Science.gov

Sample records for osteopontin gene expression

  1. The association between osteopontin gene polymorphisms, osteopontin expression and sarcoidosis

    PubMed Central

    Lavi, Hadas; Assayag, Miri; Schwartz, Assaf; Arish, Nissim; Fridlender, Zvi G.; Berkman, Neville

    2017-01-01

    Background Sarcoidosis is a systemic inflammatory disease of unknown etiology. Osteopontin (SPP1, OPN) is an extra cellular matrix glycoprotein and cytokine with a known role in granuloma formation and in autoimmune and inflammatory diseases. Objective To determine whether plasma OPN levels are elevated in patients with sarcoidosis and compare the frequency of four single nucleotide polymorphism (SNPs) variants in the OPN gene in sarcoidosis patients compared to healthy controls. Methods Demographic and clinical information, radiological studies and pulmonary function tests were evaluated in 113 patients with sarcoidosis and in 79 healthy controls. Blood samples were analyzed for SNPs of the OPN gene and for plasma OPN and CRP levels. Association between clinical features of disease and OPN levels as well as SNP frequencies was determined. Results Plasma OPN levels were higher in sarcoidosis patients than in healthy subjects, (median: 217 vs 122ng/ml, p<0.001). Area under the curve for receiver operator curves (ROC) was 0.798 (0.686–0.909 95% CI.) No differences were observed between sarcoidosis patients and controls in the frequency of any of the SNPs evaluated. Presence of lung parenchymal involvement was associated with SNP distribution at rs1126772 (p = 0.02). We found no correlation between SNPs distribution and plasma OPN levels. Conclusions Osteopontin protein levels are elevated in sarcoidosis. We found no evidence for an association between SNPs on the osteopontin gene and plasma OPN levels or the presence of sarcoidosis, however, an association between genotype and several phenotypic clinical parameters of disease was observed. PMID:28253271

  2. Phosphate is a specific signal for induction of osteopontin gene expression.

    PubMed

    Beck, G R; Zerler, B; Moran, E

    2000-07-18

    Osteopontin is a phosphorylated glycoprotein secreted to the mineralizing extracellular matrix by osteoblasts during bone development. It is believed to facilitate the attachment of osteoblasts and osteoclasts to the extracellular matrix, allowing them to perform their respective functions during osteogenesis. Several other functions have been suggested for this protein, and its up-regulation is associated with various disease states related to calcification, including arterial plaque formation and the formation of kidney stones. Although expression of this gene has been demonstrated in multiple tissues, its regulation is not well understood. Our previous studies on the roles of the retinoblastoma protein (pRB) and p300/CBP in the regulation of osteoblast differentiation revealed a link between osteopontin induction and the synthesis of alkaline phosphatase. In this paper, we describe results specifically linking induction of osteopontin to the enzymatic activity of alkaline phosphatase in the medium, which results in the generation of free phosphate. This elevation of free phosphate in the medium is sufficient to signal induction of osteopontin RNA and protein. The strong and specific induction of osteopontin in direct response to increased phosphate levels provides a mechanism to explain how expression of this product is normally regulated in bone and suggests how it may become up-regulated in damaged tissue.

  3. Osteopontin is associated with nuclear factor {kappa}B gene expression during tail-suspension-induced bone loss

    SciTech Connect

    Ishijima, Muneaki; Ezura, Yoichi . E-mail: ezura.mph@mril.tmd.ac.jp; Tsuji, Kunikazu

    2006-10-01

    Osteoporosis due to unloading-induced bone loss is a critical issue in the modern aging society. Although the mechanisms underlying this phenomenon are largely unknown, osteopontin (OPN) is one of the critical mediators required for unloading-induced bone loss [M. Ishijima, S.R. Rittling, T. Yamashita, K. Tsuji, H. Kurosawa, A. Nifuji, D.T. Denhardt, and M. Noda, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin, J Exp Med, 193 (2001) 399-404]. To clarify the molecular bases for OPN actions, we carried out microarray analyses on the genes expressed in the femoral bone marrow cells in wild type and OPN-/- mice. The removal of the mechanical load induced bone loss in wild type, but not in OPN-/- mice, as previously reported. Expression analysis of 9586 cDNAs on a microarray system revealed that OPN deficiency blocked tail-suspension-induced expression of ten genes (group A). This observation was confirmed based on semi-quantitative RT-PCR analyses. On the other hand, expression of four genes (group B) was not altered by tail suspension in wild type but was enhanced in OPN-deficient mice. NF-{kappa}B p105 subunit gene (Nfkb1) was found in group A and Bax in group B. p53 gene expression was upregulated by tail suspension in wild type mice, but it was no longer observed in OPN-/- mice. These data indicate that OPN acts to mediate mechanical stress signaling upstream to the genes encoding apoptosis-related molecules, and its action is associated with alteration of the genes.

  4. Osteopontin expression in reactive lesions of gingiva.

    PubMed

    Elanagai, Rathinam; Veeravarmal, Veeran; Nirmal, Ramdas Madhavan

    2015-01-01

    Reactive proliferations of the gingiva comprise lesions such as pyogenic granuloma (PG), inflammatory fibroepithelial hyperplasia (IFH), peripheral ossifying fibroma (POF), and peripheral giant cell lesion. Osteopontin (OPN) has a dual role, it promotes mineralization when it is bound to solid substrate, and on the other hand, it inhibits mineralization when it is seen in association with solution. Objectives The study aimed to evaluate the expression of osteopontin in normal gingival tissue and different types of focal reactive proliferations of gingival tissue, and its role in the development of calcification within it. Material and Methods The presence and distribution of osteopontin was assessed using immunohistochemistry in five cases of normal gingival tissue and 30 cases of focal reactive proliferations of gingiva. Results There was no expression of osteopontin in normal subjects. Few cases of pyogenic granuloma, inflammatory fibroepithelial hyperplasia, and all the cases of peripheral ossifying fibroma showed positivity for osteopontin in the inflammatory cells, stromal cells, extracellular matrix, and in the calcifications. Conclusion The expression of osteopontin in all the cases of peripheral ossifying fibroma speculates that the majority of the cases of peripheral ossifying fibroma originate from the periodontal ligament cells. The treatment modalities for peripheral ossifying fibroma should differ from other focal reactive proliferations of gingiva.

  5. Osteopontin Modulates Inflammation, Mucin Production, and Gene Expression Signatures After Inhalation of Asbestos in a Murine Model of Fibrosis

    PubMed Central

    Sabo-Attwood, Tara; Ramos-Nino, Maria E.; Eugenia-Ariza, Maria; MacPherson, Maximilian B.; Butnor, Kelly J.; Vacek, Pamela C.; McGee, Sean P.; Clark, Jessica C.; Steele, Chad; Mossman, Brooke T.

    2011-01-01

    Inflammation and lung remodeling are hallmarks of asbestos-induced fibrosis, but the molecular mechanisms that control these events are unclear. Using laser capture microdissection (LCM) of distal bronchioles in a murine asbestos inhalation model, we show that osteopontin (OPN) is up-regulated by bronchiolar epithelial cells after chrysotile asbestos exposures. In contrast to OPN wild-type mice (OPN+/+) inhaling asbestos, OPN null mice (OPN−/−) exposed to asbestos showed less eosinophilia in bronchoalveolar lavage fluids, diminished lung inflammation, and decreased mucin production. Bronchoalveolar lavage fluid concentrations of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-12 subunit p40, MIP1α, MIP1β, and eotaxin) also were significantly less in asbestos-exposed OPN−/− mice. Microarrays performed on lung tissues from asbestos-exposed OPN+/+ and OPN−/− mice showed that OPN modulated the expression of a number of genes (Col1a2, Timp1, Tnc, Eln, and Col3a1) linked to fibrosis via initiation and cross talk between IL-1β and epidermal growth factor receptor-related signaling pathways. Novel targets of OPN identified include genes involved in cell signaling, immune system/defense, extracellular matrix remodeling, and cell cycle regulation. Although it is unclear whether the present findings are specific to chrysotile asbestos or would be observed after inhalation of other fibers in general, these results highlight new potential mechanisms and therapeutic targets for asbestosis and other diseases (asthma, smoking-related interstitial lung diseases) linked to OPN overexpression. PMID:21514415

  6. Regulation of collagenase-3 and osteocalcin gene expression by collagen and osteopontin in differentiating MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Kowalski, Aaron J.; Denhardt, David T.; Nickols, G. Allen; Partridge, Nicola C.

    2002-01-01

    Both collagenase-3 and osteocalcin mRNAs are expressed maximally during the later stages of osteoblast differentiation. Here, we demonstrate that collagenase-3 mRNA expression in differentiating MC3T3-E1 cells is dependent upon the presence of ascorbic acid, is inhibited in the presence of the collagen synthesis inhibitor, 3,4-dehydroproline, and is stimulated by growth on collagen in the absence of ascorbic acid. Transient transfection studies show that collagenase-3 promoter activity increases during cell differentiation and requires the presence of ascorbic acid. Additionally, we show that, in differentiating MC3T3-E1 cells, collagenase-3 gene expression increases in the presence of an anti-osteopontin monoclonal antibody that binds near the RGD motif of this protein, whereas osteocalcin expression is inhibited. Furthermore, an RGD peptidomimetic compound, designed to block interaction of ligands to the alpha(v) integrin subunit, increases osteocalcin expression and inhibits collagenase-3 expression, suggesting that the RGD peptidomimetic initiates certain alpha(v) integrin signaling in osteoblastic cells. Overall, these studies demonstrate that stimulation of collagenase-3 expression during osteoblast differentiation requires synthesis of a collagenous matrix and that osteopontin and alpha(v) integrins exert divergent regulation of collagenase-3 and osteocalcin expression during osteoblast differentiation.

  7. Osteopontin is an oncogenic Vav1- but not wild-type Vav1-responsive gene: implications for fibroblast transformation.

    PubMed

    Schapira, Vered; Lazer, Galit; Katzav, Shulamit

    2006-06-15

    Mammalian wild-type Vav1 (wtVav1) encodes a specific GDP/GTP nucleotide exchange factor that is exclusively expressed in the hematopoietic system. Despite numerous studies, the mechanism underlying transformation of fibroblasts by oncogenic Vav1 (oncVav1) is not well defined. We identified osteopontin, a marker for tumor aggressiveness, as an oncVav1-inducible gene. Osteopontin is highly expressed in oncVav1-transformed NIH3T3 cells (NIH/oncVav1) but is barely detected in NIH3T3 expressing wtVav1 (NIH/wtVav1) even following epidermal growth factor stimulation, which normally induces osteopontin. Depleting oncVav1 in NIH/oncVav1 using small interfering RNA led to a considerable decrease in osteopontin, whereas reducing osteopontin expression did not affect oncVav1 expression, suggesting that oncVav1 operates upstream of osteopontin. Vav1-depleted NIH/oncVav1 cells, but not osteopontin-depleted NIH/oncVav1 cells, exhibited impaired extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase phosphorylation. Inhibition of ERK phosphorylation in NIH/oncVav1 cells led to a decrease in osteopontin expression, implying that the elevated osteopontin expression in these cells is dependent on ERK phosphorylation. Vav1-depleted or osteopontin-depleted NIH/oncVav1 cells lost their tumorigenic properties as judged by the soft agar and invasion assays, although loss of osteopontin expression had a less dramatic effect. Suppression of Vav1 expression in NIH/oncVav1 cells led to reversion to "normal" morphology, whereas when only osteopontin expression was diminished cells retained their transformed morphology. This work strongly supports a role for oncVav1 as a master oncogene and provides clues to the molecular mechanism underlying oncVav1 transformation.

