was determined using micro computed tomography. The ISCT was used to determine graft layer subsidence in bone environment. ANOVA showed significant differences (p<0.001) between different graft layer compositions. True strains absolutely decreased for increasing BAG content: impaction strain -0.92 (allograft) to -0.39 (BAG), residual strain -0.12 to -0.01, and creep strain -0.09 to 0.00 respectively. Aggregate modulus increased with increasing BAG content from 116 to 653MPa. Porosity ranged from 66% (pure allograft) to 15% (pure BAG). Subsidence was highest for allograft, and remarkably low for a 1:1 BAG-allograft volume mixture. Both BAG granules and allograft morsels as stand-alone materials exhibit suboptimal mechanical behaviour for load-bearing purpose. BAG granules are difficult to handle and less porous, whereas allograft subsides and creeps. A 1:1 volume mixture of BAG and allograft is therefore proposed as the best graft material in load-bearing defects.

  2. Anisotropic post-yield response of cancellous bone simulated by stress-strain curves of bulk equivalent structures.

    PubMed

    Tsouknidas, Alexander; Maliaris, Georgios; Savvakis, Savvas; Michailidis, Nikolaos

    2015-01-01

    During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone-implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these techniques. This study describes the anisotropic biomechanical response of cancellous bone through stress-strain curves of equivalent bulk geometries. A cancellous bone segment, reverse engineered by micro computed tomography, was subjected to uniaxial compression. The material's constitutive law, obtained by nano-indentations, was considered during the simulation of the experimental process. A homodimensionally bulk geometry was employed to determine equivalent properties, resulting in a similar anisotropic response to the trabecular structure. The experimental verification of our model sustained that the obtained stress-strain curves can adequately reflect the post-yield behaviour of the sample. The introduced approach facilitates the consideration of nonlinearity and anisotropy of the tissue, while reducing the geometrical complexity of the model to a minimum.

  3. Anatomically safe and minimally invasive transcrestal technique for procurement of autogenous cancellous bone graft from the mid-iliac crest

    PubMed Central

    Missiuna, Paul C.; Gandhi, Harjeet S.; Farrokhyar, Forough; Harnett, Barry E.; Dore, Edward M.G.; Roberts, Barbara

    2011-01-01

    Background Open iliac bone harvesting techniques can result in significant complications and residual morbidity. In reconstructive procedures where a small volume of autogenous cancellous bone graft is required, a minimally invasive technique for bone harvesting applied at the mid-iliac crest has been deemed satisfactory. We sought to assess the application of a well-established surgical technique to procure adequate volume of autogenous cancellous iliac bone graft with minimal trauma to adjacent structures. Methods We retrospectively reviewed the cases of patients who underwent a minimally invasive transcrestal mid-iliac bone graft procurement technique between May 2003 and December 2007. The technique was performed using a 3.5-mm Steinmann pin as a trocar and a 4.5-mm AO drill sleeve as a trephine. We administered a questionnaire, either in the clinic or by mail, to assess a number of parameters, including postoperative pain, dysthesia, parasthesia, status of the donor site wound and patient satisfaction. Results Of the 37 consecutive patients who underwent the procedure, data from 26 patients were available for assessment. Donor site pain resolved within a few days of the surgery, and none of the patients experienced symptoms of chronic pain. At the final review, none of the patients reported any unpleasant signs and symptoms related to the residual scar. Conclusion We recommend that the described minimally invasive trephine method be used when a small cancellous bone graft is needed. We found that patient morbidity was significantly lower with the trephine harvest technique than with open bone harvesting methods at the anterior iliac crest. PMID:21933526

  4. Immature mice are more susceptible to the detrimental effects of high fat diet on cancellous bone in the distal femur.

    PubMed

    Inzana, Jason A; Kung, Ming; Shu, Lei; Hamada, Daisuke; Xing, Lian Ping; Zuscik, Michael J; Awad, Hani A; Mooney, Robert A

    2013-11-01

    With the increasing prevalence of obesity among children and adolescents, it is imperative to understand the implications of early diet-induced obesity on bone health. We hypothesized that cancellous bone of skeletally immature mice is more susceptible to the detrimental effects of a high fat diet (HFD) than mature mice, and that removing excess dietary fat will reverse these adverse effects. Skeletally immature (5weeks old) and mature (20weeks old) male C57BL/6J mice were fed either a HFD (60% kcal fat) or low fat diet (LFD; 10% kcal fat) for 12weeks, at which point, the trabecular bone structure in the distal femoral metaphysis and third lumbar vertebrae were evaluated by micro-computed tomography. The compressive strength of the vertebrae was also measured. In general, the HFD led to deteriorations in cancellous bone structure and compressive biomechanical properties in both age groups. The HFD-fed immature mice had a greater decrease in trabecular bone volume fraction (BVF) in the femoral metaphysis, compared to mature mice (p=0.017 by 2-way ANOVA). In the vertebrae, however, the HFD led to similar reductions in BVF and compressive strength in the two age groups. When mice on the HFD were switched to a LFD (HFD:LFD) for an additional 12weeks, the femoral metaphyseal BVF in immature mice showed no improvements, whereas the mature mice recovered their femoral metaphyseal BVF to that of age-matched lean controls. The vertebral BVF and compressive strength of HFD:LFD mouse bones, following diet correction, were equivalent to those of LFD:LFD mice in both age groups. These data suggest that femoral cancellous metaphyseal bone is more susceptible to the detrimental effects of HFD before skeletal maturity and is less able to recover after correcting the diet. Negative effects of HFD on vertebrae are less severe and can renormalize with LFD:LFD mice after diet correction, in both skeletally immature and mature animals.

  5. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    PubMed

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  6. Effect of risedronate on the cortical and cancellous bone mass and mechanical properties in ovariectomized rats: a comparison with the effects of alfacalcidol.

    PubMed

    Iwamoto, Jun; Seki, Azusa; Takeda, Tsuyoshi; Sato, Yoshihiro; Yamada, Harumoto; Yeh, James K

    2006-12-01

    The purpose of the present study was to compare the effects of risedronate (RIS) and alfacalcidol (ALF) on the cortical and cancellous bone mass and mechanical properties in ovariectomized rats in a head-to-head fashion. Forty female Sprague-Dawley rats, 7 mo of age, were randomized into six groups: the sham-operated control (Sham) group, and five ovariectomized groups: treated with vehicle, RIS (0.1, 1.0, or 2.5 mg/kg, p.o., daily), and ALF (0.5 microg/kg, p.o., daily). At the end of the 8-wk experimental period, bone histomorphometric analyses of the cancellous bone of the proximal tibial metaphysis and cortical bone of the tibial disphysis was performed, and the mechanical properties of the bone were evaluated at the femoral distal metaphysis (FDM) and femoral diaphysis (FD). RIS prevented the decrease in the cancellous bone volume/total tissue volume (BV/TV) noted in ovariectomized rats in a dose-dependent manner, by suppressing increases in cancellous bone formation and resorption, without any apparent effect on the Ct Ar or maximum load of the FDM or FD. On the other hand, ALF increased the cancellous BV/TV, Ct Ar, and maximum load of the FDM or FD, by mildly decreasing cancellous bone formation and resorption, increasing periosteal and endocortical bone formation, and preventing an increase in endocortical bone resorption. Thus, the present study clearly showed that RIS and ALF had differential effects on the cortical and cancellous bone mass and mechanical properties in ovariectomized rats.

  7. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals

    PubMed Central

    Sprecher, Christoph M.; Schmidutz, Florian; Helfen, Tobias; Richards, R. Geoff; Blauth, Michael; Milz, Stefan

    2015-01-01

    Abstract Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus. PMID:26705200

  8. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  9. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone.

    PubMed

    Groopman, Amber M; Katz, Jonathan I; Holland, Mark R; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A; Miller, James G

    2015-08-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable.

  10. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications.

    PubMed

    Yánez, A; Herrera, A; Martel, O; Monopoli, D; Afonso, H

    2016-11-01

    Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Intermediate strain rate behaviour of cancellous bone: Links between microstructural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Prot, Marianne; Cloete, Trevor; Saletti, Dominique; Laporte, Sebastien

    2015-09-01

    Relationships between the micro-architecture description of cancellous bone, obtained from medical imaging, and its mechanical properties can be used to assess the compression fracture risk at high and low strain rate. This study extends the rupture prediction to the intermediate strain rate regime. The micro-architecture description was obtained with a CT-scan, for which geometry, topology, connectivity and anisotropy parameters were computed and compared to mechanical identified parameters in order to confirm their usefulness. Three strain rates were investigated: 1/s, 10/s and 100/s using two different devices: a Wedge-Bar apparatus and a conventional split Hopkinson pressure bar implemented with a Cone-in-Tube striker and a tandem momentum trap. This setup provides a constant strain rate loading with routine specimen recovery allowing the fracture zone to be investigated. This study reveals that a transition in the response behaviour occurred in the intermediate regime and confirms the significant porous organization influence through the regimes.

  12. [Fusion of reconstructed titanic plate, vertebral pedical screws and autogenous granulated cancellous bone graft in posterior occipitocervical region].

    PubMed

    Zhong, Dejun; Song, Yueming

    2006-08-01

    To explore the technique of fusing the reconstructed titanic plate, the C2 pedical screws, and the autogenous granulated cancellous bone graft in the occipitocervical region. From April 2002 to January 2005, 19 patients aged 31-67 years with occipitocervical instability underwent the occipitocervical fusion using the reconstructed plate, C2 pedical screws, and autogenous granulated cancellous bone graft. Of the patients, 8 had complex occipitocervical deformity, 8 had old atlantoaxial fracture and dislocation, 2 had rheumatoid arthritis and anterior dislocation of the atlantoaxial joint, and 1 had cancer of the deltoid process of the axis. No complication occurred during and after operation. The follow-up for an average of 16 months in 19 patients showed that all the patients achieved solid bony fusion in the occipitocervical region. There was no broken plate, broken screw, looseness of the internal fixation or neurovascular injury. The fixation of the C2 pedical screws with the reconstructed titanic plate is reliable, the insertion is easy, and the autogenous granulated cancellous bone graft has a high fusion rate, thus resulting in a satisfactory effect in the occipitocervical fusion.

  13. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone

  14. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone

  15. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone.

    PubMed

    Huber, Franz-Xaver; Belyaev, Orlin; Hillmeier, Joachim; Kock, Hans-Juergen; Huber, Colette; Meeder, Peter-Juergen; Berger, Irina

    2006-06-08

    A commercially available nanocrystalline hydroxyapatite paste Ostim has been reported in few recent studies to surpass other synthetic bone substitutes with respect to the observed clinical results. However, the integration of this implantable material has been histologically evaluated only in animal experimental models up to now. This study aimed to evaluate the tissue incorporation of Ostim in human cancellous bone after reconstructive bone surgery for trauma. Biopsy specimens from 6 adult patients with a total of 7 tibial, calcaneal or distal radial fractures were obtained at the time of osteosynthesis removal. The median interval from initial operation to tissue sampling was 13 (range 3-15) months. Samples were stained with Masson-Goldner, von Kossa, and toluidine blue. Osteoid volume, trabecular width and bone volume, and cortical porosity were analyzed. Samples were immunolabeled with antibodies against CD68, CD56 and human prolyl 4-hydroxylase to detect macrophages, osteoblasts, and fibroblasts, respectively. TRAP stainings were used to identify osteoclasts. Histomorphometric data indicated good regeneration with normal bone turnover: mean osteoid volume was 1.93% of the trabecular bone mass, trabecular bone volume--28.4%, trabecular width--225.12 microm, and porosity index--2.6%. Cortical and spongious bone tissue were well structured. Neither inflammatory reaction, nor osteofibrosis or osteonecrosis were observed. The implanted material was widely absorbed. The studied nanocrystalline hydroxyapatite paste showed good tissue incorporation. It is highly biocompatible and appears to be a suitable bone substitute for juxtaarticular comminuted fractures in combination with a stable screw-plate osteosynthesis.

  16. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain.

    PubMed

    Pacheco-Costa, Rafael; Davis, Hannah M; Sorenson, Chad; Hon, Mary C; Hassan, Iraj; Reginato, Rejane D; Allen, Matthew R; Bellido, Teresita; Plotkin, Lilian I

    2015-12-01

    Connexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions.

  17. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1994-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (PTH) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses (PTM) of female rats. The right hindlimbs of six-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization (RHLI), the rats were subcutaneously injected with 200 microgram hPTH(1-38)/kg/day for 15 (short-term) or 75 (longer-term) days. Static bone histomorphometry was performed on the primary spongiosa, while both static and dynamic histomorphometry were performed on the secondary spongiosa of the right PTM. Immobilization for 30 days without treatment decreased trabecular bone area, number and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate (BFR/TV) in the secondary spongios. These changes reached a new steady state thereafter. Treatment with 200 microgram hPTH(1-38)/kg/day for 15 days, beginning at 30 days post immobilization (IM), significantly increased trabecular bone area, thickness and number in both primary and secondary spongiosa despite continuous IM when compared to the age-related and IM controls. The short-term (15 days) PTH treatment significantly increased labeling perimeter, mineral apposition rate and BFR/TV in the secondary spongiosa and stimulated longitudinal bone growth as compared to the age-related and IM controls. PTH treatment for longer-term (75 days) further increased trabecular bone area, thickness and number as compared to aging and IM controls and short-term (15 days) PTH treated groups. The bone formation indices in the secondary spongiosa of these longer-term treated rats were lower than that of short-term (15 days) PTH treated group, but they were still higher than those of IM and age-related controls. Our findings indicate that PTH treatment stimulates

  18. Comparison of bone healing, as assessed by computed tomography, following tibial tuberosity advancement in dogs with and without autogenous cancellous bone grafts.

    PubMed

    James, D R; Webster, N; White, J D; Marchevsky, A M; Cashmore, R G; Havlicek, M; Fearnside, S; Black, A P

    2017-09-01

    To objectively compare measures of bone healing, using computed tomography (CT) in dogs following bilateral tibial tuberosity advancement (TTA), between tibiae treated with and without autogenous cancellous bone grafts. Ten dogs with bilateral cranial cruciate ligament disease requiring surgical stabilisation were prospectively recruited to undergo single-session bilateral TTA, with only one, randomly assigned, tibia receiving bone graft in the osteotomy deficit. Bone healing at the osteotomy site was assessed using CT performed 38-70 days post-operatively. CT images were evaluated using both objective measurements of osseous bridging and subjective evaluation by six radiologists. Repeated measures ANOVA was used to compare the objective outcomes between the grafted and non-grafted tibiae. The mean percentage of the osteotomy deficit bridged at the lateral cortex was greater in grafted (77.6, SD 35.2%) compared to non-grafted (63.0, SD 36.5%) tibiae (p=0.001), but did not differ at the medial cortex (p=0.1). The mean minimum callus width was greater in grafted (7.2, SD 3.3 mm) compared to non-grafted (3.6, SD 2.9 mm) tibiae (p<0.001). There was no difference in mean attenuation (measured in Hounsfield units) of the callus between grafted and non-grafted tibiae (p=0.5). The grafted tibia was deemed to have superior bone healing in 50/60 subjective assessments made by radiologists. Superior osseous bridging was detected by CT analysis following TTA using autogenous cancellous bone grafts compared with no graft. This was shown by greater bridging percentage at the lateral cortex and formation of a broader callus. Qualitative assessments made by six radiologists also supported the conclusion that bone healing was improved by use of autogenous cancellous bone graft. CT was a useful method for assessing evidence of bone healing following TTA. These findings justify the application of autogenous cancellous bone graft to augment healing following TTA in dogs.

  19. Effect of vitamin K2 on cortical and cancellous bone mass and hepatic lipids in rats with combined methionine-choline deficiency.

    PubMed

    Iwamoto, Jun; Seki, Azusa; Sato, Yoshihiro; Matsumoto, Hideo; Takeda, Tsuyoshi; Yeh, James K

    2011-05-01

    The present study examined changes of cancellous and cortical bone in rats with combined methionine-choline deficiency (MCD). In addition, the effects of vitamin K2 on cortical and cancellous bone mass and hepatic lipids were investigated in rats with MCD. Six-week-old male Sprague-Dawley rats were randomized into three groups of ten, including an age-matched control (standard diet) group, an MCD diet group, and an MCD diet+vitamin K2 (menatetrenone at 30mg/kg/d orally, 5 times a week) group. After the one-month experimental period, histomorphometric analysis was performed on cortical and cancellous bone from the tibial diaphysis and proximal metaphysis, respectively, while histological examination of the liver was performed after staining with hematoxylin and eosin and Oil Red O. MCD rats displayed weight loss, diffuse and centrilobular fatty changes of the liver, and a decrease of the cancellous bone volume per tissue volume (BV/TV) and percent cortical area (Ct Ar) as a result of decreased trabecular, periosteal, and endocortical bone formation along with increased trabecular and endocortical bone resorption. Administration of vitamin K2 to rats with MCD attenuated weight loss, accelerated the decrease of cancellous BV/TV due to an increase of bone remodeling, and ameliorated the decrease of percent Ct Ar by increasing periosteal and endocortical bone formation. Vitamin K2 administration also prevented MCD-induced diffuse fatty change of the liver. These findings suggest a beneficial effect of vitamin K2 on cortical bone mass and hepatic lipid metabolism in rats with MCD. The loss of cancellous bone mass could possibly have been due to re-distribution of minerals to cortical bone. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Posterolateral Arthrodesis in Lumbar Spine Surgery Using Autologous Platelet-Rich Plasma and Cancellous Bone Substitute: An Osteoinductive and Osteoconductive Effect

    PubMed Central

    Tarantino, Roberto; Donnarumma, Pasquale; Mancarella, Cristina; Rullo, Marika; Ferrazza, Giancarlo; Barrella, Gianna; Martini, Sergio; Delfini, Roberto

    2014-01-01

    Study Design Prospective cohort study. Objectives To analyze the effectiveness and practicality of using cancellous bone substitute with platelet-rich plasma (PRP) in posterolateral arthrodesis. Methods Twenty consecutive patients underwent posterolateral arthrodesis with implantation of cancellous bone substitute soaked with PRP obtained directly in the operating theater on the right hemifield and cancellous bone substitute soaked with saline solution on the right. Results Computed tomography scans at 6 and 12 months after surgery were performed in all patients. Bone density was investigated by comparative analysis of region of interest. The data were analyzed with repeated-measures variance analyses with value of density after 6 months and value of density after 12 months, using age, levels of arthrodesis, and platelet count as covariates. The data demonstrated increased bone density using PRP and heterologous cancellous block resulting in an enhanced fusion rate during the first 6 months after surgery. Conclusions PRP used with cancellous bone substitute increases the rate of fusion and bone density joining osteoinductive and osteoconductive effect. PMID:25083353

  1. Human periodontal ligament stem cells cultured onto cortico-cancellous scaffold drive bone regenerative process.

    PubMed

    Diomede, F; Zini, N; Gatta, V; Fulle, S; Merciaro, I; D'Aurora, M; La Rovere, R M; Traini, T; Pizzicannella, J; Ballerini, P; Caputi, S; Piattelli, A; Trubiani, O

    2016-09-16

    The purpose of this work was to test, in vitro and in vivo, a new tissue-engineered construct constituted by porcine cortico-cancellous scaffold (Osteobiol Dual Block) (DB) and xeno-free ex vivo culture of human Periodontal Ligament Stem Cells (hPDLSCs). hPDLSCs cultured in xeno-free media formulation preserved the stem cells' morphological features, the expression of stemness and pluripotency markers, and their ability to differentiate into mesenchymal lineage. Transmission electron microscopy analysis suggested that after one week of culture, both noninduced and osteogenic differentiation induced cells joined and grew on DB secreting extracellular matrix (ECM) that in osteogenic induced samples was hierarchically assembled in fibrils. Quantitative RT-PCR (qRT-PCR) showed the upregulation of key genes involved in the bone differentiation pathway in both differentiated and undifferentiated hPDLSCs cultured with DB (hPDLSCs/DB). Functional studies revealed a significant increased response of calcium transients in the presence of DB, both in undifferentiated and differentiated cells stimulated with calcitonin and parathormone, suggesting that the biomaterial could drive the osteogenic differentiation process of hPDLSCs. These data were confirmed by the increase of gene expression of L-type voltage-dependent Ca2+ (VDCCL), subunits α1C and α2D1 in undifferentiated cells in the presence of DB. In vivo implantation of the hPDLSCs/DB living construct in the mouse calvaria evidenced a precocious osteointegration and vascularisation process. Our results suggest consideration of DB as a biocompatible, osteoinductive and osteoconductive biomaterial, making it a promising tool to regulate cell activities in biological environments and for a potential use in the development of new custom-made tissue engineering.

  2. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.

  3. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.

    PubMed

    Yeni, Yener N; Zelman, Eric A; Divine, George W; Kim, Do-Gyoon; Fyhrie, David P

    2008-03-01

    Trabecular shear stress magnitude and variability have been implicated in damage formation and reduced bone strength associated with bone loss for human vertebral bone. This study addresses the issue of whether these parameters change with age, gender or anatomical location, and if so whether this is independent of bone mass. Additionally, 3D-stereology-based architectural parameters were examined in order to establish the relationship between stress distribution parameters and trabecular architecture. Eighty cancellous bone specimens were cored from the anterior region of thoracic 12 and donor-matched lumbar 1 vertebrae from a randomly selected population of 40 cadavers. The specimens were scanned at 21-microm voxel size using microcomputed tomography (microCT) and reconstructed at 50microm. Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), bone surface-to-volume ratio (BS/BV), degree of anisotropy (MIL1/MIL3), and connectivity density (-#Euler/Vol) were calculated directly from micro-CT images. Large-scale finite element models were constructed and superoinferior compressive loading was simulated. Apparent cancellous modulus (EFEM) was calculated. The average trabecular von Mises stress generated per uniaxial apparent stress (sigma (-)VM / sigmaapp) and coefficient of variation of trabecular von Mises stresses (COV) were calculated as measures of the magnitude and variability of shear stresses in the trabeculae. Mixed-models and regression were used for analysis. sigma(-)VM / sigmaapp and COV were not different between genders and vertebrae. Both sigma(-)VM / sigmaapp and COV increased with age accompanied by a decrease in BV/TV. Strong relationship of sigma(-)VM / sigmaapp with BV/TV was found whereas COV was strongly related to EFEM/(BV/TV). The results from T12 and L1 were not different and highly correlated with each other. The relationship of sigma(-)VM / sigmaapp with COV was observed to be

  4. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone.

    PubMed

    Cornu, Olivier; Boquet, Jérome; Nonclercq, Olivier; Docquier, Pierre-Louis; Van Tomme, John; Delloye, Christian; Banse, Xavier

    2011-11-01

    Freeze-drying and irradiation are common process used by tissue banks to preserve and sterilize bone allografts. Freeze dried irradiated bone is known to be more brittle. Whether bone brittleness is due to irradiation alone, temperature during irradiation or to a synergetic effect of the freeze-drying-irradiation process was not yet assessed. Using a left-right femoral head symmetry model, 822 compression tests were performed to assess the influence of sequences of a 25 kGy irradiation with and without freeze-drying compared to the unprocessed counterpart. Irradiation of frozen bone did not cause any significant reduction in ultimate strength, stiffness and work to failure. The addition of the freeze-drying process before or after irradiation resulted in a mean drop of 35 and 31% in ultimate strength, 14 and 37% in stiffness and 46 and 37% in work to failure. Unlike irradiation at room temperature, irradiation under dry ice of solvent-detergent treated bone seemed to have no detrimental effect on mechanical properties of cancellous bone. Freeze-drying bone without irradiation had no influence on mechanical parameters, but the addition of irradiation to the freeze-drying step or the reverse sequence showed a detrimental effect and supports the idea of a negative synergetic effect of both procedures. These findings may have important implications for bone banking.

  5. Treatment of infrabony pocket with a collagen membrane supported by cancellous bovine bone.

    PubMed

    Mauro, S; Orlando, L

    2001-06-01

    Treatment of infrabony pockets with guided tissue regeneration (GTR) methods using absorbable membranes supported by bone substitutes has gained wide acceptance. Our objective is to observe the clinical variations obtained with the use of these materials in a prospective clinical study. Nine patients were treated with GTR at nine infrabony pockets using a double layered collagen membrane and deproteinized cancellous bovine bone associated with root conditioning by application of tetracycline-HCl. The nine patients included in this study had adult periodontitis, were non-smokers and responded well to initial therapy. The sites evaluated had probing pocket depths of at least 5 mm and an angular defect of at least 2 mm. The clinical parameters considered were probing pocket depth (PPD), clinical attachment level (CAL) and gingival recession (REC). Some indexes were also evaluated: the modified Quigley and Hein's Plaque index (PI), O'Leary's bleeding index (FMBS) and the Löe and Sillness gingival index (GI). These parameters were measured one week before surgery and at the control visit after an average of 22.9 months. After the removal of the sutures on the eighth day the patients received professional oral hygene every four months at their private dentists' offices. The baseline and the final measurements were compared with the Student OtO-test to verify the statistical significance of this case series. The mean values of PI, FMBS and GI remained unvaried (p>0.05). Results showed an average decrease in PPD of 4.0+/-2.7 mm (p=0.0002), an average increase of CAL of 4.1+/-2.1 mm (p=0.0001) and an average decrease in recession of 0.2+/-1.2 mm (p=0.594). The value of statistical significance was set at p=0.05. We can conclude that the materials used in this study behaved well clinically and that the surgical technique described has given results that, within the limits of the number of cases reported, has modified the PPD and CAL in a significant manner.

  6. Reconstruction of mandibular defects using a custom-made titanium tray in combination with autologous cancellous bone.

    PubMed

    Zhou, Libin; Zhao, Jinlong; Shang, Hongtao; Liu, Wei; Feng, Zhihong; Liu, Guicai; Wang, Jing; Liu, Yanpu

    2011-05-01

    To esthetically and functionally restore a 40-mm canine mandibular discontinuity defect using a custom-made titanium bone-grafting tray packed with autologous iliac bone. Individualized titanium bone-grafting trays were made using a reverse engineering, computer-aided design, and rapid prototyping technique. A 40-mm discontinuity defect in the right mandibular body was created in 10 hybrid dogs. The defect was restored immediately using the tray that was densely packed with autologous cancellous iliac particles and covered with trimmed iliac chips. Sequential radionuclide bone imaging was performed postoperatively at 2, 4, 8, 12, and 24 weeks. The ratio of activity between the grafted mandible and the contralateral native mandible on each transaxial slice was calculated. The mean activity ratio was analyzed at each time point to evaluate the bone metabolism and reconstitution of the grafts. The subjects were sacrificed at 4, 12, and 24 weeks after grafting. The specimens were evaluated by postmortem gross dissection, biomechanical testing, 3-dimensional microcomputed tomographic scanning, and histologic examination. All the subjects tolerated the grafting operation well. Over an observation period of 24 weeks, tray extrusion occurred in 3 of the 10 subjects. Bony continuities were reconstructed in 9 of the 10 subjects. Radionuclide bone imaging revealed that the tracer uptake increased in the grafted mandible, and the radionuclide ratio between the graft and the native mandible decreased with time. Gross evaluation, microcomputed tomographic examination, biomechanical testing, and histologic examination demonstrated corticalization of the grafts. The use of a customized technique using reverse engineering, computer-aided design, and rapid prototyping tray containing autologous cancellous bone is a potentially powerful grafting technique for the reconstruction of mandibular discontinuity defects. Copyright © 2011 American Association of Oral and Maxillofacial

  7. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls.

    PubMed

    Ciarelli, T E; Fyhrie, D P; Schaffler, M B; Goldstein, S A

    2000-01-01

    Cubes of cancellous bone were obtained from proximal femora of women with hip fractures (n = 26) and from female cadaveric controls (n = 32) to compare architecture and mechanics between groups. Specimens were scanned on a microcomputed tomography system. Stereologic algorithms and model-based estimates were applied to the data to characterize the three-dimensional cancellous microstructure. Cubes were mechanically tested to failure to obtain mechanical properties. Specimens from control subjects had significantly higher bone volume fraction, trabecular number, and connectivity than specimens from patients with hip fractures; no difference in trabecular thickness was observed between groups. Both maximum modulus and ultimate stress were significantly higher in the control than in the fracture group, consistent with the higher bone volume found in the control group. No statistical differences in any of these architectural or mechanical variables were found when groups were matched for bone volume. Specimens from both patients with hip fractures and controls demonstrated strong relationships between trabecular number and bone volume fraction that were statistically equivalent, suggesting that for a given bone mass, both groups have the same overall number of trabeculae. However, there was an architectural difference between fracture and control groups in terms of the three-dimensional spatial arrangement of trabeculae. Fracture specimens had a significantly more anisotropic (oriented) structure than control specimens, with proportionately fewer trabecular elements transverse to the primary load axis, even when matched for bone volume. Relationships between mechanical and architectural parameters were significantly different between groups, suggesting that fracture and control groups have different structure-mechanics relationships, which we hypothesize may be a consequence of the altered three-dimensional structure between groups.

  8. Complications with allogeneic, cancellous bone blocks in vertical alveolar ridge augmentation: prospective clinical case study and review of the literature.

    PubMed

    Draenert, Florian G; Kämmerer, Peer W; Berthold, Michael; Neff, Andreas

    2016-08-01

    Vertical bone augmentation in dental implantology is an indication for cancellous allogeneic bone blocks (ABB). However, these materials may lead to adverse reactions, which are known well in orthopedics but rarely published. Therefore, in this study, we performed an evaluation of the use of ABB in vertical bone augmentation in clinical dental implantology. The prospective clinical study included 20 cases with vertical augmentation using ABB and subsequent or simultaneous placement of implants in the lateral maxilla and mandible. Follow-up included panoramic radiography, tissue healing, and peri-implantitis. Because of the limited number of patients, the report was planned to be descriptive only. Loss of ABB or peri-implantitis of more than 30% of the intraosseous implant length was deemed to indicate failure. The study was cancelled after six cases because of an unexpectedly high number of complications (5 of 6; 83%). The average surveillance time was 1460 days. Three types of unsatisfying outcome were observed: type I, early complete loss of the augmentation with soft tissue defects after 3 to 8 weeks (n = 2); type II, early soft tissue maceration (up to 8 weeks) without loss of coverage and complete early bone healing with later peri-implantitis and bone loss after prosthetic loading (6 months or later; n = 2); and type III, complication-free bone healing with subsequent peri-implantitis after prosthetic loading (6 months or later; n = 1). Complications were observed in vertical augmentation with ABB and implant placement. After careful consideration, literature data were found to support these results and also suggest that tissue level implants may be advantageous in vertical bone augmentation with ABB. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion.

