Science.gov

Sample records for osteochondritis

  1. Costal osteochondral grafts for osteochondritis dissecans of the capitulum humeri.

    PubMed

    Sato, Kazuki; Nakamura, Toshiyasu; Toyama, Yoshiaki; Ikegami, Hiroyasu

    2008-06-01

    The objective of the treatment for osteochondritis dissecans of the humeral capitulum is to prevent the occurrence of osteoarthritis and to allow the patients to return to throwing activities. In repairing osteochondral defects in advanced osteochondritis dissecans of the humeral capitulum after free body removal, we have performed block-shaped costal osteochondral grafting in 18 elbows since 1997. A block-shaped graft harvested from the transitional area between the rib and its associated cartilage was implanted to the osteochondral defect. This method allows the osteochondral defect to be repaired with uniform hyaline cartilaginous articular surface without any effect to other joints. Donor site no longer causes pain at 2 or 3 days after surgery. The purpose of this study is to describe the history, indications, and the surgical techniques of costal osteochondral grafting for advanced osteochondritis dissecans of the capitulum.

  2. How I Manage Osteochondritis Dissecans.

    ERIC Educational Resources Information Center

    DiStefano, Vincent J.

    1986-01-01

    Osteochondritis dissecans, a lesion found most often on the femur at the knee joint, occurs most frequently in active adolescents. This article describes treatment for preadolescents, adolescents, and adults. Osteochondritus dissecans of the patella is also presented. (MT)

  3. Osteochondral Lesions of Major Joints

    PubMed Central

    Durur-Subasi, Irmak; Durur-Karakaya, Afak; Yildirim, Omer Selim

    2015-01-01

    This paper provides information about osteochondral lesions (OCL) and example cases of OCL occurring in major joints, some of which are rarely seen. This simple tutorial is presented in question and answer format. PMID:26180500

  4. Pediatric Knee Osteochondritis Dissecans Lesions.

    PubMed

    Cruz, Aristides I; Shea, Kevin G; Ganley, Theodore J

    2016-10-01

    Osteochondritis dissecans (OCD) can cause knee pain and dysfunction in children. The etiology of OCD remains unclear; theories on causes include inflammation, ischemia, ossification abnormalities, genetic factors, and repetitive microtrauma. Most OCD lesions in skeletally immature patients will heal with nonoperative treatment. The success of nonoperative treatment decreases once patients reach skeletal maturity. The goals of surgical treatment include maintenance of articular cartilage congruity, rigid fixation of unstable fragments, and repair of osteochondral defects with cells or tissues that can adequately replace lost or deficient cartilage. Unsalvageable OCD lesions can be treated with various surgical techniques. PMID:27637663

  5. [Osteochondritis dissecans of the knee].

    PubMed

    Benedict, Shaike; Oron, Amir; Beer, Yiftah; Agar, Gavriel

    2008-07-01

    Osteochondritis dissecans of the knee is diagnosed at an increasing rate among adolescents and young adults. One of the reasons is due to the increasing number of sports participants among these populations. Although many theories exist, the cause of osteochondritis dissecans is unknown. Early diagnosis is very important. While adult type osteochondritis dissecans is unstable, in most young patients it is stable, and patients with an intact articular surface have a good chance to heal with non-operative treatment and cessation of physical activity. The value of complementary treatment (bed rest, partial weight bearing, bracing aimed at reducing weight bearing of the involved knee) is unknown. Patients with open physes and stable lesions, who failed non-operative treatment, may be treated with local bone drilling, encouraging lesion healing. As the disease progresses, more aggressive measures should to be taken, whilst decreasing success ratios are expected. The healing potential of the lesion may be evaluated by magnetic resonance imaging. Most adult type osteochondritis dissecans patients, as most young patients, with unstable lesions and loose bodies within their knees, are treated with fixation of the lesions and even bone grafting. Many unstable lesions will heal after fixation, but the long-term prognosis is elusive. Chronic loose bodies are very difficult to fix, with less favorable outcomes. Excision of large lesions originating from weight bearing cartilage is not favorable and different rehabilitation measures of local cartilage damage are not encouraging. PMID:18814522

  6. Osteochondritis dissecans of the capitellum.

    PubMed

    Baker, Champ L; Romeo, Anthony A; Baker, Champ L

    2010-09-01

    Osteochondritis dissecans of the capitellum is a well-recognized cause of elbow pain and disability in the adolescent athlete. This condition typically affects young athletes, such as throwers and gymnasts, involved in high-demand, repetitive overhead, or weightbearing activities. The true cause, natural history, and optimal treatment of osteochondritis dissecans of the capitellum remain unknown. Suspicion of this condition warrants investigation with proper radiographs and magnetic resonance imaging. Prompt recognition of this disorder and institution of nonoperative treatment for early, stable lesions can result in healing with later resumption of sporting activities. Patients with unstable lesions or those failing nonoperative therapy require operative intervention with treatment based on lesion size and extent. Historically, surgical treatment included arthrotomy with loose body removal and curettage of the residual osteochondral defect base. The introduction of elbow arthroscopy in the treatment of osteochondritis dissecans of the capitellum permits a thorough lesion assessment and evaluation of the entire elbow joint with the ability to treat the lesion and coexistent pathology in a minimally invasive fashion. Unfortunately, the prognosis for advanced lesions remains more guarded, but short-term results after newer reconstruction techniques are promising.

  7. Autologous osteochondral transplantation for simple cyst in the patella.

    PubMed

    Lu, Allen P; Hame, Sharon L

    2005-08-01

    Treatment options for chondral and osteochondral defects of the patella have been few and results have been inconsistent at best. Autologous osteochondral transplantation presents a new way to revisit these patellar defects. We report the case of a young female softball player with a simple cyst in the patella and an osteochondral defect that serves as the indication for autograft osteochondral transplantation.

  8. Osteochondral autograft transplantation for osteochondritis dissecans of the capitellum in nonthrowing athletes.

    PubMed

    Tsuda, Eiichi; Ishibashi, Yasuyuki; Sato, Hideki; Yamamoto, Yuji; Toh, Satoshi

    2005-10-01

    In this report, we present the cases of 3 nonthrowing athletes with osteochondritis dissecans of the capitellum. Preoperatively, they complained of elbow pain during rhythmic gymnastics, table tennis, and basketball, respectively. Magnetic resonance imaging showed a completely separated osteochondral fragment or a full-thickness cartilage defect. All 3 patients were treated with transplantation of an osteochondral autograft harvested from the lateral femoral condyle. They returned fully to their sports activities within 6 months of surgery. The continuity of the cartilage layer between the osteochondral graft and the capitellum was shown on magnetic resonance images taken at 12 months postoperatively. We believe that osteochondral autograft transplantation provides successful results for nonthrowing athletes with end-stage osteochondritis dissecans of the capitellum.

  9. Drilling techniques for osteochondritis dissecans.

    PubMed

    Heyworth, Benton E; Edmonds, Eric W; Murnaghan, M Lucas; Kocher, Mininder S

    2014-04-01

    Although the advanced stages of osteochondritis dissecans remain challenging to treat, most early-stage lesions in skeletally immature patients, if managed appropriately, can be stimulated to heal. For stable lesions that do not demonstrate adequate healing with nonoperative measures, such as activity modification, weight-bearing protection, or bracing, drilling of the subchondral bone has emerged as the gold standard of management. Several techniques of drilling exist, including transarticular drilling, retroarticular drilling, and notch drilling. Although each technique has been shown to be effective in small retrospective studies, higher-powered prospective comparative studies are needed to better elucidate their relative advantages and disadvantages.

  10. Calcaneal osteochondritis: a new overuse injury.

    PubMed

    Lokiec, F; Wientroub, S

    1998-07-01

    This is a case report of osteochondritis of the medial plantar apophysis of the calcaneus presenting as medial plantar heel pain in a 15-year-old basketball player. The lesion was detected radiographically and by increased focal uptake on bone scan. Conservative treatment resulted in complete pain relief and normal calcaneal appearance with union of the osteochondral fragment. No recurrence was noted during 3 years of follow-up.

  11. Treatment of severe osteochondritis dissecans of the elbow using osteochondral grafts from a rib.

    PubMed

    Oka, Y; Ikeda, M

    2001-07-01

    We treated a patient with extensive osteochondritis dissecans of the elbow by an osteochondral graft from a rib. It had consolidated seven months after operation. When seen at follow-up, after seven years and eight months, the elbow was free from pain with an improvement in the range of movement of 24 degrees.

  12. Strategies for osteochondral repair: Focus on scaffolds

    PubMed Central

    Seo, Seog-Jin; Mahapatra, Chinmaya; Singh, Rajendra K; Knowles, Jonathan C

    2014-01-01

    Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering. PMID:25343021

  13. Bilateral osteochondritis dissecans of the elbow in a female pitcher.

    PubMed

    Williamson, L R; Albright, J P

    1996-11-01

    We report a case of a 17-year-old female pitcher with bilateral elbow osteochondritis dissecans. Osteochondritis of the elbow is a well-known disorder affecting pitchers and other individuals who sustain repetitive microtrauma to the elbow. Elbow osteochondritis has been described infrequently in female athletes. The incidence and reporting patterns of this disease are likely to increase as more female athletes participate in organized sports.

  14. Osteochondral defects in the ankle: why painful?

    PubMed Central

    Reilingh, Mikel L.; Zengerink, Maartje; van Bergen, Christiaan J. A.

    2010-01-01

    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage. PMID:20151110

  15. Recent progress in interfacial tissue engineering approaches for osteochondral defects.

    PubMed

    Castro, Nathan J; Hacking, S Adam; Zhang, Lijie Grace

    2012-08-01

    This review provides a brief synopsis of the anatomy and physiology of the osteochondral interface, scaffold-based and non-scaffold based approaches for engineering both tissues independently as well as recent developments in the manufacture of gradient constructs. Novel manufacturing techniques and nanotechnology will be discussed with potential application in osteochondral interfacial tissue engineering. PMID:22677924

  16. Matching osteochondritis dissecans lesions in identical twin brothers.

    PubMed

    Richie, Lucas B; Sytsma, Mark J

    2013-09-01

    Osteochondritis dissecans is a disorder of unknown etiology that can result in fragmentation of osteochondral surfaces, most commonly of the knee, shoulder, elbow, and ankle. This may lead to sequelae of pain and an inability to participate in desired activities. Multiple theories exist as to the true cause of the disorder, but none have been fully proven. One such proposed etiology is genetic causation. Familial cases of osteochondritis dissecans are rare, yet these cases offer support to growing evidence that may support a genetic link. This article describes osteochondritis dissecans lesions of the femoral trochlea in monozygotic (identical) twins. Both twins presented with similar symptoms 1 year apart. Neither twin had any clear inciting trauma. Magnetic resonance imaging revealed osteochondral lesions in similar positions of the lateral trochlear of the same knee in both brothers. Osteochondral autograft transfer and tibial tubercle anteromedialization were performed on both patients. An identical postoperative protocol was followed, and recovery with full return to sport was comparable for the brothers. To the authors' knowledge, only 1 other case report exists of osteochondritis dissecans lesions in monozygotic twins. Although debate continues regarding the true etiology of this disorder, cases of identical twins presenting with a similar disease process are highly suggestive of a genetic component and may lead to early identification and treatment of these lesions. Continued research in the area of osteochondritis dissecans and its genetic basis is needed to completely understand this disorder. PMID:24025016

  17. Multiphasic construct studied in an ectopic osteochondral defect model

    PubMed Central

    Jeon, June E.; Vaquette, Cédryck; Theodoropoulos, Christina; Klein, Travis J.; Hutmacher, Dietmar W.

    2014-01-01

    In vivo osteochondral defect models predominantly consist of small animals, such as rabbits. Although they have an advantage of low cost and manageability, their joints are smaller and more easily healed compared with larger animals or humans. We hypothesized that osteochondral cores from large animals can be implanted subcutaneously in rats to create an ectopic osteochondral defect model for routine and high-throughput screening of multiphasic scaffold designs and/or tissue-engineered constructs (TECs). Bovine osteochondral plugs with 4 mm diameter osteochondral defect were fitted with novel multiphasic osteochondral grafts composed of chondrocyte-seeded alginate gels and osteoblast-seeded polycaprolactone scaffolds, prior to being implanted in rats subcutaneously with bone morphogenic protein-7. After 12 weeks of in vivo implantation, histological and micro-computed tomography analyses demonstrated that TECs are susceptible to mineralization. Additionally, there was limited bone formation in the scaffold. These results suggest that the current model requires optimization to facilitate robust bone regeneration and vascular infiltration into the defect site. Taken together, this study provides a proof-of-concept for a high-throughput osteochondral defect model. With further optimization, the presented hybrid in vivo model may address the growing need for a cost-effective way to screen osteochondral repair strategies before moving to large animal preclinical trials. PMID:24694896

  18. Dysplasia Epiphysealis Hemimelica Treated with Osteochondral Allograft: A Case Report

    PubMed Central

    Anthony, Chris A.; Wolf, Brian R.

    2015-01-01

    Background Dysplasia epiphysealis hemimelica (DEH), or Trevor's disease, is a developmental disorder of the pediatric skeleton characterized by asymmetric osteochondral overgrowth. Methods We present the case of a five year old boy with a two year history of right knee pain and evidence of DEH on imaging who underwent initial arthroscopic resection of his lesion with subsequent recurrence. The patient then underwent osteochondral allograft revision surgery and was asymptomatic at two year follow-up with a congruent joint surface. Results To our knowledge, this is the first reported case of a DEH lesion treated with osteochondral allograft and also the youngest reported case of osteochondral allograft placement in the literature. Conclusions Osteochondral allograft may be a viable option in DEH and other deformities of the pediatric knee. Level of Evidence Level V PMID:26361443

  19. First Metatarsophalangeal Joint Arthroscopy for Osteochondral Lesions.

    PubMed

    Sherman, Thomas I; Kern, Michael; Marcel, John; Butler, Alexander; McGuigan, Francis X

    2016-06-01

    Small-joint arthroscopy has supplanted open procedures because it offers the potential for improvement in joint visualization, reduced scarring, and accelerated recovery. Despite these advantages, arthroscopy of the first metatarsophalangeal joint is not commonly performed and reports of its use are lacking. The reason for this is not clear but may be because of perceived technical complexity and poorly defined indications. In our experience, however, arthroscopy of the first metatarsophalangeal joint is a versatile procedure that facilitates treatment of many different pathologic processes through a minimally invasive approach with few complications. We present our technique for arthroscopic management of osteochondral lesions of the hallux. PMID:27656371

  20. Osteochondral lesions of the talus: Current concept.

    PubMed

    Laffenêtre, O

    2010-09-01

    Osteochondral lesions of the talus (OTL) are among those injuries that we should not fail to recognize, especially following any type of hindfoot injury. They were thoroughly described 15 years ago in a round table session organized by Doré and Rosset for the Société orthopédique de l'Ouest. Their physiopathology has not yet been definitely determined, even though some of the pathogenic mechanisms are known. They are best characterized using the fractures, osteonecroses, geodes (FOG) radiological classification. Both their diagnosis and their surgical treatment remain a challenge to the orthopaedic surgeon: some basic surgical principles apply to all of the lesions, such as cartilage debridement and shaving of necrotic tissues, while others will be used depending on the location and size of the lesions as well as the surgeon's experience. Finally, no specific technique appears to be superior to the others. Arthroscopy appears to be the most effective procedure for lesions smaller than 1 cm(2), whereas larger lesions should be filled, either with cancellous bone or with an osteochondral graft or using autogenous chondrocyte implantation. The data available in the literature should also incite orthopaedists to consider the results of surgical management with some modesty, and conservative management should remain among the therapeutic options.

  1. Treatment of osteochondral injuries with platelet gel

    PubMed Central

    Danieli, Marcus Vinicius; da Rosa Pereira, Hamilton; de Sá Carneiro, Carlos Augusto; Felisbino, Sérgio Luiz; Deffune, Elenice

    2014-01-01

    OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel. METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale. RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration) and in the total score. CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries. PMID:25518022

  2. Osteochondritis dissecans of the capitellum in adolescents

    PubMed Central

    van Bergen, Christiaan JA; van den Ende, Kimberly IM; ten Brinke, Bart; Eygendaal, Denise

    2016-01-01

    Osteochondritis dissecans (OCD) is a disorder of articular cartilage and subchondral bone. In the elbow, an OCD is localized most commonly at the humeral capitellum. Teenagers engaged in sports that involve repetitive stress on the elbow are at risk. A high index of suspicion is warranted to prevent delay in the diagnosis. Plain radiographs may disclose the lesion but computed tomography and magnetic resonance imaging are more accurate in the detection of OCD. To determine the best treatment option it is important to differentiate between stable and unstable OCD lesions. Stable lesions can be initially treated nonoperatively with elbow rest or activity modification and physical therapy. Unstable lesions and stable lesions not responding to conservative therapy require a surgical approach. Arthroscopic debridement and microfracturing has become the standard initial procedure for treatment of capitellar OCD. Numerous other surgical options have been reported, including internal fixation of large fragments and osteochondral autograft transfer. The aim of this article is to provide a current concepts review of the etiology, clinical presentation, diagnosis, treatment, and outcomes of elbow OCD. PMID:26925381

  3. Treatment of unstable osteochondritis dissecans in adults with autogenous osteochondral grafts (Mosaicplasty): long-term results

    PubMed Central

    RONGA, MARIO; STISSI, PLACIDO; LA BARBERA, GIUSEPPE; VALOROSO, MARCO; ANGERETTI, GLORIA; GENOVESE, EUGENIO; CHERUBINO, PAOLO

    2015-01-01

    Purpose the unstable osteochondritis dissecans (OCD-type II and III according to the ICRS classification) of the knee largher than > 2.5 cm2 in adults are uncommon lesions and there is no consensus on how to treat them. Medium-term studies have reported good results using autogenous osteochondral plugs (mosaicplasty). The aim of this study is to analyze the long-term results of this technique for the treatment of unstable OCD in a selected group of adult patients. Methods four patients with OCD at either one of the femoral condyles were included in this prospective study. The average age was 21.2 years (range, 18–24 years). The OCD lesions were classified as type II in three patients and type III in one patient and the average size was 3.8 cm2 (range, 2.55–5.1 cm2). The lesions were treated in situ with a variable number of autogenous osteochondral plugs (Ø 4.5 mm2). The Modified Cincinnati, Lysholm II and Tegner scores were used for clinical and functional evaluation. Magnetic resonance arthrography (MRA) was performed before surgery and at 2, 5 and 10 years after surgery. A modified MOCART score was used to evaluate MRA findings. Results the average follow-up duration was ten years and 6 months (range, 10–11 years). No complications occurred. At the final follow-up, all scores (clinical, functional and MOCART) improved. In all but one of the patients MRA showed complete osteochondral repair. Conclusions the fixation of large and unstable OCD lesions with mosaicplasty may be a good option for treating type II or III OCD lesions in adults. The advantages of this technique include stable fixation, promotion of blood supply to the base of the OCD fragment, and grafting of autologous cancellous bone that stimulates healing with preservation of the articular surface. Level of evidence Level IV, therapeutic case series. PMID:26904522

  4. Mechanical and morphological evaluation of osteochondral implants in dogs.

    PubMed

    Bavaresco, Vanessa P; Garrido, Luiz; Batista, Nilza A; Malmonge, Sônia M; Belangero, William D

    2008-04-01

    The mechanical behavior of osteochondral defects was evaluated in this study with the intention of developing alternative procedures. Cylindrical pins (5.00 mm in diameter and in height) made of pHEMA hydrogel covered ultra-high molecular weight polyethylene (UHMWPE) or beta-tricalcium phosphate (beta-TCP) matrix were used. Ostoechondral defects were caused in the knees of adult dogs and the evaluation was carried out after a 9-month follow-up period. The mechanical behavior of the implants was evaluated by means of an indentation creep test that showed that the UHMWPE matrix maintained its viscoelastic behavior even after follow-up time, while the beta-TCP matrix osteochondral implants presented significant alterations. It is believed that the beta-TCP osteochondral implants were unable to withstand the load applied, causing an increase of complacency when compared to the UHMWPE osteochondral implants. Based on micro and macroscopic analysis, no significant wear was observed in either of the osteochondral implants when compared to the controls. However, morphological alterations, with fragmentation indices in the patella, were observed either due to friction with the hydrogel in the first postoperative months or due to forming of a dense conjunctive tissue. This wear mechanism caused on the counterface of the implant (patella) was observed, notwithstanding the osteochondral implant studied. PMID:18370946

  5. Emerging genetic basis of osteochondritis dissecans

    PubMed Central

    Bates, J. Tyler; Jacobs, John C.; Shea, Kevin G.; Oxford, Julia Thom

    2014-01-01

    Genome-wide association studies provide an unbiased approach in the identification of genes that increase the risk for osteochondritis dissecans (OCD). OCD is a disorder of the bone and cartilage that affects humans, horses, pigs, dogs, and other mammals. Recent genome-wide association studies in humans, horses, and pigs are reviewed and genes identified. The identified genes tended to cluster with respect to function and biological processes such as the protein secretion pathway, extracellular matrix molecules, and growth plate maturation. Genome-wide association studies in humans are a critical next step in the effort to provide a better understanding of the causes of OCD, which will, in turn, allow preventive strategies for treatment of adolescent and young adults who are at risk for the development of degenerative joint disease due to the effects of OCD. PMID:24698039

  6. Osteochondral diseases and fibrodysplasia ossificans progressiva.

    PubMed

    Morales-Piga, Antonio; Kaplan, Frederick S

    2010-01-01

    Osteochondrodysplasias like thanatophoric dysplasia, osteogenesis imperfecta, achondroplasia, and other genetic skeletal disorders like fibrodysplasia ossificans progressiva are infrequently seen in clinical practice. In cases of sporadic achondroplasia as well as in fibrodysplasia ossificans progressiva, there is a strong association with paternal age, a relationship that is less evident in other genetic osteochondral diseases. No other constitutional or environmental factor has proven to be associated with these disorders. The use of prenatal ultrasonography as a routine component of prenatal care is crucial in the early suspicion of osteochondrodysplasias whereas definitive diagnosis is usually obtained by pre-natal molecular analysis. In the case of fibrodysplasia ossificans progressiva, recognition of congenital great toe malformations associated with rapidly-appearing soft tissue swelling is sufficient to make the proper clinical diagnosis, which can be confirmed by genetic testing. Large regional centres will improve diagnosis performance, provide accurate genetic counselling, and ensure an integral assistance for these often severe and incapacitating conditions.

  7. Refixation of osteochondral fractures by ultrasound-activated, resorbable pins

    PubMed Central

    Neumann, H.; Schulz, A. P.; Gille, J.; Klinger, M.; Jürgens, C.; Reimers, N.; Kienast, B.

    2013-01-01

    Objectives Osteochondral injuries, if not treated adequately, often lead to severe osteoarthritis. Possible treatment options include refixation of the fragment or replacement therapies such as Pridie drilling, microfracture or osteochondral grafts, all of which have certain disadvantages. Only refixation of the fragment can produce a smooth and resilient joint surface. The aim of this study was the evaluation of an ultrasound-activated bioresorbable pin for the refixation of osteochondral fragments under physiological conditions. Methods In 16 Merino sheep, specific osteochondral fragments of the medial femoral condyle were produced and refixed with one of conventional bioresorbable pins, titanium screws or ultrasound-activated pins. Macro- and microscopic scoring was undertaken after three months. Results The healing ratio with ultrasound-activated pins was higher than with conventional pins. No negative heat effect on cartilage has been shown. Conclusion As the material is bioresorbable, no further surgery is required to remove the implant. MRI imaging is not compromised, as it is with implanted screws. The use of bioresorbable pins using ultrasound is a promising technology for the refixation of osteochondral fractures. PMID:23610699

  8. Porous tantalum biocomposites for osteochondral defect repair

    PubMed Central

    Mrosek, E. H.; Chung, H-W.; Fitzsimmons, J. S.; Reinholz, G. G.; Schagemann, J. C.

    2016-01-01

    Objectives We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Materials and Methods Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically. Results At 16 weeks post-operatively, histological scores amongst treatment groups were not statistically different (TMPG: overall 12.7, cartilage 8.6, bone 4.1; TM: overall 14.2, cartilage 9.5, bone 4.9; ED: overall 13.6, cartilage 9.1, bone 4.5). Metal scaffolds were incorporated into the surrounding bone, both in TM and TMPG. The sGAG yield was lower in the neo-cartilage regions compared with the articular cartilage (AC) controls (TMPG 20.8/AC 39.5, TM 25.6/AC 33.3, ED 32.2/AC 40.2 µg sGAG/1 mg respectively), with statistical significance being achieved for the TMPG group (p < 0.05). Hypercellularity of the neo-cartilage was found in TM and ED, as the dsDNA content was significantly higher (p < 0.05) compared with contralateral AC controls (TM 126.7/AC 71.1, ED 99.3/AC 62.8 ng dsDNA/1 mg). The highest type II collagen content was found in neo-cartilage after TM compared with TMPG and ED (TM 60%/TMPG 40%/ED 39%). Inter-treatment differences were not significant. Conclusions TM is a highly suitable material for the reconstitution of osseous defects. TM enables excellent bony ingrowth and fast integration. However, combined with autologous periosteum, such a biocomposite failed to promote satisfactory neo-cartilage formation. Cite this article: E. H. Mrosek, H-W. Chung, J. S. Fitzsimmons, S. W. O’Driscoll, G. G

  9. [Femoral head chondroblastoma and reconstruction with osteochondral allograft. Case report].

    PubMed

    Orlando-Díaz, C; Guzmán-Vargas, R; Rincon-Cardozo, D F; Mantilla-León, N; Camacho-Casas, J A

    2014-01-01

    Femoral head chondroblastoma is an infrequent tumor, accounting for approximately 1-2% of benign bone tumors. It occurs more frequently in young male patients. It's most frequent locations include the proximal humerus, proximal femur, distal femur and proximal tibia. The femoral head is the third most frequent site of this tumor. There is no specific treatment for this entity; reported treatments range from acetabular osteotomies and osteochondral grafts, to vascularized fibular grafts, all of them with good results. However, this tumor is clinically unpredictable if left untreated. We report a case managed with osteochondral graft and followed-up for three years after the surgical procedure.

  10. [Femoral head chondroblastoma and reconstruction with osteochondral allograft. Case report].

    PubMed

    Orlando-Díaz, C; Guzmán-Vargas, R; Rincon-Cardozo, D F; Mantilla-León, N; Camacho-Casas, J A

    2014-01-01

    Femoral head chondroblastoma is an infrequent tumor, accounting for approximately 1-2% of benign bone tumors. It occurs more frequently in young male patients. It's most frequent locations include the proximal humerus, proximal femur, distal femur and proximal tibia. The femoral head is the third most frequent site of this tumor. There is no specific treatment for this entity; reported treatments range from acetabular osteotomies and osteochondral grafts, to vascularized fibular grafts, all of them with good results. However, this tumor is clinically unpredictable if left untreated. We report a case managed with osteochondral graft and followed-up for three years after the surgical procedure. PMID:26016291

  11. Arthroscopic Management of Osteochondral Lesions of the Talus.

    PubMed

    Grambart, Sean T

    2016-10-01

    Osteochondral fractures of the ankle are typically caused by traumatic injuries of the ankle. Repetitive trauma can lead to further cartilage damage with subsequent increasing size of the lesion, ultimately leading to severe cartilage disorder and degenerative arthritis of the ankle. Arthroscopic bone marrow stimulation has been shown to be a highly successful option for patients with small osteochondral lesions. Studies show a higher failure rate for larger lesions and cystic changes that disrupt the subchondral plate. The threshold size seems to be 150 mm(2). PMID:27599437

  12. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities

    PubMed Central

    van Bergen, Christiaan JA; Gerards, Rogier M; Opdam, Kim TM; Terra, Maaike P; Kerkhoffs, Gino MMJ

    2015-01-01

    This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available. PMID:26716090

  13. Isolated osteochondral fracture of the metatarsal head of lesser toes.

    PubMed

    Lui, T H

    2015-06-01

    Isolated fracture of the metatarsal head is very rare and no consensus has been reached regarding their best management. We reported four cases of isolated osteochondral fracture of the metatarsal head with different method of treatment to achieve the common goal of restoration of the congruity of the metatarsal head.

  14. OSTEOCHONDRITIS DISSECANS OF THE KNEE: DIAGNOSIS AND TREATMENT

    PubMed Central

    Mestriner, Luiz Aurélio

    2015-01-01

    Osteochondritis dissecans (OCD) is a pathological process affecting the subchondral bone of the knee in children and adolescents with open growth plates (juvenile OCD) and young adults with closed growth plates (adult OCD). It may lead to secondary effects on joint cartilage, such as pain, edema, possible formation of free bodies and mechanical symptoms, including joint locking. OCD may lead to degenerative changes may develop if left untreated. This article presents a review and update on this problem, with special emphasis on diagnosis and treatment. The latter may include either conservative methods, which show more predictable results for juvenile OCD, or various surgical methods, which include reparative techniques like isolated removal of the fragment, bone drilling and fixation of the osteochondral fragments, and restorative techniques like microfractures, autologous osteochondral transplantation (mosaicplasty), autologous chondrocyte implantation and fresh osteochondral allograft, depending on lesion stability, lesion viability, skeletal maturity and OCD process location. Recent assessments on the results from several types of treatment have shown that there is a lack of studies with reliable levels of evidence and have suggested that further multicenter prospective randomized and controlled studies on management of this disease should be conducted. PMID:27047865

  15. Osteochondritis dissecans affecting the temporo-mandibular joint.

    PubMed

    Olley, S F; Leopard, P J

    1978-07-01

    A case of a single loose body occurring in the temporo-mandibular joint is described. It is probable that this case represents the degenerative process of osteochondritis dissecans, a condition not previously described in this joint. The essential features of this condition are noted as a comparison to the condition of synovial chondromatosis.

  16. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities.

    PubMed

    van Bergen, Christiaan Ja; Gerards, Rogier M; Opdam, Kim Tm; Terra, Maaike P; Kerkhoffs, Gino Mmj

    2015-12-18

    This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available.

  17. A Predictive Factor in Osteochondritis Dissecans

    PubMed Central

    Sikka, Robby Singh; Wechter, John Francis; Alwan, Mujtaba; Tompkins, Marc

    2013-01-01

    Objectives: Knee alignment is thought to have some bearing on the development of osteochondritis dissecans (OCD) lesions.1 The effect of proximal tibial morphology on the risk of OCD, however, is unknown. The purpose of this study was to evaluate proximal tibial morphology and its relationship to OCD lesions. The null hypothesis was that patients with OCD lesions would have no difference in medial and posterior tibial slope when comparing the affected side to the unaffected side and age matched controls. Methods: Using CPT codes, we identified 61 patients with unilateral OCD lesions of the medial femoral condyle seen at our institution from 2005-2010. On plain radiographs, medial tibial slope and posterior tibial slope were assessed by 2 residents and 1 attending. (Figure 1) Measurements were completed on affected, contralateral normal, and control knees. The controls were height, weight, and gender matched. In addition, a comparison was made between OCD patients requiring surgery and those without surgery. Inter-observer reliability for each measurement was determined using intra-class correlation coefficients (ICCs). A student’s t-test was used to compare the results of the affected and normal sides. Results: The average patient age was 15.1 years. There were 31 right-sided lesions and 30 left- sided lesions. Medial tibial slope of the affected knee averaged 67.81 ± 3.92 (ICC(2,1) =.771, p<.01) compared to 69.44 ±3.63 (ICC(2,1) =.785, p<.01) for the normal side (p=.0070). The average posterior tibial slope for the affected knee was 80.03 ± 3.91 (ICC(2,1) =.783, p<.01) and 79.62 ± 4.37 (ICC(2,1) =.844, p<.01) for the normal side (p=.19). Matched controls had an average medial tibial slope 68.73° ± 5.81° (ICC(2,1) =.732, p<.01) which was statistically different from affected knees (p=.043). Matched controls had an average posterior tibial slope 81.13° ± 2.90° (ICC(2,1) =.797, p<.01), which was also statistically different from affected knees (p=.0068

  18. Donor-site morbidity after osteochondral autograft transfer procedures.

    PubMed

    LaPrade, Robert F; Botker, Jesse C

    2004-09-01

    We report on 2 patients who had donor-site morbidity after an autogenous osteochondral grafting was performed. Both patients had fibrocartilage hypertrophy at the donor sites that contributed to knee pain and occasional locking; the second patient also had a lack of fibrocartilaginous regrowth with symptomatic residual osteocartilaginous defects. Additional arthroscopic surgery was required in both cases to trim the fibrocartilage. In addition, for the second case, a fresh osteoarticular allograft was used to transfer osteocartilaginous plugs back into the original knee donor sites due to continued knee pain. When performing an osteochondral autograft transfer, the benefits provided at the recipient site must be weighed against the possible donor-site morbidity that may result.

  19. Inorganic-organic hybrid scaffolds for osteochondral regeneration.

    PubMed

    Munoz-Pinto, Dany J; McMahon, Rebecca E; Kanzelberger, Melissa A; Jimenez-Vergara, Andrea C; Grunlan, Melissa A; Hahn, Mariah S

    2010-07-01

    Ligament graft failure frequently results from poor integration of the replacement tissue with associated bone. Thus, the ability to regenerate the bone-ligament osteochondral interface would be advantageous in ligament reconstruction. At the osteochondral interface, the tissue transitions from a bone-like matrix to fibrocartilage. Therefore, a scaffold which promotes a spatially regulated transition in cell behavior from osteoblast-like to chondrocyte-like would be desirable. Previous research indicates that addition of inorganic components to organic scaffolds can enhance the deposition of bone-like matrix by associated osteoblasts. We therefore reasoned that a gradient in the inorganic content of a hybrid inorganic-organic scaffold may induce an osteochondral-like transition in cell phenotype and matrix production. To test this hypothesis, hydrogels were prepared from poly(ethylene glycol) (PEG) and star poly(dimethylsiloxane) (PDMS(star)). As anticipated, both the matrix deposition and phenotype of encapsulated osteoblasts varied with scaffold inorganic content, although the directionality of this modulation was contrary to expectation. Specifically, osteoblasts appeared to transdifferentiate into chondrocyte-like cells with increasing scaffold inorganic content, as indicated by increased chondroitin sulfate and collagen type II production and by upregulation of sox9, a transcription factor associated with chondrocytic differentiation. Furthermore, the deposition of bone-like matrix (collagen type I, calcium phosphate, and osteocalcin) decreased with increasing PDMS(star) content. The resistance of the PDMS(star)-PEG scaffolds to protein adsorption and/or the changes in gel modulus/mesh structure accompanying PDMS(star) incorporation may underlie the unexpected increase in chondrocytic phenotype with increasing inorganic content. Combined, the present results indicate that PDMS(star)-PEG hybrid gels may prove promising for osteochondral regeneration. (c) 2010

  20. Human growth hormone and the development of osteochondritis dissecans lesions.

    PubMed

    Hussain, Waqas M; Hussain, Haroon M; Hussain, Mohammed S; Ho, Sherwin S W

    2011-12-01

    No single etiology regarding the cause of osteochondritis dissecans (OCD) lesions is unanimously accepted. This report documents a novel case of multiple OCD lesions affecting the left knee and a solitary defect of the right elbow in a patient with acquired human growth hormone (hGH) deficiency and supplementation. hGH deficiency and hormone replacement may be related to the development of OCD lesions.

  1. 3D printing of novel osteochondral scaffolds with graded microstructure.

    PubMed

    Nowicki, Margaret A; Castro, Nathan J; Plesniak, Michael W; Zhang, Lijie Grace

    2016-10-14

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds. PMID:27606933

  2. 3D printing of novel osteochondral scaffolds with graded microstructure

    NASA Astrophysics Data System (ADS)

    Nowicki, Margaret A.; Castro, Nathan J.; Plesniak, Michael W.; Zhang, Lijie Grace

    2016-10-01

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.

  3. 3D printing of novel osteochondral scaffolds with graded microstructure.

    PubMed

    Nowicki, Margaret A; Castro, Nathan J; Plesniak, Michael W; Zhang, Lijie Grace

    2016-10-14

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.

  4. Osteochondral allograft transplantation for treatment of glenohumeral instability.

    PubMed

    Chapovsky, Felix; Kelly, John D

    2005-08-01

    The intimate contact between articular surfaces of the humeral head and glenoid labrum contribute to glenohumeral stability. When the articular surface area of these 2 surfaces is decreased, as with the presence of a bony Bankart lesion or an engaging Hill-Sachs lesion, the shoulder is more prone to dislocation. Although osteochondral allograft transplantation has become widely popular for the treatment of osteochondral defects of the knee, it is less used for treating bony defects of the humeral head. We present a case in which a 16-year-old male athlete with multiple anterior shoulder dislocations underwent arthroscopic repair of a Bankart lesion. His arthroscopic repair ultimately failed and on subsequent magnetic resonance imaging he was found to have a large, engaging Hill-Sachs defect. He underwent arthroscopic osteochondral allograft transplantation to correct the humeral head bony deformity. As of the 1-year follow-up, the patient has had no recurrences and had returned to his normal level of activity.

  5. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee

    PubMed Central

    Bowland, Philippa; Ingham, E; Jennings, Louise; Fisher, John

    2015-01-01

    A review of research undertaken to evaluate the biomechanical stability and biotribological behaviour of osteochondral grafts in the knee joint and a brief discussion of areas requiring further improvement in future studies are presented. The review takes into consideration osteochondral autografts, allografts, tissue engineered constructs and synthetic and biological scaffolds. PMID:26614801

  6. Isolated slipped-retroverted osteochondral fracture of second metatarsal head.

    PubMed

    Atik, Aziz; Ozyurek, Selahattin; Cicek, Engin Ilker; Kose, Ozkan

    2013-12-01

    Although metatarsal fractures are common, isolated intraarticular metatarsal head fractures are rare, and retroversion of the fracture segment is even rarer. Herein, a retroverted fracture of the second metatarsal head, which happened with a direct trauma from jumping from a height, was discussed with treatment options and finally a simple surgical trick was advised. There are only a few cases of isolated osteochondral and retroverted fractures of the metatarsal head in literature. The following is a rare case report of such an injury in a 19-year-old male.

  7. Osteochondritis dissecans of the elbow: diagnosis, treatment, and prevention.

    PubMed

    Hall, T L; Galea, A M

    1999-02-01

    Osteochondritis dissecans (OCD) is an inflammation of the bone and cartilage that usually affects adolescents and young adults. A 16-year-old baseball player who had chronic elbow pain illustrates the typical course of OCD of the elbow. Radiographs may be diagnostic, but bone scan is a more sensitive diagnostic tool, and magnetic resonance imaging offers information for staging and characterization of lesions. If symptoms do not resolve with rest, surgery is recommended, including loose-body removal with curettage or drilling. The prognosis is good with early diagnosis and treatment. Left untreated, OCD may progress to degenerative joint disease. Prevention includes strengthening and stretching exercises and limits on throwing activities.

  8. Early Postoperative Magnetic Resonance Imaging Findings After Autologous Osteochondral Plug Grafts For Osteochondritis Dissecans of the Humeral Capitellum

    PubMed Central

    Maruyama, Masahiro; Takahara, Masatoshi; Harada, Mikio; Satake, Hiroshi; Uno, Tomohiro; Takagi, Michiaki

    2016-01-01

    Objectives: Although good clinical outcomes of autologous osteochondral plug grafts for capitellar osteochondritis dissecans (OCD) have been reported, the timing of return to sports was various and still controversial. The period of graft incorporation and the lesion healing at repair site is important to establish the rehabilitation protocol, however there is little information. The aim of this study was to investigate early postoperative magnetic resonance imaging (MRI) findings and clinical outcomes after autologous osteochondral plug grafts for capitellar OCD. Methods: Fifteen young baseball players with advanced lesions of capitellar OCD underwent a procedure using autologous osteochondral plug grafts and underwent MRI (1.5 T) scan at 3 and 6 months, postoperatively. Their mean age at the time of surgery was 13.5 years (range, 13-15 years). Four lesions were classified as International Cartilage Repair Society (ICRS) OCD III and 11 lesions as OCD IV. The mean size of the lesions (sagittal × coronal) was 16 × 14 mm and the mean surface area was 181 mm2. One to two osteochondral plug grafts, with a mean diameter of 7 mm (range, 6-8 mm), were harvested from the lateral femoral condyle and transplanted to the defects. The mean reconstruction rate was 41% (range, 12%-65%), which was calculated as (total surface area of the grafts × 100%)/ (surface area of the lesion). Patients were allowed to begin throwing after 3 months and to return to sports after 6 months. The mean follow-up was 21 months (range, 12-36 months). The MRI findings were assessed graft incorporation, which was indicated by no T1-low-signal-intensity at the graft and no fluid surrounding the graft on T2-weighted fat-suppression (Figure 1), and the lesion healing according to the scoring system of Henderson (4, complete healing; 16, no healing). MRI were blinded and randomized, and two observers reviewed independently and conferred when they differed. Clinical outcomes were evaluated as elbow pain

  9. Bone Marrow Aspiration Concentrate and Platelet Rich Plasma for Osteochondral Repair in a Porcine Osteochondral Defect Model

    PubMed Central

    Betsch, Marcel; Schneppendahl, Johannes; Thuns, Simon; Herten, Monika; Sager, Martin; Jungbluth, Pascal; Hakimi, Mohssen; Wild, Michael

    2013-01-01

    Background Bone marrow aspiration concentrate (BMAC) may possess a high potency for cartilage and osseous defect healing because it contains stem cells and multiple growth factors. Alternatively, platelet rich plasma (PRP), which contains a cocktail of multiple growth factors released from enriched activated thrombocytes may potentially stimulate the mesenchymal stem cells (MSCs) in bone marrow to proliferate and differentiate. Methods A critical size osteochondral defect (10×6 mm) in both medial femoral condyles was created in 14 Goettinger mini-pigs. All animals were randomized into the following four groups: biphasic scaffold alone (TRUFIT BGS, Smith & Nephew, USA), scaffold with PRP, scaffold with BMAC and scaffold in combination with BMAC and PRP. After 26 weeks all animals were euthanized and histological slides were cut, stained and evaluated using a histological score and immunohistochemistry. Results The thrombocyte number was significantly increased (p = 0.049) in PRP compared to whole blood. In addition the concentration of the measured growth factors in PRP such as BMP-2, BMP-7, VEGF, TGF-β1 and PDGF were significantly increased when compared to whole blood (p<0.05). In the defects of the therapy groups areas of chondrogenic tissue were present, which stained blue with toluidine blue and positively for collagen type II. Adding BMAC or PRP in a biphasic scaffold led to a significant improvement of the histological score compared to the control group, but the combination of BMAC and PRP did not further enhance the histological score. Conclusions The clinical application of BMAC or PRP in osteochondral defect healing is attractive because of their autologous origin and cost-effectiveness. Adding either PRP or BMAC to a biphasic scaffold led to a significantly better healing of osteochondral defects compared with the control group. However, the combination of both therapies did not further enhance healing. PMID:23951201

  10. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints

    PubMed Central

    Roach, Brendan L.; Hung, Clark T.; Cook, James L.; Ateshian, Gerard A.; Tan, Andrea R.

    2015-01-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  11. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints.

    PubMed

    Roach, Brendan L; Hung, Clark T; Cook, James L; Ateshian, Gerard A; Tan, Andrea R

    2015-08-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm(2)), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  12. Fibrin glue fixation of a digital osteochondral fracture: case report and review of the literature.

    PubMed

    Shah, Munir A; Ebert, Andrew M; Sanders, William E

    2002-05-01

    Surgical treatment options for digital osteochondral fractures are limited by the small amount of bone available for fixation and the propensity for digital stiffness with the introduction of hardware. Fibrin sealant is used in a variety of clinical settings as a biologic bonding agent and may circumvent the drawbacks of traditional fixation or simple excision for certain digital osteochondral injuries. Successful use of fibrin sealant fixation for a patient with an osteochondral fracture involving the proximal interphalangeal joint is documented, and the literature on fibrin sealant for osseous fixation is reviewed.

  13. Diagnosis of Knee Osteochondral Lesions With Ultrasound Imaging.

    PubMed

    Penttilä, Pekko; Liukkonen, Jukka; Joukainen, Antti; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha; Kröger, Heikki

    2015-10-01

    Evaluation of articular cartilage and subchondral bone is essential in the diagnosis of joint diseases and injuries. Interobserver and intraobserver reproducibilities of arthroscopic grading are only poor to moderate. Thus, for quantitative and objective evaluation of cartilage and subchondral bone, ultrasound arthroscopy (UA) has been introduced to clarify this dilemma. Assessment of the clinical feasibility of high-frequency ultrasonography (US) during 6 knee arthroscopies was conducted, and the surgical technique is presented. US imaging was conducted with a flexible 9-MHz US catheter inserted into the joint through conventional portals. US and arthroscopy videos were synchronously recorded, and US parameters for cartilage and subchondral bone characteristics were measured. Arthroscopy and US imaging were combined to perform cartilage grading. UA produced quantitative data on lesion size, as well as cartilage quality, and showed subchondral bone changes. Visualization of an osteochondritis dissecans lesion not detected by conventional arthroscopy and US-guided retrograde drilling were possible with UA. To conclude, UA proved to be clinically feasible and aided in the diagnosis when assessing knee osteochondral lesions. PMID:26697300

  14. MR imaging of osteochondral grafts and autologous chondrocyte implantation

    PubMed Central

    Millington, S. A.; Szomolanyi, P.; Marlovits, S.

    2006-01-01

    Surgical articular cartilage repair therapies for cartilage defects such as osteochondral autograft transfer, autologous chondrocyte implantation (ACI) or matrix associated autologous chondrocyte transplantation (MACT) are becoming more common. MRI has become the method of choice for non-invasive follow-up of patients after cartilage repair surgery. It should be performed with cartilage sensitive sequences, including fat-suppressed proton density-weighted T2 fast spin-echo (PD/T2-FSE) and three-dimensional gradient-echo (3D GRE) sequences, which provide good signal-to-noise and contrast-to-noise ratios. A thorough magnetic resonance (MR)-based assessment of cartilage repair tissue includes evaluations of defect filling, the surface and structure of repair tissue, the signal intensity of repair tissue and the subchondral bone status. Furthermore, in osteochondral autografts surface congruity, osseous incorporation and the donor site should be assessed. High spatial resolution is mandatory and can be achieved either by using a surface coil with a 1.5-T scanner or with a knee coil at 3 T; it is particularly important for assessing graft morphology and integration. Moreover, MR imaging facilitates assessment of complications including periosteal hypertrophy, delamination, adhesions, surface incongruence and reactive changes such as effusions and synovitis. Ongoing developments include isotropic 3D sequences, for improved morphological analysis, and in vivo biochemical imaging such as dGEMRIC, T2 mapping and diffusion-weighted imaging, which make functional analysis of cartilage possible. PMID:16802126

  15. OSTEOCHONDRAL AUTOLOGOUS TRANSPLANTATION FOR TREATING CHONDRAL LESIONS IN THE PATELLA

    PubMed Central

    Cohen, Moises; Amaro, Joicemar Tarouco; Fernandes, Ricardo de Souza Campos; Arliani, Gustavo Gonçalves; Astur, Diego da Costa; Kaleka, Camila Cohen; Skaf, Abdalla

    2015-01-01

    Objective: The primary aim of this study was to assess the clinical and functional evolution of patients with total-thickness symptomatic cartilaginous injury of the patellar joint surface, treated by means of osteochondral autologous transplantation. Methods: This prospective study was conducted from June 2008 to March 2011 and involved 17 patients. The specific questionnaires of Lysholm, Kujala and Fulkerson were completed preoperatively and one year postoperatively in order to assess the affected knee, and SF-36 was used to assess these patients’ general quality of life. The nonparametric paired Wilcoxon test was used for statistical analysis on the pre and postoperative questionnaires. The data were analyzed using the SPSS for Windows software, version 16.0, and a significance level of 5% was used. Results: The Lysholm preoperative and postoperative average scores were 54.59 and 75.76 points (p < 0.05). The Fulkerson pre and postoperative average scores were 52.53 and 78.41 points (p < 0.05). Conclusions: We believe that autologous osteochondral transplantation is a good treatment method for total-thickness symptomatic chondral lesions of the joint surface of the patella. PMID:27042645

  16. Osteochondral tissue engineering: scaffolds, stem cells and applications

    PubMed Central

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  17. Diagnosis of Knee Osteochondral Lesions With Ultrasound Imaging

    PubMed Central

    Penttilä, Pekko; Liukkonen, Jukka; Joukainen, Antti; Virén, Tuomas; Jurvelin, Jukka S.; Töyräs, Juha; Kröger, Heikki

    2015-01-01

    Evaluation of articular cartilage and subchondral bone is essential in the diagnosis of joint diseases and injuries. Interobserver and intraobserver reproducibilities of arthroscopic grading are only poor to moderate. Thus, for quantitative and objective evaluation of cartilage and subchondral bone, ultrasound arthroscopy (UA) has been introduced to clarify this dilemma. Assessment of the clinical feasibility of high-frequency ultrasonography (US) during 6 knee arthroscopies was conducted, and the surgical technique is presented. US imaging was conducted with a flexible 9-MHz US catheter inserted into the joint through conventional portals. US and arthroscopy videos were synchronously recorded, and US parameters for cartilage and subchondral bone characteristics were measured. Arthroscopy and US imaging were combined to perform cartilage grading. UA produced quantitative data on lesion size, as well as cartilage quality, and showed subchondral bone changes. Visualization of an osteochondritis dissecans lesion not detected by conventional arthroscopy and US-guided retrograde drilling were possible with UA. To conclude, UA proved to be clinically feasible and aided in the diagnosis when assessing knee osteochondral lesions. PMID:26697300

  18. Donor-site giant cell reaction following backfill with synthetic bone material during osteochondral plug transfer.

    PubMed

    Fowler, Donald E; Hart, Joseph M; Hart, Jennifer A; Miller, Mark D

    2009-10-01

    Osteochondral defects are common in younger, active patients. Multiple strategies have been used to treat these lesions, including microfracture and osteochondral plug transfer. We describe a patient experiencing chronic knee pain and a full-thickness cartilage defect on the lateral femoral condyle. After failing conservative management and microfracture surgery, the patient underwent osteochondral autograft plug transfer, with backfilling of the donor sites using synthetic bone graft substitute. Initial recovery was uncomplicated until the patient experienced pain following a twist of the knee. Magnetic resonance imaging for the subsequent knee injury revealed poor healing at the donor sites. The donor sites were debrided, and specimens revealed a foreign body giant cell reaction. Donor-site morbidity is of primary concern during osteochondral plug transfer; however, insufficient data exist to support the use of synthetic bone graft material. Our results indicate that off-label use of synthetic bone graft substitute during a primary procedure requires further investigation.

  19. Treatment of a traumatic osteochondral defect in the thumb carpometacarpal joint with a periosteal autograft.

    PubMed

    Stein, B E; Rosenwasser, M P

    1999-11-01

    We report a case in which an autogenous periosteal autograft was used to resurface a large osteochondral defect in the thumb carpometacarpal joint of a young woman. Good results were found at 4-year follow-up examination.

  20. Chondrogenesis of Mesenchymal Stem Cells in an Osteochondral Environment Is Mediated by the Subchondral Bone

    PubMed Central

    de Vries–van Melle, Marloes L.; Narcisi, Roberto; Kops, Nicole; Koevoet, Wendy J.L.M.; Bos, P. Koen; Murphy, J. Mary; Verhaar, Jan A.N.; van der Kraan, Peter M.

    2014-01-01

    In articular cartilage repair, cells that will be responsible for the formation of repair tissue are often exposed to an osteochondral environment. To study cartilage repair mechanisms in vitro, we have recently developed a bovine osteochondral biopsy culture model in which cartilage defects can be simulated reproducibly. Using this model, we now aimed at studying the chondrogenic potential of human bone marrow-derived mesenchymal stem cells (hBMSCs) in an osteochondral environment. In contrast to standard in vitro chondrogenesis, it was found that supplementing transforming growth factor beta (TGFβ) to culture medium was not required to induce chondrogenesis of hBMSCs in an osteochondral environment. hBMSC culture in defects created in osteochondral biopsies or in bone-only biopsies resulted in comparable levels of cartilage-related gene expression, whereas culture in cartilage-only biopsies did not induce chondrogenesis. Subcutaneous implantation in nude mice of osteochondral biopsies containing hBMSCs in osteochondral defects resulted in the formation of more cartilaginous tissue than hBMSCs in chondral defects. The subchondral bone secreted TGFβ; however, the observed results could not be attributed to TGFβ, as either capturing TGFβ with an antibody or blocking the canonical TGFβ signaling pathway did not result in significant changes in cartilage-related gene expression of hBMSCs in the osteochondral culture model. Inhibition of BMP signaling did not prevent chondrogenesis. In conclusion, we demonstrate that chondrogenesis of hBMSCs is induced by factors secreted from the bone. We have strong indications that this is not solely mediated by members of the TGFβ family but other, yet unknown, factors originating from the subchondral bone appeared to play a key role. PMID:23980750

  1. Arthroscopic Autologous Chondrocyte Transplantation for Osteochondritis Dissecans of the Elbow.

    PubMed

    Patzer, Thilo; Krauspe, Ruediger; Hufeland, Martin

    2016-06-01

    Osteochondritis dissecans of the humeral capitellum is characterized by separation of a circumscript area of the articular surface and the subchondral bone in juvenile patients. In advanced lesions, arthroscopic fragment refixation or fragment removal with microfracturing or drilling can be successful. The purpose of this technical note is to describe an all-arthroscopic surgical technique for 3-dimensional purely autologous chondrocyte transplantation for osteochondral lesions of the humeral capitellum. PMID:27656389

  2. Biomarkers Affected by Impact Severity during Osteochondral Injury.

    PubMed

    Waters, Nicole Poythress; Stoker, Aaron M; Pfeiffer, Ferris M; Cook, James L

    2015-06-01

    Osteochondral injury elevates the risk for developing posttraumatic osteoarthritis (PTOA). Therefore, our objective was to evaluate the relationship between impact severity during injury to cell viability and biomarkers possibly involved in PTOA. Osteochondral explants (6 mm, n = 72) were harvested from cadaveric femoral condyles (N = 6). Using a test machine, each explant (except for No Impact) was subjected to mechanical impact at a velocity of 100 mm/s to 0.25, 0.5, 0.75, 1.0, or 1.25 mm maximum compression corresponding to Low, Low-Moderate, Moderate, Moderate-High, or High impact groups. Cartilage cell viability, collagen content, and proteoglycan content were assessed at either day 0 or after 12 days of culture. Culture media were assessed for prostaglandin E2 (PGE2); nitric oxide; granulocyte macrophage colony-stimulating factor (GM-CSF); interferon gamma (IFNγ); interleukin (IL)-2, -4, -6, -7, -8, -10, -15, -18; interferon gamma-induced protein 10 (IP-10); keratinocyte-derived chemoattractant (KC); monocyte chemoattractant protein-1 (MCP-1); tumor necrosis factor alpha (TNFα); and matrix metalloproteinase-2, -3, -8, -9, -13. There was increased impact energy absorbed for the High group compared with the Moderate-High group, Moderate group, and Low-Moderate group (p = 0.011, 0.048, 0.008, respectively). At day 0, there was decreased area cell viability for the High group compared with the Low-Moderate group (p = 0.035). At day 1, PGE2 was increased for the High group compared with the Moderate, Low-Moderate, Low, and No Impact groups (p ≤ 0.01). Cumulative PGE2 was increased for the Moderate-High and High groups compared with the Moderate, Low-Moderate, Low, and No Impact groups (p ≤ 0.036). At day 1, MCP-1 was increased for the Moderate-High and High groups compared with the Low and No Impact groups (p ≤ 0.032). Impact to osteochondral explants resulted in multiple levels of severity. PGE2 was sensitive to impact

  3. Adult osteochondritis dissecans and focussed ESWT: A successful treatment option.

    PubMed

    Thiele, S; Thiele, R; Gerdesmeyer, L

    2015-12-01

    Extracorporeal shockwave therapy (ESWT) has gained acceptance in the medical field and in the treatment of non-unions and delayed bone healing. ESWT has been used effectively for many years as a noninvasive surgical procedure. The idea of treating Osteochondritis dissecans of knee and talus arose in the middle of the 1990's. OCD is known as a pre-arthritic factor in the long-term and still there is no consistent treatment. In the literature there is still only a small number of publications but international societies for shockwave treatment are convinced that ESWT on OCD shows to be an effective and safe method in the treatment of OCD in the early stages. We want to summarize the actual data on the treatment of OCD by ESWT.

  4. Arthroscopic Microfracture for Osteochondritis Dissecans Lesions of the Capitellum.

    PubMed

    Camp, Christopher L; Dines, Joshua S; Degen, Ryan M; Sinatro, Alec L; Altchek, David W

    2016-06-01

    Capitellar osteochondritis dissecans (OCD) is one of the most common causes of elbow pain and dysfunction in adolescent athletes. It typically occurs in gymnasts and overhead throwers and presents along a wide spectrum of severity. Stable lesions can typically be treated with conservative therapy; however, those presenting with instability, fragmentation, or loose bodies generally require surgical intervention. Although there are a number of described surgical options used to treat capitellar OCD lesions, microfracture is one of the most commonly performed and well studied. Patients who are candidates for microfracture generally have favorable outcomes with high rates of return to athletic activity after postoperative rehabilitation. In this work, we present our preferred arthroscopic technique for microfracture of OCD lesions of the capitellum. This technique is most suitable for patients with unstable or fragmented OCD lesions that are less than 1 cm in diameter and do not violate the lateral-most articular margin of the capitellum. PMID:27656365

  5. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration.

    PubMed

    Amler, Evžen; Filová, Eva; Buzgo, Matej; Prosecká, Eva; Rampichová, Michala; Nečas, Alois; Nooeaid, Patcharakamon; Boccaccini, Aldo R

    2014-05-01

    A wide range of drug-delivery systems are currently attracting the attention of researchers. Nanofibers are very interesting carriers for drug delivery. This is because nanofibers are versatile, flexible, nanobiomimetic and similar to extracellular matrix components, possible to be functionalized both on their surface as well as in their core, and also because they can be produced easily and cost effectively. There have been increasing attempts to use nanofibers in the construction of a range of tissues, including cartilage and bone. Nanofibers have also been favorably engaged as a drug-delivery system in cell-free scaffolds. This short overview is devoted to current applications and to further perspectives of nanofibers as drug-delivery devices in the field of cartilage and bone regeneration, and also in osteochondral reconstruction. PMID:24978465

  6. Stifle osteochondritis dissecans in snow leopards (Uncia uncia).

    PubMed

    Herrin, Kimberly Vinette; Allan, Graeme; Black, Anthony; Aliah, Rhonda; Howlett, Cameron Rolfe

    2012-06-01

    Three snow leopard (Uncia uncia) cubs, female and male siblings and an unrelated female, had lameness attributed to osteochondritis dissecans (OCD) lesions noted at 6, 8, and 10 mo of age, respectively. All cubs were diagnosed with OCD via radiographs. The sibling cubs both had lesions of the right lateral femoral condyles, while the unrelated cub had bilateral lesions of the lateral femoral condyles. Subsequently, OCD was confirmed in all three cases during surgical correction of the lateral femoral condyle lesions via lateral stifle arthrotomies, flap removal, and debridement of the defect sites. Histopathology also supported the diagnosis of OCD. Postoperatively, the sibling cubs developed seromas at the incision sites and mild lameness, which resolved within a month. To date, two cubs have been orthopedically sound, while one of the sibling cubs has developed mild osteoarthritis. OCD has rarely been reported in domestic felids, and to the authors' knowledge these are the first reported cases of OCD in nondomestic felids.

  7. Stifle osteochondritis dissecans in snow leopards (Uncia uncia).

    PubMed

    Herrin, Kimberly Vinette; Allan, Graeme; Black, Anthony; Aliah, Rhonda; Howlett, Cameron Rolfe

    2012-06-01

    Three snow leopard (Uncia uncia) cubs, female and male siblings and an unrelated female, had lameness attributed to osteochondritis dissecans (OCD) lesions noted at 6, 8, and 10 mo of age, respectively. All cubs were diagnosed with OCD via radiographs. The sibling cubs both had lesions of the right lateral femoral condyles, while the unrelated cub had bilateral lesions of the lateral femoral condyles. Subsequently, OCD was confirmed in all three cases during surgical correction of the lateral femoral condyle lesions via lateral stifle arthrotomies, flap removal, and debridement of the defect sites. Histopathology also supported the diagnosis of OCD. Postoperatively, the sibling cubs developed seromas at the incision sites and mild lameness, which resolved within a month. To date, two cubs have been orthopedically sound, while one of the sibling cubs has developed mild osteoarthritis. OCD has rarely been reported in domestic felids, and to the authors' knowledge these are the first reported cases of OCD in nondomestic felids. PMID:22779240

  8. Osteochondral Fractures of the Lateral Femoral Trochlea in Young Athletes

    PubMed Central

    Walsh, Stewart

    2016-01-01

    Method: Between May 2012 and September 2014 cluster of five patients with large osteochondral fractures of the lateral femoral trochlea were treated at our institution. These all occurred in high level male athletes, one at a decathlete and the other four soccer players. The MRI scan showed a characteristic appearance of a large subchondral fracture involving most of the lateral femoral trochlea. All patients were symptomatic. The patients were treated with open reduction and internal fixation using headless compression screws. The operative technique and short term results will be outlined. Results: Fixation appears successful in most cases. Conclusion: This appears to be a repetitive trauma related injury that occurs in young high-level athletes.