  8. Effects of Hypergravity on Osteopontin Expression in Osteoblasts

    PubMed Central

    Zhou, Shuai; Zu, Yan; Sun, Zhenglong; Zhuang, Fengyuan; Yang, Chun

    2015-01-01

    Mechanical stimuli play crucial roles in bone remodeling and resorption. Osteopontin (OPN), a marker for osteoblasts, is important in cell communication and matrix mineralization, and is known to function during mechanotransduction. Hypergravity is a convenient approach to forge mechanical stimuli on cells. It has positive effects on certain markers of osteoblast maturation, making it a possible strategy for bone tissue engineering. We investigated the effects of hypergravity on OPN expression and cell signaling in osteoblasts. Hypergravity treatment at 20 g for 24 hours upregulated OPN expression in MC3T3-E1 cells at the protein as well as mRNA level. Hypergravity promoted OPN expression by facilitating focal adhesion assembly, strengthening actin bundles, and increasing Runx2 expression. In the hypergravity-triggered OPN expression pathway, focal adhesion assembly-associated FAK phosphorylation was upstream of actin bundle assembly. PMID:26046934

  9. Effects of long-term progesterone exposure on porcine uterine gene expression: progesterone alone does not induce secreted phosphoprotein 1 (osteopontin) in glandular epithelium.

    PubMed

    Bailey, Daniel W; Dunlap, Kathrin A; Erikson, David W; Patel, Atish K; Bazer, Fuller W; Burghardt, Robert C; Johnson, Greg A

    2010-10-01

    Pigs experience significant conceptus loss near mid-gestation, correlating with increasing glandular epithelial (GE) development and secretory activity. Secreted phosphoprotein 1 (SPP1, osteopontin) increases in GE between days 30 and 40 of pregnancy and is expressed in the GE of day 90 pseudopregnant pigs, suggesting that progesterone (P(4)) from corpora lutea is responsible for induction of SPP1 in GE. In this study, pigs were ovariectomized and treated daily with P(4) to assess effects of 40 days of P(4) exposure on SPP1, P(4) receptor (PGR), uteroferrin (ACP5), and fibroblast growth factor 7 (FGF7) expression in porcine endometria. PGR mRNA decreased in pigs injected with P(4) compared with pigs injected with corn oil (CO), and PGRs were downregulated in the luminal epithelium (LE) and GE. ACP5 mRNA increased in pigs injected with P(4) compared with pigs injected with CO, and ACP5 was induced in the GE of P(4)-treated pigs. FGF7 mRNA increased in pigs injected with P(4) compared with pigs injected with CO, and FGF7 was induced in the LE and GE of P(4)-treated pigs. SPP1 mRNA was not different between pigs injected with P(4) compared with pigs injected with CO, and SPP1 was not present in the GE of P(4)-treated pigs. Therefore, long-term P(4), in the absence of ovarian and/or conceptus factors, does not induce SPP1 expression in GE. We hypothesize that a servomechanism involving sequential effects of multiple hormones and cytokines, similar to those for sheep and humans, is required for GE differentiation and function, including the synthesis and secretion of SPP1.

  10. Osteopontin expression in primary sarcomas of the pulmonary artery.

    PubMed

    Gaumann, A; Petrow, P; Mentzel, T; Mayer, E; Dahm, M; Otto, M; Kirkpatrick, C J; Kriegsmann, J

    2001-11-01

    Primary tumors of the great vessels (aorta, pulmonal artery, and inferior vena cava) are rare and represent in most cases vascular leiomyosarcomas. Furthermore, there also exists a group of sarcomas arising from the intima, known as intimal sarcomas, associated with early metastasis and a very poor prognosis. Osteopontin (OPN) is an extracellular matrix protein that binds to alphav integrins, thereby promoting cell attachment, chemotaxis, and signal transduction. The reported association of OPN with malignancy and metastasis prompted us to examine the expression of this protein in seven sarcomas of the pulmonary artery. Strong OPN-specific staining could be detected in tumor cells and the adjacent extracellular matrix. Using a double labeling procedure, proliferating cells showed a strong positive reaction with antibodies against OPN. In addition, this protein could be demonstrated in the cytoplasm of macrophages. CD44, a putative receptor of OPN, was expressed on the cellular surface of tumor-associated lymphocytes. The expression of OPN in macrophages and tumor cells indicates that this molecule could possibly mediate cellular adhesion of both cell types in pulmonary sarcomas. The detection in the extracellular matrix shows that OPN is actively secreted and may interact with the corresponding receptor, CD44, on the surface of lymphocytes. Although the function of OPN is not yet fully understood, our data indicate that strong expression of this molecule in poorly differentiated sarcomas could play a role in the progression of malignancy and metastasis as described previously for carcinomas.

  11. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D sub 3 receptor and 1,25-dihydroxyvitamin D sub 3 enhancement of mouse secreted phosphoprotein 1 (Spp-1 or osteopontin) gene expression

    SciTech Connect

    Noda, Masaki; Vogel, R.L. ); Craig, A.M. ); Prahl, J.; DeLuca, H.F. ); Denhardt, D.T. )

    1990-12-01

    Secreted phosphoprotein 1 (Spp-1; osteopontin) is one of the abundant noncollagenous proteins in bone matrix and is produced by osteoblasts. The authors examined the promoter region of the mouse Spp-1 gene and identified a sequence responsible for 1,25-dihydroxyvitamin D{sub 3} enhancement of the Spp-1 gene expression. This 24-base-pair (bp) sequence (vitamin D response element) is located 761 bp upstream of the transcription start site and consists of two direct repeats of a unique 9-bp motif, AGGTTCACG. The vitamin D response element confers responsiveness of a heterologous promoter to 1,25-dihydroxyvitamin D{sub 3} in a position-and orientation-independent and copy-number-dependent manner. The basal level of expression of the reporter constructs containing this sequence and its response to 1,25-dihydroxyvitamin D{sub 3} were not affected by cotreatment with transforming growth factor {beta} or the tumor promoter phorbol 12-myristate 13-acetate or by cotransfection with a JUN expression vector. The vitamin D response element forms DNA-protein complexes, as indicated by gel-retardation assays. The addition of a monoclonal antibody raised against the vitamin D receptor further retarded the mobility of the DNA-protein complex. Another antibody that recognized the DNA binding region of the vitamin D receptor attenuated its binding to the sequence. These results indicate that this 24-bp sequence containing two 9-bp motifs binds to the vitamin D receptor and mediates the vitamin D{sub 3} enhancement of murine Spp-1 gene expression.

  12. Preferential up-regulation of osteopontin in primary central nervous system lymphoma does not correlate with putative receptor CD44v6 or CD44H expression.

    PubMed

    Yuan, Ji; Gu, Keni; He, Jianqing; Sharma, Suash

    2013-04-01

    Osteopontin (SPP1) is reportedly the most up-regulated gene in primary central nervous system lymphoma (PCNSL). Our objective was to confirm immunoexpression of osteopontin and determine if CD44v6 and CD44H played a significant role as receptors for osteopontin in PCNSL. Twenty PCNSL, 12 nodal diffuse large B-cell lymphoma (N-DLBCL), and 17 extra-nodal DLBCL (EN-DLBCL) archival pathology cases were examined. Osteopontin nuclear positivity was observed in 20 (100%) of 20 PCNSL cases, 16 (95 %) of 17 EN-DLBCL, and 3 of 12 (25%) N-DLBCL. The immunohistochemical score of osteopontin in PCNSL (7.0 ± 3.5) and EN-DLBCL (4.4 ± 4.1) was significantly higher than N-DLBCL (0.3 ± 0.6). Sixteen cases were positive for CD44v6 (33%), including 6 PCNSL, and 5 each EN-DLBCL and N-DLBCL; no statistical difference was observed. CD44H was positive in all cases except one PCNSL but without any significant differences across the 3 groups. CD44H expression was significantly higher in non-germinal center B-cell (GCB) (score 12 ± 1.5) as compared to the GCB group (9.5 ± 3.1), and in non-GCB PCNSL (7.9 ± 4.2) as compared to non-GCB non-CNS lymphoma (2.8 ± 4.0) (P = .009); the differences were insignificant for osteopontin and CD44v6. Neither CD44H nor CD44v6 scores correlated with the osteopontin expression score or Ki-67 index. Osteopontin immunoexpression was highest in PCNSL, suggesting its probable role in its pathogenesis. However, its lack of correlation with CD44v6 excludes the latter as the likely osteopontin receptor in PCNSL. The significantly higher CD44H expression in the non-GCB than GCB group may contribute to the aggressiveness of the non-GCB DLBCL. Further studies are needed to elucidate the pathway and the prognostic/predictive role of osteopontin in PCNSL.

  13. Expression and inactivation of osteopontin-degrading PHEX enzyme in squamous cell carcinoma.

    PubMed

    Neves, Raquel L; Chiarantin, Gabrielly M D; Nascimento, Fábio D; Pesquero, João B; Nader, Helena B; Tersariol, Ivarne L S; McKee, Marc D; Carmona, Adriana K; Barros, Nilana M T

    2016-08-01

    Proteolytic enzymes mediate the activation or inactivation of many physiologic and pathologic processes. The PHEX gene (Phosphate-regulating gene with homologies to endopeptidase on the X chromosome) encodes a metallopeptidase, which is mutated in patients with a prevalent form (1:20,000) of inherited rickets-X-linked hypophosphatemia (XLH). XLH shows growth retardation, hypophosphatemia, osteomalacia, and defective renal phosphate reabsorption and metabolism of vitamin D. Most PHEX studies have focused on bone, and recently we identified osteopontin (OPN) as the first protein substrate for PHEX, demonstrating in the murine model of XLH (Hyp mice) an increase in OPN that contributes to the osteomalacia. Besides its role in bone mineralization, OPN is expressed in many tissues, and therein has different functions. In tumor biology, OPN is known to be associated with metastasis. Here, we extend our PHEX-OPN studies to investigate PHEX expression in a squamous cell carcinoma (SCC) cell line and its possible involvement in modulating OPN function. Real-time PCR showed PHEX-OPN co-expression in SCC cells, with sequencing of the 22 exons showing no mutation of the PHEX gene. Although recombinant PHEX hydrolyze SCC-OPN fragments, unlike in bone cells, SCC-PHEX protein was not predominantly at the plasma membrane. Enzymatic activity assays, FACs and immunoblotting analyses demonstrated that membrane PHEX is degraded by cysteine proteases and the decreased PHEX activity could contribute to inappropriate OPN regulation. These results highlight for the first time PHEX in tumor biology.