    PubMed

    Chang, Wei-Chieh; Tsou, Hsi-Kai; Chen, Wen-Shian; Chen, Chi-Chang; Shen, Chiung-Chyi

    2009-06-01

    We compared the preliminary outcomes of cervical fusion performed using radiolucent cages containing either cancellous bone or hydroxyapatite graft. From July 2004 to June 2006, 45 consecutive patients presented with a total of 109 levels of degenerative disc disease between the C2 and C7 levels. Each patient underwent anterior cervical discectomy and fusion (ACDF) for each affected cervical disc. The retrospective analysis of the cage fillers was divided into group 1 (23 patients with 56 affected cervical levels) who received cages packed with cancellous bone marrow, and group 2 (22 patients with 53 affected cervical levels) who received cages packed with hydroxyapatite graft. Bone marrow was harvested from the anterior iliac crest. The Prolo scale was used to assess both the economic and functional status postoperatively. The Yates' correction to test independence in a contingency was used to compare the fusion rate of both groups post-operatively at day 1 and at 1, 3 and 6 month follow-up. At a mean follow-up of 12 months, the fusion rates observed in groups 1 and 2, respectively, were 21.4% and 13.2% after 1 month, 76.8% and 64.2% after 3 months, and 98.2% and 96.2% after 6 months. Functional and economic status were better in group 2, with a statistical significance (p<0.05) observed at the 3-month follow-up. Although hydroxyapatite graft is an osteoconductive, rather than osteoinductive, material, when used as a cage filler it is a safe and efficient substitute for cancellous bone.

  10. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.

    PubMed

    Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi

    2017-01-01

    Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 (p<0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group (p<0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.

  11. In vitro comparison of equine cancellous bone graft donor sites and tibial periosteum as sources of viable osteoprogenitors.

    PubMed

    McDuffee, Laurie A; Anderson, Gail I

    2003-01-01

    To compare the osteogenic potential of cancellous bone of conventional graft sites with that of one nonconventional site (fourth coccygeal vertebra) and to investigate the tibial periosteum as a donor site with respect to osteogenic potential. In vitro osteogenic cell culture system. Eight adult horses. Cancellous bone or tibial periosteum was aseptically collected and cut into bone chips or periosteal strips of 1 to 2 mm(3) for primary explant cultures. After 2 weeks, primary tissue cultures that yielded a population of osteogenic cells were counted and subcultured at 1 x 10(5) cells/35-mm dish in osteogenic media. After 7 to 10 days, subcultures were stained with Von Kossa (VK) to assess mineralized bone nodule formation. VK-positive bone nodules were counted as osteoprogenitors and compared among 3 donor sites, which provided consistent primary osteogenic cells (tuber coxae, fourth coccygeal vertebra, periosteum) using ANOVA (P <.05). Sternal and tibial bone yielded viable osteogenic cells from 25% and 50% of horses, respectively, whereas yields from tuber coxae, coccygeal vertebra, and periosteum were 75%, 100%, and 100%, respectively. Tuber coxae and periosteum had significantly greater numbers of osteoprogenitors compared with fourth coccygeal vertebra. Among the conventional donor sites, tuber coxae most consistently yielded viable osteogenic cells with an acceptable percentage of osteoprogenitors. Sternal and tibial sites were unreliable in providing osteogenic cells. Two new donor sites, the fourth coccygeal vertebra and tibial periosteum, were tissues with good osteogenic potential. When a source of transplantable viable osteoprogenitor cells is desired, use of the tuber coxae as a conventional donor site is warranted. Use of tibial periosteum or fourth coccygeal vertebra as reliable sources of transplantable osteoprogenitors should be considered. Copyright 2003 by The American College of Veterinary Surgeons

  12. Evaluation of a vital staining protocol with 2,3,5-triphenyltetrazolium chloride for cancellous bone in a sheep model.

    PubMed

    Schiffner, René; Bischoff, Sabine J; Matziolis, Georg; Schmidt, Martin

    2017-03-27

    Decision making on the optimal surgical treatment of fractures often is hampered by the lack of a method for direct assessment of bone vitality. In various contexts, for example to determine the extents of cerebral insults or of myocardial infarctions in experimental studies, tetrazolium based staining procedures of vital cells are widely used. Here, we set out to test the applicability of tetrazolium based staining on bone samples. 8 brains and 26 femoral heads from sheep were used to prepare tissue slices, which were stained with 2,3,5-triphenyltetrazolium chloride (TTC) at various times (1 to 12h) after explantation. Staining of tissue slices was quantified by densitometric image analysis. Spectrophotometry was used for quantification in cultured cells. TTC-staining of tissue slices indicated detectability of vital cells in slices from both tissues up to 4h after explantation. Staining intensity at later time-points was indistinguishable from the staining of untreated samples or sodium azide treated (necrotic cells) controls. We provide experimental evidence that the choice of the optimal surgical approach for the treatment of fractures involving cancellous bone could be aided by a simple staining procedure for vital bone. However, the described procedure depends on the availability of bone specimens (slices). Therefore, search for an improved stain directly applicable to the bone surface is needed.

  13. Revision hip arthroplasty using impacted cancellous bone and cement: a long-term follow-up study.

    PubMed

    Arumugam, Gowthaman; Nanjayan, Shashi Kumar; Quah, Conal; Wraighte, Philip; Howard, Peter

    2015-12-01

    Acetabular bone deficiency is one of the many challenging problems encountered in revision hip arthroplasty. A variety of surgical options and techniques are available including impaction bone grafting. We present our long-term experience of 68 consecutive cups in 64 patients, using impacted cancellous bone grafting with bone cement. With a mean follow-up of 10.5 year (IQR 7.5-12.9) after revision surgery, three implants had undergone further revision. Three patients had subsequent femoral peri-prosthetic fractures, and none of these three required further acetabular revision. Survival of the acetabular components was 95.5 % for all causes and 100 % for aseptic loosening as the end point, with a further four patients showing radiographic, but asymptomatic loosening. A significant correlation was found between previous revision and re-revision (early failure) (p = 0.01) as well as progression of lytic lesion and re-revision (p = 0.01). The median Harris hip score at final follow-up was 79.5 (IQR 67.9-80.4). The use of impacted morcellised allograft bone with a cemented cup is an effective technique to achieve longevity and restoration of bone stock in acetabular revision arthroplasty. Our series has shown good clinical and radiological outcome with survivorship of the prosthesis exceeding 95 % at 10 years.

  14. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone

    PubMed Central

    Huber, Franz-Xaver; Belyaev, Orlin; Hillmeier, Joachim; Kock, Hans-Juergen; Huber, Colette; Meeder, Peter-Juergen; Berger, Irina

    2006-01-01

    Background: A commercially available nanocrystalline hydroxyapatite paste Ostim® has been reported in few recent studies to surpass other synthetic bone substitutes with respect to the observed clinical results. However, the integration of this implantable material has been histologically evaluated only in animal experimental models up to now. This study aimed to evaluate the tissue incorporation of Ostim® in human cancellous bone after reconstructive bone surgery for trauma. Methods: Biopsy specimens from 6 adult patients with a total of 7 tibial, calcaneal or distal radial fractures were obtained at the time of osteosynthesis removal. The median interval from initial operation to tissue sampling was 13 (range 3–15) months. Samples were stained with Masson-Goldner, von Kossa, and toluidine blue. Osteoid volume, trabecular width and bone volume, and cortical porosity were analyzed. Samples were immunolabeled with antibodies against CD68, CD56 and human prolyl 4-hydroxylase to detect macrophages, osteoblasts, and fibroblasts, respectively. TRAP stainings were used to identify osteoclasts. Results: Histomorphometric data indicated good regeneration with normal bone turnover: mean osteoid volume was 1.93% of the trabecular bone mass, trabecular bone volume – 28.4%, trabecular width – 225.12 μm, and porosity index – 2.6%. Cortical and spongious bone tissue were well structured. Neither inflammatory reaction, nor osteofibrosis or osteonecrosis were observed. The implanted material was widely absorbed. Conclusion: The studied nanocrystalline hydroxyapatite paste showed good tissue incorporation. It is highly biocompatible and appears to be a suitable bone substitute for juxtaarticular comminuted fractures in combination with a stable screw-plate osteosynthesis. PMID:16762071

  15. Comparison of autogenous cancellous bone grafting and extracorporeal shock wave therapy on osteotomy healing in the tibial tuberosity advancement procedure in dogs. Radiographic densitometric evaluation.

    PubMed

    Barnes, K; Lanz, O; Werre, S; Clapp, K; Gilley, R

    2015-01-01

    To compare optical values in the osteotomy gap created after a tibial tuberosity advancement (TTA) treated with autogenous cancellous bone graft, extracorporeal shock wave therapy, a combination of autogenous cancellous bone graft and extracorporeal shock wave therapy, and absence of both autogenous cancellous bone graft and extracorporeal shock wave therapy using densitometry. Dogs that were presented for surgical repair of a cranial cruciate ligament rupture were randomly assigned to one of four groups: TTA with autogenous cancellous bone graft (TTA-G), TTA with autogenous cancellous bone graft and extracorporeal shock wave therapy (TTA-GS), TTA with extracorporeal shock wave therapy (TTA-S), and TTA with no additional therapy (TTA-O). Mediolateral radiographs at zero, four and eight weeks after surgery were evaluated to compare healing of the osteotomy gap via densitometry. An analysis of variance was used to compare the densitometric values between groups. At four weeks after surgery, a significant difference in osteotomy gap density was noted between TTA-GS (8.4 millimetres of aluminium equivalent [mmAleq]) and TTA-S (6.1 mmAleq), and between TTA-GS (8.4 mmAleq) and TTA-O (6.4 mmAleq). There were no significant differences noted between any groups at the eight week re-evaluation. There were no significant differences in the osteotomy gap density at eight weeks after surgery regardless of the treatment modality used. The combination of autogenous cancellous bone graft and extracorporeal shock wave therapy may lead to increased radiographic density of the osteotomy gap in the first four weeks after surgery. Densitometry using an aluminium step wedge is a feasible method for comparison of bone density after TTA in dogs.

  16. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.

    PubMed

    Anderson, Christian C; Bauer, Adam Q; Holland, Mark R; Pakula, Michal; Laugier, Pascal; Bretthorst, G Larry; Miller, James G

    2010-11-01

    Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.

  17. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    PubMed

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations.

  18. Mandibular reconstruction using custom-made titanium mesh tray and particulate cancellous bone and marrow harvested from bilateral posterior ilia.

    PubMed

    Yamada, Hiroyuki; Nakaoka, Kazutoshi; Horiuchi, Toshikatsu; Kumagai, Kenichi; Ikawa, Tomoko; Shigeta, Yuko; Imamura, Eisaku; Iino, Mitsuyoshi; Ogawa, Takumi; Hamada, Yoshiki

    2014-06-01

    The objective of this study is to evaluate usefulness of mandibular reconstructions using a custom-made titanium mesh (Ti-mesh) tray and particulate cancellous bone and marrow (PCBM). A consecutive nine patients who underwent mandibular reconstruction were enrolled in this study. They were five men and four women (mean age: 53.9 years). Virtual reality simulation was performed using computer software based on the pre-operative computed tomography data. A 3-dimensional (3-D) skull model was constructed using a 3-D printer. A tray was custom-made from a Ti-mesh sheet bent to adapt to the model. After PCBM harvesting from bilateral posterior ilia, the tray was fixed to the host bone. New bone formation and configuration of the reconstructed mandible were assessed radiologically. Complications were recorded in each patient during the follow-up period. Patients, satisfaction with post-operative facial contour was evaluated using a visual analogue scale (VAS score, range = 0-100). In six of nine patients, excellent new bone formation was recognised and expected results were radiologically achieved. Complications occurred in four patients. These complications included Ti-mesh fracture, Ti-mesh exposure in the oral cavity, and delayed infection. Mean VAS score on patient satisfaction was 77.6. Although the data are preliminary, the results suggest that this method is clinically useful.

  19. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone.

    PubMed

    Hsu, Y H; Turner, I G; Miles, A W

    2007-12-01

    The aim of this study was to fabricate porous implant materials with graded pore structures similar to the bimodal structure of cortical and cancellous bone. Porous hydroxyapatite/tricalcium phosphate (HA/TCP) bioceramics with interconnected porosity and controlled pore sizes required to simulate natural bone tissue morphology were fabricated by a novel technique of vacuum impregnation of reticulated polymeric foams with ceramic slip. Functionally gradient materials (FGMs) with porosity gradients were made by joining different pore per inch (ppi) foams together by either stitching or pressfitting to form templates. Post production, no defects could be seen at the interface between the two different porosity sections. The macropore sizes of the HA/TCP bioceramics were larger than 100 mum which is appropriate for bone ingrowth. A sample with a graded porous structure which is close to the human bone morphology was also developed. The two component structures were conspicuously different but joined together firmly. Four point bend testing of FGM samples showed them to have similar mechanical properties to homogeneous ceramics based on foam templates with uniform pore sizes, with no evidence of interfacial weakness. Many potential biomedical applications could be developed utilising graded porous structures. The ease of processing will make it possible to fabricate a range of complex shapes for different applications.

  20. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit.

    PubMed

    Rahimzadeh, Rasoul; Veshkini, Abbas; Sharifi, Davood; Hesaraki, Saeed

    2012-02-01

    To evaluate the osteo-regenerative capacity of proprietary bone grafting material as a bone defect filler and osteogenetic stimulation to speed up bone healing too. Eighteen adult male New Zealand white rabbits were anesthetized and a segmental full thickness bone defect of 10 mm in length was created in the middle of the right radial shaft in all rabbits. They were divided into two groups of 9 rabbits. Group I was considered as control and the fractured site was fixed using finger bone plate with 4 screws, whereas the cancellous bone scaffold coated with Nano-Hydroxyapatite was used to fill the gap after fracture fixation in Group II. Radiography, two dimensional and color Doppler ultrasonography were done before and after creating defects and on 0, 15, 30, 60 and 90 days to evaluate local reaction as far as new blood vessels network and callus formation are observed. On the radiographs during the whole process, bone repair in Group I was not as perfect as those in Group II samples and trace of internal callus filled the gap incompletely in 60 days in Group I, whereas in Group II internal callus almost was formed on 30 days and in addition intercortical callus was seen supporting to cover and filled the gap completely in this group in 60 day; Sonographic findings confirmed the protrusion of newly formed blood vascular network in 30 days in Group I and from 15 days in Group II and remarkably increased till end of observation period. The nano-hydroxyapatite with more features and shorter in time, made possible the reconstruction of bone tissue and alternative techniques as well as previous bone graft, also radiography and ultrasonography are reliable techniques to trace local reaction at proper time.

  1. The effect of supplementation of a glutamine precursor on the growth plate, articular cartilage and cancellous bone in fundectomy-induced osteopenic bone

    PubMed Central

    TOMASZEWSKA, Ewa; DOBROWOLSKI, Piotr; PROST, Łukasz; HUŁAS-STASIAK, Monika; MUSZYŃSKI, Siemowit; BLICHARSKI, Tomasz

    2015-01-01

    The aim of the study was to investigate the effect of 2-oxoglutaric acid (2-Ox) supplementation (a precursor of glutamine and hydroxyproline, the most abundant amino acid of collagen) on cartilage and bone in pigs after fundectomy. Pigs at the age of forty days were subjected to fundectomy and divided into two groups depending on 2-Ox supplementation (at the daily dosage of 0.4 g/kg of body weight). Other pigs were sham operated. Pigs were euthanized at the age of eight months. An analysis of the morphometry of trabeculae, growth plate and articular cartilage in fundectomy-induced osteopenic bone was performed. Moreover, the levels of expression of osteocalcin, osteopontin and osteoprotegerin in trabecular bone and osteocalcin in articular cartilage were evaluated. Articular cartilage was thinnest in fundectomized pigs and thickest in 2-Ox-supplemented animals after fundectomy. Moreover, 2-Ox supplementation after fundectomy enhanced the total thickness of the growth plate and trabeculae in fundectomized pigs. The most evident signal for osteocalcin and osteoprotegerin in trabecular bone was in sham-operated and 2-Ox-supplemented pigs; a low reaction was observed in the fundectomized group. Additionally, as a long-term postoperative consequence, a change was observed in the expression of osteocalcin in articular cartilage. It seems that 2-Ox is suitable for use in preventing the negative effects of fundectomy on cancellous bone and cartilage. PMID:26725871

  2. Topical hemostatic agents to reduce bleeding from cancellous bone surfaces: a comparison of Gelfoam paste and bone wax.

    PubMed

    Zirna, H; Keating, S E; DeVincentis, A F

    1987-01-01

    This article reviews the history of topical bone hemostatic agents, listing advantages and disadvantages of the more commonly used agents. Gelfoam paste and bone wax were chosen to study the effects that bone hemostatic agents have on the occurrence and severity of postoperative edema and pain. The authors discovered 80% of the patients utilizing bone wax, and 91% of the patients receiving Gelfoam paste, had markedly decreased amounts of immediate postoperative edema. Furthermore, 90% of the patients treated with bone wax, and 75% of the patients treated with Gelfoam paste, reported less postoperative pain than anticipated with the surgical procedure performed.

  3. Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats.

    PubMed

    Tian, XiaoYan; Setterberg, Rebecca B; Li, Xiaodong; Paszty, Chris; Ke, Hua Zhu; Jee, Webster S S

    2010-09-01

    The current report describes the skeletal effects of a sclerostin monoclonal antibody (Scl-AbIII) treatment at a yellow (fatty) marrow skeletal site in adult female rats. Ten-month-old female Sprague-Dawley rats were treated with vehicle or Scl-AbIII at 5 or 25 mg/kg, twice per week by s.c. injection for 4 weeks. Trabecular bone from a yellow (fatty) marrow site, the 5th caudal vertebral body (CVB), was processed undecalcified for quantitative bone histomorphometric analysis. Compared to vehicle controls, Scl-AbIII at both doses significantly increased bone formation parameters and trabecular bone volume and thickness and decreased bone resorption parameter in the trabecular bone of the CVB. As a reference, we also found that the Scl-AbIII at both doses significantly decreased bone resorption and increased bone formation and bone volume in a red (hematopoietic) marrow site, the 4th lumber vertebral body (LVB). It appears that the percentage of increase in trabecular bone volume induced by Scl-AbIII treatment was slightly larger in the LVB than in the CVB. In summary, these preclinical findings show that antibody-mediated sclerostin inhibition has significant bone anabolic effects at both red and yellow marrow skeletal sites.

  4. Cancellous and cortical bone mineral density around an elastic press-fit socket in total hip arthroplasty

    PubMed Central

    Pakvis, Dean F M; Heesterbeek, Petra J C; Severens, Marianne; Spruit, Maarten

    2016-01-01

    Background and purpose — The acetabular component has remained the weakest link in hip arthroplasty for achievement of long-term survival. One of the possible explanatory factors for acetabular failure has been acetabular stress shielding. For this, we investigated the effects of a cementless elastic socket on acetabular bone mineral density (BMD). Patients and methods — During 2008–2009, we performed a single-center prospective cohort trial on 25 patients (mean age 64 (SD 4), 18 females) in whom we implanted a cementless elastic press-fit socket. Using quantitative BMD measurements on CT, we determined the change in BMD surrounding the acetabular component over a 2-year follow-up period. Results — We found a statistically significant decrease in cancellous BMD (−14% to −35%) and a stable level of cortical BMD (5% to −5%) surrounding the elastic press-fit cup during the follow-up period. The main decrease was seen during the first 6 months after implantation. During the second year, cancellous BMD showed a further decrease in the medial and lower acetabular regions. Interpretation — We found no evidence that an elastic press-fit socket would prevent acetabular stress shielding during a 2-year follow-up. PMID:27659074

  5. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.

    PubMed

    Fellah, M; Fellah, Z E A; Mitri, F G; Ogam, E; Depollier, C

    2013-04-01

    A temporal model based on the Biot theory is developed to describe the transient ultrasonic propagation in porous media with elastic structure, in which the viscous exchange between fluid and structure are described by fractional derivatives. The fast and slow waves obey a fractional wave equation in the time domain. The solution of Biot's equations in time depends on the Green functions of each of the waves (fast and slow), and their fractional derivatives. The reflection and transmission operators for a slab of porous materials are derived in the time domain, using calculations in the Laplace domain. Their analytical expressions, depend on Green's function of fast and slow waves. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.

  6. Hemostasis and Safety of a Novel Fibrin Dressing Versus Standard Gauze in Bleeding Cancellous Bone in a Caprine Spine Surgery Model.

    PubMed

    Floyd, C Timothy; Padua, Rodolfo A; Olson, Curtis E

    2017-09-01

    Decorticated bone is a significant source of blood loss in scoliosis surgery. Current hemostatic methods include packed gauze (GS), physical barriers such as bone wax, and xenograft collagen-based materials. We assessed the safety and efficacy of a novel fibrin dressing (dextran-thrombin-fibrinogen [DTF]) compared to GS. This dressing comprises lyophilized thrombin and fibrinogen embedded in an elastic electrospun nanofiber dextran matrix. The study tests the hypothesis that DTF is more efficacious than GS in control of bleeding from cancellous bone. A preclinical Good Laboratory Practices (GLP) study. We enrolled 10 goats that were followed for 28 ± 1 days. Each animal was randomly assigned to the test or control group. Both test and control animals had 4 cancellous bone injuries. Test animal injuries were treated with DTF, whereas standard GS was used to control bleeding in the control animals. Bleeding at the bone injury site was characterized as either none, oozing, flowing, or pulsatile and was assessed at 4 and 8 minutes after dressing application. Goats were survived 28 ± 1 days and then necropsied. Application of the fibrin dressing to bleeding cancellous bone, both posterior spinal lamina, and iliac crest graft sites, resulted in control of bleeding within 4 minutes at all injury sites. Eighty percent of control injury sites continued to bleed after 8 minutes and required application of bone wax to control bleeding. There were no differences in prothrombin time, partial thromboplastin time, or fibrinogen levels between test and control animals at 1 or 28 days. We observed no adverse histologic reactions at 28 days. The fibrin dressing is an efficacious and safe method of controlling blood loss from cancellous bone in a spine surgery model. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  7. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering.

    PubMed

    Jamalpoor, Zahra; Mirzadeh, Hamid; Joghataei, Mohammad Taghi; Zeini, Darya; Bagheri-Khoulenjani, Shadab; Nourani, Mohammad Reza

    2015-05-01

    The aim of this study was to mimic the specific structure of bone and fabricate a biomimetic nano-hydroxyapatite (HA)/chitosan (Cs)/gelatin scaffolds using combination of particle leaching and freeze drying methods eliminating mold effects. To achieve an optimum structure, scaffolds with different gelatin/Cs weight ratio were fabricated. Morphological characterization of scaffolds by scanning electron microscopy method showed highly interconnected porous structures similar to cancellous bone with mean pore size ranging from 140 to 190 μm. Nano-HA crystals were dispersed homogeneously in the polymer matrix according to the energy-dispersive X-ray spectroscopy and transmission electron microscopy images. Fourier transform infrared and X-ray diffraction results disclosed that chemical interactions were formed between nano-HA, Cs, gelatin and crystallinity of each material decreased with blending. It was found that increasing the gelatin content significantly improved water uptake, degradation rate as well as attachment, infiltration and proliferation of Saos2 cells to the scaffolds. The presented results confirm that the designed biomimetic nano-HA /Cs/gelatin scaffolds can be used as promising substitutes for bone tissue engineering.

  8. The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis

    PubMed Central

    Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Kowalski, Artur; Rogala, Piotr; Strzyżewski, Wojciech; Łabędź, Wojciech; Uklejewski, Ryszard; Novotny, Karel; Kanicky, Viktor; Frankowski, Marcin

    2015-01-01

    The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity. PMID:26357659

  9. Mandibular reconstruction using a tray with particulate cancellous bone and marrow and platelet-rich plasma by an intraoral approach.

    PubMed

    Matsuo, Akira; Chiba, Hiroshige; Toyoda, Jun; Abukawa, Harutsugi; Fujikawa, Ko; Tsuzuki, Masako; Watanabe, Masato

    2011-06-01

    To evaluate the possibility of immediate mandibular reconstruction using particulate cancellous bone and marrow (PCBM), platelet-rich plasma (PRP), and a tray, we compared the postsurgical infection rate and bone formation in patients who received mandibular reconstruction with this method using either an intraoral or extraoral approach. We conducted a retrospective study of a series of 18 patients who underwent the mandibular reconstruction procedure using a mesh tray with PCBM and PRP, all performed by 1 surgeon. These cases were further divided into those treated by the intraoral approach and those treated by the extraoral approach. Clinical data, postoperative bone formation, and complications in the 2 groups were evaluated. The χ(2) examination and the Mann-Whitney U test were used for statistical analysis. We could not detect any statistically significant differences in clinical data between the 2 groups, except for the timing of reconstruction. There were postoperative complications such as wound dehiscence and tray exposure, as well as infection of the reconstructed bone. The overall complication rate of the recipient sites in the intraoral group was 30% (3 of 10), whereas in the extraoral group, it was 0%. However, satisfactory bone formation was seen in all cases in the intraoral group (100% [10 of 10]) but only 87.5% (7 of 8) in the extraoral group. We conclude that mandibular reconstruction using a tray with PCBM and PRP is a safe and reliable method for cases of benign tumor and trauma, even if immediate reconstruction is performed by an intraoral approach. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.

    PubMed

    Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte

    2006-08-15

    The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  11. Effectiveness of antimicrobial photodynamic therapy using a 660 nm laser and methyline blue dye for inactivating Staphylococcus aureus biofilms in compact and cancellous bones: An in vitro study.

    PubMed

    Rosa, Luciano Pereira; Silva, Francine Cristina da; Nader, Sumaia Alves; Meira, Giselle Andrade; Viana, Magda Souza

    2015-06-01

    New therapeutic modalities such as antimicrobial photodynamic therapy (APDT) has been investigated in order to be a valid alternative to the treatment of infections caused by different microorganisms. This work evaluated the in vitro effectiveness of Antimicrobial Photodynamic Therapy (APDT) using 660 nm laser combined with methylene blue dye to inactivate Staphylococcus aureus (ATCC 25923) biofilms in compact and cancellous bones specimens. Eighty specimens of compact bone and 80 specimens of cancellous bone were contaminated with a standard suspension of S. aureus and incubated for 14 days at 37°C to induce the formation of biofilms. The specimens were then divided into groups (n = 10) according to the established treatment: PS-L- (control--no treatment), PS+L- (only AM for 5 min in the dark), PS-L+90 (only laser irradiation for 90 s), PS-L+180 (only laser irradiation for 180 s), PS-L+300 (only laser irradiation for 300 s), APDT90 (APDT for 90 s), APDT180 (APDT for 180 s), and APDT300 (APDT for 300 s). The findings were statistically analyzed by ANOVA 5%. All of the experimental treatments showed a significant reduction (log 10 CFU/mL) of S. aureus biofilms in compact and cancellous bones specimens compared with the control group, and the APDT group was the most effective. Compact specimens treated with APDT showed the greatest reduction in biofilms compared with cancellous specimens, regardless of length of treatment. APDT with methylene blue dye and a 660 nm laser proved to be effective in inactivating S. aureus biofilms formed in compact and cancellous bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of Long-Term Daily Administration of Prostaglandin-E2 on Maintaining Elevated Proximal Tibial Metaphyseal Cancellous Bone Mass in Male Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S. S.; Mori, Satoshi; Li, Xiao Jian; Kimmel, Donald B.

    1992-01-01

    The effects of long-term prostaglandin E(sub 2) (PGE(sub 2)) on cancellous bone in proximal tibial metaphysis were studied in 7 month old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE(sub 2)/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE(sub 2) produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE(sub 2) for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE(sub 2) administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration .

  13. Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone.

    PubMed

    Wang, Xiang; Allen, Matthew R; Burr, David B; Lavernia, Enrique J; Jeremić, Boris; Fyhrie, David P

    2008-10-01

    Nanoindentation has been widely used to study bone tissue mechanical properties. The common method and equations for analyzing nanoindentation, developed by Oliver and Pharr, are based on the assumption that the material is linearly elastic. In the present study, we adjusted the constraint of linearly elastic behavior and use nonlinear finite element analysis to determine the change in cancellous bone material properties caused by bisphosphonate treatment, based on an isotropic form of the Mohr-Coulomb failure model. Thirty-three canine lumbar vertebrae were used in this study. The dogs were treated daily for 1 year with oral doses of alendronate, risedronate, or saline vehicle at doses consistent, on a mg/kg basis, to those used clinically for the treatment of post-menopausal osteoporosis. Two sets of elastic modulus and hardness values were calculated for each specimen using the Continuous Stiffness Measurement (CSM) method (E(CSM) and H(CSM)) from the loading segment and the Oliver-Pharr method (E(O-P) and H(O-P)) from the unloading segment, respectively. Young's modulus (E(FE)), cohesion (c), and friction angle (phi) were identified using a finite element model for each nanoindentation. The bone material properties were compared among groups and between methods for property identification. Bisphosphonate treatment had a significant effect on several of the material parameters. In particular, Oliver-Pharr hardness was larger for both the risedronate- and alendronate-treated groups compared to vehicle and the Mohr-Coulomb cohesion was larger for the risedronate-treated compared to vehicle. This result suggests that bisphosphonate treatment increases the hardness and shear strength of bone tissue. Shear strength was linearly predicted by modulus and hardness measured by the Oliver-Pharr method (r(2)=0.99). These results show that bisphosphonate-induced changes in Mohr-Coulomb material properties, including tissue shear cohesive strength, can be accurately

  14. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.

    PubMed

    Hoffman, Joseph J; Nelson, Amber M; Holland, Mark R; Miller, James G

    2012-09-01

    A Bayesian probability theory approach for separating overlapping ultrasonic fast and slow waves in cancellous bone has been previously introduced. The goals of this study were to investigate whether the fast and slow waves obtained from Bayesian separation of an apparently single mode signal individually correlate with porosity and to isolate the fast and slow waves from medial-lateral insonification of the calcaneus. The Bayesian technique was applied to trabecular bone data from eight human calcanei insonified in the medial-lateral direction. The phase velocity, slope of attenuation (nBUA), and amplitude were determined for both the fast and slow waves. The porosity was assessed by micro-computed tomography (microCT) and ranged from 78.7% to 94.1%. The method successfully separated the fast and slow waves from medial-lateral insonification of the calcaneus. The phase velocity for both the fast and slow wave modes showed an inverse correlation with porosity (R(2) = 0.73 and R(2) = 0.86, respectively). The slope of attenuation for both wave modes also had a negative correlation with porosity (fast wave: R(2) = 0.73, slow wave: R(2) = 0.53). The fast wave amplitude decreased with increasing porosity (R(2) = 0.66). Conversely, the slow wave amplitude modestly increased with increasing porosity (R(2) = 0.39).

  15. Inverse problems in cancellous bone: Estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory

    PubMed Central

    Anderson, Christian C.; Bauer, Adam Q.; Holland, Mark R.; Pakula, Michal; Laugier, Pascal; Bretthorst, G. Larry; Miller, James G.

    2010-01-01

    Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges. PMID:21110589

  16. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography

    PubMed Central

    Hoffman, Joseph J.; Nelson, Amber M.; Holland, Mark R.; Miller, James G.

    2012-01-01

    A Bayesian probability theory approach for separating overlapping ultrasonic fast and slow waves in cancellous bone has been previously introduced. The goals of this study were to investigate whether the fast and slow waves obtained from Bayesian separation of an apparently single mode signal individually correlate with porosity and to isolate the fast and slow waves from medial-lateral insonification of the calcaneus. The Bayesian technique was applied to trabecular bone data from eight human calcanei insonified in the medial-lateral direction. The phase velocity, slope of attenuation (nBUA), and amplitude were determined for both the fast and slow waves. The porosity was assessed by micro-computed tomography (microCT) and ranged from 78.7% to 94.1%. The method successfully separated the fast and slow waves from medial-lateral insonification of the calcaneus. The phase velocity for both the fast and slow wave modes showed an inverse correlation with porosity (R2 = 0.73 and R2 = 0.86, respectively). The slope of attenuation for both wave modes also had a negative correlation with porosity (fast wave: R2 = 0.73, slow wave: R2 = 0.53). The fast wave amplitude decreased with increasing porosity (R2 = 0.66). Conversely, the slow wave amplitude modestly increased with increasing porosity (R2 = 0.39). PMID:22978910

  17. Quantitation and localisation of aluminum in human cancellous bone in renal osteodystrophy

    SciTech Connect

    Boyce, B.F.; Eider, H.Y.; Fell, S.G.; Nicholson, W.A.; Smith, G.D.; Dempster, D.W.; Gray, C.C.; Boyle, I.T.