  9. Approach alternatives for treatment of osteochondral lesions of the talus.

    PubMed

    Navid, David O; Myerson, Mark S

    2002-09-01

    Osteochondral lesions of the talus are common injuries, especially in the athletic population. Although multiple etiologies exist, lateral lesions have a higher incidence of association with a specific traumatic event. It has been postulated that lateral lesions are produced when the anterolateral aspect of the talar dome impacts the fibula on application of an inversion or dorsiflexion stress to the ankle [2]. There is general agreement that surgery should be performed only in symptomatic cases, as osteochondral lesions of the talar dome show little tendency to progression and do not seem to lead to osteoarthritis [10,42]. Appropriate preoperative imaging is extremely important. Standard radiographs of the ankle supplemented with lateral plantar flexion and dorsiflexion views and CT or Mr imaging can be helpful in evaluating the size, depth, and exact location of the lesion. This information is essential in planning the appropriate surgical procedure. Although many stage I and II lesions respond well to conservative therapy and a period of immobilization, some higher-grade lesions (stage III and IV) eventually require surgical intervention. Most lesions can be approached arthroscopically. Many arthroscopic procedures have been shown to be successful, including debridement with abrasion chondroplasty, subchondral drilling, and microfracture [18-20]. But certain larger or refractory lesions may require an open approach to the ankle joint to restore the articular cartilage. Most lateral lesions have an anterior location and are easily accessible through a standard anterolateral approach. Most medial lesions are located on the posterior talar dome, and a medial malleolar osteotomy is usually required. Osteotomies, in particular of the medial malleolus, should be approached carefully. The possible complications of nonunion and malunion can lead to progressive arthritis of the ankle joint.

  10. Surgical management of osteochondritis dissecans of the capitellum.

    PubMed

    Tivnon, M C; Anzel, S H; Waugh, T R

    1976-01-01

    Ten cases of osteochondritis dissecans of the humeral capitellum which were treated surgically are reviewed. All 10 cases were males and involved the dominant side. The ages at surgery ranged from 13 to 17 years. Follow-up ranged from 1 to 7 years. All of the youths had competed in organized athletics, either baseball or football. By position there were three pitchers, two catchers, two infielders, and one outfielder; in addition there were one quarterback and one linebacker. Only one patient presented with locking of the elbow, whereas the others presented with pain and limitation of extension. The locked elbow was explored immediately and the others were explored after immobilization failed to relieve their symptoms. In seven of the joints a loose fragment of the capitellum was found lying either in the joint or in a defect in the capitellum. The fragment had multiple small holes. In three cases there was no loose fragment. In this situation a corticol window was cut above the capitellum. The capitellum was then drilled and bone was grafted from above. Over all, there were one excellent, six good, one fair, and two poor results. There seemed to be little difference between curretting alone or curetting and drilling. The cases with the cartilage intact and bone grafted from above did worse, with one fair and one poor result of three cases. The two poor results required further surgery, which consisted of partial excision of the capitellum. All cases lacked elbow extension before and after surgery, but nine of 10 gained some motion after surgery. Pre- and postoperative x-rays are shown in this report and a brief review of the literature concerning osteochondritis dissecans is presented.

  11. Optical Clearing in Collagen- and Proteoglycan-Rich Osteochondral Tissues

    PubMed Central

    Neu, Corey P.; Novak, Tyler; Gilliland, Kateri Fites; Marshall, Peter; Calve, Sarah

    2014-01-01

    Objective Recent developments in optical clearing and microscopy technology have enabled the imaging of intact tissues at the millimeter scale to characterize cells via fluorescence labeling. While these techniques have facilitated the three-dimensional cellular characterization within brain and heart, study of dense connective tissues of the musculoskeletal system have been largely unexplored. Here, we quantify how optical clearing impacted the cell and tissue morphology of collagen-, proteoglycan-, and mineral-rich cartilage and bone from the articulating knee joint. Methods Water-based fructose solutions were used for optical clearing of bovine osteochondral tissues, followed by imaging with transmission and confocal microscopy. To confirm preservation of tissue structure during the clearing process, samples were mechanically tested in unconfined compression and visualized by cryoSEM. Results Optical clearing enhanced light transmission through cartilage, but not subchondral bone regions. Fluorescent staining and immunolabeling was preserved through sample preparations, enabling imaging to cartilage depths 5 times deeper than previously reported, limited only by the working distance of the microscope objective. Chondrocyte volume remained unchanged in response to, and upon the reversal, of clearing. Equilibrium modulus increased in cleared samples, and was attributed to exchange of interstitial fluid with the more viscous fructose solution, but returned to control levels upon unclearing. In addition, cryoSEM-based analysis of cartilage showed no ultrastructural changes. Conclusion We anticipate large-scale microscopy of diverse connective tissues will enable the study of intact, three-dimensional interfaces (e.g. osteochondral) and cellular connectivity as a function of development, disease, and regeneration, which have been previously hindered by specimen opacity. PMID:25454370

  12. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    NASA Astrophysics Data System (ADS)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  13. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    PubMed

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  14. Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation.

    PubMed

    Nam, Jin; Perera, Priyangi; Rath, Bjoern; Agarwal, Sudha

    2013-03-01

    Osteochondral tissue-engineered grafts are proposed to hold greater potential to repair/regenerate damaged cartilage through enhanced biochemical and mechanical interactions with underlying subchondral bone as compared to simple engineered cartilage. Additionally, biomechanical stimulation of articular chondrocytes (ACs) or osteoblasts (OBs) was shown to induce greater morphogenesis of the engineered tissues composed of these cells. In this report, to define the advantages of biomechanical stimulation to osteochondral grafts for tissue engineering, we examined whether (1) ACs and OBs in three-dimensional (3D) osteochondral constructs support functional development of each other at the molecular level, and (2) biomechanical stimulation of osteochondral constructs further promotes the regenerative potential of such grafts. Various configurations of cell/scaffold assemblies, including chondral, osseous, and osteochondral constructs, were engineered with mechano-responsive electrospun poly(ɛ-caprolactone) scaffolds. These constructs were subjected to either static or dynamic (10% cyclic compressive strain at 1 Hz for 3 h/day) culture conditions for 2 weeks. The expression of bone morphogenetic proteins (BMPs) was examined to assess the regenerative potential of each treatment on the cells. Biomechanical stimulation augmented a marked upregulation of Bmp2, Bmp6, and Bmp7 as well as downregulation of BMP antagonist, Bmp3, in a time-specific manner in the ACs and OBs of 3D osteochondral constructs. More importantly, the presence of biomechanically stimulated OBs was especially crucial for the induction of Bmp6 in ACs, a BMP required for chondrocytic growth and differentiation. Biomechanical stimulation led to enhanced tissue morphogenesis possibly through this BMP regulation, evident by the improved effective compressive modulus of the osteochondral constructs (710 kPa of dynamic culture vs. 280 kPa of static culture). Similar BMP regulation was observed in the

  15. Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration

    PubMed Central

    Castro, Nathan J.; Patel, Romil; Zhang, Lijie Grace

    2015-01-01

    Chronic and acute osteochondral defects as a result of osteoarthritis and trauma present a common and serious clinical problem due to the tissue's inherent complexity and poor regenerative capacity. In addition, cells within the osteochondral tissue are in intimate contact with a 3D nanostructured extracellular matrix composed of numerous bioactive organic and inorganic components. As an emerging manufacturing technique, 3D printing offers great precision and control over the microarchitecture, shape and composition of tissue scaffolds. Therefore, the objective of this study is to develop a biomimetic 3D printed nanocomposite scaffold with integrated differentiation cues for improved osteochondral tissue regeneration. Through the combination of novel nano-inks composed of organic and inorganic bioactive factors and advanced 3D printing, we have successfully fabricated a series of novel constructs which closely mimic the native 3D extracellular environment with hierarchical nanoroughness, microstructure and spatiotemporal bioactive cues. Our results illustrate several key characteristics of the 3D printed nanocomposite scaffold to include improved mechanical properties as well as excellent cytocompatibility for enhanced human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation in vitro. The present work further illustrates the effectiveness of the scaffolds developed here as a promising and highly tunable platform for osteochondral tissue regeneration. PMID:26366231

  16. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

    PubMed Central

    Wang, Limin; Zhao, Liang; Detamore, Michael S.

    2013-01-01

    Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869

  17. Mechanical evaluation of a tissue-engineered zone of calcification in a bone-hydrogel osteochondral construct.

    PubMed

    Hollenstein, Jérôme; Terrier, Alexandre; Cory, Esther; Chen, Albert C; Sah, Robert L; Pioletti, Dominique P

    2015-01-01

    The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone-hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone-hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone-hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone-hydrogel interface and second, it reduces the stress at this interface.

  18. Hierarchical Structure of Articular Bone-Cartilage Interface and Its Potential Application for Osteochondral Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin

    2010-09-01

    The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.

  19. Acute Osteochondral Fractures in the Lower Extremities - Approach to Identification and Treatment

    PubMed Central

    Pedersen, M.E; DaCambra, M.P; Jibri, Z; Dhillon, S; Jen, H; Jomha, N.M

    2015-01-01

    Chondral and osteochondral fractures of the lower extremities are important injuries because they can cause pain and dysfunction and often lead to osteoarthritis. These injuries can be misdiagnosed initially which may impact on the healing potential and result in poor long-term outcome. This comprehensive review focuses on current pitfalls in diagnosing acute osteochondral lesions, potential investigative techniques to minimize diagnostic errors as well as surgical treatment options. Acute osteochondral fractures are frequently missed and can be identified more accurately with specific imaging techniques. A number of different methods can be used to fix these fractures but attention to early diagnosis is required to limit progression to osteoarthritis. These fractures are common with joint injuries and early diagnosis and treatment should lead to improved long term outcomes. PMID:26587063

  20. Acute Delamination of Commercially Available Decellularized Osteochondral Allograft Plugs: A Report of Two Cases.

    PubMed

    Degen, Ryan M; Tetreault, Danielle; Mahony, Greg T; Williams, Riley J

    2016-10-01

    Articular cartilage injuries, and corresponding surgical procedures, are occurring with increasing frequency as identified by a review of recent surgical trends. Concerns have grown in recent years regarding the longevity of results following microfracture, with a shift toward cartilage restoration procedures in recent years. This case report describes 2 cases of acute failure following the use of commercially available osteochondral allograft plugs used for the treatment of osteochondral defects of the distal femur. In both cases the chondral surface of the plug delaminated from the underlying cancellous bone, resulting in persistent pain and swelling requiring reoperation and removal of the loose fragments. Caution should be employed when considering use of these plugs for the treatment of osteochondral lesions, as similar outcomes have not been noted with other cartilage restoration techniques. PMID:27688840

  1. TREATMENT OF OSTEOCHONDRAL LESIONS OF THE TALUS BY MEANS OF THEARTHROSCOPY-ASSISTED MICROPERFORATION TECHNIQUE

    PubMed Central

    de Lima, Everton; de Queiroz, Felipe; Lopes, Osmar Valadão; Spinelli, Leandro de Freitas

    2015-01-01

    Objective: To evaluate patients affected by osteochondral fractures of the talus who were treated surgically by means of arthroscopy-assisted microperforation. Methods: A retrospective study was carried out on 24 patients with osteochondral lesions of the talus who underwent microperforation assisted by videoarthroscopy of the ankle. They were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) score system before and after the operation. Results: There were 19 men and 5 women, with a mean age of 35.3 years (minimum of 17 years and maximum of 54 years). The minimum follow-up was two years (maximum of 39 months). All the patients showed an improvement in AOFAS score after surgery, with an average improvement of around 22.5 points. Conclusion: Videoarthroscopy-assisted microperforation is a good option for treating osteochondral lesions of the talus and provides good functional results. PMID:27027076

  2. Fragment fixation with a bone graft and dynamic staples for osteochondritis dissecans of the humeral capitellum.

    PubMed

    Harada, Mikio; Ogino, Toshihiko; Takahara, Masatoshi; Ishigaki, Daisuke; Kashiwa, Hideo; Kanauchi, Yumiko

    2002-01-01

    To attain bony union of the fragment in osteochondritis dissecans of the humeral capitellum, fragment fixation was performed with a bone graft and dynamic staples in 4 patients. The staples were inserted not from the articular surface but from the lateral aspect of the capitellum. All patients achieved bony union without complication, and 3 of them returned to playing competitive baseball. At final follow-up after surgery (mean, 7.5 years [range, 2.1-11 years]), 3 patients were able to throw a ball without pain and the remaining patient felt elbow dullness after he played recreational-level baseball as a pitcher. These results suggest that the procedure of fragment fixation with a bone graft and dynamic staples can provide satisfactory results for osteochondritis dissecans of the humeral capitellum with a large osteochondral fragment.

  3. Bilateral osteochondritis dissecans of the lateral trochlea of the femur: a case report.

    PubMed

    Takahashi, Yoshimasa; Nawata, Koji; Hashiguchi, Hirokazu; Kawaguchi, Kei; Yamasaki, Daisuke; Tanaka, Hidetoshi

    2008-05-01

    Osteochondritis dissecans of the bilateral trochlea of femur is unusual case for orthopedic surgeon. The patient was a healthy 15-year-old male with symptomatic osteochondritis dissecans of the bilateral distal lateral femoral condyle of the trochlea. A surgery on the bilateral knee joints was performed simultaneously. The osteochondral free fragment of the right knee was resected by a minimum open surgery after arthroscopic evaluation. In the left knee the fragment was stabilized with multiple cortical bone pegs harvested from the proximal tibia. The surgery was successful, and the patient was able to play basketball 3 months postoperatively. The course of the right knee is currently under careful observation because of the possibility of recurrence. The left knee has remained in an excellent condition for 18 months following surgery with bone pegs.

  4. Hydrogen Supplementation of Preservation Solution Improves Viability of Osteochondral Grafts

    PubMed Central

    Yamada, Takuya; Onuma, Kenji; Kuzuno, Jun; Ujihira, Masanobu; Kurokawa, Ryosuke; Sakai, Rina; Takaso, Masashi

    2014-01-01

    Allogenic osteochondral tissue (OCT) is used for the treatment of large cartilage defects. Typically, OCTs collected during the disease-screening period are preserved at 4°C; however, the gradual reduction in cell viability during cold preservation adversely affects transplantation outcomes. Therefore, improved storage methods that maintain the cell viability of OCTs are needed to increase the availability of high-quality OCTs and improve treatment outcomes. Here, we evaluated whether long-term hydrogen delivery to preservation solution improved the viability of rat OCTs during cold preservation. Hydrogen-supplemented Dulbecco's Modified Eagles Medium (DMEM) and University of Wisconsin (UW) solution both significantly improved the cell viability of OCTs during preservation at 4°C for 21 days compared to nonsupplemented media. However, the long-term cold preservation of OCTs in DMEM containing hydrogen was associated with the most optimal maintenance of chondrocytes with respect to viability and morphology. Our findings demonstrate that OCTs preserved in DMEM supplemented with hydrogen are a promising material for the repair of large cartilage defects in the clinical setting. PMID:25506061

  5. Results of Osteochondral Autologous Transplantation in the Knee

    PubMed Central

    Muller, Sandra; Breederveld, Roelf S.; Tuinebreijer, Wim E.

    2010-01-01

    Repair of full thickness defects of articular cartilage in the knee is difficult but important to prevent progression to osteoarthritis. The purpose of this retrospective study was to evaluate the clinical results of Osteochondral Autograft Transplant System (OATS) treatment for articular defects of the knee. Between 1999 and 2005, 15 knees (14 patients) were treated by the OATS technique. Age ranged from 27 to 52 years. Cartilage defects were up to 3.75 cm2. The mean follow-up was 42 months. Knee function was assessed by the Lysholmscore and International Knee Documentation Committee (IKDC) Subjective Knee Form. Six patients scored good or excellent. No patient had knee instability. Twelve of 13 patients returned to sports at an intermediate or high level. The subjective assessment score (0-10) changed from 4.7 before operation to 7.2 afterward (P=0.007). The OATS-technique resulted in a decrease in symptoms in patients with localized articular cartilage defects. We consider the OATS technique to be an appropriate treatment for cartilage defects to prevent progression of symptoms. PMID:20361003

  6. Viral Inactivation of Human Osteochondral Grafts with Methylene Blue and Light

    PubMed Central

    Zhao, Zhixing; Call, Gazell M.; Gao, Jizong; Yao, Jian Q.

    2014-01-01

    Objective: Cartilage injury is one of the most common disorders of synovial joints. Fresh osteochondral allografts are becoming a standard treatment; however, they are supply constrained with a potential risk of disease transmission. There are no known virucidal processes available for osteochondral allografts and most methods presently available are detrimental to cartilage. Methylene blue light treatment has been shown to be successful in the literature for viral inactivation of fresh frozen plasma. The purpose of this study was to determine the capacity of methylene blue light treatment to inactivate a panel of clinically relevant viruses inoculated onto osteochondral allografts. Design: Osteochondral grafts recovered from human cadaveric knees were inoculated with one of the following viruses: bovine viral diarrhea virus (BVDV), hepatitis A virus (HAV), human immunodeficiency virus type 1 (HIV-1), porcine parvovirus (PPV), and pseudorabies virus (PrV). The samples were processed through a methylene blue light treatment, which consisted of an initial soak in nonilluminated circulating methylene blue at ambient temperature, followed by light exposure with circulating methylene blue at cool temperatures. The final titer was compared with the recovery control for the viral log reduction. Results: HIV-1, BVDV, and PrV were reduced to nondetectable levels while HAV and PPV were reduced by 3.1 and 5.6 logs, respectively. Conclusions: The methylene blue light treatment was effective in reducing (a) enveloped DNA and RNA viruses to nondetectable levels and (b) nonenveloped DNA and RNA viruses of inoculated human osteochondral grafts by 3.1 to 5.6 logs. This study demonstrates the first practical method for significantly reducing viral load in osteochondral implants. PMID:26069682

  7. Chondroblastoma of the Knee Treated with Resection and Osteochondral Allograft Reconstruction

    PubMed Central

    Fitzgerald, Judd; Broehm, Cory; Treme, Gehron

    2014-01-01

    Case. This case report describes the operative management of 16-year-old male with a symptomatic chondroblastoma of the distal femur with breach of the chondral surface. Following appropriate imaging and core needle biopsy, the diagnosis was confirmed histologically. The patient then underwent intralesional curettage and osteochondral allograft reconstruction of the defect. At one-year follow-up the patient was pain-free and has obtained excellent range of motion. There is radiographic evidence of allograft incorporation and no evidence of local recurrence. Conclusion. Osteochondral allograft reconstruction is an effective option following marginal resection and curettage of chondroblastoma involving the chondral surface of the distal femur. PMID:25548701

  8. Chondroblastoma of the knee treated with resection and osteochondral allograft reconstruction.

    PubMed

    Fitzgerald, Judd; Broehm, Cory; Chafey, David; Treme, Gehron

    2014-01-01

    Case. This case report describes the operative management of 16-year-old male with a symptomatic chondroblastoma of the distal femur with breach of the chondral surface. Following appropriate imaging and core needle biopsy, the diagnosis was confirmed histologically. The patient then underwent intralesional curettage and osteochondral allograft reconstruction of the defect. At one-year follow-up the patient was pain-free and has obtained excellent range of motion. There is radiographic evidence of allograft incorporation and no evidence of local recurrence. Conclusion. Osteochondral allograft reconstruction is an effective option following marginal resection and curettage of chondroblastoma involving the chondral surface of the distal femur.

  9. Chondroblastoma of the knee treated with resection and osteochondral allograft reconstruction.

    PubMed

    Fitzgerald, Judd; Broehm, Cory; Chafey, David; Treme, Gehron

    2014-01-01

    Case. This case report describes the operative management of 16-year-old male with a symptomatic chondroblastoma of the distal femur with breach of the chondral surface. Following appropriate imaging and core needle biopsy, the diagnosis was confirmed histologically. The patient then underwent intralesional curettage and osteochondral allograft reconstruction of the defect. At one-year follow-up the patient was pain-free and has obtained excellent range of motion. There is radiographic evidence of allograft incorporation and no evidence of local recurrence. Conclusion. Osteochondral allograft reconstruction is an effective option following marginal resection and curettage of chondroblastoma involving the chondral surface of the distal femur. PMID:25548701

  10. Multiple osteochondral autograft transfer to the proximal interphalangeal joint: case report.

    PubMed

    Ozyurekoglu, Tuna

    2010-06-01

    A 17-year-old boy who played baseball presented with swelling, pain, and crepitation in the right ring finger proximal interphalangeal joint after a remote trauma. Multiple osteochondral defects were identified on opposing articular surfaces. Cylindrical osteochondral grafts of 2.0, 2.5, and 5.0 mm were applied to the defects and congruency was restored. We confirmed vascularity of the grafts by magnetic resonance. The boy returned to full sports activities. No signs of arthritis were seen at 4-year follow-up radiographs.

  11. Repair of osteochondral defects in rabbits with ectopically produced cartilage.

    PubMed

    Emans, Pieter J; Hulsbosch, Martine; Wetzels, Gwendolyn M R; Bulstra, Sjoerd K; Kuijer, Roel

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal cartilage defects. Ectopic cartilage was produced by dissecting a piece of periosteum from the tibia of rabbits. After 14 days the reactive tissue at the dissection site was harvested and a graft was cored out and press-fit implanted in an osteochondral defect in the medial condyle of the femur with or without addition of hyaluronan. After 3 weeks and 3 months the repair reaction was evaluated by histology. Thionine- and collagen type II-stained sections were evaluated for graft viability, ingrowth of the graft, and joint surface repair. Empty defects remained empty 3 weeks after implantation, ectopic cartilage filled the defect to the level of the surrounding cartilage. Histologically, the grafts were viable, consisting mainly of cartilage, and showed a variable pattern of ingrowth. Three months after implantation empty defects with or without hyaluronan were filled primarily with fibrocartilaginous tissue. Defects treated with ectopic cartilage contained mixtures of fibrocartilaginous and hyaline cartilage. Sometimes a tidemark was observed in the new articular cartilage and the orientation of the cells resembled that of healthy articular cartilage. Subchondral bone repair was excellent. The modified O'Driscoll scores for empty defects without and with hyaluronan were 12.7 +/- 6.4 and 15.3 +/- 3.2; for treated defects scores were better (15.4 +/- 3.9 and 18.2 +/- 2.9). In this conceptual study the use of ectopic cartilage derived from periosteum appears to be a promising novel method for joint surface repair in rabbits.

  12. Design of a multiphase osteochondral scaffold. I. Control of chemical composition.

    PubMed

    Lynn, Andrew K; Best, Serena M; Cameron, Ruth E; Harley, Brendan A; Yannas, Ioannis V; Gibson, Lorna J; Bonfield, William

    2010-03-01

    This is the first in a series of articles that describe the design and development of a family of osteochondral scaffolds based on collagen-glycosaminoglycan (collagen-GAG) and calcium phosphate technologies, engineered for the regenerative repair of defects in articular cartilage. The osteochondral scaffolds consist of two layers: a mineralized type I collagen-GAG scaffold designed to regenerate the underlying subchondral bone and a nonmineralized type II collagen-GAG scaffold designed to regenerate cartilage. The subsequent articles in this series describe the fabrication and properties of a mineralized scaffold as well as a two-layer (one mineralized, the other not) osteochondral scaffold for regeneration of the underlying bone and cartilage, respectively. This article describes a technology through which the chemical composition-particularly the calcium phosphate mass fraction-of triple coprecipitated nanocomposites of collagen, glycosaminoglycan, and calcium phosphate can be accurately and reproducibly varied without the need for titrants or other additives. Here, we describe how the mineral:organic ratio can be altered over a range that includes that for articular cartilage (0 wt % mineral) and for bone (75 wt % mineral). This technology achieves the objective of mimicking the composition of two main tissue types found in articular joints, with particular emphasis on the osseous compartment of an osteochondral scaffold. Exclusion of titrants avoids the formation of potentially harmful contaminant phases during freeze-drying steps crucial for scaffold fabrication, ensuring that the potential for binding growth factors and drugs is maintained.

  13. Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing.

    PubMed

    Wendt, David; Jakob, Marcel; Martin, Ivan

    2005-11-01

    Osteochondral defects (i.e., those that affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. The in vitro fabrication of osteochondral grafts of predefined size and shape, starting from autologous cells combined with three-dimensional porous biomaterials, is a promising approach for the treatment of osteochondral defects. However, the quality of ex vivo generated cartilage and bone-like tissues is currently restricted by a limited understanding of the regulatory role of physicochemical culture parameters on tissue development. By allowing reproducible and controlled changes in specific biochemical and biomechanical factors, bioreactor systems provide the technological means to reveal fundamental mechanisms of cell function in a three-dimensional environment and the potential to improve the quality of engineered tissues. In addition, by automating and standardizing the manufacturing process in controlled closed systems, bioreactors could reduce production costs and thus facilitate broader clinical impact of engineered osteochondral grafts.

  14. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds.

    PubMed

    Fedorovich, Natalja E; Schuurman, Wouter; Wijnberg, Hans M; Prins, Henk-Jan; van Weeren, P René; Malda, Jos; Alblas, Jacqueline; Dhert, Wouter J A

    2012-01-01

    Osteochondral defects are prone to induce osteoarthritic degenerative changes. Many tissue-engineering approaches that aim to generate osteochondral implants suffer from poor tissue formation and compromised integration. This illustrates the need for further improvement of heterogeneous tissue constructs. Engineering of these structures is expected to profit from strategies addressing the complexity of tissue organization and the simultaneous use of multiple cell types. Moreover, this enables the investigation of the effects of three-dimensional (3D) organization and architecture on tissue function. In the present study, we characterize the use of a 3D fiber deposition (3DF) technique for the fabrication of cell-laden, heterogeneous hydrogel constructs for potential use as osteochondral grafts. Changing fiber spacing or angle of fiber deposition yielded scaffolds of varying porosity and elastic modulus. We encapsulated and printed fluorescently labeled human chondrocytes and osteogenic progenitors in alginate hydrogel yielding scaffolds of 1×2 cm with different parts for both cell types. Cell viability remained high throughout the printing process, and cells remained in their compartment of the printed scaffold for the whole culture period. Moreover, distinctive tissue formation was observed, both in vitro after 3 weeks and in vivo (6 weeks subcutaneously in immunodeficient mice), at different locations within one construct. These results demonstrate the possibility of manufacturing viable centimeter-scaled structured tissues by the 3DF technique, which could potentially be used for the repair of osteochondral defects. PMID:21854293

  15. Development of Novel Three-Dimensional Printed Scaffolds for Osteochondral Regeneration

    PubMed Central

    Holmes, Benjamin; Zhu, Wei; Li, Jiaoyan; Lee, James D.

    2015-01-01

    As modern medicine advances, various methodologies are being explored and developed in order to treat severe osteochondral defects in joints. However, it is still very challenging to cure the osteochondral defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The objective of this study is to create novel three-dimensional (3D) printed osteochondral scaffolds with both excellent interfacial mechanical properties and biocompatibility for facilitating human bone marrow mesenchymal stem cell (MSC) growth and chondrogenic differentiation. For this purpose, we designed and 3D printed a series of innovative bi-phasic 3D models that mimic the osteochondral region of articulate joints. Our mechanical testing results showed that our bi-phasic scaffolds with key structures have enhanced mechanical characteristics in compression (a maximum Young's modulus of 31 MPa) and shear (a maximum fracture strength of 5768 N/mm2) when compared with homogenous designs. These results are also correlated with numerical simulation. In order to improve their biocompatibility, the scaffolds' surfaces were further modified with acetylated collagen (one of the main components in osteochondral extracellular matrix). MSC proliferation results demonstrated that incorporation of a collagen, along with biomimetically designed micro-features, can greatly enhance MSC growth after 5 days in vitro. Two weeks' chondrogenic differentiation results showed that our novel scaffolds (dubbed “key” scaffolds), both with and without surface collagen modification, displayed enhanced chondrogenesis (e.g., 130%, 114%, and 236% increases in glycosaminoglycan, type II collagen deposition, and total protein content on collagen-modified key scaffolds when compared with homogeneous controls). PMID:25088966

  16. Osteochondral Autograft from the Ipsilateral Femoral Head by Surgical Dislocation for Treatment of Femoral Head Fracture Dislocation: A Case Report.

    PubMed

    Won, Yougun; Lee, Gi Soo; Kim, Sang Bum; Kim, Sun Joong; Yang, Kyu Hyun

    2016-11-01

    As anatomical reduction of the articular surface of femoral head fractures and restoration of damaged cartilage are essential for good long-term results, many treatment options have been suggested, including fixation of the fracture using various surgical exposures and implants, as well as arthroscopic irrigation and debridement, bone marrow stimulating techniques, osteochondral allograft, autograft, and autogenous chondrocyte implantation. We report a case of osteochondral autograft harvested from its own femoral articular surface through surgical hip dislocation. The osteochondral graft was harvested from the inferior non-weight-bearing articular surface and grafted to the osteochondral defect. One year later, the clinical and radiological results were good, without the collapse of the femoral head or arthritic change. This procedure introduced in our case is considered convenient and able to lessen surgical time without morbidity of the donor site associated with the harvest. PMID:27593886

  17. A rare case of bilateral non-weight bearing posterior aspect of lateral femoral condyle osteochondral fracture and its management.

    PubMed

    Shaikh, Aamir Hassan; Stanclik, Jaroslaw; Murphy, Paul G D

    2014-01-01

    Osteochondral fracture of the lateral femoral condyle can be a real challenging injury to diagnose on initial presentation. The authors report a rare case of bilateral involvement of posterior aspect of lateral femoral condyle osteochondral fracture in a young 15-year-old boy. This was managed with excision of these osteochondral fragments, as the site involved was on the posterior non-weight bearing area of the femur along with chronicity of the injury dictating excision as a reasonable choice of management. Good outcome for such injury is based on an early diagnosis and prompt treatment along with an early rehabilitation for such cases. Our patient has an excellent 2 years outcome with a Knee Society score of 95 after undergoing excision of these osteochondral fragments in both knees in succession.

  18. Osteochondral Autograft from the Ipsilateral Femoral Head by Surgical Dislocation for Treatment of Femoral Head Fracture Dislocation: A Case Report

    PubMed Central

    Won, Yougun; Kim, Sang Bum; Kim, Sun Joong; Yang, Kyu-Hyun

    2016-01-01

    As anatomical reduction of the articular surface of femoral head fractures and restoration of damaged cartilage are essential for good long-term results, many treatment options have been suggested, including fixation of the fracture using various surgical exposures and implants, as well as arthroscopic irrigation and debridement, bone marrow stimulating techniques, osteochondral allograft, autograft, and autogenous chondrocyte implantation. We report a case of osteochondral autograft harvested from its own femoral articular surface through surgical hip dislocation. The osteochondral graft was harvested from the inferior non-weight-bearing articular surface and grafted to the osteochondral defect. One year later, the clinical and radiological results were good, without the collapse of the femoral head or arthritic change. This procedure introduced in our case is considered convenient and able to lessen surgical time without morbidity of the donor site associated with the harvest. PMID:27593886

  19. Detection of intraarticular loose osteochondral fragments by double-contrast wrist arthrography. A case report of a basketball injury.

    PubMed

    Tehranzadeh, J; Labosky, D A

    1984-01-01

    Gravity was used in a case of double-contrast wrist arthrography to demonstrate the intraarticular loose nature of osteochondral fracture fragments. These calcified loose bodies were successfully removed surgically.

  20. Osteochondritis dissecans of the humeral capitellum. Diagnosis and treatment.

    PubMed

    Bradley, J P; Petrie, R S

    2001-07-01

    be chosen based on the size of the lesion and the integrity of the subchondral bone. Subchondral drilling and microfracture can only resurface defects and cannot reconstitute subchondral bone. Autologous chondrocyte implantation has limited ability to address subchondral bone loss, whereas autograft and allograft osteochondral transplantation can restore subchondral bone. Most authors would agree that there is no role currently for reduction and fixation of long-standing, free loose bodies. No consensus exists regarding acute dislodging of an in situ loose fragment. Long-term results after radiographic changes are present suggest a degenerative course in about half the patients. Whether the newer techniques of cartilage resurfacing will significantly impact the natural history of this process remains to be seen.

  1. Osteochondral Regeneration: Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration (Adv. Healthcare Mater. 14/2016).

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    A combination of human mesenchymal stem cells with additive manufacturing technology for the fabrication of scaffolds with instructive properties is presented by Lorenzo Moroni and co-workers on page 1753. This new fiber deposition pattern allows the generation of pores of different shapes within the same construct. The most rhomboidal pore geometry sustained enhances alkaline phosphatase activity and osteogenic related genes expression with respect to the other gradient zones when the gradient scaffold is cultured in a medium supporting both osteogenic and chondrogenic differentiation. This may contribute to enhance osteochondral regeneration in orthopedic treatments. PMID:27436107

  2. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, Banu Priya; Mellott, Adam J; Easley, Jeremiah T; Palmer, Ross H; Galbraith, Richard A; Key, Vincent H; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Background: The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. Aim: The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. Materials & methods: The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. Results: The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. Conclusion: This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture. PMID:26418471

  3. Arthroscopic Anatomic Humeral Head Reconstruction With Osteochondral Allograft Transplantation for Large Hill-Sachs Lesions

    PubMed Central

    Snir, Nimrod; Wolfson, Theodore S.; Hamula, Mathew J.; Gyftopoulos, Soterios; Meislin, Robert J.

    2013-01-01

    Anatomic reconstruction of the humeral head with osteochondral allograft has been reported as a solution for large Hill-Sachs lesions with or without glenoid bone loss. However, to date, varying techniques have been used. This technical note describes an arthroscopic reconstruction technique using fresh-frozen, side- and size-matched osteochondral humeral head allograft. Allograft plugs are press fit into the defect without internal fixation and seated flush with the surrounding articular surface. This technique restores the native articular contour of the humeral head without compromising shoulder range of motion. Potential benefits of this all-arthroscopic approach include minimal trauma to the soft tissue and articular surface without the need for hardware or staged reoperation. PMID:24266001

  4. Intra-articular osteoid osteoma at the femoral trochlea treated with osteochondral autograft transplantation

    PubMed Central

    Leeman, Joshua J; Motamedi, Daria; Wildman-Tobriner, Ben; O’Donnell, Richard J; Link, Thomas M

    2016-01-01

    We present the case of an intra-articular osteoid osteoma at the femoral trochlea. Intra-articular osteoid osteoma can present a diagnostic challenge both clinically and with imaging because it presents differently from the classic cortical osteoid osteoma. Given the lesion’s proximity to overlying cartilage, the patient underwent resection of the lesion with osteochondral autograft transplantation at the surgical defect. A comprehensive literature review and discussion of intra-articular osteoma will be provided. PMID:27761182

  5. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.

    PubMed

    Zheng, Li; Jiang, Xianfang; Chen, Xuening; Fan, Hongsong; Zhang, Xingdong

    2014-12-01

    Collagen hydrogel has been widely used for osteochondral repair, but its mechanical properties cannot meet the requirements of clinical application. Previous studies have shown that the addition of either polysaccharide or inorganic particles could reinforce the polymer matrix. However, their synergic effects on collagen-based hydrogel have seldom been studied, and the potential application of triple-phased composite gel in osteochondral regeneration has not been reported. In this study, nano-hydroxyapatite (nano-HA) reinforced collagen-alginate hydrogel (nHCA) was prepared by the in situ synthesis of nano-HA in collagen gel followed by the addition of alginate and Ca(2+). The properties of triple-phased nHCA hydrogel were studied and compared with pure collagen and biphasic gels, and the triple-phased composite of collagen-alginate-HA gels showed a superiority in not only mechanical but also biological features, as evidenced by the enhanced tensile and compressive modulus, higher cell viability, faster cell proliferation and upregulated hyaline cartilage markers. In addition, it was found that the synthesis process could also affect the properties of the triple-phased composite, compared to blend-mixing HCA. The in situ-synthesized nHCA hydrogel showed an enhanced tensile modulus, as well as enhanced biological features compared with HCA. Our study demonstrated that the nHCA composite hydrogel holds promise in osteochondral regeneration. The addition of alginate and nano-HA contribute to the increase in both mechanical and biological properties. This study may provide a valuable reference for the design of an appropriate composite scaffold for osteochondral tissue engineering.

  6. Percutaneous CT-Guided Treatment of Osteochondritis Dissecans of the Sacroiliac Joint

    SciTech Connect

    Becce, Fabio; Mouhsine, Elyazid; Mosimann, Pascal John; Anaye, Anass; Letovanec, Igor; Theumann, Nicolas

    2012-08-15

    Osteochondritis dissecans (OCD) is a joint disorder that affects the articular cartilage and subchondral bone, most commonly at the knee. OCD of the sacroiliac joint is extremely rare. Management of OCD remains controversial, and surgery is often needed, especially when conservative treatment fails. We present a rare case of OCD involving the left sacroiliac joint successfully treated by percutaneous computed tomography-guided retrograde drilling and debridement.

  7. Osteochondral interface generation by rabbit bone marrow stromal cells and osteoblasts coculture.

    PubMed

    Chen, Kelei; Teh, Thomas Kok Hiong; Ravi, Sujata; Toh, Siew Lok; Goh, James Cho Hong

    2012-09-01

    Physiological osteochondral interface regeneration is a significant challenge. This study aims to investigate the effect of the coculture of chondrogenic rabbit bone marrow stromal cells (rBMSCs) with rabbit osteoblasts in a specially designed two-dimensional (2D)-three-dimensional (3D) co-interface culture to develop the intermediate osteochondral region in vitro. The 2D-3D coculture system was set up by first independently culturing chondrogenic rBMSCs on a scaffold and osteoblasts in cell culture plates, and subsequently placed in contact and cocultured. As control, samples not cocultured with osteoblasts were used. The regulatory effects exerted by osteoblasts on chondrogenic rBMSCs were quantified by real-time polymerase chain reaction. To study the effect of coculture on cells located in different parts of the scaffold, samples were separated into two parts and significantly different gene expression patterns were found between them. In comparison with the control group, a significant moderate downregulation of chondrogenic marker genes, such as Collagen II and Aggrecan was observed. However, the Sox-9 and Collagen I expression increased. More importantly, chondrogenic rBMSCs in the coculture system were shown to form the osteochondral interface layer by expressing calcified cartilage zone specific extracellular matrix marker Collagen X and the hypertrophic chondrocyte marker MMP-13, which were not observed in the control group. Specifically, only the chondrogenic rBMSC layer in contact with the osteoblasts expressed Collagen X and MMP-13, indicating the positive influence of the coculture upon interface formation. Biochemical analyses, histology results, and immunohistochemical staining further supported this observation. In conclusion, this study revealed that specific regulatory stimulations from osteoblasts in the 2D-3D interface coculture system could induce the formation of ostochondral interface for the purpose of osteochondral tissue engineering. PMID

  8. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs

    PubMed Central

    Lima, Eric G.; Chao, Pen-hsiu Grace; Ateshian, Gerard A.; Bal, B. Sonny; Cook, James L.; Vunjak-Novakovic, Gordana; Hung, Clark T.

    2008-01-01

    In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been shown to yield engineered cartilaginous tissue with native Young's modulus (EY) and glycosaminoglycan (GAG) content. By day 42 in culture the incorporation of a bony base significantly reduced these properties (EY = 87 ± 12 kPa, GAG = 1.9 ± 0.8%ww) compared to the gel-alone group (EY = 642 ± 97 kPa, GAG = 4.6 ± 1.4%ww). Similarly, the mechanical and biochemical properties of chondrocyte-seeded agarose constructs were inhibited when co-cultured adjacent to bone (unattached), suggesting that soluble factors rather than direct cell–bone interactions mediate the chondro-inhibitory bone effects. Altering the method of bone preparation, including demineralization, or the timing of bone introduction in co-culture did not ameliorate the effects. In contrast, osteochondral constructs with native cartilage properties (EY = 730 ± 65 kPa, GAG = 5.2 ± 0.9%ww) were achieved when a porous tantalum metal base material was adopted instead of bone. This work suggests that devitalized bone may not be a suitable substrate for long-term cultivation of osteochondral grafts. PMID:18718655

  9. A review of terminology for equine juvenile osteochondral conditions (JOCC) based on anatomical and functional considerations.

    PubMed

    Denoix, J-M; Jeffcott, L B; McIlwraith, C W; van Weeren, P R

    2013-07-01

    This manuscript describes a new classification of the various joint-related lesions that can be seen in the young, growing horse based on their anatomical and functional aetiopathogenesis. Juvenile osteochondral conditions (JOCC) is a term that brings together specific disorders according to their location in the joint and their biomechanical origin. When a biomechanical insult affects the process of endochondral ossification different types of osteochondrosis (OC) lesions may occur, including osteochondral fragmentation of the articular surface or of the periarticular margins, or the formation of juvenile subchondral bone cysts. In severe cases, osteochondral collapse of the articular surface or the epiphysis or even an entire small bone may occur. Tension on ligament attachments may cause avulsion fractures of epiphyseal (or metaphyseal) ossifying bone, which are classified as JOCC, but do not result from a disturbance of the process of endochondral ossification and are not therefore classified as a form of OC. The same applies to 'physitis' which can result from damage to the physeal growth plate.

  10. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration. PMID:27109461

  11. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. PMID:25900444

  12. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes.

  13. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair.

    PubMed

    Fermor, Hazel L; Russell, Serena L; Williams, Sophie; Fisher, John; Ingham, Eileen

    2015-05-01

    It is proposed that an acellular natural osteochondral scaffold will provide a successful repair material for the early intervention treatment of cartilage lesions, to prevent or slow the progression of cartilage deterioration to osteoarthritis. Here, we investigated the efficacy of methods for the decellularisation of bovine osteochondral plugs. The plugs were subject to four freeze/thaw cycles followed by two cycles of washes in hypotonic solution and low concentration (0.1% w/v) sodium dodecyl sulphate with protease inhibitors. Plugs were treated with nuclease (DNase and RNase) treatment followed by sterilization in peracetic acid. Full tissue decellularisation was achieved as confirmed by histological analysis and DNA quantification, however the resultant acellular matrix had reduced glycosaminoglycan content which led to an increased percent deformation of cartilage. Furthermore, the acellular scaffold was not reproducibly biocompatible. Additional terminal washes were included in the process to improve biocompatibility, however, this led to visible structural damage to the cartilage. This damage was found to be minimised by reducing the cut edge to cartilage area ratio through decellularisation of larger cuts of osteochondral tissue. PMID:25893393

  14. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  15. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  16. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.

    PubMed

    Berninger, Markus T; Wexel, Gabriele; Rummeny, Ernst J; Imhoff, Andreas B; Anton, Martina; Henning, Tobias D; Vogt, Stephan

    2013-01-01

    The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface (1). Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential (2). In the last decades, several surgical treatment options have emerged and have already been clinically established (3-6). Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface (3,7,8). Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects. New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation (9,10). However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral

  17. Effect of He-Ne laser radiation on healing of osteochondral defect in rabbit: a histological study.

    PubMed

    Bayat, Mohammad; Javadieh, Farshad; Dadpay, Masoomeh

    2009-01-01

    This study examined the influence of low-level laser therapy (LLLT) on the healing of a large osteochondral defect in rabbits.An osteochondral defect with 5 mm diameter was surgically induced in the right femoral patellar groove of 48 adult male rabbits. They were divided into a control and an experimental group. The rabbits were treated at 2, 4, 8, and 16 weeks after surgery, with six rabbits in each study period being tested at each biweekly period. The experimental group received LLLT with a helium-neon (He-Ne) laser (632.8 nm, 10 mW) of 148.4 J/cm(2) three times a week, and the control group received placebo LLLT with equipment switched off. The defects were examined macroscopically and microscopically. The results of the histological examination 2 weeks after surgery showed that the osteochondral healing of the control group was significantly accelerated compared with that of the experimental group. However, the osteochondral healing of the experimental group 4 weeks and 16 weeks after surgery showed that healing accelerated significantly compared with that of the control group. The conclusion was that LLLT with an He-Ne laser could not significantly accelerate healing of a large osteochondral defect in rabbits of the experimental group compared with that of the control group throughout the duration of the present study. PMID:20437320

  18. Rotational osteoplasty and bioabsorbable polylactate pin fixation in Pipkin type 2 fracture with acute osteochondral defect: a case report.

    PubMed

    Maluta, Tommaso; Micheloni, Gian Mario; Sandri, Andrea; Regis, Dario; Costanzo, Alessandro; Magnan, Bruno

    2016-01-01

    Pipkin fractures are relative rare high-energy lesions characterized by an intra-articular fracture of the femoral head after posterior hip dislocation. Early anatomic reduction and stable fixation are the main goals of treatment. This case evaluates the outcome of managing Pipkin type 2 fracture with acute osteochondral defect of the femoral head using "rotational osteoplasty" and bioabsorbable polylactate pin fixation. 24-year-old male patient was involved in a motorcycle accident, suffering from a left hip fracture-dislocation, and pelvic Computed Tomography revealed a Pipkin type 2 lesion. An open urgent treatment was performed. After  anatomic reduction of the femoral head fragment a large osteochondral defect in the anterior-superior weight bearing surface was evident. The pattern of the fracture allowed us to perform a "rotational osteoplasty" including rotation of the femoral head fragment, to obtain an osteochondral cartilage congruence of the anterior-superior surface. Stable fixation was obtained by three bioabsorbable polylactate pins. At four-year follow up the patient had an excellent outcome and Magnetic Resonance Imaging (MRI) showed fracture healing, minimal signs of arthritis, excluding osteonecrosis of the femoral head. The reported case confirms that Pipkin fractures are very insidious surgical urgencies. In selected cases, "rotational osteoplasty" may be an alternative to osteochondral transplant for acute osteochondral defect of the femoral head. Bioabsorbable polylactate pin fixation allowed us to have a stable fixation evaluating the bone healing process and vitality of femoral head by MRI. PMID:27104330

  19. Retrograde Percutaneous Drilling for Osteochondritis Dissecans of the Head of the Talus: Case Report and Review of the Literature.

    PubMed

    Corominas, Laura; Sanpera, Ignacio; Masrouha, Karim; Sanpera-Iglesias, Julia

    2016-01-01

    Osteochondral lesions of the talus might be a more common cause of pain than previously recognized, especially among those involved in athletic activities. However, the location of an osteochondral lesion on the talar head is much less common than such lesions localized to the dome of the talus and can pose diagnostic difficulties. We present the case of a 14-year-old soccer player who complained of longstanding pain in his left foot. After unsuccessful conservative treatment consisting of rest and bracing, he was ultimately treated with retrograde percutaneous drilling of the talar head performed by a medial approach. This was followed by casting and non-weightbearing for 6 weeks, after which physical therapy was undertaken. He was able to return to full activity and remained asymptomatic during a 5-year observation period. Although rare, osteochondritis dissecans of the talar head should be considered in young athletes with persistent foot pain that is unresponsive to reasonable therapy.

  20. Mosaicplasty for the treatment of osteochondritis dissecans following Legg-Calvé-Perthes disease: a case report and literature review.

    PubMed

    Gagala, Jacek; Tarczynska, Marta; Gaweda, Krzysztof

    2015-01-01

    Legg-Calvé-Perthes disease leads to hip joint deformity. Osteochondritis dissecans following Perthes disease (OCDP) is a less common entity. Treatment options of OCDP are limited. Osteochondral autologous transfer (OATS) is an established method of treatment of full thickness cartilage defects in different locations. This paper presents the case of a 42-year-old patient diagnosed with symptomatic OCDP and treated with lesion fixation using autologous osteochondral grafts via surgical hip dislocation. At the most recent follow-up, 5.5 years after the surgery, the patient did not complain of any pain during rest or activity. He had painless motion with persisting abduction and internal rotation reduction. Harris hip score (HHS) improved from preoperative 62 to 92 points at most recent follow-up. Treatment protocol was discussed in relation to the literature regarding this clinical topic. PMID:26511699

  1. Retrograde Percutaneous Drilling for Osteochondritis Dissecans of the Head of the Talus: Case Report and Review of the Literature.

    PubMed

    Corominas, Laura; Sanpera, Ignacio; Masrouha, Karim; Sanpera-Iglesias, Julia

    2016-01-01

    Osteochondral lesions of the talus might be a more common cause of pain than previously recognized, especially among those involved in athletic activities. However, the location of an osteochondral lesion on the talar head is much less common than such lesions localized to the dome of the talus and can pose diagnostic difficulties. We present the case of a 14-year-old soccer player who complained of longstanding pain in his left foot. After unsuccessful conservative treatment consisting of rest and bracing, he was ultimately treated with retrograde percutaneous drilling of the talar head performed by a medial approach. This was followed by casting and non-weightbearing for 6 weeks, after which physical therapy was undertaken. He was able to return to full activity and remained asymptomatic during a 5-year observation period. Although rare, osteochondritis dissecans of the talar head should be considered in young athletes with persistent foot pain that is unresponsive to reasonable therapy. PMID:25459089

  2. Arthroscopic removal of osteochondral fragments from the proximal interphalangeal joint of the pelvic limbs in three horses.

    PubMed

    Schneider, R K; Ragle, C A; Carter, B G; Davis, W E

    1994-07-01

    Osteochondral fragments detected in the proximal interphalangeal joint in the pelvic limbs of 3 horses (2 Standardbreds and 1 Thoroughbred) caused joint enlargement and lameness. Fragments were removed by use of arthroscopy. Accurate placement of the arthroscope into the dorsal joint space was necessary to obtain an adequate view of the fragments. After surgery, 2 of the horses resumed racing without joint problems, and the third was in training to race. High-detail radiographs are necessary to detect osteochondral fragments in horses with joint enlargement or lameness localized to the proximal interphalangeal joint.

  3. Arthroscopic technique for fragment fixation using absorbable pins for osteochondritis dissecans of the humeral capitellum: a report of 4 cases.

    PubMed

    Takeba, Jun; Takahashi, Toshiaki; Hino, Kazunori; Watanabe, Seiji; Imai, Hiroshi; Yamamoto, Haruyasu

    2010-06-01

    This is the first report to describe a method of arthroscopic osteochondral fixation using absorbable pins to treat osteochondritis dissecans (OCD) of the capitellum. Four adolescent baseball players with OCD of the capitellum were treated, and good short-term results were obtained. During this arthroscopic procedure, the elbow was maintained in the maximum flexed position, and posterolateral portals were used to visualize the lesion, perform drilling, and insert the pins. This procedure is less invasive and easier to perform than other fixation procedures that require harvesting or production of autologous bone pegs. This is an effective method of fragment fixation with absorbable pins.

  4. Mechanical effects of surgical procedures on osteochondral grafts elucidated by osmotic loading and real-time ultrasound

    PubMed Central

    2009-01-01

    Introduction Osteochondral grafts have become popular for treating small, isolated and full-thickness cartilage lesions. It is recommended that a slightly oversized, rather than an exact-sized, osteochondral plug is transplanted to achieve a tight fit. Consequently, impacting forces are required to insert the osteochondral plug into the recipient site. However, it remains controversial whether these impacting forces affect the biomechanical condition of the grafted articular cartilage. The present study aimed to investigate the mechanical effects of osteochondral plug implantation using osmotic loading and real-time ultrasound. Methods A full-thickness cylindrical osteochondral defect (diameter, 3.5 mm; depth, 5 mm) was created in the lateral lower quarter of the patella. Using graft-harvesting instruments, an osteochondral plug (diameter, 3.5 mm as exact-size or 4.5 mm as oversize; depth, 5 mm) was harvested from the lateral upper quarter of the patella and transplanted into the defect. Intact patella was used as a control. The samples were monitored by real-time ultrasound during sequential changes of the bathing solution from 0.15 M to 2 M saline (shrinkage phase) and back to 0.15 M saline (swelling phase). For cartilage sample assessment, three indices were selected, namely the change in amplitude from the cartilage surface (amplitude recovery rate: ARR) and the maximum echo shifts from the cartilage surface and the cartilage-bone interface. Results The ARR is closely related to the cartilage surface integrity, while the echo shifts from the cartilage surface and the cartilage-bone interface are closely related to tissue deformation and NaCl diffusion, respectively. The ARR values of the oversized plugs were significantly lower than those of the control and exact-sized plugs. Regarding the maximum echo shifts from the cartilage surface and the cartilage-bone interface, no significant differences were observed among the three groups. Conclusions These findings

  5. Osteochondral lesion of the talus in a recreational athlete: a case report

    PubMed Central

    deGraauw, Chris

    1999-01-01

    A 23-year-old recreational male athlete presented with intermittent pain of three weeks duration, localized to the left ankle. Pain was aggravated by walking, although his symptoms had not affected the patient’s jogging activity which was performed three times per week. Past history revealed an inversion sprain of the left ankle, sustained fifteen months previously. Examination showed mild swelling anterior to the ankle mortise joint while other tests including range of motion, strength and motion palpation of specific joints of the ankle were noted to be unremarkable. Radiographic findings revealed a defect in the medial aspect of the talus. An orthopaedic referral was made for further evaluation. Tomography revealed a Grade III osteochondral lesion of the talus. It was determined that follow-up views be taken in three months to demonstrate if the lesion was progressing or healing. Within the three month period, activity modifications and modalities for pain control were indicated. Surgery was considered a reasonable option should conservative measures fail. The present case illustrates an osteochondral lesion of the talus, a condition which has not previously been reported in the chiropractic literature. A review of the pertinent orthopaedic literature has indicated an average delay of three years in diagnosing the existence of this lesion. Although considered rare, the diagnostic frequency of the condition appears to be on the rise due to increased awareness and the use of bone and CT scans. The osteochondral lesion of the talus deserves particular consideration by practitioners working with athletes due to its higher incidence within this group. This diagnosis should be considered in patients presenting with chronic ankle pain particularly when a history of an inversion sprain exists. The purpose of this report is to increase awareness of this condition, and review diagnosis and management strategies. ImagesFigure 1Figure 2

  6. Osteochondral Tissue Regeneration Through Polymeric Delivery of DNA Encoding for the SOX Trio and RUNX2

    PubMed Central

    Needham, Clark J.; Shah, Sarita R.; Dahlin, Rebecca L.; Kinard, Lucas A.; Lam, Johnny; Watson, Brendan M.; Lu, Steven; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Native osteochondral repair is often inadequate due to the inherent properties of the tissue and current clinical repair strategies can result in healing with a limited lifespan and donor site morbidity. This work investigates the use of polymeric gene therapy to address this problem by delivering DNA encoding for transcription factors complexed with the branched poly(ethylenimine)-hyaluronic acid (bPEI-HA) delivery vector via a porous oligo[poly(ethylene glycol) fumarate] (OPF) hydrogel scaffold. To evaluate the potential of this approach, a bilayered scaffold mimicking native osteochondral tissue organization was loaded with DNA/bPEI-HA complexes. Next, bilayered implants either unloaded or loaded in a spatial fashion with bPEI-HA and DNA encoding for either Runt-related transcription factor 2 (RUNX2) or SRY (sex determining region Y)-box 5, 6, and 9 (the SOX trio), to generate bone and cartilage tissues respectively, were fabricated and implanted in a rat osteochondral defect. At 6 weeks post-implantation, micro-computed tomography (micro-CT) analysis and histological scoring were performed on the explants to evaluate the quality and quantity of tissue repair in each group. The incorporation of DNA encoding for RUNX2 in the bone layer of these scaffolds significantly increased bone growth. Additionally, a spatially loaded combination of RUNX2 and SOX trio DNA loading significantly improved healing relative to empty hydrogels or either factor alone. Finally, the results of this study suggest that subchondral bone formation is necessary for correct cartilage healing. PMID:24854956

  7. Osteochondral lesions of the talus: clinical and functional assessment of conservative vs scope treatment

    PubMed Central

    Ibáñez, Maximiliano; Calvo, Ana Belén; Alvarez, Victoria; Lépore, Salvador

    2015-01-01

    Introduction: Osteochondral injuries involving the ankle joint are unusual (incidence of 0.09% according to Berndt and Harty), third in frequency after knee and elbow location. They are described as a cause of chronic pain after ankle sprains in the active population (thought to occur in 2-6% of sprains). MRI is the gold standard diagnostic method. Therapeutic strategies include both conservative and surgical treatment. The aim of our study was to evaluate the clinical and functional outcome of patients with osteochondral lesions of the talus. Materials and Methods: We retrospectively reviewed 20 patients with osteochondral lesions of the talus treated in our department between January 2007 and December 2012. Sixty per cent were male with an average age of 42 years. Eleven patients were treated conservatively, one of them had clear surgical indication (LOC G III, as classified by Ferkel and Sgaglione) but refused to perform the procedure. Nine patients underwent arthroscopic surgery (debridement and microfracture), one of the procedures was a review of an arthroscopy performed in another service. No open surgery was performed. Clinical and functional evaluation was performed using the AOFAS score, Freiburg and VAS Score System. Results: Non-surgical treatment group had a pretreatment average AOFAS score of 58, which improved to 74.8 points; a Freiburg Score System that ranged from 65 to 79.3 points and a VAS average of 5,4. AOFAS surgical treatment group improved from 54.3 to 84.8 points, Freiburg Score System ranged from 60.6 to 81.4 points and VAS average was of 5,8. Discussion: It is difficult to compare our results with other series of patients, because we made a comparison between conservative versus artrhoscopic treatment, while other authors show results obtained when performing certain surgical technique Although surgical treatment has better results, we agree with the literature that conservative treatment presents acceptable results and should always be

  8. OSTEOCHONDRAL INTERFACE REGENERATION OF THE RABBIT KNEE WITH MACROSCOPIC GRADIENTS OF BIOACTIVE SIGNALS

    PubMed Central

    Dormer, Nathan H.; Singh, Milind; Zhao, Liang; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2011-01-01

    To date, most interfacial tissue engineering approaches have utilized stratified designs, in which there are two or more discrete layers comprising the interface. Continuously-graded interfacial designs, where there is no discrete transition from one tissue type to another, are gaining attention as an alternative to stratified designs. Given that osteochondral regeneration holds the potential to enhance cartilage regeneration by leveraging the healing capacity of the underlying bone, we endeavored to introduce a continuously graded approach to osteochondral regeneration. The purpose of this study was thus to evaluate the performance of a novel gradient-based scaffolding approach to regenerate osteochondral defects in the New Zealand White rabbit femoral condyle. Bioactive plugs were constructed from poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres with a continuous gradient transition between cartilage-promoting and bone-promoting growth factors. At six and 12 weeks of healing, results suggested that the implants provided support for the neo-synthesized tissue, and the gradient in bioactive signaling may have been beneficial for bone and cartilage regeneration compared to the blank control implant, as evidenced by histology. In addition, the effects of pre-seeding gradient scaffolds with umbilical cord mesenchymal stromal cells (UCMSCs) from the Wharton’s jelly of New Zealand White rabbits were evaluated. Results indicated that there may be regenerative benefits to pre-localizing UCMSCs within scaffold interiors. The inclusion of bioactive factors in a gradient-based scaffolding design is a promising new treatment strategy for defect repair in the femoral condyle. PMID:22009693

  9. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.

    PubMed

    Giannoni, Paolo; Lazzarini, Erica; Ceseracciu, Luca; Barone, Alberto C; Quarto, Rodolfo; Scaglione, Silvia

    2015-10-01

    Treatment of full-thickness cartilage defects relies on osteochondral bilayer grafts, which mimic the microenvironment and structure of the two affected tissues: articular cartilage and subchondral bone. However, the integrity and stability of the grafts are hampered by the presence of a weak interphase, generated by the layering processes of scaffold manufacturing. We describe here the design and development of a bilayer monolithic osteochondral graft, avoiding delamination of the two distinct layers but preserving the cues for selective generation of cartilage and bone. A highly porous polycaprolactone-based graft was obtained by combining solvent casting/particulate leaching techniques. Pore structure and interconnections were designed to favour in vivo vascularization only at the bony layer. Hydroxyapatite granules were added as bioactive signals at the site of bone regeneration. Unconfined compressive tests displayed optimal elastic properties and low residual deformation of the graft after unloading (< 3%). The structural integrity of the graft was successfully validated by tension fracture tests, revealing high resistance to delamination, since fractures were never displayed at the interface of the layers (n = 8). Ectopic implantation of grafts in nude mice, after seeding with bovine trabecular bone-derived mesenchymal stem cells and bovine articular chondrocytes, resulted in thick areas of mature bone surrounding ceramic granules within the bony layer, and a cartilaginous alcianophilic matrix in the chondral layer. Vascularization was mostly observed in the bony layer, with a statistically significant higher blood vessel density and mean area. Thus, the easily generated osteochondral scaffolds, since they are mechanically and biologically functional, are suitable for tissue-engineering applications for cartilage repair.

  10. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    SciTech Connect

    Seebauer, Christian J.; Bail, Hermann J.; Rump, Jens C. Walter, Thula Teichgraeber, Ulf K. M.

    2010-12-15

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesions of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.

  11. Positive effect of oral supplementation with glycosaminoglycans and antioxidants on the regeneration of osteochondral defects in the knee joint.

    PubMed

    Handl, M; Amler, E; Bräun, K; Holzheu, J; Trc, T; Imhoff, A B; Lytvynets, A; Filová, E; Kolárová, H; Kotyk, A; Martínek, V

    2007-01-01

    The effect of oral supplementation with glycosaminoglycans (GAG) and radical scavengers (vitamin E/selenium) on the regeneration of osteochondral defects was investigated in rabbits. After introduction of defined osteochondral defects in the knee joint, groups of ten animals were given a GAG/vitamin E/selenium mixture or a placebo (milk sugar) for 6 weeks. Following sacrifice, histological and histochemical analysis was performed. The amount of synovial fluid was increased in the placebo group, while the viscosity of the synovial fluid was significantly enhanced in the GAG group. The amount of sulfated GAG in the osteochondral regenerates (8.8 +/- 3.6 % vs. 6.0 +/- 5.6 %; p <0.03) was significantly higher in the GAG group. In both groups, the GAG amount in the cartilage of the operated knee was significantly higher than in the non-involved knee (p <0.05). Histological analysis of the regenerates in the GAG group was superior in comparison with the placebo group. For the first time, a biological effect following oral supplementation with GAG was demonstrated in healing of osteochondral defects in vivo. These findings support the known positive clinical results.

  12. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; Jin, Zhongmin

    2015-01-01

    Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed. The chondral phase was a PEG hydrogel. The osseous phase was a β-TCP ceramic scaffold. The PEG hydrogel was directly cured on the ceramic interface layer by layer to fabricate osteochondral scaffolds by 3D printing technology. Meanwhile, a series of interface structure were designed with different interface pore area percentages (0/10/20/30/40/50/60%), and interfacial shear test was applied for interface structure optimization (n=6 samples/group). The interfacial shear strength of 30% pore area group was nearly three folds improved compared with that of 0% pore area percentage group, and more than fifty folds improved compared with that of traditional integration (5.91±0.59 kPa). In conclusion, the biomimetic PEG/β-TCP scaffolds with interface structure enhanced integration show promising potential application for osteochondral tissue engineering.