  14. Microarray analysis of human milk cells: persistent high expression of osteopontin during the lactation period

    PubMed Central

    NAGATOMO, T; OHGA, S; TAKADA, H; NOMURA, A; HIKINO, S; IMURA, M; OHSHIMA, K; HARA, T

    2004-01-01

    To continue the search for immunological roles of breast milk, cDNA microarray analysis on cytokines and growth factors was performed for human milk cells. Among the 240 cytokine-related genes, osteopontin (OPN) gene ranked top of the expression. Real-time PCR revealed that the OPN mRNA levels in colostrum cells were approximately 100 times higher than those in PHA-stimulated peripheral blood mononuclear cells (PBMNCs), and 10 000 times higher than those in PB CD14+ cells. The median levels of OPN mRNA in early milk or mature milk cells were more than three times higher than those in colostrum cells. Western blot analysis of human milk showed appreciable expression of full-length and short form proteins of OPN. The concentrations of full-length OPN in early milk or mature milk whey continued to be higher than those in colostrum whey and plasma as assessed by ELISA. The early milk (3–7 days postpartum) contained the highest concentrations of OPN protein, while the late mature milk cells (1 years postpartum) had the highest expression of OPN mRNA of all the lactating periods. The results of immunohistochemical and immunocytochemical staining indicated that OPN-producing epithelial cells and macrophages are found in actively lactating mammary glands. These results suggest that the persistently and extraordinarily high expression of OPN in human milk cells plays a potential role in the immunological development of breast-fed infants. PMID:15373904

  15. Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells

    PubMed Central

    Shinohara, Mari L.; Lu, Linrong; Bu, Jing; Werneck, Miriam B. F.; Kobayashi, Koichi S.; Glimcher, Laurie H.; Cantor, Harvey

    2013-01-01

    The observation that the T-bet transcription factor allows tissue-specific upregulation of intracellular osteopontin (Opn-i) in plasmacytoid dendritic cells (pDCs) suggests that Opn might contribute to the expression of interferon-α (IFN-α) in those cells. Here we show that Opn deficiency substantially reduced Toll-like receptor 9 (TLR9)–dependent IFN-α responses but spared expression of transcription factor NF-κB–dependent proinflammatory cytokines. Shortly after TLR9 engagement, colocalization of Opn-i and the adaptor molecule MyD88 was associated with induction of transcription factor IRF7–dependent IFN-α gene expression, whereas deficient expression of Opn-i was associated with defective nuclear translocation of IRF7 in pDCs. The importance of the Opn–IFN-α pathway was emphasized by its essential involvement in cross-presentation in vitro and in anti–herpes simplex virus 1 IFN-α response in vivo. The finding that Opn-i selectively coupled TLR9 signaling to expression of IFN-α but not to that of other proinflammatory cytokines provides new molecular insight into the biology of pDCs. PMID:16604075

  16. Enhanced proliferation, attachment and osteopontin expression by porcine periodontal cells exposed to Emdogain.

    PubMed

    Rincon, J C; Xiao, Y; Young, W G; Bartold, P M

    2005-12-01

    Emdogain (EMD) is an enamel matrix derivative extracted from developing porcine teeth with demonstrated periodontal regenerative potential. EMD has been shown to influence a number of properties of periodontal ligament cells including proliferation, cell attachment and matrix synthesis. To date, the effect of EMD on the epithelial cell rests of Malassez (ERM) is unknown. In this study, periodontal ligament fibroblasts, ERM, alveolar bone cells and gingival fibroblasts were obtained from porcine periodontal ligament, alveolar bone and gingiva. This study investigated, in vitro, the effect of EMD at three concentrations on proliferation, cell attachment and expression of mRNA for two mineralised tissue-related proteins (osteopontin and bone sialoprotein). As for other periodontal cells, the ERM proliferative response was enhanced by EMD. Attachment assays revealed a highly significant increase for ERM and gingival fibroblasts after EMD treatment at all concentrations. This study has also shown that EMD stimulated expression of osteopontin mRNA by ERM and alveolar bone cells. The results from this study provide evidence that EMD enhanced cellular events related with proliferation, attachment and osteopontin mRNA expression by porcine periodontal cells, in a manner consistent with its role in periodontal regenerative therapy.

  17. Osteopontin in Immune-mediated Diseases

    PubMed Central

    Rittling, S.R.; Singh, R.

    2015-01-01

    Since its initial identification as one of the genes most highly upregulated upon T-cell activation, osteopontin (or Eta-1, as it was designated then) has been demonstrated to have many roles in the regulation of the immune response on multiple levels. It contributes to the development of immune-mediated and inflammatory diseases, and it regulates the host response to infection. In some cases, the mechanisms of these effects have been elucidated, while other mechanistic functions of the protein remain obscure. The protein itself makes these analyses complex, since it binds to a series of different integrins, and in addition to its classically secreted form, an intracellular form of osteopontin has been identified, which participates in several aspects of immune regulation. In this review, we focus on the role of osteopontin in a series of immune-related diseases, particularly those where significant advances have been made in recent years: multiple sclerosis, rheumatoid arthritis, lupus and related diseases, Sjögren’s disease, colitis, and 1 area of inflammatory pathology, alcoholic and nonalcoholic liver diseases. A recurring theme in these diseases is a link between osteopontin and pathogenic T cells, particularly T helper 17 cells, where osteopontin produced by dendritic cells supports IL-17 expression, contributing to pathology. In addition, a role for osteopontin in B-cell differentiation is becoming clear. In general, osteopontin contributes to pathology in these diseases, but there are examples where it has a protective role; deciphering the mechanisms underlying these differences and the specific receptors for osteopontin will be a research challenge for the future. Aside from its newly discovered role in the development of Sjögren’s disease, the role of osteopontin in inflammatory conditions in the oral cavity is still poorly understood. Elucidation of this role will be of interest. PMID:26341976

  18. Osteopontin Expression During the Periparturient Period in Dairy Cows Naturally Infected with Mycobacterium avium subsp. paratuberculosis Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigation of the role of osteopontin (Opn) in Johne’s disease is of interest based upon its ability to influence cytokine expression and to improve host defense against mycobacterial infections. The objective of this study was to characterize Opn expression and secretion by peripheral blood mono...

  19. Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression.

    PubMed

    Lin, Yiming; McKinnon, Kelly E; Ha, Shin Woo; Beck, George R

    2015-09-01

    Recent studies in both rodents and humans suggest that elevated serum phosphorus, in the context of normal renal function, potentiates, or exacerbates pathologies associates with cardiovascular disease, bone metabolism, and cancer. Our recent microarray studies identified the potent stimulation of pro-angiogenic genes such as forkhead box protein C2 (FOXC2), osteopontin, and Vegfα, among others in response to elevated inorganic phosphate (Pi). Increased angiogenesis and neovascularization are important events in tumor growth and the progression to malignancy and FOXC2 has recently been identified as a potential transcriptional regulator of these processes. In this study we addressed the possibility that a high Pi environment would increase the angiogenic potential of cancer cells through a mechanism requiring FOXC2. Our studies utilized lung and breast cancer cell lines in combination with the human umbilical vascular endothelial cell (HUVEC) vessel formation model to better understand the mechanism(s) by which a high Pi environment might alter cancer progression. Exposure of cancer cells to elevated Pi stimulated expression of FOXC2 and conditioned medium from the Pi-stimulated cancer cells stimulated migration and tube formation in the HUVEC model. Mechanistically, we define the requirement of FOXC2 for Pi-induced osteopontin (OPN) expression and secretion from cancer cells as necessary for the angiogenic response. These studies reveal for the first time that cancer cells grown in a high Pi environment promote migration of endothelial cells and tube formation and in so doing identify a novel potential therapeutic target to reduce tumor progression.

  20. Osteopontin Expression in the Brain Triggers Localized Inflammation and Cell Death When Immune Cells Are Activated by Pertussis Toxin

    PubMed Central

    Marcondes, Maria Cecilia Garibaldi; Ojakian, Ryan; Bortell, Nikki; Flynn, Claudia; Conti, Bruno; Fox, Howard S.

    2014-01-01

    Upregulation of osteopontin (OPN) is a characteristic of central nervous system pathologies. However, the role of OPN in inflammation is still controversial, since it can both prevent cell death and induce the migration of potentially damaging inflammatory cells. To understand the role of OPN in inflammation and cell survival, we expressed OPN, utilizing an adenoviral vector, in the caudoputamen of mice deficient in OPN, using beta-galactosidase- (β-gal-) expressing vector as control. The tissue pathology and the expression of proinflammatory genes were compared in both treatments. Interestingly, inflammatory infiltrate was only found when the OPN-vector was combined with a peripheral treatment with pertussis toxin (Ptx), which activated peripheral cells to express the OPN receptor CD44v6. Relative to β-gal, OPN increased the levels of inflammatory markers, including IL13Rα1, CXCR3, and CD40L. In Ptx-treated OPN KOs, apoptotic TUNEL+ cells surrounding the OPN expression site increased, compared to β-gal. Together, these results show that local OPN expression combined with a peripheral inflammatory stimulus, such as Ptx, may be implicated in the development of brain inflammation and induction of cell death, by driving a molecular pattern characteristic of cytotoxicity. These are characteristics of inflammatory pathologies of the CNS in which OPN upregulation is a hallmark. PMID:25525298

  1. Uterine micro-environment and estrogen-dependent regulation of osteopontin expression in mouse blastocyst.

    PubMed

    Xie, Qing-Zhen; Qi, Qian-Rong; Chen, Ying-Xian; Xu, Wang-Ming; Liu, Qian; Yang, Jing

    2013-07-11

    Embryo implantation is a highly synchronized bioprocess between an activated blastocyst and a receptive uterus. In mice, successful implantation relies on the dynamic interplay of estrogen and progesterone; however, the key mediators downstream of these hormones that act on blastocyst competency and endometrium receptivity acquisition are largely unknown. In this study, we showed that the expression of osteopontin (OPN) in mouse blastocysts is regulated by ovarian estrogen and uterine micro-environment. OPN mRNA is up-regulated in mouse blastocyst on day 4 of pregnancy, which is associated with ovarian estrogen secretion peak. Hormone treatment in vivo demonstrated that OPN expression in a blastocyst is regulated by estrogen through an estrogen receptor (ER). Our results of the delayed and activated implantation model showed that OPN expression is induced after estrogen injection. While estrogen treatment during embryo culture in vitro showed less effect on OPN expression, the tubal ligation model on day 3 of pregnancy confirmed that the regulation of estrogen on OPN expression in blastocyst might, through some specific cytokines, have existed in a uterine micro-environment. Collectively, our study presents that estrogen regulates OPN expression and it may play an important role during embryo implantation by activating blastocyst competence and facilitating the endometrium acceptable for active blastocyst.

  2. Evaluation of osteopontin and CD44v6 expression in odontogenic cystic lesions by immunohistochemistry.

    PubMed

    Salehinejad, Jahanshah; Saghafi, Shadi; Sharifi, Nourieh; Zare-Mahmoodabadi, Reza; Saghravanian, Nasrollah; Ghazi, Narges; Shakeri, Mohammad Taghi

    2012-07-15

    Odontogenic cysts are common lesions with different biological behavior. Odontogenic keratocysts (OKCs) and calcifying odontogenic cysts (COCs) with ameloblastoma-like epithelium are more aggressive than dentigerous cysts (DCs) and radicular cysts (RCs). Therefore, they were included in the list of odontogenic tumors by WHO. Osteopontin (OPN) is a calcium-binding glycoprotein present in many normal tissues. It plays a role in the migration and invasion of transformed epithelial cells. Binding of OPN to its receptor CD44v6 can enhance cell motility and migration. The purpose of this study was to compare the expression of these markers between odontogenic cysts of varying biological behavior. We examined OPN and CD44v6 expression in tissue sections of 14OKCs, 14COCs, 14RCs and 14DCs by immunohistochemistry. OPN and CD44v6 immunostaining was observed in all lining epithelial cells of the studied lesions with different degrees. The highest level of OPN and CD44v6 expression was found in OKCs, followed by COCs, RCs and DCs. Comparison of both markers among four groups revealed significant differences (P<0.001). Our findings suggest that higher level of OPN and CD44v6 expression in epithelial cells of some lesions such as OKC and COC can explain the local aggressive behavior of them.