    1981-01-01

    There is increasing evidence that aluminium toxicity may be responsible for a type of vitamin D-resistant osteomalacia and an unusually severe form of dementia (''dialysis dementia'') occurring in some patients with chronic renal failure on regular haemodialysis. High concentrations of Al have been found in blood, bone and brain tissue from these patients. The A1 comes either from the water used during dialysis (added in some public water supplies during purification to precipitate contaminants) or from aluminium salts taken orally to bind phosphates and so restrict their dietary adsorption. Recent X-ray microanalytical studies have demonstrated Al in lysosomes of cerebral cells and at the calcification front in bone of patients dying of dialysis dementia but its concentration at this site in bone has not been measured using this technique. We have examined transiliac bone biopsies from 3 patients with dialysis dementia and 6 non-demented patients on regular haemodialysis, Atomic absorption spectrometry (AAS) reveals high Al content in bone from the 3 demented and 2 of the non-demented patients. All had vitamin D-resistant osteomalacia. Using X-ray microanalysis Al was located in the bone of these five patients only. The Al had a highly focal distribution and was measured at up to 40 times higher concentration than by AAS but only in mineralisation nuclei of the calcification front or less than 2 micrometer into the mineralized bone. The study was done retrospectively on biopsies fixed in 10% buffered formalin, which almost certainly eluted some of the Al. In life, Al levels may have been higher than those we have detected.

  18. Cancellous bone healing around strontium-doped hydroxyapatite in osteoporotic rats previously treated with zoledronic acid.

    PubMed

    Li, Yunfeng; Shui, Xueping; Zhang, Li; Hu, Jing

    2016-04-01

    Bisphosphonates (BPs) are potent anti-osteoporotic agents. Strontium-doped hydroxyapatite (HA) (SrHA) has been reported to increase bone density and improve trabecular microarchitecture in osteoporotic animals. But information about the effect of SrHA on the surrounding bone tissue in osteoporotic animals previously on BPs treatment is limited. We hypothesize that SrHA will induce increased bone density in the vicinity of the material when compared to HA, even in osteoporotic animals previously treated with BPs. HA and 10%SrHA (HA with 10 mol % calcium substituted by strontium) implants were prepared and characterized by scanning electronic microscopy (SEM), X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). Osteoporotic animal model was established by bilateral ovariectomy. Twelve weeks later, all OVX rats accepted subcutaneous injection of zoledronic acid (ZOL) at the dose of 1.5 μg/kg weekly for another twelve weeks. Subsequently, rod-shaped HA and SrHA implants were inserted in the distal femur of the OVX animals previously treated with ZOL. Eight weeks after implantation, specimens were harvested for histological and micro-computed tomography (micro-CT) analysis. Compared to HA, 10%SrHA raised the percent bone volume by 32.7%, the mean trabecular thickness by 36.5%, the mean trabecular number by 34.3%, the mean connectivity density by 38.4%, while the mean trabecular separation showed no significant difference. 10%SrHA also increased the bone area density by 36.3% in histological analysis. Results from this study indicated that 10%SrHA increased bone density and improved trabecular microarchitecture around implants in osteoporotic animals previously treated with ZOL when compared to HA.

  19. Effects of Prostaglandin E2 and Risedronate Administration on Cancellous Bone in Older Female Rats

    NASA Technical Reports Server (NTRS)

    Lin, B. Y.; Jee, W. S. S.; Ma, Y. F.; Ke, H. Z.; Kimmel, D. B.; Li, X. J.

    1994-01-01

    The effects of Prostaglandin E2 (PGE2) and Risedronate (Ris) both separately and in combination (PGE2 + Ris) were studied on the intact aged female rat skeleton to determine whether the combination of PGE2 with an antiresorptive agent is more effective anabolically than PGE2 alone. Nine month-old Sprague-Dawley rats were injected subcutaneously either with vehicle, 6 mg PGE2/kg per day, 1 or 5 microgram Ris/kg twice a week, or 6 mg PGE2/kg per day plus 1 or 5 microgram Ris/kg twice a week (PGE2 + 1 Ris or PGE2 + 5 Ris) for 60 days. After the treatment, we determined the longitudinal bone growth rate, the qualitative appearance of the primary spongiosa (PS), and the static and dynamic bone histomorphometry of the secondary spongiosa (SS) of the proximal tibial metaphysis (PTM) by examining undecalcified longitudinal sections after double fluorescent labeling. The relative effects of these treatments on longitudinal bone growth were ranked as follows: PGE2 + 5 Ris greater than PGE2 + 1 Ris = basal greater than PGE2 greater than 1 microgram Ris = 5 microgram Ris = aging. The density of the PS was ranked as follows: PGE2 + 5 Ris greater than PGE2 + 1 Ris = PGE2 = 5 microgram Ris = 1 microgram Ris greater than basal = aging. The increase in density of the PS was the result of stimulated longitudinal growth and the action of bisphosphonate. Bone mass in the SS was ranked as follows: PGE2 + 5 Ris = PGE2 + 1 Ris = PGE2 greater than 5 microgram Ris = 1 microgram Ris = aging = basal. However, PGE2 alone and its cotreatment with Ris accumulated bone by different tissue mechanisms. PGE2 alone created new bone by increasing activation frequency 8.3-fold and the formation to resorption ratio 1.3-fold from the controls. The combination of PGE2 and Ris depressed activation frequency (-54% to -74%), and bone formation rate (tissue-based -31%, and bone-based -42%) and eroded surface (-79% to -81%), so as to increase the formation to resorption ratio (three- to four-fold) over PGE2

  20. Effects of Prostaglandin E2 and Risedronate Administration on Cancellous Bone in Older Female Rats

    NASA Technical Reports Server (NTRS)

    Lin, B. Y.; Jee, W. S. S.; Ma, Y. F.; Ke, H. Z.; Kimmel, D. B.; Li, X. J.

    1994-01-01

    The effects of Prostaglandin E2 (PGE2) and Risedronate (Ris) both separately and in combination (PGE2 + Ris) were studied on the intact aged female rat skeleton to determine whether the combination of PGE2 with an antiresorptive agent is more effective anabolically than PGE2 alone. Nine month-old Sprague-Dawley rats were injected subcutaneously either with vehicle, 6 mg PGE2/kg per day, 1 or 5 microgram Ris/kg twice a week, or 6 mg PGE2/kg per day plus 1 or 5 microgram Ris/kg twice a week (PGE2 + 1 Ris or PGE2 + 5 Ris) for 60 days. After the treatment, we determined the longitudinal bone growth rate, the qualitative appearance of the primary spongiosa (PS), and the static and dynamic bone histomorphometry of the secondary spongiosa (SS) of the proximal tibial metaphysis (PTM) by examining undecalcified longitudinal sections after double fluorescent labeling. The relative effects of these treatments on longitudinal bone growth were ranked as follows: PGE2 + 5 Ris greater than PGE2 + 1 Ris = basal greater than PGE2 greater than 1 microgram Ris = 5 microgram Ris = aging. The density of the PS was ranked as follows: PGE2 + 5 Ris greater than PGE2 + 1 Ris = PGE2 = 5 microgram Ris = 1 microgram Ris greater than basal = aging. The increase in density of the PS was the result of stimulated longitudinal growth and the action of bisphosphonate. Bone mass in the SS was ranked as follows: PGE2 + 5 Ris = PGE2 + 1 Ris = PGE2 greater than 5 microgram Ris = 1 microgram Ris = aging = basal. However, PGE2 alone and its cotreatment with Ris accumulated bone by different tissue mechanisms. PGE2 alone created new bone by increasing activation frequency 8.3-fold and the formation to resorption ratio 1.3-fold from the controls. The combination of PGE2 and Ris depressed activation frequency (-54% to -74%), and bone formation rate (tissue-based -31%, and bone-based -42%) and eroded surface (-79% to -81%), so as to increase the formation to resorption ratio (three- to four-fold) over PGE2

  1. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.

    PubMed

    Zauel, R; Yeni, Y N; Bay, B K; Dong, X N; Fyhrie, D P

    2006-02-01

    The mechanical properties of cancellous bone and the biological response of the tissue to mechanical loading are related to deformation and strain in the trabeculae during function. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the need to measure trabecular motions during loading the finite element method has been used to estimate trabecular level mechanical deformation. This analytical approach has been empirically successful in that the analytical models are solvable and their results correlate with the macroscopically measured stiffness and strength of bones. The present work is a direct comparison of finite element predictions to measurements of the deformation and strain at near trabecular level. Using the method of digital volume correlation, we measured the deformation and calculated the strain at a resolution approaching the trabecular level for cancellous bone specimens loaded in uniaxial compression. Smoothed results from linearly elastic finite element models of the same mechanical tests were correlated to the empirical three-dimensional (3D) deformation in the direction of loading with a coefficient of determination as high as 97% and a slope of the prediction near one. However, real deformations in the directions perpendicular to the loading direction were not as well predicted by the analytical models. Our results show, that the finite element modeling of the internal deformation and strain in cancellous bone can be accurate in one direction but that this does not ensure accuracy for all deformations and strains.

  2. The effects of cracks on the quantification of the cancellous bone fabric tensor in fossil and archaeological specimens: a simulation study.

    PubMed

    Bishop, Peter J; Clemente, Christofer J; Hocknull, Scott A; Barrett, Rod S; Lloyd, David G

    2017-03-01

    Cancellous bone is very sensitive to its prevailing mechanical environment, and study of its architecture has previously aided interpretations of locomotor biomechanics in extinct animals or archaeological populations. However, quantification of architectural features may be compromised by poor preservation in fossil and archaeological specimens, such as post mortem cracking or fracturing. In this study, the effects of post mortem cracks on the quantification of cancellous bone fabric were investigated through the simulation of cracks in otherwise undamaged modern bone samples. The effect on both scalar (degree of fabric anisotropy, fabric elongation index) and vector (principal fabric directions) variables was assessed through comparing the results of architectural analyses of cracked vs. non-cracked samples. Error was found to decrease as the relative size of the crack decreased, and as the orientation of the crack approached the orientation of the primary fabric direction. However, even in the best-case scenario simulated, error remained substantial, with at least 18% of simulations showing a > 10% error when scalar variables were considered, and at least 6.7% of simulations showing a > 10° error when vector variables were considered. As a 10% (scalar) or 10° (vector) difference is probably too large for reliable interpretation of a fossil or archaeological specimen, these results suggest that cracks should be avoided if possible when analysing cancellous bone architecture in such specimens. © 2016 Anatomical Society.

  3. Influence of 3D QCT scan protocol on the QCT-based finite element models of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Püschel, Klaus; Morlock, Michael M; Huber, Gerd

    2014-08-01

    Quantitative computed tomography (QCT)-based finite element (FE) models provide a better prediction of vertebral strength than dual-energy X-ray absorptiometry. However, FE models are often created from datasets acquired at different CT scan protocols and it is unclear whether this influences the FE results. The aim of this paper was to investigate whether there was an effect of the CT scan protocol on the FE models. 12 human thoracolumbar vertebrae were scanned on top of a calcium hydroxyapatite calibration phantom using a standard QCT scan protocol - 120kV, 100mAs (PA); and a low dose protocol - 90kV, 150mAs (PB). FE cancellous models with cuboid volume of interest and inhomogeneous nonlinear bone properties were created. Axial compression was simulated. The apparent BMD, modulus and yield strength showed significant differences between the two scan protocols. The apparent BMD, the modulus and yield strength between the two groups were highly linearly correlated. This paper indicated that the FE models created from image datasets acquired at different X-ray tube voltage settings would give significantly different results and this effect could be possibly corrected using a linear correction approach. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method.

    PubMed

    Wear, Keith; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami

    2014-10-01

    Fast and slow waves were detected in a bovine cancellous bone sample for thicknesses ranging from 7 to 12 mm using bandlimited deconvolution and the modified least-squares Prony's method with curve fitting (MLSP + CF). Bandlimited deconvolution consistently isolated two waves with linear-with-frequency attenuation coefficients as evidenced by high correlation coefficients between attenuation coefficient and frequency: 0.997 ± 0.002 (fast wave) and 0.986 ± 0.013 (slow wave) (mean ± standard deviation). Average root-mean-squared (RMS) differences between the two algorithms for phase velocities were 5 m/s (fast wave, 350 kHz) and 13 m/s (slow wave, 750 kHz). Average RMS differences for signal loss were 1.6 dB (fast wave, 350 kHz) and 0.4 dB (slow wave, 750 kHz). Phase velocities for thickness = 10 mm were 1726 m/s (fast wave, 350 kHz) and 1455 m/s (slow wave, 750 kHz). Results show support for the model of two waves with linear-with frequency attenuation, successful isolation of fast and slow waves, good agreement between bandlimited deconvolution and MLSP + CF as well as with a Bayesian algorithm, and potential variations of fast and/or slow wave properties with bone sample thickness.

  5. [Arthroscopic treatment for osteoarthritic knee].

    PubMed

    Bloom, Shlomo; Lebel, David; Cohen, Eugen; Atar, Dan; Rath, Ehud

    2008-04-01

    Osteoarthritis (OA) is the leading cause of knee morbidity. Age and overweight are the main risk factors for development of knee OA. The majority of patients respond to conservative treatment. For those who don't, surgical treatment is the only alternative. Arthroscopic surgery for the osteoarthritic knee is a well known procedure. Recently, numerous publications addressed the advantages of arthroscopic treatment for this indication. Some of the publications concluded that arthroscopic treatment for knee OA equals placebo. Others found temporary relief of symptoms. Among special subgroup of patients, in which acute pain exacerbation, mechanical block or early OA, utilizing arthroscopic techniques revealed satisfactory results. In this review, we discuss the indications and contraindications for arthroscopic treatment of the osteoarthritic knee according to the latest literature.

  6. Quantification of bone marrow water and lipid composition in anterior cruciate ligament-injured and osteoarthritic knees using three-dimensional magnetic resonance spectroscopic imaging.

    PubMed

    Tufts, Lauren S; Shet, Keerthi; Liang, Fei; Majumdar, Sharmila; Li, Xiaojuan

    2016-06-01

    To quantitatively evaluate longitudinal changes in water and lipid in knee bone marrow with and without bone marrow edema-like lesions (BMELs) in subjects with acutely ruptured anterior cruciate ligaments (ACLs) or osteoarthritis (OA) using three-dimensional magnetic resonance spectroscopic imaging (3D MRSI). Ten ACL and 10 OA subjects who presented with BMEL and seven BMEL-free controls were scanned at 3T. All ACL and OA subjects had one-year follow-up scans. 3D MRSI was acquired in BMEL and adjacent bone marrow, and water content (WC) and unsaturated lipid index (UI) were calculated in each region of interest. At baseline, ACL BMEL WC was significantly higher than ACL non-BMEL, OA BMEL, and control WC; ACL non-BMEL WC, ACL BMEL UI, and OA BMEL WC were significantly higher than control. ACL BMEL WC decreased significantly one year post-reconstruction; UI decreased non-significantly (p=0.09). No significant changes in OA BMEL or ACL and OA non-BMEL WC and UI were observed. 3D MRSI is a powerful method of quantitatively assessing the biochemical composition of bone marrow in OA and ACL-injured knees, which may serve as imaging markers to improve comprehension of primary and secondary OA pathology. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Delayed Union of a Sacral Fracture: Percutaneous Navigated Autologous Cancellous Bone Grafting and Screw Fixation

    SciTech Connect

    Huegli, R. W. Messmer, P.; Jacob, A. L.; Regazzoni, P.; Styger, S.; Gross, T.

    2003-09-15

    Delayed or non-union of a sacral fracture is a serious clinical condition that may include chronic pain, sitting discomfort, gait disturbances, neurological problems, and inability to work. It is also a difficult reconstruction problem. Late correction of the deformity is technically more demanding than the primary treatment of acute pelvic injuries. Open reduction, internal fixation (ORIF), excision of scar tissue, and bone grafting often in a multi-step approach are considered to be the treatment of choice in delayed unions of the pelvic ring. This procedure implies the risk of neurological and vascular injuries, infection, repeated failure of union, incomplete correction of the deformity, and incomplete pain relief as the most important complications. We report a new approach for minimally invasive treatment of a delayed union of the sacrum without vertical displacement. A patient who suffered a Malgaigne fracture (Tile C1.3) was initially treated with closed reduction and percutaneous screw fixation (CRPF) of the posterior pelvic ring under CT navigation and plating of the anterior pelvic ring. Three months after surgery he presented with increasing hip pain caused by a delayed union of the sacral fracture. The lesion was successfully treated percutaneously in a single step procedure using CT navigation for drilling of the delayed union, autologous bone grafting, and screw fixation.

  8. The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue.

    PubMed

    Greenwood, C; Clement, J G; Dicken, A J; Evans, J P O; Lyburn, I D; Martin, R M; Rogers, K D; Stone, N; Adams, G; Zioupos, P

    2015-12-01

    Osteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA). However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with 'bone quality', which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n = 37) who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT) which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI) for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.

  9. How do changes to plate thickness, length, and face-connectivity affect femoral cancellous bone's density and surface area? An investigation using regular cellular models.

    PubMed

    Anderson, I A; Carman, J B

    2000-03-01

    Models of regular cellular-solids representing femoral head 'medial group' bone were used to (1) compare thickness data for plate-like and beam-like structures at realistic surface areas and densities; (2) test the validity of a standard formula for trabecular thickness (Tb.Th); and (3) study how systematic changes in cancellous bone thicknesses, spacing, and face-connectivity affect relative density and surface area. Models of different face-connectivities, produced by plate removal from the unit cell, were fitted to bone density and surface area data. The medial group bone was anisotropic: the supero-inferior (SI) direction was the principal direction for bone plate alignment and the plane normal to this had the largest number of bone/void intersections per unit line length (P(I)). A comparison of boundary perimeter per unit area data, in planes normal to SI, with surface area data placed the medial group bone between prismatic structures in which walls are parallel to one principal direction and isotropic structures. Selective removal of plates from a closed-cell model produced a similar result. For the same relative density and surface-area, plate-like models had significantly thinner cross-sections than beam-like models. The formula for Tb.Th produced overestimates of model plate thickness by up to 20% at realistic femoral cancellous densities. Trends in data on surface area to volume ratio and density observed on sampled medial group bone could be simulated by plate thickness changes on models of intermediate face-connectivity (approximately 1.5) or by plate removal from models with relatively thick and short (low aspect-ratio) plates. The latter mechanism is unrealistic for it resulted in beam-like structures at low 'medial group' densities, an architecture unlike the predominantly plate-like bone in the sample.

  10. Assessing cement injection behaviour in cancellous bone: an in vitro study using flow models.

    PubMed

    Bou-Francis, Antony; López, Alejandro; Persson, Cecilia; Hall, Richard M; Kapur, Nikil

    2014-10-01

    Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an upper glass window and a lower aluminium plate, were filled with bone marrow substitute and then injected (4, 6 and 8 min after cement mixing) with commercially available bone cements (SimplexP, Opacity+, OsteopalV and Parallax) at a constant flow rate (3 mL/min). A load cell was used to measure the force applied on the syringe plunger and calculate the peak pressure. A camera was used to monitor the cement flow during injection and calculate the following parameters when the cement had reached the boundary of the models: the time to reach the boundary, the filled area and the roundness. The peak pressure was comparable to that reported during clinical vertebroplasty and showed a similar increase with injection time. The study highlighted the influence of cement formulations and model structure on the injection behaviour and showed that cements with similar composition/particle size had similar flow behaviour, while the introduction of defects reduced the time to reach the boundary, the filled area and the roundness. The proposed method provides a novel tool for quick, robust differentiation between various cement formulations through the visualization and quantitative analysis of the cement spreading at various time intervals. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths.

    PubMed

    Hosokawa, Atsushi

    2015-06-01

    Using a finite-difference time-domain method, ultrasound backscattered waves inside cancellous bone were numerically analyzed to investigate the backscatter mechanism. Two bone models with different thicknesses were modeled with artificial absorbing layers positioned at the back surfaces of the model, and an ultrasound pulse wave was transmitted toward the front surface. By calculating the difference between the simulated waveforms obtained using the two bone models, the backscattered waves from a limited range of depths in cancellous bone could be isolated. The results showed that the fast and slow longitudinal waves, which have previously been observed only in the ultrasound waveform transmitted through the bone, could be distinguished in the backscattered waveform from a deeper bone depth when transmitting the ultrasound wave parallel to the main orientation of the trabecular network. The amplitudes of the fast and slow backscattered waves were more closely correlated with the bone porosity [R2 = 0.84 and 0.66 (p < 0.001), respectively] than the amplitude of the whole (nonisolated) backscattered waves [R2 = 0.48 (p < 0.001)]. In conclusion, the nonisolated backscattered waves could be regarded as the superposition of the fast and slow waves reflected from various bone depths, returning at different times.

  12. Relationship between architectural parameters and sample volume of human cancellous bone in micro-CT scanning.

    PubMed

    Yan, Ya-Bo; Qi, Wei; Wang, Jun; Liu, Lin-Feng; Teo, Ee-Chon; Tianxia, Qiu; Ba, Jing-jing; Lei, Wei

    2011-07-01

    Truly representative architectural parameters of trabeculea can be extremely difficult to achieve based on scanning images because of variable porosity and distribution of trabeculae within the specific overall scanned volume of bone. Accordingly, in present study different selective volume of interests, measured from centroid of μ-CT scanned human vertebral body, were analyzed to determine the architectural parameters (BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp) of trabeculae within these volumes and to suggest an optimal volume for representative architectural parameters of the overall scanned volume. Nonlinear curve fitting method was also applied to obtain the correlation between the parameters and the volume of interests. The results show different volumes of interests give different morphological indices of BV/TV, BS/BV, Tb.N and Tb.Sp within a specific scanned vertebral body. Tb.Th shows relatively small variation (0.8%) even with sample volume of less than (2mm)(3). Statistical analysis shows that with sample volume of less than (6mm)(3), significant different in the measured BV/TV comparing against the control group. Tb.N and Tb.Sp show significant different values against the control group for volume of interest less than (4mm)(3) and (5mm)(3), respectively. However, no significant differences were observed in the indices of BS/BV and Tb.Th. Present study shows that an optimal volume of interests of greater than (6mm)(3) be selected to predict the architectural parameters of trabeculae of human vertebral bodies.

  13. Bone quality at the implant site after reconstruction of a local defect of the maxillary anterior ridge with chin bone or deproteinised cancellous bovine bone.

    PubMed

    Meijndert, L; Raghoebar, G M; Schüpbach, P; Meijer, H J A; Vissink, A

    2005-12-01

    The purpose of this study was to investigate the quality of bone at grafted implant sites in the anterior maxilla. Grafting of these sites was necessary because of insufficient bone volume in a buccopalatinal direction (width at the top of the crest 1-3mm). Reconstruction was performed with chin bone (N=5), chin bone and a resorbable Bio-Gide GBR membrane (N=5) or Bio-Oss spongiosa granules in combination with a Bio-Gide GBR membrane (N=5). Biopsies were taken prior to implantation, i.e. 3 months after grafting with chin bone, and 6 months after grafting with Bio-Oss. Evaluation was done by assessing the histological and histomorphometric characteristics of full-length biopsies taken from the actual implant site. Both areas with non-vital bone and areas with apposition of bone and remodelling phenomena were observed in the chin bone group at the time of placement of the implants. Similar results were observed at implant sites reconstructed with a chin bone graft covered by a membrane. In the chin bone group without and with a GBR membrane, the mean total bone volume (TBV) was 55.2+/-6.8% and 57.7+/-11.5%, respectively; the marrow connective tissue volume (MCTV) was 44.8+/-6.8% and 42.3+/-11.5%, respectively. Remnants of the resorbable GBR membrane were not detected. In the Bio-Oss((R)) group, at implant placement some newly formed bone was observed in the connective tissue surrounding the Bio-Oss((R)) particles (mean TBV (newly formed bone) 17.6+/-14.5%), but most particles were surrounded by connective tissue. No convincing signs of remodelling were observed (mean remaining Bio-Oss volume 40.5+/-9.3%; mean MCTV 41.9+/-13.1%). No implants were lost during follow up (12 months). At the time of placement of the implants the grafting material (either chin bone or Bio-Oss is still not fully replaced by new vital bone. In case of Bio-Oss, most of the grafting material is even still present. Despite these differences, the 1-year clinical results were very good and

  14. Hypoxia and vitamin D differently contribute to leptin and dickkopf-related protein 2 production in human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Bouvard, Béatrice; Abed, Elie; Yéléhé-Okouma, Mélissa; Bianchi, Arnaud; Mainard, Didier; Netter, Patrick; Jouzeau, Jean-Yves; Lajeunesse, Daniel; Reboul, Pascal

    2014-10-14

    Bone remodelling and increased subchondral densification are important in osteoarthritis (OA). Modifications of bone vascularisation parameters, which lead to ischemic episodes associated with hypoxic conditions, have been suspected in OA. Among several factors potentially involved, leptin and dickkopf-related protein 2 (DKK2) are good candidates since they are up-regulated in OA osteoblasts (Obs). Therefore, in the present study, we investigated the hypothesis that hypoxia may drive the expression of leptin and DKK2 in OA Obs. Obs from the sclerotic portion of OA tibial plateaus were cultured either under 20% or 2% oxygen tension in the presence or not of 50 nM of 1,25-dihydroxyvitamin D3 (VitD3). The expression of leptin, osteocalcin, DKK2, hypoxia-inducible factors (Hif)-1α and -2α was measured by real-time polymerase chain reaction and leptin production by enzyme-linked immunosorbent assay (ELISA). The expression of Hif-1α, Hif-2α, leptin and DKK2 was reduced using silencing (si) RNA technique. Signalling pathway of hypoxia-induced leptin was investigated by western blotting and mitogen-activated protein kinase (MAPK) inhibitors. As expected, hypoxia stimulated the expression of Hif-1 and Hif-2. The expression of leptin and DKK2 in Obs was also stimulated 7-fold and 1.8-fold respectively (p<0.05) under hypoxia. Interestingly, whereas VitD3 stimulated leptin and DKK2 expression 2- and 4.2-fold under normoxia, it further stimulated it to 28- and 6.2-fold under hypoxia (p<0.05). The hypoxia-induced leptin production was confirmed by ELISA, particularly in presence of VitD3 (p<0.02). Compared to Obs incubated in the presence of siScramble RNAs, siHif-2α inhibited VitD3-stimulated leptin mRNA and protein levels by 70% (p=0.004) and 60% (p<0.02), respectively while it failed to significantly alter the expression of DKK2. SiHif-1α has no effect on these genes. Immunoblotting showed that VitD3 greatly stabilized Hif-2α under hypoxic condition. The increase in

  15. Osteoarthritic cartilage explants affect extracellular matrix production and composition in cocultured bone marrow-derived mesenchymal stem cells and articular chondrocytes

    PubMed Central

    2014-01-01

    Introduction In the present study, we established a novel in vitro coculture model to evaluate the influence of osteoarthritis (OA) cartilage explants on the composition of newly produced matrix and chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs) and the phenotype of OA chondrocytes. In addition, we included a “tri-culture” model, whereby a mixture of BMSCs and chondrocytes was cultured on the surface of OA cartilage explants. Methods Gene expression analysis, protein and glycosaminoglycan (GAG) assays, dot-blot, immunofluorescence, and biomechanical tests were used to characterize the properties of newly generated extracellular matrix (ECM) from chondrocytes and chondrogenically differentiated BMSCs and a mix thereof. We compared articular cartilage explant cocultures with BMSCs, chondrocytes, and mixed cultures (chondrocytes and BMSCs 1:1) embedded in fibrin gels with fibrin gel-embedded cells cultured without cartilage explants (monocultures). Results In general, co- and tri-cultured cell regimens exhibited reduced mRNA and protein levels of collagens I, II, III, and X in comparison with monocultures, whereas no changes in GAG synthesis were observed. All co- and tri-culture regimens tended to exhibit lower Young’s and equilibrium modulus compared with monocultures. In contrast, aggregate modulus and hydraulic permeability seemed to be higher in co- and tri-cultures. Supernatants of cocultures contained significant higher levels of interleukin-1 beta (IL-1β), IL-6, and IL-8. Stimulation of monocultures with IL-1β and IL-6 reduced collagen gene expression in BMSCs and mixed cultures in general but was often upregulated in chondrocytes at late culture time points. IL-8 stimulation affected BMSCs only. Conclusions Our results suggest an inhibitory effect of OA cartilage on the production of collagens. This indicates a distinct modulatory influence that affects the collagen composition of the de novo-produced ECM from

  16. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals: Significantly Reduced Bone Stock in the Metaphyseal and Subcapital Regions of Osteoporotic Individuals.

    PubMed

    Sprecher, Christoph M; Schmidutz, Florian; Helfen, Tobias; Richards, R Geoff; Blauth, Michael; Milz, Stefan

    2015-12-01

    Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred.The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals.The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis.At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side.This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus.

  17. A comparison of the rates of union after cancellous iliac crest bone graft and Kirschner-wire fixation in the treatment of stable and unstable scaphoid nonunion.

    PubMed

    Park, H Y; Yoon, J O; Jeon, I H; Chung, H W; Kim, J S

    2013-06-01

    This study was performed to determine whether pure cancellous bone graft and Kirschner (K-) wire fixation were sufficient to achieve bony union and restore alignment in scaphoid nonunion. A total of 65 patients who underwent cancellous bone graft and K-wire fixation were included in this study. The series included 61 men and four women with a mean age of 34 years (15 to 72) and mean delay to surgery of 28.7 months (3 to 240). The patients were divided into an unstable group (A) and stable group (B) depending on the pre-operative radiographs. Unstable nonunion was defined as a lateral intrascaphoid angle > 45°, or a radiolunate angle > 10°. There were 34 cases in group A and 31 cases in group B. Bony union was achieved in 30 patients (88.2%) in group A, and in 26 (83.9%) in group B (p = 0.439). Comparison of the post-operative radiographs between the two groups showed no significant differences in lateral intrascaphoid angle (p = 0.657) and scaphoid length (p = 0.670) and height (p = 0.193). The radiolunate angle was significantly different (p = 0.020) but the mean value in both groups was < 10°. Comparison of the dorsiflexion and palmar flexion of movement of the wrist and the mean Mayo wrist score at the final clinical visit in each group showed no significant difference (p = 0.190, p = 0.587 and p = 0.265, respectively). Cancellous bone graft and K-wire fixation were effective in the treatment of stable and unstable scaphoid nonunion.

  18. Topical hemostatic agents to reduce bleeding from cancellous bone. A comparison of microcrystalline collagen, thrombin, and thrombin-soaked gelatin foam.