  13. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; Jin, Zhongmin

    2015-01-01

    Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed. The chondral phase was a PEG hydrogel. The osseous phase was a β-TCP ceramic scaffold. The PEG hydrogel was directly cured on the ceramic interface layer by layer to fabricate osteochondral scaffolds by 3D printing technology. Meanwhile, a series of interface structure were designed with different interface pore area percentages (0/10/20/30/40/50/60%), and interfacial shear test was applied for interface structure optimization (n=6 samples/group). The interfacial shear strength of 30% pore area group was nearly three folds improved compared with that of 0% pore area percentage group, and more than fifty folds improved compared with that of traditional integration (5.91±0.59 kPa). In conclusion, the biomimetic PEG/β-TCP scaffolds with interface structure enhanced integration show promising potential application for osteochondral tissue engineering. PMID:25491954

  14. Effect of tissue culture storage on the in vivo survival of canine osteochondral allografts.

    PubMed

    Oates, K M; Chen, A C; Young, E P; Kwan, M K; Amiel, D; Convery, F R

    1995-07-01

    In vitro studies in our laboratory have shown that the biomechanical and biochemical characteristics of osteochondral grafts can be preserved for as long as 28 days under tissue culture conditions. This study represents an attempt to extend these results to an in vivo model. In adult mongrel dogs, either an autograft, a fresh allograft, or a stored allograft was placed in a standardized defect on the weight-bearing surface of the medial femoral condyle. The stored grafts were kept at 4 degrees C in tissue culture medium for 14 days prior to implantation. The animals were killed at 12 weeks. Cartilage from the contralateral knee served as a control. The modulus and permeability of the cartilage were assessed with confined compression creep tests. The collagen and glycosaminoglycan contents were measured, and the cartilage was analyzed histologically with hematoxylin and eosin and safranin O stains. Grossly, the cartilage appeared viable at harvest. The histologic results were similar in the treatment groups, with the same spectrum of mild degenerative changes being noted in each group. The glycosaminoglycan content was significantly less in the autograft group than in its control group and than in the fresh allograft group. The glycosaminoglycan content did not differ significantly between fresh and stored allografts. The collagen content, modulus, and permeability did not differ either between experimental and control groups or between graft types. Our results support the conclusion that osteochondral allografts can be stored for as many as 14 days without significantly affecting the results of the procedure.

  15. A Hydrogel-Mineral Composite Scaffold for Osteochondral Interface Tissue Engineering

    PubMed Central

    Khanarian, Nora T.; Jiang, Jie; Wan, Leo Q.; Mow, Van C.

    2012-01-01

    Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (HA) and alginate hydrogel for the regeneration of the osteochondral interface. Specifically, the effects of HA on the response of chondrocytes were determined, focusing on changes in matrix production and mineralization, as well as scaffold mechanical properties over time. Additionally, the optimal chondrocyte population for interface tissue engineering was evaluated. It was observed that the HA phase of the composite scaffold promoted the formation of a proteoglycan- and type II collagen–rich matrix when seeded with deep zone chondrocytes. More importantly, the elevated biosynthesis translated into significant increases in both compressive and shear moduli relative to the mineral-free control. Presence of HA also promoted chondrocyte hypertrophy and type X collagen deposition. These results demonstrate that the hydrogel–calcium phosphate composite supported the formation of a calcified cartilage-like matrix and is a promising scaffold design for osteochondral interface tissue engineering. PMID:21919797

  16. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering

    PubMed Central

    Dong, Jian; Ding, Jiandong

    2015-01-01

    Poly(lactide-co-glycolide)-bilayered scaffolds with the same porosity or different ones on the two layers were fabricated, and the porosity effect on in vivo repairing of the osteochondral defect was examined in a comparative way for the first time. The constructs of scaffolds and bone marrow-derived mesenchymal stem cells were implanted into pre-created osteochondral defects in the femoral condyle of New Zealand white rabbits. After 12 weeks, all experimental groups exhibited good cartilage repairing according to macroscopic appearance, cross-section view, haematoxylin and eosin staining, toluidine blue staining, immunohistochemical staining and real-time polymerase chain reaction of characteristic genes. The group of 92% porosity in the cartilage layer and 77% porosity in the bone layer resulted in the best efficacy, which was understood by more biomechanical mimicking of the natural cartilage and subchondral bone. This study illustrates unambiguously that cartilage tissue engineering allows for a wide range of scaffold porosity, yet some porosity group is optimal. It is also revealed that the biomechanical matching with the natural composite tissue should be taken into consideration in the design of practical biomaterials, which is especially important for porosities of a multi-compartment scaffold concerning connected tissues. PMID:26813511

  17. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    PubMed Central

    Cortizo, Ana M.; Ruderman, Graciela; Mazzini, Flavia N.; Molinuevo, M. Silvina; Mogilner, Ines G.

    2016-01-01

    Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation). In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering. PMID:27293438

  18. Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue.

    PubMed

    Schütz, Kathleen; Despang, Florian; Lode, Anja; Gelinsky, Michael

    2016-05-01

    Sufficient treatment of chondral and osteochondral defects to restore function of the respective tissue remains challenging in regenerative medicine. Biphasic scaffolds that mimic properties of bone and cartilage are appropriate to regenerate both tissues at the same time. The present study describes the development of biphasic, but monolithic scaffolds based on alginate, which are suitable for embedding of living cells in the chondral part. Scaffolds are fabricated under sterile and cell-compatible conditions according to the principle of diffusion-controlled, directed ionotropic gelation, which leads to the formation of channel-like, parallel aligned pores, running through the whole length of the biphasic constructs. The synthesis process leads to an anisotropic structure, as it is found in many natural tissues. The two different layers of the scaffolds are characterized by different microstructure and mechanical properties which provide a suitable environment for cells to form the respective tissue. Human chondrocytes and human mesenchymal stem cells were embedded within the chondral layer of the biphasic scaffolds during hydrogel formation and their chondrogenic (re)differentiation was successfully induced. Whereas viability of non-induced human mesenchymal stem cells decreased during culture, cell viability of human chondrocytes and chondrogenically induced human mesenchymal stem cells remained high within the scaffolds over the whole culture period of 3 weeks, demonstrating successful fabrication of cell-laden centimetre-scaled constructs for potential application in regenerative treatment of osteochondral defects. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Evidence of a major gene from Bayesian segregation analyses of liability to osteochondral diseases in pigs.

    PubMed

    Kadarmideen, Haja N; Janss, Luc L G

    2005-11-01

    Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384-37.81), compared to the polygenic variance (sigmau2). Consequently, heritabilities for a mixed inheritance (range 0.65-0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38-0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on sigmau2, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a "reduced polygenic model" for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an "individual polygenic model." In all cases, "shrinkage estimators" for fixed effects avoided unidentifiability for these parameters. The mixed-inheritance linear model (MILM) was also applied to all OC lesions and compared with the MITM. This is the first study to report evidence of major genes for osteochondral lesions in pigs; these results may also form a basis for underpinning the genetic inheritance of this disease in other animals as well as in humans. PMID:16020792

  20. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction

    PubMed Central

    Villalvilla, Amanda; García-Martín, Adela; Largo, Raquel; Gualillo, Oreste; Herrero-Beaumont, Gabriel; Gómez, Rodolfo

    2016-01-01

    Obesity and osteoarthritis (OA) form a vicious circle in which obesity contributes to cartilage destruction in OA, and OA-associated sedentary behaviour promotes weight gain. Lipocalin-2 (LCN2), a novel adipokine with catabolic activities in OA joints, contributes to the obesity and OA pathologies and is associated with other OA risk factors. LCN2 is highly induced in osteoblasts in the absence of mechanical loading, but its role in osteoblast metabolism is unclear. Therefore, because osteochondral junctions play a major role in OA development, we investigated the expression and role of LCN2 in osteoblasts and chondrocytes in the OA osteochondral junction environment. Our results showed that LCN2 expression in human osteoblasts and chondrocytes decreased throughout osteoblast differentiation and was induced by catabolic and inflammatory factors; however, TGF-β1 and IGF-1 reversed this induction. LCN2 reduced osteoblast viability in the presence of iron and enhanced the activity of MMP-9 released by osteoblasts. Moreover, pre-stimulated human osteoblasts induced LCN2 expression in human chondrocytes, but the inverse was not observed. Thus, LCN2 is an important catabolic adipokine in osteoblast and chondrocyte metabolism that is regulated by differentiation, inflammation and catabolic and anabolic stimuli, and LCN2 expression in chondrocytes is regulated in a paracrine manner after osteoblast stimulation. PMID:27385438

  1. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface.

    PubMed

    Mohan, Neethu; Dormer, Nathan H; Caldwell, Kenneth L; Key, Vincent H; Berkland, Cory J; Detamore, Michael S

    2011-11-01

    Most contemporary biomaterial designs for osteochondral regeneration utilize monolithic, biphasic, or even multiphasic constructs. We have introduced a microsphere-based approach to create a continuous gradient in both material composition and encapsulated growth factors. The gradients were fabricated by filling a cylindrical mold with opposing gradients of two different types of poly(D,L-lactic-co-glycolic acid) microspheres. The chondrogenic microspheres were loaded with transforming growth factor-β1, whereas the osteogenic microspheres contained bone morphogenetic protein-2 with or without nanophase hydroxyapatite. The gradient scaffolds (material gradient only, signal gradient only, or material/signal gradient combination) or blank control scaffolds were implanted in 3.5 mm-diameter defects in rabbit knees for 6 or 12 weeks. This is the first in vivo evaluation of these novel gradient scaffolds in the knee. The gross morphology, MRI, and histology indicated that the greatest extent of regeneration was achieved when both signal and material gradients were included together. This combination resulted in complete bone ingrowth, with an overlying cartilage layer with high glycosaminoglycan content, appropriate thickness, and integration with the surrounding cartilage and underlying bone. The results suggest that osteochondral regeneration may benefit from biomaterials that integrate a continuous gradient in both material composition and encapsulated growth factors.

  2. Systematic Review and Meta-analysis of Osteochondral Autograft Transplantation versus Debridement in the Treatment of Osteochondritis Dessicans of the Capitellum

    PubMed Central

    Bowman, Seth; Braunstein, Jacob; Rabinowitz, Justin; Barfield, William R.; Chhabra, Bobby; Haro, Marc Scott

    2016-01-01

    Objectives: The purpose of this systematic review and meta- analysis is to compare clinical results and functional outcomes in patients with osteochondritis dessicans (OCD) lesions of the capitellum treated with either osteochondral autograft transplantation (OATS) or debridement with or without microfracture. Methods: Systematic review of multiple medical databases was performed after PROSPERO registration and using PRISMA guidelines. A literature search was performed using the multiple medical databases and the methodological quality of the individual studies was assessed by two review authors using the Cochrane Collaboration’s “Risk of Bias” tool. Case reports were excluded and only case series of more than five patients and higher level of evidence were included. All study, subject, and surgery parameters were collected. Data was analyzed using statistical software. Odds ratios (OR) were calculated when possible. Data were compared using Pearson Chi-Square and independent sample T tests when applicable. Results: Fifteen studies were included involving 368 patients (326 males and 42 females). There were a total of 197 patients in the debridement group and 171 patients in the OATS group. The mean age was 16.9 +/-4.1 for the debridement group and 14.6 +/-1.2 for the OATS group. Mean follow up was 29.0 +/-24.3 and 38.0 +/-12.8 for the debridement and OATS groups, respectively. Patients that underwent an OATS procedure had a statistically significant improvement in overall arc range of motion compared to patients that had a debridement (P≤0.001). When compared to patients with debridement, patients with OATS were 5.6 times more likely to return to at least their pre-injury level of sports participation (p≤0.002). Conclusion: Post-operative range of motion was significantly improved in patients undergoing an OATS procedure versus a debridement for OCD lesions of the capitellum. Patients with an OATS were 5.7 times more likely to return to at least the pre

  3. Reconstruction of complex osteochondral lesions of the talus with cylindrical sponge allograft and particulate juvenile cartilage graft: provisional results with a short-term follow-up.

    PubMed

    Bleazey, Scott; Brigido, Stephen A

    2012-10-01

    Osteochondral lesions of the talus can be a challenging injury to treat for even the most experienced foot and ankle surgeon. Although the advances in imaging have made the diagnosis of chondral lesions more accurate, surgeons are still struggling to find ways to reliably treat advanced lesions with subchondral bone damage. This article looks at the use of allograft bone and particulate juvenile cartilage in patients with advanced subchondral bone damage and osteochondral lesions of the talus.

  4. Feasibility of ultrasound imaging of osteochondral defects in the ankle: a clinical pilot study.

    PubMed

    Kok, A C; Terra, M P; Muller, S; Askeland, C; van Dijk, C N; Kerkhoffs, G M M J; Tuijthof, G J M

    2014-10-01

    Talar osteochondral defects (OCDs) are imaged using magnetic resonance imaging (MRI) or computed tomography (CT). For extensive follow-up, ultrasound might be a fast, non-invasive alternative that images both bone and cartilage. In this study the potential of ultrasound, as compared with CT, in the imaging and grading of OCDs is explored. On the basis of prior CT scans, nine ankles of patients without OCDs and nine ankles of patients with anterocentral OCDs were selected and classified using the Loomer CT classification. A blinded expert skeletal radiologist imaged all ankles with ultrasound and recorded the presence of OCDs. Similarly to CT, ultrasound revealed typical morphologic OCD features, for example, cortex irregularities and loose fragments. Cartilage disruptions, Loomer grades IV (displaced fragment) and V (cyst with fibrous roof), were visible as well. This study encourages further research on the use of ultrasound as a follow-up imaging modality for OCDs located anteriorly or centrally on the talar dome.

  5. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    PubMed

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation.

  6. Osteochondritis dissecans and Osgood Schlatter disease in a family with Stickler syndrome

    PubMed Central

    Al Kaissi, Ali; Klaushofer, Klaus; Grill, Franz

    2009-01-01

    Purpose Stickler syndrome is among the most common autosomal dominant connective tissue disorders but is often unrecognised and therefore not diagnosed by clinicians. Despite much speculation, the cause of osteochondrosis in general and osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) in particular remain unclear. Etiological understanding is essential. We describe a pair of family subjects presented with OCD and OSS as a symptom complex rather than a diagnosis. Methods Detailed clinical and radiographic examinations were undertaken with emphasis on the role of MRI imaging. Magnetic resonance imaging may allow early prediction of articular lesion healing potential in patients with Stickler syndrome. Results The phenotype of Stickler syndrome can be diverse and therefore misleading. The expectation that the full clinical criteria of any given genetic disorder such as Stickler syndrome will always be present can easily lead to an underestimation of these serious inheritable disorders. We report here two family subjects, a male proband and his aunt (paternal sister), both presented with the major features of Stickler syndrome. Tall stature with marfanoid habitus, astigmatism/congenital vitreous abnormality and submucus cleft palate/cleft uvula, and enlarged painful joints with early onset osteoarthritis. Osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) were the predominating joint abnormalities. Conclusion We observed that the nature of the articular and physeal abnormalities was consistent with a localised manifestation of a more generalised epiphyseal dysplasia affecting the weight-bearing joints. In these two patients, OCD and OSS appeared to be the predominant pathologic musculoskeletal consequences of an underlying Stickler's syndrome. It is empirical to consider generalised epiphyseal dysplasia as a major underlying causation that might drastically affect the weight-bearing joints. PMID:19193224

  7. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold

    PubMed Central

    Lv, Y. M.; Yu, Q. S.

    2015-01-01

    Objectives The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64 PMID:25837672

  8. Clinical outcome of internal fixation of unstable juvenile osteochondritis dissecans lesions of the knee.

    PubMed

    Webb, Jonathan E; Lewallen, Laura W; Christophersen, Christy; Krych, Aaron J; McIntosh, Amy L

    2013-11-01

    Juvenile osteochondritis dissecans (OCD) lesions of the knee are a common cause of knee pain in skeletally immature patients.The authors sought to determine lesion healing rates, the risk factors associated with failure to heal, and the clinical outcomes for patients who underwent internal fixation for unstable OCD lesions. A retrospective review was conducted of all patients who underwent internal fixation of OCD lesions from 1999 to 2009. Using validated scoring systems, clinical outcome and functional activity were evaluated at the follow-up. The study group comprised 19 patients (20 knees). Mean patient age was 14.5 years (range, 12-17 years). Mean clinical follow-up was 7 years (range, 2-13 years). Mean radiographic follow-up was 2.5 years (range, 0.5-9 years). Fourteen (70%) lesions were grade 3 and 6 (30%) were grade 4. Eleven knees had lateral condyle lesions and 9 had medial lesions. Bioabsorbable fixation was used in 13 knees, metal fixation was used in 5 knees, and 2 knees were fixed with a combination of methods. Osseous integration was evident in 15 (75%) of 20 knees at final follow-up. The 5 unhealed lesions were lateral condylar lesions. Mean Tegner activity scores improved from 3.3 preoperatively to 5.6 at final follow-up. Mean Lysholm and International Knee Documentation Committee scores were 86.8 and 88.7, respectively, at final follow-up. Further operative intervention was required in 11 knees, with 50% of patients undergoing removal of hardware and 15% requiring subsequent osteochondral allograft transplantation. The authors recommend bioabsorbable fixation for symptomatic stable lesions and metal compression screws with staged removal for unstable lesions.

  9. Return to Sport After Operative Management of Osteochondritis Dissecans of the Capitellum

    PubMed Central

    Westermann, Robert W.; Hancock, Kyle J.; Buckwalter, Joseph A.; Kopp, Benjamin; Glass, Natalie; Wolf, Brian R.

    2016-01-01

    Background: Capitellar osteochondritis dissecans (OCD) is commonly managed surgically in symptomatic adolesent throwers and gymnasts. Little is known about the impact that surgical technique has on return to sport. Purpose: To evaluate the clinical outcomes and return-to-sport rates after operative management of OCD lesions in adolescent athletes. Study Design: Systematic review; Level of evidence, 4. Methods: The PubMed, CINAHL, EMBASE, SPORTDiscus (EBSCO), and Cochrane Central Register of Controlled Trials databases were queried for studies evaluating outcomes and return to sport after surgical management of OCD of the capitellum. Two independent reviewers conducted a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies reporting patient outcomes with return-to-sport data and minimum 6-month follow-up were included in the review. Results: After review, 24 studies reporting outcomes in 492 patients (mean age ± SD, 14.3 ± 0.9 years) were analyzed. The overall return-to-sport rate was 86% at a mean 5.6 months. Return to the highest preoperative level of sport was most common after osteochondral autograft procedures (94%) compared with debridement and marrow stimulation procedures (71%) or OCD fixation surgery (64%). Elbow range of motion improved by 15.9° after surgery. The Timmerman-Andrews subjective and objective scores significantly improved after surgery. Complications were low (<5%), with 2 cases of donor site morbidity after osteoarticular autograft transfer (OAT) autograft harvest. The most common indications for reoperation were repeat debridement/loose body removal. Conclusion: A high rate of return to sport was observed after operative management of capitellar OCD. Patients were more likely to return to their highest level of preoperative sport after OAT autograft compared with debridement or fixation. Significant improvements in elbow range of motion and patient outcomes are

  10. Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD).

    PubMed

    Desjardin, Clémence; Chat, Sophie; Gilles, Mailys; Legendre, Rachel; Riviere, Julie; Mata, Xavier; Balliau, Thierry; Esquerré, Diane; Cribiu, Edmond P; Betch, Jean-Marc; Schibler, Laurent

    2014-06-01

    Osteochondrosis (OC) is a developmental bone disorder affecting several mammalian species including the horse. Equine OC is described as a focal disruption of endochondral ossification, leading to osteochondral lesions (osteochondritis dissecans, OCD) that may release free bodies within the joint. OCD lesions trigger joint swelling, stiffness and lameness and affects about 30% of the equine population. OCD is considered as multifactorial but its physiopathology is still poorly understood and genes involved in genetic predisposition are still unknown. Our study compared two healthy and two OC-affected 18-month-old French Trotters diagnosed with OCD lesions at the intermediate ridge of the distal tibia. A comparative shot-gun proteomic analysis of non-wounded cartilage and sub-chondral bone from healthy (healthy samples) and OC-affected foals (predisposed samples) identified 83 and 53 modulated proteins, respectively. These proteins are involved in various biological pathways including matrix structure and maintenance, protein biosynthesis, folding and transport, mitochondrial activity, energy and calcium metabolism. Transmission electron microscopy revealed typical features of mitochondrial swelling and ER-stress, such as large, empty mitochondria, and hyper-dilated rough endoplasmic reticulum, in the deep zone of both OC lesions and predisposed cartilage. Abnormal fibril organization surrounding chondrocytes and abnormal features at the ossification front were also observed. Combining these findings with quantitative trait loci and whole genome sequencing results identified about 140 functional candidate genes carrying putative damaging mutations in 30 QTL regions. In summary, our study suggests that OCD lesions may result from defective hypertrophic terminal differentiation associated with mitochondrial dysfunction and ER-stress, leading to impaired cartilage and bone biomechanical properties, making them prone to fractures. In addition, 11 modulated proteins and

  11. Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats

    PubMed Central

    Alemdar, Celil; Yücel, İstemi; Erbil, Barış; Erdem, Havva; Atiç, Ramazan; Özkul, Emin

    2016-01-01

    Background: The common purpose of almost all methods used to treat the osteochondral injuries is to produce a normal cartilage matrix. However current methods are not sufficient to provide a normal cartilage matrix. For that reason, researchers have studied to increase the effectiveness of this methods using chondrogenic and chondroprotective molecules in recent experimental studies. Insulin-like growth factor-1 (IGF-1) and hyaluronic acid (HA) are two important agents used in this field. This study compared the effects of IGF-1 and HA in an experimental osteochondral defect in rat femora. Materials and Methods: The rats were divided into three groups (n = 15 per group) as follows: The IGF-1 group, HA group, and control group. An osteochondral defect of a diameter of 1.5 mm and a depth of 2 mm was created on the patellar joint side of femoral condyles. The IGF-1 group received an absorbable gelatin sponge soaked with 15 μg/15 μl of IGF-1, and the HA group received an absorbable gelatin sponge soaked with 80 μg HA. The control group received only an absorbable gelatin sponge. Rats were sacrificed at the 6th week, and the femur condyles were evaluated histologically. Results: According to the total Mankin scale, there was a statistically significant difference between IGF-1 and HA groups and between IGF-1 and control groups. There was also a significant statistical difference between HA and control groups. Conclusion: It was shown histopathologically that IGF-1 is an effective molecule for osteochondral lesions. Although it is weaker than IGF-1, HA also strengthened the repair tissue. PMID:27512224

  12. Arthroscopic Treatment of Chondral and Osteochondral Defects in the Ankle Using the Autologous Matrix-Induced Chondrogenesis Technique

    PubMed Central

    Piontek, Tomasz; Bąkowski, Paweł; Ciemniewska-Gorzela, Kinga; Naczk, Jakub

    2015-01-01

    One of the greatest challenges nowadays facing orthopaedic surgeons around the world is the problem of articular cartilage defects and their treatment. The autologous matrix-induced chondrogenesis technique is based on 2 elements—drilling into bones and matrix application. The purpose of this article is to present the surgical technique of arthroscopic treatment of chondral or osteochondral defects in the ankle using the autologous matrix-induced chondrogenesis technique. PMID:26697305

  13. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model

    PubMed Central

    Hopper, Niina; Wardale, John; Brooks, Roger; Power, Jonathan; Rushton, Neil; Henson, Frances

    2015-01-01

    This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC’s were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key

  14. Evidence of a Major Gene From Bayesian Segregation Analyses of Liability to Osteochondral Diseases in Pigs

    PubMed Central

    Kadarmideen, Haja N.; Janss, Luc L. G.

    2005-01-01

    Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384–37.81), compared to the polygenic variance (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{{\\sigma}}}_{{\\mathrm{u}}}^{2}\\end{equation*}\\end{document}). Consequently, heritabilities for a mixed inheritance (range 0.65–0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38–0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{{\\sigma}}}_{{\\mathrm{u}}}^{2}\\end{equation*}\\end{document}, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a “reduced polygenic model” for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an “individual polygenic model.” In all cases, “shrinkage estimators” for fixed effects avoided unidentifiability for these parameters. The mixed

  15. The Incidence of Surgery in Osteochondritis Dissecans in Children and Adolescents

    PubMed Central

    Weiss, Jennifer M.; Nikizad, Hooman; Shea, Kevin G.; Gyurdzhyan, Samvel; Jacobs, John C.; Cannamela, Peter C.; Kessler, Jeffrey I.

    2016-01-01

    Background: The frequency of osteochondritis dissecans (OCD), a disorder of the subchondral bone and articular cartilage, is not well described. Purpose: To assess the frequency of pediatric OCD lesions that progress to surgery based on sex, joint involvement, and age. Study Design: Descriptive epidemiology study. Methods: A retrospective chart review (2007-2011) was performed on OCD. Inclusion criteria included OCD of any joint and patients aged 2 to 19 years. Exclusion criteria included traumatic osteochondral fractures or coexistence of non-OCD intra-articular lesions. Differences in progression toward surgery were compared between age groups, sex, and joint location. Logistical regression analysis was performed by sex, age, and ethnicity. Results: Overall, 317 patients with a total of 334 OCD lesions were found. The majority of lesions (61.7%) were in the knee, with ankle, elbow, shoulder, and foot lesions representing 25.4%, 12.0%, 0.6%, and 0.3% of all lesions, respectively. The majority of joints needing surgery were in the knee (58.5%), with ankle and elbow lesions representing 22.9% and 18.6% of surgeries performed, respectively. The percentage of all OCD lesions progressing to surgery was 35.3%; surgical progression for knee, ankle, and elbow joints was 33.5%, 31.8%, and 55.0%, respectively. Logistic regression analysis found no statistically significant different risk of progressing to surgery for OCD of the knee, elbow, and ankle between sexes. Patients aged 12 to 19 years had a 7.4-times greater risk of progression to surgery for knee OCD lesions than 6- to 11-year-olds. Patients aged 12 to 19 years were 8.2 times more likely to progress to surgery for all OCD lesions than patients aged 6 to 11 years. Progression to surgery of ankle OCD did not significantly differ based on location. Three of 4 trochlear lesions progressed to surgery, along with 1 of 1 tibial, 1 of 3 patellar, 40.3% of lateral femoral condylar, and 28.2% of medial femoral condylar

  16. Lunate Osteochondral Fracture Treated by Excision: A Case Report and Literature Review

    PubMed Central

    Saberi, Sadegh; Arabzadeh, Aidin; Farhoud, Amir Reza

    2016-01-01

    Introduction Lunate fracture is a rare injury. Most reports are associated with other wrist injuries such as perilunate dislocation and distal radius fracture. Isolated lunate fracture has been reported even more rarely. The choice of treatment and outcomes are consequently undetermined. Case Presentation In this case report we will describe a lunate avulsion fracture as an isolated injury after a fall from nine meters treated operatively by excision of the comminuted avulsed fragment. After 33 months of follow-up radiographs showed no sign of degenerative joint disorder on simple X-ray, but slight Volar Intercalated Segment Instability (VISI) by a capitolunate angle of 26 degrees was noted. Clinically, the patient was pain free near full wrist and forearm range of motion and could perform his previous vocational and recreational tasks without any limitations. Conclusions Despite apparently good short and mid-term clinical outcome, slight volar intercalated segment instability after 33 months of follow-up revealed that lunotriquetral ligament function was probably lost, which led to static instability. This ligament injury may be missed primarily. Excision of the avulsed osteochondral fragment should be the last option of treatment and most attempts should be tried to fix and/or restore the normal anatomy of ligamentous structure. PMID:27626007

  17. Evaluation of biomarkers following autologous osteochondral transplantation in the equine stifle joint - An experimental study.

    PubMed

    Tuska, Pál; Tóth, Balázs; Vásárhelyi, Gábor; Hangody, László; Papp, Miklós; Bodó, Gábor

    2016-06-01

    The purpose of this study was to evaluate changes in biomarker and synovial parameters following autologous osteochondral transplantation (AOT) in the equine stifle joint, to test the hypothesis whether synovial parameters would show significant differences at selected time points following the surgery (at days 3, 14, 60 and 180) compared to baseline level (at day 0). Surgical intervention was performed in both stifles of nine horses (n = 18). The joints were randomly assigned to operated and sham-operated groups. Grafts 8.5 mm in diameter were harvested from the femoropatellar (FP) joint under arthroscopic control and the medial femorotibial (MFT) joints had AOT using mosaicplasty (MP) instrumentation, while the sham FP and sham MFT joints underwent arthroscopy and miniarthrotomy without transplantation, respectively. Synovial fluid (SF) parameters were evaluated at days 4, 14, 60 and 180. Data were analysed by two-way repeated- measures analysis of variance (ANOVA), and P < 0.05 was considered significant. During the first 10-14 days after surgery, lameness of degree 2-3/5 [American Association of Equine Practitioners (AAEP) scores] was present, which disappeared after 60 days. Joints with transplantation showed significant increases in synovial white blood cell count (WBC), total protein (TP), substance P, C1,2C and CS846 epitope concentration at day 3 compared to baseline and shamoperated joints (P < 0.05). These parameters returned to the baseline values by two months after surgery and remained within normal levels at 6 months postoperatively. PMID:27342088

  18. Effects of management practices as risk factors for juvenile osteochondral conditions in 259 French yearlings.

    PubMed

    Praud, Anne; Dufour, Barbara; Robert, Céline; Valette, Jean-Paul; Denoix, Jean-Marie; Crevier-Denoix, Nathalie

    2013-07-01

    Several studies have demonstrated a statistical association between management practices and juvenile osteochondral conditions (JOCC) in foals from birth to 6months of age, but this association has not been investigated in yearlings. The purpose of the current study was to determine the adjusted effects of management practices on the onset and evolution of JOCC in French yearlings. The study sample consisted of 259 yearlings born on 20 stud farms in Normandy. The breeding conditions of these horses were monitored from 6 to 17months. They were radiographed at 6 and 17months to determine their radiographic score (RS) and its evolution. Potential risk factors were investigated using univariate and multivariate analyses. The prevalence of JOCC was 48% at 6months and 42% at 17months. Between 6 and 17months, the RS changed (for better or worse) in 52% of yearlings. The main risk factors leading to deterioration in the RS were traumatic. 'Mixed housing' during winter, pastures with rough ground and a bad RS at 6months were significantly associated with deterioration in RS between 6 and 17months. In the multivariate analysis, the breed was not significantly associated with any evolution in the yearlings' RS. This study provides some indications on protective measures to prevent the worsening of JOCC lesions between 6 and 17months, a crucial period since it precedes the sale of yearlings and the beginning of training.

  19. Challenges in engineering osteochondral tissue grafts with hierarchical structures Ivana Gadjanski, Gordana Vunjak Novakovic

    PubMed Central

    Gadjanski, Ivana; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction A major hurdle in treating osteochondral (OC) defects are the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct-engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. Areas covered This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. Expert opinion A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens, and harnessing of inflammatory responses of the host will likely drive the further progress. PMID:26195329

  20. Osteochondritis dissecans of the capitellum: a review of the literature and a distal ulnar portal.

    PubMed

    van den Ende, Kimberly I M; McIntosh, Amy L; Adams, Julie E; Steinmann, Scott P

    2011-01-01

    Osteochondritis dissecans (OCD) of the humeral capitellum most commonly affects young athletes engaged in sports that repetitively stress the elbow. It is characterized by localized injury of subchondral bone of the humeral capitellum. To determine the best treatment option for OCD in young athletes, it is important to differentiate between stable and unstable OCD lesions. Stable lesions can be treated with rest, whereas unstable lesions, as well stable lesions that do not respond to conservative therapy, may require a surgical approach. Magnetic resonance imaging is the diagnostic study of choice to evaluate capitellar OCD lesions and loose bodies and to accurately determine the stability and viability of the OCD fragment. A variety of surgical approaches have been reported, from internal fixation of large fragments to autologous chondrocyte grafts. Arthroscopic surgery is becoming the standard treatment of capitellar OCD. This minimally invasive approach shows good results, a low risk of operative morbidity, and early recuperation postoperatively. The distal ulnar portal we describe here allows for ergonomic exposure to the posterolateral capitellum, providing easier access for drilling, burring, and local debridement of lesions amenable to arthroscopy.

  1. Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits.

    PubMed

    Yoshioka, Tomokazu; Mishima, Hajime; Kaul, Zeenia; Ohyabu, Yoshimi; Sakai, Shinsuke; Ochiai, Naoyuki; Kaul, Sunil C; Wadhwa, Renu; Uemura, Toshimasa

    2011-06-01

    The purpose of this study was to track mesenchymal stem cells (MSCs) labelled with internalizing quantum dots (i-QDs) in the reparative tissues, following the allogeneic transplantation of three-dimensional (3D) cartilaginous aggregates into the osteochondral defects of rabbits. QDs were conjugated with a unique internalizing antibody against a heat shock protein-70 (hsp70) family stress chaperone, mortalin, which is upregulated and expressed on the surface of dividing cells. The i-QDs were added to the culture medium for 24 h. Scaffold-free cartilaginous aggregates formed from i-QD-labelled MSCs (i-MSCs), using a 3D culture system with chondrogenic supplements for 1 week, were transplanted into osteochondral defects of rabbits. At 4, 8 and 26 weeks after the transplantation, the reparative tissues were evaluated macroscopically, histologically and fluoroscopically. At as early as 4 weeks, the defects were covered with a white tissue resembling articular cartilage. In histological appearance, the reparative tissues resembled hyaline cartilage on safranin-O staining throughout the 26 weeks. In the deeper portion, subchondral bone and bone marrow were well remodelled. On fluoroscopic evaluation, QDs were tracked mainly in bone marrow stromata, with some signals detected in cartilage and the subchondral bone layer. We showed that the labelling of rabbit MSCs with anti-mortalin antibody-conjugated i-QDs is a tolerable procedure and provides a stable fluorescence signal during the cartilage repair process for up to 26 weeks after transplantation. The results suggest that i-MSCs did not inhibit, and indeed contributed to, the regeneration of osteochondral defects.

  2. Closed-Wedge osteotomy for osteochondritis dissecans of the capitellum. A 7- to 12-year follow-up.

    PubMed

    Kiyoshige, Y; Takagi, M; Yuasa, K; Hamasaki, M

    2000-01-01

    This article details a 7- to 12-year follow-up of seven young male baseball players with osteochondritis dissecans of the capitellum that we treated using closed-wedge osteotomy. This procedure was established by Yoshizu in 1986 for the treatment of "Little League elbow." The bone of the capitellum was revascularized and remodeled within 6 months in all seven patients. Six of the patients were able to return to full athletic activity and continued to play baseball. Radiographic assessment during the follow-up study revealed minimal osteoarthritic change and suggests that the treatment is useful for such an injury.

  3. Retrospective Cohort Study of 207 Cases of Osteochondritis Dissecans of the Knee

    PubMed Central

    Green, Daniel W.; Arbucci, John; Silberman, Jason; Luderowski, Eva; Uppstrom, Tyler J.; Nguyen, Joseph; Tuca, Maria

    2016-01-01

    Objectives: Describe the clinical characteristics, image findings, and outcomes of patients with juvenile osteochondritis dissecans (JOCD) of the knee. To our knowledge, this is the largest single-surgeon cohort of JOCD patients. Methods: Retrospective cohort study of knee JOCD patients assessed by a single pediatric orthopaedic surgeon at a tertiary care center between 2005-2015. All diagnoses were confirmed by magnetic resonance imaging (MRI). Patients with patellar dislocations or osteochondral fractures were excluded. Demographic data, sports played, comorbidities, surgical procedures, and clinical data were extracted from charts. Images were analyzed to identify the location and size of lesions. Chi-square or Fisher’s exact tests were used to compare discrete variables, and Mann-Whitney U and Kruskal Wallis tests to compare continuous variables between groups. P-values of <0.05 were considered significant. Results: Sample consisted of 180 patients (207 knees), 124 boys and 56 girls. Average age at diagnosis was 12.8 years (7.5-17.5). Majority were active in sports (80.8%), primary soccer (36.7%) and basketball (29.4%). JOCD was present bilaterally in 27 patients (15%), 14 knees had bifocal OCD (6.8%), and only 1 patient had bifocal lesions in both knees. Most common location was medial femoral condyle (56.3%) followed by lateral femoral condyle (23.1%), trochlea (11.4%), patella (9%), and tibia (0.5%). In the sagittal view, most common location was the middle third of the condyles (48.7%). Surgery was performed in 72 knees (34.8%), with an average age at surgery of 14.1 years (9.3-18.1). Bilateral JOCD was present in 13 surgical patients (18.8%), but only 3 patients had bilateral surgery. Two operative patients had bifocal JOCD (2.7%) and surgery on both lesions. Location distribution did not differ between surgical and non-surgical lesions. The average normalized area of non-surgical JOCD lesions was 6.8 (0.1-18), whereas surgical lesions averaged a

  4. Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair.

    PubMed

    Han, Fengxuan; Yang, Xiaoling; Zhao, Jin; Zhao, Yunhui; Yuan, Xiaoyan

    2015-04-01

    A layered gelatin-chitosan hydrogel with graded composition was prepared via photocrosslinking to simulate the polysaccharide/collagen composition of the natural tissue and mimic the multi-layered gradient structure of the cartilage-bone interface tissue. Firstly, gelatin and carboxymethyl chitosan were reacted with glycidyl methacrylate (GMA) to obtain methacrylated gelatin (Gtn-GMA) and carboxymethyl chitosan (CS-GMA). Then, the mixed solutions of Gtn-GMA in different methacrylation degrees with CS-GMA were prepared to form the superficial, transitional and deep layers of the hydrogel, respectively under the irradiation of ultraviolet light, while polyhedral oligomeric silsesquioxane was introduced in the deep layer to improve the mechanical properties. Results suggested that the pore sizes of the superficial, transitional and deep layers of the layered hydrogel were 115 ± 30, 94 ± 34, 51 ± 12 μm, respectively and their porosities were all higher than 80 %. The compressive strengths of them were 165 ± 54, 565 ± 50 and 993 ± 108 kPa, respectively and the strain of the gradient hydrogel decreased along the thickness direction, similar to the natural tissue. The in vitro cytotoxicity results showed that the hydrogel had good cytocompatibility and the in vivo repair results of osteochondral defect demonstrated remarkable recovery by using the gradient gelatin-chitosan hydrogel, especially when the hydrogel loading transforming growth factor-β1. Therefore, it was suggested that the prepared layered gelatin-chitosan hydrogel in this study could be potentially used to promote cartilage-bone interface tissue repair.

  5. Unique Anatomic Feature of the Posterior Cruciate Ligament in Knees Associated With Osteochondritis Dissecans

    PubMed Central

    Ishikawa, Masakazu; Adachi, Nobuo; Yoshikawa, Masahiro; Nakamae, Atsuo; Nakasa, Tomoyuki; Ikuta, Yasunari; Hayashi, Seiju; Deie, Masataka; Ochi, Mitsuo

    2016-01-01

    Background: Osteochondritis dissecans (OCD) of the knee is a disorder in juveniles and young adults; however, its etiology still remains unclear. For OCD at the medial femoral condyle (MFC), it is sometimes observed that the lesion has a connection with fibers of the posterior cruciate ligament (PCL). Although this could be important information related to the etiology of MFC OCD, there is no report examining an association between the MFC OCD and the PCL anatomy. Purpose: To investigate the anatomic features of knees associated with MFC OCD, focusing especially on the femoral attachment of the PCL, and to compare them with knees associated with lateral femoral condyle (LFC) OCD and non-OCD lesions. Study Design: Case-control study; Level of evidence, 3. Methods: We retrospectively reviewed 39 patients (46 knees) with OCD lesions who had undergone surgical treatment. Using magnetic resonance imaging (MRI) scans, the PCL attachment at the lateral wall of the MFC was measured on the coronal sections, and the knee flexion angle was also measured on the sagittal sections. As with non-OCD knees, we reviewed and analyzed 25 knees with anterior cruciate ligament (ACL) injuries and 16 knees with meniscal injuries. Results: MRIs revealed that the femoral PCL footprint was located in a significantly more distal position in the patients with MFC OCD compared with patients with LFC OCD and ACL and meniscal injuries. There was no significant difference in knee flexion angle among the 4 groups. Conclusion: The PCL in patients with MFC OCD attached more distally at the lateral aspect of the MFC compared with knees with LFC OCD and ACL and meniscal injuries. PMID:27294170

  6. Treatment of osteochondral lesions of the talus in athletes: what is the evidence?

    PubMed Central

    VANNINI, FRANCESCA; COSTA, GIUSEPPE GIANLUCA; CARAVELLI, SILVIO; PAGLIAZZI, GHERARDO; MOSCA, MASSIMILIANO

    2016-01-01

    Purpose ankle injuries make up 15% of all sports injuries and osteochondral lesions of the talus (OLTs) are an increasingly frequent problem in active patients. There exist no widely shared guidelines on OLT treatment in the athletic population. The aim of this paper is to review all the existing literature evidence on the surgical treatment of OLTs in athletes, in order to determine the current state of the art in this specific population, underlining both the limits and the potential of the strategies used. Methods a systematic review of the literature was performed focusing on the different types of surgical treatment used for OLTs in athletes. The screening process and analysis were performed separately by two independent researchers. The inclusion criteria for relevant articles were: clinical reports of any level of evidence, written in English, with no time limitation, or clinical reports describing the treatment of OLTs in the athletic population. Results with the consensus of the two observers, relevant data were then extracted and collected in a single database to be analyzed for the purposes of the present manuscript. At the end of the process, 16 papers met the selection criteria. These papers report a total of 642 athletic patients with OCTs. Conclusions the ideal treatment for cartilage lesions in athletes is a controversial topic, due to the need for an early return to sports, especially in elite players; this need leads to extensive use of microfractures in this population, despite the poor quality of repair associated with this technique. None of the surgical strategies described in this paper seems to be superior to the others. Level of evidence systematic review of level IV studies, level IV.

  7. Treatment of osteochondral lesions of the talus in athletes: what is the evidence?

    PubMed Central

    VANNINI, FRANCESCA; COSTA, GIUSEPPE GIANLUCA; CARAVELLI, SILVIO; PAGLIAZZI, GHERARDO; MOSCA, MASSIMILIANO

    2016-01-01

    Purpose ankle injuries make up 15% of all sports injuries and osteochondral lesions of the talus (OLTs) are an increasingly frequent problem in active patients. There exist no widely shared guidelines on OLT treatment in the athletic population. The aim of this paper is to review all the existing literature evidence on the surgical treatment of OLTs in athletes, in order to determine the current state of the art in this specific population, underlining both the limits and the potential of the strategies used. Methods a systematic review of the literature was performed focusing on the different types of surgical treatment used for OLTs in athletes. The screening process and analysis were performed separately by two independent researchers. The inclusion criteria for relevant articles were: clinical reports of any level of evidence, written in English, with no time limitation, or clinical reports describing the treatment of OLTs in the athletic population. Results with the consensus of the two observers, relevant data were then extracted and collected in a single database to be analyzed for the purposes of the present manuscript. At the end of the process, 16 papers met the selection criteria. These papers report a total of 642 athletic patients with OCTs. Conclusions the ideal treatment for cartilage lesions in athletes is a controversial topic, due to the need for an early return to sports, especially in elite players; this need leads to extensive use of microfractures in this population, despite the poor quality of repair associated with this technique. None of the surgical strategies described in this paper seems to be superior to the others. Level of evidence systematic review of level IV studies, level IV. PMID:27602351

  8. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  9. Cartilage Repair and Subchondral Bone Migration Using 3D Printing Osteochondral Composites: A One-Year-Period Study in Rabbit Trochlea

    PubMed Central

    Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a “flow like” manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a “flow like” manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application. PMID:25177697

  10. Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application. PMID:25177697

  11. Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.

  12. Osteochondral lesion located at the lateral femoral condyle reconstructed by the transplantation of tissue-engineered cartilage in combination with a periosteum with bone block: a case report.

    PubMed

    Adachi, Nobuo; Ochi, Mitsuo; Uchio, Yuji; Iwasa, Junji; Furukawa, Seiji; Deie, Masataka

    2004-09-01

    We report herein the successful treatment of a patient with an osteochondral defect extending to the edge of the lateral femoral condyle by transplantation of tissue-engineered cartilage made ex vivo using atelocollagen gel covered by periosteum with a bone block to reconstruct the normal contour of the femoral condyle.

  13. The effects of early or late treatment of osteochondral defects on joint homoeostasis: an experimental study in rabbits.

    PubMed

    Ozsoy, Mehmet Hakan; Aydogdu, Semih; Taskiran, Dilek; Sezak, Murat; Hayran, Mutlu; Oztop, Fikri; Ozsoy, Arzu

    2009-06-01

    A 3.5 x 4 mm tubular osteochondral defect was created on the right medial femoral condyles of 51 adult rabbits. In the control group (CG), defects were left untreated. In the early-(ETG) and late-(LTG) treatment groups, defects were treated by an osteoperiosteal graft 1 and 12 weeks, respectively, after the index procedure. Synovial fluid (SF) samples were collected regularly and proteoglycan fragments (PF), total collagen (TC) and collagenase (MMP-1) levels were measured. Rabbits were killed at 4 (early period), 12 (intermediate period), or 24 (late period) weeks postoperatively. Histological examination indicated a more successful healing in both grafting groups than in the CG, but without any difference at any time period between the grafting groups. In the CG, PF, and TC levels in SF increased continuously until the late period, indicating an ongoing degenerative activity in the joints. In contrast, SF marker levels in both grafting groups indicated that normalization in joint metabolism could be achieved-at least partially-after treatment. However, PF levels in the SF showed that the treatment of defects in earlier stages might result in better outcomes since the negative effects were more prominent in chronic stages, presumably due to the more prolonged period of disturbed homeostasis. Thus, histological values and SF marker levels indicated that treatment of osteochondral defects at any time of the disease had a positive effect on healing when compared to no treatment. Early treatment might better assist the recovery of joint homeostasis than late treatment.

  14. Expression of colony-stimulating factor 1 is associated with occurrence of osteochondral change in pigmented villonodular synovitis.

    PubMed

    Ota, Takehiro; Urakawa, Hiroshi; Kozawa, Eiji; Ikuta, Kunihiro; Hamada, Shunsuke; Tsukushi, Satoshi; Shimoyama, Yoshie; Ishiguro, Naoki; Nishida, Yoshihiro

    2015-07-01

    Pigmented villonodular synovitis (PVNS) is a benign, translocation-derived neoplasm. Because of its high local recurrence rate after surgery and occurrence of osteochondral destruction, a novel therapeutic target is required. The present study aimed to evaluate the significance of protein expression possibly associated with the pathogenesis during the clinical course of PVNS. In 40 cases of PVNS, positivity of colony-stimulated factor 1 (CSF1), its receptor (CSF1R), and receptor activator of nuclear factor kappa-B ligand (RANKL) were immunohistochemically determined. The relationship between the positivity and clinical outcomes was investigated. High positivity of CSF1 staining intensity was associated with an increased incidence of osteochondral lesions (bone erosion and osteoarthritis) (p = 0.009), but not with the rate of local recurrence. Positivity of CSF1R and RANKL staining was not associated with any clinical variables. The number of giant cells was not correlated with positivity of any of the three proteins, or with the clinical outcome. Focusing on knee cases, CSF1 positivity was also associated with the incidence of osteochondal change (p = 0.02). CSF1R positivity was high in cases which had local recurrence, but not significantly so (p = 0.129). Determination of CSF1 and CSF1R expression may be useful as a prognosticator of the clinical course and/or outcomes of PVNS.

  15. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches.

    PubMed

    Orth, Patrick; Madry, Henning

    2015-12-01

    Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair. PMID:26066580

  16. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.

    PubMed

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación

    2016-02-01

    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used.

  17. All-Arthroscopic Autologous Matrix-Induced Chondrogenesis for the Treatment of Osteochondral Lesions of the Talus

    PubMed Central

    Usuelli, Federico Giuseppe; de Girolamo, Laura; Grassi, Miriam; D'Ambrosi, Riccardo; Montrasio, Umberto Alfieri; Boga, Michele

    2015-01-01

    Several surgical techniques have been described for the treatment of talar chondral lesions. Among them, microfracture is well established. Autologous matrix-induced chondrogenesis (AMIC), using microfracture and biomaterials, has shown promising results for the treatment of knee osteochondral lesions and has been proposed for the ankle as an open technique. We describe an all-arthroscopic AMIC technique. The benefits of an all-arthroscopic procedure include smaller incisions with less soft-tissue dissection, better visualization of the joint, and a quicker recovery compared with open surgery. The use of matrix to support cartilage regeneration promotes good-quality cartilage tissue with satisfactory long-term outcomes. Our all-arthroscopic AMIC technique uses a type I–type III porcine collagen matrix (Chondro-Gide; Geistlich Pharma, Wolhusen, Switzerland) and is characterized by 2 different arthroscopic surgical phases. First, adequate exposure is achieved through use of a Hintermann spreader (Integra LifeSciences, Plainsboro, NJ) with sufficient joint distraction and wet lesion preparation. The second surgical step is performed dry, involving matrix placement and fixation. The all-arthroscopic AMIC technique for the treatment of osteochondral lesions of the talus allows a very precise reconstruction in the case of cartilage defects and avoids the need for a more invasive operation associated with higher morbidity and a longer surgical time. PMID:26258040

  18. All-Arthroscopic Autologous Matrix-Induced Chondrogenesis for the Treatment of Osteochondral Lesions of the Talus.

    PubMed

    Usuelli, Federico Giuseppe; de Girolamo, Laura; Grassi, Miriam; D'Ambrosi, Riccardo; Montrasio, Umberto Alfieri; Boga, Michele

    2015-06-01

    Several surgical techniques have been described for the treatment of talar chondral lesions. Among them, microfracture is well established. Autologous matrix-induced chondrogenesis (AMIC), using microfracture and biomaterials, has shown promising results for the treatment of knee osteochondral lesions and has been proposed for the ankle as an open technique. We describe an all-arthroscopic AMIC technique. The benefits of an all-arthroscopic procedure include smaller incisions with less soft-tissue dissection, better visualization of the joint, and a quicker recovery compared with open surgery. The use of matrix to support cartilage regeneration promotes good-quality cartilage tissue with satisfactory long-term outcomes. Our all-arthroscopic AMIC technique uses a type I-type III porcine collagen matrix (Chondro-Gide; Geistlich Pharma, Wolhusen, Switzerland) and is characterized by 2 different arthroscopic surgical phases. First, adequate exposure is achieved through use of a Hintermann spreader (Integra LifeSciences, Plainsboro, NJ) with sufficient joint distraction and wet lesion preparation. The second surgical step is performed dry, involving matrix placement and fixation. The all-arthroscopic AMIC technique for the treatment of osteochondral lesions of the talus allows a very precise reconstruction in the case of cartilage defects and avoids the need for a more invasive operation associated with higher morbidity and a longer surgical time.

  19. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches.

    PubMed

    Orth, Patrick; Madry, Henning

    2015-12-01

    Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair.

  20. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.

    PubMed

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación

    2016-02-01

    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used. PMID:26652367

  1. Polyvinyl Alcohol Hydrogel Irradiated and Acetalized for Osteochondral Defect Repair: Mechanical, Chemical, and Histological Evaluation after Implantation in Rat Knees

    PubMed Central

    Batista, N. A.; Rodrigues, A. A.; Bavaresco, V. P.; Mariolani, J. R. L.; Belangero, W. D.

    2012-01-01

    Polyvinyl Alcohol (PVA) hydrogel plugs were implanted in artificial osteochondral defects on the trochlear groove of rat knees. After 0, 3, 6, 12, and 24 weeks of followup, samples containing the implants were mechanically evaluated by creep indentation test, chemically, and histologically by optical microscopy. The mechanical test pointed towards an increase of the implant creep modulus and the chemical analysis exhibited an increasing concentration of calcium and phosphorus within the implants over time. Optical microscopy showed no foreign body reaction and revealed formation, differentiation, and maintenance of new tissue at the defect/implant interface. The absence of implant wear indicated that the natural articular lubrication process was not disturbed by the implant. The performance of the irradiated and acetalized PVA was considered satisfactory for the proposed application. PMID:23197982

  2. The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study

    PubMed Central

    MANUNTA, ANDREA FABIO; ZEDDE, PIETRO; PILICCHI, SUSANNA; ROCCA, STEFANO; POOL, ROY R.; DATTENA, MARIA; MASALA, GEROLAMO; MARA, LAURA; CASU, SARA; SANNA, DANIELA; MANUNTA, MARIA LUCIA; PASSINO, ERALDO SANNA

    2016-01-01

    Purpose the aim of this study was to determine whether local delivery of embryonic stem-like (ESL) cells into osteochondral defects in the femoral condyles of sheep would enhance regeneration of hyaline articular cartilage. Methods male ESL cells embedded in fibrin glue were engrafted into osteochondral defects in the medial condyles (ESL-M) of the left femur in 22 ewes. An identical defect was created in the medial condyle of the contralateral stifle joint and left untreated as a control (empty defect, ED). The ewes were divided into 5 groups. Four sheep each were euthanized at 1, 2, 6, and 12 months from surgery, and 6 ewes were euthanized 24 months post-implantation. To study the effect of varying loads on the long-term regeneration process, an identical defect was also created and ESL cell engraftment performed in the lateral condyle (ESL-L) of the left stifle joint of the animals in the 12- and 24-month groups. The evaluation of regenerated tissue was performed by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and fluorescent in situ hybridization (FISH) assays. Results no significant differences were found between treated and control sites in the biomechanical assays at any time point. ESL cell grafts showed significantly greater macroscopic evidence of regeneration as compared to controls at 24 months after surgery; significantly better histological evidence of repair in ESL-M samples versus controls was found throughout the considered period. At 24 months from surgery there was significantly improved integration of graft edges with the host tissue in the ESL-M as compared to the ESL-L samples, demonstrating that load bearing positively affects the long-term regeneration process. Conclusions ESL cells enhanced the regeneration of hyaline cartilage. FISH confirmed that the regenerative tissue originated from ESL cells. Clinical Relevance ESL cells are able to self-renew for prolonged periods without differentiation and, most

  3. Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial

    PubMed Central

    van Bergen, Christiaan JA; Blankevoort, Leendert; de Haan, Rob J; Sierevelt, Inger N; Meuffels, Duncan E; d'Hooghe, Pieter RN; Krips, Rover; van Damme, Geert; van Dijk, C Niek

    2009-01-01

    Background Osteochondral talar defects usually affect athletic patients. The primary surgical treatment consists of arthroscopic debridement and microfracturing. Although this is mostly successful, early sport resumption is difficult to achieve, and it can take up to one year to obtain clinical improvement. Pulsed electromagnetic fields (PEMFs) may be effective for talar defects after arthroscopic treatment by promoting tissue healing, suppressing inflammation, and relieving pain. We hypothesize that PEMF-treatment compared to sham-treatment after arthroscopy will lead to earlier resumption of sports, and aim at 25% increase in patients that resume sports. Methods/Design A prospective, double-blind, randomized, placebo-controlled trial (RCT) will be conducted in five centers throughout the Netherlands and Belgium. 68 patients will be randomized to either active PEMF-treatment or sham-treatment for 60 days, four hours daily. They will be followed-up for one year. The combined primary outcome measures are (a) the percentage of patients that resume and maintain sports, and (b) the time to resumption of sports, defined by the Ankle Activity Score. Secondary outcome measures include resumption of work, subjective and objective scoring systems (American Orthopaedic Foot and Ankle Society – Ankle-Hindfoot Scale, Foot Ankle Outcome Score, Numeric Rating Scales of pain and satisfaction, EuroQol-5D), and computed tomography. Time to resumption of sports will be analyzed using Kaplan-Meier curves and log-rank tests. Discussion This trial will provide level-1 evidence on the effectiveness of PEMFs in the management of osteochondral ankle lesions after arthroscopy. Trial registration Netherlands Trial Register (NTR1636) PMID:19591674

  4. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities.

    PubMed

    Ley, C J; Ekman, S; Hansson, K; Björnsdóttir, S; Boyde, A

    2014-03-25

    Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA) in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining) and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC), articular calcified cartilage (ACC), subchondral bone (SCB) and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints.

  5. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects.

    PubMed

    van Eekeren, Inge C M; Reilingh, Mikel L; van Dijk, C Niek

    2012-10-01

    An osteochondral defect (OD) is a lesion involving the articular cartilage and the underlying subchondral bone. ODs of the talus can severely impact on the quality of life of patients, who are usually young and athletic. The primary treatment for ODs that are too small for fixation, consists of arthroscopic debridement and bone marrow stimulation. This article delineates levels of activity, determines times for return to activity and reviews the factors that affect rehabilitation after arthroscopic debridement and bone marrow stimulation of a talar OD. Articles for review were obtained from a search of the MEDLINE database up to January 2012 using the search headings 'osteochondral defects', 'bone marrow stimulation', 'sports/activity', 'rehabilitation', various other related factors and 'talus'. English-, Dutch- and German-language studies were evaluated.The review revealed that there is no consensus in the existing literature about rehabilitation times or return-to-sports activity times, after treatment with bone marrow stimulation of ODs in the talus. Furthermore, scant research has been conducted on these issues. The literature also showed that potential factors that aid rehabilitation could include youth, lower body mass index, smaller OD size, mobilization and treatment with growth factors, platelet-rich plasma, biphosphonates, hyaluronic acid and pulse electromagnetic fields. However, most studies have been conducted in vitro or on animals. We propose a scheme, whereby return-to-sports activity is divided into four phases of increasing intensity: walking, jogging, return to non-contact sports (running without swerving) and return to contact sports (running with swerving and collision). We also recommend that research, conducted on actual sportsmen, of recovery times after treatment of talar ODs is warranted.

  6. The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study

    PubMed Central

    MANUNTA, ANDREA FABIO; ZEDDE, PIETRO; PILICCHI, SUSANNA; ROCCA, STEFANO; POOL, ROY R.; DATTENA, MARIA; MASALA, GEROLAMO; MARA, LAURA; CASU, SARA; SANNA, DANIELA; MANUNTA, MARIA LUCIA; PASSINO, ERALDO SANNA

    2016-01-01

    Purpose the aim of this study was to determine whether local delivery of embryonic stem-like (ESL) cells into osteochondral defects in the femoral condyles of sheep would enhance regeneration of hyaline articular cartilage. Methods male ESL cells embedded in fibrin glue were engrafted into osteochondral defects in the medial condyles (ESL-M) of the left femur in 22 ewes. An identical defect was created in the medial condyle of the contralateral stifle joint and left untreated as a control (empty defect, ED). The ewes were divided into 5 groups. Four sheep each were euthanized at 1, 2, 6, and 12 months from surgery, and 6 ewes were euthanized 24 months post-implantation. To study the effect of varying loads on the long-term regeneration process, an identical defect was also created and ESL cell engraftment performed in the lateral condyle (ESL-L) of the left stifle joint of the animals in the 12- and 24-month groups. The evaluation of regenerated tissue was performed by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and fluorescent in situ hybridization (FISH) assays. Results no significant differences were found between treated and control sites in the biomechanical assays at any time point. ESL cell grafts showed significantly greater macroscopic evidence of regeneration as compared to controls at 24 months after surgery; significantly better histological evidence of repair in ESL-M samples versus controls was found throughout the considered period. At 24 months from surgery there was significantly improved integration of graft edges with the host tissue in the ESL-M as compared to the ESL-L samples, demonstrating that load bearing positively affects the long-term regeneration process. Conclusions ESL cells enhanced the regeneration of hyaline cartilage. FISH confirmed that the regenerative tissue originated from ESL cells. Clinical Relevance ESL cells are able to self-renew for prolonged periods without differentiation and, most

  7. Evaluation of Cartilage Repair by Mesenchymal Stem Cells Seeded on a PEOT/PBT Scaffold in an Osteochondral Defect.

    PubMed

    Barron, V; Merghani, K; Shaw, G; Coleman, C M; Hayes, J S; Ansboro, S; Manian, A; O'Malley, G; Connolly, E; Nandakumar, A; van Blitterswijk, C A; Habibovic, P; Moroni, L; Shannon, F; Murphy, J M; Barry, F

    2015-09-01

    The main objective of this study was to evaluate the effectiveness of a mesenchymal stem cell (MSC)-seeded polyethylene-oxide-terephthalate/polybutylene-terephthalate (PEOT/PBT) scaffold for cartilage tissue repair in an osteochondral defect using a rabbit model. Material characterisation using scanning electron microscopy indicated that the scaffold had a 3D architecture characteristic of the additive manufacturing fabrication method, with a strut diameter of 296 ± 52 μm and a pore size of 512 ± 22 μm × 476 ± 25 μm × 180 ± 30 μm. In vitro optimisation revealed that the scaffold did not generate an adverse cell response, optimal cell loading conditions were achieved using 50 μg/ml fibronectin and a cell seeding density of 25 × 10(6) cells/ml and glycosaminoglycan (GAG) accumulation after 28 days culture in the presence of TGFβ3 indicated positive chondrogenesis. Cell-seeded scaffolds were implanted in osteochondral defects for 12 weeks, with cell-free scaffolds and empty defects employed as controls. On examination of toluidine blue staining for chondrogenesis and GAG accumulation, both the empty defect and the cell-seeded scaffold appeared to promote repair. However, the empty defect and the cell-free scaffold stained positive for collagen type I or fibrocartilage, while the cell-seeded scaffold stained positive for collagen type II indicative of hyaline cartilage and was statistically better than the cell-free scaffold in the blinded histological evaluation. In summary, MSCs in combination with a 3D PEOT/PBT scaffold created a reparative environment for cartilage repair.