  3. Interleukin-6 enhances cancer stemness and promotes metastasis of hepatocellular carcinoma via up-regulating osteopontin expression

    PubMed Central

    Wang, Chao-Qun; Sun, Hao-Ting; Gao, Xiao-Mei; Ren, Ning; Sheng, Yuan-Yuan; Wang, Zheng; Zheng, Yan; Wei, Jin-Wang; Zhang, Kai-Li; Yu, Xin-Xin; Zhu, Yin; Luo, Qin; Yang, Lu-Yu; Dong, Qiong-Zhu; Qin, Lun-Xiu

    2016-01-01

    Interleukin-6 (IL-6), one of the most important inflammatory cytokines, plays a pivotal role in metastasis and stemness of solid tumors. However, the underlying mechanisms of IL-6 in HCC metastasis remain unclear. In the present study, we demonstrated that stemness and metastatic potential of HCC cells were significantly enhanced after IL-6 stimulation. IL-6 could induce expression of osteopontin (OPN), along with other stemness-related genes, including HIF1α, BMI1, and HEY1. Block of OPN induction could significantly abrogate the effect of IL-6 on stemness and metastasis of HCC cells. Furthermore, IL-6 level was positively correlated with OPN in HCC. Patients with high plasma IL-6 or OPN level had poorer prognosis. In multivariate analysis, IL-6 and OPN were demonstrated to be independent prognostic indicators for HCC patients, and their combination had a better prognostic performance than IL-6 or OPN alone. Collectively, our findings indicate that IL-6 could enhance stemness and promote metastasis of HCC via up-regulating OPN expression, which can be a potential therapeutic target for combating HCC metastasis, and the combination of IL-6 and OPN serves as a promising prognostic predictor for HCC. PMID:27725896

  4. Osteopontin expression in vascular smooth muscle cells in patients with end-stage renal disease.

    PubMed

    Nakamura, Hironori; Honda, Hirokazu; Inada, Yoshifumi; Kato, Noriyuki; Kato, Kenichi; Kitazawa, Kozo; Sugisaki, Tetsuzo

    2006-06-01

    beta-glycerophosphate, a phosphate donor, and uremic sera induce osteopontin (OPN) expression in bovine vascular smooth muscle cells (VSMCs). However, the correlations of serum phosphorus level with OPN expression, and blood urea nitrogen (BUN) level with OPN expression in humans have not previously been reported. The purpose of the current study is to compare the expression of OPN in VSMCs with clinical data in patients with end-stage renal disease (ESRD). The radial arteries of 33 patients (21 male and 12 female patients) were examined to determine the expression of OPN and collagen type I (Col I) by immunohistochemistry. The correlation of the expression of bone matrix proteins with clinical data was analyzed. Between the low-serum phosphorus (<6 mg/dL) group and high-serum phosphorus (> or =6 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0049) and the levels of BUN (P = 0.0005), serum phosphorus (P < 0.0001) and calcium x phosphorus products (P < 0.0001). Moreover, between the low-BUN (<70 mg/dL, N = 19) group and high-BUN (> or =70 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0039) and the levels of BUN (P = 0.0002), serum phosphorus (P = 0.0002) and calcium x phosphorus products (P = 0.0003). We have shown that hyperphosphatemia or azotemia is associated with the expression of OPN in VSMCs in patients with ESRD.

  5. Prognostic significance of osteopontin expression in non-small-cell lung cancer: A meta-analysis.

    PubMed

    Zou, Xue-Lin; Wang, Chun; Liu, K E; Nie, Wen; Ding, Zhen-Yu

    2015-05-01

    Osteopontin (OPN) plays an important role in the progression and metastasis of cancer. However, the role of OPN as a prognostic factor in non-small-cell lung cancer (NSCLC) remains controversial. The aim of this study was to investigate the association between OPN expression and prognosis in patients with NSCLC using a meta-analysis. Based on PubMed, Ovid Medline, Embase, ISI, ScienceDirect and SpringerLink databases, related articles published prior to January, 2013 were collected. A meta-analysis was conducted to investigate the association of OPN expression with overall survival (OS) and progression-free survival (PFS) in patients with NSCLC. Hazard ratio (HR) with 95% confidence interval (CI) was used to assess the strength of this association. A total of 6 studies, including 776 patients, were found to be eligible for the meta-analysis. No heterogeneity was observed in OS or PFS, whereas low OPN expression was found to be correlated with better OS (HR=0.57, 95% CI: 0.46-0.70) and PFS (HR=0.62, 95% CI: 0.49-0.77). This meta-analysis demonstrated an association of OPN with poor prognosis in NSCLC patients. However, prospective studies are required to confirm these findings.

  6. Prognostic significance of osteopontin expression in non-small-cell lung cancer: A meta-analysis

    PubMed Central

    ZOU, XUE-LIN; WANG, CHUN; LIU, KE; NIE, WEN; DING, ZHEN-YU

    2015-01-01

    Osteopontin (OPN) plays an important role in the progression and metastasis of cancer. However, the role of OPN as a prognostic factor in non-small-cell lung cancer (NSCLC) remains controversial. The aim of this study was to investigate the association between OPN expression and prognosis in patients with NSCLC using a meta-analysis. Based on PubMed, Ovid Medline, Embase, ISI, ScienceDirect and SpringerLink databases, related articles published prior to January, 2013 were collected. A meta-analysis was conducted to investigate the association of OPN expression with overall survival (OS) and progression-free survival (PFS) in patients with NSCLC. Hazard ratio (HR) with 95% confidence interval (CI) was used to assess the strength of this association. A total of 6 studies, including 776 patients, were found to be eligible for the meta-analysis. No heterogeneity was observed in OS or PFS, whereas low OPN expression was found to be correlated with better OS (HR=0.57, 95% CI: 0.46–0.70) and PFS (HR=0.62, 95% CI: 0.49–0.77). This meta-analysis demonstrated an association of OPN with poor prognosis in NSCLC patients. However, prospective studies are required to confirm these findings. PMID:26137280

  7. Expression profile of the matricellular protein osteopontin in primary open-angle glaucoma and the normal human eye.

    PubMed

    Chowdhury, Uttio Roy; Jea, Seung-Youn; Oh, Dong-Jin; Rhee, Douglas J; Fautsch, Michael P

    2011-08-16

    PURPOSE. To characterize the role of osteopontin (OPN) in primary open-angle glaucoma (POAG) and normal eyes. METHODS. OPN quantification was performed by enzyme-linked immunosorbent assay in aqueous humor (AH) obtained from human donor eyes (POAG and normal) and surgical samples (POAG and elective cataract removal). OPN expression and localization in whole eye tissue sections and primary normal human trabecular meshwork (NTM) cells were studied by Western blot and immunohistochemistry. Latanoprost-free acid (LFA)-treated NTM cells were analyzed for OPN gene and protein expression. Intraocular pressure was measured by tonometry, and central corneal thickness was measured by optical coherence tomography in young OPN(-/-) and wild-type mice. RESULTS. OPN levels were significantly reduced in donor POAG AH compared with normal AH (0.54 ± 0.18 ng/μg [n = 8] vs. 0.77 ± 0.23 ng/μg [n = 9]; P = 0.039). A similar trend was observed in surgical AH (1.05 ± 0.31 ng/μg [n = 20] vs. 1.43 ± 0.88 ng/μg [n = 20]; P = 0.083). OPN was present in the trabecular meshwork, corneal epithelium and endothelium, iris, ciliary body, retina, vitreous humor, and optic nerve. LFA increased OPN gene expression, but minimal change in OPN protein expression was observed. No difference in intraocular pressure (17.5 ± 2.0 mm Hg [n = 56] vs. 17.3 ± 1.9 mm Hg [n = 68]) but thinner central corneal thickness (91.7 ± 3.6 μm [n = 50] vs. 99.2 ± 5.5 μm [n = 70]) was noted between OPN(-/-) and wild-type mice. CONCLUSIONS. OPN is widely distributed in the human eye and was found in lower concentrations in POAG AH. Reduction of OPN in young mice does not affect IOP.

  8. Roles of osteopontin gene polymorphism (rs1126616), osteopontin levels in urine and serum, and the risk of urolithiasis: a meta-analysis.

    PubMed

    Li, Xiao; Liu, Kang; Pan, Yongsheng; Zhang, Jing; Lv, Qiang; Hua, Lixin; Wang, Zengjun; Li, Jie; Yin, Changjun

    2015-01-01

    Objective. Previous studies have investigated the relationships between osteopontin gene polymorphism rs1126616 and OPN levels and urolithiasis, but the results were controversial. Our study aimed to clarify such relationships. Methods. A meta-analysis was performed by searching the databases Pubmed, Embase, and Web of Science for relevant studies. Crude odds ratios (ORs) or standardised mean differences with 95% confidence intervals (CIs) were calculated to evaluate the strength of association. Publication bias was estimated using Begg's funnel plots and Egger's regression test. Results. Overall, a significantly increased risk of urolithiasis was associated with OPN gene polymorphism rs1126616 for all the genetic models except recessive model. When stratified by ethnicity, the results were significant only in Turkish populations. For OPN level association, a low OPN level was detected in the urine of urolithiasis patients in large sample size subgroup. Results also indicated that urolithiasis patients have lower OPN level in serum than normal controls. Conclusion. This meta-analysis revealed that the T allele of OPN gene polymorphism increased susceptibility to urolithiasis. Moreover, significantly lower OPN levels were detected in urine and serum of urolithiasis patients than normal controls, thereby indicating that OPN has important functions in the progression of urolithiasis.

  9. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer.

    PubMed

    Cheng, Hui-Chuan; Liu, Yu-Peng; Shan, Yan-Shen; Huang, Chi-Ying; Lin, Forn-Chia; Lin, Li-Ching; Lee, Ling; Tsai, Chen-Hsun; Hsiao, Michael; Lu, Pei-Jung

    2013-11-01

    Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.