    PubMed

    Cobden, R H; Thrasher, E L; Harris, W H

    1976-01-01

    In fifty-three dogs microcrystalline collagen, thrombin-soaked gelatin foam, and thrombin powder were evaluated as hemostatic agents when applied to bleeding cancellous surfaces after osteotomy of the greater trochanter using two quantitative models: one, a single osteotomy; the other, a double osteotomy. All three agents significantly reduced bleeding compared with the controls, the microcrystalline collagen being most effective. At three months there was no evidence that microcrystalline collagen and thrombin-gelatin interfered with bone healing after the greater trochanter was reattached with two wires.

  19. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY

    PubMed Central

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2015-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450

  20. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY.

    PubMed

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2009-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure.

  1. Comparative clinical and radiographic evaluation of mineralized cancellous bone allograft (puros®) and autogenous bone in the treatment of human periodontal intraosseous defects: 6-months follow-up study

    PubMed Central

    Reddy, B. Ravinder; Sudhakar, J.; Rajesh, Nichenametla; Sandeep, V.; Reddy, Y. Muralidhar; Gnana Sagar, W. R.

    2016-01-01

    Aims: Several materials have been introduced as bone grafts, i.e., autografts, allograft, xenografts, and alloplastic grafts, and studies have shown them to produce greater clinical bone defect fill than open flap debridement alone. The aim of this clinical and radiological 6-month study was to compare and evaluate the clinical outcome of deep intraosseous defects following reconstructive surgery with the use of mineralized cancellous bone allograft (Puros®) or autogenous bone. Materials and Methods: Ten patients with 12 sites exhibiting signs of moderate generalized chronic periodontitis were enrolled in the study. The investigations were confined to two and three-walled intra bony defects with a preoperative probing depth of ≥5 mm. Six of these defects were treated with Puros® (group A) the remaining six were treated with autogenous bone graft (group B). Allocation to the two groups was randomized. The clinical parameters, plaque index (PI), gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL), and bone fill, were recorded at different time intervals at the baseline, 1 month, 3 months, and 6 months. Intraoral radiographs were taken using standardized paralleling cone technique at baseline, 1, 3, and 6 months. Statistical analysis was done by using the one-way analysis of variance (ANOVA) followed by Tukey highly significant difference. Results: Both groups resulted in decrease in probing depth (group A, 3.0 mm; group B, 2.83 mm) and gain in clinical attachment level (group A, 3.33 mm; group B, 3.0 mm) over a period of 6 months, which was statistically insignificant. Conclusion: Within the limitations of the present study, it can be concluded that both mineralized cancellous bone allograft (Puros®) or autogenous bone result in significant clinical improvements. PMID:28217545

  2. Preliminary study of quantitative aspects and the effect of pulsed electromagnetic field treatment on the incorporation of equine cancellous bone grafts.

    PubMed

    Kold, S E; Hickman, J; Meisen, F

    1987-03-01

    The quantitative aspects of equine cancellous bone graft incorporation and the possibility of influencing graft incorporation by daily exposure to a pulsed electromagnetic field (PEMF) was studied in eight yearling ponies. In order to be able to quantify formative aspects of graft remodelling, a double and treble tetracycline intravital labelling technique was used. Intravital radiographs were obtained at regular intervals throughout the trial, but were found to be of little assistance in assessing any differences between stimulated and non-stimulated grafts. The ponies were humanely destroyed at regular intervals between nine and 241 days after installation of the graft. Light microscopy and fluorescent light microscopy were used to evaluate quantitative aspects of graft incorporation and to compare PEMF-stimulated grafts with control grafts. There was a small but statistically significant effect of PEMF-stimulation on cancellous bone graft incorporation. In view of this, these observations can only be considered as indicative of a possible trend, but should encourage further studies using different signal modalities.

  3. Frequency dependence of backscatter from thin, oblique, finite-length cylinders measured with a focused transducer-with applications in cancellous bone.

    PubMed

    Wear, Keith A; Harris, Gerald R

    2008-11-01

    A model is presented for the echo from a thin, oblique, finite-length cylinder. The echo is calculated from the line integral of the transducer directivity pattern along the cylinder axis. The model was validated with broadband pulse-echo measurements from (1) a perpendicular (to the ultrasound beam) nylon wire as a function of lateral displacement from the beam center, (2) a tilted nylon wire as a function of the angle of inclination relative to the ultrasound beam, and (3) a quasi-parallel-nylon-wire phantom, which mimicked the scattering properties of cancellous bone. The transducer directivity pattern (as a function of position and frequency) was measured with a membrane hydrophone. The model predicts an approximately cubic frequency dependence of backscatter coefficient from the phantom, as has been observed experimentally in cancellous bone. The model also predicts the relationship between the cylinder length and the exponent of a power law fit to backscatter coefficient versus frequency, which is 4 for very short (compared to a wavelength) cylinders and asymptotically approaches 3 for very long cylinders.

  4. Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage

    PubMed Central

    Gebauer, Mathias; Saas, Joachim; Haag, Jochen; Dietz, Uwe; Takigawa, Masaharu; Bartnik, Eckart; Aigner, Thomas

    2005-01-01

    Osteoarthritis is the most common degenerative disorder of the modern world. However, many basic cellular features and molecular processes of the disease are poorly understood. In the present study we used oligonucleotide-based microarray analysis of genes of known or assumed relevance to the cellular phenotype to screen for relevant differences in gene expression between normal and osteoarthritic chondrocytes. Custom made oligonucleotide DNA arrays were used to screen for differentially expressed genes in normal (n = 9) and osteoarthritic (n = 10) cartilage samples. Real-time polymerase chain reaction (PCR) with gene-specific primers was used for quantification. Primary human adult articular chondrocytes and chondrosarcoma cell line HCS-2/8 were used to study changes in gene expression levels after stimulation with interleukin-1β and bone morphogenetic protein, as well as the dependence on cell differentiation. In situ hybridization with a gene-specific probe was applied to detect mRNA expression levels in fetal growth plate cartilage. Overall, more than 200 significantly regulated genes were detected between normal and osteoarthritic cartilage (P < 0.01). One of the significantly repressed genes, Tob1, encodes a protein belonging to a family involved in silencing cells in terms of proliferation and functional activity. The repression of Tob1 was confirmed by quantitative PCR and correlated to markers of chondrocyte activity and proliferation in vivo. Tob1 expression was also detected at a decreased level in isolated chondrocytes and in the chondrosarcoma cell line HCS-2/8. Again, in these cells it was negatively correlated with proliferative activity and positively with cellular differentiation. Altogether, the downregulation of the expression of Tob1 in osteoarthritic chondrocytes might be an important aspect of the cellular processes taking place during osteoarthritic cartilage degeneration. Activation, the reinitiation of proliferative activity and the loss

  5. BMP-2 shows characteristic extracellular patterns in osteoarthritic cartilage: a preliminary report.

    PubMed

    Pester, Julia K; Stumpfe, Stephanie; Steinert, Susanne; Marintschev, Ivan; Aurich, Matthias; Hofmann, Gunther O

    2013-01-01

    To determine bone morphogenetic protein (BMP)-2 protein and Aggrecan in osteoarthritic and healthy cartilage with special regard to localization and degree of cartilage damage 95 samples representing osteoarthritic cartilage and 17 samples out of normal cartilage were graded histological by Mankin Score and were studied by immunohistochemistry for the expression of BMP-2 and Aggrecan. BMP-2 protein was detected intracellular in normal and in osteoarthritic cartilage. Extracellular BMP-2 was detected exclusively in osteoarthritic cartilage and exhibits characteristic extracellular patterns: samples with BMP-2 in the extracellular matrix show BMP-2 negative coronae around BMP-2 positive cells. There is a statistically significant increase in the prevalence of extracellular BMP-2 with increasing ICRS grade/Mankin grade. Aggrecan was detected in the extracellular matrix und exhibited coronas throughout all layers. A decline of extracellular Aggrecan with increasing ICRS grade could be observed. Normal cartilage shows no intracellular Aggrecan whereas an increase in the prevalence of intracellular Aggrecan could be detected in osteoarthritic cartilage. The appearance of intracellular Aggrecan is often associated with extracellular BMP-2. The detection of BMP-2 protein in normal as well as in osteoarthritic cartilage highlights the importance of BMP-2 in tissue homeostasis and point to a putative role for maintaining tissue integrity during the development of osteoarthritis. The co-appearance of extracellular BMP-2 and intracellular Aggrecan indicates a functional relationship. The most interesting result is the characteristic distribution of extracellular BMP-2. These coronas seem to have an impact during progression of osteoarthritis and need to be further investigated.

  6. Anomalous Cancellation

    ERIC Educational Resources Information Center

    Boas, R. P., Jr.

    1972-01-01

    The problem of getting a correct result when a fraction is reduced by cancelling a digit which appears in both the numerator and the denominator is extended from the base ten situation to any number base. (DT)

  7. Comparison between the lengths of individual osteoid seams and resorption cavities in human iliac crest cancellous bone.

    PubMed

    Yamaguchi, K; Croucher, P I; Compston, J E

    1993-10-01

    The current concept of bone remodelling is based on the belief that bone resorption and formation are coupled both in time and space; this implies that the surface extent of bone eroded in a bone remodelling unit would approximate to the surface extent of the osteoid seam formed subsequently. The greater total surface extent of osteoid as opposed to erosion is generally attributed to the longer life-span of bone formation, but no comparison of the length of eroded surface and osteoid seam within individual bone remodelling units has been reported. In this study we have compared the length of individual osteoid seams, resorption cavities and bone structural units in iliac crest trabecular bone obtained from normal subjects and from patients with renal osteodystrophy. Values for osteoid seam and bone packet length were significantly greater than resorption cavity length in both the normal and patient groups (P < 0.001), the ratio of osteoid seam and eroded length being similar in the two groups (1:0.44 and 1:0.40, respectively). These results indicate that the discrepancy between total osteoid and eroded surface extent cannot be wholly explained on the basis of a longer formation life-span. Possible additional explanations include underestimation of eroded surface by light microscopic techniques, initiation of bone formation within a cavity before the completion of resorption, the presence of arrested resorption cavities, non-random distribution of resorption cavities on the trabecular surface and bone formation on quiescent bone surfaces.

  8. Clinical Usefulness of Mandibular Reconstruction Using Custom-Made Titanium Mesh Tray and Autogenous Particulate Cancellous Bone and Marrow Harvested From Tibia and/or Ilia.

    PubMed

    Yamada, Hiroyuki; Nakaoka, Kazutoshi; Sonoyama, Tomoo; Kumagai, Kenichi; Ikawa, Tomoko; Shigeta, Yuko; Harada, Naohiko; Kawamura, Noboru; Ogawa, Takumi; Hamada, Yoshiki

    2016-05-01

    The objective of this study was to evaluate usefulness of mandibular reconstructions using custom-made titanium mesh (Ti-mesh) tray and particulate cancellous bone and marrow (PCBM). Consecutive 21 patients who underwent mandibular reconstruction were enrolled in this study. They were 13 men and 8 women (mean age, 52.0 years). Virtual reality simulation was performed using computer software based on the preoperative computed tomography data. A 3-dimensional skull model was constructed using 3-dimensional printer. A tray was custom-made from Ti-mesh sheet bent to adapt to the model. After PCBM harvesting from posterior ilia and/or proximal tibia, the tray was fixed to the host bone. New bone formation and configuration of the reconstructed mandible were assessed radiologically. Complications were recorded in each patient during the follow-up period. Patients' satisfaction with postoperative facial contour was evaluated using visual analog scale (VAS score, range, 0-100). In 16 of 21 patients, excellent new bone formation was recognized and expected results were radiologically achieved. In 5 patients, new bone formation was insufficient. Causes of insufficient bone formation included postoperative infection in 2 patients, Ti-mesh tray fracture in 2 patients, and local recurrence of lower gingival cancer in 1 patient. To prevent a tray fracture, a double-layered Ti-mesh tray was useful. Mean VAS score on patients' satisfaction was 77.1. Our results comprehensively suggest that mandibular reconstruction using custom-made Ti-mesh tray and PCBM is clinically useful.

  9. [One-stage compound grafting of antibiotic-impregnated calcium sulfate and autogenous cancellous bone for the treatment of chronic calcaneal osteomyelitis].

    PubMed

    Yan, Rui-jian; Zhang, Chun; Guo, Qiao-feng; Lu, Jian-wei

    2014-10-01

    To explore the treatment of chronic calcaneal osteomyelitis with bone defect after debridement and evaluate its clinical outcomes. From June 2009 to June 2011, 52 patients with chronic calcaneal osteomyelitis were treated with stage-one compound grafting of antibiotic-impregnated calcium sulfate and autogenous cancellous bone,including 12 females and 40 males with an average age of 43 years old ranging from 18 to 67. According to Cierny-Mader classification, there were 34 cases with stage III and 18 with stage IV. There were 32 cases on right side and 20 on left,with a course of 6 months to 3 years. The area of soft tissue wound ranged from 3.0 cm x l.5 cm to 23.0 cm x l2.0 cm. The clinical effects were evaluated according to infection controlling, calcium sulfate absorption,bone defect repair and heel functional recovery. All patients were followed up for 2 to 3.8 years (averaged 2.8 years). Primary healing was achieved in 52 patients. Two cases of recurrence were found post-operatively, 1 case in 3 months and another in 5 months,which were cured after a second operation. Bone repair healing was gained in 1.5 to 3.5 months (averaged 2.5 months). Complete radiological absorption of calcium sulfate was found in 1.2 to 3 months(averaged 2.2 months). Local exudation after removal of drainage tube had been persisting in 10 patients for 2 to 3 months, which was consistent with the time when cacium sulfate were totally absorbed. Flap had partial necrosis in 4 cases,and the wounds were closed after appropriate treatment finally. The mean Maryland score was 88.15±7.70. There were excellent results in 32 cases, good in 14, fair in 6. A satisfactory short-term clinical results can be gained by one-stage compound grafting of antibiotic-impregnated calcium sulfate and autogenous cancellous bone in chronic calcaneal osteomyelitis, but the long-term results need further follow-up. And much more study is also demanded to reduce the exudation of calcium sulfate.

  10. Monte-Carlo approach to the microdosimetry of /sup 224/Ra in murine compact and cancellous bone

    SciTech Connect

    Humphreys, E.R.; Humm, J.L.

    1988-06-01

    A method is described which allows dose calculations to be made to individual target cells in different regions of mouse bone marrow exposed to alpha particles emitted from bone. The method takes into account the variable rate of transfer of energy along the tracks of alpha particles and was applied to experiment-based values calculated for the concentration of /sup 224/Ra on bone surfaces after an injection of a leukemogenic amount of the nuclide. These calculations show a minimum dose of 11 Gy in small (less than 50-micron) marrow spaces and 10 Gy close to bone surface in the shaft of the femur. The results suggest that leukemogenic doses are likely to occur at some distance from bone surfaces in wide marrow spaces and that osteosarcoma is not likely to be induced directly in cells immediately aligning bone surfaces.

  11. Influence of weather on osteoarthritics.

    PubMed

    Laborde, J M; Dando, W A; Powers, M J

    1986-01-01

    This exploratory study examined the effects of selected weather variables on pain and pain-related stress in osteoarthritic subjects. Urban and rural dwelling arthritics who perceived that weather made their symptoms worse and those who did not were surveyed. Some persons with osteoarthritis in urban Chicago were more weather sensitive than their rural counterparts in Grand Forks, North Dakota. Multiple regression analysis showed that precipitation affected degree of pain for urban subjects who identified weather as a pain-generating factor; barometric pressure, relative humidity and sunshine were significant factors influencing pain-related stress. Wind speed correlated with pain and pain-related stress; relative humidity and precipitation correlated with pain-related stress for urban subjects who did not perceive weather as a problem. Specific weather variables were not identified as affecting rural subjects' pain. However, temperature and barometric pressure affected degree of pain-related stress in rural subjects who perceived weather as a problem. Subtle differences between Chicago urban and Grand Forks rural climates are reflected in arthritic subjects' degree of pain and their perception of pain-related stress.

  12. The effect of platelet-rich plasma on early and late bone healing using a mixture of particulate autogenous cancellous bone and Bio-Oss: an experimental study in goats.

    PubMed

    Mooren, R E C M; Dankers, A C A; Merkx, M A W; Bronkhorst, E M; Jansen, J A; Stoelinga, P J W

    2010-04-01

    Platelet-rich plasma (PRP), containing various growth factors, may speed up wound and bone healing. Using osteoconductive alloplastic materials in reconstructive surgery, the amount of autogenous bone needed can be reduced. The purpose of this experiment was to study the effect of PRP on a mixture of autogenous bone and deproteinized bovine bone mineral (Bio-Oss) particles in goats. Four, round, critical size defects were made in the foreheads of 20 goats. In all goats the defects were filled with a mixture of autogenous particulate cancellous bone and (Bio-Oss) particles, in which 1 ml of PRP was added in two of the four defects. The goats were allocated to four subgroups each containing five goats, which were killed after 1, 2, 6 and 12 weeks. The results of the histological and histomorphometric examination showed that early and late bone healing were not enhanced when PRP was used. Copyright (c) 2009 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Loss of cancellous bone mass and connectivity in ovariectomized rats can be restored by combined treatment with parathyroid hormone and estradiol.

    PubMed Central

    Shen, V; Dempster, D W; Birchman, R; Xu, R; Lindsay, R

    1993-01-01

    To evaluate the potential use of a combination of antiresorption and bone formation-promoting agents as a treatment for postmenopausal osteoporosis, we examined the effects of combined and separate administration of estrogen (17 beta-estradiol, 30 micrograms/kg per d, s.c.) and parathyroid hormone (rPTH [1-34], 40 micrograms/kg per d, s.c.) on the proximal tibia of ovariectomized (Ovx) rats. The treatments lasted for 4 wk and were initiated 1, 3, and 5 wk after surgery. Ovx resulted in rapid loss of cancellous bone volume (Cn-BV/TV) as well as trabecular connectivity, as determined by two dimensional strut analysis. When administered in a preventive mode, treatment beginning 1 wk post-Ovx, estrogen or PTH treatment alone preserved Cn-BV/TV and trabecular connectivity, and combined estrogen and PTH treatment caused a 40% increment in Cn-BV/TV while maintaining comparable trabecular connectivity with that seen in the Sham-operated animals. When administered in a curative mode to rats with established osteoporosis, treatments beginning 3 or 5 wk post-Ovx, estrogen or PTH treatment alone prevented further loss of connectivity and Cn-BV/TV, whereas the combined treatment resulted in as much as a 300% improvement in one of the parameters of trabecular connectivity, node to node strut length, and a 106% increase in Cn-BV/TV, with respect to the bone status at the initiation of treatment. The beneficial effects of this combined treatment derive from estrogen's ability to prevent accelerated bone resorption and, simultaneously, PTH's promotion of bone formation. These data demonstrate, in an animal model, that therapies can be devised to cure the skeletal defects associated with established osteoporosis. PMID:8514860

  14. Abrasive water jet cutting as a new procedure for cutting cancellous bone--in vitro testing in comparison with the oscillating saw.

    PubMed

    Schwieger, Karsten; Carrero, Volker; Rentzsch, Reemt; Becker, Axel; Bishop, Nick; Hille, Ekkehard; Louis, Hartmut; Morlock, Michael; Honl, Matthias

    2004-11-15

    The quality of bone cuts is assessed by the accuracy and biological potency of the cut surfaces. Conventional tools (such as saws and milling machines) can cause thermal damage to bone tissue. Water jet cutting is nonthermal; that is, it does not generate heat. This study investigates whether the abrasive jet cutting quality in cancellous bone with a biocompatible abrasive is sufficient for the implantation of endoprostheses or for osteotomies. Sixty porcine femoral condyles were cut with an abrasive water jet and with an oscillating saw. alpha-lactose-monohydrate was used as a biocompatible abrasive. Water pressure (pW = 35 and 70 MPa) and abrasive feed rate (m = 0.5, 1, and 2 g/s) were varied. As a measure of the quality of the cut surface the cutting gap angle (delta) and the surface roughness (Ra) were determined. The surface roughness was lowest for an abrasive feed rate of m = 2 g/s (jet direction: 39 +/- 16 microm, advance direction: 54 +/- 22 microm). However, this was still significantly higher than the surface roughness for the saw group (jet direction: 28 +/- 12 microm, advance direction: 36 +/- 19 microm) (p < 0.001 for both directions). At both pressure levels the greatest cutting gap angle was observed for a mass flow rate of m = 1 g/s (pW = 35 MPa: delta = 2.40 +/- 4.67 degrees ; pW = 70 MPa: delta = 4.13 +/- 4.65 degrees), which was greater than for m = 0.5 g/s (pW = 35 MPa: delta = 1.63 +/- 3.89 degrees ; pW = 70 MPa: delta = 0.36 +/- 1.70 degrees) and m = 2 g/s (pW =70 MPa: delta = 0.06 +/- 2.40 degrees). Abrasive water jets are suitable for cutting cancellous bone. The large variation of the cutting gap angle is, however, unfavorable, as the jet direction cannot be adjusted by a predefined value. If it is possible to improve the cutting quality by a further parameter optimization, the abrasive water jet may be the cutting technique of the future for robotic usage.

  15. High-fat Diet Decreases Cancellous Bone Mass But Has No Effect on Cortical Bone Mass in the Tibia in Mice

    USDA-ARS?s Scientific Manuscript database

    Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...

  16. Large Osteoarthritic Cyst Presenting as Soft Tissue Tumour – A Case Report

    PubMed Central

    Kosuge, DD; Park, DH; Cannon, SR; Briggs, TW; Pollock, RC; Skinner, JA

    2007-01-01

    Large osteoarthritic cysts can sometimes be difficult to distinguish from primary osseous and soft tissue tumours. We present such a case involving a cyst arising from the hip joint and eroding the acetabulum which presented as a soft tissue malignancy referred to a tertiary bone and soft tissue tumour centre. We discuss the diagnostic problems it may pose, and present a literature review of the subject. PMID:17535605

  17. 3D Fast Spin Echo With Out-of-Slab Cancellation: A Technique for High-Resolution Structural Imaging of Trabecular Bone at 7 Tesla

    PubMed Central

    Magland, Jeremy F.; Rajapakse, Chamith S.; Wright, Alexander C.; Acciavatti, Raymond; Wehrli, Felix W.

    2016-01-01

    Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. PMID:20187181

  18. Comparison between mineralized cancellous bone allograft and an alloplast material for sinus augmentation: A split mouth histomorphometric study.

    PubMed

    Kolerman, Roni; Nissan, Joseph; Rahmanov, Marina; Vered, Hana; Cohen, Omer; Tal, Haim

    2017-07-27

    Several grafting materials have been used in sinus augmentation procedures including autogenous bone, demineralized freeze-dried bone, hydroxyapatite, β-tricalcium phosphate, anorganic deproteinized bovine bone, and combination of these and others. Yet, the issue of the optimal graft material for sinus floor augmentation is controversial. This prospective, randomized split-mouth study was undertaken to histomorphometrically compare a biphasic calcium phosphate (BCP) alloplastic bone substitute and a human bone mineral allograft (freeze-dried bone allograft, FDBA) in patients undergoing bilateral maxillary lateral sinus floor augmentation. Apico-coronal core biopsies were harvested at 9 months from 26 bilateral sites in 13 treated patients. Specimens were processed for histological and histomorphometrical analyses. Newly formed bone (NB) was evident in all specimens with values of 27.5% and 24.0% at the FDBA and BCP sites, respectively (P = .331). The residual graft particle values were 12.5% and 25.4% (P = .001), and the connective tissue values were 60.0% and 50.6%, respectively. The osteoconductive value was 52.6% for the FDBA and 26.7% for the alloplast (P = .001). The values for the measured residual graft particles, connective tissue, and osteoconductivity, but not for NB, showed highly significant differences between the two groups. All sections in the alloplast material showed evidence of a light chronic inflammatory infiltrate, mainly comprising lymphocytes and multinucleated giant cells. Both graft materials are suitable for sinus floor augmentation, with the allograft material being more osteoconductive. © 2017 Wiley Periodicals, Inc.

  19. Accuracy of Cone Beam Computed Tomography, Photostimulable Phosphor Plate Digital Radiography and Conventional Radiography for Detection of Artificial Cancellous Bone Defects.

    PubMed

    Bardal, Roghieh; Jahanihashemi, Hassan; Mostafavi, Maryam; Kalhor, Esmaeil; Tofangchiha, Maryam; Dehghani, Mahdieh

    2015-11-01

    The optimal goal of radiography is to provide high-quality diagnostic images with the least patient radiation dose. The aim of this study was to evaluate the accuracy of cone-beam computed tomography (CBCT) and intraoral photostimulable phosphor plate (PSP) digital and film-based conventional radiography for detection of artificial cancellous bone defects. Five dry human mandibles were used in this study. The mandibles were placed inside a water bath made of plexiglass plates; then PSP and CBCT scans were obtained. The mandibles were cut by a coping saw in buccolingual dimension and oval defects measuring 6.1×6.1 mm, 3×6.1 mm and 4×4 mm were created by a milling machine in the spongy bone. After fixing the two parts together (buccal and lingual), radiographs were repeated. Presence or absence of defects on images was evaluated and recorded by the two observers. Using SPSS 16, compatibility level, sensitivity, specificity and receiver operating curve (ROC) analysis were determined for each observer. The intraobserver agreement in all three imaging modalities was low to moderate (kappa≤0.613). The inter-observer agreement in all the three imaging modalities was moderate (kappa=0.406). The area under the curve (AUC) of the imaging modalities in each observation was not significantly different. The area under the curve based on defect size for the two observers was not significantly different either. Defects confined to spongy bone can be identified on film and PSP radiographs and CBCT scans. However, interpretation of PSP images and CBCT scans needs greater expertise and skills.

  20. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications.

  1. Development of osteoarthritic features in estrogen receptor knockout mice.

    PubMed

    Sniekers, Y H; van Osch, G J V M; Ederveen, A G H; Inzunza, J; Gustafsson, J-A; van Leeuwen, J P T M; Weinans, H

    2009-10-01

    Estrogens are suggested to play a role in the development of osteoarthritis as indicated by the increased prevalence in women after menopause. We studied whether deletion of the estrogen receptor (ER) alpha, beta, or both in female mice results in cartilage damage, osteophytosis, and changes in subchondral bone of skeletally mature animals. We studied knee joints of 6-month-old female ERalpha-/-, ERbeta-/-, and (double) ERalpha-/-beta-/- mice and their wild type (wt) littermates. The presence and size of osteophytes and osteoarthritic changes in cartilage were analyzed using histology. Changes in subchondral plate and trabecular bone were studied using micro-CT. In ERalpha-/-beta-/- mice, we observed an increase in number and/or size of osteophytes and thinning of the lateral subchondral plate. However, cartilage damage was not different from wt. In ERalpha-/- or ERbeta-/- mice, no significant differences in cartilage damage score, osteophyte formation, or subchondral plate thickness were found. The bone volume fraction of the epiphyseal trabecular bone was unchanged in ERalpha-/- mice, increased in ERbeta-/- mice, and decreased in ERalpha-/-beta-/- mice. We conclude that deletion of both ERs leads to increased osteophytosis, but deletion of one or both ERs does not lead to overt cartilage damage in 6-month-old mice.

  2. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones

    PubMed Central

    Sugiyama, Toshihiro; Price, Joanna S.; Lanyon, Lance E.

    2010-01-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC + STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static “pre-load” of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static “pre-load” alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 μm) micro-computed tomography (μCT). In the DYNAMIC + STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC + STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These μCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them

  3. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    PubMed

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  4. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.

    PubMed

    Widmer Soyka, René P; López, Alejandro; Persson, Cecilia; Cristofolini, Luca; Ferguson, Stephen J

    2013-11-01

    Fluids present or used in biology, medicine and (biomedical) engineering are often significantly non-Newtonian. Furthermore, they are chemically complex and can interact with the porous matrix through which they flow. The porous structures themselves display complex morphological inhomogeneities on a wide range of length scales. In vertebroplasty, a shear-thinning fluid, e.g. poly(methyl methacrylate) (PMMA), is injected into the cavities of vertebral trabecular bone for the stabilization of fractures and metastatic lesions. The main objective of this study was therefore to provide a protocol for numerically investigating the rheological properties of PMMA-based bone cements to predict its spreading behavior while flowing through vertebral trabecular bone. A numerical upscaling scheme based on a dimensionless formulation of the Navier-Stokes equation is proposed in order to relate the pore-scale rheological properties of the PMMA that were experimentally estimated using a plate rheometer, to the continuum-scale. On the pore length scale, a viscosity change on the order of one magnitude was observed whilst the shear-thinning properties caused a viscosity change on the order of only 10% on the continuum length scale and in a flow regime that is relevant for vertebroplasty. An experimental validation, performed on human cadaveric vertebrae (n=9), showed a significant improvement of the cement spreading prediction accuracy with a non-Newtonian formulation. A root mean square cement surface prediction error of 1.53mm (assuming a Newtonian fluid) and 1.37mm (assuming a shear-thinning fluid) was found. Our findings highlight the importance of incorporating the non-Newtonian fluids properties in computational models of porous media at the appropriate length scale.

  5. Immune modulation to improve tissue engineering outcomes for cartilage repair in the osteoarthritic joint.

    PubMed

    Fahy, Niamh; Farrell, Eric; Ritter, Thomas; Ryan, Aideen E; Murphy, J Mary

    2015-02-01

    Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA.

  6. Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint

    PubMed Central

    Fahy, Niamh; Farrell, Eric; Ritter, Thomas; Ryan, Aideen E.

    2015-01-01

    Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA. PMID:24950588

  7. Diffusion tensor imaging and magnetic resonance spectroscopy assessment of cancellous bone quality in femoral neck of healthy, osteopenic and osteoporotic subjects at 3T: Preliminary experience.

    PubMed

    Manenti, Guglielmo; Capuani, Silvia; Fanucci, Ezio; Assako, Elie Parfait; Masala, Salvatore; Sorge, Roberto; Iundusi, Riccardo; Tarantino, Umberto; Simonetti, Giovanni

    2013-07-01

    We assessed the potential of diffusion tensor imaging (DTI) in combination with proton magnetic resonance spectroscopy (1H-MRS), in cancellous bone quality evaluation of the femoral neck in postmenopausal women. DTI allows for non-invasive microarchitectural characterization of heterogeneous tissue. In this work we hypothesized that DTI parameters mean diffusivity (MD) and fractional anisotropy (FA) of bone marrow water, can provide information about microstructural changes that occur with the development of osteoporosis disease. Because osteoporosis is associated with increased bone marrow fat content, which in principal can alter DTI parameters, the goal of this study was to examine the potential of MD and FA, in combination with bone marrow fat fraction (FF), to discriminate between healthy, osteopenic and osteoporotic subjects, classified according to DXA criteria. Forty postmenopausal women (mean age, 68.7 years; range 52-81 years), underwent a Dual-energy X-ray absorptiometry (DXA) examination in femoral neck, to be classified as healthy (n=12), osteopenic (n=14) and osteoporotic (n=14) subjects. 1H-MRS and DTI (with b value=2500 s/mm2) of femoral neck were obtained in each subject at 3T. The study protocol was approved by local Ethics Committee. MD, FA, FF and MD/FF, FA/FF were obtained and compared among the three bone-density groups. One-way ANOVA with multiple comparisons Bonferroni test and Pearson correlation analysis were applied. Receiver operating characteristic (ROC) curve analysis was also performed. Reproducibility of DTI measures was satisfactory. CV was approximately 2%-3% for MD and 4%-5% for FA measurements. Moreover, no significant difference was found in both MD and FA measurements between two separate sessions (median 34 days apart) comprised of six healthy volunteers. FF was able to discriminate between healthy and osteoporotic subjects only. Conversely MD and FA were able to discriminate healthy from osteopenic and healthy from

  8. Role of Cortico-Cancellous Heterologous Bone in Human Periodontal Ligament Stem Cell Xeno-Free Culture Studied by Synchrotron Radiation Phase-Contrast Microtomography.