  8. Cumulative Incidence of Osteochondritis Dissecans of the Capitellum in Child and Adolescent Baseball Players

    PubMed Central

    Iwame, Toshiyuki; Matsuura, Tetsuya; Suzue, Naoto; Sairyo, Koichi

    2016-01-01

    Objectives: Prevalence of osteochondritis dissecans (OCD) of the capitellum is high among individuals who have played baseball since childhood. Recently two cross-sectional studies according to prevalence of OCD have been published. In a study of 1040 baseball players aged 10 to 12 years, Matsuura et al found that 2.1% of players had OCD, with no differences in prevalence according to age or player position. Kida et al., in their study of 2433 baseball players aged 12 to 18 years, found OCD in 3.4% of subjects. Furthermore, they found that players with OCD began playing baseball at earlier ages, had played for longer periods, and had experienced more elbow pain. The player’s current baseball position may not be related to the existence of OCD lesions. Together, these findings led us to examine the longitudinal study for examining the risk factors for occurrence of OCD. Our objectives were to determine (1) cumulative incidence rates of OCD in the school child players aged 6-11 years old, (2) the relative risk of OCD by age, beginning age playing baseball, playing period, experimental hours per week, playing position, and elbow pain. Methods: A total of 1,275 players aged 6-11 years (mean, 9.4 years) belonged to youth baseball teams without OCD lesions received examination in the next year and were the subjects of this investigation. Subjects were examined by questionnaire, and ultrasonographic and radiographic examination. Questionnaire items included age, player position, beginning age of playing baseball, playing period of baseball, number of training hours per week and history of elbow pain. Ultrasonography of the lateral aspect of the elbow was performed. An irregularity of the subchondral bone of the capitellum was regarded as an abnormality. Radiographic examination was recommended to players who had an abnormal finding on ultrasonographic examination. We investigated the following risk factors for occurrence of OCD: age, player position, beginning age of

  9. A rare case of an osteochondral lesion of the tarsal navicular with a subacute stress fracture in a high level athlete.

    PubMed

    Nunag, Perrico; Quah, Colin; Pillai, Anand

    2014-12-01

    In this report, an osteochondral lesion of the tarsal navicular associated with a subacute stress fracture in a professional basketball player surgical treatment is presented. The surgical technique involved extra-articular curettage, bone grafting and plate stabilisation. Postoperative CT scan confirmed that both the osteochondral lesion and the stress fracture healed. The talonavicular joint showed no signs of arthritis on imaging. Clinical foot scores showed marked improvement after surgery. At 6 months patient managed to return to competitive play without pain in the foot and ankle. The outcome of this case indicates that the combination of curettage, bone grating and plate stabilisation works well for this rare and potentially career ending dual lesions.

  10. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints.

    PubMed

    Levingstone, Tanya J; Ramesh, Ashwanth; Brady, Robert T; Brama, Pieter A J; Kearney, Clodagh; Gleeson, John P; O'Brien, Fergal J

    2016-05-01

    Developing repair strategies for osteochondral tissue presents complex challenges due to its interfacial nature and complex zonal structure, consisting of subchondral bone, intermediate calcified cartilage and the superficial cartilage regions. In this study, the long term ability of a multi-layered biomimetic collagen-based scaffold to repair osteochondral defects is investigated in a large animal model: namely critical sized lateral trochlear ridge (TR) and medial femoral condyle (MC) defects in the caprine stifle joint. The study thus presents the first data in a clinically applicable large animal model. Scaffold fixation and early integration was demonstrated at 2 weeks post implantation. Macroscopic analysis demonstrated improved healing in the multi-layered scaffold group compared to empty defects and a market approved synthetic polymer osteochondral scaffold groups at 6 and 12 months post implantation. Radiological analysis demonstrated superior subchondral bone formation in both defect sites in the multi-layered scaffold group as early as 3 months, with complete regeneration of subchondral bone by 12 months. Histological analysis confirmed the formation of well-structured subchondral trabecular bone and hyaline-like cartilage tissue in the multi-layered scaffold group by 12 months with restoration of the anatomical tidemark. Demonstration of improved healing following treatment with this natural polymer scaffold, through the recruitment of host cells with no requirement for pre-culture, shows the potential of this device for the treatment of patients presenting with osteochondal lesions.

  11. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel

    PubMed Central

    2011-01-01

    Background Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect. Methods Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks. Results The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p < 0.012). The relative expression level of type-2 collagen, aggrecan, and SOX9 mRNAs was significantly greater in Group II than in the control group (p < 0.023). Conclusions This study demonstrated that spontaneous hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral

  12. A Novel Ultrasound Technique for Detection of Osteochondral Defects in the Ankle Joint: A Parametric and Feasibility Study

    PubMed Central

    Sarkalkan, Nazli; Loeve, Arjo J.; van Dongen, Koen W. A.; Tuijthof, Gabrielle J. M.; Zadpoor, Amir A.

    2015-01-01

    (Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced. PMID:25609040

  13. Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Dhara, Santanu

    2014-07-22

    Most living tissues are viscoelastic in nature. Self-repair due to the dissipation of energy by reversible bonds prevents the rupture of the molecular backbone in these tissues. Recent studies, therefore, have aimed to synthesize biomaterials that approximate the mechanical performance of biological materials with self-recovery properties. We report an environmentally friendly method for the development of ionotropically cross-linked viscoelastic chitosan gels with a modulus comparable to that of living tissues. The strain recovery property was found to be highest for the gels with the lowest cross-linking density. The force-displacement curve showed significant hysteresis due to the presence of reversible bonds in the cross-linked gels. Nanoindentation studies demonstrated the creep phenomenon for the cross-linked chitosan gels. Creep, hysteresis, and plasticity index confirmed the viscoelastic behavior of the cross-linked gels. The viscoelastic gels were implanted at osteochondral defect sites to assess the tissue regeneration ability. In vivo results demonstrated early cartilage formation and woven bone deposition for defects filled with the gels compared to nontreated defects. PMID:24971647

  14. A novel ultrasound technique for detection of osteochondral defects in the ankle joint: a parametric and feasibility study.

    PubMed

    Sarkalkan, Nazli; Loeve, Arjo J; van Dongen, Koen W A; Tuijthof, Gabrielle J M; Zadpoor, Amir A

    2015-01-01

    (Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.

  15. Reconstruction of a large osteochondral lesion of the distal tibia with an iliac crest graft and autologous matrix-induced chondrogenesis (AMIC): a case report.

    PubMed

    Miska, Matthias; Wiewiorski, Martin; Valderrabano, Victor

    2012-01-01

    Isolated osteochondral lesions (OCL) of the distal tibia are rare and lack clear treatment guidelines. With the case we present here, we suggest a novel surgical approach and report the successful use of autologous matrix-induced chondrogenesis-aided reconstruction for OCL of the distal tibia. A 29-year-old male patient complained about persisting pain of the left ankle joint and a restricted activity level 12 months after an ankle sprain. Imaging revealed edema of the subchondral bone and thinning of the cartilage above the osseous defect at the lateral distal tibia. The OCL was debrided followed by microfracturing of the underlying sclerotic bone. A cancellous bone plug was harvested from the iliac crest and impacted into the defect. A collagen matrix was then fixed on the defect. After 12 months, the patient was free of pain and returned to full activity. Conventional radiographs at 1 year showed successful osseous integration of the plug and a nearly anatomic shape of the tibial joint line. Delayed gadolinium-enhanced MRI of cartilage scans at 36 months showed an intact cartilage layer over the defect and glycosaminoglycan content, indicating hyaline-like cartilage repair. This case demonstrates autologous matrix-induced chondrogenesis-aided reconstruction of large osteochondral lesions of distal tibia to be a promising treatment method. Our aim was to describe the case of a patient with a large isolated osteochondral lesion of the distal tibia treated by a novel operative technique using cancellous bone from the iliac crest and a collagen I/III matrix.

  16. Modified autologous matrix-induced chondrogenesis (AMIC) for the treatment of a large osteochondral defect in a varus knee: a case report.

    PubMed

    de Girolamo, L; Quaglia, A; Bait, C; Cervellin, M; Prospero, E; Volpi, P

    2012-11-01

    This paper presents a case report of a 27-year-old male patient affected by a large osteochondral defect of the medial femoral condyle (6 cm(2)) in a varus knee. He was treated with a combined approach consisting of high tibial osteotomy and autologous matrix-induced chondrogenesis technique enhanced by a bone marrow-enriched bone graft. Twelve months after surgery, the patient reported considerable reduction in pain and significant increase in his quality of life. A hyaline-like cartilage completely covered the defect and was congruent with the surrounding condyle cartilage as revealed by MRI and by a second-look arthroscopy. Level of evidence IV.

  17. Is Antegrade Transmalleolar Drilling Method for Osteochondral Lesion of Talus Necessary? Iatrogenic Cystic Formation at the Tibia: A Report of Five Cases.

    PubMed

    Kim, Jae Young; Reyes, Francis Joseph V; Yi, Young; Lee, Woo-Chun

    2016-03-01

    Antegrade transmalleolar drilling method is one of the options for the treatment of osteochondral lesion of talus (OLT). We present five patients who underwent tibial drilling for treatment of OLT and later developed distal tibial cystic formation induced by cartilage opening or heat necrosis during drilling. Antegrade transmalleolar drilling can be a possible option for the treatment of OLT if the lesion is not easily reachable; however, other viable treatment should be considered due to its possibility of distal tibial pathologic change. PMID:26929810

  18. Is Antegrade Transmalleolar Drilling Method for Osteochondral Lesion of Talus Necessary? Iatrogenic Cystic Formation at the Tibia: A Report of Five Cases

    PubMed Central

    Kim, Jae Young; Reyes, Francis Joseph V.; Yi, Young

    2016-01-01

    Antegrade transmalleolar drilling method is one of the options for the treatment of osteochondral lesion of talus (OLT). We present five patients who underwent tibial drilling for treatment of OLT and later developed distal tibial cystic formation induced by cartilage opening or heat necrosis during drilling. Antegrade transmalleolar drilling can be a possible option for the treatment of OLT if the lesion is not easily reachable; however, other viable treatment should be considered due to its possibility of distal tibial pathologic change. PMID:26929810

  19. COMPARATIVE MACROSCOPIC STUDY OF OSTEOCHONDRAL DEFECTS PRODUCED IN FEMURS OF RABBITS REPAIRED WITH BIOPOLYMER GEL CANE SUGAR

    PubMed Central

    de Albuquerque, Paulo Cezar Vidal Carneiro; dos Santos, Saulo Monteiro; de Andrade Aguiar, José Lamartine; Filho, Nicodemus Pontes; de Mello, Roberto José Vieira; Costa, Mariana Lúcia Correia Ramos; de Albuquerque Olbertz, Clarissa Miranda Carneiro; de Souza Almeida, Tarciana Mendonça; da Silva Santos, Alessandro Henrique; da Silva, Joacil Carlos

    2015-01-01

    Objective: To study the surface, coloring, consistency, continuity and healing of osteochondral defects produced in the femoral condyles of rabbits and filled with sugar cane biopolymer gel (SCBG), after 90, 120 and 180 days, and in comparison with a control group. Method: Sixteen adult New Zealand white rabbits aged 6 to 7 months, weighing between 2 and 2.5 kg and without locomotor system abnormalities were studied. In all the animals, a defect was made in the femoral condyles of the right and left knees, measuring 3.2 mm in diameter and 4 mm in depth, using a trephine. The animals were divided into two groups: study group formed by the right knees, in which the medial and lateral condyles received implants of SCBG; and control group formed by the left knees, in which the medial and lateral condyles were allowed to heal naturally. The knees were assessed 90, 120 and 180 days after the operation. After the animals had been sacrificed, the anatomical specimens were resected and placed in Bouin's solution. They were then photographed with a Nikon Coolpix 5400® coupled to a Nikon SM2800® stereoscopic loupe, to analyze the surface, coloring, consistency, continuity and healing. Results: The results were evaluated using the chi-square test. There were no significant differences in the macroscopic assessments of healing between the study and control groups. Conclusion: With regard to the surface, coloring, consistency, continuity and healing of the defects, the macroscopic appearance of the tissue repaired with SCBG was similar to that of the control group. PMID:27027057

  20. Xenoimplantation of an Extracellular-Matrix-Derived, Biphasic, Cell-Scaffold Construct for Repairing a Large Femoral-Head High-Load-Bearing Osteochondral Defect in a Canine Model

    PubMed Central

    Qiang, Yang; Yanhong, Zhao; Jiang, Peng; Shibi, Lu; Quanyi, Guo; Xinlong, Ma; Qun, Xia; Baoshan, Xu; Bin, Zhao; Aiyuan, Wang; Li, Zhang; Wengjing, Xu; Chao, Zeng

    2014-01-01

    This study was aimed to develop an ECM-derived biphasic scaffold and to investigate its regeneration potential loaded with BM-MSCs in repair of large, high-load-bearing osteochondral defects of the canine femoral head. The scaffolds were fabricated using cartilage and bone ECM as a cartilage and bone layer, respectively. Osteochondral constructs were fabricated using induced BM-MSCs and the scaffold. Osteochondral defects (11 mm diameter × 10 mm depth) were created on femoral heads of canine and treated with the constructs. The repaired tissue was evaluated for gross morphology, radiography, histological, biomechanics at 3 and 6 months after implantation. Radiography revealed that femoral heads slightly collapsed at 3 months and severely collapsed at 6 months. Histology revealed that some defects in femoral heads were repaired, but with fibrous tissue or fibrocartilage, and femoral heads with different degrees of collapse. The bone volume fraction was lower for subchondral bone than normal femoral bone at 3 and 6 months. Rigidity was lower in repaired subchondral bone than normal femoral bone at 6 months. The ECM-derived, biphasic scaffold combined with induced BM-MSCs did not successfully repair large, high-load-bearing osteochondral defects of the canine femoral head. However, the experience can help improve the technique of scaffold fabrication and vascularization. PMID:24737955

  1. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair

    PubMed Central

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing

    2014-01-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. PMID:25154784

  2. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320

  3. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect.

    PubMed

    Caminal, M; Peris, D; Fonseca, C; Barrachina, J; Codina, D; Rabanal, R M; Moll, X; Morist, A; García, F; Cairó, J J; Gòdia, F; Pla, A; Vives, J

    2016-08-01

    Current developments in tissue engineering strategies for articular cartilage regeneration focus on the design of supportive three-dimensional scaffolds and their use in combination with cells from different sources. The challenge of translating initial successes in small laboratory animals into the clinics involves pilot studies in large animal models, where safety and efficacy should be investigated during prolonged follow-up periods. Here we present, in a single study, the long-term (up to 1 year) effect of biocompatible porous scaffolds non-seeded and seeded with fresh ex vivo expanded autologous progenitor cells that were derived from three different cell sources [cartilage, fat and bone marrow (BM)] in order to evaluate their advantages as cartilage resurfacing agents. An ovine model of critical size osteochondral focal defect was used and the test items were implanted arthroscopically into the knees. Evidence of regeneration of hyaline quality tissue was observed at 6 and 12 months post-treatment with variable success depending on the cell source. Cartilage and BM-derived mesenchymal stromal cells (MSC), but not those derived from fat, resulted in the best quality of new cartilage, as judged qualitatively by magnetic resonance imaging and macroscopic assessment, and by histological quantitative scores. Given the limitations in sourcing cartilage tissue and the risk of donor site morbidity, BM emerges as a preferential source of MSC for novel cartilage resurfacing therapies of osteochondral defects using copolymeric poly-D,L-lactide-co-glycolide scaffolds.

  4. Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maehara, Hidetsugu; Sotome, Shinichi; Yoshii, Toshitaka; Torigoe, Ichiro; Kawasaki, Yuichi; Sugata, Yumi; Yuasa, Masato; Hirano, Masahiro; Mochizuki, Naomi; Kikuchi, Masanori; Shinomiya, Kenichi; Okawa, Atsushi

    2010-05-01

    Articular cartilage has a limited capacity for self-renewal. This article reports the development of a porous hydroxyapatite/collagen (HAp/Col) scaffold as a bone void filler and a vehicle for drug administration. The scaffold consists of HAp nanocrystals and type I atelocollagen. The purpose of this study was to investigate the efficacy of porous HAp/Col impregnated with FGF-2 to repair large osteochondral defects in a rabbit model. Ninety-six cylindrical osteochondral defects 5 mm in diameter and 5 mm in depth were created in the femoral trochlear groove of the right knee. Animals were assigned to one of four treatment groups: porous HAp/Col impregnated with 50 microl of FGF-2 at a concentration of 10 or 100 microg/ml (FGF10 or FGF100 group); porous HAp/Col with 50 microl of PBS (HAp/Col group); and no implantation (defect group). The defect areas were examined grossly and histologically. Subchondral bone regeneration was quantified 3, 6, 12, and 24 weeks after surgery. Abundant bone formation was observed in the HAp/Col implanted groups as compared to the defect group. The FGF10 group displayed not only the most abundant bone regeneration but also the most satisfactory cartilage regeneration, with cartilage presenting a hyaline-like appearance. These findings suggest that porous HAp/Col with FGF-2 augments the cartilage repair process.

  5. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint.

    PubMed

    Shim, Jin-Hyung; Jang, Ki-Mo; Hahn, Sei Kwang; Park, Ju Young; Jung, Hyuntae; Oh, Kyunghoon; Park, Kyeng Min; Yeom, Junseok; Park, Sun Hwa; Kim, Sung Won; Wang, Joon Ho; Kim, Kimoon; Cho, Dong-Woo

    2016-03-01

    The use of cell-rich hydrogels for three-dimensional (3D) cell culture has shown great potential for a variety of biomedical applications. However, the fabrication of appropriate constructs has been challenging. In this study, we describe a 3D printing process for the preparation of a multilayered 3D construct containing human mesenchymal stromal cells with a hydrogel comprised of atelocollagen and supramolecular hyaluronic acid (HA). This construct showed outstanding regenerative ability for the reconstruction of an osteochondral tissue in the knee joints of rabbits. We found that the use of a mechanically stable, host-guest chemistry-based hydrogel was essential and allowed two different types of extracellular matrix (ECM) hydrogels to be easily printed and stacked into one multilayered construct without requiring the use of potentially harmful chemical reagents or physical stimuli for post-crosslinking. To the best of our knowledge, this is the first study to validate the potential of a 3D printed multilayered construct consisting of two different ECM materials (atelocollagen and HA) for heterogeneous tissue regeneration using an in vivo animal model. We believe that this 3D printing-based platform technology can be effectively exploited for regeneration of various heterogeneous tissues as well as osteochondral tissue.

  6. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair.

    PubMed

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei

    2014-10-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair.

  7. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source

    PubMed Central

    Mellor, Liliana F.; Mohiti-Asli, Mahsa; Williams, John; Kannan, Arthi; Dent, Morgan R.; Guilak, Farshid

    2015-01-01

    We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-β1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach

  8. Simultaneous Osteoperiosteal Autologous Iliac Crest Graft and Lateral Meniscus Allograft Transplantation for Osteochondral Lesion with Bony Defect and Lateral Discoid Meniscus Tear.

    PubMed

    Lee, Dhong Won; Kim, Jin Goo; Ha, Jeong Ku; Kim, Woo Jong

    2016-06-01

    The optimal treatment for combined osteochondritis dissecans (OCD) with considerable bony defect of the lateral femoral condyle (LFC) and torn discoid lateral meniscus is unclear. We present a case of a 15-year-old female who was a gymnast and had a large OCD lesion in the LFC combined with deficiency of the lateral meniscus. The patient underwent the "one-step" technique of osteoperiosteal autologous iliac crest graft and lateral meniscus allograft transplantation after a failure of meniscectomy with repair at another hospital. Twenty-four months postoperatively, clinical results were significantly improved. Follow-up imaging tests and second-look arthroscopy showed well incorporated structured bone graft and fibrous cartilage regeneration as well as stabilized lateral meniscus allograft. She could return to her sport without any pain or swelling. This "one-step" surgical technique is worth considering as a joint salvage procedure for massive OCD lesions with torn discoid lateral meniscus. PMID:27274475

  9. Simultaneous Osteoperiosteal Autologous Iliac Crest Graft and Lateral Meniscus Allograft Transplantation for Osteochondral Lesion with Bony Defect and Lateral Discoid Meniscus Tear.

    PubMed

    Lee, Dhong Won; Kim, Jin Goo; Ha, Jeong Ku; Kim, Woo Jong

    2016-06-01

    The optimal treatment for combined osteochondritis dissecans (OCD) with considerable bony defect of the lateral femoral condyle (LFC) and torn discoid lateral meniscus is unclear. We present a case of a 15-year-old female who was a gymnast and had a large OCD lesion in the LFC combined with deficiency of the lateral meniscus. The patient underwent the "one-step" technique of osteoperiosteal autologous iliac crest graft and lateral meniscus allograft transplantation after a failure of meniscectomy with repair at another hospital. Twenty-four months postoperatively, clinical results were significantly improved. Follow-up imaging tests and second-look arthroscopy showed well incorporated structured bone graft and fibrous cartilage regeneration as well as stabilized lateral meniscus allograft. She could return to her sport without any pain or swelling. This "one-step" surgical technique is worth considering as a joint salvage procedure for massive OCD lesions with torn discoid lateral meniscus.

  10. Simultaneous Osteoperiosteal Autologous Iliac Crest Graft and Lateral Meniscus Allograft Transplantation for Osteochondral Lesion with Bony Defect and Lateral Discoid Meniscus Tear

    PubMed Central

    Lee, Dhong Won; Ha, Jeong Ku; Kim, Woo Jong

    2016-01-01

    The optimal treatment for combined osteochondritis dissecans (OCD) with considerable bony defect of the lateral femoral condyle (LFC) and torn discoid lateral meniscus is unclear. We present a case of a 15-year-old female who was a gymnast and had a large OCD lesion in the LFC combined with deficiency of the lateral meniscus. The patient underwent the "one-step" technique of osteoperiosteal autologous iliac crest graft and lateral meniscus allograft transplantation after a failure of meniscectomy with repair at another hospital. Twenty-four months postoperatively, clinical results were significantly improved. Follow-up imaging tests and second-look arthroscopy showed well incorporated structured bone graft and fibrous cartilage regeneration as well as stabilized lateral meniscus allograft. She could return to her sport without any pain or swelling. This "one-step" surgical technique is worth considering as a joint salvage procedure for massive OCD lesions with torn discoid lateral meniscus. PMID:27274475

  11. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model.

    PubMed

    Rey-Rico, Ana; Frisch, Janina; Venkatesan, Jagadesh Kumar; Schmitt, Gertrud; Rial-Hermida, Isabel; Taboada, Pablo; Concheiro, Angel; Madry, Henning; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2016-08-17

    Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.

  12. Treatment of osteochondral lesions of the talus with autologous collagen-induced chondrogenesis: clinical and magnetic resonance evaluation at one-year follow-up

    PubMed Central

    USUELLI, FEDERICO GIUSEPPE; GRASSI, MIRIAM; MANZI, LUIGI; GUARRELLA, VINCENZO; BOGA, MICHELE; DE GIROLAMO, LAURA

    2016-01-01

    Purpose the aim of this study is to report the clinical and imaging results recorded by a series of patients in whom osteochondral lesions of the talus (OLTs) were repaired using the autologous collagen-induced chondrogenesis (ACIC) technique with a completely arthroscopic approach. Methods nine patients (mean age 37.4±10 years) affected by OLTs (lesion size 2.1±0.9 cm2) were treated with the ACIC technique. The patients were evaluated clinically both preoperatively and at 12 months after surgery using the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale (AOFAS) and a visual analog scale (VAS). For morphological evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score was used. Results the AOFAS score improved from 51.4±11.6 preoperatively to 71.8±20.6 postoperatively, while the VAS value decreased from 6.9±1.8 to 3.2±1.9. The mean MOCART score was 51.7±16.6 at 12 months of follow-up; these scores did not directly correlate with the clinical results. Conclusion use of the ACIC technique for arthroscopic repair of OLTs allowed satisfactory clinical results to be obtained in most of the patients as soon as one year after surgery, with no major complications or delayed revision surgery. ACIC is a valid and low-invasive surgical technique for the treatment of chondral and osteochondral defects of the talus. Level of evidence therapeutic case series, level IV.

  13. Treatment of osteochondral lesions of the talus with autologous collagen-induced chondrogenesis: clinical and magnetic resonance evaluation at one-year follow-up

    PubMed Central

    USUELLI, FEDERICO GIUSEPPE; GRASSI, MIRIAM; MANZI, LUIGI; GUARRELLA, VINCENZO; BOGA, MICHELE; DE GIROLAMO, LAURA

    2016-01-01

    Purpose the aim of this study is to report the clinical and imaging results recorded by a series of patients in whom osteochondral lesions of the talus (OLTs) were repaired using the autologous collagen-induced chondrogenesis (ACIC) technique with a completely arthroscopic approach. Methods nine patients (mean age 37.4±10 years) affected by OLTs (lesion size 2.1±0.9 cm2) were treated with the ACIC technique. The patients were evaluated clinically both preoperatively and at 12 months after surgery using the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale (AOFAS) and a visual analog scale (VAS). For morphological evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score was used. Results the AOFAS score improved from 51.4±11.6 preoperatively to 71.8±20.6 postoperatively, while the VAS value decreased from 6.9±1.8 to 3.2±1.9. The mean MOCART score was 51.7±16.6 at 12 months of follow-up; these scores did not directly correlate with the clinical results. Conclusion use of the ACIC technique for arthroscopic repair of OLTs allowed satisfactory clinical results to be obtained in most of the patients as soon as one year after surgery, with no major complications or delayed revision surgery. ACIC is a valid and low-invasive surgical technique for the treatment of chondral and osteochondral defects of the talus. Level of evidence therapeutic case series, level IV. PMID:27602347

  14. Percutaneous osteoplasty for the treatment of a painful osteochondral lesion of the talus: a case report and literature review.

    PubMed

    Seo, Sung-Suk; Park, Joo-Yeon; Kim, Hae-Jin; Yoon, Ji-Wook; Park, Sang-Hyun; Kim, Kyung-Hoon

    2012-01-01

    An osteochondral lesion of the talus (OLT) is a lesion involving the talar articular cartilage and its subchondral bone. OLT is a known cause of chronic ankle pain after ankle sprains in the active population. The lesion causes deep ankle pain associated with weight-bearing, impaired function, limited range of motion, stiffness, catching, locking, and swelling. There are 2 common patterns of OLTs. Anterolateral talar dome lesions result from inversion and dorsiflexion injuries of the ankle at the area impacting against the fibula. Posteromedial lesions result from inversion, plantar flexion, and external rotation injuries of the ankle at the area impacting against the tibial ceiling of the ankle joint. Early diagnosis of an OLT is particularly important because the tibiotalar joint is exposed to more compressive load per unit area than any other joint in the body. Failure of diagnosis can lead to the evolution of a small, stable lesion into a larger lesion or an unstable fragment, which can result in chronic pain, joint instability, and premature osteoarthritis. A 43-year-old man, with a history of ankle sprain one year previously, visited our pain clinic for continuous right ankle pain after walking or standing for more than 30 minutes. There was a focal tenderness on the posteromedial area of the right talus. Imaging studies revealed a posteromedial OLT classified as having a geode form according to the FOG (fractures, osteonecroses, geodes) radiological classification and categorized as a stage 2a lesion on magnetic resonance imaging. The patient was scheduled for aspiration and osteoplasty with hydroxyapatite under arthroscopic and fluoroscopic guidance. A 26-gauge needle was inserted to infiltrate local anesthetics into the skin over the cyst and ankle joint. An arthroscope was placed into the joint to approach the OLT. The arthroscopic view showed that there was no connection between the OLT and the cyst of the talus body. A 13-gauge bone biopsy needle was

  15. The use of osteochondral allograft with bone marrow-derived mesenchymal cells and hinge joint distraction in the treatment of post-collapse stage of osteonecrosis of the femoral head.

    PubMed

    Gagala, J; Tarczynska, M; Gaweda, K; Matuszewski, L

    2014-09-01

    Osteonecrosis of the femoral head is an entity which occurs mainly in young and active patients aged between 20 and 50. The success of hip joint preserving treatments ranges from 15% to 50% depending on the stage and amount of osteonecrotic lesion. Total hip replacement is indicated in late post-collapse hips but it has unsatisfactory survival because of the wear and osteolysis in young and active patients. Osteochondral allografts have been reported in the treatment of large articular lesions with defects in underlying bone in knee, talus and shoulder. By combining osteoconductive properties of osteochondral allograft with osteogenic abilities of bone marrow-derived mesenchymal cells it has a potential to be an alternative to an autologous graft. The adjunct of hinged joint distraction should minimize stresses in subchondral bone to promote creeping substitution and prevent femoral head collapse. Unlike current treatment modalities, it would provide both structural support and allow bony and articular substitution.

  16. Evaluation of the Early In Vivo Response of a Functionally Graded Macroporous Scaffold in an Osteochondral Defect in a Rabbit Model.

    PubMed

    Barron, Valerie; Neary, Martin; Mohamed, Khalid Merghani Salid; Ansboro, Sharon; Shaw, Georgina; O'Malley, Grace; Rooney, Niall; Barry, Frank; Murphy, Mary

    2016-05-01

    Cartilage tissue engineering is a multifactorial problem requiring a wide range of material property requirements from provision of biological cues to facilitation of mechanical support in load-bearing diarthrodial joints. The study aim was to design, fabricate and characterize a template to promote endogenous cell recruitment for enhanced cartilage repair. A polylactic acid poly-ε-caprolactone (PLCL) support structure was fabricated using laser micromachining technology and thermal crimping to create a functionally-graded open pore network scaffold with a compressive modulus of 9.98 ± 1.41 MPa and a compressive stress at 50% strain of 8.59 ± 1.35 MPa. In parallel, rabbit mesenchymal stem cells were isolated and their growth characteristics, morphology and multipotency confirmed. Sterilization had no effect on construct chemical structure and cellular compatibility was confirmed. After four weeks implantation in an osteochondral defect in a rabbit model to assess biocompatibility, there was no evidence of inflammation or giant cells. Moreover, acellular constructs performed better than cell-seeded constructs with endogenous progenitor cells homing through microtunnels, differentiating to form neo-cartilage and strengthening integration with native tissue. These results suggest, albeit at an early stage of repair, that by modulating the architecture of a macroporous scaffold, pre-seeding with MSCs is not necessary for hyaline cartilage repair.

  17. Arthroscopic removal of palmar/plantar osteochondral fragments (POF) in the metacarpo- and metatarso-phalangeal joints of standardbred trotters--outcome and possible genetic background to POF.

    PubMed

    Roneus, B; Arnason, T; Collinder, E; Rasmussen, M

    1998-01-01

    A clinical material of 133 Standardbred horses with palmar/plantar osteochondral fragments (POF) in the metacarpo- and metatarsophalangeal joints were studied. All horses had their fragments removed with arthroscopic surgery. 102 of the horses were 3 years old or younger when surgery was performed. Anatomical localisations of the fragments were in agreement with earlier reports. There was no statistical significant difference in month of birth in the POF--group compared to the total population. Eighty % of the horses that had raced before surgery came back to racing. The racing performance relative to their contemporaries remained the same after the POF operation. 65% of the horses that had not raced before surgery raced after the operation. The breeding index BLUP (Best Linear Unbiased Prediction) was used to evaluate if the POF-horses differed genetically in racing ability from the total population. The average BLUP value of the POF group was 103.4 (+/- 0.65), while the mean BLUP value of the total population was 98.9. This difference was highly significant and indicated that these POF horses belonged to a selected group. A homogeneity test of allele frequencies in blood type systems was performed to evaluate if any genetic difference was persistent between POF horses compared to the total population. The statistical analysis of gene frequencies for alleles in blood type systems indicated a genetic discrimination in blood type systems D and Tf.

  18. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair.

    PubMed

    Altamura, Davide; Pastore, Stella G; Raucci, Maria G; Siliqi, Dritan; De Pascalis, Fabio; Nacucchi, Michele; Ambrosio, Luigi; Giannini, Cinzia

    2016-04-01

    This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model. PMID:27020229

  19. Evaluation of the Early In Vivo Response of a Functionally Graded Macroporous Scaffold in an Osteochondral Defect in a Rabbit Model.

    PubMed

    Barron, Valerie; Neary, Martin; Mohamed, Khalid Merghani Salid; Ansboro, Sharon; Shaw, Georgina; O'Malley, Grace; Rooney, Niall; Barry, Frank; Murphy, Mary

    2016-05-01

    Cartilage tissue engineering is a multifactorial problem requiring a wide range of material property requirements from provision of biological cues to facilitation of mechanical support in load-bearing diarthrodial joints. The study aim was to design, fabricate and characterize a template to promote endogenous cell recruitment for enhanced cartilage repair. A polylactic acid poly-ε-caprolactone (PLCL) support structure was fabricated using laser micromachining technology and thermal crimping to create a functionally-graded open pore network scaffold with a compressive modulus of 9.98 ± 1.41 MPa and a compressive stress at 50% strain of 8.59 ± 1.35 MPa. In parallel, rabbit mesenchymal stem cells were isolated and their growth characteristics, morphology and multipotency confirmed. Sterilization had no effect on construct chemical structure and cellular compatibility was confirmed. After four weeks implantation in an osteochondral defect in a rabbit model to assess biocompatibility, there was no evidence of inflammation or giant cells. Moreover, acellular constructs performed better than cell-seeded constructs with endogenous progenitor cells homing through microtunnels, differentiating to form neo-cartilage and strengthening integration with native tissue. These results suggest, albeit at an early stage of repair, that by modulating the architecture of a macroporous scaffold, pre-seeding with MSCs is not necessary for hyaline cartilage repair. PMID:26438451

  20. Osteochondritis dissecans of the elbow: excellent mid-term follow-up results in teenage athletes treated by arthroscopic debridement and microfracture

    PubMed Central

    Bojanić, Ivan; Smoljanović, Tomislav; Dokuzović, Stjepan

    2012-01-01

    Aim To extend the microfracture procedure, which has been proven successful on osteochondritis dissecans (OCD) lesions in the knee and ankle, to OCD lesions in the elbow. Methods Nine young patients were treated by arthroscopic debridement and microfracture by a single surgeon. The average age at operation was 15.0 years (median 15; range 12-19). The average length of the follow-up was 5.3 years (median 5; range 2-9). The follow-up included physical examination and patient interview with elbow function scoring. Success of treatment was determined according to pre-operative and follow-up Mayo Elbow Performance Index scores and the patients’ return to sports. Results Eight patients scored excellent results on the follow-up and 1 scored a good result. Four out of 9 patients were able to increase their training intensity, 2 returned to the same level of activity, 2 changed sports (due to reasons unrelated to the health of their elbow), and 1 left professional sports and started training only recreationally. No patients stopped participating in sports altogether. Conclusions We advocate arthroscopic microfracturing, followed by a strict rehabilitation regime, as a highly effective treatment for OCD of the humeral capitellum. PMID:22351577

  1. Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers.

    PubMed

    Bruder, S P; Gazit, D; Passi-Even, L; Bab, I; Caplan, A I

    1990-11-01

    The osteochondral potential and emergence of osteogenic cell-surface molecules by avian marrow cells was evaluated in in vivo diffusion chamber cultures. The chambers were inoculated with unselected marrow cells from young chick tibiae and implanted intraperitoneally into athymic mice. At the light microscopic level, morphologic evidence of de novo bone and cartilage formation, including specific immunostaining by antibody probes, was observed in 14 out of 16 chambers incubated for 20 days or longer. In order to monitor the osteogenic differentiation of the marrow-derived cells, indirect immunofluorescence was performed with monoclonal antibodies against stage-specific cell surface antigens on cells of the embryonic osteogenic lineage. The binding of these and other specific monoclonal antibodies in the developing tissue indicates that the cell surface and extracellular matrix molecules expressed by descendants of marrow-derived mesenchymal progenitor cells are indistinguishable from their in vivo counterparts found in embryonic skeletal structures. Furthermore, the experiments reported here describe the first molecular identification of osteogenic cells by probes which are selective for stage-specific surface antigens on cells of the osteogenic lineage. Importantly, bone formation by these marrow-derived cells appears to occur through a lineage progression which is similar to that observed for embryonic tibial osteoblasts. In summary, these data support the use of diffusion chambers inoculated with avian marrow to study aspects of osteogenic and chondrogenic differentiation.

  2. Examining the relation of osteochondral lesions of the talus to ligamentous and lateral ankle tendinous pathologic features: a comprehensive MRI review in an asymptomatic lateral ankle population.

    PubMed

    Galli, Melissa M; Protzman, Nicole M; Mandelker, Eiran M; Malhotra, Amit D; Schwartz, Edward; Brigido, Stephen A

    2014-01-01

    Given the frequency and burden of ankle sprains, the pathologic features identified on magnetic resonance imaging (MRI) scans are widely known in the symptomatic population. Ankle MRI pathologic features in the asymptomatic population, however, are poorly understood. Such examinations are rarely undertaken unless an ankle has been injured or is painful. We report the systematic MRI findings from the reports of 108 consecutive asymptomatic lateral ankles (104 patients). Our purpose was to (1) report the prevalence of osteochondral lesions of the talus (OLTs) and pathologic features of the medial and lateral ligaments, peroneal tendons, and superior peroneal retinaculum (SPR); (2) correlate the presence of OLTs with the pathologic features of the medial and lateral ligaments, peroneal tendons, and SPR; and (3) correlate ligamentous discontinuity with the peroneal pathologic features, OLTs, and SPR pathologic features. A total of 16 OLTs (14.81%) were present (13 medial and 3 lateral). Of the 16 patients with OLTs, 8 (50.00%) had concomitant peroneal pathologic findings. Healthy medial and lateral ligaments were noted in 41 patients (37.96%), and ligamentous discontinuity was grade I in 25 (23.15%), II in 32 (29.63%), III in 5 (4.63%), and grade IV in 5 patients (4.63%). A weak positive correlation was found between attenuation or tears of the superficial deltoid and medial OLTs (phi coefficient = 0.23, p = .0191) and a moderate positive correlation between tears of the posterior talofibular ligament and lateral OLTs (phi coefficient = 0.30, p = .0017). Additionally, a moderate positive correlation between ligamentous discontinuity and tendinopathy of the peroneus brevis was noted [Spearman's coefficient(106) = 0.29, p = .0024]. These findings add to the evidence of concomitant pathologic features in the asymptomatic population. To definitively assess causation and evaluate the clinical evolution of radiologic findings, future, prospective, longitudinal

  3. Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model

    PubMed Central

    Araki, Susumu; Imai, Shinji; Ishigaki, Hirohito; Mimura, Tomohiro; Nishizawa, Kazuya; Ueba, Hiroaki; Kumagai, Kousuke; Kubo, Mitsuhiko; Mori, Kanji; Ogasawara, Kazumasa; Matsusue, Yoshitaka

    2015-01-01

    Background and purpose Integration of repaired cartilage with surrounding native cartilage is a major challenge for successful tissue-engineering strategies of cartilage repair. We investigated whether incorporation of mesenchymal stem cells (MSCs) into the collagen scaffold improves integration and repair of cartilage defects in a cynomolgus macaque model. Methods Cynomolgus macaque bone marrow-derived MSCs were isolated and incorporated into type-I collagen gel. Full-thickness osteochondral defects (3 mm in diameter, 5 mm in depth) were created in the patellar groove of 36 knees of 18 macaques and were either left untreated (null group, n = 12), had collagen gel alone inserted (gel group, n = 12), or had collagen gel incorporating MSCs inserted (MSC group, n = 12). After 6, 12, and 24 weeks, the cartilage integration and tissue response were evaluated macroscopically and histologically (4 null, 4 gel, and 4 MSC knees at each time point). Results The gel group showed most cartilage-rich reparative tissue covering the defect, owing to formation of excessive cartilage extruding though the insufficient subchondral bone. Despite the fact that a lower amount of new cartilage was produced, the MSC group had better-quality cartilage with regular surface, seamless integration with neighboring naïve cartilage, and reconstruction of trabecular subchondral bone. Interpretation Even with intensive investigation, MSC-based cell therapy has not yet been established in experimental cartilage repair. Our model using cynomolgus macaques had optimized conditions, and the method using MSCs is superior to other experimental settings, allowing the possibility that the procedure might be introduced to future clinical practice. PMID:25175660

  4. The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model

    PubMed Central

    Yamaguchi, Shoki; Aoyama, Tomoki; Ito, Akira; Nagai, Momoko; Iijima, Hirotaka; Tajino, Junichi; Zhang, Xiangkai; Kiyan, Wataru; Kuroki, Hiroshi

    2016-01-01

    The repair of articular cartilage is challenging owing to the restriction in the ability of articular cartilage to repair itself. Therefore, cell supplementation therapy is possible cartilage repair method. However, few studies have verified the efficacy and safety of cell supplementation therapy. The current study assessed the effect of exercise on early the phase of cartilage repair following cell supplementation utilizing mesenchymal stromal cell (MSC) intra-articular injection. An osteochondral defect was created on the femoral grooves bilaterally of Wistar rats. Mesenchymal stromal cells that were obtained from male Wistar rats were cultured in monolayer. After 4 weeks, MSCs were injected into the right knee joint and the rats were randomized into an exercise or no-exercise intervention group. The femurs were divided as follows: C group (no exercise without MSC injection); E group (exercise without MSC injection); M group (no exercise with MSC injection); and ME group (exercise with MSC injection). At 2, 4, and 8 weeks after the injection, the femurs were sectioned and histologically graded using the Wakitani cartilage repair scoring system. At 2 weeks after the injection, the total histological scores of the M and ME groups improved significantly compared with those of the C group. Four weeks after the injection, the scores of both the M and ME groups improved significantly. Additionally, the scores in the ME group showed a significant improvement compared to those in the M group. The improvement in the scores of the E, M, and ME groups at 8 weeks were not significantly different. The findings indicate that exercise may enhance cartilage repair after an MSC intra-articular injection. This study highlights the importance of exercise following cell transplantation therapy. PMID:26968036

  5. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model

    PubMed Central

    Boakye, Lorraine A; Ross, Keir A; Pinski, John M; Smyth, Niall A; Haleem, Amgad M; Hannon, Charles P; Fortier, Lisa A; Kennedy, John G

    2015-01-01

    AIM: To explore the effect of platelet-rich plasma on protein expression patterns of transforming growth factor-beta1 (TGF-β1) in cartilage following autologous osteochondral transplantation (AOT) in a rabbit knee cartilage defect model. METHODS: Twelve New Zealand white rabbits received bilateral AOT. In each rabbit, one knee was randomized to receive an autologous platelet rich plasma (PRP) injection and the contralateral knee received saline injection. Rabbits were euthanized at 3, 6 and 12 wk post-operatively. Articular cartilage sections were stained with TGF-β1 antibody. Histological regions of interest (ROI) (left, right and center of the autologous grafts interfaces) were evaluated using MetaMorph. Percentage of chondrocytes positive for TGF-β1 was then assessed. RESULTS: Percentage of chondrocytes positive for TGF-β1 was higher in PRP treated knees for selected ROIs (left; P = 0.03, center; P = 0.05) compared to control and was also higher in the PRP group at each post-operative time point (P = 6.6 × 10-4, 3.1 × 10-4 and 7.3 × 10-3 for 3, 6 and 12 wk, respectively). TGF-β1 expression was higher in chondrocytes of PRP-treated knees (36% ± 29% vs 15% ± 18%) (P = 1.8 × 10-6) overall for each post-operative time point and ROI. CONCLUSION: Articular cartilage of rabbits treated with AOT and PRP exhibit increased TGF-β1 expression compared to those treated with AOT and saline. Our findings suggest that adjunctive PRP may increase TGF-β1 expression, which may play a role in the chondrogenic effect of PRP in vivo. PMID:26716092

  6. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    PubMed Central

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The objectives of this study were to further analyze OCA and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral (ScB) and trabecular (TB) bone structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCA was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCA was lower than Non-Op and other OCA. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCA did not vary compared to Non-Op, but BS/TV was lower. (2) OCA contained “basal” cysts, localized to deeper regions, some “subchondral” cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  7. Bone cysts after osteochondral allograft repair of cartilage defects in goats suggest abnormal interaction between subchondral bone and overlying synovial joint tissues.

    PubMed

    Pallante-Kichura, Andrea L; Cory, Esther; Bugbee, William D; Sah, Robert L

    2013-11-01

    The efficacy of osteochondral allografts (OCAs) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12months in vivo. The objectives of this study were to further analyze OCAs and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral bone (ScB) and trabecular bone (TB) structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCAs was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCAs was lower than Non-Op and other OCAs. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCAs did not vary compared to Non-Op, but BS/TV was lower. (2) OCAs contained "basal" cysts, localized to deeper regions, some "subchondral" cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  8. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: Short-term results

    PubMed Central

    2013-01-01

    Background A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N’-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Methods Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne’s gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. Results According to the total Wayne’s score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p < 0.05), although there were no significant differences between Groups I and IV at a 3.0-mm deep vacant space. The expression levels of type-2 collagen in Groups II and III were significantly higher (p < 0.05) than that in Group IV. Conclusions The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation. PMID:23369101

  9. Osteochondral grafting of knee joint using mosaicplasty.

    PubMed

    Wajid, Muhammad Abdul; Shah, Muhammad Idrees; Mohsin-e-Azam; Ahmad, Tashfeen

    2011-03-01

    Focal cartilage defects of articular surface-traumatic and degenerative are difficult to treat, thus a variety of surgical techniques have been developed and reported for treatment of such defects. Procedures such as Priddies perforations, microfracture, abrasion chondroplasty have shown long-term results which are often less than adequate. One of the reasons is that all these techniques lead to the formation of fibrocartilage which has inferior mechanical properties as compared to the native hyaline cartilage. Mosaicplasty is a procedure which aims at replacing the lost articular cartilage with hyaline cartilage including underlying bone support, thus providing adequate stability to the cartilage and better cartilage/bone integration. A young man underwent this procedure for recalcitrant knee pain at our institution. At 2 years follow-up, his knee pain has significantly improved. We hereby present medium term results (2 years) of this first case report in local literature.

  10. Thick-osteochondral Flap Deepening Trochleoplasty for Patellar Instability

    PubMed Central

    Donel, Simon; Ali, Khameinei; Smith, Dr. Tobi; McNamara, Iain

    2016-01-01

    Aims and Objectives: In patients with patellar instability and severe trochlear dysplasia, trochleoplasty has become increasingly used as part of the surgical management. The aim to report the mid-term results of this trochleoplasty including the sports and exercise activities of the cohort. Our hypothesis was that the operation would improve knee function and lead to an increase in sports participation in the patients. Materials and Methods: Between 1995 and 2010 the thick-flap deepening trochleoplasty was performed in 90 patients (107 knees) with severe trochlear dysplasia. Data was collected prospectively pre-operatively, at 6 weeks and 1-year follow-up. A standard pre-operative clinical assessment that included assessment of patellar apprehension , patellar tracking and patellofemoral crepitus. Post-operative outcome scores were performed by postal questionnaire and collected between June and December 2013, to determine the clinical and functional outcomes, including sports and exercise participation at a minimum of 2 years, with complete data available in 92%. Results: With a minimum follow-up of 2 years, average of 6 years (range 2 to 19 years). The Kujala score had a median and interquartile range (IQR) of 63 (47-75) pre-operatively rising to 79 (68-91) at 1 year follow-up and 84 (73-92) at final follow-up (p< 0.05). Seventy-two per cent were satisfied with their knee function at 1 year follow-up rising to 79% at final follow-up (p <0.0001). Sports and exercise participation increased from 36 patients (40%) pre-operatively to 60 (67%) at final follow-up. The numbers involved in competitions increased slightly from 10 (11%) to 11 (12%). Of those sports that involved twisting (e.g. soccer, cricket, badminton), participation increased from 16 (18%) to 22 (24%), whereas non-twisting sports (e.g. running, swimming, cycling) increased from 24 (27%) to 47 (52%) of whom 14 (16%) used walking as exercise. Conclusion: The thick-flap deepening trochleoplasty improves the clinical and functional outcomes for patients with symptomatic patellar instability with severe trochlear dysplasia. These results improve over time and beyond the 1 year clinical follow-up. However trochleoplasty does not lead to a significant improvement in sports participation at a competitive level. It does improve the sports and exercise patient participation, principally in non-twisting sports activities.

  11. The Potential of Encapsulating “Raw Materials” in 3D Osteochondral Gradient Scaffolds

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, BanuPriya; Sutherland, Amanda; Detamore, Michael S.

    2015-01-01

    Scaffolds with continuous gradients in material composition and bioactive signals enable a smooth transition of properties at the interface. Components like chondroitin sulfate (CS) and bioactive glass (BG) in 3D scaffolds may serve as “raw materials” for synthesis of new extracellular matrix (ECM), and may have the potential to completely or partially replace expensive growth factors. We hypothesized that scaffolds with gradients of ECM components would enable superior performance of engineered constructs. Raw material encapsulation altered the appearance, structure, porosity, and degradation of the scaffolds. They allowed the scaffolds to better retain their 3D structure during culture and provided a buffering effect to the cells in culture. Following seeding of rat mesenchymal stem cells, there were several instances where glycosaminoglycan (GAG), collagen, or calcium contents were higher with the scaffolds containing raw materials (CS or BG) than with those containing transforming growth factor (TGF)-β3 or bone morphogenetic protein (BMP)-2. It was also noteworthy that a combination of both CS and TGF-β3 increased the secretion of collagen type II. Moreover, cells seeded in scaffolds containing opposing gradients of CS/TGF-β3 and BG/BMP-2 produced clear regional variations in the secretion of tissue-specific ECM. The study demonstrated raw materials have the potential to create a favorable microenvironment for cells; they can significantly enhance the synthesis of certain extracellular matrix (ECM) components when compared to expensive growth factors; either alone or in combination with growth factors they can enhance the secretion of tissue specific matrix proteins. Raw materials are promising candidates that can be used to either replace or be used in combination with growth factors. Success with raw materials in lieu of growth factors could have profound implications in terms of lower cost and faster regulatory approval for more rapid translation of regenerative medicine products to the clinic. PMID:24293388

  12. The Use of MRI Modeling to Enhance Osteochondral Transfer in Segmental Kienböck's Disease.

    PubMed

    Barber, Lauren; Koff, Matthew F; Virtue, Patrick; Lipman, Joseph P; Hotchkiss, Robert J; Potter, Hollis G

    2012-04-01

    Kienböck's disease, defined as avascular necrosis of the lunate, is a relatively rare condition with a poorly understood etiology. Conservative and invasive treatments for Kienböck's disease exist, including wrist immobilization, surgical joint-leveling procedures, vascularized bone grafting, proximal row carpectomy, and total wrist arthrodesis. Staging Kienböck's disease using radiography assumes near complete avascularity of the lunate. The staging distinguishes only the "state of collapse" in an ordinal classification scheme and does not allow localization or indicate partial involvement of the lunate, which the image contrast from MRI may provide. In this short communication, we report the treatment of a patient's Kienböck's disease by combining MRI with mathematical modeling to optimize the congruency between the curvature of donor and recipient sites of an autologous osteoarticular plug transfer. Follow-up MRI and radiographs at 1 year postoperatively demonstrated gradual graft incorporation and bone healing. The purpose of this study was to describe the feasibility of a novel surgical technique. The results indicate that donor site selection for autologous osteoarticular transfer using a quantitative evaluation of articular surface curvature may be beneficial for optimizing the likelihood for restoring the radius of curvature and thus joint articulation following cartilage repair.

  13. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    PubMed Central

    Sutherland, Amanda J.; Beck, Emily C.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration. PMID:25965981

  14. Genetics of osteochondral disease and its relationship with meat quality and quantity, growth, and feed conversion traits in pigs.

    PubMed

    Kadarmideen, H N; Schwörer, D; Ilahi, H; Malek, M; Hofer, A

    2004-11-01

    The main objective of this research was to estimate heritabilities of seven osteochondrosis (OC) lesions in station-tested pigs and their genetic and phenotypic correlations with four meat quality (MQ) traits, the percentage of premium cuts (PPC), daily weight gain (DWG), and feed conversion ratio (FCR). Observed OC lesions were on the head of humerus (HK), condylus medialis humeri (CMH), condylus lateralis humeri (CLH), radius and ulna proximal (RUP), distal epiphyseal cartilage of ulna (DEU), head of femur (FK), and condylus medialis femoris (CMF). Meat quality traits were i.m. fat (IMF), muscle pH at 1 h after slaughter (pH1), muscle pH at 30 h after slaughter (pH30), and light reflectance on muscle (H30). The data set comprised 2,710 animals, of which 1,291 animals had OC records. All traits were analyzed by multiple-trait linear mixed model, with the animal's genetic and common litter effects as random. Fixed effects in the model varied between traits. Each OC lesion was further analyzed by a univariate generalized linear mixed model or, equivalently, "threshold models," assuming logistic, probit (normal), and Poisson distributions of the underlying "liability" to the disease. For OC lesions, estimates of heritability were low on the original "incidence" scale (0.06 for HK to 0.16 for CLH) and moderate to high on the liability scale (0.08 to 0.42). Genetic correlations (r(g)) between OC lesions and most MQ traits and PPC were generally unfavorable. Significant r(g) were -0.44 for DWG-CMH, 0.31 for DWG-CMF, 0.40 for FCR-HK, 0.21 for PPC-CLH, 0.32 for PPC-RUP, 0.30 for PPC-CMF, -0.54 for pH1-CLH, 0.47 for pH1-DEU, -0.34 for pH30-CMH, 0.58 for pH30-DEU, -0.50 for H30-HK, -0.31 for H30-DEU, and 0.31 for H30-CMF. Genetic susceptibilities to some OC lesions within the front leg were positively related to each other (r(g) range = 0.57 to 0.69), but r(g) between front and hind leg OC lesions were mostly negative (range = -0.21 to -0.40). Estimated h2 was 0.60 for PPC, and ranged from 0.12 to 0.66 for MQ traits, 0.28 for DWG, and 0.42 for FCR. Genetic correlations among meat quality and quantity traits ranged from -0.66 to 0.37. This is the first study to report genetic and phenotypic correlations between OC lesions and several meat quality and quantity traits in pigs. These findings will be useful to pig industry, especially in designing breeding programs for robust pigs. PMID:15542457

  15. Correction of infraorbital and malar deficiency using costal osteochondral graft along with orthognathic surgery in Crouzon syndrome.

    PubMed

    Song, Hyunsuk; Park, Myong Chul; Lee, Il Jae; Park, Dong Ha

    2014-09-01

    In syndromic craniosynostosis, such as Crouzon syndrome, midfacial hypoplasia can cause exophthalmos and concave facial profile. Though midfacial hypoplasia in Crouzon syndrome patients can be treated with midface advancement, known as a Le Fort II or Le Fort III osteotomy, such method can change nasal appearance and frequently fails to achieve class I occlusion after surgery. This report presents a case of an aesthetically and functionally successful midfacial augmentation using rib and cartilage graft along with orthognathic surgery (Le fort I and bilateral sagittal split ramus osteotomy) for patients with Crouzon syndrome. The patient was a 21-year-old male with Crouzon syndrome, who had undergone augmentation rhinoplasty 2 years ago. His main issues were midfacial retrusion and mild anterior open bite and cross bite and, furthermore, did not want any change in his nasal appearance. To augment midfacial volume, rib bone graft was inserted on the inferior orbital rim and costal cartilage graft was done on the zygomatic area. The costal osteocartilage was fixed with titanium screws. Additionally, Le Fort I osteotomy and bilateral sagittal split ramus osteotomy were done to treat the anterior open bite and cross bite. The maxillary segment was advanced 2 mm and posteriorly impacted 2.5 mm. Then, 5 mm of mandibular setback was done and the maxillomandibular segment was rotated clockwise. Finally, genioplasty with 5-mm advancement was done to compensate for the chin retrusion after performing the mandibular setback. The operation took 425 minutes and estimated blood loss was 500 mL. After 6 months since surgery, the patient had convex facial profile and class I occlusion. For the patient with mild midface hypoplasia, good nasal profile, and malocclusion, rib bone graft along with Le Fort I and bilateral sagittal ramus osteotomy can be a good surgical modality. PMID:25153066

  16. Disease-specific clinical problems associated with the subchondral bone.

    PubMed

    Pape, Dietrich; Filardo, Giuseppe; Kon, Elisaveta; van Dijk, C Niek; Madry, Henning

    2010-04-01

    The subchondral bone is involved in a variety of diseases affecting both the articular cartilage and bone. Osteochondral defects in distinct locations and of variable sizes are the final results of different etiologies. These include traumatic osteochondral defects, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Traumatic osteochondral defects are caused by osteochondral fractures, separating an osteochondral fragment that includes articular cartilage and both subchondral and trabecular bone from the joint surface. In osteochondritis dissecans, the disease originates in the subchondral bone and secondarily affects the articular cartilage. Location, stage, size, and depth of osteochondral lesions play a role in the treatment of traumatic osteochondral defects and osteochondritis dissecans. Surgical options include fragment refixation, transplantation of osteochondral autografts, or bone restoration by impacted cancellous bone grafts combined with autologous chondrocyte transplantation. An insufficiency fracture of the subchondral bone may be the initiating factor of what was formerly believed to be a spontaneous osteonecrosis of the knee (SPONK). Recent histopathological studies suggest that each stage of SPONK reflects different types of bone repair reactions following a fracture of the subchondral bone plate. Osteoarthritis is a disease that does affect not only the articular cartilage, but also the subchondral bone. Reconstructive surgical techniques aim at preserving joint function, inducing fibrocartilaginous repair, and at correcting malalignment. This review summarizes the current status of the clinical treatment of traumatic osteochondral defects, osteochondritis dissecans, osteonecrosis, and osteoarthritis as they affect the subchondral bone region and its adjacent structures.

  17. Arthroscopic management of talar dome lesions using a transmalleolar approach.

    PubMed

    Grady, John; Hughes, David

    2006-01-01

    Surgical treatment of posteromedial talar dome lesions is frequently necessary for Berndt and Harty grade IV osteochondral defects and nondisplaced osteochondral fragments resistant to conservative modalities. When operative intervention is indicated, the approach and management can be complicated by the location and extent of the injury. The operative technique we advocate allows direct exposure of the lesion and minimizes damage to healthy articular cartilage and surrounding soft tissue. Use of a drill guide assists the surgeon in precisely placing a transmalleolar portal through the tibia for subchondral drilling of osteochondral defects when the lesions are inaccessible through traditional arthroscopic portals. PMID:16707640

  18. Treatment and Diagnosis of Panner's Disease. A Report of Three Cases.

    PubMed

    Sakata, Ryosuke; Fujioka, Hiroyuki; Tomatsuri, Masaki; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Kurosaka, Masahiro

    2015-01-01

    Avascular necrosis of the humeral capitellum (Panner's disease), a relatively rare disorder in the juvenile. We diagnosed three patients using radiographs and magnetic resonance imaging, who were previously misdiagnosed with osteochondritis dissecans of the humeral capitellum. All patients were successfully treated by restriction of sports activities using the upper extremities. It is often difficult to distinguish Panner's disease from osteochondritis dissecans of the humeral capitellum. Panner's disease has been reported to occur in boys between 7 and 10 years old, which is younger than susceptible age of osteochondritis dissecans. In MRI, low intensity area in the ossification center of the humeral capitellum in T1-weighted image is useful findings for diagnosis. For the treatment, the conservative treatment has been recommended in the early stage of Panner's disease, while surgical intervention is required in some cases of osteochondritis dissecans. PMID:26628012

  19. [Stage oriented surgical cartilage therapy. Current situation].

    PubMed

    Braun, S; Vogt, S; Imhoff, A B

    2007-06-01

    Chondral or osteochondral lesions are typical injuries in orthopaedics and traumatology. Since there is no regeneration of damaged articular cartilage, these lesions can lead to premature osteoarthritis. Therefore, an adequate therapy for these injuries is an important goal. Nowadays, common methods in cartilage therapy are procedures for the recruitment of mesenchymal stem cells: autologous osteochondral transplantation and autologous chondrocyte transplantation. Currently, autologous osteochondral transplantation is the only procedure that allows the replacement of the defect with hyaline cartilage. However, this procedure has the problem of donor-site morbidity and limited availability of transplants. Stem cell recruiting procedures and autologous chondrocyte transplantation normally achieve a regeneration of the defect with only fibrocartilage tissue, but both can achieve good medium-term clinical results. Each of these therapeutic principles has certain major indications. In order to select an adequate therapy, the classification of chondral or osteochondral lesion is needed. From a multiplicity of classification systems, those of the ICRS are of particular clinical relevance.

  20. [Stage oriented surgical cartilage therapy. Current situation].

    PubMed

    Vogt, S; Braun, S; Imhoff, A B

    2007-10-01

    Chondral or osteochondral lesions are typical injuries in orthopaedics and traumatology. Since there is no regeneration of damaged articular cartilage, these lesions can lead to premature osteoarthritis. Therefore, an adequate therapy for these injuries is an important goal. Nowadays, common methods in cartilage therapy are procedures for the recruitment of mesenchymal stem cells: autologous osteochondral transplantation and autologous chondrocyte transplantation. Currently, autologous osteochondral transplantation is the only procedure that allows the replacement of the defect with hyaline cartilage. However, this procedure has the problem of donor-site morbidity and limited availability of transplants. Stem cell recruiting procedures and autologous chondrocyte transplantation normally achieve a regeneration of the defect with only fibrocartilage tissue, but both can achieve good medium-term clinical results. Each of these therapeutic principles has certain major indications. In order to select an adequate therapy, the classification of chondral or osteochondral lesion is needed. From a multiplicity of classification systems, those of the ICRS are of particular clinical relevance.

  1. Treatment and Diagnosis of Panner's Disease. A Report of Three Cases.

    PubMed

    Sakata, Ryosuke; Fujioka, Hiroyuki; Tomatsuri, Masaki; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Kurosaka, Masahiro

    2015-01-01

    Avascular necrosis of the humeral capitellum (Panner's disease), a relatively rare disorder in the juvenile. We diagnosed three patients using radiographs and magnetic resonance imaging, who were previously misdiagnosed with osteochondritis dissecans of the humeral capitellum. All patients were successfully treated by restriction of sports activities using the upper extremities. It is often difficult to distinguish Panner's disease from osteochondritis dissecans of the humeral capitellum. Panner's disease has been reported to occur in boys between 7 and 10 years old, which is younger than susceptible age of osteochondritis dissecans. In MRI, low intensity area in the ossification center of the humeral capitellum in T1-weighted image is useful findings for diagnosis. For the treatment, the conservative treatment has been recommended in the early stage of Panner's disease, while surgical intervention is required in some cases of osteochondritis dissecans.