  10. The Impact of Osteopontin Gene Variations on Multiple Sclerosis Development and Progression

    PubMed Central

    Comi, Cristoforo; Cappellano, Giuseppe; Chiocchetti, Annalisa; Orilieri, Elisabetta; Buttini, Sara; Ghezzi, Laura; Galimberti, Daniela; Guerini, Franca; Barizzone, Nadia; Perla, Franco; Leone, Maurizio; D'Alfonso, Sandra; Caputo, Domenico; Scarpini, Elio; Cantello, Roberto; Dianzani, Umberto

    2012-01-01

    Osteopontin is a proinflammatory molecule, modulating TH1 and TH17 responses. Several reports suggest its involvement in multiple sclerosis (MS) pathogenesis. We previously reported that OPN gene variations at the 3′ end are a predisposing factor for MS development and evolution. In this paper, we extended our analysis to a gene variation at the 5′ end on the −156G > GG single nucleotide polymorphism (SNP) and replicated our previous findings at the 3′ end on the +1239A > C SNP. We found that only +1239A > C SNP displayed a statistically significant association with MS development, but both +1239A > C and −156G > GG had an influence on MS progression, since patients homozygous for both +1239A and −156GG alleles displayed slower progression of disability and slower switch to secondary progression than those carrying +1239C and/or −156G and those homozygous for +1239A only. Moreover, patients homozygous for +1239A also displayed a significantly lower relapse rate than those carrying +1239C, which is in line with the established role of OPN in MS relapses. PMID:23008732

  11. The impact of osteopontin gene variations on multiple sclerosis development and progression.

    PubMed

    Comi, Cristoforo; Cappellano, Giuseppe; Chiocchetti, Annalisa; Orilieri, Elisabetta; Buttini, Sara; Ghezzi, Laura; Galimberti, Daniela; Guerini, Franca; Barizzone, Nadia; Perla, Franco; Leone, Maurizio; D'Alfonso, Sandra; Caputo, Domenico; Scarpini, Elio; Cantello, Roberto; Dianzani, Umberto

    2012-01-01

    Osteopontin is a proinflammatory molecule, modulating TH1 and TH17 responses. Several reports suggest its involvement in multiple sclerosis (MS) pathogenesis. We previously reported that OPN gene variations at the 3' end are a predisposing factor for MS development and evolution. In this paper, we extended our analysis to a gene variation at the 5' end on the -156G > GG single nucleotide polymorphism (SNP) and replicated our previous findings at the 3' end on the +1239A > C SNP. We found that only +1239A > C SNP displayed a statistically significant association with MS development, but both +1239A > C and -156G > GG had an influence on MS progression, since patients homozygous for both +1239A and -156GG alleles displayed slower progression of disability and slower switch to secondary progression than those carrying +1239C and/or -156G and those homozygous for +1239A only. Moreover, patients homozygous for +1239A also displayed a significantly lower relapse rate than those carrying +1239C, which is in line with the established role of OPN in MS relapses.

  12. Osteopontin expression in vitreous and proliferative retinal membranes of patients with proliferative vitreous retinopathy

    PubMed Central

    Liu, Xiao-Yi; Li, Lei; Yao, Jia-Qi; Chen, Xi; Liu, Qing-Huai

    2011-01-01

    AIM To analyze osteopontin (OPN) expression in vitreous and proliferative retinal membranes of patients with proliferative vitreous retinopathy (PVR). METHODS A total of 54 vitreous fluid samples were obtained between 2009 and 2010, which contained 45 with PVR (group A) and 9 without PVR (group B). Enzyme-linked immunosorbent assay was applied to quantify the OPN concentrations in vitreous fluid. Four samples of proliferative retinal membrane were also obtained at the time of vitrectomy, and their contents of OPN were measured by Real-time RT-PCR. RESULTS The OPN levels in the vitreous fluid were 778.48±62.06ng/mL in group A and 452.99±32.52ng/mL in group B. The vitreous OPN levels in group A were significantly higher than those in group B and to rise by time in the early stages of PVR. The average OPN levels in the proliferative retinal membranes (F=0.14) were also higher than those in the retinal pigment cells (F=0) using Real-time RT-PCR. CONCLUSION The high vitreous and proliferative retinal membrane OPN levels in PVR suggest that OPN might promote the development of PVR. The vitreous OPN concentrations are rising by the time in the early phases of PVR. PMID:22553691

  13. Osteopontin and fibronectin levels are decreased in vitreous of autoimmune uveitis and retinal expression of both proteins indicates ECM re-modeling.

    PubMed

    Deeg, Cornelia A; Eberhardt, Christina; Hofmaier, Florian; Amann, Barbara; Hauck, Stefanie M

    2011-01-01

    Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to

  14. Osteopontin and Fibronectin Levels Are Decreased in Vitreous of Autoimmune Uveitis and Retinal Expression of Both Proteins Indicates ECM Re-Modeling

    PubMed Central

    Deeg, Cornelia A.; Eberhardt, Christina; Hofmaier, Florian; Amann, Barbara; Hauck, Stefanie M.

    2011-01-01

    Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to

  15. Osteopontin Expression in Acute Immune Response Mediates Hippocampal Synaptogenesis and Adaptive Outcome Following Cortical Brain Injury

    PubMed Central

    Chan, Julie L.; Reeves, Thomas M.; Phillips, Linda L.

    2014-01-01

    Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology performed. At 1–2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery. PMID:25151457

  16. Genomic organization of the human osteopontin gene: Exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type II.

    SciTech Connect

    Crosby, A.H.; Edwards, S.J.; Murray, J.C.

    1995-05-01

    Osteopontin (SPP1) is the principal phosphorylated glycoprotein of bone that is also expressed in a limited number of other tissues including dentine. In the current investigation the authors report the genomic organization of the SPP1 gene, which comprises seven exons, six of which contain coding sequence. The splice sites for exon donor and acceptor positions are in close agreement with previously published consensus sequences. Comparison of the human gene with its murine and bovine counterparts revealed a highly homologous organization. A highly informative short tandem repeat polymorphism isolated at the SPP1 locus showed no recombination with the autosomal dominant disorder dentinogenesis imperfecta type II. Nevertheless, sequencing of each exon in individuals affected by this disorder failed to reveal any disease-specific mutations. 25 refs., 2 figs., 2 tabs.

  17. Expression of matrix metalloproteinases, their tissue inhibitors, and osteopontin in the wall of thoracic and abdominal aortas with dilatative pathology.

    PubMed

    Lesauskaite, Vaiva; Epistolato, Maria Carmela; Castagnini, Marta; Urbonavicius, Sigitas; Tanganelli, Piero

    2006-08-01

    Matrix metalloproteinases (MMPs) degrade extracellular matrix and may play a central role in the pathogenesis of aortic aneurysms. We studied 2 groups of patients: 15 with dilatative pathology of the ascending thoracic aorta and 17 with aneurysm of the abdominal aortic wall (AAA). We compared the expression of MMPs, tissue inhibitors of matrix metalloproteinases (TIMPs), and osteopontin in the wall of thoracic and abdominal aneurysms. In AAA, MMP-9 and TIMP-1 expression in inflammatory cells was higher than in smooth muscle cells (SMCs) (median score: 3.5 versus 1, P < .0001; 2 versus 1, P < .04, respectively), whereas MMP-2 demonstrated higher expression in SMCs than in inflammatory cells (median score: 0 versus 4, P < .0001). In ATA, MMP-2, MMP-9, TIMP-1, TIMP-2, TIMP-3, and osteopontin expression in SMCs was higher than in inflammatory cells (median score: 3 versus 0, P < .0001; 4 versus 1, P < .0005; 2 versus 0, P < .001; 5 versus 2, P < .0001; 2 versus 0, P < .005; and 5 versus 1.5, P < .0001, respectively), when both inflammatory cells of the media and the adventitia were considered together. The cellular expression of MMP-9 and their tissue inhibitors TIMP-1, TIMP-2, and TIMP-3 differs in the dilatative pathology of abdominal and thoracic aortas, so the hypothetical model of morphogenesis of AAA cannot completely explain the formation of dilatative pathology of the ascending thoracic aorta.

  18. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis

    PubMed Central

    2005-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. Methods and Findings Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. Conclusions Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease. PMID:16128620

  19. Basal cell carcinoma with matrical differentiation: expression of beta-catenin [corrected] and osteopontin.

    PubMed

    Del Sordo, Rachele; Cavaliere, Antonio; Sidoni, Angelo

    2007-10-01

    Basal cell carcinoma with matrical differentiation is an extremely rare variant. To date, only 12 cases have been described in the literature. This tumor is a typical basal cell carcinoma with basaloid nests containing shadow cells identical to those of pilomatricoma and pilomatrical carcinoma. We present two additional cases and have investigated the immunoprofile of .-catenin and osteopontin with the aim of determining both their biological significance and possible diagnostic utility. The morphological and immunohistochemical features of these cases that we have found suggest that basal cell carcinomas with matrical differentiation belong to a spectrum of lesions deriving from hair follicles in which .-catenin plays an important role in the tumor development, differentiation, and behavior.

  20. Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF-κB Signaling in Osteoarthritis

    PubMed Central

    Li, Yusheng; Jiang, Wei; Wang, Hua; Deng, Zhenhan; Zeng, Chao; Tu, Min; Li, Liangjun; Xiao, Wenfeng; Gao, Shuguang; Luo, Wei

    2016-01-01

    Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway. PMID:27656654

  1. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques.

    PubMed Central

    Giachelli, C M; Bae, N; Almeida, M; Denhardt, D T; Alpers, C E; Schwartz, S M

    1993-01-01

    In an earlier report, we used differential cloning to identify genes that might be critical in controlling arterial neointima formation (Giachelli, C., N. Bae, D. Lombardi, M. Majesky, and S. Schwartz. 1991. Biochem. Biophys. Res. Commun. 177:867-873). In this study, we sequenced the complete cDNA and conclusively identified one of these genes, 2B7, as rat osteopontin. Using immunochemistry and in situ hybridization, we found that medial smooth muscle cells (SMC) in uninjured arteries contained very low levels of osteopontin protein and mRNA. Injury to either the adult rat aorta or carotid artery using a balloon catheter initiated a qualitatively similar time-dependent increase in both osteopontin protein and mRNA in arterial SMC. Expression was transient and highly localized to neointimal SMC during the proliferative and migratory phases of arterial injury, suggesting a possible role for osteopontin in these processes. In vitro, basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta), and angiotensin II (AII), all proteins implicated in the rat arterial injury response, elevated osteopontin expression in confluent vascular SMC. Finally, we found that osteopontin was a novel component of the human atherosclerotic plaque found most strikingly associated with calcified deposits. These data implicate osteopontin as a potentially important mediator of arterial neointima formation as well as dystrophic calcification that often accompanies this process. Images PMID:8408622

  2. Transgenic Mammary Epithelial Osteopontin (Spp1) Expression Induces Proliferation and Alveologenesis

    PubMed Central

    Hubbard, Neil E.; Chen, Qian J.; Sickafoose, Laura K.; Wood, Meghan B.; Gregg, Jeffrey P.; Abrahamsson, Ninnie M.; Engelberg, Jesse A.; Walls, Judith E.