    PubMed

    Mazzoni, Serena; Mohammadi, Sara; Tromba, Giuliana; Diomede, Francesca; Piattelli, Adriano; Trubiani, Oriana; Giuliani, Alessandra

    2017-02-10

    This study was designed to quantitatively demonstrate via three-dimensional (3D) images, through the Synchrotron Radiation Phase-Contrast Microtomography (SR-PhC-MicroCT), the osteoinductive properties of a cortico-cancellous scaffold (Osteobiol Dual Block-DB) cultured with human Periodontal Ligament Stem Cells (hPDLSCs) in xeno-free media. In vitro cultures of hPDLSCs, obtained from alveolar crest and horizontal fibers of the periodontal ligament, were seeded onto DB scaffolds and cultured in xeno-free media for three weeks. 3D images were obtained by SR-PhC-microCT after one and three weeks from culture beginning. MicroCT data were successively processed with a phase-retrieval algorithm based on the Transport of Intensity Equation (TIE). The chosen experimental method, previously demonstratively applied for the 3D characterization of the same constructs in not xeno-free media, quantitatively monitored also in this case the early stages of bone formation in basal and differentiating conditions. Interestingly, it quantitatively showed in the xeno-free environment a significant acceleration of the mineralization process, regardless of the culture (basal/differentiating) medium. This work showed in 3D that the DB guides the osteogenic differentiation of hPDLSCs in xeno-free cultures, in agreement with 2D observations and functional studies previously performed by some of the authors. Indeed, here we fully proved in 3D that expanded hPDLSCs, using xeno-free media formulation, not only provide the basis for Good Manufacturing Practice (preserving the stem cells' morphological features and their ability to differentiate into mesenchymal lineage) but have to be considered, combined to DB scaffolds, as interesting candidates for potential clinical use in new custom made tissue-engineered constructs.

  9. Role of Cortico-Cancellous Heterologous Bone in Human Periodontal Ligament Stem Cell Xeno-Free Culture Studied by Synchrotron Radiation Phase-Contrast Microtomography

    PubMed Central

    Mazzoni, Serena; Mohammadi, Sara; Tromba, Giuliana; Diomede, Francesca; Piattelli, Adriano; Trubiani, Oriana; Giuliani, Alessandra

    2017-01-01

    This study was designed to quantitatively demonstrate via three-dimensional (3D) images, through the Synchrotron Radiation Phase-Contrast Microtomography (SR-PhC-MicroCT), the osteoinductive properties of a cortico-cancellous scaffold (Osteobiol Dual Block—DB) cultured with human Periodontal Ligament Stem Cells (hPDLSCs) in xeno-free media. In vitro cultures of hPDLSCs, obtained from alveolar crest and horizontal fibers of the periodontal ligament, were seeded onto DB scaffolds and cultured in xeno-free media for three weeks. 3D images were obtained by SR-PhC-microCT after one and three weeks from culture beginning. MicroCT data were successively processed with a phase-retrieval algorithm based on the Transport of Intensity Equation (TIE). The chosen experimental method, previously demonstratively applied for the 3D characterization of the same constructs in not xeno-free media, quantitatively monitored also in this case the early stages of bone formation in basal and differentiating conditions. Interestingly, it quantitatively showed in the xeno-free environment a significant acceleration of the mineralization process, regardless of the culture (basal/differentiating) medium. This work showed in 3D that the DB guides the osteogenic differentiation of hPDLSCs in xeno-free cultures, in agreement with 2D observations and functional studies previously performed by some of the authors. Indeed, here we fully proved in 3D that expanded hPDLSCs, using xeno-free media formulation, not only provide the basis for Good Manufacturing Practice (preserving the stem cells’ morphological features and their ability to differentiate into mesenchymal lineage) but have to be considered, combined to DB scaffolds, as interesting candidates for potential clinical use in new custom made tissue-engineered constructs. PMID:28208578

  10. [Effects of Chinese herbal medicine for supplementing Shen and strengthening the bone on rat distal femur cancellous bone in simulated weightlessness: an observation with scanning electron microscope].

    PubMed

    Sun, Ping; Huang, Zhen; Cai, De-hong; He, Lei; Wu, Chang-xing

    2007-09-01

    To observe the effect of Chinese herbal medicine for supplementing Shen and strengthening the bone on distal femoral trabecular ultrastructure of male rats subjected to simulated weightlessness. Fifteen male SD rats were randomized equally into 3 groups, including a control group (group A, in which the rats were allowed free movement) and two simulated weightlessness (via tail suspension) groups (group B and C). The rats in group C were treated with the commercially available Chinese herbal preparation, and those in the other two groups received normal saline at the same dose, for a treatment course of 28 days. Observation of trabeculae was performed with scanning electron microscopy. In group B, the trabeculae of the femur became thinner, fragile, discontinuous with reduced quantity as compared with those in group A. The rats in group C had greater number of the trabeculae than those in group B. Resorption surface decreased and the collagenous fiber were much more regular in group B. The Chinese herbal medicine may produce beneficial effect on bone microstructure of rats subjected to simulated weightlessness.

  11. Molecular changes after shockwave therapy in osteoarthritic knee in rats

    NASA Astrophysics Data System (ADS)

    Wang, C.-J.; Sun, Y.-C.; Wu, C.-T.; Weng, L.-H.; Wang, F.-S.

    2016-01-01

    This study investigated the molecular changes of DKK-1, MMP13, Wnt-5a and \\upbeta -catenin after extracorporeal shockwave therapy (ESWT) in anterior cruciate ligament transected (ACLT) osteoarthritic (OA) knee in rats. 27 male Spraque-Dawley rats were divided into three groups. Group I was the control one and received sham knee arthrotomy but no ACLT or ESWT. Group II underwent ACLT, but no ESWT. Group III underwent ACLT and received ESWT. The animals were killed at 12 weeks, and the harvested knee specimens were subjected to histopathological examination and immunohistochemical analysis. Radiographs of the knees were obtained at 0 and 12 weeks. At 12 weeks, radiographs of group II showed more arthritic changes with formation of osteochondral fragments, whereas very subtle arthritis was noted in groups I and III. In histopathological examination, group II showed a significant increase of Mankin score and a decrease of subchondral bone as compared to groups I and III. Group III showed a significant decrease of Mankin score and an increase of subchondral bone, with the data comparable to group I. In immunohistochemical analysis, group II showed significant increases of DKK-1 and MMP13 and decreases of Wnt-5a and \\upbeta -catenin in articular cartilage and subchondral bone as compared to groups I and III. Group III showed significant decreases of DKK-1 and MMP13 and increases of Wnt-5a and \\upbeta -catenin, with the data comparable to group I. In conclusion, the application of ESWT causes molecular changes that are consistent with the improvement in subchondral bone remodeling and chondroprotective effect in ACLT OA knees in rats.

  12. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics.

    PubMed

    Jacobs, C R; Davis, B R; Rieger, C J; Francis, J J; Saad, M; Fyhrie, D P

    1999-11-01

    The apparent properties of cancellous bone are determined by a combination of both hard tissue properties and microstructural organization. A method is desired to extract the underlying hard tissue properties from simple mechanical tests, free from the complications of microstructure. It has been suggested that microCT voxel-based large-scale finite element models could be employed to accomplish this goal (van Rietbergen et al., 1995, Journal of Biomechanics, 28, 69-81). This approach has recently been implemented and it is becoming increasingly popular as finite element models increase in size and sophistication (Fyhrie et al., 1997, Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 815; van Rietbergen et al., 1997, Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 62). However, no direct quantitative measurements of the accuracy of this method applied to porous structures such as cancellous bone have been made. This project demonstrates the feasibility of this approach by quantifying its best-case accuracy in determining the trabecular hard tissue modulus of analogues fabricated of a material with known material properties determined independently by direct testing. In addition we were able to assess the impact of mesh size and boundary conditions on accuracy. We found that the assumption of a frictionless boundary condition in the parallel plate compression loading configuration was a significant source of error that could be overcome with the use of rigid end-caps similar to those used by Keaveny et al. (1997 Journal of Orthopaedic Research, 15(1), 101-110). In conclusion, we found that this approach is an effective method for determining the average trabecular hard tissue properties of human cancellous bone with an expected practical accuracy level better than 5%.

  13. Wear patterns on tibial plateau from varus osteoarthritic knees.

    PubMed

    Moschella, D; Blasi, A; Leardini, A; Ensini, A; Catani, F

    2006-02-01

    The knowledge of cartilage wear patterns at the medial tibial plateau is important to understand the main causes of arthritis in varus knees. The most important factors influencing knee arthritis in fact seem to be the severity of the degenerative changes determined by the lower limb mechanical axis and the abnormal knee joint kinematics which frequently results from dysfunction of the anterior cruciate ligament. We studied the wear patterns of cartilage damage in 70 medial tibial plateaus resected at operation during total knee arthroplasty indicated for varus osteoarthritic knee. Anterior cruciate ligament and medial meniscus integrity was assessed intra-operatively. Calibrated digital images were used to measure the wear patterns with a standard software tool. The medial compartment of the tibial plateau was divided into six zones, and the amount of cartilage and bone destruction in each zone was classified into two grades. The wear pattern was found to be highly dependent upon knee varus deformity (Mann Whitney P<0.001) and anterior cruciate ligament integrity (Friedman P<0.0005). Anterior cruciate ligament was found intact in 35.7% of the cases. Wear patterns on intact anterior cruciate ligament knees occurred in the central to medial aspect of the tibial plateau. Anterior cruciate ligament deficient knees had significantly larger wear patterns anteriorly and posteriorly in the most medial region of the medial plateau. These observations suggest altered joint mechanics exist in anterior cruciate ligament deficient varus knees, which would worsen cartilage degeneration and osteoarthritis progression.

  14. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/ preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease.

    PubMed

    Turajane, Thana; Chaweewannakorn, Ukrit; Larbpaiboonpong, Viroj; Aojanepong, Jongjate; Thitiset, Thakoon; Honsawek, Sittisak; Fongsarun, Juthatip; Papadopoulos, Konstantinos I

    2013-05-01

    Trauma or osteoarthritis (OA) create articular cartilage defects that cannot efficiently heal, thus leading to significant long-term disability. Failed conservative treatment in cartilage diseases is a known condition that necessitates repair attempts but current methods are inadequate. Recent studies in OA animal models and humans, showed articular cartilage regeneration following combinations of drilling, adult stem cells, and intra-articular hyaluronic acid. In the present series, the authors evaluated the combination of repeated intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSC) with growth factor addition/preservation (GFAP) along with hyaluronic acid (HA) in conjunction with arthroscopic microdrilling mesenchymal cell stimulation (MCS) in early osteoarthritic knee disease that failed conservative treatment. Four women and one man (median age 56, range 52-59 years) that failed conservative treatment were enrolled. Arthroscopic MCS was performed once in all patients with subsequent IA injection of AAPBSC with GFAP along with IA-HA intra-operatively, repeated at days 7 and 14. The patients were evaluated by WOMAC and KOO scores at baseline, one, and six months. Cancellous bone biopsies were performed to investigate cell attachment, proliferation, and differentiation by electron microscopy and histological staining. All patients improved significantly in WOMAC and KOO scores at one and six months compared to baseline. No adverse effects were seen during the AAPBSC harvesting, arthroscopy and/or IA injections. One month post-surgery, all pain medications could be withdrawn. Electron microscopy scanning revealed cell attachment and proliferation while histological analysis demonstrated that the cell layer on the cancellous scaffold showed increased proteoglycan and glycosaminoglycan content indicating hyaline cartilage presence. The combination of intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSC) with growth

  15. Evaluation of healing in feline femoral defects filled with cancellous autograft, cancellous allograft or Bioglass.

    PubMed

    Dorea, H C; McLaughlin, R M; Cantwell, H D; Read, R; Armbrust, L; Pool, R; Roush, J K; Boyle, C

    2005-01-01

    Cancellous bone grafting is a widely accepted technique in human and veterinary orthopaedic surgery. However, the use of autogenous bone graft is limited by the additional surgical time required to harvest the graft, the morbidity associated with the donor site, and the limited availability of cancellous bone, especially in feline patients. Various allografts and bone graft substitutes are available commercially but have not been fully evaluated for efficacy in the cat. The purpose of this study was to compare the incorporation of autogenous and allogenous cancellous bone graft and Bioglass, a synthetic bone graft substitute, in femoral defects in cats. Four (4.0 mm diameter) defects were created in the lateral diaphyseal cortex of the left femur with an orthopaedic drill. In each femur, one of the cortical defects was filled with autogenous cancellous graft (harvested from the tibia), one was filled with allogenic cancellous graft, and one was filled with Bioglass. The fourth defect remained unfilled. Graft incorporation within the femoral defects was evaluated by radiographic evaluation every two weeks. Six weeks after the grafting procedure, the cats were euthanatized and high detailed radiography, dual energy X-ray absorptiometry (DEXA), histopathology and histomorphometry of the defects were performed. Satisfactory bone healing was observed within all of the defects.

  16. Diagnostic index of three-dimensional osteoarthritic changes in temporomandibular joint condylar morphology

    PubMed Central

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-01-01

    Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119

  17. Mesenchymal Stromal Cells from Osteoarthritic Synovium Are a Distinct Population Compared to Their Bone-Marrow Counterparts regarding Surface Marker Distribution and Immunomodulation of Allogeneic CD4+ T-Cell Cultures.

    PubMed

    Hagmann, Sebastien; Rimmele, Claudia; Bucur, Florin; Dreher, Thomas; Zeifang, Felix; Moradi, Babak; Gotterbarm, Tobias

    2016-01-01

    Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis. Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs. Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-α as well as increasing IL-6 secretion. Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches.

  18. Mesenchymal Stromal Cells from Osteoarthritic Synovium Are a Distinct Population Compared to Their Bone-Marrow Counterparts regarding Surface Marker Distribution and Immunomodulation of Allogeneic CD4+ T-Cell Cultures

    PubMed Central

    Bucur, Florin; Moradi, Babak

    2016-01-01

    Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis. Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs. Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-α as well as increasing IL-6 secretion. Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches. PMID:27516777

  19. Tibial osteotomy for the varus osteoarthritic knee.

    PubMed

    Aglietti, P; Rinonapoli, E; Stringa, G; Taviani, A

    1983-06-01

    High tibial osteotomy is a reliable method for relieving pain in the varus osteoarthritic knee. In a review of 139 osteotomies, excellent and good results were noted in 64% of the knees after a follow-up period of at least ten years. The ideal candidate for this operation has Grade I or II osteoarthritis; less than 10 degrees of varus deformity, as measured by a single leg standing roentgenogram; no lateral subluxation; and no instability. The lateral closed wedge osteotomy without internal fixation is the preferred technique, and correction beyond the normal anatomic position, to 5 degrees of valgus, is advised. Protected weight-bearing after the second postoperative day is allowed. Complications have been infrequent and minor. Forty-seven knees were managed in this manner, and 88% had an excellent or good result at a four-year follow-up evaluation. In the majority of the well corrected knees, the alignment did not change with time, and the osteoarthritis did not progress. No failures in this series were attributable to the associated patellofemoral osteoarthritis; the reaction of the patellofemoral joint to osteotomy is obscure.

  20. Cancellous osteoma of maxilla: A rare case report

    PubMed Central

    Debta, Priyanka; Debta, F. M.; Bussari, Smita; Acharya, Swati S.; Jeergal, Vasanti A.

    2016-01-01

    Osteoma is a slow growing benign tumor result from either cancellous or compact bone proliferation. Osteoma of the jaws may arise from the surface of the bone as a sessile mass located either peripherally or endosteally. This paper presents a rare case report of peripheral cancellous osteoma, involving the buccal cortical plate and alveolar process of the right maxilla of a 37-year-old female patient. PMID:27382545

  1. No red cell alloimmunization or change of clinical outcome after using fresh frozen cancellous allograft bone for acetabular reconstruction in revision hip arthroplasty: a follow up study.

    PubMed

    Mittag, Falk; Straub, Matthias; Schäfer, Richard; Kluba, Torsten; Ipach, Ingmar

    2012-09-25

    Possible immunization to blood group or other antigens and subsequent inhibition of remodeling or incorporation after use of untreated human bone allograft was described previously. This study presents the immunological, clinical and radiological results of 30 patients with acetabular revisions using fresh frozen non-irradiated bone allograft. AB0-incompatible (donor-recipient) bone transplantation was performed in 22 cases, Rh(D) incompatible transplantation in 6 cases. The mean follow up of 23 months included measuring Harris hip score and radiological examination with evaluation of remodeling of the bone graft, implant migration and heterotopic ossification. In addition, all patients were screened for alloimmunization to Rh blood group antigens. Compared to the whole study group, there were no differences in clinical or radiological measurements for the groups with AB0- or Rh(D)-incompatible bone transplantation. The mean Harris Hip Score was 80.6. X-rays confirmed total remodeling of all allografts with no acetabular loosening. At follow up, blood tests revealed no alloimmunization to Rh blood group donor antigens. The use of fresh frozen non-irradiated bone allograft in acetabular revision is a reliable supplement to reconstruction. The risk of alloimmunization to donor-blood group antigens after AB0- or Rh-incompatible allograft transplantation with a negative long-term influence on bone-remodeling or the clinical outcome is negligible.

  2. Diagnostic index of 3D osteoarthritic changes in TMJ condylar morphology

    NASA Astrophysics Data System (ADS)

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João. Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-03-01

    The aim of this study was to investigate imaging statistical approaches for classifying 3D osteoarthritic morphological variations among 169 Temporomandibular Joint (TMJ) condyles. Cone beam Computed Tomography (CBCT) scans were acquired from 69 patients with long-term TMJ Osteoarthritis (OA) (39.1 ± 15.7 years), 15 patients at initial diagnosis of OA (44.9 ± 14.8 years) and 7 healthy controls (43 ± 12.4 years). 3D surface models of the condyles were constructed and Shape Correspondence was used to establish correspondent points on each model. The statistical framework included a multivariate analysis of covariance (MANCOVA) and Direction-Projection- Permutation (DiProPerm) for testing statistical significance of the differences between healthy control and the OA group determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering (HAC) was then conducted. Condylar morphology in OA and healthy subjects varied widely. Compared with healthy controls, OA average condyle was statistically significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis (p < 0.05). It was observed areas of 3.88 mm bone resorption at the superior surface and 3.10 mm bone apposition at the anterior aspect of the long-term OA average model. 1000 permutation statistics of DiProPerm supported a significant difference between the healthy control group and OA group (t = 6.7, empirical p-value = 0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.

  3. Dynamic Alignment Analysis in the Osteoarthritic Knee Using Computer Navigation.

    PubMed

    Larrainzar-Garijo, Ricardo; Murillo-Vizuete, David; Garcia-Bogalo, Raul; Escobar-Anton, David; Horna-Castiñeiras, Lissette; Peralta-Molero, Juan Vicente

    2017-02-13

    The lower limb alignment is influenced by the geometry of the joint surfaces and surrounding soft tissue tension. The mechanical behavior changes in a normal, osteoarthritic, and postoperative knee. The purpose of this study is to determine the dynamic coronal femoral tibial mechanical angle (FTMA) in osteoarthritic knees using computer navigation. The authors hypothesize that there are different varus-valgus patterns between flexion and extension in the osteoarthritic knee. We conducted a transversal observational study and included patients with osteoarthritis who underwent primary navigation TKA (Orthopilot version 4.2; B. Braun Aesculap, Tuttlingen, Germany). In total, 98 consecutive patients with 100 osteoarthritic knee joints, on which total knee arthroplasty was performed in our institution from 2009 to 2010, were enrolled in this prospective study. The FTMA was measured with the patient supine with maximum knee extension possible (considering the value as 0), 30, 60, and 90 degrees. All FMTA data obtained were segmented by hierarchic cluster measuring method. Through the clustering system, five segments were generated for varus patients and three for valgus patients: expected varus, expected valgus, severe varus, severe valgus, structured varus, structured valgus, concave varus, mixed varus-valgus, and mixed valgus-varus. The findings of the present study have demonstrated that there is a well-defined dynamic alignment in osteoarthritic knees, resulting in a wide kinematic variation in the coronal FTMA between flexion and full extension. Further studies will be necessary to determine whether this dynamic approach to FTMA has clinical utility in the surgeon's decision-making process.

  4. Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations.

    PubMed

    Fortier, L A; Nixon, A J

    1997-03-01

    Studies have proved the importance of substance P (SP) in the development and perpetuation of inflammation in joints, and describe the abundant SP neural network in the soft tissue structures of various articulations. Less information is available on the innervation of the bony structures of joints, and there is a paucity of data describing the changes associated with disease conditions. Our objectives were to evaluate changes in the distribution of sensory nerve fibers in the bony structures of naturally osteoarthritic joints. Five osteoarthritic metacarpophalangeal (MCP) articulations were removed from 4 horses euthanized because of clinically severe and persistent lameness. The articulations were examined grossly and by high detail radiographs, and substance P containing nociceptive fibers were identified on thin sections by immunoreaction. Gross examination and radiographs revealed evidence of osteoarthritis (OA), including thin, eroded, and fibrillated articular cartilage and, in the most severe cases, periarticular osteophytes and palmar metacarpal flattening with cystic cavitations. Histologically, there was a generalized loss of cartilage matrix basophilia, with chondrocyte clustering or death. SP nerve fibers were evident in the articular capsule and periosteum, and their appearance and frequency were similar to nonarthritic MCP articulations. Abnormal cartilage structures such as erosion channels and osteophytes on the dorsal proximal phalangeal perimeter contained short, tortuous, immunoreactive nerve fibers. Areas of chondrocyte cloning and abnormal fibrillated or eroded articular cartilage had increased generalized SP peptide staining, but no nerve fibers were identified. Additionally, hypercellular infiltrates in cystic cavitations in the subchondral bone stained intensely for SP, but true neurofilaments were absent. Combined, the findings of SP innervation in areas of articular remodeling such as erosion channels and osteophytes suggest that SP plays

  5. Associations between proximal tibiofibular joint (PTFJ) types and knee osteoarthritic changes in older adults.

    PubMed

    Lu, M; Han, W; Wang, K; Zhu, Z; Antony, B; Cicuttini, F; Yin, Z; Jones, G; Ding, C

    2017-09-01

    To describe the cross-sectional associations between proximal tibiofibular joint (PTFJ) type configurations and knee joint structural abnormalities in older adults. A total of 967 community-based participants were studied. T1-weighted fat-suppressed magnetic resonance image (MRI) with spoiled gradient recalled echo sequence was utilized to assess the PTFJ type configurations. Knee cartilage volume, cartilage defects, bone marrow lesions and osteophytes were measured. Linear regression and binary logistic regression analyses were used to examine the associations between PTFJ type configurations and knee joint cartilage volume as well as knee structural abnormalities, respectively, after adjustment for potential confounders. Seven PTFJ types including plane (49.4%), trochoid (31.9%), double trochoid (4.3%), saddle (5.4%), condylar (5.3%), trochlear (3.5%) and ball & socket (0.2%) were observed. Plane type was used as the comparator. In multivariable analyses, irregular joint types (comprising the five uncommon joint types) were associated negatively with cartilage volume, and positively with knee cartilage defects, bone marrow lesions and osteophytes in the lateral (but not medial) compartments. In contrast, trochoid type was only associated with reduced femoral cartilage volume, but not with knee cartilage defects, bone marrow lesions and osteophytes. Irregular PTFJ joint shapes are associated with osteoarthritic changes in the lateral, but not medial, tibiofemoral compartment in older adults. The causal relationship needs to be examined in future longitudinal studies. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Osteoarthritic synovial fluid rheology and correlations with protein concentration.

    PubMed

    Madkhali, Anwar; Chernos, Michael; Grecov, Dana; Kwok, Ezra

    2016-11-09

    Osteoarthritis is a common, localized joint disease that causes pain, stiffness and reduced mobility. Osteoarthritis is particularly common in the knees. The effects of osteoarthritis on the rheology of synovial fluid in the knees are not fully understood and consequently require further study. The purpose of this study is to investigate the effects of protein content on synovial fluid shear rheology. A secondary study outcome will include study of the temperature dependence of synovial fluid behaviour. 38 osteoarthritic synovial fluid samples were studied under shear flow. Shear properties were correlated with protein concentration. Viscosupplement was used as a comparison and to verify measurement reliability. The effects of temperature were investigated at 20, 29 and 37°C. Shear rheological properties were found to vary widely between samples, however all samples demonstrated clear non-Newtonian shear thinning behaviour. In general viscoelastic properties were lower in osteoarthritic samples than previously studied healthy synovial fluid. A moderate correlation was observed between synovial fluid dynamic moduli at a frequency of 2.5 Hz and protein concentration. Temperature was found to affect the rheology of osteoarthritic synovial fluid and was fitted with the Arrhenius model. Increased protein concentration has been correlated with decreased shear rheological parameters. Temperature dependence of synovial fluid was also demonstrated and modelled for use in Part 2 of this article.

  7. Anterior Cervical Discectomy With Fusion Using a Local Source for Cancellous Autograft: A Biomechanical Analysis of Vertebral Body Stability in an Osteopenic Bone Model.

    PubMed

    Walterscheid, Zakk; O'Neill, Conor; Ochs, Alex; D'Averso, Adrian; Dew, Christopher; Huntington, Alyssa; Ma, Grace; Behrend, Caleb; De Vita, Rafaella; Carmouche, Jonathan

    2017-09-01

    Anterior cervical discectomy with fusion is an effective treatment for patients having cervical radiculopathy and myelopathy. To reduce morbidity associated with autograft taken from the iliac crest without sacrificing high fusion rates, a novel technique that harvests bone from the vertebral body adjacent to the operative disc space has been proposed. The effects of square and round bone graft harvest techniques on the mechanical stability of the osteopenic donor vertebrae are unknown. We analyzed the biomechanical implications of the technique by subjecting osteopenic models to uniaxial compression to compare yield strengths of surgically altered and unaltered specimens. Biomechanical grade polyurethane foam was cut into 60 different 12 mm × 17 mm × 20 mm blocks. The foam had a density of 10 pounds per cubic foot, simulating osteoporotic bone. Rectangular prism (4 mm × 4 mm × 6 mm) and cylindrical cores (r = 2 mm, h = 8 mm) were removed from 20 blocks per group. Twenty samples were left intact as a control group. Anterior plate screws were applied to the models and a Polyether ether ketone (PEEK) interbody spacer was placed on top. Samples underwent uniaxial compression at 0.1 mm/s until mechanical failure. Points of structural failure were determined using a 0.1% offset on a force-displacement curve and compared to determine the reductions in compressive strength. The mean force eliciting structural failure for intact samples was 450.6 N. Average failure forces for rectangular prisms and cylindrical cores removed were 383.2 and 395.4 N, respectively. Removal of a rectangular prismatic core of the necessary volume resulted in a 15.0% reduction in compressive strength, while removal of a cylindrical core of comparable volume facilitated a reduction of 12.2%. Local autograft harvested from adjacent vertebrae reduces morbidity associated with a second surgical site while minimally reducing the compressive strength of the donor vertebra in an osteopenic model

  8. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: A validation study.

    PubMed

    Chen, Yuan; Dall Ara, Enrico; Sales, Erika; Manda, Krishnagoud; Wallace, Robert; Pankaj, Pankaj; Viceconti, Marco

    2017-01-01

    Non-destructive 3D micro-computed tomography (microCT) based finite element (microFE) models are used to estimate bone mechanical properties at tissue level. However, their validation remains challenging. Recent improvements in the quantification of displacements in bone tissue biopsies subjected to staged compression, using refined Digital Volume Correlation (DVC) techniques, now provide a full field displacement information accurate enough to be used for microFE validation. In this study, three specimens (two humans and one bovine) were tested with two different experimental set-ups, and the resulting data processed with the same DVC algorithm. The resulting displacement vector field was compared to that predicted by microFE models solved with three different boundary conditions (BC): nominal force resultant, nominal displacement resultant, distributed displacement. The first two conditions were obtained directly from the measurements provided by the experimental jigs, whereas in the third case the displacement field measured by the DVC in the top and bottom layer of the specimen was applied. Results show excellent relationship between the numerical predictions (x) and the experiments (y) when using BC derived from the DVC measurements (UX: y=1.07x-0.002, RMSE: 0.001mm; UY: y=1.03x-0.001, RMSE: 0.001mm; UZ: y=x+0.0002, RMSE: 0.001 mm for bovine specimen), whereas only poor correlation was found using BCs according to experiment set-ups. In conclusion, microFE models were found to predict accurately the vectorial displacement field using interpolated displacement boundary condition from DVC measurement. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Effects of hindlimb unloading and ionizing radiation on skeletal muscle resistance artery vasodilation and its relation to cancellous bone in mice.

    PubMed

    Prisby, Rhonda D; Alwood, Joshua S; Behnke, Brad J; Stabley, John N; McCullough, Danielle J; Ghosh, Payal; Globus, Ruth K; Delp, Michael D

    2016-01-15

    Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs). Endothelium-dependent vasodilation of gastrocnemius feed arteries was assessed in vitro using acetylcholine (ACh, 10(-9)-10(-4) M) and inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX). Endothelium-independent vasodilation was assessed using Dea-NONOate (10(-9)-10(-4) M). Endothelium-dependent and -independent vasodilator responses were impaired relative to Con responses in all treatment groups; however, there was no further impairment from the combination of treatments (HU-Rad) relative to that in the HU and Rad groups. The NOS-mediated contribution to endothelium-dependent vasodilation was depressed with HU and Rad. This impairment in NOS signaling may have been partially compensated for by an enhancement of PGI2-mediated dilation. Changes in endothelium-dependent vasodilation were also associated with decrements in trabecular bone volume in the proximal tibia metaphysis. These data demonstrate that the simulated space environment (i.e., radiation exposure and unloading of muscle and bone) significantly impairs skeletal muscle artery vasodilation, mediated through endothelium-dependent reductions in NOS signaling and decrements in vascular smooth muscle cell responsiveness to NO.

  10. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee.

    PubMed

    Ge, Quanxu; Cheng, Yuanzhi; Bi, Kesen; Guo, Changyong; Bai, Jing; Tamura, Shinichi

    2012-11-01

    The aim of this paper is to describe a technique for the visualization and mapping of focal, local cartilage thickness changes over time in magnetic resonance images of osteoarthritic knee. Magnetic resonance imaging was performed in 25 fresh frozen pig knee joints and 15 knees of patients with borderline to mild osteoarthritis (51.2±6.3 years). Cartilage and corresponding bone structures were extracted by semi-automatic segmentation. Each point in the bone surface which was part of the bone-cartilage interface was assigned a cartilage thickness value. Cartilage thicknesses were computed for each point in the bone-cartilage interfaces and transferred to the bone surfaces. Moreover, we developed a three dimensional registration method for the identification of anatomically corresponding points of the bone surface to quantify local cartilage thickness changes. One of the main advantages of our method compared to other studies in the field of registration is a global optimization algorithm that does not require any initialization. The registration accuracy was 0.93±0.05 mm (less than a voxel of magnetic resonance data). Local cartilage thickness changes were seen as having follow-up clinical study for detecting local changes in cartilage thickness. Experiment results suggest that our method was sufficiently accurate and effective for monitoring knee joint diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. A retrospective analysis of medial opening wedge high tibial osteotomy for varus osteoarthritic knee.