  2. Talar fractures: three case studies.

    PubMed

    Jimenez, A L; Morgan, J H

    2001-09-01

    Three case studies of fractures are presented that demonstrate the potential morbidity that these injuries can cause as well as the acceptable outcomes if treated appropriately. Two of the cases are talar fracture dislocations; the third is an osteochondral fracture of the talus. The importance of early treatment with open reduction and internal fixation is demonstrated. Success following surgical intervention in a nonhealed osteochondral fracture of the talus is also demonstrated.

  3. Dynamic impact force and association with structural damage to the knee joint: an ex-vivo study.

    PubMed

    Brill, Richard; Wohlgemuth, Walther A; Hempfling, Harald; Bohndorf, Klaus; Becker, Ursula; Welsch, Ulrich; Kamp, Alexander; Roemer, Frank W

    2014-12-01

    No systematic, histologically confirmed data are available concerning the association between magnitude of direct dynamic impact caused by vertical impact trauma and the resulting injury to cartilage and subchondral bone. The aim of this study was to investigate the association between dynamic impact and the resulting patterns of osteochondral injury in an ex-vivo model. A mechanical apparatus was employed to perform ex-vivo controlled dynamic vertical impact experiments in 110 pig knees with the femur positioned in a holding fixture. A falling body with a thrust plate and photo sensor was applied. The direct impact to the trochlear articular surface was registered and the resulting osteochondral injuries macroscopically and histologically correlated and categorized. The relationship between magnitude of direct impact and injury severity could be classified as stage I injuries (impact <7.3MPa): elastic deformation, no histological injury; stage II injuries (impact 7.3-9.6MPa): viscoelastic imprint of the cartilaginous surface, subchondral microfractures; stage III injuries (impact 9.6-12.7MPa): disrupted cartilage surface, chondral fissures and subchondral microfractures; stage IV injuries (impact >12.7MPa): osteochondral impression, histologically imprint and osteochondral macrofractures. The impact ranges and histologic injury stages determined from this vertical dynamic impact experiment allowed for a biomechanical classification of direct, acute osteochondral injury. In contrast to static load commonly applied in ex-vivo experiments, dynamic impact more realistically represents actual trauma to the knee joint.

  4. Epidemiology and imaging of the subchondral bone in articular cartilage repair.

    PubMed

    Menetrey, Jacques; Unno-Veith, Florence; Madry, Henning; Van Breuseghem, Iwan

    2010-04-01

    Articular cartilage and the subchondral bone act as a functional unit. Following trauma, osteochondritis dissecans, osteonecrosis or osteoarthritis, this intimate connection may become disrupted. Osteochondral defects-the type of defects that extend into the subchondral bone-account for about 5% of all articular cartilage lesions. They are very often caused by trauma, in about one-third of the cases by osteoarthritis and rarely by osteochondritis dissecans. Osteochondral defects are predominantly located on the medial femoral condyle and also on the patella. Frequently, they are associated with lesions of the menisci or the anterior cruciate ligament. Because of the close relationship between the articular cartilage and the subchondral bone, imaging of cartilage defects or cartilage repair should also focus on the subchondral bone. Magnetic resonance imaging is currently considered to be the key modality for the evaluation of cartilage and underlying subchondral bone. However, the choice of imaging technique also depends on the nature of the disease that caused the subchondral bone lesion. For example, radiography is still the golden standard for imaging features of osteoarthritis. Bone scintigraphy is one of the most valuable techniques for early diagnosis of spontaneous osteonecrosis about the knee. A CT scan is a useful technique to rule out a possible depression of the subchondral bone plate, whereas a CT arthrography is highly accurate to evaluate the stability of the osteochondral fragment in osteochondritis dissecans. Particularly for the problem of subchondral bone lesions, image evaluation methods need to be refined for adequate and reproducible analysis. This article highlights recent studies on the epidemiology and imaging of the subchondral bone, with an emphasis on magnetic resonance imaging.

  5. Autologous Matrix-Induced Chondrogenesis (AMIC): Combining Microfracturing and a Collagen I/III Matrix for Articular Cartilage Resurfacing.

    PubMed

    Benthien, J P; Behrens, P

    2010-01-01

    Options for the treatment of cartilage defects include chondral resurfacing with abrasion, debridement, autologous chondrocyte transplantation (ACT), matrix-induced chondrocyte transplantation (MACI), or osteochondral autologous transplantation (OATS). This article describes the new method of autologous matrix-induced chondrogenesis (AMIC), a 1-step procedure combining subchondral microfracture with the fixation of a collagen I/III membrane by a partially autologous fibrin glue. Indications and contraindications are provided; a technical note is given. This method is primarily applied in osteochondral lesions of the knee and ankle joints; other joints may qualify.

  6. Mineral density and penetration strength of the subchondral bone plate of the talar dome: high correlation and specific distribution patterns.

    PubMed

    Leumann, André; Valderrabano, Victor; Hoechel, Sebastian; Göpfert, Beat; Müller-Gerbl, Magdalena

    2015-01-01

    The subchondral bone plate plays an important role in stabilizing the osteochondral joint unit and in the pathomechanism of osteochondral lesions and osteoarthritis. The objective of the present study was to measure the mineral density distribution and subchondral bone plate penetration strength of the talar dome joint facet to display and compare the specific distribution patterns. Ten cadaver specimens were used for computed tomography (CT) scans, from which densitograms were derived using CT-osteoabsorptiometry, and for mechanical indentation testing from which the penetration strength was obtained. Our results showed 2 different distribution patterns for mineral density and penetration strength. Of the 10 specimens, 6 (60%) showed bicentric maxima (anteromedially and anterolaterally), and 4 (40%) showed a monocentric maximum (either anteromedially or anterolaterally). A highly significant correlation (p < .0001) for both methods confirmed that the mineral density relied on local load characteristics. In conclusion, the biomechanical properties of the subchondral bone plate of the talar dome joint facet showed specific distribution patterns. CT-osteoabsorptiometry is a reliable method to display the mineral density distribution noninvasively. We recommend CT-osteoabsorptiometry for noninvasive analysis of the biomechanical properties of the subchondral bone plate in osteochondral joint reconstruction and the prevention and treatment of osteoarthritis and osteochondral lesions.

  7. [Complex approach to the treatment of the diskal hernia of lumbosacral spine].

    PubMed

    Chekhonatskiĭ, A A; Chekhonatskaia, M L; Sharova, E V; Toma, A S

    2010-08-01

    21 patients with lumbosacral osteochondritis and diskal hernia were treated. Diagnosis was verified with the help of radiological method. The spinal motion segment after the hernia excision was fixed with the help of fixator with the shape memory for the prevention of post-operation instability. Thioctic acid showed the high effectiveness in complex treatment of radiculopathy.

  8. Locking of the metacarpophalangeal joint of the thumb by a loose body: a case report.

    PubMed

    Ueda, Daisuke; Ikeda, Masayoshi; Oka, Yoshinori

    2006-01-01

    We report a case with locking of the metacarpophalangeal (MP) joint of the thumb in a 15-year-old high school baseball catcher, which was caused by an intra-articular loose body arising from osteochondritis dissecans. The loose body was removed arthroscopically, enabling early return to full MP joint function.

  9. Anterior angulation deformity of the radial head. An unusual lesion occurring in juvenile baseball players.

    PubMed

    Ellman, H

    1975-09-01

    Four cases of an unusual angulation deformity of the radial head were seen in juvenile baseball players, with or without associated lesions of osteochondritis in the contiguous capitellum of the humerus and loose-body formation. The established deformity did not show a tendency toward anatomical restitution. In each case, symptoms produced by this deformity were noted to appear in association with athletic activity.

  10. Corrigendum.

    PubMed

    2016-08-01

    Kida Y, Morihara T, Kotoura Y, Hojo T, Tachiiri H, Sukenari T, Iwata Y, Furukawa R, Oda R, Arai Y, Fujiwara H, Kubo T. Prevalence and clinical characteristics of osteochondritis dissecans of the humeral capitellum among adolescent baseball players. Am J Sports Med. 2014;42(8):1963-1971. (Original DOI: 10.1177/0363546514536843).

  11. Arthroscopic Distal Clavicular Autograft for Treating Shoulder Instability With Glenoid Bone Loss

    PubMed Central

    Tokish, John M.; Fitzpatrick, Kelly; Cook, Jay B.; Mallon, William J.

    2014-01-01

    Glenoid bone loss is a significant risk factor for failure after arthroscopic shoulder stabilization. Multiple options are available to reconstruct this bone loss, including coracoid transfer, iliac crest bone graft, and osteoarticular allograft. Each technique has strengths and weaknesses. Coracoid grafts are limited to anterior augmentation and, along with iliac crest, do not provide an osteochondral reconstruction. Osteochondral allografts do provide a cartilage source but are challenged by the potential for graft rejection, infection, cost, and availability. We describe the use of a distal clavicular osteochondral autograft for bony augmentation in cases of glenohumeral instability with significant bone loss. This graft has the advantages of being readily available and cost-effective, it provides an autologous osteochondral transplant with minimal donor-site morbidity, and it can be used in both anterior and posterior bone loss cases. The rationale and technical aspects of arthroscopic performance will be discussed. Clinical studies are warranted to determine the outcomes of the use of the distal clavicle as a graft in shoulder instability. PMID:25264509

  12. Imaging of Common Arthroscopic Pathology of the Ankle.

    PubMed

    Grambart, Sean T

    2016-10-01

    Arthroscopy of the ankle is used in the treatment and diagnosis of a spectrum of intra-articular pathology including soft tissue and osseous impingement, osteochondral lesions, arthrofibrosis, and synovitis. To help identify the correct pathology, imaging techniques are often used to aid the surgeon in diagnosing pathology and determining best treatment options. This article discusses the use of imaging in various ankle pathologies.

  13. Corrigendum.

    PubMed

    2016-08-01

    Kida Y, Morihara T, Kotoura Y, Hojo T, Tachiiri H, Sukenari T, Iwata Y, Furukawa R, Oda R, Arai Y, Fujiwara H, Kubo T. Prevalence and clinical characteristics of osteochondritis dissecans of the humeral capitellum among adolescent baseball players. Am J Sports Med. 2014;42(8):1963-1971. (Original DOI: 10.1177/0363546514536843). PMID:27481824

  14. Osteomyelitis of the head and neck: sequential radionuclide scanning in diagnosis and therapy

    SciTech Connect

    Strauss, M.; Kaufman, R.A.; Baum, S.

    1985-01-01

    Sequential technetium and gallium scans of the head and neck were used to confirm the diagnosis of osteomyelitis and as an important therapeutic aid to delineate the transformation of active osteomyelitis to inactive osteomyelitis in 11 cases involving sites in the head and neck. Illustrative cases are presented of frontal sinus and cervical spine osteomyelitis and laryngeal osteochondritis.

  15. Dorsal radiocarpal fracture dislocation.

    PubMed

    Tanzer, T L; Horne, J G

    1980-11-01

    A case of a rare radiocarpal fracture dislocation in a 17-year-old girl, with persisting loss of radiocarpal joint space following reduction under hematoma block, is described. The wrist joint was exposed, and two osteochondral fragments were rotated 90 degrees and secured with 2.7-mm AO screws. Satisfactory healing followed 3 months postinjury.

  16. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation.

  17. The pediatric knee: current concepts in sports medicine.

    PubMed

    Beck, Nicholas A; Patel, Neeraj M; Ganley, Theodore J

    2014-01-01

    As the popularity and intensity of children's athletics have increased, so has the risk for knee injuries. Fractures of the tibial eminence may be treated operatively or nonoperatively depending on fracture classification, but arthrofibrosis is a potentially significant complication. Anterior cruciate ligament rupture presents treatment challenges as regards the optimal timing and method of reconstruction. A number of novel reconstructive techniques have been developed to minimize risks to the physes in this population. Recent studies have focused on the prognosis, surgical indications, and operative techniques for osteochondritis dissecans in children. A number of authors have also sought to better-define the optimal diagnostic testing and management of patellar dislocation. In this review, we provide an update on current concepts for tibial eminence fractures, anterior cruciate ligament injuries, osteochondritis dissecans of the knee, and patellar dislocation in young athletes. PMID:24045503

  18. Paediatric intrasubstance posterior cruciate ligament rupture.

    PubMed

    Scott, Chloe E H; Murray, Alastair W

    2011-01-01

    The authors present the case of a 4-year-old boy who sustained an intrasubstance posterior cruciate ligament (PCL) tear whist trampolining. He was managed non-operatively with return to full function by 8 months. A high index of suspicion is required when assessing paediatric hyperflexion/extension injuries at the knee as ligamentous injury may occur without osteochondral fracture and may be missed on routine radiographs. Early MRI can identify such injuries in addition to osteochondral avulsions which are often amenable to acute internal fixation. In the case of paediatric intrasubstance PCL tears, it appears that non-operative management yields a good functional outcome in the short term in the skeletally immature.

  19. Cartilage transplantation techniques for talar cartilage lesions.

    PubMed

    Mitchell, Matthew E; Giza, Eric; Sullivan, Martin R

    2009-07-01

    Talar articular cartilage is known to differ significantly from knee cartilage. Even so, recommendations for the treatment of talar cartilage lesions have been based on strategies for the knee. Arthroscopic management of osteochondral lesions of the talus is well documented. Results have been favorable with reparative techniques such as débridement with curettage and débridement with drilling, whether undertaken via early open techniques or more recent arthroscopic procedures. Salvage of failed reparative techniques is controversial. Early efforts to salvage failed débridement focused on osteochondral allografts and autografts that used the knee as a donor site. Results of these restorative techniques have been favorable, but concerns have been raised regarding knee donor site morbidity, the use of malleolar osteotomy, and incomplete restoration of the talar articular surface. More recent restorative techniques developed for the knee have been adapted for the ankle, such as autologous chondrocyte implantation and matrix-induced autologous chondrocyte implantation.

  20. Clinics in diagnostic imaging (163). Transient lateral patellar dislocation with trochlear dysplasia

    PubMed Central

    Zhang, Junwei; Lee, Chin Hwee

    2015-01-01

    A 14-year-old girl presented with left knee pain and swelling after an injury. Magnetic resonance (MR) imaging showed a transient lateral patellar dislocation with patellar osteochondral fracture, medial patellofemoral ligament tear and underlying femoral trochlear dysplasia. Open reduction and internal fixation of the osteochondral fracture, plication of the medial patellar retinaculum and lateral release were performed. As lateral patellar dislocation is often clinically unsuspected, an understanding of its characteristic imaging features is important in making the diagnosis. Knowledge of the various predisposing factors for patellar instability may also influence the choice of surgical management. We also discuss signs of acute injury and chronic instability observed on MR imaging, and the imaging features of anatomical variants that predispose an individual to lateral patellar dislocation. Treatment options and postsurgical imaging appearances are also briefly described. PMID:26512145

  1. Outcomes in orthopedics and traumatology: translating research into practice.

    PubMed

    de Moraes, Vinícius Ynoe; Ferrari, Paula Martins de Oliveira; Gracitelli, Guilherme Conforto; Faloppa, Flávio; Belloti, João Carlos

    2014-01-01

    Clinical research is focused in generating evidence that is feasible to be applicable to practitioners. However, translating research-focused evidence into practice may be challenging and often misleading. This article aims is to pinpoint these challenges and suggest some methodological safeguards, taking platelet-rich plasma therapies and knee osteochondral injuries as examples. Studies and systematic reviews involving the following concepts will be investigated: clinically relevant outcomes, systematic errors on sample calculation, internal and external validity. Relevant studies on platelet-rich plasma for muscle-tendon lesions and updates on osteochondral lesions treatment were included in this analysis. Authors and clinicians should consider these concepts for the implementation and application of dissemination of the best evidence. Research results should be challenged by a weighted analysis of its methodological soundness and applicability. Level of Evidence V, Therapeutic Studies - Investigating the Results of Treatment. PMID:25538481

  2. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  3. Donor’s site evaluation after restoration with autografts or synthetic plugs in rabbits

    PubMed Central

    Intzoglou, Konstantinos S; Mastrokalos, Dimitrios S; Korres, Dimitrios S; Papaparaskeva, Kleo; Koulalis, Dimitrios; Babis, George C

    2014-01-01

    AIM: To investigate donor site’s area histological and immunohistochemical knee cartilage appearances after resurfacing iatrogenic defects with biosynthetic plugs orautografts. METHODS: Thirty New Zealand White rabbits were used in this study. A full-thickness cylindrical defect of 4.5 mm (diameter) × 7 mm (depth) was created with a hand drill in the femoral groove of every animal. In Group A (n = 10) the defect of the donor site was repaired with a biosynthetic osteochondral plug, in Group B (n = 10) with an osteochondral autograft, while in Group C (control group of 10) rabbits were left untreated. RESULTS: Twenty-four weeks postoperatively, smooth articular cartilage was found macroscopically in some trocleas’ surfaces; in all others, an articular surface with discontinuities was observed. Twenty-eight out of 30 animals were found with predominantly viable chondrocytes leaving the remaining two -which were found only in the control group- with partially viable chondrocytes. However, histology revealed many statistical differences between the groups as far as the International Cartilage Repair Society (ICRS) categories are concerned. Immunofluoresence also revealed the presence of collagen II in all specimens of Group B, whereas in Group A collagen II was found in less specimens. In Group C collagen IIwas not found. CONCLUSION: The matrix, cell distribution, subchondral bone and cartilage mineralization ICRS categories showed statistically differences between the three groups. Group A was second, while group B received the best scores; the control group got the worst ICRS scores in these categories. So, the donor site area, when repairing osteochondral lesions with autografting systems, is better amended with osteochondral autograft rather than bone graft substitute implant. PMID:25232531

  4. [Surgical anatomy of the nose].

    PubMed

    Nguyen, P S; Bardot, J; Duron, J B; Jallut, Y; Aiach, G

    2014-12-01

    Thorough knowledge of the anatomy of the nose is an essential prerequisite for preoperative analysis and the understanding of surgical techniques. Like a tent supported by its frame, the nose is an osteo-chondral structure covered by a peri-chondroperiosteal envelope, muscle and cutaneous covering tissues. For didactic reasons, we have chosen to treat this chapter in the form of comments from eight key configurations that the surgeon should acquire before performing rhinoplasty.

  5. The extent and distribution of cell death and matrix damage in impacted chondral explants varies with the presence of underlying bone.

    PubMed

    Krueger, J A; Thisse, P; Ewers, B J; Dvoracek-Driksna, D; Orth, M W; Haut, R C

    2003-02-01

    Excessive mechanical loading can lead to matrix damage and chondrocyte death in articular cartilage. Previous studies on chondral and osteochondral explants have not clearly distinguished to what extent the degree and the distribution of cell death are dependent on the presence of an underlying layer of bone. The current study hypothesized that the presence of underlying bone would decrease the amount of matrix damage and cell death. Chondral and osteochondral explants were loaded to 30 MPa at a high rate of loading (approximately 600 MPa/s) or at a low rate of loading (30 MPa/s). After 24 hours in culture, matrix damage was assessed by the total length and average depth of surface fissures. The explants were also sectioned and stained for cell viability in the various layers of the cartilage. More matrix damage was documented in chondral than osteochondral explants for each rate of loading experiment. The total amount of cell death was also less in osteochondral explants than chondral explants. The presence of underlying bone significantly reduced the extent of cell death in all zones in low rate of loading tests. The percentage of cell death was also reduced in the intermediate zone and deep zones of the explant by the presence of the underlying bone for a high rate of loading. This study indicated that the presence of underlying bone significantly limited the degree of matrix damage and cell death, and also affected the distribution of dead cells through the explant thickness. These data may have relevance to the applicability of experimental data from chondral explants to the in situ condition.

  6. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  7. Osseous manifestations of elbow stress associated with sports activities.

    PubMed

    Gore, R M; Rogers, L F; Bowerman, J; Suker, J; Compere, C L

    1980-05-01

    The radiographic manifestations of musculoskeletal stress at the elbow associated with racket and throwing sports are reported in 29 symptomatic amateur, juvenile, and professional athletes. Five major categories of stress are identified: diffuse, humeral shaft, medial tension, lateral compression, and extension stress. The osseous changes produced by these stresses include bony hypertrophy, loose bodies, traction spur formation, osteochondral and humeral shaft fractures in the adult, and epiphyseal and apophyseal hypermaturity or avulsion in the youngster.

  8. Assessment and treatment of knee pain in the child and adolescent athlete.

    PubMed

    Yen, Yi-Meng

    2014-12-01

    Knee pain in children and adolescents is one of the most prevalent complaints in a pediatric practice, accounting for at least a third of musculoskeletal complaints. Accurate diagnosis requires an understanding of knee anatomy and patterns of knee injuries and skill in physical examination. This review covers the most common causes of knee pain in children and adolescents, including overuse issues, such as Osgood-Schlatter and osteochondritis dissecans, as well as traumatic injuries, including tibial spine fractures and anterior cruciate ligament injuries.

  9. Imaging of Common Arthroscopic Pathology of the Ankle.

    PubMed

    Grambart, Sean T

    2016-10-01

    Arthroscopy of the ankle is used in the treatment and diagnosis of a spectrum of intra-articular pathology including soft tissue and osseous impingement, osteochondral lesions, arthrofibrosis, and synovitis. To help identify the correct pathology, imaging techniques are often used to aid the surgeon in diagnosing pathology and determining best treatment options. This article discusses the use of imaging in various ankle pathologies. PMID:27599435

  10. Pediatric Elbow and Wrist Pathology Related to Sports Participation.

    PubMed

    Ellington, Matthew D; Edmonds, Eric W

    2016-10-01

    Pediatric overuse injuries are becoming more prevalent in today's society with more children competitively playing year-round sports at a younger age. The importance of prompt diagnosis and treatment is paramount to the treatment for these injuries, second only to rest and activity modification. This article will focus on overuse injuries of the upper extremity, specifically: little league elbow, elbow osteochondritis dissecans, and gymnast wrist. It will also discuss the pathophysiology, diagnosis, imaging, and treatment of each of these entities. PMID:27637661

  11. Up-to-date Review and Cases Report on Chondral Defects of Knee Treated by ACI Technique: Clinical-instrumental and Histological Results.

    PubMed

    Dell'Osso, Giacomo; Ghilardi, Marco; Bottai, Vanna; Bugelli, Giulia; Guido, Giulio; Giannotti, Stefano

    2015-05-01

    The limited regenerative potential of a full thickness defect of the knee joint cartilage has certainly conditioned the development of therapeutic strategies that take into account all the aspects of the healing process. The most common treatments to repair chondral and osteochondral lesions are bone marrow stimulation, osteochondral autograft transplantation, autologous matrix-induced chondrogenesis, and autologous chondrocyte implantation. We like to emphasize the difference between a chondral and an osteochondral lesion because the difference is sometimes lost in the literature. In the context of treatment of injuries of the knee joint cartilage, the second-generation autologous chondrocyte transplant is a consolidated surgical method alternative to other techniques. Our experience with the transplantation of chondrocytes has had exceptional clinical results. We report 2 complete cases of a group of 22 in knee and ankle. These 2 cases had histological and instrumental evaluation. We cannot express conclusions, but can only make considerations, stating that, with the clinical functional result being equal, we obtained an excellent macroscopic result in both cases of second look. Autologous chondrocyte implantation (ACI) is a multiple surgical procedure with expensive chondrocyte culture, but even with this limitation, we think that it must be the choice in treating chondral lesions, especially in young patients. PMID:26055026

  12. Pathology of articular cartilage and synovial membrane from elbow joints with and without degenerative joint disease in domestic cats.

    PubMed

    Freire, M; Meuten, D; Lascelles, D

    2014-09-01

    The elbow joint is one of the feline appendicular joints most commonly and severely affected by degenerative joint disease. The macroscopic and histopathological lesions of the elbow joints of 30 adult cats were evaluated immediately after euthanasia. Macroscopic evidence of degenerative joint disease was found in 22 of 30 cats (39 elbow joints) (73.33% cats; 65% elbow joints), and macroscopic cartilage erosion ranged from mild fibrillation to complete ulceration of the hyaline cartilage with exposure of the subchondral bone. Distribution of the lesions in the cartilage indicated the presence of medial compartment joint disease (most severe lesions located in the medial coronoid process of the ulna and medial humeral epicondyle). Synovitis scores were mild overall and correlated only weakly with macroscopic cartilage damage. Intra-articular osteochondral fragments either free or attached to the synovium were found in 10 joints. Macroscopic or histologic evidence of a fragmented coronoid process was not found even in those cases with intra-articular osteochondral fragments. Lesions observed in these animals are most consistent with synovial osteochondromatosis secondary to degenerative joint disease. The pathogenesis for the medial compartmentalization of these lesions has not been established, but a fragmented medial coronoid process or osteochondritis dissecans does not appear to play a role.

  13. Role of Demineralized Allograft Subchondral Bone in the Treatment of Shoulder Lesions of the Talus: Clinical Results With Two-Year Follow-Up.

    PubMed

    Galli, Melissa M; Protzman, Nicole M; Bleazey, Scott T; Brigido, Stephen A

    2015-01-01

    Cystic osteochondral lesions of the talus present a considerable challenge for foot and ankle surgeons. The purpose of the present study was to evaluate the effect of a medial malleolar osteotomy and implantation of demineralized allograft subchondral bone on pain and function 2 years after surgery. For inclusion, patients demonstrated radiographic evidence of a medial cystic full-thickness osteochondral defect of the talus and previously failed microfracture (N = 12). We hypothesized that improvements in pain and disability would be maintained across time. Compared with the preoperative values, 2 years after surgery, pain and disability had significantly reduced (p < .001). Significant reductions had occurred in postoperative pain from 6 months to 1 year (p = .001) and from 6 months to 2 years (p = .005). Similarly, significant reductions had occurred in postoperative disability from 6 months to 1 year (p = .008) and from 6 months to 2 years (p = .03). The reductions in postoperative pain and disability were maintained from 1 year to 2 years (p ≥ .79). Multiple regression analyses identified depression as a predictor of 2-year postoperative pain (R(2) = 0.36, p = .04). No variables were identified as significant predictors of postoperative disability at 2 years. Other than 1 previously reported peroneal deep venous thrombosis, no additional complications occurred. With successful graft incorporation, no inflammatory response, and no additional complications, the allograft subchondral plug appears to successfully treat osteochondral lesions of the talus and maintain improvements in pain and disability at intermediate follow-up.

  14. Management of articular cartilage defects of the knee.

    PubMed

    Bedi, Asheesh; Feeley, Brian T; Williams, Riley J

    2010-04-01

    Articular cartilage has a poor intrinsic capacity for healing. The goal of surgical techniques to repair articular cartilage injuries is to achieve the regeneration of organized hyaline cartilage. Microfracture and other bone marrow stimulation techniques involve penetration of the subchondral plate in order to recruit mesenchymal stem cells into the chondral defect. The formation of a stable clot that fills the lesion is of paramount importance to achieve a successful outcome. Mosaicplasty is a viable option with which to address osteochondral lesions of the knee and offers the advantage of transplanting hyaline cartilage. However, limited graft availability and donor site morbidity are concerns. Transplantation of an osteochondral allograft consisting of intact, viable articular cartilage and its underlying subchondral bone offers the ability to address large osteochondral defects of the knee, including those involving an entire compartment. The primary theoretical advantage of autologous chondrocyte implantation is the development of hyaline-like cartilage rather than fibrocartilage in the defect, which presumably leads to better long-term outcomes and longevity of the healing tissue. Use of synthetic scaffolds is a potentially attractive alternative to traditional cartilage procedures as they are readily available and, unlike allogeneic tissue transplants, are associated with no risk of disease transmission. Their efficacy, however, has not been proven clinically.

  15. The Biological Response following Autogenous Bone Grafting for Large-Volume Defects of the Knee

    PubMed Central

    DeLano, Mark C.; Spector, Myron; Jeng, Lily; Pittsley, Andrew; Gottschalk, Alexander

    2012-01-01

    Objective: This report focuses on the biological events occurring at various intervals following autogenous bone grafting of large-volume defects of the knee joint’s femoral condyle secondary to osteochondritis dissecans (OCD) or osteonecrosis (ON). It was hypothesized that the autogenous bone graft would integrate and the portion exposed to the articular surface would form fibrocartilage, which would endure for years. Methods: Between September 29, 1987 and August 8, 1994, there were 51 patients treated with autogenous bone grafting for large-volume osteochondral defects. Twenty-five of the 51 patients were available for long-term follow-up up to 21 years. Patient follow-up was accomplished by clinical opportunity and intentional research. Videotapes were available on all index surgeries for review and comparison. All had preoperative and postoperative plain film radiographs. Long-term follow-up included MRI up to 21 years. Second-look arthroscopy and biopsy were obtained on 14 patients between 8 weeks and 20 years. Results: Radiological assessment showed the autogenous bone grafts integrated with the host bone. The grafts retained the physical geometry of the original placement. MRI showed soft tissue covering the grafts in all cases at long-term follow-up. Interval biopsy showed the surface covered with fibrous tissue at 8 weeks and subsequently converted to fibrocartilage with hyaline cartilage at 20 years. Conclusion: Autogenous bone grafting provides a matrix for large osteochondral defects that integrates with the host bone and results in a surface repair of fibrocartilage and hyaline cartilage that can endure for up to 20 years. PMID:26069622

  16. Extra-articular Synovial Chondromatosis Eroding and Penetrating the Acromion.

    PubMed

    El Rassi, George; Matta, Jihad; Hijjawi, Ayman; Khair, Ousama Abou; Fahs, Sara

    2015-10-01

    Synovial chondromatosis of the shoulder is an uncommon disorder. It usually affects the glenohumeral joint and is characterized by metaplasia of the synovium leading to the formation of osteochondral loose bodies. Few cases of extra-articular subacromial synovial chondromatosis involving the rotator cuff tendon have been reported in the literature. The treatment of previously reported cases consisted of open bursectomy and removal of loose bodies. We report a case of subacromial synovial chondromatosis without rotator cuff involvement but with severe erosion and fracture of the acromion. Treatment consisted of shoulder arthroscopy to remove all loose bodies, total bursectomy, and debridement of the acromion. Potential benefits of arthroscopy were also evaluated. PMID:26697302

  17. Extra-articular Synovial Chondromatosis Eroding and Penetrating the Acromion

    PubMed Central

    El Rassi, George; Matta, Jihad; Hijjawi, Ayman; Khair, Ousama Abou; Fahs, Sara

    2015-01-01

    Synovial chondromatosis of the shoulder is an uncommon disorder. It usually affects the glenohumeral joint and is characterized by metaplasia of the synovium leading to the formation of osteochondral loose bodies. Few cases of extra-articular subacromial synovial chondromatosis involving the rotator cuff tendon have been reported in the literature. The treatment of previously reported cases consisted of open bursectomy and removal of loose bodies. We report a case of subacromial synovial chondromatosis without rotator cuff involvement but with severe erosion and fracture of the acromion. Treatment consisted of shoulder arthroscopy to remove all loose bodies, total bursectomy, and debridement of the acromion. Potential benefits of arthroscopy were also evaluated. PMID:26697302

  18. MR imaging of the elbow in the injured athlete.

    PubMed

    Wenzke, Daniel R

    2013-03-01

    This article summarizes key MR imaging findings in common athletic elbow injuries including little leaguer's elbow, Panner disease, osteochondritis dissecans, olecranon stress fracture, occult fracture, degenerative osteophyte formation, flexor-pronator strain, ulnar collateral ligament tear, lateral ulnar collateral ligament and radial collateral ligament tear, lateral epicondylitis, medial epicondylitis, biceps tear, bicipitoradial bursitis, triceps tear, olecranon bursitis, ulnar neuropathy, posterior interosseous nerve syndrome, and radial tunnel syndrome. The article also summarizes important technical considerations in elbow MR imaging that enhance image quality and contribute to the radiologist's success.

  19. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  20. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering. PMID:26545741

  1. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    PubMed

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  2. [Van Neck-Odelberg disease. Report of two cases].

    PubMed

    Nagy, Örs; Zuh, Sándor-György; Kovács, Attila; Sólyom, Árpád; Sólyom, Réka; Gergely, István

    2016-05-22

    Osteochondritis ischiopubica or van Neck-Odelberg disease is characterized by atypical ossification of the ischiopubic synchondrosis. Clinical symptoms are usually pain, limping and limited range of motion of the hip joint. Radiologic images may be confused with the possibility of fracture, tumor or inflammation. In some cases it may be difficult to set up the accurate diagnosis, and during the diagnostic process it is essential that van Neck-Odelberg disease should be considered. In this paper the authors draw attention to this rare disorder and they present the history of two patients who posed diagnostic difficulties.

  3. Destructive discovertebral degenerative disease of the lumbar spine.

    PubMed

    Charran, A K; Tony, G; Lalam, R; Tyrrell, P N M; Tins, B; Singh, J; Eisenstein, S M; Balain, B; Trivedi, J M; Cassar-Pullicino, V N

    2012-09-01

    The uncommon variant of degenerative hip joint disease, termed rapidly progressive osteoarthritis, and highlighted by severe joint space loss and osteochondral disintegration, is well established. We present a similar unusual subset in the lumbar spine termed destructive discovertebral degenerative disease (DDDD) with radiological features of vertebral malalignment, severe disc resorption, and "bone sand" formation secondary to vertebral fragmentation. Co-existing metabolic bone disease is likely to promote the development of DDDD of the lumbar spine, which presents with back pain and sciatica due to nerve root compression by the "bone sand" in the epidural space. MRI and CT play a complimentary role in making the diagnosis.

  4. The aggrecanopathies; an evolving phenotypic spectrum of human genetic skeletal diseases.

    PubMed

    Gibson, Beth G; Briggs, Michael D

    2016-01-01

    The large chondroitin sulphated proteoglycan aggrecan (ACAN) is the most abundant non-collagenous protein in cartilage and is essential for its structure and function. Mutations in ACAN result in a broad phenotypic spectrum of non-lethal skeletal dysplasias including spondyloepimetaphyseal dysplasia, spondyloepiphyseal dysplasia, familial osteochondritis dissecans and various undefined short stature syndromes associated with accelerated bone maturation. However, very little is currently known about the disease pathways that underlie these aggrecanopathies, although they are likely to be a combination of haploinsufficiency and dominant-negative (neomorphic) mechanisms. This review discusses the known human and animal aggrecanopathies in the context of clinical presentation and potential disease mechanisms. PMID:27353333

  5. High intensity focused ultrasound as a tool for tissue engineering: Application to cartilage.

    PubMed

    Nover, Adam B; Hou, Gary Y; Han, Yang; Wang, Shutao; O'Connell, Grace D; Ateshian, Gerard A; Konofagou, Elisa E; Hung, Clark T

    2016-02-01

    This article promotes the use of High Intensity Focused Ultrasound (HIFU) as a tool for affecting the local properties of tissue engineered constructs in vitro. HIFU is a low cost, non-invasive technique used for eliciting focal thermal elevations at variable depths within tissues. HIFU can be used to denature proteins within constructs, leading to decreased permeability and potentially increased local stiffness. Adverse cell viability effects remain restricted to the affected area. The methods described in this article are explored through the scope of articular cartilage tissue engineering and the fabrication of osteochondral constructs, but may be applied to the engineering of a variety of different tissues. PMID:26724968

  6. Musculoskeletal Pathology.

    PubMed

    Peat, Frances J; Kawcak, Christopher E

    2015-08-01

    The current understanding of pathology as it relates to common diseases of the equine musculoskeletal system is reviewed. Conditions are organized under the fundamental categories of developmental, exercise-induced, infectious, and miscellaneous pathology. The overview of developmental pathology incorporates the new classification system of juvenile osteochondral conditions. Discussion of exercise-induced pathology emphasizes increased understanding of the contribution of cumulative microdamage caused by repetitive cyclic loading. Miscellaneous musculoskeletal pathology focuses on laminitis, which current knowledge indicates should be regarded as a clinical syndrome with a variety of possible distinct mechanisms of structural failure that are outlined in this overview. PMID:26037607

  7. Elbow injuries in young baseball players.

    PubMed

    Whiteside, J A; Andrews, J R; Fleisig, G S

    1999-06-01

    The demands that throwing places on the vulnerable immature elbow frequently produce multiple injuries. Significant clues in the history include persistent medial elbow soreness, stiffness, and discomfort that lead to poor performance. Diagnosis involves identifying the injury sites by palpation and x-rays that pinpoint growth-plate separation or osteochondral changes. Nonoperative treatment, which can proceed if growth-plate separation at the medial apophysis is less than 3 mm, involves stretching, strengthening, sport-specific activities, and interval throwing. Prevention includes conditioning, limiting the number of pitches, and using age guidelines for learning new pitches.

  8. Baseball and softball injuries.

    PubMed

    Wang, Quincy

    2006-05-01

    Baseball and softball injuries can be a result of both acute and overuse injuries. Soft tissue injuries include contusions, abrasions, and lacerations. Return to play is allowed when risk of further injury is minimized. Common shoulder injuries include those to the rotator cuff, biceps tendon, and glenoid labrum. Elbow injuries are common in baseball and softball and include medial epicondylitis, ulnar collateral ligament injury, and osteochondritis dissecans. Typically conservative treatment with relative rest, medication, and a rehabilitation program will allow return to play. Surgical intervention may be needed for certain injuries or conservative treatment failure.

  9. Magnetic Resonance Arthrography of the Wrist and Elbow.

    PubMed

    LiMarzi, Gary M; O'Dell, M Cody; Scherer, Kurt; Pettis, Christopher; Wasyliw, Christopher W; Bancroft, Laura W

    2015-08-01

    Magnetic resonance (MR) arthrography of the wrist and elbow is useful for detecting a variety of intra-articular pathologies. MR dictations should address whether intrinsic ligament tears of the wrist are partial-thickness or full-thickness, and involve the dorsal, membranous, and/or volar components of the ligaments. With regard to elbow soft tissue pathology, partial-thickness tears of the anterior band of the ulnar collateral ligament in overhead-throwing athletes are well evaluated with MR arthrography. MR arthrography also is helpful in staging osteochondritis dissecans of the capitellum, caused by repetitive valgus impaction injury in adolescent or young adult baseball pitchers.

  10. Magnetic resonance imaging of sports injuries of the elbow.

    PubMed

    Thornton, Raymond; Riley, Geoffrey M; Steinbach, Lynne S

    2003-02-01

    Many abnormalities seen in the elbow result from trauma, often from sports such as baseball and tennis. Elbow problems are frequently related to the medial tension-lateral compression phenomenon, where repeated valgus stress produces flexor-pronator strain, ulnar collateral ligament sprain, ulnar traction spurring, and ulnar neuropathy. Lateral compression causes osteochondral lesions of the capitellum and radial head, degenerative arthritis, and loose bodies. Other elbow abnormalities seen on magnetic resonance imaging include radial collateral ligament injuries, biceps and triceps tendon injuries, other nerve entrapment syndromes, loose bodies, osseous and soft-tissue trauma, arthritis, and masses, including bursae.

  11. Magnetic resonance imaging of the elbow.

    PubMed

    Steinbach, L S; Fritz, R C; Tirman, P F; Uffman, M

    1997-11-01

    Magnetic resonance imaging (MRI) provides useful information regarding the elbow joint. Many abnormalities seen in the elbow are a result of trauma, often from sports such as baseball and tennis. Elbow problems are frequently related to the medial tension-lateral compression phenomenon where repeated valgus stress produces flexor-pronator strain, ulnar collateral ligament sprain, ulnar traction spurring, and ulnar neuropathy. The lateral compression causes osteochondritis dissecans of the capitellum and radial head, degenerative arthritis, and loose bodies. Other elbow abnormalities seen on MRI include radial collateral ligament injuries, biceps and triceps tendon injuries, other nerve entrapment syndromes, loose bodies, osseous and soft tissue trauma, arthritis, and masses, including bursae.

  12. The 5.5-year results of MegaOATS – autologous transfer of the posterior femoral condyle: a case-series study

    PubMed Central

    Braun, Sepp; Minzlaff, Philipp; Hollweck, Regina; Wörtler, Klaus; Imhoff, Andreas B

    2008-01-01

    Introduction Large osteochondral defects of the weight-bearing zones of femoral condyles in young and active patients were treated by autologous transfer of the posterior femoral condyle (large osteochondral autogenous transplantation system (MegaOATS)). The technique presented is a sound and feasible salvage procedure to address large osteochondral defects in weight-bearing zones. Methods Thirty-six patients between July 1996 and December 2000 were included. Thirty-three patients (10 females, 23 males) were evaluated by the Lysholm score and X-ray scans. A random sample of 16 individuals underwent magnetic resonance imaging analysis. The average age at the date of surgery was 34.3 (15 to 59) years, and the mean follow up was 66.4 (46 to 98) months. The mean defect size was 6.2 (2 to 10.5) cm2, in 27 patients affecting the medial femoral condyle and in six patients affecting the lateral femoral condyle. Trauma or osteochondrosis dissecans were pathogenetic in 82%. Results The Lysholm score in all 33 individuals showed a highly significant increase from a preoperative median 49.0 points to a median 86.0 points (P ≤ 0.001). Twenty-seven patients returned to recreational sports. X-ray scans showed a rounding of the osteotomy edge in 24 patients, interpreted as a partial remodelling of the posterior femoral condyle. Preoperative osteoarthritis in 17 individuals was related to significant lower Lysholm scores (P = 0.014), but progression in 17 patients did not significantly influence the score results (P = 0.143). All 16 magnetic resonance imaging examinations showed vital and congruent grafts. Conclusion Patients significantly improve in the Lysholm score, in daily-life activity levels and in return to recreational sports. Thirty-one out of 33 patients were comfortable with the results and would undergo the procedure again. The MegaOATS technique is therefore recommended as a salvage procedure for young individuals with large osteochondral defects in the weight

  13. A biomechanical approach to interpreting magnetic resonance imaging of knee injuries.

    PubMed

    Sheehan, Scott E; Khurana, Bharti; Gaviola, Glenn; Davis, Kirkland W

    2014-11-01

    This article discusses common injury mechanisms and the subsequent constellation of magnetic resonance (MR) imaging findings in the knee following trauma in the context of instability, as distinguished by the degree of knee flexion and tibial rotation at the time of initial injury, in addition to the direction and magnitude of the responsible force vectors. Using 3-dimensional imaging, common injury mechanisms are illustrated and correlated with MR imaging findings of the resulting osteochondral, ligamentous, meniscal, and musculotendinous lesions. The most common classification and grading systems for these individual lesions and their subsequent treatment implications are discussed. PMID:25442026

  14. Surgical hip dislocation: techniques for success.

    PubMed

    Ricciardi, Benjamin F; Sink, Ernest L

    2014-01-01

    Surgical hip dislocation (SHD) is a versatile approach used to address both intra-articular and extra-articular pathology around the hip joint in both pediatric and adult patients. It allows anterior dislocation of the femoral head for direct visualization of the hip joint while preserving femoral head vascularity and minimizing trauma to the abductor musculature. Previously described indications for SHD include femoroacetabular impingement, deformity resulting from Legg-Calve-Perthes disease, slipped capital femoral epiphysis, periarticular trauma, benign lesions of the hip joint, and osteochondral lesions. In this review, we will describe current surgical techniques, indications, and clinical outcomes for SHD. PMID:25207733

  15. Overuse injuries in the young athlete.

    PubMed

    O'Neill, D B; Micheli, L J

    1988-07-01

    Overuse injuries are now well known to sports enthusiasts at any age or level of competition. The seeming explosion of overuse stress fractures of lower extremity bones in high-profile professional basketball players has brought about widespread media attention and a better understanding of the phenomenon of "overuse syndrome" by the public. However, the spectrum of overuse injuries in the child or adolescent athlete has only recently been recognized. These injuries can range from the permanent disability of osteochondritis dissecans of the elbow to the completely nonspecific "growing pains" of active youngsters.

  16. Histological Confirmation and Biological Significance of Cartilage Canals Demonstrated Using High Field MRI in Swine at Predilection Sites of Osteochondrosis

    PubMed Central

    Tóth, Ferenc; Nissi, Mikko J.; Zhang, Jinjin; Benson, Michael; Schmitter, Sebastian; Ellermann, Jutta M.; Carlson, Cathy S.

    2014-01-01

    Cartilage canal vessels in epiphyseal cartilage have a pivotal role in the pathogenesis of osteochondrosis/osteochondritis dissecans. The present study aimed to validate high field magnetic resonance imaging (MRI) methods to visualize these vessels in young pigs. Osteochondral samples from the distal femur and distal humerus (predilection sites of osteochondrosis) of piglets were imaged post-mortem: (1) using susceptibility-weighted imaging (SWI) in an MRI scanner, followed by histological evaluation; and (2) after barium perfusion using μCT, followed by clearing techniques. In addition, both stifle joints of a 25-day-old piglet were imaged in vivo using SWI and gadolinium enhanced T1-weighted MRI, after which distal femoral samples were harvested and evaluated using μCT and histology. Histological sections were compared to corresponding MRI slices, and three-dimensional visualizations of vessels identified using MRI were compared to those obtained using μCT and to the cleared specimens. Vessels contained in cartilage canals were identified using MRI, both ex vivo and in vivo; their locations matched those observed in the histological sections, μCT images, and cleared specimens of barium-perfused tissues. The ability to visualize cartilage canal blood vessels by MRI, without using a contrast agent, will allow future longitudinal studies to evaluate their role in developmental orthopedic disease. PMID:23939946

  17. Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells.

    PubMed

    Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2015-08-01

    For a long time, clinically sized and mechanically functional cartilage could be engineered from young animal chondrocytes, but not from adult human mesenchymal stem cells that are of primary clinical interest. The approaches developed for primary chondrocytes were not successful when used with human mesenchymal cells. The method discussed here was designed to employ a mechanism similar to pre-cartilaginous condensation and fusion of mesenchymal stem cells at a precisely defined time. The formation of cartilage was initiated by press-molding the mesenchymal bodies onto the surface of a bone substrate. By image-guided fabrication of the bone substrate and the molds, the osteochondral constructs were engineered in anatomically precise shapes and sizes. After 5 weeks of cultivation, the cartilage layer assumed physiologically stratified histomorphology, and contained lubricin at the surface, proteoglycans and type II collagen in the bulk phase, collagen type X at the interface with the bone substrate, and collagen type I within the bone phase. For the first time, the Young's modulus and the friction coefficient of human cartilage engineered from mesenchymal stem cells reached physiological levels for adult human cartilage. We propose that this method can be effective for generating human osteochondral tissue constructs.

  18. Biological, biochemical and biomechanical characterisation of articular cartilage from the porcine, bovine and ovine hip and knee.

    PubMed

    Fermor, H L; McLure, S W D; Taylor, S D; Russell, S L; Williams, S; Fisher, J; Ingham, E

    2015-01-01

    This study aimed to determine the optimal starting material for the development of an acellular osteochondral graft. Osteochondral tissues from three different species were characterised; pig (6 months), cow (18 months) and two ages of sheep (8-12 months and >4 year old). Tissues from the acetabulum and femoral head of the hip, and the groove, medial and lateral condyles and tibial plateau of the knee were assessed. Histological analysis of each tissue allowed for qualification of cartilage histoarchitecture, glycosaminoglycan (GAG) distribution, assessment of cellularity and cartilage thickness. Collagen and GAG content were quantified and cartilage water content was defined. Following biomechanical testing, the percentage deformation, permeability and equilibrium elastic modulus was determined. Results showed that porcine cartilage had the highest concentration of sulphated proteoglycans and that the condyles and groove of the knee showed higher GAG content than other joint areas. Cartilage from younger tissues (porcine and young ovine) had higher cell content and was thicker, reflecting the effects of age on cartilage structure. Cartilage from older sheep had a much higher elastic modulus and was less permeable than other species.

  19. Racing performance of Swedish Standardbred trotting horses with proximal palmar/plantar first phalangeal (Birkeland) fragments compared to fragment free controls.

    PubMed

    Carmalt, James L; Borg, Hanna; Näslund, Hans; Waldner, Cheryl

    2014-10-01

    The aim of this study was to determine whether horses with a proximal palmar/plantar first phalangeal osteochondral fragment (POF) had comparable racing careers (prior to and following surgery) to horses without this fracture. A retrospective cohort study included 174 Swedish Standardbred trotters with osteochondral fragmentation in the palmar/plantar fetlock joint and 613 radiographically negative control horses presented for prepurchase examinations. Medical records and radiographs were examined for each horse. Racing data were retrieved from online Swedish Standardbred harness racing records. The effect of having a POF on race speed compared to radiographically negative control horses was examined using generalised estimating equations. Multivariable regression was used to examine differences in money earned and career longevity. The horses raced a total of 16,448 races. Horses gained speed as a function of race number. There was no difference in racing speed between horses with POF fractures that raced before surgery and control horses. Horses did not slow before, nor speed up after, surgery. There was no difference in the number of days between the last race prior to, or the first race after, the hospital visit between POF and control horses. Career earnings and lifetime starts were not significantly different between groups. The results of this study suggest the need to reevaluate the previously reported benefits of surgical intervention for POF. PMID:25163613

  20. Current Concepts of Articular Cartilage Restoration Techniques in the Knee

    PubMed Central

    Camp, Christopher L.; Stuart, Michael J.; Krych, Aaron J.

    2014-01-01

    Context: Articular cartilage injuries are common in patients presenting to surgeons with primary complaints of knee pain or mechanical symptoms. Treatment options include comprehensive nonoperative management, palliative surgery, joint preservation operations, and arthroplasty. Evidence Acquisition: A MEDLINE search on articular cartilage restoration techniques of the knee was conducted to identify outcome studies published from 1993 to 2013. Special emphasis was given to Level 1 and 2 published studies. Study Design: Clinical review. Level of Evidence: Level 3. Results: Current surgical options with documented outcomes in treating chondral injuries in the knee include the following: microfracture, osteochondral autograft transfer, osteochondral allograft transplant, and autologous chondrocyte transplantation. Generally, results are favorable regarding patient satisfaction and return to sport when proper treatment algorithms and surgical techniques are followed, with 52% to 96% of patients demonstrating good to excellent clinical outcomes and 66% to 91% returning to sport at preinjury levels. Conclusion: Clinical, functional, and radiographic outcomes may be improved in the majority of patients with articular cartilage restoration surgery; however, some patients may not fully return to their preinjury activity levels postoperatively. In active and athletic patient populations, biological techniques that restore the articular surface may be options that provide symptom relief and return patients to their prior levels of function. PMID:24790697

  1. Subchondral lucency of the third carpal bone in Standardbred racehorses: 13 cases (1982-1988).

    PubMed

    Ross, M W; Richardson, D W; Beroza, G A

    1989-09-15

    Thirteen Standardbreds had subchondral lucency of the third carpal bone (C3), described as single or multiple central areas of C3 bone loss in the radial fossa. Sclerosis of the radial fossa was also detected. The mean age of 9 stallions, 3 mares, and 1 gelding was 4.1 years (range, 3 to 7 years). All horses had an acute moderate to severe lameness referable to the middle carpal joint. A dorsoproximal dorsodistal (skyline) radiographic projection was most useful and identified mild (3 horses), moderate (6 horses), and severe (4 horses) subchondral lucency and sclerosis of the radial fossa. The margin of C3 was intact dorsal to the lucent areas in all horses. In 12 horses, arthroscopic surgical evaluation and curettage of the lesion were performed. Of the 9 horses monitored long enough to allow racing, 8 horses (89%) returned to racing, although only 6 (75%) raced at the same degree of competition. Subchondral lucency of C3 resulted from chronic damage to C3 with subsequent osteochondral collapse or acute C3 proximal surface osteochondral fracture. PMID:2793549

  2. A rare cause of chronic elbow pain in an adolescent baseball player: a case report

    PubMed Central

    Wasylynko, David

    2016-01-01

    Objective: To present a case of chronic elbow pain as a result of a hidden underlying osteochondral defect. Clinical Features: A 17-year old baseball player presented with chronic lateral elbow pain. Examination revealed swelling of the elbow with signs of possible ligament, muscle, and tendon injury. Diagnosis and Treatment: Although there was apparent soft-tissue injury, the elbow swelling created immediate suspicion of a more serious underlying condition. Examination revealed a swollen and tender elbow, with plain x-ray confirming a subchondral bone disorder (osteochondral defect) of the capitellum. Surgical repair was performed by an orthopedic surgeon using DeNovo NT Natural Tissue Grafts: the implantation of small pieces of juvenile joint cartilage into the affected area, using glue-like fibrin. Rehabilitation of the elbow began immediately following surgery. Summary: Examination and imaging indicated that elbow pain in an adolescent baseball player could be from multiple sources, however, the chronic swelling raised suspicion of a condition requiring immediate and further investigation. PMID:27713578

  3. Outcome of combined autologous chondrocyte implantation and anterior cruciate ligament reconstruction

    PubMed Central

    Dhinsa, Baljinder S; Nawaz, Syed Z; Gallagher, Kieran R; Skinner, John; Briggs, Tim; Bentley, George

    2015-01-01

    Background: Instability of the knee joint, after anterior cruciate ligament (ACL) injury, is contraindication to osteochondral defect repair. This prospective study is to investigate the role of combined autologous chondrocyte implantation (ACI) with ACL reconstruction. Materials and Methods: Three independent groups of patients with previous ACL injuries undergoing ACI were identified and prospectively followed up. The first group had ACI in combination with ACL reconstruction (combined group); the 2nd group consisted of individuals who had an ACI procedure having had a previously successful ACL reconstruction (ACL first group); and the third group included patients who had an ACI procedure to a clinically stable knee with documented nonreconstructed ACL disruption (No ACL group). Their outcomes were assessed using the modified cincinnati rating system, the Bentley functional (BF) rating system (BF) and a visual analog scale (VAS). Results: At a mean followup of 64.24 months for the ACL first group, 63 months for combined group and 78.33 months for the No ACL group; 60% of ACL first patients, 72.73% of combined group and 83.33% of the No ACL group felt their outcome was better following surgery. There was no significant difference demonstrated in BF and VAS between the combined and ACL first groups. Results revealed a significant affect of osteochondral defect size on outcome measures. Conclusion: The study confirms that ACI in combination with ACL reconstruction is a viable option with similar outcomes as those patients who have had the procedures staged. PMID:26015603

  4. UPDATING ON DIAGNOSIS AND TREATMENT OF CHONDRAL LESION OF THE KNEE

    PubMed Central

    da Cunha Cavalcanti, Filho Marcantonio Machado; Doca, Daniel; Cohen, Moisés; Ferretti, Mário

    2015-01-01

    ABSTRACTS The treatment of chondral knee injuries remains a challenge for the orthopedic surgeon, mainly owing to the characteristics of the cartilage tissue, which promote low potential for regeneration. Chondral lesions can be caused by metabolic stimulation, or by genetic, vascular and traumatic events, and are classified according to the size and thickness of the affected cartilage. Clinical diagnosis can be difficult, especially due to insidious symptoms. Additional tests, as Magnetic Resonance Imaging (MRI), may be needed. The treatment of these lesions usually starts with non-operative management. Surgery should be reserved for patients with detached chondral fragments, blocked range of motion, or the failure of non-operative treatment. The surgical techniques used for the treatment of partial thickness defects are Debridement and Ablation. These techniques aim to improve symptoms, since they do not restore normal structure and function of the cartilage. For full-thickness defects (osteochondral lesion), available treatments are Abrasion, Drilling, Microfracture, Osteochondral Autologous and Allogeneic Transplantation, and biological techniques such as the use of Autologous Chondrocyte Transplantation, Minced Cartilage and stem cells. PMID:27027078

  5. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints

    PubMed Central

    KUMAR, P.; OKA, M.; TOGUCHIDA, J.; KOBAYASHI, M.; UCHIDA, E.; NAKAMURA, T.; TANAKA, K.

    2001-01-01

    The uppermost superficial surface layer of articular cartilage, the ‘lamina splendens’ which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at −10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 μm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  6. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints.

    PubMed

    Kumar, P; Oka, M; Toguchida, J; Kobayashi, M; Uchida, E; Nakamura, T; Tanaka, K

    2001-09-01

    The uppermost superficial surface layer of articular cartilage, the 'lamina splendens' which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at -10 degrees C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 microm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  7. Transient serum exposure regimes to support dual differentiation of human mesenchymal stem cells.

    PubMed

    France, L A; Scotchford, C A; Grant, D M; Rashidi, H; Popov, A A; Sottile, V

    2014-08-01

    Human mesenchymal stem cells (MSCs), which can generate both osteoblasts and chondrocytes, represent an ideal resource for orthopaedic repair using tissue-engineering approaches. One major difficulty for the development of osteochondral constructs using undifferentiated MSCs is that serum is typically used in culture protocols to promote differentiation of the osteogenic component, whereas existing chondrogenic differentiation protocols rely on the use of serum-free conditions. In order to define conditions which could be compatible with both chondrogenic and osteogenic differentiation in a single bioreactor, we have analysed the efficiency of new biphasic differentiation regimes based on transient serum exposure followed by serum-free treatment. MSC differentiation was assessed either in serum-free medium or with a range of transient exposure to serum, and compared to continuous serum-containing treatment. Although osteogenic differentation was not supported in the complete absence of serum, marker expression and extensive mineralization analyses established that 5 days of transient exposure triggered a level of differentiation comparable to that observed when serum was present throughout. This initial phase of serum exposure was further shown to support the successful chondrogenic differentiation of MSCs, comparable to controls maintained in serum-free conditions throughout. This study indicates that a culture based on temporal serum exposure followed by serum-free treatment is compatible with both osteogenic and chondrogenic differentiation of MSCs. These results will allow the development of novel strategies for osteochondral tissue engineering approaches using MSCs for regenerative medicine. PMID:23161724

  8. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age.

    PubMed

    Khanarian, Nora T; Boushell, Margaret K; Spalazzi, Jeffrey P; Pleshko, Nancy; Boskey, Adele L; Lu, Helen H

    2014-12-01

    Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair.

  9. Donor site morbidity after articular cartilage repair procedures: a review.

    PubMed

    Matricali, Giovanni A; Dereymaeker, Greta Ph E; Luyten, Frank P

    2010-10-01

    In order to perform an Osteochondral Autologous Transplantation (OAT) or an Autologous Chondrocyte Implantation (ACI), the integrity of healthy intact articular cartilage at a second location needs to be violated. This creates the possibility for donor site morbidity. Only recently have any publications addressed this issue. The aim of this manuscript is to review the current knowledge on donor site morbidity after an OAT or an ACI. Reports were identified by searching Medline and Pubmed up to March 2010. Donor site morbidity was described mostly considering a clinical outcome, both in a qualitative (parameters in history or physical examination) and/or quantitative way (knee status reported by means of a numerical score). An increasing rate of problems is noted when using quantitative instead of qualitative parameters, and when donor site morbidity is the focus of attention, affecting up to more than half of the patients, in particular for an OAT procedure. The decision to harvest an osteochondral or cartilage biopsy to perform a repair procedure should therefore be taken with caution. This also underscores the need for further research to identify safe donor sites or to develop techniques that eliminate the need for a formal biopsy ccompletely.

  10. Current clinical therapies for cartilage repair, their limitation and the role of stem cells.

    PubMed

    Dhinsa, Baljinder S; Adesida, Adetola B

    2012-03-01

    The management of osteochondral defects of articular cartilage, whether from trauma or degenerative disease, continues to be a significant challenge for Orthopaedic surgeons. Current treatment options such as abrasion arthroplasty procedures, osteochondral transplantation and autologous chondrocyte implantation fail to produce repair tissue exhibiting the same mechanical and functional properties of native articular cartilage. This results in repair tissue that inevitably fails as it is unable to deal with the mechanical demands of articular cartilage, and does not prevent further degeneration of the native cartilage. Mesenchymal stem cells have been proposed as a potential source of cells for cell-based cartilage repair due to their ability to self-renew and undergo multi-lineage differentiation. This proposed procedure has the advantage of not requiring harvesting of cells from the joint surface, and its associated donor site morbidity, as well as having multiple possible adult donor tissues such as bone marrow, adipose tissue and synovium. Mesenchymal stem cells have multi-lineage potential, but can be stimulated to undergo chondrogenesis in the appropriate culture medium. As the majority of work with mesenchymal stem cell-derived articular cartilage repair has been carried out in vitro and in animal studies, more work still has to be done before this technique can be used for clinical purposes. This includes realizing the ideal method of harvesting mesenchymal stem cells, the culture medium to stimulate proliferation and differentiation, appropriate choice of scaffold incorporating growth factors directly or with gene therapy and integration of repair tissue with native tissue.