    2013-01-01

    Osteopontin (OPN) Spp1 is involved in differentiation of the mammary gland. We engineered mice to overexpress OPN in mammary epithelium and describe an altered mammary phenotype. Three transgenic (Tg) founder lines FVB/N Tg(MMTV-Opn)(1-3BOR) were propagated after FVB/NJ pronuclear injections. Mammary glands from Tg-OPN mice compared to littermate controls showed, at 4 weeks of age, exaggerated terminal end buds; at 8 and 12 weeks, more numerous and complex ducts with increased luminal protein; and at 16 weeks, increased lobulogenesis. Lactational Tg-OPN mammary glands showed more rapid lobulogenesis and lactational changes with slower gland involution and regression following weaning. Ex vivo lobulogenesis was noticeably increased from organoids of Tg-OPN mice. Immunohistochemistry revealed cytoplasmic OPN accumulation and increased Ki-67 positive mammary epithelial cells in Tg-OPN mammary glands. OPN appears to convey a proliferative stimulus for mammary epithelial cells and alters development and differentiation. These OPN mammary overexpressing mice provide a means to study the role of OPN in cancer progression. PMID:24069507

  3. Alcohol Inhibits Osteopontin-dependent Transforming Growth Factor-β1 Expression in Human Mesenchymal Stem Cells

    PubMed Central

    Driver, Joseph; Weber, Cynthia E.; Callaci, John J.; Kothari, Anai N.; Zapf, Matthew A.; Roper, Philip M.; Borys, Dariusz; Franzen, Carrie A.; Gupta, Gopal N.; Wai, Philip Y.; Zhang, Jiwang; Denning, Mitchell F.; Kuo, Paul C.; Mi, Zhiyong

    2015-01-01

    Alcohol (EtOH) intoxication is a risk factor for increased morbidity and mortality with traumatic injuries, in part through inhibition of bone fracture healing. Animal models have shown that EtOH decreases fracture callus volume, diameter, and biomechanical strength. Transforming growth factor β1 (TGF-β1) and osteopontin (OPN) play important roles in bone remodeling and fracture healing. Mesenchymal stem cells (MSC) reside in bone and are recruited to fracture sites for the healing process. Resident MSC are critical for fracture healing and function as a source of TGF-β1 induced by local OPN, which acts through the transcription factor myeloid zinc finger 1 (MZF1). The molecular mechanisms responsible for the effect of EtOH on fracture healing are still incompletely understood, and this study investigated the role of EtOH in affecting OPN-dependent TGF-β1 expression in MSC. We have demonstrated that EtOH inhibits OPN-induced TGF-β1 protein expression, decreases MZF1-dependent TGF-β1 transcription and MZF1 transcription, and blocks OPN-induced MZF1 phosphorylation. We also found that PKA signaling enhances OPN-induced TGF-β1 expression. Last, we showed that EtOH exposure reduces the TGF-β1 protein levels in mouse fracture callus. We conclude that EtOH acts in a novel mechanism by interfering directly with the OPN-MZF1-TGF-β1 signaling pathway in MSC. PMID:25713073

  4. Aldosterone-induced osteopontin gene transcription in vascular smooth muscle cells involves glucocorticoid response element.

    PubMed

    Kiyosue, Arihiro; Nagata, Daisuke; Myojo, Masahiro; Sato, Tomohiko; Takahashi, Masao; Satonaka, Hiroshi; Nagai, Ryozo; Hirata, Yasunobu

    2011-12-01

    Osteopontin (OPN) is known to be one of the cytokines that is involved in the vascular inflammation caused by aldosterone (Aldo). Previous reports have shown that Aldo increases OPN transcripts, and the mechanisms for this remain to be clarified. In this study, we investigated how Aldo increases OPN transcripts in the vascular smooth muscle cells of rats. Aldosterone increased OPN transcripts time-dependently as well as dose-dependently. This increase was diminished by eplerenone, a mineralocorticoid receptor (MR) antagonist. Luciferase promoter assays showed that the OPN promoter deleted to the -1599 site retained the same promoting ability as the full-length OPN promoter when stimulated by 10(-7) M Aldo, but the promoter deleted to the -1300 site lost the promoting ability. A glucocorticoid response element (GRE) is located in that deleted region. Luciferase assays of a mutated promoter without the GRE lost the luciferase upregulation, although mutated promoters with the deletion of other consensus sites maintained the promoter activity. The binding of the Aldo-MR complex to the GRE fragment was confirmed by an electrophoretic-mobility shift assay. This is the first report showing that Aldo regulates the transcriptional levels of OPN and inflammatory responses in the vasculature through a specific GRE site in the OPN promoter region.

  5. Spatiotemporal expression of osteopontin in the striatum of rats subjected to the mitochondrial toxin 3-nitropropionic acid correlates with microcalcification

    PubMed Central

    Riew, Tae-Ryong; Kim, Hong Lim; Jin, Xuyan; Choi, Jeong-Heon; Shin, Yoo-Jin; Kim, Ji Soo; Lee, Mun-Yong

    2017-01-01

    Our aim was to elucidate whether osteopontin (OPN) is involved in the onset of mineralisation and progression of extracellular calcification in striatal lesions due to mitochondrial toxin 3-nitropropionic acid exposure. OPN expression had two different patterns when observed using light microscopy. It was either localised to the Golgi complex in brain macrophages or had a small granular pattern scattered in the affected striatum. OPN labelling tended to increase in number and size over a 2-week period following the lesion. Ultrastructural investigations revealed that OPN is initially localised to degenerating mitochondria within distal dendrites, which were then progressively surrounded by profuse OPN on days 7–14. Electron probe microanalysis of OPN-positive and calcium-fixated neurites indicated that OPN accumulates selectively on the surfaces of degenerating calcifying dendrites, possibly via interactions between OPN and calcium. In addition, 3-dimensional reconstruction of OPN-positive neurites revealed that they are in direct contact with larger OPN-negative degenerating dendrites rather than with fragmented cell debris. Our overall results indicate that OPN expression is likely to correlate with the spatiotemporal progression of calcification in the affected striatum, and raise the possibility that OPN may play an important role in the initiation and progression of microcalcification in response to brain insults. PMID:28345671

  6. Gene expression profiling in bladder cancer identifies potential therapeutic targets

    PubMed Central

    Hussain, Syed A.; Palmer, Daniel H.; Syn, Wing-Kin; Sacco, Joseph J.; Greensmith, Richard M.D.; Elmetwali, Taha; Aachi, Vijay; Lloyd, Bryony H.; Jithesh, Puthen V.; Arrand, John; Barton, Darren; Ansari, Jawaher; Sibson, D. Ross; James, Nicholas D.

    2017-01-01

    Despite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation. PMID:28259975

  7. Morphohistological change and expression of HSP70, osteopontin and osteocalcin mRNAs in rat dental pulp cells with orthodontic tooth movement.

    PubMed

    Shigehara, Satoshi; Matsuzaka, Kenichi; Inoue, Takashi

    2006-08-01

    Morphological change and expression of osteopontin, osteocalcin, and HSP70 mRNAs in rat dental pulp cells with experimental orthodontic tooth movement were investigated. Elastic rubber blocks, 0.65 mm in thickness, were inserted between the maxillary first and second molars in rats. In addition to morphological observations of HE staining and TUNEL staining at days 3, 7, 14 and 28 after insertion of elastic rubber blocks, expression of HSP70, osteopontin and osteocalcin mRNAs was also analyzed using quantitative RT-PCR with a LightCycler. Morphologically, proliferation and vasodilation of capillaries was evident in the pulp at days 3 and 7, and a sparse odontoblast layer and apoptosis in the pulp were observed at days 7 and 14 after rubber block insertion. Expression of HSP70, osteopontin and osteocalcin mRNAs in the experimental groups was higher than that in the control group at all time points. This suggests that orthodontic tooth movement causes degenerative changes and apoptosis in pulp cells, while pulp homeostasis is maintained at the genetic level.

  8. Increased Expression of Osteopontin in Retinal Degeneration Induced by Blue Light-Emitting Diode Exposure in Mice

    PubMed Central

    Chang, Seung Wook; Kim, Hyung Il; Kim, Gyu Hyun; Park, Su Jin; Kim, In-Beom

    2016-01-01

    Osteopontin (OPN) is a multifunctional adhesive glycoprotein that is implicated in a variety of pro-inflammatory as well as neuroprotective and repair-promoting effects in the brain. As a first step towards understanding the role of OPN in retinal degeneration (RD), we examined changes in OPN expression in a mouse model of RD induced by exposure to a blue light-emitting diode (LED). RD was induced in BALB/c mice by exposure to a blue LED (460 nm) for 2 h. Apoptotic cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In order to investigate changes in OPN in RD, western blotting and immunohistochemistry were performed. Anti-OPN labeling was compared to that of anti-glial fibrillary acidic protein (GFAP), which is a commonly used marker for retinal injury or stress including inflammation. OPN expression in RD retinas markedly increased at 24 h after exposure, was sustained through 72 h, and subsided at 120 h. Increased OPN expression was observed co-localized with microglial cells in the outer nuclear layer (ONL), outer plexiform layer (OPL), and subretinal space. Expression was restricted to the central retina in which photoreceptor cell death occurred. Interestingly, OPN expression in the ONL/OPL was closely associated with microglia, whereas most of the OPN plaques observed in the subretinal space were not. Immunogold electron microscopy demonstrated that OPN was distributed throughout the cytoplasm of microglia and in nearby fragments of degenerating photoreceptors. In addition, we found that OPN was induced more acutely and with greater region specificity than GFAP. These results indicate that OPN may be a more useful marker for retinal injury or stress, and furthermore act as a microglial pro-inflammatory mediator and a phagocytosis-inducing opsonin in the subretinal space. Taken together, our data suggest that OPN plays an important role in the pathogenesis of RD. PMID:27504084

  9. Identification of an osteopontin-like protein in fish associated with mineral formation.

    PubMed

    Fonseca, Vera G; Laizé, Vincent; Valente, Marta S; Cancela, M Leonor

    2007-09-01

    Fish has been recently recognized as a suitable vertebrate model and represents a promising alternative to mammals for studying mechanisms of tissue mineralization and unravelling specific questions related to vertebrate bone formation. The recently developed Sparus aurata (gilthead seabream) osteoblast-like cell line VSa16 was used to construct a cDNA subtractive library aimed at the identification of genes associated with fish tissue mineralization. Suppression subtractive hybridization, combined with mirror orientation selection, identified 194 cDNA clones representing 20 different genes up-regulated during the mineralization of the VSa16 extracellular matrix. One of these genes accounted for 69% of the total number of clones obtained and was later identified as theS. aurata osteopontin-like gene. The 2138-bp full-length S. aurata osteopontin-like cDNA was shown to encode a 374 amino-acid protein containing domains and motifs characteristic of osteopontins, such as an integrin receptor-binding RGD motif, a negatively charged domain and numerous post-translational modifications (e.g. phosphorylations and glycosylations). The common origin of mammalian osteopontin and fish osteopontin-like proteins was indicated through an in silico analysis of available sequences showing similar gene and protein structures and was further demonstrated by their specific expression in mineralized tissues and cell cultures. Accordingly, and given its proven association with mineral formation and its characteristic protein domains, we propose that the fish osteopontin-like protein may play a role in hard tissue mineralization, in a manner similar to osteopontin in higher vertebrates.

  10. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression.

    PubMed

    Jang, Min A; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.

  11. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    PubMed Central

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  12. High glucose induces the expression of osteopontin in blood vessels in vitro and in vivo.

    PubMed

    Li, Tianjia; Ni, Leng; Liu, Xinnong; Wang, Zhanqi; Liu, Changwei

    2016-11-11

    Osteopontin (OPN) is involved in mineral metabolism and the inflammatory response while diabetes mellitus is associated with severe and extensive vascular calcification. Therefore, we speculated that OPN could be a key factor in the calcification and dysfunction of blood vessels exposed to high glucose. To identify the relationship between high glucose and OPN, we used high glucose medium to stimulate smooth muscle cells (SMCs) and vascular endothelial cells (VECs) in vitro and diabetic rats for in vivo analyses. As assessed by flow cytometry and western blots, SMC and VEC apoptosis levels increased with high glucose. Potassium and calcium uptake by cells were also increased with high glucose. These findings demonstrated the relationship between mineral metabolism and high glucose. Western blot and quantitative real time polymerase chain reaction analyses demonstrated that OPN increased in vitro with high glucose stimulation. The inflammatory factor ICAM1 and the inhibitory phosphorylation of endothelial nitric-oxide synthase (eNOS) (Thr495) were also upregulated by high glucose. In contrast, the anti-inflammatory factor Nrf2 and the activating phosphorylation of eNOS (Ser1177) were downregulated. Similar to the change of OPN, phosphorylated P38 was increased with high glucose. SB203580, an inhibitor of P38 phosphorylation, downregulated the expression of OPN and related inflammatory factors. Additionally, OPN was increased in the aortas and plasma of diabetic rats. In conclusion, our findings demonstrate that high glucose can induce the expression of OPN, which may be a key factor in the calcification and dysfunction of the vascular wall in diabetes.