    PubMed

    Pornrattanamaneewong, Chaturong; Numkanisorn, Surin; Chareancholvanich, Keerati; Harnroongroj, Thossart

    2012-07-01

    Medial opening wedge high tibial osteotomy (MOWHTO) has proven to be an effective treatment for varus osteoarthritic knees. Various methods of fixation with different implant types and using either bone grafts or bone substitutes have been reported. We performed non-locking T-buttress plate fixation with autologous iliac bone graft augmentation, which is defined here as the traditional method, and locking compression plate fixation without any bone graft or bone substitute. We aimed to compare bone union and complications of these two MOWHTO techniques. Between June 2005 and December 2007, 50 patients who underwent MOWHTO (a total of 60 knees) were retrospectively reviewed and classified into two groups: group A, which consisted of 26 patients (30 knees) was treated using T-buttress plate fixation with autologous iliac bone graft augmentation and group B, which consisted of 24 patients (30 knees) was operated upon using a medial high tibial locking compression plate without any augmentation. Demographic characteristics and radiographic outcomes, including union rate, time to union, medial osteotomy defects, and complications, were collected and compared between the two groups. The progress of all patients was followed for at least 2 years. All osteotomies united within 12 weeks after surgery. Group B had slightly longer time to union than group A (10.3 weeks and 9.5 weeks, respectively; P = 0.125). A significantly higher incidence of medial defects after osteotomy was reported in the locking compression plate group (P = 0.001). A total of 5 (8.3%) knees had complications. In group A, one knee had a superficial wound infection and another knee had a lateral tibial plateau fracture without significant loss of correction. In group B, one knee had screw penetration into the knee joint and two knees had local irritation that required the removal of the hardware. Locking compression plate fixation without the use of bone grafts or bone substitutes provides a satisfactory

  12. Postal cancellation from spaceport

    NASA Astrophysics Data System (ADS)

    The John F. Kennedy Space Center, in cooperation with the United States Postal Service, is offering a cancellation service to interested philatelists for the space flight programs at Kennedy.Philatelists who wish to avail themselves of this service may do so by following the procedures outlined below: Specify the event for which you wish this service. There is a limit of five covers per customer per event.

  13. Generating cancelable fingerprint templates.

    PubMed

    Ratha, Nalini K; Chikkerur, Sharat; Connell, Jonathan H; Bolle, Ruud M

    2007-04-01

    Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key." The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments.

  14. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles

    PubMed Central

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  15. Lymphatic vessels in osteoarthritic human knees.

    PubMed

    Walsh, D A; Verghese, P; Cook, G J; McWilliams, D F; Mapp, P I; Ashraf, S; Wilson, D

    2012-05-01

    The distribution and function of lymphatic vessels in normal and diseased human knees are understood incompletely. This study aimed to investigate whether lymphatic density is associated with clinical, histological or radiographic parameters in osteoarthritis (OA). Sections of synovium from 60 knees from patients with OA were compared with 60 post mortem control knees (from 37 individuals). Lymphatic vessels were identified using immunohistochemistry for podoplanin, and quantified as lymphatic vessel density (LVD) and lymphatic endothelial cell (LEC) fractional area. Effusion status was determined by clinical examination, radiographs were scored for OA changes, and inflammation grading used haematoxylin and eosin stained sections of synovium. Lymphatic vessels were present in synovia from both disease groups, but were not identified in subchondral bone. Synovial lymphatic densities were independent of radiological severity and age. Synovia from patients with OA displayed lower LVD (z=-3.4, P=0.001) and lower LEC fractional areas (z=-4.5, P<0.0005) than non-arthritic controls. In patients with OA, low LVD was associated with clinically detectable effusion (z=-2.2, P=0.027), but not with histological evidence of synovitis. The negative associations between lymphatics and OA/effusion appeared to be independent of other measured confounders. Lymphatic vessels are present in lower densities in OA synovia. Abnormalities of synovial fluid drainage may confound the value of effusion as a clinical sign of synovitis in OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Reconstruction of the mandible using preshaped 2.3-mm titanium plates, autogenous cortical bone plates, particulate cancellous bone, and platelet-rich plasma: a retrospective analysis of 20 patients.

    PubMed

    Mooren, Robert E C M; Merkx, Matthias A W; Kessler, Peter A W H; Jansen, John A; Stoelinga, Paul J W

    2010-10-01

    The purpose of this retrospective study was to evaluate a group of 20 patients who underwent a reconstruction of the mandible by use of free bone grafts and platelet-rich plasma (PRP). In a period of 8 years, 20 patients underwent a reconstruction of the mandible, by use of preshaped 2.3-mm titanium plates, autogenous cortical bone plates, autogenous particulate bone, PRP, and a special fixation technique. The patients were divided into 3 groups. Group 1 consisted of 10 patients who underwent secondary reconstruction after ablative surgery for malignant tumors. Of these, 4 had preoperative or postoperative radiotherapy. Group 2 comprised 7 patients who underwent primary reconstruction after resections for benign but aggressive odontogenic tumors. Group 3 consisted of 3 patients with severe atrophy and malunion. The defects ranged in size from 8 to 12 cm in groups 1 and 2 and from 2 to 4 cm in group 3, and the follow-up ranged from 1 to 8 years. The initial healing was uneventful in all but 3 patients. In these 3 patients additional bone grafts had to be placed to allow for optimal implant placement. At the time of implant insertion, some areas of granulation tissue were found, possibly because of the rather high dose of PRP used. Continuity in all cases was achieved, and the patients considered the results good in 10 cases and satisfactory in 9 cases. One patient could not be approached for the last assessment. The grafting and fixation technique used proved to be rather reliable. The antimicrobial effect and the proliferation of osteoblasts are likely to be responsible for the results achieved. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  18. Alpha 5 Integrin Mediates Osteoarthritic Changes in Mouse Knee Joints

    PubMed Central

    Candela, Maria Elena; Wang, Chao; Gunawardena, Aruni T.; Zhang, Kairui; Cantley, Leslie; Yasuhara, Rika; Usami, Yu; Francois, Noelle; Iwamoto, Masahiro; van der Flier, Arjan; Zhang, Yejia; Qin, Ling; Han, Lin; Enomoto-Iwamoto, Motomi

    2016-01-01

    Osteoarthritis (OA) is one of most common skeletal disorders and can affect synovial joints such as knee and ankle joints. α5 integrin, a major fibronectin receptor, is expressed in articular cartilage and has been demonstrated to play roles in synovial joint development and in the regulation of chondrocyte survival and matrix degradation in articular cartilage. We hypothesized that α5 integrin signaling is involved in pathogenesis of OA. To test this, we generated compound mice that conditionally ablate α5 integrin in the synovial joints using the Gdf5Cre system. The compound mice were born normally and had an overall appearance similar to the control mice. However, when the mutant mice received the OA surgery, they showed stronger resistance to osteoarthritic changes than the control. Specifically the mutant knee joints presented lower levels of cartilage matrix and structure loss and synovial changes and showed stronger biomechanical properties than the control knee joints. These findings indicate that α5 integrin may not be essential for synovial joint development but play a causative role in induction of osteoarthritic changes. PMID:27280771

  19. Alpha 5 Integrin Mediates Osteoarthritic Changes in Mouse Knee Joints.

    PubMed

    Candela, Maria Elena; Wang, Chao; Gunawardena, Aruni T; Zhang, Kairui; Cantley, Leslie; Yasuhara, Rika; Usami, Yu; Francois, Noelle; Iwamoto, Masahiro; van der Flier, Arjan; Zhang, Yejia; Qin, Ling; Han, Lin; Enomoto-Iwamoto, Motomi

    2016-01-01

    Osteoarthritis (OA) is one of most common skeletal disorders and can affect synovial joints such as knee and ankle joints. α5 integrin, a major fibronectin receptor, is expressed in articular cartilage and has been demonstrated to play roles in synovial joint development and in the regulation of chondrocyte survival and matrix degradation in articular cartilage. We hypothesized that α5 integrin signaling is involved in pathogenesis of OA. To test this, we generated compound mice that conditionally ablate α5 integrin in the synovial joints using the Gdf5Cre system. The compound mice were born normally and had an overall appearance similar to the control mice. However, when the mutant mice received the OA surgery, they showed stronger resistance to osteoarthritic changes than the control. Specifically the mutant knee joints presented lower levels of cartilage matrix and structure loss and synovial changes and showed stronger biomechanical properties than the control knee joints. These findings indicate that α5 integrin may not be essential for synovial joint development but play a causative role in induction of osteoarthritic changes.

  20. Structural strength of cancellous specimens from bovine femur under cyclic compression

    PubMed Central

    Endo, Kaori; Yamada, Satoshi; Todoh, Masahiro; Takahata, Masahiko; Iwasaki, Norimasa

    2016-01-01

    The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01) and structural model index (SMI, r = − 0.81, p < 0.01). The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01) and SMI (r = − 0.78, p < 0.01). These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that baseline cancellous

  1. Material Properties of Inorganic Bovine Cancellous Bovine: Nukbone

    NASA Astrophysics Data System (ADS)

    Piña, Cristina; Palma, Benito; Munguía, Nadia

    2006-09-01

    In this work, inorganic cancellous bovine bone implants prepared in the Instituto de Investigaciones en Materiales — UNAM were characterized. Elementary chemical analysis was made, toxic elements concentration were measured and the content of organic matter also. These implants fulfill all the requirements of the ASTM standards, and therefore it is possible their use in medical applications.

  2. The use of femoral struts and impacted cancellous bone allograft in patients with severe femoral bone loss who undergo revision total hip replacement: a three- to nine-year follow-up.

    PubMed

    Buttaro, M A; Costantini, J; Comba, F; Piccaluga, F

    2012-02-01

    We determined the midterm survival, incidence of peri-prosthetic fracture and the enhancement of the width of the femur when combining struts and impacted bone allografts in 24 patients (25 hips) with severe femoral bone loss who underwent revision hip surgery. The pre-operative diagnosis was aseptic loosening in 16 hips, second-stage reconstruction in seven, peri-prosthetic fracture in one and stem fracture in one hip. A total of 14 hips presented with an Endoklinik grade 4 defect and 11 hips a grade 3 defect. The mean pre-operative Merle D'Aubigné and Postel score was 5.5 points (1 to 8). The survivorship was 96% (95% confidence interval 72 to 98) at a mean of 54.5 months (36 to 109). The mean functional score was 17.3 points (16 to 18). One patient in which the strut did not completely bypass the femoral defect was further revised using a long cemented stem due to peri-prosthetic fracture at six months post-operatively. The mean subsidence of the stem was 1.6 mm (1 to 3). There was no evidence of osteolysis, resorption or radiolucencies during follow-up in any hip. Femoral width was enhanced by a mean of 41% (19% to 82%). A total of 24 hips had partial or complete bridging of the strut allografts. This combined biological method was associated with a favourable survivorship, a low incidence of peri-prosthetic fracture and enhancement of the width of the femur in revision total hip replacement in patients with severe proximal femoral bone loss.

  3. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage.

    PubMed

    Yamagata, Toru; Naito, Kentaro; Arima, Hironori; Yoshimura, Masaki; Ohata, Kenji; Takami, Toshihiro

    2016-07-01

    Although titanium stand-alone cages are commonly used in anterior cervical discectomy and fusion (ACDF), there are several concerns such as cage subsidence after surgery. The efficacy of β-tricalcium phosphate (β-TCP) granules as a packing material in 1- or 2-level ACDF using a rectangular titanium stand-alone cage is not fully understood. The purpose of this study is to investigate the validity of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP. This retrospective study included 55 consecutive patients who underwent ACDF with autologous iliac cancellous bone grafting and 45 consecutive patients with β-TCP grafting. All patients completed at least 2-year postoperative follow-up. Univariate and multivariate analyses were performed to examine the associations between study variables and nonunion after surgery. Significant neurological recovery after surgery was obtained in both groups. Cage subsidence was noted in 14 of 72 cages (19.4 %) in the autograft group and 12 of 64 cages (18.8 %) in the β-TCP group. A total of 66 cages (91.7 %) in the autograft group showed osseous or partial union, and 58 cages (90.6 %) in the β-TCP group showed osseous or partial union by 2 years after surgery. There were no significant differences in cage subsidence and the bony fusion rate between the two groups. Multivariate analysis using a logistic regression model showed that fusion level at C6/7, 2-level fusion, and cage subsidence of grades 2-3 were significantly associated with nonunion at 2 years after surgery. Although an acceptable surgical outcome with negligible complication appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP, cage subsidence after surgery needs to be avoided to achieve acceptable bony fusion at the fused segments. Fusion level at C6/7 or 2-level fusion may be another risk factor of nonunion.

  4. Anti-Osteoarthritic Effects of the Litsea japonica Fruit in a Rat Model of Osteoarthritis Induced by Monosodium Iodoacetate

    PubMed Central

    Park, Dae Won; Kwon, Jung Eun; Jung, Moon Won; Meng, Xue; Jo, Se Min; Song, Hae Seong; Cho, Young Mi; Song, Sang Mok; Ham, Young-Min; Jung, Yong-Hwan; Kim, Chang Sook; Yoon, Weon-Jong; Kang, Se Chan

    2015-01-01

    Osteoarthritis (OA) is a degenerative chronic disease that affects various tissues surrounding the joints, such as the subchondral bone and articular cartilage. The onset of OA is associated with uncontrolled catabolic and anabolic remodeling processes of the joints, including the cartilage and subchondral bone, to adapt to local biological and biochemical signals. In this study, we determined whether 70% ethanolic (EtOH) extract of Litsea japonica fruit (LJFE) had beneficial effects on the articular cartilage, including structural changes in the tibial subchondral bone, matrix degradation, and inflammatory responses, in OA by using a rat model of monosodium iodoacetate-induced OA. Our results showed that administration of LJFE increased the bone volume and cross-section thickness, but the mean number of objects per slice in this group was lower than that in the OA control (OAC) group. In addition, the LJFE decreased the expression of inflammatory cytokines. Compared to the OAC group, the group treated with high doses of LJFE (100 and 200 mg/kg) showed a more than 80% inhibition of the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Our results suggest that LJFE can be used as a potential anti-osteoarthritic agent. PMID:26244981

  5. The changing role of TGFβ in healthy, ageing and osteoarthritic joints.

    PubMed

    van der Kraan, Peter M

    2017-03-01

    Transforming growth factor-β (TGFβ) is a pleiotropic cytokine that is important in the regulation of joint homeostasis and disease. TGFβ signalling is induced by loading and has an important function in maintaining the differentiated phenotype of articular chondrocytes. Concentrations of active TGFβ differ greatly between healthy and osteoarthritic joints, being low in healthy joints and high in osteoarthritic joints, leading to the activation of different signalling pathways in joint cells. The characteristic pathology of osteoarthritic joints, such as cartilage damage, osteophyte formation and synovial fibrosis, seems to be stimulated or even caused by the high levels of active TGFβ, in combination with altered chondrocyte signalling pathways (which are also observed in ageing joints). In this Review, the changing role of TGFβ in normal joint homeostasis, ageing and osteoarthritis is discussed: TGFβ counteracts pathological changes in a young healthy joint, alters its signalling during ageing and is a driving force of pathology in osteoarthritic joints.

  6. Arthroscopic debridement of osteoarthritic elbow in professional athletes.

    PubMed

    Yan, Hui; Cui, Guo-Qing; Wang, Jian-Quan; Yin, Yu; Ao, Ying-Fang

    2011-12-01

    Arthroscopic debridement is an appropriate procedure for osteoarthritic elbow in general populations. However, the results of arthroscopic debridement in the professional athletes, a younger and highly active patient cohort is unclear. The purposes of this study were to assess the clinical outcomes of arthroscopic debridement of osteoarthritic elbow in professional athletes and to evaluate the effect of prognostic factors on the clinical outcomes. From January 1999 to January 2006, 35 professional athletes with osteoarthritc elbow (36 elbows) were treated with arthroscopic debridement, consisted of osteophytes removal, loose bodies removal and fenestration of the olecranon fossa as necessary. Average patient age was (23 ± 5) years (range 7 - 34 years). Average follow-up was (43 ± 23) months (range 16 - 98 months). Athletic activities consisted mainly of wrestling, judo and weightlifting. Patients were evaluated preoperatively and postoperatively with the modified Hospital for Special Surgery (HSS) elbow scoring system. According to the modified HSS elbow scoring system, the result was excellent for 16 elbows, good for 14 and poor for 6. No case had got worse after surgery. All athletes reported an improvement in pain. After athletic training, 15 elbows were not painful, 16 mildly painful, 3 moderately painful and 2 severely painful. The arc of flexion-extension improved from 111° preoperatively to 127° postoperatively. All of the athletes were able to return to their previous level of training. Five athletes won national-level championships. At follow-up, 17 athletes (18 elbows) were greatly satisfied with the results, 12 satisfied and 6 unsatisfied. Postoperatively, one athlete reported ulnar nerve symptoms and two others had residual loose bodies. The fenestration of the olecranon fossa was associated with a significantly increased chance of a poor outcome. The nature of the osteoarthritis, duration of symptoms, osteophytes removal and loose bodies removal

  7. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...DATES COVERED 30 Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage...instability, among other traumatic affections of joints, and occupations or sports that subject joints to high levels of impact and torsional loading

  8. Height of centre of body mass during osteoarthritic gait.

    PubMed

    Khodadadeh, S; Whittle, M W; Bremble, G R

    1986-05-01

    Early attempts to locate the position of the centre of mass of the body during walking involved the use of cinematography, followed by kinetic analysis of the forces and couples acting about three axes at the ground and centre of mass. These methods, requiring data on the individual body segments, are too lengthy and complex for routine clinical use. A method is described which estimates both the trajectory and the mean height of the centre of mass, using only dynamic data from a single walk across one pair of force plates. Relating a possible trajectory height to the measured force vectors gives a profile for the horizontal velocity. The correct height is determined by seeking the smooth profile corresponding to the known horizontal velocity obtained by integration. Results are presented for 42 osteoarthritic patients undergoing total hip replacement operations.

  9. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies

    PubMed Central

    Dunn, Sara L.; Wilkinson, Jeremy Mark; Crawford, Aileen; Bunning, Rowena A.D.; Le Maitre, Christine L.

    2016-01-01

    Abstract Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies. PMID:28861474

  10. Expression of CHI3L1 and CHIT1 in Osteoarthritic Rat Cartilage Model. A Morphological Study

    PubMed Central

    Di Rosa, M.; Szychlinska, M.A.; Tibullo, D.; Malaguarnera, L.

    2014-01-01

    Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivoand in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue. PMID:25308850

  11. Natural distribution of the femoral mechanical-anatomical angle in an osteoarthritic population and its relevance to total knee arthroplasty.

    PubMed

    Deakin, Angela H; Basanagoudar, Praveen L; Nunag, Perrico; Johnston, Andrew T; Sarungi, Martin

    2012-03-01

    A common surgical goal in TKA is to restore neutral alignment of the lower limb by making bone cuts perpendicular to the mechanical axes of the femur and tibia. Standard practice for many surgeons is to use the same distal femoral valgus resection angle for all patients, assuming little or no variation in the femoral mechanical-anatomical (FMA) angle between different patients' knees. This study analysed 174 pre-operative hip-knee-ankle radiographs of osteoarthritic knees (157 patients, 87 female and 70 male, mean age 70years and mean BMI 31.8). Measurements of mechanical femorotibial (MFT) and FMA angles were made. The mean FMA angle was 5.7° (SD 1.2°, range 2° to 9°). There was a statistically significant difference between the FMA angle for males and females with males tending to have larger FMA angles (p<0.001). There was a statistically significant correlation between MFT and FMA angle (r=-0.499) with varus knees tending to have larger FMA angles (p<0.001). These results indicate a wide distribution of FMA angle in an osteoarthritic population. In terms of achieving appropriate coronal alignment in TKA the use of a fixed valgus resection angle is not suitable for all patients and it may be preferable to adjust the distal femoral cut according to individual FMA angles. However if this angle is not available the cut may be adjusted according to pre-operative coronal alignment, using 6° for neutral/mild varus, >6° for more severe varus and <6° for valgus knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Unexpected Cancellations in Gravity Theories

    SciTech Connect

    Bern, Z.; Carrasco, J.J.; Forde, D.; Ita, H.; Johansson, H.; /UCLA

    2007-07-13

    Recent computations of scattering amplitudes show that N = 8 supergravity is surprisingly well behaved in the ultraviolet and may even be ultraviolet finite in perturbation theory. The novel cancellations necessary for ultraviolet finiteness first appear at one loop in the guise of the ''no-triangle hypothesis''. We study one-loop amplitudes in pure Einstein gravity and point out the existence of cancellations similar to those found previously in N = 8 supergravity. These cancellations go beyond those found in the one-loop effective action. Using unitarity, this suggests that generic theories of quantum gravity based on the Einstein-Hilbert action may be better behaved in the ultraviolet at higher loops than suggested by naive power counting, though without additional (supersymmetric) cancellations they diverge. We comment on future studies that should be performed to support this proposal.

  13. Effects of osmotic challenges on membrane potential in human articular chondrocytes from healthy and osteoarthritic cartilage.

    PubMed

    Sánchez, Julio C; López-Zapata, Diego F

    2010-01-01

    Changes in external osmolarity arise from variations in mechanical loads on joints and may affect the homeostasis of chondrocytes, which are the only cell type responsible for matrix turnover. Accordingly, variations in membrane potential may affect cartilage production. The present study assessed the effects of variations in external osmolarity on membrane potential and the possible mechanisms responsible for this response. Membrane potential was measured by the patch clamp whole-cell technique using human articular chondrocytes freshly isolated from healthy and osteoarthritic cartilage. The membrane potential was -39±4 mV in articular human chondrocytes from healthy cartilage and -26±4 mV in those from osteoarthritic cartilage. Increasing the osmolarity produced a reversible hyperpolarization mediated by K+ efflux through BKCa channels in both groups of chondrocytes, but the response in osteoarthritic cells was significantly reduced; no other K+ pathways were involved in this effect. Alternatively, decreasing the osmolarity elicited depolarization in healthy chondrocytes but did not produce any response in chondrocytes from osteoarthritic cartilage. The depolarization was dependent on Na+ influx through Gd3+-sensitive stretch-activated cation channels and was independent of external Ca2+. The differential responses observed in chondrocytes from osteoarthritic cartilage suggest that disregulation on the responses to external osmolarity may be involved in the process that leads to the alterations in the cartilage structure observed in osteoarthritis.

  14. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage

    SciTech Connect

    Ryu, J.; Treadwell, B.V.; Mankin, H.J.

    1984-01-01

    Incorporation of radioactive precursors into macromolecules was studied with human normal and osteoarthritic articular cartilage organ culture. Analysis of the salt extracted matrix components separated by cesium chloride buoyant density gradient centrifugation showed an increase in the specific activities of all gradient fractions prepared from the osteoarthritic cartilage. Further analysis of these fractions showed the osteoarthritic cartilage contained 5 times as much sulfate incorporated into proteoglycans, and an even greater amount of 3H-glucosamine incorporated into material sedimenting to the middle of the gradient. Greater than half of this radioactive middle fraction appears to be hyaluronate, as judged by the position it elutes from a DEAE column and its susceptibility to hyaluronidase digestion. This study supports earlier findings showing increased rates of macromolecular synthesis in osteoarthritis, and in addition, an even greater synthetic rate for hyaluronic acid is demonstrated.

  15. Huge Subchondral Cyst Communicating with Medulary Canal of Femur in OA Knee-Treated by Extension Stem and Bone Grafting

    PubMed Central

    Rajani, Amyn M; Kumar, Ritesh; Shyam, Ashok

    2014-01-01

    Introduction: We report an osteoarthritic patient with huge sub-chondral cyst-like lesions in the Anterior part of distal femur. Deep and large bone defects and severe lateral laxity due to Advanced osteoarthritis was successfully treated with semi-constrained type total knee arthroplasty with long stem. Case Report: A 70yrs old Female was admitted in our institution diagnosed with severe bilateral Osteoarthritis. The x-rays showed bone on bone Tricompartment OA Knee with Varus Malalignment. She was posted for Single Stage Bilateral Total Knee Replacement and as planned the Left Knee Was Operated first. After exposure, Proximal Tibial, Distal Femoral Cuts and measurement of extension gaps the synovium from the anterior Femur was removed and sizing was done. The AP cut was then proceeded with. We spotted a small Osteochondral Cyst in the Anterior Femur which was curretted to remove the cystic material, which is when we realised that the cyst was large and communicating with the medulary canal. The remaining Femoral preparations was done keeping in mind the risk of iatrogenic fracture and extension Stem was used in the femur. The defect was then packed cancellous bone graft. Conclusion: If suspected a Preoperative MRI should be done to exclude any sub-chondral cysts osteochondral defects and any surprise during surgery. Usually one should keep extension stems ready for difficult cases. Operating surgeon should know his implants very well, as in many standard implants extension stems can only be used when distal femur cuts are taken accordingly as 5° Valgus. Mini incision should be avoided because it may fail to reveal such surprises and may land into periprosthetic fractures. PMID:27298967

  16. Treatment of large segmental bone defects with reamer-irrigator-aspirator bone graft: technique and case series.

    PubMed

    McCall, Todd A; Brokaw, David S; Jelen, Bradley A; Scheid, D Kevin; Scharfenberger, Angela V; Maar, Dean C; Green, James M; Shipps, Melanie R; Stone, Marcus B; Musapatika, Dana; Weber, Timothy G

    2010-01-01

    Treatment of large segmental defects using conventional autogenous iliac crest bone graft can be limited by volume of cancellous bone and donor site morbidity. The reamer-irrigator-aspirator (RIA) technique allows access to a large volume of cancellous bone graft containing growth factors with potency equal to or greater than autograft material from the iliac crest. The purpose of this study was to evaluate the effectiveness of RIA-harvested autogenous bone graft for treating large segmental defects of long bones.

  17. 34 CFR 674.52 - Cancellation procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accelerated— (i) May qualify for a loan cancellation for services performed before the date of acceleration; and (ii) Cannot qualify for a cancellation for services performed on or after the date of acceleration...

  18. 77 FR 19747 - Proposed Cancelation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Proposed Cancelation of the Air Taxi Authority Of VIH Cougar Helicopters, Inc... cause why it should not issue an order finding that VIH Cougar Helicopters, Inc. is not a U.S. citizen...

  19. Serials Cancellation Project. Final Report.

    ERIC Educational Resources Information Center

    Carter, Ruth C.; Bruntjen, Scott

    A serials cancellation pilot project was conducted by the Pittsburgh Regional Library Center (PRLC) from August 1981 to December 1983 in order to demonstrate the utility of using a large online union list of serials for making and reporting collection management decisions. A total of 21 academic libraries and one public library from Pennsylvania,…

  20. Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty.

    PubMed

    Siston, Robert A; Giori, Nicholas J; Goodman, Stuart B; Delp, Scott L

    2006-08-01

    Total knee arthroplasty is a successful procedure to treat pain and functional disability due to osteoarthritis. However, precisely how a total knee arthroplasty changes the kinematics of an osteoarthritic knee is unknown. We used a surgical navigation system to measure normal passive kinematics from 7 embalmed cadaver lower extremities and in vivo intraoperative passive kinematics on 17 patients undergoing primary total knee arthroplasty to address two questions: How do the kinematics of knees with advanced osteoarthritis differ from normal knees?; and, Does posterior substituting total knee arthroplasty restore kinematics towards normal? Osteoarthritic knees displayed a decreased screw-home motion and abnormal varus/valgus rotations between 10 degrees and 90 degrees of knee flexion when compared to normal knees. The anterior-posterior motion of the femur in osteoarthritic knees was not different than in normal knees. Following total knee arthroplasty, we found abnormal varus/valgus rotations in early flexion, a reduced screw-home motion when compared to the osteoarthritic knees, and an abnormal anterior translation of the femur during the first 60 degrees of flexion. Posterior substituting total knee arthroplasty does not appear to restore normal passive varus/valgus rotations or the screw motion and introduces an abnormal anterior translation of the femur during intraoperative evaluation.

  1. Brief exposure of 0.05% chlorhexidine does not impair non-osteoarthritic human cartilage metabolism.

    PubMed

    Best, A J; Nixon, M F; Taylor, G J S

    2007-09-01

    Jet lavage with chlorhexidine 0.05% is an effective means of wound decontamination with 99% of bacteria removed or killed after 1min. Reports of chondrolysis following exposure to concentrations of >0.05% or prolonged exposure to chlorhexidine have curtailed its use in orthopaedic practice. Using radiolabelled sulphur uptake to measure cartilage metabolism, we quantitatively assessed the in-vitro effect of osteoarthritic and non-osteoarthritic human cartilage exposure to chlorhexidine 0.05% for 1min and 1h. The metabolism of non-osteoarthritic cartilage was not significantly affected by a 1min exposure to chlorhexidine 0.05% whereas that of osteoarthritic cartilage was markedly impaired. Prolonged exposure for 1h markedly affected both types of cartilage. These results are encouraging in that 0.05% chlorhexidine may have a role in the decontamination of contaminated open joint injuries in patients with no signs of osteoarthritis. Until there is further understanding of the mechanism underlying reported incidents of chondrolysis following its use, however, it cannot be recommended for the irrigation of 'clean' articular cartilage.

  2. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a) Attachments...

  3. 7 CFR 1942.12 - Loan cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be cancelled. The borrower's attorney and engineer/architect, if any, should be notified of the cancellation. The Rural Development Manager may provide the borrower's attorney and engineer/architect with a... Affairs and Public Information by telephone or electronic mail and give the reasons for such cancellation....

  4. 7 CFR 1942.12 - Loan cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be cancelled. The borrower's attorney and engineer/architect, if any, should be notified of the cancellation. The Rural Development Manager may provide the borrower's attorney and engineer/architect with a... Affairs and Public Information by telephone or electronic mail and give the reasons for such cancellation....

  5. 7 CFR 1942.12 - Loan cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be cancelled. The borrower's attorney and engineer/architect, if any, should be notified of the cancellation. The Rural Development Manager may provide the borrower's attorney and engineer/architect with a... Affairs and Public Information by telephone or electronic mail and give the reasons for such cancellation....

  6. 7 CFR 1942.12 - Loan cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be cancelled. The borrower's attorney and engineer/architect, if any, should be notified of the cancellation. The Rural Development Manager may provide the borrower's attorney and engineer/architect with a... Affairs and Public Information by telephone or electronic mail and give the reasons for such cancellation....

  7. 7 CFR 1942.12 - Loan cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be cancelled. The borrower's attorney and engineer/architect, if any, should be notified of the cancellation. The Rural Development Manager may provide the borrower's attorney and engineer/architect with a... Affairs and Public Information by telephone or electronic mail and give the reasons for such cancellation....