  11. Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering

    PubMed Central

    2014-01-01

    Background Osteochondral interface regeneration is challenging for functional and integrated cartilage repair. Various layered scaffolds have been used to reconstruct the complex interface, yet the influence of the permeability of the layered structure on cartilage defect healing remains largely unknown. Methods We designed and fabricated a novel bilayered scaffold using articular cartilage extracellular matrix (ACECM) and hydroxyapatite (HAp), involving a porous, oriented upper layer and a dense, mineralised lower layer. By optimising the HAp/ACECM ratio, differing pore sizes and porosities were obtained simultaneously in the two layers. To evaluate the effects of permeability on cell behaviour, rabbit chondrocytes were seeded. Results Morphological observations demonstrated that a gradual interfacial region was formed with pore sizes varying from 128.2 ± 20.3 to 21.2 ± 3.1 μm. The permeability of the bilayered scaffold decreased with increasing compressive strain and HAp content. Mechanical tests indicated that the interface was stable to bearing compressive and shear loads. Accordingly, the optimum HAp/ACECM ratio (7 w/v%) in the layer to mimic native calcified cartilage was found. Chondrocytes could not penetrate the interface and resided only in the upper layer, where they showed high cellularity and abundant matrix deposition. Conclusions Our findings suggest that a bilayered scaffold with low permeability, rather than complete isolation, represents a promising candidate for osteochondral interface tissue engineering. PMID:24950704

  12. Expandable Scaffold Improves Integration of Tissue-Engineered Cartilage: An In Vivo Study in a Rabbit Model.

    PubMed

    Wang, Chen-Chie; Yang, Kai-Chiang; Lin, Keng-Hui; Liu, Yen-Liang; Yang, Ya-Ting; Kuo, Tzong-Fu; Chen, Ing-Ho

    2016-06-01

    One of the major limitations of tissue-engineered cartilage is poor integration of chondrocytes and scaffold structures with recipient tissue. To overcome this limitation, an expandable scaffold with a honeycomb-like structure has been developed using microfluidic technology. In this study, we evaluated the performance of this expandable gelatin scaffold seeded with rabbit chondrocytes in vivo. The chondrocyte/scaffold constructs were implanted into regions of surgically introduced cylindrical osteochondral defects in rabbit femoral condyles. At 2, 4, and 6 months postsurgery, the implanted constructs were evaluated by gross and histological examinations. As expected, the osteochondral defects, which were untreated or transplanted with blank scaffolds, showed no signs of repair, whereas the defects transplanted with chondrocyte/scaffold constructs showed significant cartilage regeneration. Furthermore, the expandable scaffolds seeded with chondrocytes had more regenerated cartilage tissue and better integration with the recipient tissue than autologous chondrocyte implantation. Biomechanical tests revealed that the chondrocyte/scaffold group had the highest compressive strength among all groups at all three time points and endured a similar compressive force to normal cartilage after 6 months of implantation. Histological examinations revealed that the chondrocytes were distributed uniformly within the scaffolds, maintained a normal phenotype, and secreted functional components of the extracellular matrix. Histomorphometric assessment showed a remarkable total interface of up to 87% integration of the expandable scaffolds with the host tissue at 6 months postoperation. In conclusion, the expandable scaffolds improved chondrocyte/scaffold construct integration with the host tissue and were beneficial for cartilage repair. PMID:27193498

  13. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    PubMed Central

    Dewan, Ashvin K.; Gibson, Matthew A.; Elisseeff, Jennifer H.; Trice, Michael E.

    2014-01-01

    Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient's knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients. PMID:25210707

  14. A new pathological classification of lumbar disc protrusion and its clinical significance.

    PubMed

    Ma, Xin-long

    2015-02-01

    Lumbar disc protrusion is common. Its clinical manifestations and treatments are closely related to the pathological changes; however, the pathological classification of lumbar disc protrusion is controversial. This article introduces a new pathological classification comprising four types of lumbar disc protrusion according to intraoperative findings. The damage-herniation type is probably caused by injury and is characterized by soft herniation, the capsule can easily be cut and the broken disc tissue blocks overflow or is easily removed. The broken disc substances should be completely removed; satisfactory results can be achieved by minimally invasive endoscopic surgery. The degeneration-protrusion type is characterized by hard and tough protrusions and the pathological process by degeneration and proliferative reaction. The nerve should be decompressed and relaxed with minimally invasive removal of the posterior wall; the bulged or protruded disc often need not be excised. The posterior vertebral osteochondrosis with disc protrusion type is characterized by deformity of the posterior vertebral body, osteochondral nodules and intervertebral disc protrusion. The herniated and fragmented disc tissue should be removed with partially protruding osteochondral nodules. Intervertebral disc cyst is of uncertain pathogenesis and is characterized by a cyst that communicates with the disc. Resection of the cyst under microscopic or endoscopic control can achieve good results; and whether the affected disc needs to be simultaneously resected is controversial. The new pathological classification proposed here is will aid better understanding of pathological changes and pathogenesis of lumbar disc protrusion and provides a reference for diagnosis and treatment. PMID:25708029

  15. PD98059-Impregnated Functional PLGA Scaffold for Direct Tissue Engineering Promotes Chondrogenesis and Prevents Hypertrophy from Mesenchymal Stem Cells

    PubMed Central

    Lee, Jong Min; Kim, Jong Dae; Oh, Eun Jo; Oh, Se Heang; Lee, Jin Ho

    2014-01-01

    In cartilage tissue engineering from mesenchymal stem cells, it is important to suppress hypertrophy to produce a neocartilage with stable phenotypes of hyaline articular cartilage (AC). The aim of this study was to develop and test the usefulness of functional chondrogenic scaffolds that serve the purpose of hypertrophy suppression. PD98059-impregnated poly(lactic-co-glycolic acid) (PLGA) scaffold is fabricated and compared with transforming growth factor (TGF)-β2-immobilized scaffold. The PD98059 is continuously released from the scaffolds over 140 days in contrast to the rapid release in TGF-β2-immobilized scaffold. The in vitro culture results show that the PD98059-impregated scaffold is more effective in suppressing hypertrophy than the TGF-β2-immobilized scaffold while both scaffolds enhance chondrogenesis from human mesenchymal stem cells. After 10 weeks of in vivo implantation in rabbits, the osteochondral defects is successfully repaired in both PD98059-impregnated and TGF-β2-immobilized scaffold seeded with rabbit mesenchymal stem cells when evaluated grossly and microscopically. However, type X collagen is not observed from regenerated cartilage in PD98059-impregnated scaffold, whereas it is detected around chondrocytes in the TGF-β2-impregnated scaffolds. In addition, the PD98059-impregnated scaffold has better reconstitution of the subchondral plate. These results suggest that the use of the PD98059-impregnated scaffold leads to AC regeneration of better quality and prevents hypertrophy when implanted in the osteochondral defects. PMID:24188591

  16. Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key marker for stemness maintenance?

    PubMed Central

    2014-01-01

    Introduction Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and bone tissue engineering given their ability to differentiate into chondrocytes and osteoblasts. However, the common origin of these two specialized cell types raised the question about the identification of regulatory pathways determining the differentiation fate of MSCs into chondrocyte or osteoblast. Methods Chondrogenesis, osteoblastogenesis, and adipogenesis of human and mouse MSC were induced by using specific inductive culture conditions. Expression of promyelocytic leukemia zinc-finger (PLZF) or differentiation markers in MSCs was determined by RT-qPCR. PLZF-expressing MSC were implanted in a mouse osteochondral defect model and the neotissue was analyzed by routine histology and microcomputed tomography. Results We found out that PLZF is not expressed in MSCs and its expression at early stages of MSC differentiation is the mark of their commitment toward the three main lineages. PLZF acts as an upstream regulator of both Sox9 and Runx2, and its overexpression in MSC enhances chondrogenesis and osteogenesis while it inhibits adipogenesis. In vivo, implantation of PLZF-expressing MSC in mice with full-thickness osteochondral defects resulted in the formation of a reparative tissue resembling cartilage and bone. Conclusions Our findings demonstrate that absence of PLZF is required for stemness maintenance and its expression is an early event at the onset of MSC commitment during the differentiation processes of the three main lineages. PMID:24564963

  17. Acute traumatic patellar dislocation.

    PubMed

    Duthon, V B

    2015-02-01

    Inaugural traumatic patellar dislocation is most often due to trauma sustained during physical or sports activity. Two-thirds of acute patellar dislocations occur in young active patients (less than 20 years old). Non-contact knee sprain in flexion and valgus is the leading mechanism in patellar dislocation, accounting for as many as 93% of all cases. The strong displacement of the patella tears the medial stabilizing structures, and notably the medial patellofemoral ligament (MPFL), which is almost always injured in acute patellar dislocation, most frequently at its femoral attachment. Lateral patellar glide can be assessed with the knee in extension or 20° flexion. Displacement by more than 50% of the patellar width is considered abnormal and may induce apprehension. Plain X-ray and CT are mandatory to diagnose bony risk factors for patellar dislocation, such as trochlear dysplasia or increased tibial tubercle-trochlear groove distance (TT-TG), and plan correction. MRI gives information on cartilage and capsulo-ligamentous status for treatment planning: free bodies or osteochondral fracture have to be treated surgically. If patellar dislocation occurs in an anatomically normal knee and osteochondral fracture is ruled out on MRI, non-operative treatment is usually recommended.

  18. Long-term storage and preservation of tissue engineered articular cartilage.

    PubMed

    Nover, Adam B; Stefani, Robert M; Lee, Stephanie L; Ateshian, Gerard A; Stoker, Aaron M; Cook, James L; Hung, Clark T

    2016-01-01

    With limited availability of osteochondral allografts, tissue engineered cartilage grafts may provide an alternative treatment for large cartilage defects. An effective storage protocol will be critical for translating this technology to clinical use. The purpose of this study was to evaluate the efficacy of the Missouri Osteochondral Allograft Preservation System (MOPS) for room temperature storage of mature tissue engineered grafts, focusing on tissue property maintenance during the current allograft storage window (28 days). Additional research compares MOPS to continued culture, investigates temperature influence, and examines longer-term storage. Articular cartilage constructs were cultured to maturity using adult canine chondrocytes, then preserved with MOPS at room temperature, in refrigeration, or kept in culture for an additional 56 days. MOPS storage maintained desired chondrocyte viability for 28 days of room temperature storage, retaining 75% of the maturity point Young's modulus without significant decline in biochemical content. Properties dropped past this time point. Refrigeration maintained properties similar to room temperature at 28 days, but proved better at 56 days. For engineered grafts, MOPS maintained the majority of tissue properties for the 28-day window without clearly extending that period as it had for native grafts. These results are the first evaluating engineered cartilage storage.

  19. INJURY TO THE THROWING ARM. A STUDY OF TRAUMATIC CHANGES IN THE ELBOW JOINTS OF BOY BASEBALL PLAYERS.

    PubMed

    ADAMS, J E

    1965-02-01

    X-ray studies were made of both elbows of 162 boys in the 9 to 14 year age group, divided into three categories: Pitchers, non-pitchers, and a control group who had never played organized baseball. Changes involving the medial epicondylar epiphysis and opposing articular surfaces of the capitulum and head of radius in the throwing arm appeared to be in direct proportion to the amount and type of throwing. The most striking changes were in the arms of pitchers. Some degree of accelerated growth, separation and fragmentation of the medial epicondylar epiphyses was noted in the throwing arm of all 80 pitchers in the study. Five cases of traumatic osteochondritis of the capitulum and head of radius, and one case of juvenile osteochondritis of the head of the radius were also found among the pitchers. Better medical supervision and stress on prevention are needed, especially in the Southern California area where climatic conditions favor prolonged seasons and throwing practice the year around.

  20. FTIR-I Compositional Mapping of the Cartilage-to-Bone Interface as a Function of Tissue Region and Age

    PubMed Central

    Khanarian, Nora T; Boushell, Margaret K; Spalazzi, Jeffrey P; Pleshko, Nancy; Boskey, Adele L; Lu, Helen H

    2016-01-01

    Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair. PMID:24839262

  1. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo

    PubMed Central

    Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro

    2016-01-01

    Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and

  2. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?

    PubMed

    Gibbs, David M R; Vaezi, Mohammad; Yang, Shoufeng; Oreffo, Richard O C

    2014-01-01

    Additive manufacturing (AM) is a broad term encompassing 3D printing and several other varieties of material processing, which involve computer-directed layer-by-layer synthesis of materials. As the popularity of AM increases, so to do expectations of the medical therapies this process may offer. Clinical requirements and limitations of current treatment strategies in bone grafting, spinal arthrodesis, osteochondral injury and treatment of periprosthetic joint infection are discussed. The various approaches to AM are described, and the current state of clinical translation of AM across these orthopedic clinical scenarios is assessed. Finally, we attempt to distinguish between what AM may offer orthopedic surgery from the hype of what has been promised by AM.

  3. Canine elbow dysplasia and primary lesions in German shepherd dogs in France.

    PubMed

    Remy, D; Neuhart, L; Fau, D; Genevois, J P

    2004-05-01

    Five hundred and twenty German shepherd dogs were screened for elbow dysplasia. The following primary lesions were analysed: joint incongruity (JI), fragmented medial coronoid process (FCP), osteochondrosis or osteochondritis of the medial humeral condyle and ununited anconeal process (UAP). Three radiographic views were used for each joint to achieve a definitive diagnosis. The prevalence of elbow dysplasia was 19.4 per cent. The most frequent lesion was JI (16.3 per cent), followed by FCP (11.3 per cent). UAP was diagnosed rarely (1.1 per cent). Combinations of lesions were very frequent (42.2 per cent of the dysplastic elbows). Although these results may be biased due to prescreening of dogs with UAP, it should be highlighted that JI and FCP occur frequently in German shepherd dogs and are probably the most common primary lesions of elbow dysplasia, although they have been under-reported until now. PMID:15163051

  4. Chordoma of the thoracic vertebrae in a Bengal tiger (Panthera tigris tigris)

    PubMed Central

    KURAMOCHI, Mizuki; IZAWA, Takeshi; HORI, Mayuka; KUSUDA, Kayo; SHIMIZU, Junichiro; ISERI, Toshie; AKIYOSHI, Hideo; OHASHI, Fumihito; KUWAMURA, Mitsuru; YAMATE, Jyoji

    2015-01-01

    A 19-year-old female Bengal tiger (Panthera tigris tigris) was presented with hind limb weakness, ataxia and respiratory distress. Computed tomography revealed a mass between the left side of the T7 vertebra and the base of the left 7th rib. The tiger then died, and necropsy was performed. Grossly, the vertebral mass was 6 × 5.7 × 3 cm, and invaded the adjacent vertebral bone and compressed the T7 spinal cord. Histologically, the mass was composed of large, clear, vacuolated and polygonal cells with osteochondral matrix. Cellular and nuclear atypia were moderate. The vacuolated cells stained positively for cytokeratin and vimentin and negatively for S-100. Based on these findings, the present case was diagnosed as a vertebral chordoma; the first report in a tiger. PMID:25766770

  5. Magnetic Resonance Imaging Findings in Small Patella Syndrome.

    PubMed

    Kim, Hyoung-Soo; Yoo, Jeong-Hyun; Park, Noh-Hyuck; Chang, Jun-Hee; Ban, Yun-Seong; Song, Sang-Heon

    2016-03-01

    Small patella syndrome (SPS) is characterized by aplasia or hypoplasia of the patella and pelvic girdle abnormalities, including bilateral absence or delayed ossification of the ischiopubic junction and infra-acetabular axe-cut notches. Here, we report a case of SPS in a 26-year-old female. Magnetic resonance image (MRI) showed a small patella with thick eccentric non-ossified patellar cartilage and femoral trochlear dysplasia with hypoplastic patellar undersurface. To our knowledge, this is the first report of MRI findings in SPS. MRI findings could be clinically relevant because elongation of the medial patellofemoral ligament and trochlear dysplasia with eccentric non-ossified patellar cartilage might lead to patellofemoral maltracking with an osteochondral lesion or acute dislocation or an extensor mechanism injury. Though the patient presented in this case report only had a gastrocnemius injury at the origin site, physicians should carefully examine abnormalities with MRI when an SPS patient has a trauma to the knee. PMID:26955616

  6. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use. PMID:25933711

  7. Common medial elbow injuries in the adolescent athlete.

    PubMed

    Leahy, Ian; Schorpion, Melissa; Ganley, Theodore

    2015-01-01

    Recently there has been increased year-round sports participation among children and adolescents with limited to no rest periods. This has led to increases in pediatric repetitive stress injuries, once considered a rarity. Whether in the throwing athlete or in the athlete that experiences repetitive axial loading; increased medial tension and overload syndromes can lead to stress reactions and fractures. This occurs in the developing athlete due to the bone being weaker than the surrounding tendons and ligaments. The medial elbow is a high stress area and is susceptible to many conditions including apophysitis , avulsion fractures and ulnar collateral ligament disruption. Valgus stress can cause injury to the medial elbow which can lead to increased lateral compression, Panner's disease and osteochondral lesions of the capitellum and olecranon. The purpose of this manuscript is to review common elbow disorders in the adolescent population, outline management and highlight important features of rehabilitation. PMID:25840494

  8. The knee: Surface-coil MR imaging at 1. 5 T

    SciTech Connect

    Beltran, J.; Noto, A.M.; Mosure, J.C.; Weiss, K.L.; Zuelzer, W.; Christoforidis, A.J.

    1986-06-01

    Seven normal knees (in five volunteers) and seven injured knees (in seven patients) were examined by high-resolution magnetic resonance (MR) imaging at 1.5 T with a surface coil. Seven medial meniscal tears, three anterior cruciate ligament tears, one posterior cruciate ligament avulsion, an old osteochondral fracture, femoral condylar chondro-malacia, and one case of semimembranous tendon reinsertion were identified. MR images correlated well with recent double-contrast arthrograms or results of surgery. All tears were identified in both the sagittal and coronal planes. Because of its ability to demonstrate small meniscal lesions and ligamentous injuries readily, MR imaging with a surface coil may eventually replace the more invasive arthrography.

  9. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use.

  10. Chordoma of the thoracic vertebrae in a Bengal tiger (Panthera tigris tigris).

    PubMed

    Kuramochi, Mizuki; Izawa, Takeshi; Hori, Mayuka; Kusuda, Kayo; Shimizu, Junichiro; Iseri, Toshie; Akiyoshi, Hideo; Ohashi, Fumihito; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-07-01

    A 19-year-old female Bengal tiger (Panthera tigris tigris) was presented with hind limb weakness, ataxia and respiratory distress. Computed tomography revealed a mass between the left side of the T7 vertebra and the base of the left 7th rib. The tiger then died, and necropsy was performed. Grossly, the vertebral mass was 6 × 5.7 × 3 cm, and invaded the adjacent vertebral bone and compressed the T7 spinal cord. Histologically, the mass was composed of large, clear, vacuolated and polygonal cells with osteochondral matrix. Cellular and nuclear atypia were moderate. The vacuolated cells stained positively for cytokeratin and vimentin and negatively for S-100. Based on these findings, the present case was diagnosed as a vertebral chordoma; the first report in a tiger.

  11. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?

    PubMed

    Gibbs, David M R; Vaezi, Mohammad; Yang, Shoufeng; Oreffo, Richard O C

    2014-01-01

    Additive manufacturing (AM) is a broad term encompassing 3D printing and several other varieties of material processing, which involve computer-directed layer-by-layer synthesis of materials. As the popularity of AM increases, so to do expectations of the medical therapies this process may offer. Clinical requirements and limitations of current treatment strategies in bone grafting, spinal arthrodesis, osteochondral injury and treatment of periprosthetic joint infection are discussed. The various approaches to AM are described, and the current state of clinical translation of AM across these orthopedic clinical scenarios is assessed. Finally, we attempt to distinguish between what AM may offer orthopedic surgery from the hype of what has been promised by AM. PMID:25159068

  12. Feet injuries in rock climbers

    PubMed Central

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  13. ADVANCES IN THE USE OF STEM CELLS IN ORTHOPEDICS

    PubMed Central

    Cristante, Alexandre Fogaça; Narazaki, Douglas Kenji

    2015-01-01

    Primordial cells or stem cells are multipotent undifferentiated cells with the capacity to originate any type of cell in the organism. They may have their origins in the blastocyst and thus are classified as embryonic, or tissues developed in fetuses, newborns or adults and thus are known as somatic stem cells. Bone marrow is one of the main locations for isolating primordial cells, and there are two lineages: hematopoietic and mesenchymal progenitor cells. There are several uses for these undifferentiated cells in orthopedics, going from cartilaginous lesions in osteoarthrosis, osteochondritis dissecans and patellar chondromalacia, to bone lesions like in pseudarthrosis or bone losses, or nerve lesions like in spinal cord trauma. Studying stem cells is probably the most promising field of study of all within medicine, and this is shortly going to revolutionize all medical specialties (both clinical and surgical) and thus provide solutions for diseases that today are difficult to deal with. PMID:27027022

  14. Alginate-polymethacrylate hybrid hydrogels with double ionic and covalent network for tissue engineering

    NASA Astrophysics Data System (ADS)

    Schizzi, I.; Utzeri, R.; Castellano, M.; Stagnaro, P.

    2016-05-01

    Hydrogels based on alginates are very promising candidates to realize scaffolds for tissue engineering. Indeed, alginate hydrogels are able to mimic the extracellular matrix (ECM) thus promoting in vitro and/or in vivo cell growth; moreover, their capability of giving rise to highly porous structures can specifically favor the osteochondral tissue regeneration. However, mechanical properties of polymeric hydrogels are often inadequate to endow the final constructs with the required characteristics of elasticity and toughness. Here alginate/polymethacrylate hybrid hydrogels, with a suitable porous structure and characterized by a double network, ionic (from alginate) and covalent (from polymethacrylate) were designed and realized. The mechanical performance of these hybrid materials resulted, as expected, improved due to the double interconnected network, where the alginate portion provides the appropriate micro-environment mimicking the ECM, whereas the polymethacrylate portion acts as a reinforce.

  15. A novel surgical technique for transverse sternal bone defects using flexible intramedullary nailing.

    PubMed

    Böcker, W; Euler, E; Schieker, M; Kettler, M; Mutschler, W

    2006-12-01

    Transverse sternal bone defects as a result of surgery or trauma remain an important clinical condition with serious sequelae. Patients sometimes complain of local pain during movement and breathing. Usually, defects are filled with prosthetic materials which remain permanently IN SITU. Small defects can be treated with autogenous bone grafts, whereas large defects are difficult to stabilize with common osteosynthetic techniques. Here, we report a new surgical technique using flexible intramedullary nailing ("Elastic Stable Intramedullary Nailing"--ESIN or "Embrochage Centro-Medullaire Elastique Stable"--ECMES) to stabilize a sternal defect after surgical removal of an osteochondral lesion. The defect was bridged by two elastic titanium nails and an autogenous corticocancellous bone graft. This new surgical technique showed a good clinical and functional outcome. PMID:17151979

  16. Experimental characterization of biphasic materials using rate-controlled Hertzian indentation

    PubMed Central

    Moore, A.C.; Zimmerman, B.K.; Chen, X; Lu, X.L.; Burris, D.L.

    2015-01-01

    This paper describes a new method, based on Hertzian biphasic theory (HBT), to characterize properties of biphasic materials with reduced time demands, increased surface sensitivity, and reduced computational demands compared to the current gold standards. Indentation experiments were conducted at a single location on a representative osteochondral plug to demonstrate and validate the HBT method against two gold standards, linear biphasic theory (LBT) and tension-compression nonlinear biphasic theory (TCN). The 1) aggregate moduli, 2) permeability and 3) tensile moduli from HBT, LBT, and TCN were 1) HA=0.47, 0.47, and 0.40 MPa, 2) k=0.0026, 0.0014 and 0.0016mm4/Ns, and 3) Et=8.7, 0.46, and 10.3MPa, respectively. The results support the HBT method and encourage its use, especially in light of its practical advantages. PMID:26160994

  17. Magnetic Resonance Imaging Findings in Small Patella Syndrome

    PubMed Central

    Kim, Hyoung-Soo; Yoo, Jeong-Hyun; Park, Noh-Hyuck; Chang, Jun-Hee; Ban, Yun-Seong

    2016-01-01

    Small patella syndrome (SPS) is characterized by aplasia or hypoplasia of the patella and pelvic girdle abnormalities, including bilateral absence or delayed ossification of the ischiopubic junction and infra-acetabular axe-cut notches. Here, we report a case of SPS in a 26-year-old female. Magnetic resonance image (MRI) showed a small patella with thick eccentric non-ossified patellar cartilage and femoral trochlear dysplasia with hypoplastic patellar undersurface. To our knowledge, this is the first report of MRI findings in SPS. MRI findings could be clinically relevant because elongation of the medial patellofemoral ligament and trochlear dysplasia with eccentric non-ossified patellar cartilage might lead to patellofemoral maltracking with an osteochondral lesion or acute dislocation or an extensor mechanism injury. Though the patient presented in this case report only had a gastrocnemius injury at the origin site, physicians should carefully examine abnormalities with MRI when an SPS patient has a trauma to the knee. PMID:26955616

  18. Evaluation and management of posterior ankle pain in dancers.

    PubMed

    Luk, Pamela; Thordarson, David; Charlton, Timothy

    2013-01-01

    Posterior ankle pain is a common complaint in dancers. There are multiple structures in the posterior ankle that have the potential to be the source of pain. The objective of this article is to review several of the most common causes of posterior ankle pain: peroneal tendon subluxation, posterior impingement syndrome secondary to a painful os trigonum, posterior talus osteochondritis dissecans, flexor hallucis longus tendinopathy, and posterior tibial tendinopathy. For dancers, we offer typical clinical presentations of these disorders to increase awareness and provide guidance regarding when to seek professional medical attention. For medical personnel who are responsible for optimizing dancers' health and training, we include a discussion of pertinent physical exam findings, diagnostic imaging options, non-operative and operative management, as well as surgical suggestions and postoperative rehabilitation guidelines.

  19. 2013-2014 sterling bunnell traveling fellowship report.

    PubMed

    Higgins, James P

    2015-02-01

    Since 1982, the American Society for Surgery of the Hand has sponsored a young member each year as its Bunnell Traveling Fellow. The Sterling Bunnell Traveling Fellowship enables young hand surgeons to foster national and international relationships that contribute to their pursuit of higher learning and advance the principles of scholarship by improving treatment of hand and upper extremity disorders. As the Sterling Bunnell Traveling Fellow for 2013 to 2014, I studied microvascular osteochondral reconstruction of the upper extremity. The year allowed me to pursue research abroad and participate in novel operations. These experiences have challenged how I approach common osteoarticular problems in hand surgery. Leaders in wrist surgery around the globe helped me reconsider the treatment of osteonecrotic, degenerative, and posttraumatic cartilage loss in radical new ways. PMID:25617958

  20. Chordoma of the thoracic vertebrae in a Bengal tiger (Panthera tigris tigris).

    PubMed

    Kuramochi, Mizuki; Izawa, Takeshi; Hori, Mayuka; Kusuda, Kayo; Shimizu, Junichiro; Iseri, Toshie; Akiyoshi, Hideo; Ohashi, Fumihito; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-07-01

    A 19-year-old female Bengal tiger (Panthera tigris tigris) was presented with hind limb weakness, ataxia and respiratory distress. Computed tomography revealed a mass between the left side of the T7 vertebra and the base of the left 7th rib. The tiger then died, and necropsy was performed. Grossly, the vertebral mass was 6 × 5.7 × 3 cm, and invaded the adjacent vertebral bone and compressed the T7 spinal cord. Histologically, the mass was composed of large, clear, vacuolated and polygonal cells with osteochondral matrix. Cellular and nuclear atypia were moderate. The vacuolated cells stained positively for cytokeratin and vimentin and negatively for S-100. Based on these findings, the present case was diagnosed as a vertebral chordoma; the first report in a tiger. PMID:25766770

  1. Canine elbow dysplasia and primary lesions in German shepherd dogs in France.

    PubMed

    Remy, D; Neuhart, L; Fau, D; Genevois, J P

    2004-05-01

    Five hundred and twenty German shepherd dogs were screened for elbow dysplasia. The following primary lesions were analysed: joint incongruity (JI), fragmented medial coronoid process (FCP), osteochondrosis or osteochondritis of the medial humeral condyle and ununited anconeal process (UAP). Three radiographic views were used for each joint to achieve a definitive diagnosis. The prevalence of elbow dysplasia was 19.4 per cent. The most frequent lesion was JI (16.3 per cent), followed by FCP (11.3 per cent). UAP was diagnosed rarely (1.1 per cent). Combinations of lesions were very frequent (42.2 per cent of the dysplastic elbows). Although these results may be biased due to prescreening of dogs with UAP, it should be highlighted that JI and FCP occur frequently in German shepherd dogs and are probably the most common primary lesions of elbow dysplasia, although they have been under-reported until now.

  2. Evaluation and Management of Patellar Instability in Pediatric and Adolescent Athletes

    PubMed Central

    Khormaee, Sariah; Kramer, Dennis E.; Yen, Yi-Meng; Heyworth, Benton E.

    2015-01-01

    Context: The rising popularity and intensity of youth sports has increased the incidence of patellar dislocation. These sports-related injuries may be associated with significant morbidity in the pediatric population. Treatment requires understanding and attention to the unique challenges in the skeletally immature patient. Evidence Acquisition: PubMed searches spanning 1970-2013. Study Design: Clinical review. Level of Evidence: Level 5. Results: Although nonoperative approaches are most often suitable for first-time patellar dislocations, surgical treatment is recommended for acute fixation of displaced osteochondral fractures sustained during primary instability and for patellar realignment in the setting of recurrent instability. While a variety of procedures can prevent recurrence, the risk of complications is not minimal. Conclusion: Patellar stabilization and realignment procedures in skeletally immature patients with recurrent patellar dislocation can effectively treat patellar instability without untoward effects on growth if careful surgical planning incorporates protection of growth parameters in the skeletally immature athlete. PMID:25984256

  3. The evolving global epidemiology, syndromic classification, management, and prevention of caterpillar envenoming.

    PubMed

    Diaz, James H

    2005-03-01

    Caterpillars are the wormlike, larval forms of butterflies and moths of the insect order Lepidoptera. Next to flies, lepidopterans are the most abundant arthropods with more than 165,000 species worldwide, and with most species posing no human threats. However, caterpillar species from approximately 12 families of moths or butterflies worldwide can inflict serious human injuries ranging from urticarial dermatitis and atopic asthma to osteochondritis, consumption coagulopathy, renal failure, and intracerebral hemorrhage. Unlike bees and wasps, envenoming or stinging caterpillars do not possess stingers or modified ovipositors attached to venom glands, but instead bear highly specialized external nettling or urticating hairs and breakaway spines or setae to defend against attacks by predators and enemies. Since the 1970s, there have been increasing reports of mass dermatolgic, pulmonary, and systemic reactions following caterpillar encounters throughout the world. PMID:15772333

  4. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  5. 3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines

    PubMed Central

    Di Bella, Claudia; Fosang, Amanda; Donati, Davide M.; Wallace, Gordon G.; Choong, Peter F. M.

    2015-01-01

    Chondral and osteochondral lesions represent one of the most challenging and frustrating scenarios for the orthopedic surgeon and for the patient. The lack of therapeutic strategies capable to reconstitute the function and structure of hyaline cartilage and to halt the progression toward osteoarthritis has brought clinicians and scientists together, to investigate the potential role of tissue engineering as a viable alternative to current treatment modalities. In particular, the role of bioprinting is emerging as an innovative technology that allows for the creation of organized 3D tissue constructs via a “layer-by-layer” deposition process. This process also has the capability to combine cells and biomaterials in an ordered and predetermined way. Here, we review the recent advances in cartilage bioprinting and we identify the current challenges and the directions for future developments in cartilage regeneration. PMID:26322314

  6. [Anatomy typological and clinical parallels in case of disturbance of soft tissue formations of shoulder girdle].

    PubMed

    Volkov, A V; Shutov, Iu M; Shutova, M Z

    2012-01-01

    The influence of anthropology on topographical anatomical structure peculiarities of soft tissue formations of shoulder girdle has been investigated. The dependence of anatomical structure and topography of muscles, ligaments, tendon sheaths, synovial bursae, rotator cuffs on patient's body constitution type has been examined. The influence of a somatotype on topical damage of soft tissue structures of shoulder girdle has been proved. The so-called "holes" or weak areas, joint capsules, places where ligaments attach to bones and cartilages, where vascular formations also take place have been revealed. It is in these areas that degenerative inflammatory process begins. First of all this process influences hemolymph circulation, then it results in disturbance in production and resorption of synovial fluid and causes destructive processes in ligaments, tendons and osteochondral tissue. Due to research the ability to conduct differential diagnosis has been determined, methods of modality treatment and prevention of periarticular tissue diseases have been optimized.

  7. Surgical management of articular cartilage defects in the knee.

    PubMed

    Cole, Brian J; Pascual-Garrido, Cecilia; Grumet, Robert C

    2010-01-01

    The treatment of isolated cartilage lesions of the knee is based on several underlying principles, including a predictable reduction in the patient's symptoms, improvements in function and joint congruence, and prevention of progressive damage. Surgical options for cartilage restoration are described as palliative treatments, such as débridement and lavage; reparative, such as marrow stimulation techniques; or restorative, such as osteochondral grafting and autologous chondrocyte implantation. The choice of an appropriate treatment should be made on an individual basis, with consideration for the patient's specific goals (such as pain reduction or functional improvement), physical demand level, prior treatment history, lesion size and location, and a systematic evaluation of the knee that considers comorbidities, including alignment, meniscal status, and ligament integrity. It is important for the physician to be familiar with the indications, surgical techniques, and clinical outcomes of the available treatment options for chondral defects of the knee. PMID:20415379

  8. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  9. Prenatal diagnosis of hypophosphatasia congenita using ultrasonography

    PubMed Central

    2016-01-01

    Congenital hypophosphatasia is a rare fatal skeletal dysplasia. Antenatal determinants of Epub ahead of print lethality include small thoracic circumference with pulmonary hypoplasia and severe micromelia. These features were present in the fetus of a 25-year-old female who came for an anomaly scan in her second trimester of pregnancy. Additional findings of generalized demineralization and osteochondral spurs led to the diagnosis of hypophosphatasia congenita. The pregnancy was terminated, and the findings were confirmed on autopsy. Common differential diagnoses with clues to diagnose the above mentioned condition have been discussed here. Early and accurate detection of this medical condition is important as no treatment has been established for this condition. Therefore, antenatal ultrasonography helps in diagnosing and decision making with respect to the current pregnancy and lays the foundation for the genetic counseling of the couple. PMID:25971898

  10. Recent Advances in Cartilage Tissue Engineering: From the Choice of Cell Sources to the Use of Bioreactors

    NASA Astrophysics Data System (ADS)

    Martin, Ivan; Démarteau, Olivier; Braccini, Alessandra

    Grafting engineered cartilage tissues represents a promising approach for the repair of joint injuries. Recent animal experiments have demonstrated that tissues engineered by culturing chondrocytes on 3D scaffolds in bioreactors provide functional templates for orderly repair of large osteochondral lesions. To date, however, a reproducible generation of uniform cartilage tissues of predefined size starting from adult human cells has not been achieved. In this paper we review some of the recent advances and challenges ahead in the identification of appropriate (i) cell sources, (ii) bioactive factors, (iii) 3D scaffolds and (iv) bioreactors for human cartilage tissue engineering. We also present an example of how integrated efforts in these different areas can help addressing fundamental questions and advancing the field of cartilage tissue engineering towards clinical use. The presented experiment demonstrates that human nasal chondrocytes are responsive to dynamic loading and thus could be further investigated as a cell source for implantation in a joint environment.

  11. Joint-preserving surgical options for management of chondral injuries of the hip.

    PubMed

    El Bitar, Youssef F; Lindner, Dror; Jackson, Timothy J; Domb, Benjamin G

    2014-01-01

    Management of injuries to the articular cartilage is complex and challenging; it becomes especially problematic in weight-bearing joints such as the hip. Several causes of articular cartilage damage have been described, including trauma, labral tears, and femoroacetabular impingement, among others. Because articular cartilage has little capacity for healing, nonsurgical management options are limited. Surgical options include total hip arthroplasty, microfracture, articular cartilage repair, autologous chondrocyte implantation, mosaicplasty, and osteochondral allograft transplantation. Advances in hip arthroscopy have broadened the spectrum of tools available for diagnosis and management of chondral damage. However, the literature is still not sufficiently robust to draw firm conclusions regarding best practices for chondral defects. Additional research is needed to expand our knowledge of and develop guidelines for management of chondral injuries of the hip.

  12. Overuse Injuries of the Pediatric and Adolescent Throwing Athlete.

    PubMed

    Tisano, Breann K; Estes, A Reed

    2016-10-01

    In the hypercompetitive environment of year round youth baseball, arm pain is commonplace. Although much research has been done about injuries in the overhead throwing athlete, the emphasis has been on the more elite levels, where athletes have reached full development. The anatomy of the skeletally immature athlete, including open physeal plates and increased tissue laxity, raises unique issues in the presentation and treatment of repetitive throwing injuries of the elbow and shoulder. With a focus on "little leaguers," this discussion evaluates five of the most common elbow and shoulder injuries-Little Leaguer's elbow, ulnar collateral ligament sprain or tear, osteochondritis dissecans/Panner's disease, Little Leaguer's shoulder, and multidirectional instability. In the developmentally distinct pediatric athlete, pathogenesis, diagnosis, and treatment may differ from that established for adults. Offering early diagnosis and treatment appropriate to a child's level of development will enable youth to not only continue to play sports but to also maintain full functionality as active adults.

  13. [Elbow problems associated with sports injuries in children].

    PubMed

    Demirhan, Mehmet; Güneşli, Taner

    2004-01-01

    Elbow problems associated with sports injuries may result from overuse, micro- or macrotraumas. Overuse injuries are frequent and are often closely related to mechanical characteristics of sports. Sports-related elbow injuries mainly occur in sports involving throwing such as baseball and javelin throwing, which require forced valgus and extension of the elbow, predisposing it to overuse injuries. Overuse injuries in child athletes are generally defined as Little League elbow, the most common of which are medial epicondyle apophysitis, osteochondritis dissecans of the capitellum, radial head deformation, flexion contractures, and injuries to the olecranon. Most of these injuries can be healed without or with minimal sequelae by early diagnosis and proper treatment. Therefore, mechanisms of, and risk factors for, elbow problems encountered in pediatric athletes should be well-understood in order to avoid the risks for a permanent deformity in the child's anatomy.

  14. Overuse and throwing injuries in the skeletally immature athlete.

    PubMed

    Hutchinson, Mark R; Ireland, Mary Lloyd

    2003-01-01

    Over 25 million children participate in school-sponsored sports, and an additional 20 million participate in extracurricular organized sports. Over the past decade, increased intensity of training, more pressure for success, new opportunities for structured play, and more organized advanced leagues and traveling teams have led to a corresponding increase in overuse injuries in the skeletally immature athlete. Perhaps the classic sports model for overuse injuries of the upper extremity is baseball. Throwing sports contribute to an increased incidence of elbow and shoulder injuries that might be related to intensity of training, throwing mechanics, and poor conditioning, including core strength. Specific areas of concern regarding overuse injuries in young athletes include such diagnoses as little leaguer's shoulder, little leaguer's elbow, osteochondritis dissecans of the elbow, tennis elbow, and distal radial epiphysitis. Ultimately, overuse injuries, and particularly physeal injuries, should be suspected in any young athlete who has pain in the upper extremity. Comparative bilateral radiographs are the rule in workup.

  15. Brief communication: a case of congenital syphilis during the colonial period in Mexico City.

    PubMed

    Mansilla, J; Pijoan, C M

    1995-06-01

    Congenital syphilis has been diagnosed very seldom in ancient populations. The case that we examined comes from San Jeronimo's Church (17th and 18th centuries AD; Mexico City). Coffin 43 contained an incomplete skeleton of an approximately 2-year-old infant. The pathological lesions of this skeleton include bilateral osteochondritis, diaphyseal osteomyelitis, and osteitis and/or periostitis on the long bones. The radiographic appearance depicts symmetrical osteomyelitic foci, particularly at the proximal extremity of both tibiae (Wimberger's sign). The skull exhibits hydrocephaly and periosteal changes on the vault, and the unerupted upper incisors evince dental hypoplasia and other pathological alterations reminiscent of Hutchinson's incisors. All these features strongly suggest a case of early congenital syphilis.

  16. Effect of bone loss in anterior shoulder instability

    PubMed Central

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  17. Chondral Injury in Patellofemoral Instability

    PubMed Central

    Lustig, Sébastien; Servien, Elvire; Neyret, Philippe

    2014-01-01

    Objective: Patellofemoral instability is common and affects a predominantly young age group. Chondral injury occurs in up to 95%, and includes osteochondral fractures and loose bodies acutely and secondary degenerative changes in recurrent cases. Biomechanical abnormalities, such as trochlear dysplasia, patella alta, and increased tibial tuberosity-trochlear groove distance, predispose to both recurrent dislocations and patellofemoral arthrosis. Design: In this article, we review the mechanisms of chondral injury in patellofemoral instability, diagnostic modalities, the distribution of lesions seen in acute and episodic dislocation, and treatments for articular cartilage lesions of the patellofemoral joint. Results: Little specific evidence exists for cartilage treatments in patellofemoral instability. In general, the results of reparative and restorative procedures in the patellofemoral joint are inferior to those observed in other compartments of the knee. Conclusion: Given the increased severity of chondral lesions and progression to osteoarthritis seen with recurrent dislocations, careful consideration should be given to early stabilisation in patients with predisposing factors. PMID:26069693

  18. EVALUATION OF DMSO TRANSPORT IN HUMAN ARTICULAR CARTILAGE: VEHICLE SOLUTIONS AND EFFECTS ON CELL FUNCTION.

    PubMed

    Kay, A G; Rooney, P; Kearney, J; Pegg, D E

    2015-01-01

    Osteochondral allografting techniques are limited by the availability of suitable donor tissue; there is an urgent need for effective cryopreservation. A fundamental requirement is the need to establish initial conditions of exposure to cryoprotectant that the chondrocytes will tolerate and that load the tissue with an adequate concentration of cryoprotectant. Three vehicle solutions to transport DMSO into the tissue were studied. Knee joints were obtained from deceased donors with appropriate consent. Whole condyles were treated with 20% w/w DMSO in each of three vehicle solutions and chondrocyte function and tissue CPA content measured. The results showed that exposure to 20% DMSO in each vehicle solution for 2 hours at 0 degrees C was tolerated without loss of GAG synthetic activity. It was observed that penetration of DMSO increased little after 1 hour of CPA exposure at 0 degrees C but the final tissue concentration of CPA was markedly lower than that in the medium. PMID:26510337

  19. Development and definition of a simplified scanning procedure and scoring method for Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US).

    PubMed

    Martinoli, Carlo; Della Casa Alberighi, Ornella; Di Minno, Giovanni; Graziano, Ermelinda; Molinari, Angelo Claudio; Pasta, Gianluigi; Russo, Giuseppe; Santagostino, Elena; Tagliaferri, Annarita; Tagliafico, Alberto; Morfini, Massimo

    2013-06-01

    The aim of this study was to develop a simplified ultrasound scanning procedure and scoring method, named Haemophilia Early Arthropathy Detection with UltraSound [HEAD-US], to evaluate joints of patients with haemophilic arthropathy. After an initial consensus-based process involving a multidisciplinary panel of experts, three comprehensive and evidence-based US scanning procedures to image the elbow, knee and ankle were established with the aim to increase sensitivity in detection of early signs of joint involvement while keeping the technique easy and quick to perform. Each procedure included systematic evaluation of synovial recesses and selection of a single osteochondral surface for damage analysis. Based on expert consensus, a simplified scoring system based on an additive scale was created to define the joint status and, in perspective, to offer a tool to evaluate disease progression and monitor the result of treatment in follow-up studies.

  20. Skeletal tissue regeneration: where can hydrogels play a role?

    PubMed

    Moreira Teixeira, Liliana S; Patterson, Jennifer; Luyten, Frank P

    2014-09-01

    The emerging field of tissue engineering reveals promising approaches for the repair and regeneration of skeletal tissues including the articular cartilage, bone, and the entire joint. Amongst the myriad of biomaterials available to support this strategy, hydrogels are highly tissue mimicking substitutes and thus of great potential for the regeneration of functional tissues. This review comprises an overview of the novel and most promising hydrogels for articular cartilage, osteochondral and bone defect repair. Chondro- and osteo-conductive and -instructive hydrogels are presented, highlighting successful combinations with inductive signals and cell sources. Moreover, advantages, drawbacks, and future perspectives of the role of hydrogels in skeletal regeneration are addressed, pointing out the current state of this rising approach. PMID:24968789

  1. Progressive paralyzing sciatica revealing a pelvic pseudoaneurysm a year after hip surgery in a 12yo boy.

    PubMed

    Boulouis, Grégoire; Shotar, Eimad; Dangouloff-Ros, Volodia; Janklevicz, Pierre-Henri; Boddaert, Nathalie; Naggara, Olivier; Brunelle, Francis

    2016-01-01

    Identifying extra spinal causes of a lumbar radiculopathy or polyneuropathy can be a tricky diagnosis challenge, especially in children. Among them, traumatic or iatrogenic pseudoaneurysms of iliac arteries have been seldom reported, in adults' series. The authors report an unusual case of progressive paralyzing left sciatica and lumbar plexopathy in a 12 years old boy, 12 months after a pelvic osteotomy for bilateral hip luxation secondary to osteochondritis dissecans. Spine MRI and pelvic CT angiography revealed a giant internal iliac artery pseudoaneurysm, enclosed in a chronic hematoma. The patient was successfully treated with endovascular coil embolization, and subsequent surgical hematoma evacuation. However, three months after treatment, neurological recovery was incomplete. This case highlights the importance of a rapid and extensive diagnosis work up of all causes of lower limb radiculopathies in children, including pelvic arteries lesions especially after pelvic surgery to avoid therapeutic delays that may jeopardize the chances of neurological recovery.

  2. Overuse Injuries of the Pediatric and Adolescent Throwing Athlete.

    PubMed

    Tisano, Breann K; Estes, A Reed

    2016-10-01

    In the hypercompetitive environment of year round youth baseball, arm pain is commonplace. Although much research has been done about injuries in the overhead throwing athlete, the emphasis has been on the more elite levels, where athletes have reached full development. The anatomy of the skeletally immature athlete, including open physeal plates and increased tissue laxity, raises unique issues in the presentation and treatment of repetitive throwing injuries of the elbow and shoulder. With a focus on "little leaguers," this discussion evaluates five of the most common elbow and shoulder injuries-Little Leaguer's elbow, ulnar collateral ligament sprain or tear, osteochondritis dissecans/Panner's disease, Little Leaguer's shoulder, and multidirectional instability. In the developmentally distinct pediatric athlete, pathogenesis, diagnosis, and treatment may differ from that established for adults. Offering early diagnosis and treatment appropriate to a child's level of development will enable youth to not only continue to play sports but to also maintain full functionality as active adults. PMID:27254261

  3. Chondral fracture of the lateral trochlea of the femur occurring in an adolescent: mechanism of injury.

    PubMed

    Oohashi, Yoshikazu; Oohashi, Yoshinori

    2007-11-01

    The trochlea of the femur is a very unusual site for chondral fracture. Little is known of the mechanism of injuries confined to the articular cartilage of the trochlea of the femur. A very unusual case of chondral fracture of the lateral trochlea of the femur occurring in an adolescent is reported here. The mechanism by which this injury occurred could be evaluated in this patient. The cartilage on the convex surface of the lateral trochlea was likely avulsed proximally by shear force of the patella during rapid extension of the weight-bearing knee from a flexed position. From a viewpoint of mechanism, this injury differs from the more usual osteochondral or chondral fractures of the weight bearing area of the femoral condyle, which are usually accompanied by twisting forces.

  4. Activity-Related Outcomes of Articular Cartilage Surgery

    PubMed Central

    Chalmers, Peter N.; Vigneswaran, Hari; Harris, Joshua D.

    2013-01-01

    Objective: The purpose of this systematic review was to compare activity-based outcomes after microfracture, autologous chondrocyte implantation (ACI), and osteochondral autograft (OAT). Design: Multiple databases were searched with specific inclusion and exclusion criteria for level III and higher studies with activity outcomes after microfracture, OAT, osteochondral allograft, and ACI. Activity-based outcomes included the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Tegner Score, the Cincinnati Knee scores, the International Knee Documentation Committee (IKDC) subjective knee score, the Marx activity score, and/or the rate of return-to-sport. Results: Twenty studies were included (1,375 patients). Although results were heterogeneous, significant advantages were seen for ACI and OAT as compared with microfracture in Tegner scores at 1 year (ACI vs. microfracture, P = 0.0016), IKDC scores at 2 years (ACI vs microfracture, P = 0.046), Lysholm scores at 1 year (OAT vs microfracture, P = 0.032), and Marx scores at 2 years (OAT vs microfracture, P < 0.001). The only score or time point to favor microfracture was Lysholm score at 1 year (ACI vs microfracture, P = 0.037). No other standardized outcome measures or time points were significantly different. Several studies demonstrated significantly earlier return to competition with microfracture. Overall reoperation rates were similar, but of reoperations, a higher proportion of those following ACI were unplanned with the majority of performed for graft delamination or hypertrophy. Conclusions: ACI and OAT may have some benefits over microfracture, although return-to-sport is fastest following microfracture. Heterogeneity in technique, outcome measures, and patient populations hampers systematic comparison within the current literature. PMID:26069665

  5. Isolated coronoid fracture: Assessment by magnetic resonance imaging for concomitant injuries

    PubMed Central

    Kekatpure, Aashay L; Aminata, Iman Widya; Jeon, In-Ho; Rhyou, In-Hyeok; Lee, Hyun-Joo; Chun, Jae-Myeung

    2016-01-01

    Background: Ligamentous injury associated with isolated coronoid fracture had been sparingly reported. Concealed or unclear fractures and ligamentous or articular cartilage lesions are promptly acknowledged by magnetic resonance imaging (MRI) but cannot be entirely pictured in regular radiological assessments. In isolated coronoid fracture, the fragment size is very small and due to the complex anatomy surrounding the coronoid radiographic imaging may not be sufficient. The purpose of this study was to evaluate the incidence of combined osteochondral and ligamentous injuries by magnetic resonance imaging (MRI) in 24 patients with an isolated coronoid fracture. Materials and Methods: In a retrospective study conducted at tertiary hospital between 2009 and 2011, elbow radiographs (anteroposterior and lateral views), computed tomography scan images, and MRI in the sagittal, coronal, axial, oblique, and coronal oblique planes were collected and reviewed. Musculoskeletal radiologist with subspecialty training in musculoskeletal MR interpretation and a fellowship-trained shoulder and elbow surgeon evaluated the MRI. Results: The incidence of associated injuries revealed torn lateral collateral ligament (LCL) in all 24 patients (100%) while 15 patients (62.5%) had common extensor muscle tears. Seven of 24 elbows (29.2%) showed medial collateral ligament (MCL) tear, and 13 of 16 patients (81.3%) with anteromedial facet fracture had MCL attached to the fragment. Five of 24 (20.8%) cases had contusions on the radial head. On the distal humeral side, 15 patients had bone contusions on the posterior inferior of the trochlear on sagittal view. The ligament affections of the LCL were confirmed intraoperatively and repaired. Conclusion: LCL injury was consistent in all isolated coronoid fracture. The forces resulting in the injury appear similar to varus distraction forces acting in the knee leading to distraction injuries of the lateral structures of the knee joint. As

  6. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies.

    PubMed

    Hofer, Heidi R; Tuan, Rocky S

    2016-01-01

    Adult mesenchymal stem cells (MSCs) represent a subject of intense experimental and biomedical interest. Recently, trophic activities of MSCs have become the topic of a number of revealing studies that span both basic and clinical fields. In this review, we focus on recent investigations that have elucidated trophic mechanisms and shed light on MSC clinical efficacy relevant to musculoskeletal applications. Innate differences due to MSC sourcing may play a role in the clinical utility of isolated MSCs. Pain management, osteochondral, nerve, or blood vessel support by MSCs derived from both autologous and allogeneic sources have been examined. Recent mechanistic insights into the trophic activities of these cells point to ultimate regulation by nitric oxide, nuclear factor-kB, and indoleamine, among other signaling pathways. Classic growth factors and cytokines-such as VEGF, CNTF, GDNF, TGF-β, interleukins (IL-1β, IL-6, and IL-8), and C-C ligands (CCL-2, CCL-5, and CCL-23)-serve as paracrine control molecules secreted or packaged into extracellular vesicles, or exosomes, by MSCs. Recent studies have also implicated signaling by microRNAs contained in MSC-derived exosomes. The response of target cells is further regulated by their microenvironment, involving the extracellular matrix, which may be modified by MSC-produced matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs. Trophic activities of MSCs, either resident or introduced exogenously, are thus intricately controlled, and may be further fine-tuned via implant material modifications. MSCs are actively being investigated for the repair and regeneration of both osteochondral and other musculoskeletal tissues, such as tendon/ligament and meniscus. Future rational and effective MSC-based musculoskeletal therapies will benefit from better mechanistic understanding of MSC trophic activities, for example using analytical "-omics" profiling approaches. PMID:27612948

  7. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    PubMed Central

    2011-01-01

    Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration. PMID:21955995

  8. Huge Subchondral Cyst Communicating with Medulary Canal of Femur in OA Knee-Treated by Extension Stem and Bone Grafting

    PubMed Central

    Rajani, Amyn M; Kumar, Ritesh; Shyam, Ashok

    2014-01-01

    Introduction: We report an osteoarthritic patient with huge sub-chondral cyst-like lesions in the Anterior part of distal femur. Deep and large bone defects and severe lateral laxity due to Advanced osteoarthritis was successfully treated with semi-constrained type total knee arthroplasty with long stem. Case Report: A 70yrs old Female was admitted in our institution diagnosed with severe bilateral Osteoarthritis. The x-rays showed bone on bone Tricompartment OA Knee with Varus Malalignment. She was posted for Single Stage Bilateral Total Knee Replacement and as planned the Left Knee Was Operated first. After exposure, Proximal Tibial, Distal Femoral Cuts and measurement of extension gaps the synovium from the anterior Femur was removed and sizing was done. The AP cut was then proceeded with. We spotted a small Osteochondral Cyst in the Anterior Femur which was curretted to remove the cystic material, which is when we realised that the cyst was large and communicating with the medulary canal. The remaining Femoral preparations was done keeping in mind the risk of iatrogenic fracture and extension Stem was used in the femur. The defect was then packed cancellous bone graft. Conclusion: If suspected a Preoperative MRI should be done to exclude any sub-chondral cysts osteochondral defects and any surprise during surgery. Usually one should keep extension stems ready for difficult cases. Operating surgeon should know his implants very well, as in many standard implants extension stems can only be used when distal femur cuts are taken accordingly as 5° Valgus. Mini incision should be avoided because it may fail to reveal such surprises and may land into periprosthetic fractures. PMID:27298967

  9. In vitro targeted magnetic delivery and tracking of superparamagnetic iron oxide particles labeled stem cells for articular cartilage defect repair.

    PubMed

    Feng, Yong; Jin, Xuhong; Dai, Gang; Liu, Jun; Chen, Jiarong; Yang, Liu

    2011-04-01

    To assess a novel cell manipulation technique of tissue engineering with respect to its ability to augment superparamagnetic iron oxide particles (SPIO) labeled mesenchymal stem cells (MSCs) density at a localized cartilage defect site in an in vitro phantom by applying magnetic force. Meanwhile, non-invasive imaging techniques were use to track SPIO-labeled MSCs by magnetic resonance imaging (MRI). Human bone marrow MSCs were cultured and labeled with SPIO. Fresh degenerated human osteochondral fragments were obtained during total knee arthroplasty and a cartilage defect was created at the center. Then, the osteochondral fragments were attached to the sidewalls of culture flasks filled with phosphate-buffered saline (PBS) to mimic the human joint cavity. The SPIO-labeled MSCs were injected into the culture flasks in the presence of a 0.57 Tesla (T) magnetic force. Before and 90 min after cell targeting, the specimens underwent T2-weighted turbo spin-echo (SET2WI) sequence of 3.0 T MRI. MRI results were compared with histological findings. Macroscopic observation showed that SPIO-labeled MSCs were steered to the target region of cartilage defect. MRI revealed significant changes in signal intensity (P<0.01). HE staining exibited that a great number of MSCs formed a three-dimensional (3D) cell "sheet" structure at the chondral defect site. It was concluded that 0.57 T magnetic force permits spatial delivery of magnetically labeled MSCs to the target region in vitro. High-field MRI can serve as an very sensitive non-invasive technique for the visualization of SPIO-labeled MSCs.

  10. Arthroscopic Assessment of Intra-Articular Lesion after Surgery for Rotational Ankle Fracture

    PubMed Central

    Cha, Seung-Do; Gwak, Heui-Chul; Ha, Dong-Jun; Kim, Jong-Yup; Kim, Ui-Cheol; Jang, Yue-Chan

    2015-01-01

    Background The purpose of this study was to report findings of exploratory arthroscopic assessment performed in conjunction with removal of internal fixation device placed in the initial surgery for rotational ankle fracture. Methods A total of 53 patients (33 male, 20 female) who underwent surgery for rotational ankle fracture between November 2002 and February 2008 were retrospectively reviewed. All patients gave consent to the exploratory arthroscopic surgery for the removal of internal fixation devices placed in the initial surgery. Lauge-Hansen classification system of ankle fractures was assessed for all patients. Intra-articular lesions (osteochondral lesion, loose body, and fibrosis) were evaluated via ankle arthroscopy. Comparative analysis was then performed between radiological classification of ankle fracture/patient's symptoms and arthroscopic findings. Results Lauge-Hansen classification system of ankle fractures included supination-external rotation type (n = 35), pronation-external rotation type (n = 9), and pronation-abduction type (n = 9). A total of 33 patients exhibited symptoms of pain or discomfort while walking whereas 20 exhibited no symptoms. Arthroscopic findings included abnormal findings around the syndesmosis area (n = 35), intra-articular fibrosis (n = 51), osteochondral lesions of the talus (n = 33), loose bodies (n = 6), synovitis (n = 13), and anterior bony impingement syndrome (n = 3). Intra-articular fibrosis was seen in 31 of symptomatic patients (93.9%). Pain or discomfort with activity caused by soft tissue impingement with meniscus-like intra-articular fibrosis were found in 19 patients. There was statistical significance (p = 0.02) between symptoms (pain and discomfort) and the findings of meniscus-like fibrosis compared to the group without any symptom. Conclusions Arthroscopic examination combined with treatment of intra-articular fibrosis arising from ankle fracture surgery may help improve surgical outcomes. PMID:26640633

  11. Does Ligamentous Laxity Protect Against Chondral Injury in Patients with Patellofemoral Instability?

    PubMed Central

    Redler, Lauren H.; Mayer, Gabrielle M.; Kalbian, Irene L.; Nguyen, Joseph; Stein, Beth E. Shubin; Strickland, Sabrina M.

    2016-01-01

    Objectives: Hypermobility may be a risk factor for musculoskeletal injuries during sports participation. However, we have seen a low incidence of chondral injuries requiring treatment in patients undergoing medial patellofemoral ligament (MPFL) reconstruction for patellofemoral instability. It is unknown if patients with ligamentous laxity, who are at an increased risk for patellofemoral instability, are somewhat protected from chondral injury. We hypothesize in patients undergoing MPFL reconstruction for patellofemoral instability, patients with ligamentous laxity will be less likely to have chondral defects requiring surgical intervention. Methods: 171 patients (32 male, 139 female) average age 22 years (range 11-57) with patellofemoral instability were rated with the Beighton-Horan (BH) scale for constitutional ligamentous laxity (0-9). Preoperative MRIs were evaluated (chondral injury present/absent, size of chondral injury, Outerbridge grade) and intra-operative arthroscopic findings noted (chondral injury present/absent, size of chondral injury, Outerbridge grade, surgical intervention yes/no, type of surgical intervention) of 79 non-lax (BH<6) and 92 ligamentously lax patients (BH≥6) (LAX) undergoing MPFL reconstruction. Anatomic measurements were documented for each patient including: tibial tubercle-trochlear groove (TT-TG) distance, Caton-Deschamps (C/D) ratio for patellar height, and the Dejour classification of trochlear dysplasia. Surgical interventions included chondroplasty, microfracture, particulated juvenile cartilage implantation (DeNovo, Zimmer, Warsaw, IN), osteochondral fracture fixation or osteochondral allograft transplantation (OATS). Results: 58/171 (33.9%) required a surgical intervention for a chondral defect: chondroplasty 29/58 (50%), microfracture 16/58 (27.6%), particulated juvenile cartilage implantation 18/58 (31%), osteochondral fracture fixation 2/58 (3.5%), and OATS 2/58 (3.5%). There was no difference in the proportion of

  12. Sequelae of Perthes Disease

    PubMed Central

    ANDERSON, Lucas A.; ERICKSON, Jill A.; SEVERSON, Erik; PETERS, Christopher L.