  13. Magnesium-based bone implants: immunohistochemical analysis of peri-implant osteogenesis by evaluation of osteopontin and osteocalcin expression.

    PubMed

    Bondarenko, A; Angrisani, N; Meyer-Lindenberg, A; Seitz, J M; Waizy, H; Reifenrath, J

    2014-05-01

    The functions of some bone proteins, as osteopontin (OPN) and osteocalcin (OC), have been discovered by the latest studies. This fact suggests the possibility of their immunodetection to characterize peri-implant osteogenesis and implant impact on it. Cylindrical pins of Mg alloys (MgCa0.8, LAE442, ZEK100, LANd442) and titanium alloy (TiAl6V4) were implanted into the tibial medullae of 46 rabbits. Each group was divided regarding to implant duration (3 and 6 months). Bone samples adjacent to the implants were decalcified and treated with routine histological and immunohistochemical protocols using OC and OPN-antibodies. OC was detected in matrix of compact bone, but very rarely in osteoid and bone cells. OPN was detected intracellularly and in osteoid. After 3 months, the highest level of both markers was found in titanium group, followed by LAE442-group. In contrast to LAE442 and TiAl6V4, the other Mg alloys showed increasing levels of OC after 6 months. Lower levels of OP and OC compared to the control group are related to the continuous implant degradation and instability of bone-implant interface in early post-surgical period. Reduced marker's expression in LAE442 and TiAl6V4 groups after 6 months may indicate stabilization of bone-implant interface and completion of peri-implant neo-osteogenesis. Declining characters of OC and OPN expression over the implantation time, as well as their lowest levels in late post-surgical term, suggest a more appropriate biocompatibility of LAE442, which therefore seems to be the most preferable of the tested materials for the use in orthopaedic applications.

  14. Prevention of neointimal hyperplasia in balloon-injured rat carotid artery via small interference RNA mediated downregulation of osteopontin gene.

    PubMed

    Xu, Jian; Sun, Yingxian; Wang, Tairan; Liu, Guinan

    2013-05-01

    The aim of the present study was to take osteopontin (OPN) as molecular target to study its effects on injured intima model of carotid artery in rat using perivascular transfer of OPN-small interference RNA (siRNA). OPN mRNA in cultured VSMCs was quantified by real-time RT-PCR, and OPN-siRNA-002 was determined as the most sensitive sequence and used as transfected siRNA in the subsequent animal experiments. We established rat carotid arterial intima-injured model with balloon-injured method, and then perivascularly transfected OPN-siRNA-002 to study the role of OPN-siRNA in regulating several related genes including proliferating cell nuclear antigen (PCNA), transforming growth factor β1(TGF-β1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-14 (MMP-14), as well as its role in neointimal formation. OPN mRNA and protein decreased about 50 % with corresponding decrease in intima thickness after transfecting with specific OPN-siRNA-002 compared with Pluronic control group and OPN-SCR-siRNA group on each time point (n = 6, p < 0.001), and this inhibiting effects persisted up to 14 days after balloon injury. PCNA, TGF-β1, MMP-2, and MMP-14 mRNA and protein correlated directly with the respective levels of OPN, suggesting its functions via regulating these downstream factors (n = 6, p < 0.001). OPN may be a potential target gene in reducing the risk for arterial restenosis after vascular intervention.

  15. Correlation Between Tumor Growth Delay and Expression of Cancer and Host VEGF, VEGFR2, and Osteopontin in Response to Radiotherapy

    SciTech Connect

    Solberg, Timothy D.; Nearman, Jessica; Mullins, John; Li Sicong; Baranowska-Kortylewicz, Janina

    2008-11-01

    Purpose: To determine the late effects of radiotherapy (RT) on vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR2), and osteopontin (OPN) expression in cancer and stromal cells. Methods and Materials: LS174T xenografted athymic mice were used as a tumor model. Radiation was delivered in two equivalent fractionation schemes: 5 x 7 Gy and 1 x 20 Gy, the latter at two dose rates. Results: Tumor growth arrest was similar in all treatment groups, with the exception of a better response of small-size tumors in the 5 x 7-Gy group. The host VEGF and OPN levels were directly proportional to the tumor doubling time and were independent of the fractionation scheme. The host and cancer cell VEGFR2 levels in tumor were also directly related to the tumor response to RT. Conclusion: Upregulated VEGFR2 in cancer cells suggest paracrine signaling in the VEGFR2 pathway of cancer cells as the factor contributing to RT failure. The transient activation of the host VEGF/VEGFR2 pathway in tumor supports the model of angiogenic regeneration and suggests that radiation-induced upregulation of VEGF, VEGFR2, and downstream proteins might contribute to RT failure by escalating the rate of vascular repair. Coexpression of host OPN and VEGF, two factors closely associated with angiogenesis, indicate that OPN can serve as a surrogate marker of tumor recovery after RT. Taken together, these results strongly support the notion that to achieve optimal therapeutic outcomes, the scheduling of RT and antiangiogenic therapies will require patient-specific post-treatment monitoring of the VEGF/VEGFR2 pathway and that tumor-associated OPN can serve as an indicator of tumor regrowth.

  16. Nuclear osteopontin-c is a prognostic breast cancer marker

    PubMed Central

    Zduniak, K; Ziolkowski, P; Ahlin, C; Agrawal, A; Agrawal, S; Blomqvist, C; Fjällskog, M-L; Weber, G F

    2015-01-01

    Background: Although Osteopontin has been known as a marker for cancer progression, the elevated production of this cytokine is not specific for cancer. We have identified the splice variant Osteopontin-c as being absent from healthy tissue but associated with about 75% of breast cancer cases. However, in previous studies of Osteopontin-c, follow-up information was not available. Methods: Here we have analysed 671 patients, comprising a cohort of 291 paraffin blocks plus a population-based case-control study of 380 arrayed breast tumor tissues. Results: We find that high staining intensity of nuclear Osteopontin-c is strongly associated with mortality in patients with early breast cancer. Cytosolic staining for exon 4, reflective of Osteopontin-a and -b also predicts poor outcome. By contrast, total Osteopontin does not correlate with prognosis. These diverse assessments of Osteopontin also do not correlate with each other, suggesting distinct expression patterns for the variant forms. Consistent with its role in tumor progression, not tumor initiation, Osteopontin-c is not correlated with proliferation markers (Ki-67, cyclin A, cyclin B, cyclin E and cyclin D), neither is it correlated with ER, PR or HER2. Conclusions: The addition of Osteopontin-c immunohistochemistry to standard pathology work-ups may have prognostic benefit in early breast cancer diagnosis. PMID:25625274

  17. The Expression of Osteopontin and Wnt5a in Articular Cartilage of Patients with Knee Osteoarthritis and Its Correlation with Disease Severity

    PubMed Central

    Xiao, Wenfeng; Deng, Zhenhan; Zeng, Chao; Li, Hui; Yang, Tuo; Li, Liangjun; Luo, Wei

    2016-01-01

    Objectives. This study is undertaken to investigate the relation between osteopontin (OPN) and Wnt5a expression in the progression and pathogenesis of osteoarthritis (OA). Methods. 50 cartilage tissues from knee OA patients and normal controls were divided into four groups of severe, moderate, minor, and normal lesions based on the modified grading system of Mankin. Immunohistochemistry and real-time PCR were utilized to analyze the OPN and Wnt5a expression in articular cartilage. Besides, the relations between OPN and Wnt5a expression and the severity of OA were explored. Results. OPN and Wnt5a could be identified in four groups' tissues. Amongst the groups, the intercomparisons of OPN expression levels showed statistical differences (P < 0.01). Besides, the intercomparisons of Wnt5a expression degrees showed statistical differences (P < 0.05), except that between the minor and normal groups (P > 0.05). The scores of Mankin were demonstrated to relate to OPN expression (r = −0.847, P < 0.01) and Wnt5a expression in every group (r = −0.843, P < 0.01). Also, a positive correlation can be observed between the OPN and Wnt5a expression (r = 0.769, P < 0.01). Conclusion. In articular cartilage, the expressions of OPN and Wnt5a are positively related to progressive damage of knee OA joint. The correlation between Wnt5a and OPN might be important to the progression and pathogenesis of knee OA. PMID:27556044

  18. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    PubMed Central

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis. PMID:28194185

  19. Osteopontin and Integrin αvβ3 Expression during the Implantation Window in IVF Patients with Elevated Serum Progesterone and Oestradiol Level

    PubMed Central

    He, Z.; Ma, Y.; Li, L.; Liu, J.; Yang, H.; Chen, C.; Lin, N.; Bai, Y.; Ma, R.; Li, R.; Wu, Z.; Qiao, J.

    2016-01-01

    Background: To explore whether endometrial receptivity is determined by osteopontin (OPN) and integrin αvβ3 expression in women with elevated serum progesterone (P) and/or oestradiol (E2) who are undergoing in vitro fertilisation (IVF). Methods: According to serum hormone levels on the day of HCG administration, 33 infertile women were divided into 3 groups: the high E2, high P, and high E2 and P groups. The control group included 11 fertile, healthy women. Endometrial biopsy was performed on ovulation day + 7 to + 8 for all study participants, and the mRNA and protein expression levels of OPN and integrin αvβ3 were analyzed. Result: No statistically significant differences regarding OPN and integrin αvβ3 expression were found between infertile patients in the high P, high E2, high E2 and P and control groups. There was no significant correlation between OPN and integrin αvβ3 staining intensity during the implantation window biopsy in any of the groups studied. Conclusion: Endometrial OPN and integrant αvβ3 expression/co-expression is not impaired during the window of implantation in patients with high P, high E2, or high E2 and P levels. The clinical value of assessing endometrial receptivity with OPN and integrin αvβ3 seems to be uncertain. PMID:27365542

  20. Osteopontin stimulates matrix metalloproteinase expression through the nuclear factor-κB signaling pathway in rat temporomandibular joint and condylar chondrocytes

    PubMed Central

    Ding, Feng; Wang, Jing; Zhu, Guoxiong; Zhao, Huaqiang; Wu, Gaoyi; Chen, Lei

    2017-01-01

    Background: To examine the possible regulatory mechanisms of osteopontin (OPN) and the nuclear factor-κB (NF-κB) signaling pathway in the temporomandibular joint (TMJ) of rats subjected to chronic sleep deprivation (CSD). Methods: Rats were subjected to CSD using the modified multiple platform method. The histomorphology of the TMJ was observed by hematoxylin-eosin staining. OPN and NF-κB/p65 expression were detected by immunohistochemical and immunofluorescence staining together with western blotting. The condylar chondrocytes were isolated from the rat TMJ and treated with recombinant OPN (r-OPN) before detection for the expression of NF-κB/p65 and matrix metalloproteinases (MMPs). Western blotting and reverse transcription-polymerase chain reaction were performed to determine the expression of MMP-1, MMP-3, MMP-9, and MMP-13 in the TMJ and chondrocytes respectively. Results: There was a statistically significant difference in OPN and NF-κB/p65 expression between the CSD group and control (CON) group. OPN and NF-κB/p65 expression was increased in the CSD group as compared with in the CON group. NF-κB/p65 expression was significantly increased by r-OPN treatment in the chondrocytes. Furthermore, MMP-1, MMP-3, MMP-9, and MMP-13 production was also remarkably elevated in the CSD group as well as in the chondrocytes. Treatment with 1 μg/ml r-OPN for 48 h led to the highest production of inflammatory cytokines in chondrocytes. Conclusions: CSD causes pathological alterations in the TMJ. OPN treatment activates the NF-κB signaling pathway and stimulates MMPs in the TMJ and condylar chondrocytes through NF-κB signaling pathway. Chondrocytes treated with 1 μg/ml r-OPN for 48 h produced the highest level of inflammatory cytokines. PMID:28337262

  1. Osteopontin expression in co-cultures of human squamous cell carcinoma-derived cells and osteoblastic cells and its effects on the neoplastic cell phenotype and osteoclastic activation.