  8. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  9. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  10. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  11. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  12. 34 CFR 674.52 - Cancellation procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Cancellation procedures. 674.52 Section 674.52... EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Loan Cancellation § 674.52 Cancellation... borrower, or, if the borrower is the spouse of an eligible public servant as defined in § 674.64(a)(1),...

  13. Operation cancellation at Chang Gung Memorial Hospital.

    PubMed

    Sung, Wei-Che; Chou, An-Hsun; Liao, Chia-Chih; Yang, Min-Wen; Chang, Chee-Jen

    2010-01-01

    Roughly 60,000 operations are performed at our medical center every year, so making efficient use of operating rooms (OR) is an important issue. Decreasing the cancellation rate of surgery is one method that could increase efficiency. We reviewed all OR cancellations in 2007 to survey the cancellation rates and causes. The present study was retrospective. Data were collected from the Department of Anesthesiology Quality Assurance Database of Chang Gung Memorial Hospital. We analyzed medical records for cancellations from January 1 to December 31, 2007. Data were analyzed using SPSS 16.0, employing descriptive measures and logistic regression. There were 61855 operations scheduled during this period; 229 were cancelled (0.37%). The mean age of patients in the cancelled group was significantly higher than that in the the non-cancelled group. We found a positive correlation between the cancellation rate and American Society of Anesthesiologists physical status. Cancellations for outpatient surgery were most frequent, as were those in the ophthalmology department. Forty-seven cases were cancelled because of cardiovascular problems; 136 operations were done later after the original cancellation issues were addressed while 11 were done under local anesthesia. Of all causes of cancellation of surgery, 54.1% were avoidable. Medical teams must communicate better with patients and relatives, identify and treat relevant comorbidities, and make adequate preparations for surgery.

  14. Enhanced Cancelable Biometrics for Online Signature Verification

    NASA Astrophysics Data System (ADS)

    Muramatsu, Daigo; Inuma, Manabu; Shikata, Junji; Otsuka, Akira

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  15. Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal

    PubMed Central

    Shi, Qin; Vaillancourt, France; Côté, Véronique; Fahmi, Hassan; Lavigne, Patrick; Afif, Hassan; Di Battista, John A; Fernandes, Julio C; Benderdour, Mohamed

    2006-01-01

    4-Hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues, but its role in bone metabolism is ill-defined. In this study, we tested the hypothesis that alterations in OA osteoblast metabolism are attributed, in part, to increased levels of HNE. Our data showed that HNE/protein adduct levels were higher in OA osteoblasts compared to normal and when OA osteoblasts were treated with H2O2. Investigating osteoblast markers, we found that HNE increased osteocalcin and type I collagen synthesis but inhibited alkaline phosphatase activity. We next examined the effects of HNE on the signaling pathways controlling cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) expression in view of their putative role in OA pathophysiology. HNE dose-dependently decreased basal and tumour necrosis factor-α (TNF-α)-induced IL-6 expression while inducing COX-2 expression and prostaglandin E2 (PGE2) release. In a similar pattern, HNE induces changes in osteoblast markers as well as PGE2 and IL-6 release in normal osteoblasts. Upon examination of signaling pathways involved in PGE2 and IL-6 production, we found that HNE-induced PGE2 release was abrogated by SB202190, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Overexpression of p38 MAPK enhanced HNE-induced PGE2 release. In this connection, HNE markedly increased the phosphorylation of p38 MAPK, JNK2, and transcription factors (CREB-1, ATF-2) with a concomitant increase in the DNA-binding activity of CRE/ATF. Transfection experiments with a human COX-2 promoter construct revealed that the CRE element (-58/-53 bp) was essential for HNE-induced COX-2 promoter activity. However, HNE inhibited the phosphorylation of IκBα and subsequently the DNA-binding activity of nuclear factor-κB. Overexpression of IKKα increased TNF-α-induced IL-6 production. This induction was inhibited when TNF-α was combined with HNE. These findings suggest that HNE may exert multiple

  16. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats.

    PubMed

    Wang, Zhu-Min; Chen, Yong-Cai; Wang, Da-Peng

    2016-10-01

    Osteoarthritis (OA) is a chronic progressive joint disease characterized by advanced joint pain, subchondral bone sclerosis and articular cartilage degeneration. Resveratrol has been shown to have anti-inflammatory, cardioprotective and antioxidant properties and to inhibit platelet aggregation and coagulation. However, the effects of resveratrol on OA have not been examined. In this study, we investigate the protective effects of resveratrol on monosodium iodoacetate (MIA)-induced OA through inhibition of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) signaling pathway in a rat model. A single intra-articular injection of MIA was injected into rats for the induction of OA. The mechanical, heat and cold hyperalgesia were measured at days 0, 7 and 14. The serum and synovial fluid levels of IL-1β, IL-10 and TNF-α and osteocalcin were measured by enzyme-linked immunosorbent assay. The mRNA and protein expressions of IL-1β, IL-10, TNF-α, Il-6, MMP-13 and COX-2 and iNOS were determined by RT-PCR and western blot, respectively. Osteoarthritic lesion in the knee joint was evaluated by histological analysis. MIA-injected rats treated with resveratrol at a dose of either 5 or 10mg/kg body weight were significantly reduced hyperalgesia of mechanical, heat and cold and increased the vertical and horizontal movements. Subsequently, MIA-injected rats increased serum and synovial fluid levels of IL-1β, IL-10, IL-6, TNF-α, MMP-13 and osteoclastic activity marker, osteocalcin and its articular cartilage mRNA and protein expressions. Further, MIA-injected rats increased COX-2 and iNOS mRNA and protein expressions were decreased by resveratrol. The protective effect of resveratrol was comparable to a reference drug, etoricoxib. The cartilage damage induced by MIA were attenuated by resveratrol. Taken together, resveratrol has the potential to improve MIA-induced cartilage damage by inhibiting the levels and expressions of inflammatory mediators suggesting

  17. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

    PubMed Central

    2016-01-01

    Purpose This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results The maximum extent of micromotion was approximately 100 μm in the low-density cancellous bone models, whereas it was under 30 μm in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading. PMID:27382504

  18. Local Variation in Femoral Neck Cortical Bone: In Vitro Measured Bone Mineral Density, Geometry and Mechanical Properties.

    PubMed

    Coutts, Louise V; Jenkins, Thomas; Oreffo, Richard O C; Dunlop, Doug G; Cooper, Cyrus; Harvey, Nicholas C; Thurner, Philipp J

    2015-12-17

    Age- and disease (osteoporotic fractured and osteoarthritic tissue)-related changes in the distribution of cortical bone were examined, using a multimodality approach, including measurement of local density, geometry and mechanical properties, where changes in these properties can give rise to instability and increasing probability of fracture. In contrast to the majority of previously reported research, this study also focuses on the characteristic non-circular femoral neck cross-sectional geometry and variation in bone mineral density (BMD) around the femoral neck. Twenty-two osteoarthritic and 7 osteoporotic femoral neck slices, collected from elective and trauma-related arthroplasty, and 16 cadaveric donor tissue controls were tested mechanically using Reference Point Indentation (BioDent™, Active Life Technologies®, Santa Barbara, CA) and then scanned with in vitro-based radiography intended to replicate the dual-energy X-ray absorptiometry technique. All parameters were measured regionally around the circumference of the femoral neck, allowing examination of spatial variability within the cortical bone. Fractured tissue was less resistant to indentation in the thinner superolateral segment compared to other segments and other groups. BMD around the fractured femoral necks appeared more consistent than that of nonfractured tissue, where BMD was reduced in the superolateral segment for the other groups. Cortical bone was thin in the superolateral segment for all groups except for the osteoarthritic group, and was thicker in the inferomedial segment for both osteoarthritic and fractured groups, resulting in the largest variation in buckling ratio (ratio of cortical bone diameter to cortical bone thickness) around the femoral neck for the fractured group. With age, healthy controls appeared to have lower inferomedial cortical thickness, whereas no significant differences in Reference Point Indentation measurements and density were observed. The study has

  19. Behavioral Evaluation of Movement Cancellation

    PubMed Central

    Walton, Mark M. G.; Gandhi, Neeraj J.

    2013-01-01

    The countermanding saccade task has been used in many studies to investigate the neural mechanisms that underlie the decision to execute or restrain rapid eye movements. In this task, the presentation of a saccade target is sometimes followed by the appearance of a stop cue that indicates that the subject should cancel the planned movement. Performance has been modeled as a race between motor preparation and cancellation processes. The signal that reaches its activation threshold first determines whether a saccade is generated or cancelled. In these studies, an important parameter is the time required to process the stop cue, referred to as the stop signal reaction time (SSRT). The SSRT is estimated using statistical approaches, the validity of which has not been unequivocally established. A more direct measure of this parameter might be obtainable if a method was available to “unmask” the developing motor command. This can be accomplished by air-puff-evoked blinks, which inhibit pontine omnipause neurons that serve as an inhibitory gate for the saccadic system. In the present study, brief puffs of air were used to elicit blinks at various times while rhesus monkeys performed a countermanding saccade task. If the developing motor command has not yet been cancelled, this should trigger a saccade. When blinks occurred between ~50 and 200 ms after target onset, saccades were often evoked. Saccades were rarely evoked more than ~70 ms after stop cue onset; this value represents a behavioral evaluation of SSRT and was comparable to the estimates obtained using standard statistical approaches. When saccades occurred near the SSRT on blink trials, they were often hypometric. Furthermore, Monte Carlo simulations were performed to model the effects of blink time on the race model. Overall, the study supports the validity of the statistical methods currently in use. PMID:16760340

  20. Physically Damped Noise Canceling Hydrophone

    DTIC Science & Technology

    2016-06-24

    Description of the Prior Art [0004] An acoustic hydrophone can transfer underwater pressure waves to electrical energy. As a result, an output charge...frequencies in the range of the generated noise. [0006] In the prior art, the design of a noise cancelling hydrophone was originally developed by Kahn...includes two types of piezoelectric transducers coupled together. One transducer maintains voids and is sensitive to hydrostatic acoustic signals. The

  1. Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity?

    PubMed

    Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A

    2017-01-01

    Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.

  2. A Lousy Reason for Surgery Cancellations.

    PubMed

    Walker, Christian; Sebastian, Roby; Krishna, Senthil; Tobias, Joseph D

    2016-07-01

    Cancellation of surgery has significant adverse impact on patients, health care providers, and their associated facilities. Although head lice infestation has not been shown to be associated with adverse surgical outcomes, it often prompts case cancellation by surgical and anesthesia personnel. The purpose of our study was to evaluate the extent and impact of surgery cancellations due to head lice infestation. In our study, a total of 9 patients were cancelled over a 3-year period. Although there is no direct evidence to show that head lice infestation poses a risk to surgical outcomes, the possibility of underlying secondary bacterial infection at the skin excoriation site is often the concern in these patients. This study offers the first investigation into the impact of head lice infections on operating room cancellations, which may prove to be a potential source of intervention to prevent cancellations. © The Author(s) 2015.

  3. In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities.

    PubMed

    Matsuki, Keisuke; Matsuki, Kei O; Kenmoku, Tomonori; Yamaguchi, Satoshi; Sasho, Takahisa; Banks, Scott A

    2017-08-04

    Kinematic changes have been shown to accompany severe knee osteoarthritis, but no studies have analyzed early-stage osteoarthritic knee kinematics in the transverse plane during functional activities. The purpose of this study was to analyze kinematics of early-stage osteoarthritic knees using model registration techniques. Fifteen early-stage osteoarthritic knees from eight females with a mean age of 52 years old (range, 43-57years old) were involved in this study. A radiologist confirmed with plain radiographs that knees had Kellgren-Lawrence grade-1 or -2 arthritic changes. Fluoroscopic images of squat and pivot activities were recorded for each subject. Three-dimensional surface models of the distal femur and proximal tibia were created from CT images, and anatomic coordinate systems were embedded in each model. The three-dimensional position and orientation of the femur and the tibia were determined using model-image registration techniques, and tibial anteroposterior translation and internal/external rotation relative to the femur were calculated. The contact points of the medial and lateral femoral condyle were also computed. Compared to healthy knees, osteoarthritic knees showed lateral contact points that were significantly shifted anteriorly in both pivot (P<0.001) and squat (P=0.001) activities and greater tibial external rotation in pivot activity (P=0.007). The medial contact point location was similar to healthy knees, but the amount of anteroposterior translation was smaller (P<0.001). These kinematic changes might change stress distributions in the medial compartment during weight-bearing activities. The changes in kinematics possibly have some influence on initiation or progression of knee osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. OCT imaging of osteoarthritic cartilage: structure, polarization sensitivity, and clinical feasibility

    NASA Astrophysics Data System (ADS)

    Li, Xing D.; Herrmann, Jurgen; Ghanta, Ravi K.; Pitris, Constantinos; Drexler, Wolfgang; Jesser, Christine; Stamper, Debra L.; Golden, David; Martin, Scott; Fujimoto, James G.; Brezinski, Mark E.

    1999-04-01

    This work demonstrates the feasibility of OCT for identifying early osteoarthritic pathology. In addition to structural abnormalities, changes in collagen fiber organization, an indicator of very early osteoarthritis, were assessed with a polarization sensitive OCT system. A portable, real time, modular OCT system, suitable for both laboratory and clinical settings, has been developed. Preliminary in vivo imaging results obtained during partial knee replacement surgery are discussed.

  5. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2016-10-01

    configured to apply direct current (DC) electric fields to cylindrical cartilage tissue specimens to simulate the migration of endogenous/exogenous...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL... currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES

  6. Human polyethylene granuloma tissues inhibit bone healing in a novel xenograft animal model.

    PubMed

    Esposito, Christina I; Oliver, Rema A; Campbell, Patricia A; Yu, Yan; Walter, William L; Walter, William K; Walsh, William R

    2014-06-01

    During revision of a conventional polyethylene joint replacement, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the polyethylene granuloma tissues. We developed a human/rat xenograft model to investigate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic nude rats. After 3 weeks in vivo, there was a significant difference in the bone volume fraction (Vf ) between empty, primary, and revision defects (p = 0.02), with a lower Vf in defects with revision granuloma tissues compared to defects with primary osteoarthritic tissues. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Therefore, debridement around a metal-on-polyethylene hip replacement may shorten the time it takes to achieve secondary stability around a revision hip replacement. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Oreopithecus was a bipedal ape after all: Evidence from the iliac cancellous architecture

    PubMed Central

    Rook, Lorenzo; Bondioli, Luca; Köhler, Meike; Moyà-Solà, Salvador; Macchiarelli, Roberto

    1999-01-01

    Textural properties and functional morphology of the hip bone cancellous network of Oreopithecus bambolii, a 9- to 7-million-year-old Late Miocene hominoid from Italy, provide insights into the postural and locomotor behavior of this fossil ape. Digital image processing of calibrated hip bone radiographs reveals the occurrence of trabecular features, which, in humans and fossil hominids, are related to vertical support of the body weight, i.e., to bipedality. PMID:10411955

  8. The effectiveness of hyaluronic acid intra-articular injections in managing osteoarthritic knee pain

    PubMed Central

    Anand, A

    2013-01-01

    Introduction Knee osteoarthritis (OA) is a common and progressive joint disease. Treatment options for knee OA vary from simple analgesia in mild cases to knee replacement for advanced disease. Knee pain due to moderate OA can be targeted with intra-articular injections. Steroid injections have been used widely in managing acute flare-ups of the disease. In recent years, viscosupplementation has been used as a therapeutic modality for the management of knee OA. The principle of viscosupplementation is based on the physiological properties of the hyaluronic acid (HA) in the synovial joint. Despite a sound principle and promising in vitro studies, clinical studies have been less conclusive on the effectiveness of HA in managing osteoarthritic knee pain. The aim of this systematic review was to assess the effectiveness of HA intra-articular injections in the management of osteoarthritic knee pain. Methods A systematic review of the literature was performed using MEDLINE®, Embase™ and CINAHL® (Cumulative Index to Nursing and Allied Health Literature). The databases were searched for randomised controlled trials available on the effectiveness of HA intra-articular injections in managing osteoarthritic knee pain. Results The search yielded 188 studies. Of these, 14 met the eligibility criteria and were reviewed in chronological order. Conclusions HA intra-articular injections have a modest effect on early to moderate knee OA. The effect peaks at around 6–8 weeks following administration, with a doubtful effect at 6 months. PMID:24165334

  9. The effectiveness of hyaluronic acid intra-articular injections in managing osteoarthritic knee pain.

    PubMed

    Trigkilidas, D; Anand, A

    2013-11-01

    Knee osteoarthritis (OA) is a common and progressive joint disease. Treatment options for knee OA vary from simple analgesia in mild cases to knee replacement for advanced disease. Knee pain due to moderate OA can be targeted with intra-articular injections. Steroid injections have been used widely in managing acute flare-ups of the disease. In recent years, viscosupplementation has been used as a therapeutic modality for the management of knee OA. The principle of viscosupplementation is based on the physiological properties of the hyaluronic acid (HA) in the synovial joint. Despite a sound principle and promising in vitro studies, clinical studies have been less conclusive on the effectiveness of HA in managing osteoarthritic knee pain. The aim of this systematic review was to assess the effectiveness of HA intra-articular injections in the management of osteoarthritic knee pain. A systematic review of the literature was performed using MEDLINE®, Embase™ and CINAHL® (Cumulative Index to Nursing and Allied Health Literature). The databases were searched for randomised controlled trials available on the effectiveness of HA intra-articular injections in managing osteoarthritic knee pain. The search yielded 188 studies. Of these, 14 met the eligibility criteria and were reviewed in chronological order. HA intra-articular injections have a modest effect on early to moderate knee OA. The effect peaks at around 6-8 weeks following administration, with a doubtful effect at 6 months.

  10. Acoustic, mechanical and near-infrared profiling of osteoarthritic progression in bovine joints

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Oloyede, A.; Crawford, R. W.; Thomas, G. E. R.; Price, A. J.; Gill, H. S.

    2012-01-01

    Early-stage treatments for osteoarthritis are attracting considerable interest as a means to delay, or avoid altogether, the pain and lack of mobility associated with late-stage disease, and the considerable burden that it places on the community. With the development of these treatments comes a need to assess the tissue to which they are applied, both in trialling of new treatments and as an aid to clinical decision making. Here, we measure a range of mechanical indentation, ultrasound and near-infrared spectroscopy parameters in normal and osteoarthritic bovine joints in vitro to describe the role of different physical phenomena in disease progression, using this as a basis to investigate the potential value of the techniques as clinical tools. Based on 72 samples we found that mechanical and ultrasound parameters showed differences between fibrillated tissue, macroscopically normal tissue in osteoarthritic joints, and normal tissue, yet did were unable to differentiate degradation beyond that which was visible to the naked eye. Near-infrared spectroscopy showed a clear progression of degradation across the visibly normal osteoarthritic joint surface and as such, was the only technique considered useful for clinical application.

  11. 34 CFR 674.59 - Cancellation for military service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... fraction of a year beyond a complete year of service, does not qualify for military cancellation....

  12. 34 CFR 674.59 - Cancellation for military service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... fraction of a year beyond a complete year of service, does not qualify for military cancellation. (b...

  13. Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis.

    PubMed

    Dall'Ara, Enrico; Ohman, Caroline; Baleani, Massimiliano; Viceconti, Marco

    2011-05-17

    This study investigated whether changes in hardness of human trabecular bone are associated with osteoarthritis. Twenty femoral heads extracted from subjects without musculoskeletal diseases (subject age: 49-83 years) and twenty femoral heads extracted from osteoarthritic subjects (subject age: 42-85 years) were tested. Sixty indentations were performed along the main trabecular direction of each sample at a fixed relative distance. Two microstructures were found on the indenting locations: packs of parallel-lamellae (PL) and secondary osteons (SO). A 25gf load was applied for 15s and the Vickers Hardness (HV) was assessed. Trabecular tissue extracted from osteoarthritic subjects was found to be about 13% less hard compared to tissue extracted from non-pathologic subjects. However, tissue hardness was not significantly affected by gender or age. The SO was 10% less hard than the PL for both pathologic and non-pathologic tissues. A hardness of 34.1HV for PL and 30.8HV for SO was found for the non-pathologic tissue. For osteoarthritic tissue, the hardness was 30.2HV for PL and 27.1HV for SO. In the bone tissue extracted from osteoarthritic subjects the occurrence of indenting a SO (28%) was higher than that observed in the non-pathological tissue (15%). Osteoarthritis is associated with reduced tissue hardness and alterations in microstructure of the trabecular bone tissue. Gender does not significantly affect trabecular bone hardness either in non-pathological or osteoarthritic subjects. A similar conclusion can be drawn for age, although a larger donor sample size would be necessary to definitively exclude the existence of a slight effect.

  14. 29 CFR 4.190 - Contract cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Contract cancellation. 4.190 Section 4.190 Labor Office of the Secretary of Labor LABOR STANDARDS FOR FEDERAL SERVICE CONTRACTS Enforcement § 4.190 Contract cancellation. (a) As provided in section 3 of the Act, where a violation is found of any contract stipulation...

  15. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  16. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  17. 43 CFR 3601.62 - Cancellation procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Contract and Permit Cancellation § 3601.62 Cancellation procedure. (a... notice under paragraph (a) of this section, or if delivery of the notice is refused, or not completed...

  18. 43 CFR 3601.62 - Cancellation procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Contract and Permit Cancellation § 3601.62 Cancellation procedure. (a... notice under paragraph (a) of this section, or if delivery of the notice is refused, or not completed...

  19. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall be...

  20. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall be...

  1. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall be...

  2. Noise canceling in-situ detection

    DOEpatents

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  3. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the opinion...

  4. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the opinion...

  5. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for the...

  6. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the opinion...

  7. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for the...

  8. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the opinion...

  9. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the opinion...

  10. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for the...

  11. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for the...

  12. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers

    PubMed Central

    Fickert, Stefan; Fiedler, Jörg; Brenner, Rolf E

    2004-01-01

    We first identified and isolated cellular subpopulations with characteristics of mesenchymal progenitor cells (MPCs) in osteoarthritic cartilage using fluorescence-activated cell sorting (FACS). Cells from osteoarthritic cartilage were enzymatically isolated and analyzed directly or after culture expansion over several passages by FACS using various combinations of surface markers that have been identified on human MPCs (CD9, CD44, CD54, CD90, CD166). Culture expanded cells combined and the subpopulation derived from initially sorted CD9+, CD90+, CD166+ cells were tested for their osteogenic, adipogenic and chondrogenic potential using established differentiation protocols. The differentiation was analyzed by immunohistochemistry and by RT-PCR for the expression of lineage related marker genes. Using FACS analysis we found that various triple combinations of CD9, CD44, CD54, CD90 and CD166 positive cells within osteoarthritic cartilage account for 2–12% of the total population. After adhesion and cultivation their relative amount was markedly higher, with levels between 24% and 48%. Culture expanded cells combined and the initially sorted CD9/CD90/CD166 triple positive subpopulation had multipotency for chondrogenic, osteogenic and adipogenic differentiation. In conclusion, human osteoarthritic cartilage contains cells with characteristics of MPCs. Their relative enrichment during in vitro cultivation and the ability of cell sorting to obtain more homogeneous populations offer interesting perspectives for future studies on the activation of regenerative processes within osteoarthritic joints. PMID:15380042

  13. SOCS1 Regulates Apoptosis and Inflammation by Inhibiting IL-4 Signaling in IL-1β-Stimulated Human Osteoarthritic Chondrocytes

    PubMed Central

    He, Qiang; Sun, Caihong; Lei, Wei

    2017-01-01

    Recently, Suppressor of Cytokine Signaling 1 (SOCS1) was identified as a potential therapeutic target for osteoarthritis (OA) treatment. However, the mechanisms and signaling pathways of SOCS1 in the regulation of OA development are unclear. The purpose of the current study was to investigate whether interleukin- (IL-) 4 was involved in regulatory mechanism of SOCS1 in human osteoarthritic chondrocytes. First, IL-1β was used to stimulate human osteoarthritic chondrocytes isolated from the articular cartilage of OA patients undergoing total knee replacement. The protein and mRNA expression levels of SOCS1 were upregulated in IL-1β-stimulated human osteoarthritic chondrocytes compared with control cells. The knockdown of SOCS1 increased cell viability and inhibited cell apoptosis. It was also found that IL-4 expression was increased by SOCS1 silencing. Additionally, knockdown of IL-4 reduced cell viability and increased cell apoptosis of osteoarthritic chondrocytes transfected with SOCS1 siRNA. Moreover, the decreased expression of inflammatory factors induced by SOCS1 was enhanced by IL-4 knockdown. In conclusion, IL-4 signaling plays a crucial role in the regulatory functions of SOCS1 in apoptosis and inflammation in human osteoarthritic chondrocytes. These findings provide a potential therapeutic target for the clinical treatment of OA. PMID:28373981

  14. Stress Distribution on Short Implants at Maxillary Posterior Alveolar Bone Model with Different Bone-to-Implant Contact Ratio: Finite Element Analysis.

    PubMed

    Yazicioglu, Duygu; Bayram, Burak; Oguz, Yener; Cinar, Duygu; Uckan, Sina

    2015-02-02

    The aim of this study is to evaluate the stress distribution of the short dental implants and bone-to-implant contact ratios in the posterior maxilla using 3D finite element models. Two different 3D maxillary posterior bone segments were modelled. Group 1 was composed of a bone segment consisting of cortical bone and type IV cancellous bone with 100% bone-to-implant contact. Group 2 was analoged as a bone segment consisting of cortical bone and cancellous bone including spherical bone design and homogenous tubular hollow spaced structures with 30% spherical porosities and 70% bone-to-implant contact ratio. 4 mm diameter and 5 mm height dental implants were assumed to be osseointegrated and placed at the center of the segments. 300 N lateral occlusal bite force was applied at a 25 degree inclination to the implants long axis. The maximum von Mises stresses in cortical and cancellous bones; and implant-abutment complex were calculated. The von Mises stress values upon the implants and the cancellous bone around the implants of the 70% bone-to-implant contact group were almost three times higher compared to the values of the 100% bone-to-implant contact group. For clinical reality, use of the 70% model for finite element analysis (FEA) simulation of the posterior maxilla region better represents real alveolar bone and the increased stress and strain distributions evaluated on the cortical and cancellous bone around the dental implants.

  15. Stress Distribution on Short Implants at Maxillary Posterior Alveolar Bone Model With Different Bone-to-Implant Contact Ratio: Finite Element Analysis.

    PubMed

    Yazicioglu, Duygu; Bayram, Burak; Oguz, Yener; Cinar, Duygu; Uckan, Sina

    2016-02-01

    The aim of this study was to evaluate the stress distribution of the short dental implants and bone-to-implant contact ratios in the posterior maxilla using 3-dimensional (3D) finite element models. Two different 3D maxillary posterior bone segments were modeled. Group 1 was composed of a bone segment consisting of cortical bone and type IV cancellous bone with 100% bone-to-implant contact. Group 2 was composed of a bone segment consisting of cortical bone and type IV cancellous bone including spherical bone design and homogenous tubular hollow spaced structures with 30% spherical porosities and 70% bone-to-implant contact ratio. Four-millimeter-diameter and 5-mm-height dental implants were assumed to be osseointegrated and placed at the center of the segments. Lateral occlusal bite force (300 N) was applied at a 25° inclination to the implants long axis. The maximum von Mises stresses in cortical and cancellous bones and implant-abutment complex were calculated. The von Mises stress values on the implants and the cancellous bone around the implants of the 70% bone-to-implant contact group were almost 3 times higher compared with the values of the 100% bone-to-implant contact group. For clinical reality, use of the 70% model for finite element analysis simulation of the posterior maxilla region better represents real alveolar bone and the increased stress and strain distributions evaluated on the cortical and cancellous bone around the dental implants.

  16. Supersonic jet screech tone cancellation

    NASA Technical Reports Server (NTRS)

    Nagel, R. T.; Denham, J. W.; Papathanasiou, A. G.

    1983-01-01

    A new method of supersonic jet screech tone reduction is presented. The method utilizes a sound reflecting surface positioned upstream of the nozzle exit a distance of one-quarter wavelength of the fundamental screech tone. The reflector establishes a standing wave pattern of acoustic waves with a node at the nozzle exit plane. The pressure minimum at the exit halts the screech tone feedback mechanism. Experimental results indicate that the method eliminates supersonic jet screech as effectively as the currently accepted technique using an intrusive tab, but without distortion of the jet flow. The change in shock cell spacing, which occurs with an intrusive tab, does not occur when screech is cancelled with the new technique. The broadband shock-associated noise is also influenced much less when the jet screech tones are eliminated by the new method.

  17. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  18. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  19. Brillouin scattering self-cancellation

    NASA Astrophysics Data System (ADS)

    Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.

    2016-06-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.

  20. Brillouin scattering self-cancellation

    PubMed Central

    Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon–phonon interaction, enhancing or suppressing it. PMID:27283092

  1. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  2. Magnetic Flux Cancellation and Formation of Prominence

    NASA Astrophysics Data System (ADS)

    Miley, George; Kim, Mun Song; Chon Nam, Sok; Kim, Kyong Chol

    2015-08-01

    Magnetic flux cancellation appears to be closely related to various kinds of solar activities such as flares, microflares/surges/jets, X-ray bright points, erupting mini-filaments, transition region explosive events, filament formation, filament activation and eruption, and coronal mass ejections. It is commonly believed that magnetic reconnections in the low atmosphere are responsible for canceling magnetic features, and magnetic fragments are observed to originate as bipoles. According to the Sweet-Parker type reconnection model, the inflow speed closely corresponds to the converging speed of each pole in a canceling magnetic feature and the rate of flux cancellation must be explained by the observed converging speed. As distinct from the corona, the efficiency of photospheric magnetic reconnection may be due to the small Cowling conductivity, instead of the Spitzer, of weakly ionized and magnetized plasma in the low atmosphere of the sun. Using the VAL-C atmospheric model and Cowling conductivity, we have computed the parameters describing Sweet-Parker type reconnecting current sheets in the plasma of the solar photosphere and chromosphere, and particularly for the phenomena of magnetic flux cancellation and dark filament formation which occurred on July 2, 1994 we have estimated the rate of flux cancellation, the inflow speed(the converging speed) and the upward mass flux to compare with the observation. The results show that when taking account of the Cowling conductivity in the low atmosphere, large flux cancellation rates(>1019Mxhr-1) in solar active regions are better explained than by the Spitzer conductivity-considered reconnection model. Particularly for the flux cancellation event on July 2, 1994, the inflow speed(0.26kms-1)is almost similar to the converging speed(0.22kms-1)and the upward mass flux(3.3X1012gs-1) in the model is sufficient for the large dark filament formation in a time of several hours through magnetic flux cancellation process.

  3. A passive vibration-cancelling isolation mount

    NASA Technical Reports Server (NTRS)

    Sykes, Alan O.

    1987-01-01

    An analysis of an idealized passive vibration-cancelling two-terminal mount with one degree of freedom at each mechanical terminal isolating a nonrigid machine from a nonrigid foundation is presented. To evaluate a vibration-cancelling (VC) mount, its effectiveness as a function of frequency is compared with the effectiveness of both conventional and compound mounts isolating a rigid machine from a nonrigid foundation. The comparisons indicate that a carefully designed and manufactured VC mount should provide substantially greater vibration reduction at its cancellation frequency than either a conventional or compound mount having the same low frequency stiffness, i.e., stiffness at the natural frequency of the machine mount system.