    2010-01-01

    Background Sequelae of Perthes disease commonly manifests as complex hip pathomorphology including coxa magna, coxa brevis, and acetabular dysplasia. These abnormalities contribute to femoroacetabular impingement and early osteoarthritis. This report describes our experience with correction of the proximal femoral deformity associated with Perthes disease via surgical dislocation, osteochondroplasty (SDO), trochanteric advancement, and treatment of intra-articular chondrolabral injury. Methods Between January 2003 and January 2009, 14 patients with Perthes disease (4 female and 10 male patients) with an average age of 19.6 years (range 14 – 28) were treated with SDO and trochanteric advancement. One patient had a subsequent staged periacetabular osteotomy to improve acetabular coverage. Patient histories, physical exams, operative findings, and pre and postoperative radiographs were evaluated. Results Operative findings demonstrated 6 acetabular cartilage lesions, 6 labral lesions, and 4 femoral osteochondritis dissecans (OCD) lesions treated with autografts. Mean center trochanteric distance improved from −20 mm to −1 mm. 4/14 hips deteriorated 1 Tönnis grade and 1/14 hips 2 grades. The Harris hip scores improved from an average of 62 preoperatively (range 51–72) to 95 postoperatively (range 93–97) versus 71 (range 65–76) to 88.6 (range 63–100) in the hips without OCD lesions. There was no statistically significant difference in the age, pre or postoperative HHS between the OCD and non-OCD groups. Mean follow up was 45 months. There were no major perioperative complications and all patients in both groups have their native hip to date. Conclusions The typical adult sequelae of Perthes disease predispose the hip to the development of chondrolabral injury and poor clinical function. Treatment with SDO and trochanteric advancement reduces impingement, improves hip biomechanics and allows treatment of intra-articular pathology. The described approach is

  13. Early effects of embryonic movement: ‘a shot out of the dark’

    PubMed Central

    Pitsillides, Andrew A

    2006-01-01

    It has long been appreciated that studying the embryonic chick in ovo provides a variety of advantages, including the potential to control the embryo's environment and its movement independently of maternal influences. This allowed early workers to identify movement as a pivotal factor in the development of the locomotor apparatus. With an increasing focus on the earliest detectable movements, we have exploited this system by developing novel models and schemes to examine the influence of defined periods of movement during musculoskeletal development. Utilizing drugs with known neuromuscular actions to provoke hyperactivity (4-aminopyridine, AP) and either rigid (decamethonium bromide, DMB) or flaccid (pancuronium bromide, PB) paralysis, we have examined the role of movement in joint, osteochondral and muscle development. Our initial studies focusing on the joint showed that AP-induced hyperactivity had little, if any, effect on the timing or scope of joint cavity elaboration, suggesting that endogenous activity levels provide sufficient stimulus, and additional mobilization is without effect. By contrast, imposition of either rigid or flaccid paralysis prior to cavity formation completely blocked this process and, with time, produced fusion of cartilaginous elements and formation of continuous single cartilaginous rods across locations where joints would ordinarily form. The effect of these distinct forms of paralysis differed, however, when treatment was initiated after formation of an overt cavity; rigid, but not flaccid, paralysis partly conserved precavitated joints. This observation suggests that ‘static’ loading derived from ‘spastic’ rigidity can act to preserve joint cavities. Another facet of these studies was the observation that DMB-induced rigid paralysis produces a uniform and specific pattern of limb deformity whereas PB generated a diverse range of fixed positional deformities. Both also reduced limb growth, with different developmental

  14. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  15. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    PubMed

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  16. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    PubMed

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  17. Posterior Ankle and Hind Foot Arthroscopy

    PubMed Central

    Gökkuş, Kemal; Aydın, Ahmet Turan

    2014-01-01

    Objectives: While anterior ankle arthroscopy is a widely accepted technique, posterior ankle/hind foot arthroscopy is still a relatively new procedure. The arthroscopic visualisation was often initially limited and vulnerabilty of the posteromedial neurovascular structures to injury scared orthopaedic surgeons. The goal of this review is to highlight the indications, and to present the long term follow up results of posterior ankle/hind foot arthroscopy. Methods: The study included 21 ankles in 21 patients (12 male and 9 female ).The mean age was 37.7 , the mean duration of preoperative symptoms 12.8 months . Arthroscopy performed with the patient prone , under general and spinal anesthesia with tourniquet hemostasis . Preoperative intravenous antibiotic prophylaxis is performed (cefazolin 1g) , sand bag placed under ipsilateral anteresuperior iliac spine to correct natural external rotated posture of the ankle and ankle is left hanging of the table so that it can moved freely during surgery. We applied noninvasive distraction method with simple rope which tied and knotted waist of the surgeon . The posterolateral and posteromedial portals which described by Van Dijk was utilized . The arthroscopic visualisation was often initially limited and careful debritement of some adipose tissue of the kager fat pad (Kager's fat pad, also known as the pre-Achilles fat pad) was necessary to create more space to aid visualization .The most valuable point to stay clear from trouble is to understand , know and aware where the flexor hallucis longus tendon exist .So neurovascular structures located beyond this tendon. Principally the process must advance into lateral to medial manner. The mean follow up period was 55 months. The most common preoperative diagnoses were osteochondral lesions of talus (ten ),painful os trigonum syndrome with (five )or without (three) FHL tenosynovitis (total eight ), posterior talofibular ligament thickenning (two ), Haglund’s deformity (one

  18. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  19. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice.

    PubMed

    Youngstrom, D W; Dishowitz, M I; Bales, C B; Carr, E; Mutyaba, P L; Kozloff, K M; Shitaye, H; Hankenson, K D; Loomes, K M

    2016-10-01

    Loss-of-function mutations in the Notch ligand, Jagged1 (Jag1), result in multi-system developmental pathologies associated with Alagille syndrome (ALGS). ALGS patients present with skeletal manifestations including hemi-vertebrae, reduced bone mass, increased fracture incidence and poor bone healing. However, it is not known whether the increased fracture risk is due to altered bone homeostasis (primary) or nutritional malabsorption due to chronic liver disease (secondary). To determine the significance of Jag1 loss in bone, we characterized the skeletal phenotype of two Jag1-floxed conditional knockout mouse models: Prx1-Cre;Jag1(f/f) to target osteoprogenitor cells and their progeny, and Col2.3-Cre;Jag1(f/f) to target mid-stage osteoblasts and their progeny. Knockout phenotypes were compared to wild-type (WT) controls using quantitative micro-computed tomography, gene expression profiling and mechanical testing. Expression of Jag1 and the Notch target genes Hes1 and Hey1 was downregulated in all Jag1 knockout mice. Osteoblast differentiation genes were downregulated in whole bone of both groups, but unchanged in Prx1-Cre;Jag1(f/f) cortical bone. Both knockout lines exhibited changes in femoral trabecular morphology including decreased bone volume fraction and increased trabecular spacing, with males presenting a more severe trabecular osteopenic phenotype. Prx1-Cre;Jag1(f/f) mice showed an increase in marrow mesenchymal progenitor cell number and, counterintuitively, developed increased cortical thickness resulting from periosteal expansion, translating to greater mechanical stiffness and strength. Similar alterations in femoral morphology were observed in mice with canonical Notch signaling disrupted using Prx1-Cre-regulatable dominant-negative mastermind like-protein (dnMAML). Taken together, we report that 1) Jag1 negatively regulates the marrow osteochondral progenitor pool, 2) Jag1 is required for normal trabecular bone formation and 3) Notch signaling

  20. Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors.

    PubMed

    Augst, Alexander; Marolt, Darja; Freed, Lisa E; Vepari, Charu; Meinel, Lorenz; Farley, Michelle; Fajardo, Robert; Patel, Nipun; Gray, Martha; Kaplan, David L; Vunjak-Novakovic, Gordana

    2008-08-01

    Human mesenchymal stem cells (hMSCs) isolated from bone marrow aspirates were cultured on silk scaffolds in rotating bioreactors for three weeks with either chondrogenic or osteogenic medium supplements to engineer cartilage- or bone-like tissue constructs. Osteochondral composites formed from these cartilage and bone constructs were cultured for an additional three weeks in culture medium that was supplemented with chondrogenic factors, supplemented with osteogenic factors or unsupplemented. Progression of cartilage and bone formation and the integration between the two regions were assessed by medical imaging (magnetic resonance imaging and micro-computerized tomography imaging), and by biochemical, histological and mechanical assays. During composite culture (three to six weeks), bone-like tissue formation progressed in all three media to a markedly larger extent than cartilage-like tissue formation. The integration of the constructs was most enhanced in composites cultured in chondrogenic medium. The results suggest that tissue composites with well-mineralized regions and substantially less developed cartilage regions can be generated in vitro by culturing hMSCs on silk scaffolds in bioreactors, that hMSCs have markedly higher capacity for producing engineered bone than engineered cartilage, and that chondrogenic factors play major roles at early stages of bone formation by hMSCs and in the integration of the two tissue constructs into a tissue composite. PMID:18230586

  1. A novel algorithm for a precise analysis of subchondral bone alterations.

    PubMed

    Gao, Liang; Orth, Patrick; Goebel, Lars K H; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Subchondral bone alterations are emerging as considerable clinical problems associated with articular cartilage repair. Their analysis exposes a pattern of variable changes, including intra-lesional osteophytes, residual microfracture holes, peri-hole bone resorption, and subchondral bone cysts. A precise distinction between them is becoming increasingly important. Here, we present a tailored algorithm based on continuous data to analyse subchondral bone changes using micro-CT images, allowing for a clear definition of each entity. We evaluated this algorithm using data sets originating from two large animal models of osteochondral repair. Intra-lesional osteophytes were detected in 3 of 10 defects in the minipig and in 4 of 5 defects in the sheep model. Peri-hole bone resorption was found in 22 of 30 microfracture holes in the minipig and in 17 of 30 microfracture holes in the sheep model. Subchondral bone cysts appeared in 1 microfracture hole in the minipig and in 5 microfracture holes in the sheep model (n = 30 holes each). Calculation of inter-rater agreement (90% agreement) and Cohen's kappa (kappa = 0.874) revealed that the novel algorithm is highly reliable, reproducible, and valid. Comparison analysis with the best existing semi-quantitative evaluation method was also performed, supporting the enhanced precision of this algorithm. PMID:27596562

  2. A novel algorithm for a precise analysis of subchondral bone alterations

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Orth, Patrick; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2016-09-01

    Subchondral bone alterations are emerging as considerable clinical problems associated with articular cartilage repair. Their analysis exposes a pattern of variable changes, including intra-lesional osteophytes, residual microfracture holes, peri-hole bone resorption, and subchondral bone cysts. A precise distinction between them is becoming increasingly important. Here, we present a tailored algorithm based on continuous data to analyse subchondral bone changes using micro-CT images, allowing for a clear definition of each entity. We evaluated this algorithm using data sets originating from two large animal models of osteochondral repair. Intra-lesional osteophytes were detected in 3 of 10 defects in the minipig and in 4 of 5 defects in the sheep model. Peri-hole bone resorption was found in 22 of 30 microfracture holes in the minipig and in 17 of 30 microfracture holes in the sheep model. Subchondral bone cysts appeared in 1 microfracture hole in the minipig and in 5 microfracture holes in the sheep model (n = 30 holes each). Calculation of inter-rater agreement (90% agreement) and Cohen’s kappa (kappa = 0.874) revealed that the novel algorithm is highly reliable, reproducible, and valid. Comparison analysis with the best existing semi-quantitative evaluation method was also performed, supporting the enhanced precision of this algorithm.

  3. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction.

    PubMed

    Brocher, J; Janicki, P; Voltz, P; Seebach, E; Neumann, E; Mueller-Ladner, U; Richter, W

    2013-11-01

    Human mesenchymal stromal cells derived from bone marrow (BMSC) and adipose tissue (ATSC) represent a valuable source of progenitor cells for cell therapy and tissue engineering. While ectopic bone formation is a standard activity of human BMSC on calcium phosphate ceramics, the bone formation capacity of human ATSC has so far been unclear. The objectives of this study were to assess the therapeutic potency of ATSC for bone formation in an ectopic mouse model and determine molecular differences by standardized comparison with BMSC. Although ATSC contained less CD146(+) cells, exhibited better proliferation and displayed similar alkaline phosphatase activity upon osteogenic in vitro differentiation, cells did not develop into bone-depositing osteoblasts on β-TCP after 8weeks in vivo. Additionally, ATSC expressed less BMP-2, BMP-4, VEGF, angiopoietin and IL-6 and more adiponectin mRNA, altogether suggesting insufficient osteochondral commitment and reduced proangiogenic activity. Chondrogenic pre-induction of ATSC/β-TCP constructs with TGF-β and BMP-6 initiated ectopic bone formation in >75% of samples. Both chondrogenic pre-induction and the osteoconductive microenvironment of β-TCP were necessary for ectopic bone formation by ATSC pointing towards a need for inductive conditions/biomaterials to make this more easily accessible cell source attractive for future applications in bone regeneration.

  4. Aging-related differences in chondrocyte viscoelastic properties.

    PubMed

    Steklov, Nikolai; Srivastava, Ajay; Sung, K L P; Chen, Peter C; Lotz, Martin K; D'Lima, Darryl D

    2009-06-01

    The biomechanical properties of articular cartilage change profoundly with aging. These changes have been linked with increased potential for cartilage degeneration and osteoarthritis. However, less is known about the change in biomechanical properties of chondrocytes with increasing age. Cell stiffness can affect mechanotransduction pathways and may alter cell function. We measured aging-related changes in the biomechanical properties of chondrocytes. Human chondrocytes were isolated from knee articular cartilage within 48 hours after death or from osteochondral specimens obtained from knee arthroplasty. Cells were divided into two age groups: between 18 and 35 years (18 - 35); and greater than 55 years (55+) of age. The 55+ group was further subdivided based on visual grade of osteoarthritis: normal (N) or osteoarthritic (OA). The viscoelastic properties of the cell were measured using the previously described micropipette cell aspiration technique. The equilibrium modulus, instantaneous modulus, and apparent viscosity were significantly higher in the 55+ year age group than in the 18 - 35 age group. On the other hand, no differences were found in the equilibrium modulus, instantaneous modulus, or apparent viscosity between the N and OA groups. The increase in cell stiffness can be attributed to altered mechanical properties of the cell membrane, the cytoplasm, or the cytoskeleton. Increased stiffness has been reported in osteoarthritic chondrocytes, which in turn has been attributed to the actin cytoskeleton. A similar mechanism may be responsible for our finding of increased stiffness in aging chondrocytes. With advancing age, changes in the biomechanical properties of the cell could alter molecular and biochemical responses.

  5. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.

    PubMed

    Mow, V C; Gibbs, M C; Lai, W M; Zhu, W B; Athanasiou, K A

    1989-01-01

    Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poisson's ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poisson's ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments.

  6. Popliteomeniscal Fascicle Tear: Diagnosis and Operative Technique

    PubMed Central

    Shin, Hong-Kwan; Lee, Hee-Sung; Lee, Young-Kuk; Bae, Ki-Cheor; Cho, Chul-Hyun; Lee, Kyung-Jae

    2012-01-01

    The occurrence and the consistency of the popliteomeniscal fascicle between the popliteus tendon and the lateral meniscus have been the subject of debate. It is difficult to diagnose and treat popliteomeniscal fascicle tears. Furthermore, popliteomeniscal fascicle tears are difficult to identify with arthroscopy. This article describes the diagnostic factors for popliteomeniscal fascicle tears and the safe, effective operative techniques that can be used for their treatment. We suggest that popliteomeniscal fascicle tears are diagnosed when the following 3 conditions are confirmed: (1) existence of mechanical symptoms such as pain, locking, and giving way in the lateral compartment of the knee; (2) identification of hypermobility of the lateral meniscus through arthroscopic probing; and (3) occurrence of an osteochondral lesion in the posterior area of the lateral femoral condyle. In the case of popliteomeniscal fascicle tears, the tear area can be repaired with a suture hook and polydioxanone with an all-inside technique. If the joint space is narrowing because of soft-tissue tightness, it can be repaired with a zone-specific cannula through an inside-out technique. PMID:23766962

  7. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage.

    PubMed

    Virén, T; Huang, Y P; Saarakkala, S; Pulkkinen, H; Tiitu, V; Linjama, A; Kiviranta, I; Lammi, M J; Brünott, A; Brommer, H; Van Weeren, R; Brama, P A J; Zheng, Y P; Jurvelin, J S; Töyräs, J

    2012-04-01

    The aim of this study was to compare sensitivity of ultrasound and optical coherence tomography (OCT) techniques for the evaluation of the integrity of spontaneously repaired horse cartilage. Articular surfaces of horse intercarpal joints, featuring both intact tissue and spontaneously healed chondral or osteochondral defects, were imaged ex vivo with arthroscopic ultrasound and laboratory OCT devices. Quantitative ultrasound (integrated reflection coefficient (IRC), apparent integrated backscattering coefficient (AIB) and ultrasound roughness index (URI)) and optical parameters (optical reflection coefficient (ORC), optical roughness index (ORI) and optical backscattering (OBS)) were determined and compared with histological integrity and mechanical properties of the tissue. Spontaneously healed tissue could be quantitatively discerned from the intact tissue with ultrasound and OCT techniques. Furthermore, several significant correlations (p < 0.05) were detected between ultrasound and OCT parameters. Superior resolution of OCT provided a more accurate measurement of cartilage surface roughness, while the ultrasound backscattering from the inner structures of the cartilage matched better with the histological findings. Since the techniques were found to be complementary to each other, dual modality imaging techniques could provide a useful tool for the arthroscopic evaluation of the integrity of articular cartilage.

  8. Large animal models in experimental knee sports surgery: focus on clinical translation.

    PubMed

    Madry, Henning; Ochi, Mitsuo; Cucchiarini, Magali; Pape, Dietrich; Seil, Romain

    2015-12-01

    Large animal models play a crucial role in sports surgery of the knee, as they are critical for the exploration of new experimental strategies and the clinical translation of novel techniques. The purpose of this contribution is to provide critical aspects of relevant animal models in this field, with a focus on paediatric anterior cruciate ligament (ACL) reconstruction, high tibial osteotomy, and articular cartilage repair. Although there is no single large animal model strictly replicating the human knee joint, the sheep stifle joint shares strong similarities. Studies in large animal models of paediatric ACL reconstruction identified specific risk factors associated with the different surgical techniques. The sheep model of high tibial osteotomy is a powerful new tool to advance the understanding of the effect of axial alignment on the lower extremity on specific issues of the knee joint. Large animal models of both focal chondral and osteochondral defects and of osteoarthritis have brought new findings about the mechanisms of cartilage repair and treatment options. The clinical application of a magnetic device for targeted cell delivery serves as a suitable example of how data from such animal models are directly translated into in clinical cartilage repair. As novel insights from studies in these translational models will advance the basic science, close cooperation in this important field of clinical translation will improve current reconstructive surgical options and open novel avenues for regenerative therapies of musculoskeletal disorders. PMID:26914877

  9. Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene

    SciTech Connect

    Lin, Huey; Shabbir, Arsalan; Molnar, Merced; Lee, Techung . E-mail: chunglee@buffalo.edu

    2007-03-30

    Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated as Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.

  10. Matrix assisted autologous chondrocyte transplantation for cartilage treatment

    PubMed Central

    Kon, E.; Filardo, G.; Di Matteo, B.; Perdisa, F.; Marcacci, M.

    2013-01-01

    Objectives Matrix-assisted autologous chondrocyte transplantation (MACT) has been developed and applied in the clinical practice in the last decade to overcome most of the disadvantages of the first generation procedures. The purpose of this systematic review is to document and analyse the available literature on the results of MACT in the treatment of chondral and osteochondral lesions of the knee. Methods All studies published in English addressing MACT procedures were identified, including those that fulfilled the following criteria: 1) level I-IV evidence, 2) measures of functional or clinical outcome, 3) outcome related to cartilage lesions of the knee cartilage. Results The literature analysis showed a progressively increasing number of articles per year. A total of 51 articles were selected: three randomised studies, ten comparative studies, 33 case series and five case reports. Several scaffolds have been developed and studied, with good results reported at short to medium follow-up. Conclusions MACT procedures are a therapeutic option for the treatment of chondral lesions that can offer a positive outcome over time for specific patient categories, but high-level studies are lacking. Systematic long-term evaluation of these techniques and randomised controlled trials are necessary to confirm the potential of this treatment approach, especially when comparing against less ambitious traditional treatments. PMID:23610698

  11. In vitro observation of cartilage-degeneration progression by Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Marx, Ulrich; Schmitt, Robert; Nebelung, Sven; Tingart, Markus; Lüring, Christian; Rath, Björn

    2012-03-01

    Optical Coherence Tomography (OCT) as emerging clinical diagnostic imaging technology for dermatology and other semitransparent tissues has shown high potential in monitoring and evaluating the inner structure of articular cartilages. Since novel therapies for the limitation of cartilage degeneration in early stages of osteoarthritis are available, the early minimal invasive diagnosis of cartilage degradation is clinically essential for further treatment options. With the advancing performance and thus diagnostic opportunities of 3D-OCT devices, we carried out a systematic study by monitoring arthrotic alterations of porcine osteochondral explants that are mechanically induced under traumatic impaction. As for in-vitro tomographic imaging we utilized two OCT devices, a Thorlabs FD-OCT device with 92KHz A-scan rate and 1310nm as central wavelength and a self-developed FD-OCT device at 840nm central wavelength. This allows the comparison in image contrast and optical penetration of cartilage tissue between these two spectral bandwidths. Further we analyzed human biopsies of articular cartilages with various degrees of osteoarthritis. The 2D and 3D OCT tomograms are characterized qualitatively regarding the inner tissue structure and quantitatively regarding the tissue absorption parameters. Therefore, we are developing image processing algorithms for the automated monitoring of cartilage tissue. A scoring system for 3D-monitoring allows the characterization of the probe volume regarding the morphological structure and tissue compactness by processing the C - scan data.

  12. Repair and tissue engineering techniques for articular cartilage

    PubMed Central

    Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of regenerative biological products that over the next decade could revolutionize joint care by functionally healing articular cartilage. These products include cell-based and cell-free materials such as autologous and allogeneic cell-based approaches and multipotent and pluripotent stem-cell-based techniques. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed. PMID:25247412

  13. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins.

  14. Acute septicemia caused by Streptococcus gallolyticus subsp. pasteurianus in turkey poults.

    PubMed

    Saumya, Dona; Wijetunge, S; Dunn, Patricia; Wallner-Pendleton, Eva; Lintner, Valerie; Matthews, Tammy; Pierre, Traci; Kariyawasam, Subhashinie

    2014-06-01

    Streptococcus gallolyticus, previously known as Streptococcus bovis biotypes I and II/2, is a well-known cause of sepsis and meningitis in humans and birds. The present case report describes an outbreak of fatal septicemia associated with S. gallolyticus subsp. pasteurianus (S. bovis biotype II/2) in 11 turkey flocks in Pennsylvania between 2010 and 2013. Affected poults were 2-3 wk of age. Major clinical observation was sudden increase in mortality among turkey poults without any premonitory clinical signs. Postmortem examination findings revealed acute septicemia with lesions such as fibrinous pericarditis, meningitis, splenic multifocal fibrinoid necrosis, hepatitis, osteochondritis, myositis, and airsacculitis. Gram-positive cocci were isolated from several organs by routine bacterial culture. Biotyping identified bacteria as streptococci, whereas 16S ribosomal RNA gene sequencing identified them as S. gallolyticus subsp. pasteurianus. Antibiotic susceptibility profiles revealed that all the strains isolated were sensitive to penicillin and erythromycin with different sensitivity profiles for other antibacterial agents tested. The present study reports the first confirmed case of acute septicemia in turkey poults caused by S. gallolyticus subsp. pasteurianus.

  15. NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone.

    PubMed

    Tomlinson, Ryan E; Li, Zhi; Zhang, Qian; Goh, Brian C; Li, Zhu; Thorek, Daniel L J; Rajbhandari, Labchan; Brushart, Thomas M; Minichiello, Liliana; Zhou, Fengquan; Venkatesan, Arun; Clemens, Thomas L

    2016-09-01

    Developing tissues dictate the amount and type of innervation they require by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase receptors. Here, we show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons were observed at perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers of incipient ossification. Inactivation of TrkA signaling during embryogenesis in TrkA(F592A) mice impaired innervation, delayed vascular invasion of the primary and secondary ossification centers, decreased numbers of Osx-expressing osteoprogenitors, and decreased femoral length and volume. These same phenotypic abnormalities were observed in mice following tamoxifen-induced disruption of NGF in Col2-expressing perichondrial osteochondral progenitors. We conclude that NGF serves as a skeletal neurotrophin to promote sensory innervation of developing long bones, a process critical for normal primary and secondary ossification. PMID:27568565

  16. Engineering Orthopedic Tissue Interfaces

    PubMed Central

    Yang, Peter J.

    2009-01-01

    While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983

  17. Mosaic arthroplasty of the medial femoral condyle in horses - An experimental study.

    PubMed

    Bodó, Gábor; Vásárhelyi, Gábor; Hangody, László; Módis, László

    2014-06-01

    One Arabian and 5 Hungarian half-bred horses were used to study the macroscopic and microscopic survival of autologous osteochondral grafts in the weight-bearing surface of the medial femoral condyle (MFC). Grafts were harvested from the cranial surface of the medial femoral trochlea (MFT) under arthroscopic control. Three of them were transplanted into the weight-bearing surface of the contralateral MFC using an arthrotomy approach. Three months later this transplantation procedure was repeated on the opposite stifle joints in the same animals, but at that time transplantation was performed arthroscopically. Follow-up arthroscopy was carried out 12 months after the first operations, and biopsies were taken from both the recipient and the donor sites for histological examination. During follow-up arthroscopy, the transplanted areas looked congruent and smooth. Microscopically, the characteristics of hyaline cartilage were present in 5 out of the 10 biopsies examined; however, in the other half of biopsies glycosaminoglycan (GAG) loss and change in the architecture of the transplanted cartilage was observed. In a 16-year-old horse, all grafts broke during harvesting, and thus transplantation was not performed. No radiological signs of osteoarthritic changes were detected 9 to 12 months after the operations in the donor and recipient joints. Clinically, no lameness or effusion was present three months after the transplantations.

  18. Effects of different crosslinking conditions on the chemical-physical properties of a novel bio-inspired composite scaffold stabilised with 1,4-butanediol diglycidyl ether (BDDGE).

    PubMed

    Nicoletti, A; Fiorini, M; Paolillo, J; Dolcini, L; Sandri, M; Pressato, D

    2013-01-01

    Serious cartilage lesions (Outerbridge III, IV) may be successfully treated with a three-layered gradient scaffold made by magnesium-doped hydroxyapatite and type I collagen, manufactured through a bio-inspired process and stabilised by a reactive bis-epoxy (1,4-butanediol diglycidyl ether, BDDGE). Each layer was analysed to elucidate the effects of crosslinking variables (concentration, temperature and pH). The chemical stabilisation led to an homogeneous and aligned collagenous matrix: the fibrous structures switched to a laminar foils-based arrangement and organic phases acquired an highly coordinated 3D-organization. These morphological features were strongly evident when crosslinking occurred in alkaline solution, with BDDGE concentration of at least 1 wt%. The optimised crosslinking conditions did not affect the apatite nano-crystals nucleated into self-assembling collagen fibres. The present work allowed to demonstrate that acting on BDDGE reaction parameters might be an useful tool to control the chemical-physical properties of bio-inspired scaffold suitable to heal wide osteochondral defects, even through arthroscopic procedure.

  19. From the RSNA Refresher Courses. Radiological Society of North America. MR imaging of the ankle and foot.

    PubMed

    Rosenberg, Z S; Beltran, J; Bencardino, J T

    2000-10-01

    Magnetic resonance (MR) imaging has opened new horizons in the diagnosis and treatment of many musculoskeletal diseases of the ankle and foot. It demonstrates abnormalities in the bones and soft tissues before they become evident at other imaging modalities. The exquisite soft-tissue contrast resolution, noninvasive nature, and multiplanar capabilities of MR imaging make it especially valuable for the detection and assessment of a variety of soft-tissue disorders of the ligaments (eg, sprain), tendons (tendinosis, peritendinosis, tenosynovitis, entrapment, rupture, dislocation), and other soft-tissue structures (eg, anterolateral impingement syndrome, sinus tarsi syndrome, compressive neuropathies [eg, tarsal tunnel syndrome, Morton neuroma], synovial disorders). MR imaging has also been shown to be highly sensitive in the detection and staging of a number of musculoskeletal infections including cellulitis, soft-tissue abscesses, and osteomyelitis. In addition, MR imaging is excellent for the early detection and assessment of a number of osseous abnormalities such as bone contusions, stress and insufficiency fractures, osteochondral fractures, osteonecrosis, and transient bone marrow edema. MR imaging is increasingly being recognized as the modality of choice for assessment of pathologic conditions of the ankle and foot.

  20. Peripheral nerve blocks in patients with Ehlers-Danlos syndrome, hypermobility type: a report of 2 cases.

    PubMed

    Patzkowski, Michael S

    2016-03-01

    Ehlers-Danlos syndrome is an inherited disorder of collagen production that results in multiorgan dysfunction. Patients with hypermobility type display skin hyperextensibility and joint laxity, which can result in chronic joint instability, dislocation, peripheral neuropathy, and severe musculoskeletal pain. A bleeding diathesis can be found in all subtypes of varying severity despite a normal coagulation profile. There have also been reports of resistance to local anesthetics in these patients. Several sources advise against the use of regional anesthesia in these patients citing the 2 previous features. There have been reports of successful neuraxial anesthesia, but few concerning peripheral nerve blocks, none of which describe nerves of the lower extremity. This report describes 2 cases of successful peripheral regional anesthesia in the lower extremity. In case 1, a 16-year-old adolescent girl with hypermobility type presented for osteochondral grafting of tibiotalar joint lesions. She underwent a popliteal sciatic (with continuous catheter) and femoral nerve block under ultrasound guidance. She proceeded to surgery and tolerated the procedure under regional block and intravenous sedation. She did not require any analgesics for the following 15 hours. In case 2, an 18-year-old woman with hypermobility type presented for medial patellofemoral ligament reconstruction for chronic patella instability. She underwent a saphenous nerve block above the knee with analgesia in the distribution of the saphenous nerve lasting for approximately 18 hours. There were no complications in either case. Prohibitions against peripheral nerve blocks in patients with Ehlers-Danlos syndrome, hypermobility type, appear unwarranted.

  1. Arthroscopic ultrasound technique for simultaneous quantitative assessment of articular cartilage and subchondral bone: an in vitro and in vivo feasibility study.

    PubMed

    Liukkonen, J; Hirvasniemi, J; Joukainen, A; Penttilä, P; Virén, T; Saarakkala, S; Kröger, H; Jurvelin, J S; Töyräs, J

    2013-08-01

    Traditional arthroscopic examination is subjective and poorly reproducible. Recently, we introduced an arthroscopic ultrasound method for quantitative diagnostics of cartilage lesions. Here we describe our investigation of the feasibility of ultrasound arthroscopy for simultaneous measurements of articular cartilage and subchondral bone. Human osteochondral samples (n = 13) were imaged using a clinical 9-MHz ultrasound system. Ultrasound reflection coefficients (R, IRC), the ultrasound roughness index (URI) and the apparent integrated backscattering coefficient (AIB) were determined for both tissues. Mechanical testing, histologic analyses and micro-scale computed tomography imaging were the reference methods. Ultrasound arthroscopies were conducted on two patients. The ultrasound reflection coefficient correlated with the Mankin score and Young's modulus of cartilage (|r| > 0.56, p < 0.05). Ultrasound parameters (R, IRC, AIB) for subchondral bone correlated with the bone surface/volume ratio (|r| > 0.70, p < 0.05) and trabecular thickness (|r| > 0.59, p < 0.05). Furthermore, R and subchondral bone mineral density were significantly correlated (|r| > 0.65, p < 0.05). Arthroscopic ultrasound examination provided diagnostically valuable information on cartilage and subchondral bone in vivo. PMID:23743098

  2. A Brief Review of Infrequent Spontaneous Findings, Peculiar Anatomical Microscopic Features, and Potential Artifacts in Göttingen Minipigs.

    PubMed

    McInnes, E F; McKeag, S

    2016-04-01

    Minipigs are now used in greater numbers in contract research organizations (CROs) as well as in the pharmaceutical industry. Most CROs or pharmaceutical companies use the Göttingen minipig, which displays a number of important background lesions. This review will discuss some of the more infrequent minipig background changes. Porcine stress syndrome is an autosomal recessive pharmacogenetic disorder in minipigs causing malignant hyperthermia and muscle necrosis. Possible triggers, clinical pathology as well as heart, muscle, liver, lung, and kidney histopathology are discussed. Additional spontaneous changes, background findings, and peculiar anatomical and histological features include thrombocytopenic purpura syndrome, spontaneous glomerulonephritis, osteochondritis, ellipsoids, or Schweigger-Seidel sheaths in the spleen, as well as the presence of a perimesenteric plexus adjacent to mesenteric lymph nodes, squamous epithelial metaplasia of the salivary gland, and cupping of the optic disk in the minipig eye. In order to maximize the data gained from minipig studies, the interpretation of pathology findings requires the input of experienced pathologists who understand the significance of artifacts and spontaneous, background lesions in minipigs and can distinguish these from induced lesions.

  3. Association of growth, feeding practices and exercise conditions with the severity of the osteoarticular status of limbs in French foals.

    PubMed

    Lepeule, Johanna; Bareille, Nathalie; Robert, Céline; Valette, Jean-Paul; Jacquet, Sandrine; Blanchard, Géraldine; Denoix, Jean-Marie; Seegers, Henri

    2013-07-01

    The aim of this study was to identify the risk factors for the severity of Juvenile OsteoChondral Conditions (JOCC) in limbs of French foals. Twenty-one farms in Normandy, France, were sampled and enrolled in a cohort study including 378 foals from three breeds, followed from the 8th month of pregnancy of the mares until the foals were approximately 6months old. Data on growth, feeding practices and exercise conditions were regularly collected. The carpus, the front and hind digits, the hock and the stifle of the foals were radiographed at the end of follow-up. JOCC severity in each foal was described using a global appraisal of its osteoarticular status (OAS) depending on the number and the severity of radiographic findings. Of the 378 foals, 53% had a good OAS, 34% had an intermediate OAS and 13% had a poor OAS. The breed (Selle Français and French Trotter Standardbred vs. Thoroughbred), a high girth perimeter at early age and an irregular exercise were significantly associated with a poor OAS. This study contributes to the understanding of the development of JOCC. An increased growth and reduced or irregular physical activity during the first weeks of life would be responsible for more severe lesions. Growth and exercise conditions should be carefully monitored to reduce the prevalence of severe JOCC in foals.

  4. The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect

    PubMed Central

    Tsuzuki, Nao; Seo, Jong-pil; Yamada, Kazutaka; Haneda, Shingo; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-01-01

    We evaluated the curative efficacy of a gelatin β-tricalcium phosphate (β-TCP) sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2 (BMP-2), and platelet-rich plasma (PRP) by insertion into an experimentally induced osteochondral defect. A hole of 10 mm diameter and depth was drilled in the bilateral medial femoral condyles of 7 thoroughbred horses, and into each either a loaded sponge (treatment) or a saline-infused β-TCP sponge (control) was inserted. After 16 weeks, defects were examined by computed tomography, macroscopic analyses, and histological analyses. The median subchondral bone density and macroscopic subscores for joint healing were significantly higher in the treatment legs (P < 0.05). Although there was no significant difference in total histological scores between groups, hyaline cartilaginous tissue was observed across a wider area in the treatment group. Equine joint healing can be enhanced by inserting a BMP-2-, MSC-, and PRP-impregnated β-TCP sponge at the lesion site. PMID:24155448

  5. The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification.

    PubMed

    Laurie, Lindsay E; Kokubo, Hiroki; Nakamura, Masataka; Saga, Yumiko; Funato, Noriko

    2016-01-01

    The developing long bone is a model of endochondral ossification that displays the morphological layers of chondrocytes toward the ossification center of the diaphysis. Indian hedgehog (Ihh), a member of the hedgehog family of secreted molecules, regulates chondrocyte proliferation and differentiation, as well as osteoblast differentiation, through the process of endochondral ossification. Here, we report that the basic helix-loop-helix transcription factor Hand1, which is expressed in the cartilage primordia, is involved in proper osteogenesis of the bone collar via its control of Ihh production. Genetic overexpression of Hand1 in the osteochondral progenitors resulted in prenatal hypoplastic or aplastic ossification in the diaphyses, mimicking an Ihh loss-of-function phenotype. Ihh expression was downregulated in femur epiphyses of Hand1-overexpressing mice. We also confirmed that Hand1 downregulated Ihh gene expression in vitro by inhibiting Runx2 transactivation of the Ihh proximal promoter. These results demonstrate that Hand1 in chondrocytes regulates endochondral ossification, at least in part through the Runx2-Ihh axis. PMID:26918743

  6. Passaged Adult Chondrocytes Can Form Engineered Cartilage with Functional Mechanical Properties: A Canine Model

    PubMed Central

    Ng, Kenneth W.; Lima, Eric G.; Bian, Liming; O'Conor, Christopher J.; Jayabalan, Prakash S.; Stoker, Aaron M.; Kuroki, Keiichi; Cook, Cristi R.; Ateshian, Gerard A.; Cook, James L.

    2010-01-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-β3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects. PMID:19845465

  7. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold.

    PubMed

    Kinneberg, K R C; Nelson, A; Stender, M E; Aziz, A H; Mozdzen, L C; Harley, B A C; Bryant, S J; Ferguson, V L

    2015-11-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion. PMID:26001970

  8. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations.

    PubMed

    Henning, Tobias D; Gawande, Rakhee; Khurana, Aman; Tavri, Sidhartha; Mandrussow, Lydia; Golovko, Daniel; Horvai, Andrew; Sennino, Barbara; McDonald, Donald; Meier, Reinhard; Wendland, Michael; Derugin, Nikita; Link, Thomas M; Daldrup-Link, Heike E

    2012-06-01

    The purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and apoptotic MSCs. MSCs labeled with ferumoxide by simple incubation, protamine transfection, or Lipofectin transfection were evaluated with MRI and histopathology. Ferumoxide-labeled and unlabeled viable and apoptotic MSCs in osteochondral defects of rat knee joints were evaluated over 12 weeks with MRI. Signal to noise ratios (SNRs) of viable and apoptotic labeled MASIs were tested for significant differences using t-tests. A simple incubation labeling protocol demonstrated the best compromise between significant magnetic resonance signal effects and preserved cell viability and potential for immediate clinical translation. Labeled viable and apoptotic MASIs did not show significant differences in SNR. Labeled viable but not apoptotic MSCs demonstrated an increasing area of T2 signal loss over time, which correlated to stem cell proliferation at the transplantation site. Histopathology confirmed successful engraftment of viable MSCs. The engraftment of iron oxide-labeled MASIs by simple incubation can be monitored over several weeks with MRI. Viable and apoptotic MASIs can be distinguished via imaging signs of cell proliferation at the transplantation site. PMID:22554484

  9. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold.

    PubMed

    Kinneberg, K R C; Nelson, A; Stender, M E; Aziz, A H; Mozdzen, L C; Harley, B A C; Bryant, S J; Ferguson, V L

    2015-11-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.

  10. Effects of introducing cultured human chondrocytes into a human articular cartilage explant model.

    PubMed

    Secretan, Charles; Bagnall, Keith M; Jomha, Nadr M

    2010-02-01

    Articular cartilage (AC) heals poorly and effective host-tissue integration after reconstruction is a concern. We have investigated the ability of implanted chondrocytes to attach at the site of injury and to be incorporated into the decellularized host matrix adjacent to a defect in an in vitro human explant model. Human osteochondral dowels received a standardized injury, were seeded with passage 3 chondrocytes labelled with PKH 26 and compared with two control groups. All dowels were cultured in vitro, harvested at 0, 7, 14 and 28 days and assessed for chondrocyte adherence and migration into the region of decellularized tissue adjacent to the defects. Additional evaluation included cell viability, general morphology and collagen II production. Seeded chondrocytes adhered to the standardized defect and areas of lamina splendens disruption but did not migrate into the adjacent acellular region. A difference was noted in viable-cell density between the experimental group and one control group. A thin lattice-like network of matrix surrounded the seeded chondrocytes and collagen II was present. The results indicate that cultured human chondrocytes do indeed adhere to regions of AC matrix injury but do not migrate into the host tissue, despite the presence of viable cells. This human explant model is thus an effective tool for studying the interaction of implanted cells and host tissue. PMID:20012649

  11. Radiologic Assessment of Patellofemoral Pain in the Athlete

    PubMed Central

    Endo, Yoshimi; Stein, Beth E. Shubin; Potter, Hollis G.

    2011-01-01

    Context: Although disorders of the patellofemoral joint are common in the athlete, their management can be challenging and require a thorough physical examination and radiologic evaluation, including advanced magnetic resonance imaging techniques. Evidence Acquisition: Relevant articles were searched under OVID and MEDLINE (1968 to 2010) using the keywords patellofemoral joint, patellofemoral pain or patella and radiography, imaging, or magnetic resonance imaging, and the referenced sources were reviewed for additional articles. The quality and validity of the studies were assessed on the basis of careful analysis of the materials and methods before their inclusion in this article. Results: Physical examination and imaging evaluation including standard radiographs are crucial in identifying evidence of malalignment or instability. Magnetic resonance imaging provides valuable information about concomitant soft tissue injuries to the medial stabilizers as well as injuries to the articular cartilage, including chondral shears and osteochondral fractures. Quantitative magnetic resonance imaging assessing the ultrastructure of cartilage has shown high correlation with histology and may be useful for timing surgery. Conclusions: Evaluation of patellofemoral disorders is complex and requires a comprehensive assessment. Recent advancements in imaging have made possible a more precise evaluation of the individual anatomy of the patient, addressing issues of malalignment, instability, and underlying cartilage damage. PMID:23016009

  12. NFAT restricts osteochondroma formation from entheseal progenitors

    PubMed Central

    Tsang, Kelly; He, Lizhi; Garcia, Roberto A.; Ermann, Joerg; Mizoguchi, Fumitaka; Zhang, Minjie; Aliprantis, Antonios O.

    2016-01-01

    Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth. PMID:27158674

  13. A novel algorithm for a precise analysis of subchondral bone alterations

    PubMed Central

    Gao, Liang; Orth, Patrick; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Subchondral bone alterations are emerging as considerable clinical problems associated with articular cartilage repair. Their analysis exposes a pattern of variable changes, including intra-lesional osteophytes, residual microfracture holes, peri-hole bone resorption, and subchondral bone cysts. A precise distinction between them is becoming increasingly important. Here, we present a tailored algorithm based on continuous data to analyse subchondral bone changes using micro-CT images, allowing for a clear definition of each entity. We evaluated this algorithm using data sets originating from two large animal models of osteochondral repair. Intra-lesional osteophytes were detected in 3 of 10 defects in the minipig and in 4 of 5 defects in the sheep model. Peri-hole bone resorption was found in 22 of 30 microfracture holes in the minipig and in 17 of 30 microfracture holes in the sheep model. Subchondral bone cysts appeared in 1 microfracture hole in the minipig and in 5 microfracture holes in the sheep model (n = 30 holes each). Calculation of inter-rater agreement (90% agreement) and Cohen’s kappa (kappa = 0.874) revealed that the novel algorithm is highly reliable, reproducible, and valid. Comparison analysis with the best existing semi-quantitative evaluation method was also performed, supporting the enhanced precision of this algorithm. PMID:27596562

  14. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue.

    PubMed

    Blum, Michelle M; Ovaert, Timothy C

    2013-10-01

    The mechanical and tribological properties of a novel biomaterial, a boundary lubricant functionalized hydrogel, were investigated and compared to natural cartilage tissue. This low friction hydrogel material was developed for use as a synthetic replacement for focal defects in articular cartilage. The hydrogel was made by functionalizing the biocompatible polymer polyvinyl alcohol with a carboxylic acid derivative boundary lubricant molecule. Two different gel processing techniques were used to create the hydrogels. The first method consisted of initially functionalizing the boundary lubricant to the polyvinyl alcohol and then creating hydrogels by physically crosslinking the reacted polymer. The second method consisted of creating non-functionalized polyvinyl alcohol hydrogels and then performing the functionalization reaction on the fully formed gel. Osteochondral bovine samples were collected and replicate experiments were conducted to compare the mechanical and tribological performance of the boundary lubricant functionalized hydrogels to non-functionalized hydrogels and native cartilage. Friction experiments displayed a maximum decrease in friction coefficient of 70% for the functionalized hydrogels compared to neat polyvinyl alcohol. Indentation investigated the elastic modulus of the hydrogels, demonstrating that stability of the hydrogel was affected by processing method. Hydrogel performance was within the lower ranges of natural cartilage tested under the exact same conditions, showing the potential of the boundary lubricant functionalized hydrogels to perform as a biomimetic synthetic articular cartilage replacement.

  15. Management and prevention of acute and chronic lateral ankle instability in athletic patient populations

    PubMed Central

    McCriskin, Brendan J; Cameron, Kenneth L; Orr, Justin D; Waterman, Brian R

    2015-01-01

    Acute and chronic lateral ankle instability are common in high-demand patient populations. If not managed appropriately, patients may experience recurrent instability, chronic pain, osteochondral lesions of the talus, premature osteoarthritis, and other significant long-term disability. Certain populations, including young athletes, military personnel and those involved in frequent running, jumping, and cutting motions, are at increased risk. Proposed risk factors include prior ankle sprain, elevated body weight or body mass index, female gender, neuromuscular deficits, postural imbalance, foot/ankle malalignment, and exposure to at-risk athletic activity. Prompt, accurate diagnosis is crucial, and evidence-based, functional rehabilitation regimens have a proven track record in returning active patients to work and sport. When patients fail to improve with physical therapy and external bracing, multiple surgical techniques have been described with reliable results, including both anatomic and non-anatomic reconstructive methods. Anatomic repair of the lateral ligamentous complex remains the gold standard for recurrent ankle instability, and it effectively restores native ankle anatomy and joint kinematics while preserving physiologic ankle and subtalar motion. Further preventative measures may minimize the risk of ankle instability in athletic cohorts, including prophylactic bracing and combined neuromuscular and proprioceptive training programs. These interventions have demonstrated benefit in patients at heightened risk for lateral ankle sprain and allow active cohorts to return to full activity without adversely affecting athletic performance. PMID:25793157

  16. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells

    PubMed Central

    Kutikov, Artem B.; Song, Jie

    2013-01-01

    Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as PLA are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity, and biological performance of the composite. To overcome this challenge, we incorporated a hydrophilic polyethylene glycol (PEG) block to poly(D,L-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25 wt% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain >200% vs. <40% for HA-PLA), superhydrophilic (~0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenesis upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications. PMID:23791675

  17. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    PubMed

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site.

  18. Interventional articular and para-articular knee procedures.

    PubMed

    Lalam, Radhesh K; Winn, Naomi; Cassar-Pullicino, Victor N

    2016-01-01

    The knee is a common area of the body to undergo interventional procedures. This article discusses image-guided interventional issues specific to the knee area. The soft tissues in and around the knee are frequently affected by sport-related injuries and often need image-guided intervention. This article details the specific technical issues related to intervention in these soft tissues, including the iliotibial tract, fat pads, patellar tendon and other tendons, bursae and the meniscus. Most often, simple procedures such as injection and aspiration are performed without image guidance. Rarely image-guided diagnostic arthrography and therapeutic joint injections are necessary. The technique, indications and diagnostic considerations for arthrography are discussed in this article. Primary bone and soft-tissue tumours may involve the knee and adjacent soft tissues. Image-guided biopsies are frequently necessary for these lesions; this article details the technical issues related to image-guided biopsy around the knee. A number of newer ablation treatments are now available, including cryoablation, high-frequency ultrasound and microwave ablation. Radiofrequency ablation, however, still remains the most commonly employed ablation technique. The indications, technical and therapeutic considerations related to the application of this technique around the knee are discussed here. Finally, we briefly discuss some newer, but as of yet, unproven image-guided interventions for osteochondral lesions and Brodie's abscess. PMID:26682669

  19. Steroid atrophy scarring treated with fat grafting in a patient with complex regional pain syndrome: A case report.

    PubMed

    Strickland, Leah R; Collawn, Sherry S

    2016-06-01

    Subcutaneous atrophy is a known complication of steroid injections. Excellent results with fat grafting for the treatment of steroid atrophy have been documented. However, the benefit of treating steroid-induced subcutaneous atrophy in an extremity diagnosed with complex regional pain syndrome (CRPS) has not been described. CRPS, known formerly as reflex sympathetic dystrophy or RSD, causalgia, or reflex neurovascular dystrophy, is a severe, progressive musculoskeletal pain syndrome characterized by pain which is disproportionate to the severity of the inciting event, edema, or skin changes. Common treatment modalities include pharmacotherapy, physical therapy, and nerve blocks-each therapy producing varying results. We present a literature review of CRPS and the case of a 15-year-old female who developed CRPS of the left lower leg after arthroscopic debridement with retrograde drilling of an osteochondral lesion. Steroid atrophy of the involved area following a saphenous nerve block complicated the patient's treatment course. The area of atrophy was treated with autologous fat grafting. Following the adipose injection procedure, the patient experienced almost complete resolution of her CPRS-associated pain symptoms, along with improved cosmetic appearance of the area. PMID:26735938

  20. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy.

    PubMed

    Batista, Jorge Pablo; Del Vecchio, Jorge Javier; Golanó, Pau; Vega, Jordi

    2015-01-01

    Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL) travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL) described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion. PMID:26060592

  1. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  2. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  3. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    PubMed

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  4. Histopathological features of hypertrophic bone mass of temporomandibular joint ankylosis (TMJA): An explanation of pathogenesis of TMJA.

    PubMed

    Duan, Denghui; Li, Jiangming; Xiao, E; He, Linhai; Yan, Yingbin; Chen, Yan; Zhang, Yi

    2015-07-01

    Temporomandibular joint ankylosis (TMJA) is a severe organic disease with progressive limitation of the mouth opening. Histopathologically, a residual joint space is reported to consist of fibrous tissue and/or cartilage, indicating two types of interface (osteo-fibrous and osteo-chondral) of residual joint space. It is well known that adverse mechanical stress results in pathological changes of osteoarthritis and enthesopathy in these interfaces. What would happen pathologically in these interfaces of TMJA under repeated mandible movement has not been elucidated. Fourteen tissue samples of residual joint space and temporal and condylar bone were stained with hematoxylin and eosin and evaluated by collagen I and II immunohistochemistry. A pathological study of 14 TMJA patients showed that the residual joint space presented a fibrocartilage entheses structure and an articular cartilage structure. Moreover, these two structures were associated with pathological alterations of both osteoarthritis and enthesopathy, including degenerated and necrotized tissue, chondrocyte cloning, crack and fissure, various bone scleroses, and inflammatory granulation tissue. It is suggested that the pathological alterations of both osteoarthritis and enthesopathy occurred in TMJA, which hints at mechanical stress on TMJA development. PMID:26026887

  5. Acute patellofemoral instability in children and adolescents

    PubMed Central

    ANTINOLFI, PIERLUIGI; BARTOLI, MATTEO; PLACELLA, GIACOMO; SPEZIALI, ANDREA; PACE, VALERIO; DELCOGLIANO, MARCO; MAZZOLA, CLAUDIO

    2016-01-01

    Patellofemoral problems are considered to be among the most frequent causes of knee pain in children and adolescents. Correcting bone abnormalities through specific and targeted interventions is mandatory in skeletally immature patients. Medial patellofemoral ligament (MPFL) reconstruction is the preferred procedure, but there are several important precautionary considerations that the surgeon must take into account. It must always be remembered that MPFL rupture is the result, not the cause, of an altered extensor mechanism; therefore, patellar stabilization with MPFL reconstruction is only the first step to be accomplished in the management of an MPFL rupture. If other anatomical alterations are encountered, alternative/additional surgical procedures should be considered. If MPFL rupture occurs without associated anatomical or functional knee alterations, an appropriate rehabilitation program after MPFL reconstruction should be sufficient to achieve a good outcome. In conclusion, an acute patellar dislocation should be managed conservatively unless there is evidence of osteochondral damage or medial retinaculum lesions. Osseous procedures are contraindicated in children, while MPFL anatomical reconstruction with “physeal sparing” is the primary surgical option. PMID:27386447

  6. How reliable is MRI in diagnosing cartilaginous lesions in patients with first and recurrent lateral patellar dislocations?

    PubMed Central

    2010-01-01

    Background Lateral dislocation of the patella (LPD) leads to cartilaginous injuries, which have been reported to be associated with retropatellar complaints and the development of patellofemoral osteoarthritis. Therefore, the purpose of this study was to determine the reliability of MRI for cartilage diagnostics after a first and recurrent LPD. Methods After an average of 4.7 days following an acute LPD, 40 patients (21 with first LPDs and 19 with recurrent LPDs) underwent standardized 1.5 Tesla MRI (sagittal T1-TSE, coronal STIR-TSE, transversal fat-suppressed PD-TSE, sagittal fat-suppressed PD-TSE). MRI grading was compared to arthroscopic assessment of the cartilage. Results Sensitivities and positive predictive values for grade 3 and 4 lesions were markedly higher in the patient group with first LPDs compared to the group with recurrent LPDs. Similarly, intra- and inter-observer agreement yielded higher kappa values in patients with first LPDs compared to those with recurrent LPDs. All grade 4 lesions affecting the subchondral bone (osteochondral defects), such as a fissuring or erosion, were correctly assessed on MRI. Conclusions This study demonstrated a comparatively good diagnostic performance for MRI in the evaluation of first and recurrent LPDs, and we therefore recommend MRI for the cartilage assessment after a LPD. PMID:20602779

  7. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy

    PubMed Central

    Batista, Jorge Pablo; del Vecchio, Jorge Javier; Golanó, Pau; Vega, Jordi

    2015-01-01

    Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL) travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL) described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion. PMID:26060592

  8. A zebrafish model of Poikiloderma with Neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor

    PubMed Central

    Colombo, Elisa A.; Carra, Silvia; Fontana, Laura; Bresciani, Erica; Cotelli, Franco; Larizza, Lidia

    2015-01-01

    Poikiloderma with Neutropenia (PN) is an autosomal recessive genodermatosis characterized by early-onset poikiloderma, pachyonychia, hyperkeratosis, bone anomalies and neutropenia, predisposing to myelodysplasia. The causative C16orf57/USB1 gene encodes a conserved phosphodiesterase that regulates the stability of spliceosomal U6-RNA. The involvement of USB1 in splicing has not yet allowed to unveil the pathogenesis of PN and how the gene defects impact on skin and bone tissues besides than on the haematological compartment. We established a zebrafish model of PN using a morpholino-knockdown approach with two different splicing morpholinos. Both usb1-depleted embryos displayed developmental abnormalities recapitulating the signs of the human syndrome. Besides the pigmentation and osteochondral defects, usb1-knockdown caused defects in circulation, manifested by a reduced number of circulating cells. The overall morphant phenotype was also obtained by co-injecting sub-phenotypic dosages of the two morpholinos and could be rescued by human USB1 RNA. Integrated in situ and real-time expression analyses of stage-specific markers highlighted defects of primitive haematopoiesis and traced back the dramatic reduction in neutrophil myeloperoxidase to the myeloid progenitors showing down-regulated pu.1 expression. Our vertebrate model of PN demonstrates the intrinsic requirement of usb1 in haematopoiesis and highlights PN as a disorder of myeloid progenitors associated with bone marrow dysfunction. PMID:26522474

  9. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X.

    2011-05-01

    To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.

  10. LIMPING IN CHILDREN

    PubMed Central

    Santili, Cláudio; Júnior, Wilson Lino; Goiano, Ellen de Oliveira; Lins, Romero Antunes Barreto; Waisberg, Gilberto; Braga, Susana dos Reis; Akkari, Miguel

    2015-01-01

    Limping in children is a common complaint at pediatric, pediatric orthopaedic offices and in emergency rooms. There are several causes for this condition, and identifying them is a challenge. The older the patient, the better the anamnesis and more detailed the physical examination will be, enabling an easier medical assessment for searching the source of the disorder. In order to make the approach easier, three age groups can and should be considered. Among infants (1 to 3 years old), diagnosis will most likely be: transitory synovitis, septic arthritis, neurological disorders (mild brain palsy (BP) and muscular dystrophy), congenital hip dislocation (CHD), varus thigh, juvenile rheumatoid arthritis (JRA) and neoplasias (osteoid osteoma, leukemia); in the scholar age group, between 4 and 10 years old, in addition to the diagnoses above, Legg-Calvé-Perthes disease, discoid meniscus, inferior limbs discrepancy and unspecific muscular pain; in adolescents (11 to 15 years old): slipped capital femoral epiphysis, congenital hip dislocation, chondrolysis, overuse syndromes, dissecans osteochondritis, and tarsal coalition. The purpose of this study is to provide an update on how to approach pediatric patients presenting with limping, and to discuss its potential causes. PMID:27022509

  11. Arthroscopic surgery of the knee: its role in the support of U.S. troops during Operation Desert Shield on USNS mercy.

    PubMed

    Buckley, S L; Alexander, A; Jones, M; Culp, R W; Smallman, T

    1992-01-01

    The role of arthroscopy in the preconflict deployment of a large number of military troops is not well defined. Between September 1990 and January 1991, while deployed to the Persian Gulf for Operation Desert Shield 73 patients underwent on-board elective arthroscopy on the USNS Mercy. There were 71 men and two women with an average age of 27 years (range 19-47). Indications for arthroscopy included clinical diagnosis of meniscus tear, acute hemarthrosis, chronic effusion, and intra-articular loose body. Findings at the time of arthroscopy included 34 patients (47%) with meniscus tears; 17 (23%) with anterior cruciate ligament tears; five (7%) with isolated grade II-IV chondromalacia involving the patella, trochlea, femoral condyles, or tibial plateaus; six (8%) with synovitis; four (5%) with osteochondritis dissecans of the medial femoral condyle; two (3%) with a medial retinacular tear secondary to patella dislocation; and 10 (14%) with normal arthroscopic examinations. Forty-nine patients (66%) were returned to duty at an average of 6 days postoperatively, obviating the need to evacuate these patients from the Middle East theatre.

  12. Magnetic resonance imaging in the evaluation of tibial eminence fractures in adults.

    PubMed

    Monto, Raymond Rocco; Cameron-Donaldson, Michelle L; Close, Matthew A; Ho, Charles P; Hawkins, Richard J

    2006-07-01

    Proton density and T2-weighted sagittal, axial, coronal, and inversion recovery fat suppression magnetic resonance imaging (MRI) sequences were reviewed in 21 adults (10 men and 11 women) with 22 tibial eminence fractures. Average patient age was 43 years (range: 19-62 years). There were 3 type I, 3 type II, 12 type III, and 4 type IV fractures. The average fracture fragment size was 21 x 23 mm, and the average displacement was 5.5 mm (range: 0-12 mm). The MRI disclosed anterior cruciate ligament (ACL) insertional avulsions in 20 (91%), distal posterior cruciate ligament (PCL) avulsions in 4 (18%), intrasubstance ACL damage in 9 (41%), intrasubstance PCL injury in 3 (14%), medial collateral ligament (MCL) tears in 9 (41%) knees, retinacular injury in 8 (36%), posterolateral corner damage in 8 (36%), medial meniscal tears in 5 (23%), and 4 (18%) had lateral meniscal tears. Occult subchondral osseous injuries were seen in the posterolateral tibial plateau in 13 (59%) knees, anterolateral femoral condyle in 4 (18%), and posteromedial tibial plateau in 5 (23%) knees. Discrete osteochondral fractures were present in 7 (32%) knees. Significant osseous, cartilaginous, meniscal, and ligamentous damage was discovered in all patients. Based on these findings, we recommend MRI evaluation of all tibial eminence fractures to accurately detect all knee damage.

  13. An equine joint friction test model using a cartilage-on-cartilage arrangement.

    PubMed

    Noble, Prisca; Collin, Bernard; Lecomte-Beckers, Jacqueline; Magnée, Adrien; Denoix, Jean M; Serteyn, Didier

    2010-02-01

    This study describes an equine joint friction test using a cartilage-on-cartilage arrangement and investigates the influence of age and load on the frictional response. Osteochondral plugs were extracted from equine shoulder joints (2-5 years, n=12; 10-14 years, n=15), and mounted in a pin-on-disc tribometer. The frictional response was then measured under constant conditions (2N; 20 degrees C; 5 mm/s), and with increasing load (2N, 5N, 10N). In all experiments, the friction coefficient of young cartilage was significantly (P<0.001) smaller than obtained from old cartilage, while the application of a greater load resulted in a significant (P<0.001) decrease in friction coefficient only in old cartilage. It was concluded that cartilage ageing was responsible for an increase in friction coefficient under these experimental conditions. Moreover, where young cartilage lubrication remained stable, cartilage ageing may have been responsible for lubrication regime change. The cartilage-on-cartilage model could be used to better understand lubrication regime disturbances in healthy and diseased equine joints, and to test the efficacy of various bio-lubricant treatments.

  14. Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors

    PubMed Central

    Conoscenti, Gioacchino; Cutrì, Elena; Tuan, Rocky S.; Raimondi, Manuela T.; Gottardi, Riccardo

    2016-01-01

    Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology [1, 2]. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at generating osteochondral constructs, i.e., a biphasic construct in which one side is cartilaginous in nature, while the other is osseous. We next develop a general computational approach to model the microfluidics of a multi-chamber, interconnected system that may be applied to human-on-chip devices. This objective requires overcoming several challenges at the level of computational modeling. The main one consists of addressing the multi-physics nature of the problem that combines free flow in channels with hindered flow in porous media. Fluid dynamics is also coupled with advection-diffusion-reaction equations that model the transport of biomolecules throughout the system and their interaction with living tissues and C constructs. Ultimately, we aim at providing a predictive approach useful for the general organ-on-chip community. To this end, we have developed a lumped parameter approach that allows us to analyze the behavior of multi-unit bioreactor systems with modest computational effort, provided that the behavior of a single unit can be fully characterized. PMID:27669413

  15. Recurrent Patellar Instabilty Culminating in a Vertically Rotated and a Locked Patellar Dislocation – A Rare Entity

    PubMed Central

    A, Devgan; R, Rohilla; A, Jain; H, Mehta; S, Singh

    2016-01-01

    Introduction: Locked vertical patellar dislocations are rare and pose a therapeutic challenge. This case is more unusual, as the patient was a known case of recurrent patellar dislocation and presented with an atraumatic locked and vertically rotated patellar dislocation. This type of presentation has never been reported in literature to the best of our knowledge. Case presentation: A 14-year-old healthy male child with previous history of recurrent lateral dislocation of patella presented to accident & emergency department with complaints of inability to walk or bear weight on his left lower limb after he spontaneously dislocated his patella while running on uneven ground. Radiographs revealed a laterally displaced and vertically rotated patella along its long axis with the medial patellar edge locked and dipping into the lateral gutter. Open reduction was performed along with lateral patellar retinacular release with medial patellar retinaculum plication, to achieve satisfactory patellar stability and patellofemoral tracking. Conclusion: We would recommend that in the settings of patella being vertically dislocated and locked, open reduction would be the management of choice, as these types of dislocations are difficult to relocate by closed reduction. Repeated attempts of closed reduction may cause osteochondral damage. Open reduction not only yields better outcomes but also allows the surgeon to perform patellar realignment procedures in order to prevent further patellar dislocations in cases of prior patellar instability.

  16. Calvarial cleidocraniodysplasia-like defects with ENU-induced Nell-1 deficiency.

    PubMed

    Zhang, Xinli; Ting, Kang; Pathmanathan, Dharmini; Ko, Theodore; Chen, Weiwei; Chen, Feng; Lee, Haofu; James, Aaron W; Siu, Ronald K; Shen, Jia; Culiat, Cymbeline T; Soo, Chia

    2012-01-01

    Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9⁺ chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development.

  17. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes

    PubMed Central

    2013-01-01

    Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed. PMID:24321104

  18. [Non-arthrosic geodes in the femur head. Isolated or predominant geodes].