  4. Synovial membrane involvement in osteoarthritic temporomandibular joints: a light microscopic study.

    PubMed

    Dijkgraaf, L C; Liem, R S; de Bont, L G

    1997-03-01

    To study the light microscopic characteristics of the synovial membrane of osteoarthritic temporomandibular joints to evaluate synovial membrane involvement in the osteoarthritic process. Synovial membrane biopsies were obtained during unilateral arthroscopy in 40 patients. Thirty-one temporomandibular joints were diagnosed with osteoarthritis. Osteoarthritis subgroups were defined on the basis of the presence of symptoms related to disk displacement and perforation. The control group consisted of nine temporomandibular joints that were not involved by osteoarthritis. During light microscopic examination of the synovial membranes, several light microscopic variables were recorded. Differences between groups and between subgroups were tested with chi 2 or Fisher's exact tests with Mann-Whitney U tests and with Student's t tests. In the osteoarthritis group, the number of synovial intima cell layers was significantly higher, and fibrous intima matrix and fibrous subintima were found significantly more frequently than in the control group. Moreover, in the osteoarthritis group, intima cell hypertrophy in combination with a closely packed cell composition was found significantly more often in the first year of clinical signs and symptoms, whereas intima hyperplasia, fibrous intima matrix, dense surface material, and subintima elastic fibers were found significantly more frequently in the first 2 years of clinical signs and symptoms. The findings in this study suggest that osteoarthritis of the temporomandibular joint may initially result in synovial intima hyperplasia and cell hypertrophy, and subsequently in deposition of fibrous material in the intima matrix. Eventually, fibrosis of the subintimal tissue may occur in combination with degeneration and subsequent normalization of the synovial intima cell layer. Overall, fibrosis was the most characteristic feature of synovial membranes of osteoarthritic temporomandibular joints. In conclusion, the involvement of the

  5. Distal radial fractures heal by direct woven bone formation

    PubMed Central

    2013-01-01

    Background Descriptions of fracture healing almost exclusively deal with shaft fractures and they often emphasize endochondral bone formation. In reality, most fractures occur in metaphyseal cancellous bone. Apart from a study of vertebral fractures, we have not found any histological description of cancellous bone healing in humans. Patients and methods We studied histological biopsies from the central part of 12 distal radial fractures obtained during surgery 6–28 days after the injury, using routine hematoxylin and eosin staining. Results New bone formation was seen in 6 cases. It was always in the form of fetal-like, disorganized woven bone. It seldom had contact with old trabeculae and appeared to have formed directly in the marrow. Cartilage was scarce or absent. The samples without bone formation showed only necrosis, scar, or old cancellous bone. Interpretation The histology suggests that cells in the midst of the marrow respond to the trauma by direct formation of bone, independently of trabecular surfaces. PMID:23570338

  6. Effects of dexamethasone on human synovial fibroblast-like cells, from osteoarthritic joints, in culture

    SciTech Connect

    Vento, R.; Torregrossa, M.V.; Giuliano, M.; Grecomoro, G.; Piccione, F. )

    1990-01-01

    The effect of Dexamethasone (DEX) on cell division and macromolecular synthesis was investigated in a line (Mc Coy cells, A 9) of synovial fibroblast-like cells derived from human osteoarthritic joints. DEX markedly reduced the proliferation of Mc Coy cells in a time and dose-dependent manner. The maximal inhibition was found at 500 nM DEX 24 h after incubation and was accompanied by the appearance of giant macrophage-like cells. After DEX treatment cells showed increased content of DNA, proteins and RNA together with the reduction of ({sup 3}H)-thymidine incorporation into the TCA-precipitable fraction.

  7. Effective Topological Charge Cancelation Mechanism

    PubMed Central

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  8. 34 CFR 674.52 - Cancellation procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... covered under the Family and Medical Leave Act of 1993 (FMLA) (29 U.S.C. 2601, et seq.), the borrower... condition that is covered under the FMLA, the borrower still qualifies for the cancellation if the borrower...

  9. New cancellation technique for electromagnetic induction sensors

    NASA Astrophysics Data System (ADS)

    Scott, Waymond R., Jr.; Malluck, Michael

    2005-06-01

    A new technique is presented for canceling the coupling between the coils of an electromagnetic induction sensor while using simple dipole detection coils. A secondary bucking transformer is used to cancel the coupling between the coils. The technique allows the cancellation that can be obtained using a quadrupole receive coil while maintaining the depth sensitivity and simple detection zone of a dipole coil. Simple circuit models for the sensor with some of the important parasitic effects are developed. An experimental model is developed and used to demonstrate the technique. Experimental results are presented that demonstrate more than 75 dB of cancellation up to 100 kHz and the response of the sensor to a few targets.

  10. 20 CFR 217.26 - How to cancel an application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How to cancel an application. 217.26 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.26 How to cancel an application. An... § 217.15 asking that the application be cancelled or stating that he or she wants to withdraw the...

  11. 20 CFR 217.26 - How to cancel an application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false How to cancel an application. 217.26 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.26 How to cancel an application. An... § 217.15 asking that the application be cancelled or stating that he or she wants to withdraw the...

  12. 20 CFR 217.26 - How to cancel an application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true How to cancel an application. 217.26 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.26 How to cancel an application. An... § 217.15 asking that the application be cancelled or stating that he or she wants to withdraw the...

  13. 20 CFR 217.26 - How to cancel an application.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false How to cancel an application. 217.26 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.26 How to cancel an application. An... § 217.15 asking that the application be cancelled or stating that he or she wants to withdraw the...

  14. 20 CFR 217.26 - How to cancel an application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true How to cancel an application. 217.26 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.26 How to cancel an application. An... § 217.15 asking that the application be cancelled or stating that he or she wants to withdraw the...

  15. 20 CFR 217.27 - Effect of cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Effect of cancellation. 217.27 Section 217.27 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.27 Effect of cancellation. When a person cancels an application the effect is the same...

  16. 18 CFR 4.83 - Cancellation and loss of priority.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... opportunity for hearing. Cancellation of a permit will result in loss of the permittee's priority of... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Cancellation and loss... Permit § 4.83 Cancellation and loss of priority. (a) The Commission may cancel a preliminary permit after...

  17. Jamming cancellation algorithm for wideband imaging radar

    NASA Astrophysics Data System (ADS)

    Zheng, Yibin; Yu, Kai-Bor

    1998-10-01

    We describe a jamming cancellation algorithm for wide-band imaging radar. After reviewing high range resolution imaging principle, several key factors affecting jamming cancellation performances, such as the 'instantaneous narrow-band' assumption, bandwidth, de-chirped interference, are formulated and analyzed. Some numerical simulation results, using a hypothetical phased array radar and synthetic point targets, are presented. The results demonstrated the effectiveness of the proposed algorithm.

  18. Chondrogenic capacity and alterations in hyaluronan synthesis of cultured human osteoarthritic chondrocytes.

    PubMed

    Ono, Yohei; Sakai, Tadahiro; Hiraiwa, Hideki; Hamada, Takashi; Omachi, Takaaki; Nakashima, Motoshige; Ishizuka, Shinya; Matsukawa, Tetsuya; Knudson, Warren; Knudson, Cheryl B; Ishiguro, Naoki

    2013-06-14

    During osteoarthritis there is a disruption and loss of the extracellular matrix of joint cartilage, composed primarily of type II collagen, aggrecan and hyaluronan. In young patients, autologous chondrocyte implantation can be used to repair cartilage defects. However, for more elderly patients with osteoarthritis, such a repair approach is contraindicated because the procedure requires a large expansion of autologous chondrocytes in vitro leading a rapid, perhaps irreversible, loss of the chondrocyte phenotype. This study investigates whether osteoarthritic chondrocytes obtained from older patients can be expanded in vitro and moreover, induced to re-activate their chondrocyte phenotype. A decrease in chondrocyte phenotype markers, collagen II, aggrecan and SOX9 mRNA was observed with successive expansion of cells in monolayer culture. However, chondrogenic induction in three-dimensional pellet culture successfully rescued the expression of all three marker genes to native levels, even with 4th passage cells-cells representing an approximate 625-fold expansion in cell number. This data supports the use of osteoarthritic cells for autologous implantation repair. In addition, another set of gene products were explored as useful markers of the chondrocyte phenotype. Differentiated primary chondrocytes exhibited a common pattern of hyaluronan synthase isoforms that changed upon cell expansion in vitro and, reverted back to the original pattern following pellet culture. Moreover, the change in isoform pattern correlated with changes in the molecular size of synthesized hyaluronan. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery

    PubMed Central

    Li, Xingde; Martin, Scott; Pitris, Costas; Ghanta, Ravi; Stamper, Debra L; Harman, Michelle; Fujimoto, James G; Brezinski, Mark E

    2005-01-01

    This study demonstrates the first real-time imaging in vivo of human cartilage in normal and osteoarthritic knee joints at a resolution of micrometers, using optical coherence tomography (OCT). This recently developed high-resolution imaging technology is analogous to B-mode ultrasound except that it uses infrared light rather than sound. Real-time imaging with 11-μm resolution at four frames per second was performed on six patients using a portable OCT system with a handheld imaging probe during open knee surgery. Tissue registration was achieved by marking sites before imaging, and then histologic processing was performed. Structural changes including cartilage thinning, fissures, and fibrillations were observed at a resolution substantially higher than is achieved with any current clinical imaging technology. The structural features detected with OCT were evident in the corresponding histology. In addition to changes in architectural morphology, changes in the birefringent or the polarization properties of the articular cartilage were observed with OCT, suggesting collagen disorganization, an early indicator of osteoarthritis. Furthermore, this study supports the hypothesis that polarization-sensitive OCT may allow osteoarthritis to be diagnosed before cartilage thinning. This study illustrates that OCT, which can eventually be developed for use in offices or through an arthroscope, has considerable potential for assessing early osteoarthritic cartilage and monitoring therapeutic effects for cartilage repair with resolution in real time on a scale of micrometers. PMID:15743479

  20. Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage.

    PubMed

    Brown, C P; Nguyen, T C; Moody, H R; Crawford, R W; Oloyede, A

    2009-08-01

    With the aim of providing information for modelling joint and limb systems, widely available constitutive hyperelastic laws are evaluated in this paper for their ability to predict the mechanical responses of normal and osteoarthritic articular cartilage. Load-displacement data from mechanical indentation were obtained for normal and osteoarthritic cartilage at 0.1 s(-1) and 0.025 s(-1) and converted to the stress-stretch ratio. The data were then fitted to the Arruda-Boyce, Mooney-Rivlin, neo-Hookean, Ogden, polynomial, and Yeoh hyperelastic laws in the MATLAB environment. Although each of the hyperelastic laws performed satisfactorily at the higher rate of loading, their ability to fit experimental data at the lower loading rate varied considerably. For the preferred models, coefficients were provided for stiff, soft, and average tissues to represent normal and degraded tissue at high and low loading rates. The present authors recommend the use of the Mooney-Rivlin or the Yeoh models for describing both normal and degraded articular cartilage, with the Mooney-Rivlin model providing the best compromise between accuracy and required computational power.

  1. Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study.

    PubMed

    Kumar, Rajesh; Grønhaug, Kirsten M; Afseth, Nils K; Isaksen, Vidar; de Lange Davies, Catharina; Drogset, Jon O; Lilledahl, Magnus B

    2015-10-01

    Biomolecular changes in the cartilage matrix during the early stage of osteoarthritis may be detected by Raman spectroscopy. The objective of this investigation was to determine vibrational spectral differences among different grades (grades I, II, and III) of osteoarthritis in human osteoarthritic cartilage, which was classified according to the International Cartilage Repair Society (ICRS) grading system. Degenerative articular cartilage samples were collected during total joint replacement surgery and were classified according to the ICRS grading system for osteoarthritis. Twelve cartilage sections (4 sections of each ICRS grades I, II, and III) were selected for Raman spectroscopic analysis. Safranin-O/Fast green was used for histological staining and assignment of the Osteoarthritis Research Society International (OARSI) grade. Multivariate principal component analysis (PCA) was used for data analysis. Spectral analysis indicates that the content of disordered coil collagen increases significantly during the early progression of osteoarthritis. However, the increase was not statistically significant during later stages of the disease. A decrease in the content of proteoglycan was observed only during advanced stages of osteoarthritis. Our investigation shows that Raman spectroscopy can classify the different stage of osteoarthritic cartilage and can provide details on biochemical changes. This proof-of-concept study encourages further investigation of fresh cartilage on a larger population using fiber-based miniaturized Raman probe for the development of in vivo Raman arthroscopy as a potential diagnostic tool for osteoarthritis.

  2. Characterization of healthy and osteoarthritic chondrocyte cell patterns on phase contrast CT images of the knee cartilage matrix

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Yang, Chien-Chun; Glaser, Christian; Reiser, Maximilian F.; Wismüller, Axel

    2012-03-01

    The current approach to evaluating cartilage degeneration at the knee joint requires visualization of the joint space on radiographic images where indirect cues such as joint space narrowing serve as markers for osteoarthritis. A recent novel approach to visualizing the knee cartilage matrix using phase contrast CT imaging (PCI-CT) was shown to allow direct examination of chondrocyte cell patterns and their subsequent correlation to osteoarthritis. This study aims to characterize chondrocyte cell patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage through both gray-level co-occurrence matrix (GLCM) derived texture features as well as Minkowski Functionals (MF). Thirteen GLCM and three MF texture features were extracted from 404 regions of interest (ROI) annotated on PCI images of healthy and osteoarthritic specimens of knee cartilage. These texture features were then used in a machine learning task to classify ROIs as healthy or osteoarthritic. A fuzzy k-nearest neighbor classifier was used and its performance was evaluated using the area under the ROC curve (AUC). The best classification performance was observed with the MF features 'perimeter' and 'Euler characteristic' and with GLCM correlation features (f3 and f13). With the experimental conditions used in this study, both Minkowski Functionals and GLCM achieved a high classification performance (AUC value of 0.97) in the task of distinguishing between health and osteoarthritic ROIs. These results show that such quantitative analysis of chondrocyte patterns in the knee cartilage matrix can distinguish between healthy and osteoarthritic tissue with high accuracy.

  3. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage.

    PubMed

    Jones, W R; Ting-Beall, H P; Lee, G M; Kelley, S S; Hochmuth, R M; Guilak, F

    1999-02-01

    The mechanical environment of the chondrocyte is an important factor that influences the maintenance of the articular cartilage extracellular matrix. Previous studies have utilized theoretical models of chondrocytes within articular cartilage to predict the stress-strain and fluid flow environments around the cell, but little is currently known regarding the cellular properties which are required for implementation of these models. The objectives of this study were to characterize the mechanical behavior of primary human chondrocytes and to determine the Young's modulus of chondrocytes from non-osteoarthritic ('normal') and osteoarthritic cartilage. A second goal was to quantify changes in the volume of isolated chondrocytes in response to mechanical deformation. The micropipette aspiration technique was used to measure the deformation of a single chondrocyte into a glass micropipette in response to a prescribed pressure. The results of this study indicate that the human chondrocyte behaves as a viscoelastic solid. No differences were found between the Young's moduli of normal (0.65+/-0.63 kPa, n = 44) and osteoarthritic chondrocytes (0.67+/-0.86 kPa, n = 69, p = 0.93). A significant difference in cell volume was observed immediately and 600 s after complete aspiration of the cell into the pipette (p < 0.001), and the magnitude of this volume change between normal (11+/-11%, n = 40) and osteoarthritic (20+/-11%, n = 41) chondroctyes was significantly different at both time points (p < 0.002). This finding suggests that chondrocytes from osteoarthritic cartilage may have altered volume regulation capabilities in response to mechanical deformation. The mechanical and volumetric properties determined in this study will be of use in analytical and finite element models of chondrocyte-matrix interactions in order to better predict the mechanical environment of the cell in vivo.

  4. Osteoarthritic changes in vervet monkey knees correlate with meniscus degradation and increased matrix metalloproteinase and cytokine secretion

    PubMed Central

    Stone, Austin V.; Vanderman, Kadie S.; Willey, Jeffrey S.; Long, David L.; Register, Thomas C.; Shively, Carol A.; Stehle, John R.; Loeser, Richard F.; Ferguson, Cristin M.

    2015-01-01

    Objective Meniscus injury increases osteoarthritis risk but its pathobiology in osteoarthritis is unclear. We hypothesized that older adult vervet monkeys would exhibit knee osteoarthritic changes and the degenerative menisci from these animals would secrete matrix metalloproteinases (MMPs) and pro-inflammatory cytokines that contribute to the development of osteoarthritis. Design In a cross sectional analysis of healthy young adult (9-12 years) and old (19-26 years) adult female vervet monkeys, knees were evaluated in vivo with computed tomography (CT) imaging, and joint tissues were morphologically graded at necropsy. Meniscus explants were subsequently cultured to evaluate meniscal MMP and cytokine secretion. Results CT images revealed significant bony osteoarthritic changes in 80% of older monkeys which included increases in osteophyte number and meniscal calcification. Meniscus and cartilage degradation scores were greater in the older monkeys and were positively correlated (r>0.7). Menisci from older animals exhibiting osteoarthritic changes secreted significantly more MMP-1, MMP-3, and MMP-8 than healthy menisci from younger monkeys. Older menisci without significant osteoarthritic changes secreted more IL-7 than healthy young menisci while older osteoarthritic menisci secreted more IL-7 and granulocyte-macrophage colony-stimulating factor than healthy older menisci. Conclusions Aged vervets develop naturally occurring knee osteoarthritis that includes involvement of the meniscus. Degenerative menisci secreted markedly increased amounts of matrix-degrading enzymes and inflammatory cytokines. These factors would be expected to act on the meniscus tissue and local joint tissues and may ultimately promote osteoarthritis development. These finding also suggest vervet monkeys are a useful animal model for studying the progression of osteoarthritis. PMID:26033163

  5. Single-incision open reduction and internal fixation of comminuted trapezium fractures with distal radius cancellous autograft.

    PubMed

    Matzon, Jonas L; Reb, Christopher W; Danowski, Ryan M; Lutsky, Kevin

    2015-03-01

    Trapezium fractures comprise approximately 3% to 5% of all hand fractures. Although operative management of intra-articular trapezium fractures can result in good functional outcomes, there is very little literature addressing specific operative techniques. We describe a technique for open reduction and internal fixation of severely comminuted, intra-articular trapezium fractures, utilizing autogenous cancellous bone graft from the distal radius.

  6. Onlay Bone Grafts in Head and Neck Reconstruction

    PubMed Central

    Yazar, Sukru

    2010-01-01

    Bone grafts are used in a variety of clinical situations and can be divided into two categories: treatment of bone gaps (inlay bone grafting) and bone projection (onlay bone grafting). Cortical grafts are useful in situations requiring immediate mechanical strength. These grafts can survive with or without complete revascularization or resorption and are primarily used by plastic surgeons in the treatment of bone volume deficiency. Cancellous grafts, in contrast, have no mechanical strength and therefore require additional support to bridge bone defects. Thus, they are used primarily for the treatment of bone gaps and in general revascularize quickly, resorb completely, and stimulate significant new bone formation. PMID:22550447

  7. Improved CDMA Performance Using Parallel Interference Cancellation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Divsalar, Dariush

    1995-01-01

    This report considers a general parallel interference cancellation scheme that significantly reduces the degradation effect of user interference but with a lesser implementation complexity than the maximum-likelihood technique. The scheme operates on the fact that parallel processing simultaneously removes from each user the interference produced by the remaining users accessing the channel in an amount proportional to their reliability. The parallel processing can be done in multiple stages. The proposed scheme uses tentative decision devices with different optimum thresholds at the multiple stages to produce the most reliably received data for generation and cancellation of user interference. The 1-stage interference cancellation is analyzed for three types of tentative decision devices, namely, hard, null zone, and soft decision, and two types of user power distribution, namely, equal and unequal powers. Simulation results are given for a multitude of different situations, in particular, those cases for which the analysis is too complex.

  8. Interpixel crosstalk cancellation on holographic memory

    NASA Astrophysics Data System (ADS)

    Ishii, Toshiki; Fujimura, Ryushi

    2017-09-01

    In holographic memory systems, there have been no practical techniques to minimize interpixel crosstalk thus far. We developed an interpixel crosstalk cancellation technique using a checkerboard phase pattern with a phase difference of π/2, which can decrease the size of the spatial filter along the Fourier plane with the signal-to-noise ratio (SNR) kept high. This interpixel crosstalk cancellation technique is simple because it requires only one phase plate in the signal beam path. We verified the effect of such a cancellation technique by simulation. The improvement of SNR is maximized to 6.5 dB when the filter size specified in the Nyquist areal ratio is approximately 1.05 in ideal optical systems with no other fixed noise. The proposed technique can improve SNR by 0.85 in an assumed monocular architecture at an actual noise intensity. This improvement of SNR is very useful for realizing high-density recording or enhancing system robustness.

  9. Flux Cancellation Leading to Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Popescu, R. M.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2016-12-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to 100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable by either magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both onboard the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions and find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two events in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field and are in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  10. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  11. CancellationTools: All-in-one software for administration and analysis of cancellation tasks.

    PubMed

    Dalmaijer, Edwin S; Van der Stigchel, Stefan; Nijboer, Tanja C W; Cornelissen, Tim H W; Husain, Masud

    2015-12-01

    In a cancellation task, a participant is required to search for and cross out ("cancel") targets, which are usually embedded among distractor stimuli. The number of cancelled targets and their location can be used to diagnose the neglect syndrome after stroke. In addition, the organization of search provides a potentially useful way to measure executive control over multitarget search. Although many useful cancellation measures have been introduced, most fail to make their way into research studies and clinical practice due to the practical difficulty of acquiring such parameters from traditional pen-and-paper measures. Here we present new, open-source software that is freely available to all. It allows researchers and clinicians to flexibly administer computerized cancellation tasks using stimuli of their choice, and to directly analyze the data in a convenient manner. The automated analysis suite provides output that includes almost all of the currently existing measures, as well as several new ones introduced here. All tasks can be performed using either a computer mouse or a touchscreen as an input device, and an online version of the task runtime is available for tablet devices. A summary of the results is produced in a single A4-sized PDF document, including high quality data visualizations. For research purposes, batch analysis of large datasets is possible. In sum, CancellationTools allows users to employ a flexible, computerized cancellation task, which provides extensive benefits and ease of use.

  12. Cloaking through cancellation of diffusive wave scattering

    PubMed Central

    Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.

    2016-01-01

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925

  13. GENERALIZED SIDELOBE CANCELLER FOR MAGNETOENCEPHALOGRAPHY ARRAYS.

    PubMed

    Mosher, John C; Hämäläinen, Matti S; Pantazis, Dimitrios; Hui, Hua Brian; Burgess, Richard C; Leahy, Richard M

    2009-08-07

    In the last decade, large arrays of sensors for magnetoencephalography (MEG) (and electroencephalography (EEG)) have become more commonplace, allowing new opportunities for the application of beamforming techniques to the joint problems of signal estimation and noise reduction. We introduce a new approach to noise cancellation, the generalized sidelobe canceller (GSC), itself an alternative to the linearly constrained minimum variance (LCMV) algorithm. The GSC framework naturally fits within the other noise reduction techniques that employ real or virtual reference arrays. Using expository human subject data with strong environmental and biological artifacts, we demonstrate a straightforward sequence of steps for practical noise filtering, applicable to any large array sensor design.

  14. Noise cancellation of memristive neural networks.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Yu, Xinghuo

    2014-12-01

    This paper investigates noise cancellation problem of memristive neural networks. Based on the reproducible gradual resistance tuning in bipolar mode, a first-order voltage-controlled memristive model is employed with asymmetric voltage thresholds. Since memristive devices are especially tiny to be densely packed in crossbar-like structures and possess long time memory needed by neuromorphic synapses, this paper shows how to approximate the behavior of synapses in neural networks using this memristive device. Also certain templates of memristive neural networks are established to implement the noise cancellation.

  15. Histochemistry as a Unique Approach for Investigating Normal and Osteoarthritic Cartilage

    PubMed Central

    Musumeci, G.; Castrogiovanni, P.; Mazzone, V.; Szychlinska, M. A.; Castorina, S.; Loreto, C.

    2014-01-01

    In this review article, we describe benefits and disadvantages of the established histochemical methods for studying articular cartilage tissue under normal, pathological and experimental conditions. We illustrate the current knowledge on cartilage tissue based on histological and immunohistochemical aspects, and in conclusion we provide a short overview on the degeneration of cartilage, such as osteoarthritis. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to implement the knowledge in the study of cartilage in the last years, and histochemistry proved to be an especially powerful tool to this aim. PMID:24998926

  16. Discrimination of osteoarthritic and rheumatoid human synovial cells in culture by nuclear image analysis.

    PubMed

    Delage, B; Giroud, F; Monet, J D; Ekindjian, O G; Cals, M J

    1999-06-01

    Rheumatoid arthritic (RA) and osteoarthritic (OA) synovial cells in culture differ in their metabolic and proliferative behaviour. To assess links between these properties and nuclear changes, we used image analysis to study chromatin texture, together with nuclear morphometry and densitometry of OA and RA cells in primary culture. Chromatin pattern at the third day (D3) was heterogeneous and granular with chromatin clumps whereas at the final stage (D11) of culture a homogeneous and finely granular chromatin texture was observed. This evolution indicates global chromatin decondensation. These characteristics were more marked for RA than for OA nuclei. At each culture time, RA nuclei could be discriminated with high confidence from OA ones from parameters evaluating the organization of the chromatine texture. Nuclear image analysis is thus a useful tool for investigating synovial cell biology.

  17. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk.

    PubMed

    Goldring, Steven R; Goldring, Mary B

    2016-11-01

    In diarthrodial joints, the articular cartilage, calcified cartilage, and subchondral cortical and trabecular bone form a biocomposite - referred to as the osteochondral unit - that is uniquely adapted to the transfer of load. During the evolution of the osteoarthritic process the compositions, functional properties, and structures of these tissues undergo marked alterations. Although pathological processes might selectively target a single joint tissue, ultimately all of the components of the osteochondral unit will be affected because of their intimate association, and thus the biological and physical crosstalk among them is of great importance. The development of targeted therapies against the osteoarthritic processes in cartilage or bone will, therefore, require an understanding of the state of these joint tissues at the time of the intervention. Importantly, these interventions will not be successful unless they are applied at the early stages of disease before considerable structural and functional alterations occur in the osteochondral unit. This Review describes the changes that occur in bone and cartilage during the osteoarthritic process, and highlights strategies for how this knowledge could be applied to develop new therapeutic interventions for osteoarthritis.

  18. Micro- and nano-mechanics of osteoarthritic cartilage: The effects of tonicity and disease severity.

    PubMed

    Moshtagh, P R; Pouran, B; van Tiel, J; Rauker, J; Zuiddam, M R; Arbabi, V; Korthagen, N M; Weinans, H; Zadpoor, A A

    2016-06-01

    The present study aims to discover the contribution of glycosaminoglycans (GAGs) and collagen fibers to the mechanical properties of the osteoarthritic (OA) cartilage tissue. We used nanoindentation experiments to understand the mechanical behavior of mild and severe osteoarthritic cartilage at micro- and nano-scale at different swelling conditions. Contrast enhanced micro-computed tomography (EPIC-μCT) was used to confirm that mild OA specimens had significantly higher GAGs content compared to severe OA specimens. In micro-scale, the semi-equilibrium modulus of mild OA specimens significantly dropped after immersion in a hypertonic solution and at nano-scale, the histograms of the measured elastic modulus revealed three to four components. Comparing the peaks with those observed for healthy cartilage in a previous study indicated that the first and third peaks represent the mechanical properties of GAGs and the collagen network. The third peak shows considerably stiffer elastic modulus for mild OA samples as compared to the severe OA samples in isotonic conditions. Furthermore, this peak clearly dropped when the tonicity increased, indicating the loss of collagen (pre-) stress in the shrunk specimen. Our observations support the association of the third peak with the collagen network. However, our results did not provide any direct evidence to support the association of the first peak with GAGs. For severe OA specimens, the peak associated with the collagen network did not drop when the tonicity increased, indicating a change in the response of OA cartilage to hypertonicity, likely collagen damage, as the disease progresses to its latest stages.

  19. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee.

    PubMed

    Cengiz, Ibrahim Fatih; Pereira, Hélder; Pêgo, José Miguel; Sousa, Nuno; Espregueira-Mendes, João; Oliveira, Joaquim Miguel; Reis, Rui Luís

    2017-06-01

    The knee menisci have important roles in the knee joint. Complete healing of the meniscus remains a challenge in the clinics. Cellularity is one of the most important biological parameters that must be taken into account in regenerative strategies. However, knowledge on the 3D cellularity of the human meniscus is lacking in the literature. The aim of this study was to quantify the 3D cellular density of human meniscus from the osteoarthritic knee in a segmental and regional manner with respect to laterality. Human lateral menisci were histologically processed and stained with Giemsa for histomorphometric analysis. The cells were counted in an in-depth fashion. 3D cellular density in the vascular region (27 199 cells/mm(3) ) was significantly higher than in the avascular region (12 820 cells/mm(3) ). The cells were observed to possess two distinct morphologies, roundish or flattened. The 3D density of cells with fibrochondrocyte morphology (14 705 cells/mm(3) ) was significantly greater than the 3D density of the cells with fibroblast-like cell morphology (5539 cells/mm(3) ). The best-fit equation for prediction of the 3D density of cells with fibrochondrocyte morphology was found to be: Density of cells with fibrochondrocyte morphology = 1.22 × density of cells withfibroblast-like cell morphology + 7750. The present study revealed the segmental and regional 3D cellular density of human lateral meniscus from osteoarthritic knee with respect to laterality. This crucial but so far missing information will empower cellular strategies aiming at meniscus tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain.

    PubMed

    Sung, Ying-Ju; Sofoluke, Nelson; Nkamany, Mary; Deng, Shixian; Xie, Yuli; Greenwood, Jeremy; Farid, Ramy; Landry, Donald W; Ambron, Richard T

    2017-05-01

    Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.

  1. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  2. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  3. 75 FR 5333 - Endocrinologic and Metabolic Drugs Advisory Committee; Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... HUMAN SERVICES Food and Drug Administration Endocrinologic and Metabolic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Endocrinologic and Metabolic Drugs Advisory Committee scheduled for February 24, 2010, is cancelled. This...

  4. 75 FR 36101 - Dermatologic and Ophthalmic Drugs Advisory Committee; Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... HUMAN SERVICES Food and Drug Administration Dermatologic and Ophthalmic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Dermatologic and Ophthalmic Drugs Advisory Committee scheduled for June 28, 2010, is cancelled. This...

  5. 77 FR 27072 - Gastrointestinal Drugs Advisory Committee; Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... HUMAN SERVICES Food and Drug Administration Gastrointestinal Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Gastrointestinal Drugs Advisory Committee scheduled for May 31, 2012, is canceled. This meeting was announced in...

  6. 77 FR 33203 - Equity and Excellence Commission, Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Equity and Excellence Commission, Meeting Cancellation AGENCY: U.S. Department of Education. ACTION: Notice; Advisory Committee Meeting Cancellation. SUMMARY: The Department of E