    PubMed

    Lequesne, M; Castaing, N; Lamotte, J

    1985-04-01

    The isolated or predominant geodes of the femoral head without signs of coxarthritis or coxitis, seem to form in response to: osteochondritis dissecans in 9 cases where the sequester was only visible in profile films or oblique images for 5 cases, and only at time of operation in 2 cases; incipient necrosis in 3 adult cases, not evidenced in frontal films and only seen in profile films with the patient under axial traction; femoral head dysmorphia in 6 cases among which were 4 polyepiphyseal dysplasias and 2 coxa plana without radiographically apparent sequesters; induced increased pressure caused by congenital subluxation or a major disorder of posture and locomotion of lower limbs in 3 cases. In 2 cases no classification could be assigned to isolated or predominant geodes of the femoral head in spite of anatomic examination. The diagnosis of these isolated or predominant geodes of the head of the femur necessitates excellent films made from different angles of view (profile, "false" profile, usual profile, sometimes oblique shots, tomograms) and often enough a biopsy which must be obtained directly through the joint, not transcervically through the neck if a reliable specimen is desired. The surgical treatment indicated is voiding and packing to a maximum the geodes possibly correcting the former increased pressure discordance. But, in lots of cases the intensity of pain and discomfort remains moderate for years, so indication for surgery arises late after onset.

  19. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model.

    PubMed

    Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T

    2010-03-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.

  20. [Cell therapy in cartilage repair: cellular and molecular bases].

    PubMed

    Corvol, Marie-Thérèse; Tahiri, Khadija; Montembault, Alexandra; Daumard, Alain; Savouret, Jean-François; Rannou, François

    2008-01-01

    The destruction of articular cartilage represents the outcome of most inflammatory and degenerative rheumatic diseases and leads to severe disability. Articular cartilage being unable to repair spontaneously, alterations of the joint surface often results in end-stage osteoarthritis, requiring surgical intervention and total joint replacement. This makes damaged tissues repair a major challenge in our aging society. Cartilage harbors only one cell type, the chondrocyte, which synthesizes and secretes specific matrix proteins such as type II collagen and high molecular weight proteoglycans. Matrix proteins are responsible for the conservation of the chondrocyte phenotype and the maintenance of the mechanical functions of cartilage. Development of therapeutic strategies for cartilage repair should thus comprise not only the replacement of lost cartilage cells but also that of extracellular matrix with cartilage-like properties. Different protocols are under investigation. The most commonly employed materials include transplantation of autologous osteochondral tissue. More recently, cell-based therapies using autologous mature chondrocytes or pre-chondrogenic stem cells have drawn particular attention. Tissue-engineering procedures represent the actual trend in cartilage repair. This approach combines biodegradable polymeric three-dimensional matrixes and isolated prechondrogenic stem cells. The cells are seeded within the biocompatible matrix and then implanted into the joint. Numerous non-degradable and degradable polymers, which efficiently "mimic" the natural surroundings of cartilage cells, are currently under investigation.

  1. Gout in a 15-year-old boy with juvenile idiopathic arthritis: a case study

    PubMed Central

    2014-01-01

    Joint pain is a common complaint in pediatrics and is most often attributed to overuse or injury. In the face of persistent, severe, or recurrent symptoms, the differential typically expands to include bony or structural causes versus rheumatologic conditions. Rarely, a child has two distinct causes for joint pain. In this case, an obese 15-year-old male was diagnosed with gout, a disease common in adults but virtually ignored in the field of pediatrics. The presence of juvenile idiopathic arthritis (JIA) complicated and delayed the consideration of this second diagnosis. Indeed, the absence of gout from this patient’s differential diagnosis resulted in a greater than two-year delay in receiving treatment. The patients’ BMI was 47.4, and he was also mis-diagnosed with osteochondritis dissecans and underwent medical treatment for JIA, assorted imaging studies, and multiple surgical procedures before the key history of increased pain with red meat ingestion, noticed by the patient, and a subsequent elevated uric acid confirmed his ultimate diagnosis. With the increased prevalence of obesity in the adolescent population, the diagnosis of gout should be an important consideration in the differential diagnosis for an arthritic joint in an overweight patient, regardless of age. PMID:24393408

  2. Increasing the osmolarity of joint irrigation solutions may avoid injury to cartilage: a pilot study.

    PubMed

    Amin, Anish K; Huntley, James S; Simpson, A Hamish R W; Hall, Andrew C

    2010-03-01

    Saline (0.9%, 285 mOsm) and Hartmann's solution (255 mOsm) are two commonly used joint irrigation solutions that alter the extracellular osmolarity of in situ chondrocytes during articular surgery. We asked whether varying the osmolarity of these solutions influences in situ chondrocyte death in mechanically injured articular cartilage. We initially exposed osteochondral tissue harvested from the metacarpophalangeal joints of 3-year-old cows to solutions of 0.9% saline and Hartmann's solution of different osmolarity (100-600 mOsm) for 2 minutes to allow in situ chondrocytes to respond to the altered osmotic environment. The full thickness of articular cartilage then was "injured" with a fresh scalpel. Using confocal laser scanning microscopy, in situ chondrocyte death at the injured cartilage edge was quantified spatially as a function of osmolarity at 2.5 hours. Increasing the osmolarity of 0.9% saline and Hartmann's solution to 600 mOsm decreased in situ chondrocyte death in the superficial zone of injured cartilage. Compared with 0.9% saline, Hartmann's solution was associated with greater chondrocyte death in the superficial zone of injured cartilage, but not when the osmolarity of both solutions was increased to 600 mOsm. These experiments may have implications for the design of irrigation solutions used during arthroscopic and open articular surgery.

  3. Sports-related overuse injuries in children.

    PubMed

    Launay, F

    2015-02-01

    Increased intensity of sports activities combined with a decrease in daily physical activity is making overuse injuries in children more common. These injuries are located mainly in the epiphyseal cartilage. The broad term for these injuries is osteochondrosis, rather than osteochondritis, which more specifically refers to inflammatory conditions of bone and cartilage. The osteochondrosis may be epiphyseal, physeal, or apophyseal, depending on the affected site. The condition can either be in the primary deformans form or the dissecans form. While there is no consensus on the etiology of osteochondrosis, multiple factors seem to be involved: vascular, traumatic, or even microtraumatic factors. Most overuse injuries involve the lower limbs, especially the knees, ankle and feet. The most typical are Osgood-Schlatter disease and Sever's disease; in both conditions, the tendons remain relatively short during the pubescent grown spurt. The main treatment for these injuries is temporary suspension of athletic activities, combined with physical therapy in many cases. Surgery may be performed if conservative treatment fails. It is best, however, to try to prevent these injuries by analyzing and correcting problems with sports equipment, lifestyle habits, training intensity and the child's level of physical activity, and by avoiding premature specialization. Pain in children during sports should not be considered normal. It is a warning sign of overtraining, which may require the activity to be modified, reduced or even discontinued.

  4. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins. PMID:27358127

  5. Histopathological perspective on bone marrow oedema, reactive bone change and haemorrhage.

    PubMed

    Thiryayi, W A; Thiryayi, S A; Freemont, A J

    2008-07-01

    This article presents a systematic review of the current biomedical literature surrounding the aetiopathogenesis and histopathological features of bone marrow oedema, reactive bone change and haemorrhage. Bone marrow oedema is generally demonstrated as a non-specific finding on magnetic resonance imaging in association with infections, tumours and avascular necrosis. When it occurs in isolation as a primary event not triggered by any obvious bony pathology in the clinical setting of debilitating joint pain, it constitutes the "bone marrow oedema syndrome". Although the latter diagnosis is based on magnetic resonance (MR) imaging, showing the lesion as areas of signal hyperintensity within the marrow, recent radiology-histology correlational studies have shown variably interstitial marrow oedema, necrosis, fibrosis and trabecular bone abnormalities. In light of these facts, the use of the term bone marrow oedema syndrome in a radiological context might be considered questionable, but histopathological techniques are not sensitive in detecting increased extracellular fluid. Reactive bone changes may be focal or diffuse and usually amount to increased bone formation. Bone marrow haemorrhage, due to trauma, results in bone bruising, a condition in which the size of the bruise and associated osteochondral injury determines the outcome, although the natural history of these lesions is still being researched. PMID:18337044

  6. True MRI assessment of stem cell chondrogenesis in a tissue engineered matrix.

    PubMed

    Pothirajan, Padmabharathi; Dorcemus, Deborah; Nukavarapu, Syam; Kotecha, Mrignayani

    2014-01-01

    Developing a non-invasive method to monitor the growth of tissue-engineered cartilage is of utmost importance for tracking the progress and predicting the success or failure of tissue-engineering approaches. Magnetic Resonance Imaging (MRI) is a leading non-invasive technique suitable for follow-through in preclinical and clinical stages. As complex tissue-engineering approaches are being developed for cartilage tissue engineering, it is important to develop strategies for true non-invasive MRI monitoring that can take into account contributions of the scaffold, cells and extracellular matrix (ECM) using MR parameters. In the current study, we present the preliminary MRI assessment of chondrogenic differentiation of human bone marrow derived stem cells seeded onto a specially designed osteochondral matrix system. We performed water relaxation times (T1 and T2) MRI measurements at 7, 14 and 28 days after cell seeding. The MRI experiments were performed for the tissue-engineered cartilage as well as for acellular scaffolds. We identified that the contribution of the scaffold is the dominant contribution in MR parameters of engineered cartilage and that it hinders observation of the tissue growth. An attempt is made to filter out this contribution, for the first time, in order to make a true observation of tissue growth using MRI. PMID:25570852

  7. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    NASA Astrophysics Data System (ADS)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  8. Gout in a 15-year-old boy with juvenile idiopathic arthritis: a case study.

    PubMed

    Morris, Hallie; Grant, Kristen; Khanna, Geetika; White, Andrew J

    2014-01-06

    Joint pain is a common complaint in pediatrics and is most often attributed to overuse or injury. In the face of persistent, severe, or recurrent symptoms, the differential typically expands to include bony or structural causes versus rheumatologic conditions. Rarely, a child has two distinct causes for joint pain. In this case, an obese 15-year-old male was diagnosed with gout, a disease common in adults but virtually ignored in the field of pediatrics. The presence of juvenile idiopathic arthritis (JIA) complicated and delayed the consideration of this second diagnosis. Indeed, the absence of gout from this patient's differential diagnosis resulted in a greater than two-year delay in receiving treatment. The patients' BMI was 47.4, and he was also mis-diagnosed with osteochondritis dissecans and underwent medical treatment for JIA, assorted imaging studies, and multiple surgical procedures before the key history of increased pain with red meat ingestion, noticed by the patient, and a subsequent elevated uric acid confirmed his ultimate diagnosis. With the increased prevalence of obesity in the adolescent population, the diagnosis of gout should be an important consideration in the differential diagnosis for an arthritic joint in an overweight patient, regardless of age.

  9. Articular cartilage repair with autologous bone marrow mesenchymal cells.

    PubMed

    Matsumoto, Tomiya; Okabe, Takahiro; Ikawa, Tesshu; Iida, Takahiro; Yasuda, Hiroyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki

    2010-11-01

    Articular cartilage defects that do not repair spontaneously induce osteoarthritic changes in joints over a long period of observation. In this study, we examined the usefulness of transplanting culture-expanded bone marrow mesenchymal cells into osteochondral defects of joints with cartilage defects. First, we performed experiments on rabbits and up on obtaining good results proceeded to perform the experiments on humans. Macroscopic and histological repair with this method was good, and good clinical results were obtained although there was no significant difference with the control group. Recent reports have indicated that this procedure is comparable to autologous chondrocyte implantation, and concluded that it was a good procedure because it required one step less than that required by surgery, reduced costs for patients, and minimized donor site morbidity. Although some reports have previously shown that progenitor cells formed a tumor when implanted into immune-deficient mice after long term in vitro culture, the safety of the cell transplantation was confirmed by our clinical experience. Thus, this procedure is useful, effective, and safe, but the repaired tissues were not always hyaline cartilage. To obtain better repair with this procedure, treatment approaches using some growth factors during in vitro culture or gene transfection are being explored.

  10. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration.

    PubMed

    Baghaban Eslaminejad, Mohamadreza; Malakooty Poor, Elham

    2014-07-26

    Since articular cartilage possesses only a weak capacity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is associated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechanical properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical procedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morphological features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells (MSCs) to be an appropriate cellular material for articular cartilage repair. These cells were originally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic differentiation is an inherent property of MSCs noticed at the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative properties. Moreover, these cells possess a considerable immunomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.

  11. Mesenchymal stem cells as a potential pool for cartilage tissue engineering.

    PubMed

    Csaki, C; Schneider, P R A; Shakibaei, M

    2008-11-20

    Osteoarthritis (OA) resulting from trauma, degenerative or age-related disease presents a major clinical challenge due to the limited repair capacity of articular cartilage. This poor self-repair capacity of osteochondral defects has resulted in the development of a wide variety of new treatment approaches. Although the use of chondrocytes in applications of cartilage tissue engineering is still prevalent, concerns associated with donor-site morbidity, cell de-differentiation and the limited lifespan of these cells have brought the use of mesenchymal stem cells (MSCs) to the forefront of such applications. Therefore, in the last two decades MSCs have come into the focus of connective tissue engineering and regenerative medicine and have become increasingly sought after as an alternative cell source for improving well-established methods of osteochondrotic cartilage defect repair such as the Autologous Chondrocyte Transplantation method, but are also being tested as an ideal cell source in combination with newly developed implantable scaffolds or as a target/carrier cell in other new concepts of regenerative medicine. However, up to now, although in animal models MSCs have already shown significant potential for cartilage repair and novel approaches using MSCs as an alternative cell source to patient-derived chondrocytes are being tested, much more research is needed before feasible clinical application of MSCs becomes reality.

  12. AUTOLOGOUS CHONDROCYTE TRANSPLANTATION-SERIES OF 3 CASES

    PubMed Central

    Gobbi, Riccardo Gomes; Demange, Marco Kawamura; Barreto, Ronald Bispo; Pécora, José Ricardo; Rezende, Múrcia Uchõa de; Filho, Tarcisio E.P Barros; Lombello, Christiane Bertachini

    2015-01-01

    Hyaline cartilage covers joint surfaces and plays an important role in reducing friction and mechanical loading on synovial joints such as the knee. This tissue is not supplied with blood vessels, nerves or lymphatic circulation, which may be one of the reasons why joint cartilage has such poor capacity for healing. Chondral lesions that reach the subchondral bone (osteochondral lesions) do not heal and may progress to arthrosis with the passage of time. In young patients, treatment of chondral defects of the knee is still a challenge, especially in lesions larger than 4 cm. One option for treating these patients is autologous chondrocyte transplantation/implantation. Because this treatment does not violate the subchondral bone and repairs the defect with tissue similar to hyaline cartilage, it has the theoretical advantage of being more biological, and mechanically superior, compared with other techniques. In this paper, we describe our experience with autologous chondrocyte transplantation/implantation at the Institute of Orthopedics and Traumatology, Hospital das Clínicas, University of Sâo Paulo, through a report on three cases. PMID:27022579

  13. Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles.

    PubMed

    Visser, Jetze; Gawlitta, Debby; Benders, Kim E M; Toma, Selynda M H; Pouran, Behdad; van Weeren, P René; Dhert, Wouter J A; Malda, Jos

    2015-01-01

    The natural process of endochondral bone formation in the growing skeletal system is increasingly inspiring the field of bone tissue engineering. However, in order to create relevant-size bone grafts, a cell carrier is required that ensures a high diffusion rate and facilitates matrix formation, balanced by its degradation. Therefore, we set out to engineer endochondral bone in gelatin methacrylamide (GelMA) hydrogels with embedded multipotent stromal cells (MSCs) and cartilage-derived matrix (CDM) particles. CDM particles were found to stimulate the formation of a cartilage template by MSCs in the GelMA hydrogel in vitro. In a subcutaneous rat model, this template was subsequently remodeled into mineralized bone tissue, including bone-marrow cavities. The GelMA was almost fully degraded during this process. There was no significant difference in the degree of calcification in GelMA with or without CDM particles: 42.5 ± 2.5% vs. 39.5 ± 8.3% (mean ± standard deviation), respectively. Interestingly, in an osteochondral setting, the presence of chondrocytes in one half of the constructs fully impeded bone formation in the other half by MSCs. This work offers a new avenue for the engineering of relevant-size bone grafts, by the formation of endochondral bone within a degradable hydrogel.

  14. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.

    PubMed

    Athanasiou, K A; Niederauer, G G; Agrawal, C M

    1996-01-01

    This is a review of salient studies of sterilization, toxicity, biocompatibility, clinical applications and current work in the field of orthopaedics, using implants made of polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers. The intrinsic nature of these biomaterials renders them suitable for applications where temporally slow releases of bioactive agents in situ may be required. They are also desirable as fixation devices of bone, because they can virtually eliminate osteopenia associated with stress shielding or additional surgery. The majority of currently available sterilization techniques are not suitable for these thermoplastic materials and it may be desirable to develop new sterilization standards, which can account for the special character of PLA-PGA materials. Biocompatibility and toxicity studies suggest that, overall, PLA-PGA biomaterials may be suitable for orthopaedic applications, although certain problems, especially pertaining to reduction in cell proliferation, have been reported. Clinical applications are also promising, albeit not without problems usually associated with transient tissue inflammation. The future of these materials appears bright, especially in soft tissues. They may be used to address the exceedingly complex problem of osteochondral repair, but also as a means to enhance fixation and repair processes in tendons and ligaments. PMID:8624401

  15. The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. I. Poly(L-lactide).

    PubMed

    Gogolewski, S; Mainil-Varlet, P

    1996-03-01

    Resorbable pins for the treatment of osteochondral defects produced by injection-moulding from poly(L-lactide) were subjected to the action of heat at 105-150 degrees C under a low moisture and low oxygen atmosphere for a predetermined time. Standard procedures were used to evaluate the sterility, mechanical properties, molecular weight, polydisperity and crystallinity of the heat-treated samples. All of the heat-treated samples were sterile after 2 h of exposure to heat. There was an 10% increase in the shearing strength of the samples treated thermally for up to 10 h. This was attributed to the increase in overall crystallinity and crystal dimensions in the samples which enhanced the propagation of cracks formed upon testing through areas of high ductility. There was, however, a 20-35% drop in flexural strength which might result from the decreased concentration of the amorphous regions in the heat-treated implants. A 20% increase in molecular weight of the heat-treated implants was assigned to the transesterification process between the -OH and -COOH groups present initially in the polymer and/or formed due to chain scission upon exposure of the material to heat. PMID:8991484

  16. Mosaic arthroplasty of the medial femoral condyle in horses - An experimental study.

    PubMed

    Bodó, Gábor; Vásárhelyi, Gábor; Hangody, László; Módis, László

    2014-06-01

    One Arabian and 5 Hungarian half-bred horses were used to study the macroscopic and microscopic survival of autologous osteochondral grafts in the weight-bearing surface of the medial femoral condyle (MFC). Grafts were harvested from the cranial surface of the medial femoral trochlea (MFT) under arthroscopic control. Three of them were transplanted into the weight-bearing surface of the contralateral MFC using an arthrotomy approach. Three months later this transplantation procedure was repeated on the opposite stifle joints in the same animals, but at that time transplantation was performed arthroscopically. Follow-up arthroscopy was carried out 12 months after the first operations, and biopsies were taken from both the recipient and the donor sites for histological examination. During follow-up arthroscopy, the transplanted areas looked congruent and smooth. Microscopically, the characteristics of hyaline cartilage were present in 5 out of the 10 biopsies examined; however, in the other half of biopsies glycosaminoglycan (GAG) loss and change in the architecture of the transplanted cartilage was observed. In a 16-year-old horse, all grafts broke during harvesting, and thus transplantation was not performed. No radiological signs of osteoarthritic changes were detected 9 to 12 months after the operations in the donor and recipient joints. Clinically, no lameness or effusion was present three months after the transplantations. PMID:24334083

  17. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint

    PubMed Central

    Correia, S. I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions. PMID:24352667

  18. Cell-based approaches to joint surface repair: a research perspective

    PubMed Central

    Roelofs, A.J.; Rocke, J.P.J.; De Bari, C.

    2013-01-01

    Summary Repair of lesions of the articular cartilage lining the joints remains a major clinical challenge. Surgical interventions include osteochondral autograft transfer and microfracture. They can provide some relief of symptoms to patients, but generally fail to durably repair the cartilage. Autologous chondrocyte implantation has thus far shown the most promise for the durable repair of cartilage, with long-term follow-up studies indicating improved structural and functional outcomes. However, disadvantages of this technique include the need for additional surgery, availability of sufficient chondrocytes for implantation, and maintenance of their phenotype during culture-expansion. Mesenchymal stem cells offer an attractive alternative cell-source for cartilage repair, due to their ease of isolation and amenability to ex vivo expansion while retaining stem cell properties. Preclinical and clinical studies have demonstrated the potential of mesenchymal stem cells to promote articular cartilage repair, but have also highlighted several key challenges. Most notably, the quality and durability of the repair tissue, its resistance to endochondral ossification, and its effective integration with the surrounding host tissue. In addition, challenges exist related to the heterogeneity of mesenchymal stem cell preparations and their quality-control, as well as optimising the delivery method. Finally, as our knowledge of the cellular and molecular mechanisms underlying articular cartilage repair increases, promising studies are emerging employing bioactive scaffolds or therapeutics that elicit an effective tissue repair response through activation and mobilisation of endogenous stem and progenitor cells. PMID:23598176

  19. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge

    PubMed Central

    Ferretti, Concetta; Mattioli-Belmonte, Monica

    2014-01-01

    Periosteum is a thin fibrous layer that covers most bones. It resides in a dynamic mechanically loaded environment and provides a niche for pluripotent cells and a source for molecular factors that modulate cell behaviour. Elucidating periosteum regenerative potential has become a hot topic in orthopaedics. This review discusses the state of the art of osteochondral tissue engineering rested on periosteum derived progenitor cells (PDPCs) and suggests upcoming research directions. Periosteal cells isolation, characterization and migration in the site of injury, as well as their differentiation, are analysed. Moreover, the role of cell mechanosensing and its contribution to matrix organization, bone microarchitecture and bone stenght is examined. In this regard the role of periostin and its upregulation under mechanical stress in order to preserve PDPC survival and bone tissue integrity is contemplated. The review also summarized the role of the periosteum in the field of dentistry and maxillofacial reconstruction. The involvement of microRNAs in osteoblast differentiation and in endogenous tissue repair is explored as well. Finally the novel concept of a guided bone regeneration based on the use of periosteum itself as a smart material and the realization of constructs able to mimic the extracellular matrix features is talked out. Additionally, since periosteum can differentiate into insulin producing cells it could be a suitable source in allogenic transplantations. That innovative applications would take advantage from investigations aimed to assess PDPC immune privilege. PMID:25126377

  20. High density infill in cracks and protrusions from the articular calcified cartilage in osteoarthritis in standardbred horse carpal bones.

    PubMed

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E; Boyde, Alan

    2015-01-01

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581

  1. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Leonardi, Rosalia; Trovato, Francesca Maria; Szychlinska, Marta Anna; Di Giunta, Angelo; Loreto, Carla; Castorina, Sergio

    2014-01-01

    In this paper review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness. We illustrated the anatomical aspect of the knee joint cartilage, the current state of cartilage tissue engineering, through mesenchymal stem cells and biomaterials, and in conclusion we provide a short overview on the rehabilitation after articular cartilage repair procedures. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, and to date several researchers aim to implement clinical application of cell-based therapies for cartilage repair. A literature review was conducted on PubMed, Scopus and Google Scholar using appropriate keywords, examining the current literature on the well-known tissue engineering methods for the treatment of knee osteoarthritis. PMID:24829869

  2. Regulatory Challenges for Cartilage Repair Technologies.

    PubMed

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  3. Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro

    SciTech Connect

    Steinert, Marian; Kratz, Marita; Jones, David B.; Jaedicke, Volker; Hofmann, Martin R.

    2014-10-15

    In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performance under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.

  4. Treatment of Lateral Knee Pain Using Soft Tissue Mobilization in Four Female Triathletes

    PubMed Central

    Winslow, John

    2014-01-01

    Study Design Prospective case series. Background These case reports present results of the treatment of lateral knee pain in four female amateur triathletes. The athletes were referred to the author’s clinic with either a diagnosis of iliotibial band friction syndrome or patellofemoral pain syndrome, all four having symptoms for longer than seven months. Changes in training routines were identified as the possible cause of the overuse injuries that eventually developed into chronic conditions. Intervention Treatment involved soft tissue mobilization of the musculotendinous structures on the lateral aspect of the knee. Results At four weeks, three of the athletes improved 9 to 19 points on the Lower Extremity Functional Scale, 3 to 5 points on the Global Rating of Change Scale, and demonstrated improvement in hamstring and iliotibial band flexibility. At eight weeks the Global Rating of Change for these three athletes was a 7 (“a very great deal better”) and they had returned to triathlon training with no complaints of lateral knee pain. One athlete did not respond to treatment and eventually underwent arthroscopic surgery for debridement of a lateral meniscus tear. Conclusions After ruling out common causes for lateral knee pain such as lateral meniscus tear, lateral collateral ligament sprain, patellofemoral dysfunction, osteochondral injury, biceps femoris tendonitis, iliotibial band friction syndrome or osteoarthritis, soft tissue restriction should be considered a potential source of dysfunction. In some cases soft tissue restriction is overlooked; athletes go undiagnosed and are limited from sports participation. PMID:25184012

  5. The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification

    PubMed Central

    Laurie, Lindsay E.; Kokubo, Hiroki; Nakamura, Masataka; Saga, Yumiko; Funato, Noriko

    2016-01-01

    The developing long bone is a model of endochondral ossification that displays the morphological layers of chondrocytes toward the ossification center of the diaphysis. Indian hedgehog (Ihh), a member of the hedgehog family of secreted molecules, regulates chondrocyte proliferation and differentiation, as well as osteoblast differentiation, through the process of endochondral ossification. Here, we report that the basic helix-loop-helix transcription factor Hand1, which is expressed in the cartilage primordia, is involved in proper osteogenesis of the bone collar via its control of Ihh production. Genetic overexpression of Hand1 in the osteochondral progenitors resulted in prenatal hypoplastic or aplastic ossification in the diaphyses, mimicking an Ihh loss-of-function phenotype. Ihh expression was downregulated in femur epiphyses of Hand1-overexpressing mice. We also confirmed that Hand1 downregulated Ihh gene expression in vitro by inhibiting Runx2 transactivation of the Ihh proximal promoter. These results demonstrate that Hand1 in chondrocytes regulates endochondral ossification, at least in part through the Runx2-Ihh axis. PMID:26918743

  6. The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification.

    PubMed

    Laurie, Lindsay E; Kokubo, Hiroki; Nakamura, Masataka; Saga, Yumiko; Funato, Noriko

    2016-01-01

    The developing long bone is a model of endochondral ossification that displays the morphological layers of chondrocytes toward the ossification center of the diaphysis. Indian hedgehog (Ihh), a member of the hedgehog family of secreted molecules, regulates chondrocyte proliferation and differentiation, as well as osteoblast differentiation, through the process of endochondral ossification. Here, we report that the basic helix-loop-helix transcription factor Hand1, which is expressed in the cartilage primordia, is involved in proper osteogenesis of the bone collar via its control of Ihh production. Genetic overexpression of Hand1 in the osteochondral progenitors resulted in prenatal hypoplastic or aplastic ossification in the diaphyses, mimicking an Ihh loss-of-function phenotype. Ihh expression was downregulated in femur epiphyses of Hand1-overexpressing mice. We also confirmed that Hand1 downregulated Ihh gene expression in vitro by inhibiting Runx2 transactivation of the Ihh proximal promoter. These results demonstrate that Hand1 in chondrocytes regulates endochondral ossification, at least in part through the Runx2-Ihh axis.

  7. Intraosseous infiltration of platelet-rich plasma for severe knee osteoarthritis.

    PubMed

    Sánchez, Mikel; Fiz, Nicolás; Guadilla, Jorge; Padilla, Sabino; Anitua, Eduardo; Sánchez, Pello; Delgado, Diego

    2014-12-01

    We describe a new technique of platelet-rich plasma (PRP) infiltration for the treatment of severe knee osteoarthritis. PRP intra-articular infiltration is a promising treatment for knee osteoarthritis, but it still has some limitations in high-degree osteoarthritis. Diagnosis of osteoarthritis is based on clinical and radiographic findings, and patients with grade III or IV knee tibiofemoral osteoarthritis based on the Ahlbäck scale are considered candidates for this technique. The technique consists of performing intraosseous infiltration of PRP into the subchondral bone, which acts on this tissue and consequently on cartilage-bone communication. Although the intraosseous injection hinders the conventional knee intra-articular infiltration, it allows an extension of the range of action of the PRP, which acts directly on the subchondral bone, which is involved in the progression of osteoarthritis. Thus this technique involves a new administration of PRP that can delay knee arthroplasty; moreover, it can be applied for not only severe osteoarthritis but also other pathologies in which the subchondral bone is critical in the etiology, such as necrosis and osteochondral lesions. PMID:25685680

  8. Knee cartilage defect: marrow stimulating techniques.

    PubMed

    Mirza, M Zain; Swenson, Richard D; Lynch, Scott A

    2015-12-01

    Painful chondral defects of the knee are very difficult problems. The incidence of these lesions in the general population is not known since there is likely a high rate of asymptomatic lesions. The rate of lesions found during arthroscopic exam is highly variable, with reports ranging from 11 to 72 % Aroen (Aroen Am J Sports Med 32: 211-5, 2004); Curl(Arthroscopy13: 456-60, 1997); Figueroa(Arthroscopy 23(3):312-5, 2007;); Hjelle(Arthroscopy 18: 730-4, 2002). Examples of current attempts at cartilage restoration include marrow stimulating techniques, ostochondral autografts, osteochondral allografts, and autologous chondrocyte transplantation. Current research in marrow stimulating techniques has been focused on enhancing and guiding the biology of microfracture and other traditional techniques. Modern advances in stem cell biology and biotechnology have provided many avenues for exploration. The purpose of this work is to review current techniques in marrow stimulating techniques as it relates to chondral damage of the knee. PMID:26411978

  9. Arthritis in a child secondary to congenital insensitivity to pain and self-aggression. Why and when pain is good?

    PubMed

    Emad, Y; El Yasaki, A; Ragab, Y; Khalifa, M; Moawayh, O; Salama, M

    2007-07-01

    A 9 year-old female child presented with recurrent arthritis of ankles, left knee and unequal leg length. Clinical examination revealed mild valgus deformity in her left knee with grade 2 effusion, arthritis of both ankles and deformity in her left wrist. Examination of the affected joints showed no evidence of tenderness upon active or passive movements and the patient did not show any limping upon gait analysis. Past history of the patient revealed evidence of previous dislocation of her left hip and previous fibular fracture. Revision of her previous x-rays showed left hip dislocation, fracture left fibula and fracture of right metatarsal bone after repetitive trauma which pass unnoticed. Recent x-ray of her left knee showed osteochondral injury. Laboratory investigations were done to rule out common causes of childhood arthritis and revealed: ESR 12 1st hours, CRP negative, negative rheumatoid factor, and negative ANA. Neurological evaluation of the patient documented congenital insensitivity to pain and EMG studies confirmed evidence of sensory neuropathy. Traumatic arthritis resulting from congenital insensitivity to pain with self-aggression is rarely encountered in children but should be considered in the differential diagnosis specially if radiological features point to repetitive trauma with attempts of healing.

  10. The Different Roles of Aggrecan Interaction Domains

    PubMed Central

    2012-01-01

    The aggregating proteoglycans of the lectican family are important components of extracellular matrices. Aggrecan is the most well studied of these and is central to cartilage biomechanical properties and skeletal development. Key to its biological function is the fixed charge of the many glycosaminoglycan chains, that provide the basis for the viscoelastic properties necessary for load distribution over the articular surface. This review is focused on the globular domains of aggrecan and their role in anchoring the proteoglycans to other extracellular matrix components. The N-terminal G1 domain is vital in that it binds the proteoglycan to hyaluronan in ternary complex with link protein, retaining the proteoglycan in the tissue. The importance of the C-terminal G3 domain interactions has recently been emphasized by two different human hereditary disorders: autosomal recessive aggrecan-type spondyloepimetaphyseal dysplasia and autosomal dominant familial osteochondritis dissecans. In these two conditions, different missense mutations in the aggrecan C-type lectin repeat have been described. The resulting amino acid replacements affect the ligand interactions of the G3 domain, albeit with widely different phenotypic outcomes. PMID:23019016

  11. [Assessment of hereditary defects and dispositions of the horse under animal welfare aspects].

    PubMed

    Mählmann, Ch; Steiger, A

    2009-04-01

    Persons involved in equine breeding, namely veterinarians, horse breeders and breeding association judges, often lack of an apropriate consciousness about the relevance of heritability or supposed heritability of common horses diseases, which might play a distinctive role in the aetiology of numerous of these diseases. Executing animal welfare rights in equine breeding, the major concern should focus on an objective evaluation of pain, suffering and damages caused by different hereditary diseases. The basis of assessment for hygienic breeding has to be defi ned according to the actual animal welfare rights throughout guidelines, established by the state and by breeding associations. Hereditary diseases scientifi cally proven as relevant for animal welfare matters or including a potential risk of pain, suffering or damage, should be regarded as essential criterion in horse breeding. In this context following diseases have to be mentioned in particular: Osteochondritis dissecans, deep fl exor tendon contracture in the foal, navicular disease, tarsal osteoarthritis, hyperkalemic periodic paralysis, Overo-lethal-white- foal-syndrome.

  12. Interactions between structural and chemical biomimetism in synthetic stem cell niches.

    PubMed

    Nava, Michele M; Raimondi, Manuela T; Credi, Caterina; De Marco, Carmela; Turri, Stefano; Cerullo, Giulio; Osellame, Roberto

    2015-02-01

    Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect. PMID:25594262

  13. High Density Infill in Cracks and Protrusions from the Articular Calcified Cartilage in Osteoarthritis in Standardbred Horse Carpal Bones

    PubMed Central

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E.; Boyde, Alan

    2015-01-01

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581

  14. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  15. Dorsal Skinfold Chamber Preparation in Mice: Studying Angiogenesis by Intravital Microscopy.

    PubMed

    Sckell, Axel; Leunig, Michael

    2016-01-01

    Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since 1924, when the first transparent chamber model in animals was introduced, many other chamber models have been described in the literature for studying angiogenesis and microcirculation. Because angiogenesis is an active and dynamic process, one of the major strengths of chamber models is the possibility of monitoring angiogenesis in vivo continuously for up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various ex vivo methods such as histology, immunohistochemistry, and molecular biology. This chapter describes the protocol for the surgical preparation of a dorsal skinfold chamber in mice as well as the method to implant tumors in this chamber for further investigations of angiogenesis and other microcirculatory parameters. However, the application of the dorsal skinfold chamber model is not limited to the investigation of neoplastic tissues. To this end, the investigation of angiogenesis and other microcirculatory parameters of nonneoplastic tissues such as tendons, osteochondral grafts, or pancreatic islets has been an object of interest.

  16. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering.

    PubMed

    Baah-Dwomoh, Adwoa; Rolong, Andrea; Gatenholm, Paul; Davalos, Rafael V

    2015-06-01

    This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of G. xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 to 12.5 kV/cm, producing a local field of 3 kV/cm, was sufficient to kill most of the bacteria and create a localized pore. However, an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects. PMID:25690311

  17. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate.

    PubMed

    St-Pierre, Jean-Philippe; Gan, Lu; Wang, Jian; Pilliar, Robert M; Grynpas, Marc D; Kandel, Rita A

    2012-04-01

    A major challenge for cartilage tissue engineering remains the proper integration of constructs with surrounding tissues in the joint. Biphasic osteochondral constructs that can be anchored in a joint through bone ingrowth partially address this requirement. In this study, a methodology was devised to generate a cell-mediated zone of calcified cartilage (ZCC) between the in vitro-formed cartilage and a porous calcium polyphosphate (CPP) bone substitute in an attempt to improve the mechanical integrity of that interface. To do so, a calcium phosphate (CaP) film was deposited on CPP by a sol-gel process to prevent the accumulation of polyphosphates and associated inhibition of mineralization as the substrate degrades. Cartilage formed in vitro on the top surface of CaP-coated CPP by deep-zone chondrocytes was histologically and biochemically comparable to that formed on uncoated CPP. Furthermore, the mineral in the ZCC was similar in crystal structure, morphology and length to that formed on uncoated CPP and native articular cartilage. The generation of a ZCC at the cartilage-CPP interface led to a 3.3-fold increase in the interfacial shear strength of biphasic constructs. Improved interfacial strength of these constructs may be critical to their clinical success for the repair of large cartilage defects.

  18. Bony injuries about the elbow in the throwing athlete.

    PubMed

    Andrews, J R

    1985-01-01

    Tremendous valgus stress during the acceleration phase of pitching is the primary cause of elbow injury in the pitcher. Lateral compression injuries are usually found in pitchers in their early teens, and osteochondritis dissecans is the primary underlying cause. Severe flexion contractures and even partial ankylosis of the elbow may occur. Prognosis after surgery is generally poor. Medial tension injuries with either soft-tissue damage or bony damage usually require surgery. The medial collateral ligament should be considered the primary stabilizer against the valgus-vector overload. The medial collateral ligament or bony avulsion form the medial compartment of the elbow should be primarily corrected. Results of early surgical correction to these lesions should produce excellent results. Pitchers with extension block injuries are generally older, more experienced athletes than those without such injuries. These pitchers have had symptoms for some time with progressive loss of full extension of the elbow and increasing pain. Valgus extension overload can be surgically corrected by an open surgical approach or an operative arthroscopic approach. Basically these approaches are palliative, and progression of symptoms at a later date may be expected. Finally, the postoperative rehabilitation of any elbow problem is extremely important and should be preplanned for the specific lesion treated.

  19. Normal Skeletal Maturation and Imaging Pitfalls in the Pediatric Shoulder.

    PubMed

    Zember, Jonathan S; Rosenberg, Zehava S; Kwong, Steven; Kothary, Shefali P; Bedoya, Maria A

    2015-01-01

    A growing number of magnetic resonance (MR) imaging studies of the shoulder are being performed as a result of greater and earlier participation of children and adolescents in competitive sports such as softball and baseball. However, scant information is available regarding the MR imaging features of the normal sequential development of the shoulder. The authors discuss the radiographic and MR imaging appearances of the normal musculoskeletal maturation patterns of the shoulder, with emphasis on (a) development of secondary ossification centers of the glenoid (including the subcoracoid and peripheral glenoid ossification centers); (b) development of preossification and secondary ossification centers of the humeral head and the variable appearance and number of the secondary ossification centers of the distal acromion, with emphasis on the formation of the os acromiale; (c) development of the growth plates, glenoid bone plates, glenoid bare area, and proximal humeral metaphyseal stripe; and (d) marrow signal alterations in the distal humerus, acromion, and clavicle. In addition, the authors discuss various imaging interpretation pitfalls inherent to the normal skeletal maturation of the shoulder, examining clues that may help distinguish normal development from true disease (eg, osteochondral lesions, labral tears, abscesses, fractures, infection, tendon disease, acromioclavicular widening, and os acromiale). Familiarity with the timing, location, and appearance of maturation patterns in the pediatric shoulder is crucial for correct image interpretation.

  20. High density infill in cracks and protrusions from the articular calcified cartilage in osteoarthritis in standardbred horse carpal bones.

    PubMed

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E; Boyde, Alan

    2015-04-28

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA.

  1. Peripheral nerve blocks in patients with Ehlers-Danlos syndrome, hypermobility type: a report of 2 cases.

    PubMed

    Patzkowski, Michael S

    2016-03-01

    Ehlers-Danlos syndrome is an inherited disorder of collagen production that results in multiorgan dysfunction. Patients with hypermobility type display skin hyperextensibility and joint laxity, which can result in chronic joint instability, dislocation, peripheral neuropathy, and severe musculoskeletal pain. A bleeding diathesis can be found in all subtypes of varying severity despite a normal coagulation profile. There have also been reports of resistance to local anesthetics in these patients. Several sources advise against the use of regional anesthesia in these patients citing the 2 previous features. There have been reports of successful neuraxial anesthesia, but few concerning peripheral nerve blocks, none of which describe nerves of the lower extremity. This report describes 2 cases of successful peripheral regional anesthesia in the lower extremity. In case 1, a 16-year-old adolescent girl with hypermobility type presented for osteochondral grafting of tibiotalar joint lesions. She underwent a popliteal sciatic (with continuous catheter) and femoral nerve block under ultrasound guidance. She proceeded to surgery and tolerated the procedure under regional block and intravenous sedation. She did not require any analgesics for the following 15 hours. In case 2, an 18-year-old woman with hypermobility type presented for medial patellofemoral ligament reconstruction for chronic patella instability. She underwent a saphenous nerve block above the knee with analgesia in the distribution of the saphenous nerve lasting for approximately 18 hours. There were no complications in either case. Prohibitions against peripheral nerve blocks in patients with Ehlers-Danlos syndrome, hypermobility type, appear unwarranted. PMID:26897449

  2. Determination of viability of human cartilage allografts by a rapid and quantitative method not requiring cartilage digestion.

    PubMed

    López, Carmen; Ajenjo, Nuria; Muñoz-Alonso, Maria J; Farde, Pilar; León, J; Gómez-Cimiano, J

    2008-01-01

    Fresh osteochondral allograft transplantation is increasingly used for the treatment of cartilage pathologies of the knee. It is believed that transplantation success depends on the presence of viable chondrocytes in the graft, but methods to evaluate graft viability require the isolation of chondrocytes by enzymatic digestion of the cartilage and/or the use of radioactive precursors. We have adapted the well-known cell viability assay based on the reduction of tetrazolium derivatives to evaluate cartilage viability. We took advantage from the histological properties of cartilage tissue and the fact that some tetrazolium derivatives (e.g., WST-1, XTT) give soluble reduction products that can permeate the hyaline cartilage matrix. We have validated this assay in human cartilage explants from arthrotomy interventions and deceased donors, measuring the reduced product in the explant supernatant. Using this method we have compared the performance of several culture media in cartilage viability. From those tested, DMEM supplemented with fetal bovine serum results in higher viability of the cartilage and the explants remain viable at least 15 days in culture at 37 degrees C. Cartilage cells continued expressing chondrocyte-specific genes, suggesting the maintenance of chondrogenic phenotype. The described method offers a quantitative and convenient method to measure the viability of human cartilage grafts.

  3. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  4. Bone marrow edema pattern around the knee on magnetic resonance imaging excluding acute traumatic lesions.

    PubMed

    Steinbach, Lynne S; Suh, Kyung Jin

    2011-07-01

    Magnetic resonance imaging (MRI) is very sensitive for the detection of marrow abnormalities. Bone marrow edema on MRI has been defined as an area of low signal intensity on T1-weighted images, associated with intermediate or high signal intensity findings on T2-weighted images. The bone marrow edema pattern is a nonspecific finding with multiple etiologies. The knee is a common place for bone marrow signal abnormalities to appear on MRI. Besides contusions and fractures from acute trauma, there are a variety of other causes of the bone marrow edema pattern. It is important for the interpreter of the study to be aware of the different etiologies responsible for producing these changes and to be able to narrow the differential diagnosis without mistaking such a pattern for acute trauma or infiltrative tumor. This article concentrates on those entities that produce a bone marrow edema pattern not related to acute trauma including red marrow proliferation, stress, osteochondral lesions, osteonecrosis, bone marrow edema syndrome, arthropathy, infection, Paget's disease, and marrow replacement disorders. PMID:21644195

  5. Prevalence and characteristics of osteochondrosis in 309 Spanish Purebred horses.

    PubMed

    Boado, A; López-Sanromán, F J

    2016-01-01

    Articular osteochondrosis (OC) is commonly reported in horses but there are no reports of its prevalence in the Spanish Purebred (SP). The objective of this study was to assess the prevalence and characteristics of OC of the tarsocrural, dorsal metacarpo-metatarsophalangeal and femoropatellar joints in the SP in a retrospective study. The data were obtained from the radiographs of 309 SP horses and the prevalence and characteristics of lesions were calculated. Osteochondral lesions at predilected sites were diagnosed in 48.8% of the horses. It was more common to find the presence of fragments (28.8%) than flattening of the subchondral bone contour (20.1%). The percentage with abnormal articular margins was 1.3% for the femoropatellar joint, 33.3% for the tarsocrural and 25% for the dorsal fetlock region, where flattening was more common than the presence of fragments; in the tarsus and stifle, fragments were more common. The severity of the disease in the dorsal fetlock area was higher in hindlimbs than in forelimbs. Femoropatellar lesions were rare. Osteochondrosis is a common disease in the SP and this study provides information about the prevalence of osteochondrosis lesions in the breed and the interrelationships between the joints.

  6. Early tissue response to citric acid-based micro- and nanocomposites

    PubMed Central

    Chung, Eun Ji; Qiu, Hongjin; Kodali, Pradeep; Yang, Scott; Sprague, Stuart M.; Hwong, James; Koh, Jason; Ameer, Guillermo A.

    2010-01-01

    Composites based on calcium phosphates and biodegradable polymers are desirable for orthopaedic applications due to their potential to mimic bone. Herein, we describe the fabrication, characterization, and in vivo response of novel citric acid-based microcomposites and nanocomposites. Poly(1,8-octanediol-co-citrate) (POC) was mixed with increasing amounts of HA nanoparticles or microparticles (up to 60 wt%), and the morphology and mechanical properties of the resulting composites were assessed. To investigate tissue response, nanocomposites, microcomposites, POC, and poly(L-lactide) (PLL) were implanted in osteochondral defects in rabbits and harvested at 6 weeks for histological evaluation. SEM confirmed increased surface roughness of microcomposites relative to nanocomposites. The mechanical properties of both types of composites increased with increasing amounts of HA (8–328 MPa), although nanocomposites with 60 wt.% HA displayed the highest strength and stiffness. Based on tissue-implant interfacial assessments, all implants integrated well with the surrounding bone and cartilage with no evidence of inflammation. Both nanocomposites and microcomposites supported bone remodeling; however, nanocomposites induced more trabecular bone formation at the tissue-implant interface. The mechanical properties of citric acid-based composites are within the range of human trabecular bone (1–1524 MPa, 211±78 MPa mean modulus) and tissue response was dependent on the size and content of HA, providing new perspectives of design and fabrication criteria for orthopaedic devices such as interference screws and fixation pins. PMID:20949482

  7. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  8. Articular Cartilage Injury and Potential Remedies.

    PubMed

    Chubinskaya, Susanna; Haudenschild, Dominik; Gasser, Seth; Stannard, James; Krettek, Christian; Borrelli, Joseph

    2015-12-01

    Osteoarthritis affects millions of people worldwide, is associated with joint stiffness and pain, and often causes significant disability and loss of productivity. Osteoarthritis is believed to occur as a result of ordinary "wear and tear" on joints during the course of normal activities of daily living. Posttraumatic osteoarthritis is a particular subset of osteoarthritis that occurs after a joint injury. Developing clinically relevant animal models will allow investigators to delineate the causes of posttraumatic osteoarthritis and develop means to slow or prevent its development after joint injury. Chondroprotectant compounds, which attack the degenerative pathways at a variety of steps, are being developed in an effort to prevent posttraumatic osteoarthritis and offer great promise. Often times, cartilage degradation after joint injury occurs despite our best efforts. When this happens, there are several evolving techniques that offer at least short-term relief from the effects of posttraumatic osteoarthritis. Occasionally, these traumatic lesions are so large that dramatic steps must be taken in an attempt to restore articular congruity and joint stability. Fresh osteochondral allografts have been used in these settings and offer the possibility of joint preservation. For patients presenting with neglected displaced intra-articular fractures that have healed, intra-articular osteotomy techniques are being developed in an effort to restore joint congruity and function. This article reviews the results of a newly developed animal model of posttraumatic osteoarthritis, several promising chondroprotectant compounds, and also cartilage techniques that are used when degenerative cartilage lesions develop after joint injury. PMID:26584267

  9. Closed medial total subtalar joint dislocation without ankle fracture: a case report

    PubMed Central

    2014-01-01

    Introduction Total subtalar dislocation without fracture of the ankle is a rare clinical entity; it is usually due to a traumatic high-energy mechanism. Standard treatment is successful closed reduction under general anesthesia followed by non-weight bearing and ankle immobilization with a below-knee cast for 6 weeks. Case presentation We present the case of a 30-year-old Moroccan woman who was involved in a road traffic accident. She subsequently received a radiological assessment that objectified a total subtalar dislocation without fracture of her ankle. She was immediately admitted to the operating theater where an immediate reduction was performed under sedation, and immobilization in a plaster boot was adopted for 8 weeks. The management of this traumatic lesion is discussed in the light of the literature. Conclusions Medial subtalar dislocation is a rare dislocation and is not commonly seen as a sports injury because it requires transfer of a large amount of kinetic energy. The weaker talocalcaneal and talonavicular ligaments often bear the brunt of the energy and are more commonly disrupted, compared to the relatively stronger calcaneonavicular ligament. Urgent reduction is important, and closed reduction under general anesthesia is usually successful, often facilitated by keeping the knee in flexion to relax the gastrocnemius muscle. Long-term sequelae include talar avascular necrosis and osteochondral fracture, as well as chronic instability and pain. PMID:25240955

  10. Glenohumeral relationships: subchondral mineralization patterns, thickness of cartilage, and radii of curvature.

    PubMed

    Zumstein, Valentin; Kraljević, Marko; Müller-Gerbl, Magdalena

    2013-11-01

    Subchondral mineralization represents the loading history of a joint and can be measured in vivo using computed tomography osteoabsorptiometry. Different mineralization patterns in the glenohumeral joint have been explained by the principle of physiologic incongruence. We sought to support this explanation by measurement of mineralization, radii, and cartilage thickness in 18 fresh shoulder specimens. We found three mineralization patterns: bicentric, monocentric anterior, and monocentric central. Mean radii of the glenoids were 27.4 mm for bicentric glenoids, 27.3 mm for monocentric anterior, and 24.8 mm for monocentric central glenoids. Cartilage thickness measurement revealed the highest values in anterior parts; the thinnest cartilage was found centrally. Our findings support the principle of a physiologic incongruence in the glenohumeral joint. Bicentric mineralization patterns exist in joints consisting of more flat glenoids compared to the corresponding humeral head. Monocentric distribution with a central maximum was found in specimens with glenoids being more curved, indicating higher degrees of congruence, which might represent an early stage of degenerative disease. The obtained information might also be important for implant fixation in resurfacing procedures or to achieve the best possible fit of an osteochondral allograft in the repair of cartilage defects.

  11. Interventional articular and para-articular knee procedures.

    PubMed

    Lalam, Radhesh K; Winn, Naomi; Cassar-Pullicino, Victor N

    2016-01-01

    The knee is a common area of the body to undergo interventional procedures. This article discusses image-guided interventional issues specific to the knee area. The soft tissues in and around the knee are frequently affected by sport-related injuries and often need image-guided intervention. This article details the specific technical issues related to intervention in these soft tissues, including the iliotibial tract, fat pads, patellar tendon and other tendons, bursae and the meniscus. Most often, simple procedures such as injection and aspiration are performed without image guidance. Rarely image-guided diagnostic arthrography and therapeutic joint injections are necessary. The technique, indications and diagnostic considerations for arthrography are discussed in this article. Primary bone and soft-tissue tumours may involve the knee and adjacent soft tissues. Image-guided biopsies are frequently necessary for these lesions; this article details the technical issues related to image-guided biopsy around the knee. A number of newer ablation treatments are now available, including cryoablation, high-frequency ultrasound and microwave ablation. Radiofrequency ablation, however, still remains the most commonly employed ablation technique. The indications, technical and therapeutic considerations related to the application of this technique around the knee are discussed here. Finally, we briefly discuss some newer, but as of yet, unproven image-guided interventions for osteochondral lesions and Brodie's abscess.

  12. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  13. Alignment, segmentation and 3-D reconstruction of serial sections based on automated algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Tang, Shaojie; Xu, Qiong; Lian, Qin; Wang, Jin; Li, Dichen

    2012-12-01

    A well-defined three-dimensional (3-D) reconstruction of bone-cartilage transitional structures is crucial for the osteochondral restoration. This paper presents an accurate, computationally efficient and fully-automated algorithm for the alignment and segmentation of two-dimensional (2-D) serial to construct the 3-D model of bone-cartilage transitional structures. Entire system includes the following five components: (1) image harvest, (2) image registration, (3) image segmentation, (4) 3-D reconstruction and visualization, and (5) evaluation. A computer program was developed in the environment of Matlab for the automatic alignment and segmentation of serial sections. Automatic alignment algorithm based on the position's cross-correlation of the anatomical characteristic feature points of two sequential sections. A method combining an automatic segmentation and an image threshold processing was applied to capture the regions and structures of interest. SEM micrograph and 3-D model reconstructed directly in digital microscope were used to evaluate the reliability and accuracy of this strategy. The morphology of 3-D model constructed by serial sections is consistent with the results of SEM micrograph and 3-D model of digital microscope.

  14. MRI findings in throwing shoulders: abnormalities in professional handball players.

    PubMed

    Jost, Bernhard; Zumstein, Matthias; Pfirrmann, Christian W A; Zanetti, Marco; Gerber, Christian

    2005-05-01

    Shoulders of throwing athletes are highly stressed joints and likely to have more structural abnormalities seen on magnetic resonance imaging scans. Prevalence and type of structural abnormalities, especially abnormalities of the rotator cuff tendons and the superolateral humeral head, and correlation of magnetic resonance imaging findings with symptoms and clinical tests, are not well known. Throwing and nonthrowing (symptomatic and asymptomatic) shoulders of 30 fully competitive professional handball players and 20 dominant shoulders of randomly selected volunteers were evaluated for comparison clinically and with magnetic resonance imaging. An average of seven abnormal magnetic resonance imaging findings was observed in the throwing shoulders; more than in the nonthrowing and the control shoulders. Although 93% of the throwing shoulders had abnormal magnetic resonance imaging findings, only 37% were symptomatic. Partial rotator cuff tears and mainly superolateral osteochondral defects of the humeral head were identified as typical throwing lesions. Symptoms correlated poorly with abnormalities seen on magnetic resonance imaging scans and findings from clinical tests. This suggests that the evaluation of an athlete's throwing shoulder should be done very thoroughly and should not be based mainly on abnormalities seen on magnetic resonance imaging scans.

  15. A Brief Review of Infrequent Spontaneous Findings, Peculiar Anatomical Microscopic Features, and Potential Artifacts in Göttingen Minipigs.

    PubMed

    McInnes, E F; McKeag, S

    2016-04-01

    Minipigs are now used in greater numbers in contract research organizations (CROs) as well as in the pharmaceutical industry. Most CROs or pharmaceutical companies use the Göttingen minipig, which displays a number of important background lesions. This review will discuss some of the more infrequent minipig background changes. Porcine stress syndrome is an autosomal recessive pharmacogenetic disorder in minipigs causing malignant hyperthermia and muscle necrosis. Possible triggers, clinical pathology as well as heart, muscle, liver, lung, and kidney histopathology are discussed. Additional spontaneous changes, background findings, and peculiar anatomical and histological features include thrombocytopenic purpura syndrome, spontaneous glomerulonephritis, osteochondritis, ellipsoids, or Schweigger-Seidel sheaths in the spleen, as well as the presence of a perimesenteric plexus adjacent to mesenteric lymph nodes, squamous epithelial metaplasia of the salivary gland, and cupping of the optic disk in the minipig eye. In order to maximize the data gained from minipig studies, the interpretation of pathology findings requires the input of experienced pathologists who understand the significance of artifacts and spontaneous, background lesions in minipigs and can distinguish these from induced lesions. PMID:26839330

  16. The Feasibility of Using Irreversible Electroporation to Introduce Pores in Bacterial Cellulose Scaffolds for Tissue Engineering

    PubMed Central

    Baah-Dwomoh, Adwoa; Rolong, Andrea; Gatenholm, Paul; Davalos, Rafael V.

    2015-01-01

    This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of Gluconacetobacter xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 kV/cm to 12.5 kV/cm was sufficient to kill bacteria and create a localized pore. We also found that an applied electric field of 8 kV/cm to 12.5 kV/cm, which produces a local field of 3 kV/cm was sufficient to kill most of the bacteria and produce a localized pore, but an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects. PMID:25690311

  17. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering.

    PubMed

    Baah-Dwomoh, Adwoa; Rolong, Andrea; Gatenholm, Paul; Davalos, Rafael V

    2015-06-01

    This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of G. xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 to 12.5 kV/cm, producing a local field of 3 kV/cm, was sufficient to kill most of the bacteria and create a localized pore. However, an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects.

  18. The Prevalence and Clinical Characteristics of Medial Epicondyle Apophysitis in Juvenile Baseball Player - Ultrasonographic Assessment of 2,926 Cases

    PubMed Central

    Otoshi, Kenichi

    2016-01-01

    Objectives: Apophysitis of humeral medial epicondyle, often referred to as “Little Leaguer’s Elbow, is one of the major throwing injuries in juvenile baseball players as common as osteochondritis dissecans of humeral capitellum. Repetitive valgus stress to the skeletally immature elbow can result in fragmentation, hypertrophy, or separation of the medial epicondyle apophysis, and these injuries may induce elbow pain and adversely influence on elbow function and throwing performance. Although several reports have described various morphological variations of the medial epicondyle apophysis, little is known about the natural course and clinical significance of these variations. The purpose of this study was to investigate the prevalence of these variations in each age group and clarify the association with elbow pain using the large epidemiologic data from medical check-ups of juvenile baseball players. Methods: Of 3,626 juvenile baseball players aged 6 to 17 years, 2,926 players were enrolled in this study. Experience of elbow pain was rated by self-completed questionnaires. Ultrasonographic assessment was used to assess the morphological variations of the antero-inferior medial epicondyle (MEC) and humeral capitellum. Regarding MEC lesion, enthesis of medial ulnar collateral ligament (MUCL) was classified into four types: normal, irregular (IR), fragmentation (FG), and hypertrophy (HT). Osteochondral lesion (OCL) of humeral capitellum was judged by the irregularity or fragmentation of subchondral bone. The prevalence of these lesions was investigated in each age group and evaluated the influence on elbow pain using multivariable logistic regression analysis. Results: The overall prevalence of MEC lesions and capitellum OCL was 49.9% (IR:6.7%, FG:11.7%, HT:31.5%) and 2.1%, respectively. The prevalence of IR and FG gradually increased until reaching its highest at 11-12 years of age. At 12-17 years of age, the prevalence of IR was decreased with age, whereas that

  19. Outcomes of Autologous Chondrocyte Implantation in the Knee following Failed Microfracture

    PubMed Central

    Riff, Andrew Joseph; Yanke, Adam Blair; Tilton, Annemarie K.; Cole, Brian J.

    2016-01-01

    Objectives: Marrow stimulation techniques such as drilling or microfracture are first-line treatment options for symptomatic cartilage defects of the knee. For young patients who have failed microfracture, cartilage restoration techniques such as autologous chondrocyte implantation (ACI), OATS, and osteochondral allograft and are frequently employed. Nevertheless, there a few reports in the literature evaluating the results of ACI following failed microfracture and those available suggest inferior outcomes compared to primary ACI. This study was performed to evaluate the clinical outcomes of autologous chondrocyte implantation (ACI) following failed microfracture in the knee and compare these outcomes to those of primary ACI. Methods: Patients were identified who underwent autologous chondrocyte implantation for symptomatic chondral lesions of the knee refractory to previous microfracture. Postoperative data were collected using several subjective scoring systems (Noyes, Tegner, Lysholm, IKDC, KOOS, SF12). An age-matched cohort of 103 patients who underwent primary ACI of the knee was used as a control group. Statistics were performed in a paired manner using a Student’s t-test for ordinal data and chi-square test for categorical data. Results: Ninety-two patients met the inclusion criteria. The average patient age was 30.1 years (range, 14-49 years) at the time of ACI. The average duration from microfracture to ACI was 21.2 months (range, 1-88 months). ACI was performed in the tibiofemoral compartment in 42 patients, the patellofemoral compartments in 38 patients, and in both in 12 patients. The primary lesion treated with ACI involved the MFC in 38 patients, the trochlea in 25 patients, the patella in 19 patients, and the LFC in 10 patients. The lesions averaged 467mm3 in the trochlea, 445mm3 in the LFC, 265mm3 in the patella, and 295mm3 in the patella. Nineteen patients underwent concurrent ACI to multiple lesions. Thirty-one patients underwent concomitant

  20. Evaluation of the accuracy of articular cartilage thickness measurement by B-mode ultrasonography with conventional imaging and real-time spatial compound ultrasonography imaging.

    PubMed

    Ohashi, Satoru; Ohnishi, Isao; Matsumoto, Takuya; Bessho, Masahiko; Matsuyama, Juntaro; Tobita, Kenji; Kaneko, Masako; Nakamura, Kozo

    2012-02-01

    The present study aimed to quantify the thickness of articular cartilage (Tc) in vitro using both conventional and real-time spatial compound B-mode ultrasonography (US) with a clinically used transducer and to evaluate the accuracy of measurement by comparing the results with values obtained microscopically. Femoral condyle samples were obtained from a 6-month-old pig and a 3-year-old pig. B-mode US images with conventional imaging and real-time spatial compound imaging (RTSCI) of osteochondral blocks were acquired. Tc determined using US (Tc-US) was measured from line data parallel to US beam direction acquired from B-mode images with an objective method for determining cartilage surface and bone-cartilage interfaces at the peak brightness values. Tc was also determined under microscopy (Tc-optical) using the corresponding points from US measurement. Tc-US was compared with Tc-optical to assess accuracy. Tc-US correlated significantly with Tc in both conventional imaging and RTSCI (r = 0.961, 0.976, respectively). Bland-Altman plots showed mean differences between Tc-optical and Tc-US were -0.0073 mm and 0.0139 mm with standard deviations of 0.171 mm and 0.131 mm for conventional imaging and RTSCI, respectively. Our results show that Tc-US measurement using B-mode US allows accurate measurement of Tc. Considering correlation coefficients between Tc-US and Tc-optical, RTSCI US may offer higher accuracy for measuring Tc than conventional methods when an objective tissue border determination algorithm is used, even though both showed good accuracy in our study.