    PubMed

    Teixeira, Lucas Novaes; de Castro Raucci, Larissa Moreira Spinola; Alonso, Gabriela Caroline; Coletta, Ricardo Della; Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco

    2016-09-01

    This study evaluated the temporal expression of osteopontin (OPN) in co-cultures of human osteoblastic cells (SAOS-2) and oral squamous cell carcinoma (OSCC)-derived cells (SCC9) and examined the effects of osteoblast-derived OPN on the neoplastic cell phenotype. Additionally, the effects of these co-cultures on subsequent osteoclastic activity were explored. SCC9 cells were plated on Transwell® membranes that were either coated or not coated with Matrigel and were then co-cultured with SAOS-2 cells during the peak of OPN expression. SCC9 cells exposed to OPN-silenced SAOS-2 cultures and SCC9 cells cultured alone served as controls. SCC9 cells were quantitatively evaluated for cell adhesion, proliferation, migration, and invasion into Matrigel. The impact of co-culturing SAOS-2 and SCC9 cells on the resorptive capacity of U-937-derived osteoclastic cells was also investigated. Furthermore, a reciprocal induction of SAOS-2 and SCC9 cells in terms of OPN expression over the co-culture interval was identified. SAOS-2-secreted OPN altered the SCC9 cell phenotype, leading to enhanced cell adhesion and proliferation and higher Matrigel invasion. This invasion was also enhanced, albeit to a lesser degree, by co-culture with OPN-silenced SAOS-2 cells. Cell migration was not affected. Co-culture with SAOS-2 cells-mainly during the period of peak OPN expression-promoted over-expression of IL-6 and IL-8 by SCC9 cells and enhanced the resorptive capacity of osteoclastic cells. Taken together, these results suggest that osteoblast-derived OPN affects the interactions among OSCC-derived epithelial cells, osteoblasts, and osteoclasts, which could contribute to the process of bone destruction during bone invasion by OSCC.

  2. Alteration in Oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiurolithiatic efficacy of Xanthium strumarium (L.) in ethylene glycol induced urolithiasis.

    PubMed

    Panigrahi, Padma Nibash; Dey, Sahadeb; Sahoo, Monalisa; Choudhary, Shyam Sundar; Mahajan, Sumit

    2016-12-01

    Xanthium strumarium has traditionally been used in the treatment of urolitiasis especially by the rural people in India, but its antiurolithiatic efficacy was not explored scientifically till now. Therefore, the present study was designed to validate the ethnic practice scientifically, and explore the possible antiurolithiatic effect to rationalize its medicinal use. Urolitiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28days along with 1% ammonium chloride (AC) for first 14days. Antiurolithiatic effect of aqueous-ethanol extract of Xanthium strumarium bur (xanthium) was evaluated based on urine and serum biochemistry, oxidative/nitrosative stress indices, histopathology, kidney calcium and calcium oxalate content and immunohistochemical expression of matrix glycoprotein, osteopontin (OPN). Administration of EG and AC resulted in hyperoxaluria, crystalluria, hypocalciuria, polyurea, raised serum urea, creatinine, erythrocytic lipid peroxidise and nitric oxide, kidney calcium content as well as crystal deposition in kidney section in lithiatic group rats. However, xanthium treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone. The up-regulation of OPN was also significantly decreased after xanthium treatment. The present findings demonstrate the curative efficacy of xanthium in ethylene glycol induced urolithiasis, possibly mediated through inhibition of various pathways involved in renal calcium oxalate formation, antioxidant property and down regulation of matrix glycoprotein, OPN. Therefore, future studies may be established to evaluate its efficacy and safety for clinical use.

  3. In Vitro and In Vivo Effects of Metformin on Osteopontin Expression in Mice Adipose-Derived Multipotent Stromal Cells and Adipose Tissue

    PubMed Central

    Basińska, Katarzyna; Chrząstek, Klaudia; Marycz, Krzysztof

    2015-01-01

    Metformin is applied not only as antidiabetic drug, but also in the treatment of obesity or as antiaging drug. The first part of the research discussed the effect of metformin at concentrations of 1 mM, 5 mM, and 10 mM on the morphology, ultrastructure, and proliferation potential of mice adipose-derived multipotent mesenchymal stromal cells (ASCs) in vitro. Additionally, we determined the influence of metformin on mice adipose tissue metabolism. This study has shown for the first time that metformin inhibits the proliferative potential of ASCs in vitro in a dose- and time-dependent manner. In addition, we have found a significant correlation between the activity of ASCs and osteopontin at the mRNA and protein level. Furthermore, we have demonstrated that 5 mM and 10 mM metformin have cytotoxic effect on ASCs, causing severe morphological, ultrastructural, and apoptotic changes. The reduced level of OPN in the adipose tissue of metformin-treated animals strongly correlated with the lower expression of Ki67 and CD105 and increased caspase-3. The metformin influenced also circulating levels of OPN, which is what was found with systemic and local action of metformin. The results are a valuable source of information regarding the in vitro effect of metformin on adipose-derived stem cells. PMID:26064989

  4. The expression of osteopontin and vascular endothelial growth factor in correlation with angiogenesis in monoclonal gammopathy of undetermined significance and multiple myeloma.

    PubMed

    Babarović, Emina; Valković, Toni; Budisavljević, Ivana; Balen, Ivan; Štifter, Sanja; Duletić-Načinović, Antica; Lučin, Ksenija; Jonjić, Nives

    2016-06-01

    Several studies have shown a gradual increase in the extent of bone marrow angiogenesis in various stages of proliferative plasma cell disorders, from monoclonal gammopathy of undetermined significance (MGUS) to active multiple myeloma (MM). The main aim of this study was to evaluate tumor angiogenesis parameters in detail and to correlate them with the expression of osteopontin (OPN) and vascular endothelial growth factor (VEGF) in the bone marrow of patients with MGUS and MM. In addition, we wanted to determine their prognostic significance in active MM. Ninety-five patients were enrolled in the study: 14 diagnosed with MGUS, 13 with asymptomatic myeloma (AMM) and 68 with active MM. Computer assisted image analysis was used to determine the angiogenesis parameters, the quantity of microvessels per 1mm(2) (MVD), the area occupied by microvessels per 1mm(2) and the percentage of microvessel area in total section area (TVA). Double immunohistochemical methods CD138+VEGF and CD138+OPN were used to evaluate expression of these proteins in plasma cells, and OPN was also analyzed for its interstitial expression (iOPN). A significant positive correlation was determined between VEGF and iOPN with angiogenic parameters in the MGUS stage of the disease. In advanced stages of the disease, a significant negative correlation was recorded between OPN and iOPN with parameters of angiogenesis. Overall survival was significantly shorter for patients with negative iOPN (p=0.002) and higher angiogenic parameters, MVD (p=0.009), TVA (p=0.008) and area of microvessels per 1mm(2) (p=0.02). Positive VEGF expression in our model predicted a better three-year survival of patients with active MM (OR: 5.25, p=0.03; HR: 0.44, p=0.04). The results of our study suggested a possible key role of VEGF and OPN in the induction of angiogenesis in early-stage disease.

  5. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K; Wang, Jinxi

    2014-02-01

    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.

  6. Bone Sialoprotein and Osteopontin in Bone Metastasis of Osteotropic Cancers

    PubMed Central

    Kruger, Thomas E.; Miller, Andrew H.; Godwin, Andrew K.; Wang, Jinxi

    2013-01-01

    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the “osteomimicry” of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the “switch” in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases. PMID:24071501

  7. Myocardial Expression Analysis of Osteopontin and Its Splice Variants in Patients Affected by End-Stage Idiopathic or Ischemic Dilated Cardiomyopathy

    PubMed Central

    Cabiati, Manuela; Svezia, Benedetta; Matteucci, Marco; Botta, Luca; Pucci, Angela; Rinaldi, Mauro; Caselli, Chiara; Lionetti, Vincenzo; Del Ry, Silvia

    2016-01-01

    Osteopontin (OPN) is a phosphoglycoprotein of cardiac extracellular matrix and it is still poorly defined whether its expression changes in failing heart of different origin. The full-length OPN-a and its isoforms (OPN-b, OPN-c) transcriptomic profile were evaluated in myocardium of patients with dilated or ischemic cardiomyopathy (DCM n = 8; LVEF% = 17.5±3; ICM n = 8; LVEF% = 19.5±5.2) and in auricle of valvular patients (VLP n = 5; LVEF%≥50), by Real-time PCR analysis. OPN-a and thrombin mRNA levels resulted significantly higher in DCM compared to ICM patients (DCM:31.3±7.4, ICM:2.7±1.1, p = 0.0002; DCM:19.1±4.9, ICM:5.4±2.2, p = 0.007, respectively). Although both genes’ mRNA levels increased in patients with LVEF<50% (DCM+ICM) with respect to VLP with LVEF>50%, a significant increase in OPN (p = 0.0004) and thrombin (p = 0.001) expression was observed only in DCM. In addition, a correlation between OPN-a and thrombin was found in patients with LVEF<50% (r = 0.6; p = 0.003). The mRNA pattern was confirmed by OPN-a cardiac protein concentration (VLP:1.127±0.26; DCM:1.29±0.22; ICM:1.00±0.077 ng/ml). The OPN splice variants expression were detectable only in ICM (OPN-b: 0.357±0.273; OPN-c: 0.091±0.033) and not in DCM patients. A significant correlation was observed between collagen type I, evaluated by immunohistochemistry analysis, and both OPN-a mRNA expression (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77, p = 0.016). Concluding, OPN-a and thrombin mRNA resulted dependent on the origin of heart failure while OPN-b and OPN-c highlighted a different expression for DCM and ICM patients, suggesting their correlation with different clinical-pathophysiological setting. PMID:27479215

  8. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – Tampere Vascular Study

    PubMed Central

    Sulkava, Miska; Raitoharju, Emma; Levula, Mari; Seppälä, Ilkka; Lyytikäinen, Leo-Pekka; Mennander, Ari; Järvinen, Otso; Zeitlin, Rainer; Salenius, Juha-Pekka; Illig, Thomas; Klopp, Norman; Mononen, Nina; Laaksonen, Reijo; Kähönen, Mika; Oksala, Niku; Lehtimäki, Terho

    2017-01-01

    Cardiovascular diseases due to atherosclerosis are the leading cause of death globally. We aimed to investigate the potentially altered gene and pathway expression in advanced peripheral atherosclerotic plaques in comparison to healthy control arteries. Gene expression analysis was performed (Illumina HumanHT-12 version 3 Expression BeadChip) for 68 advanced atherosclerotic plaques (15 aortic, 29 carotid and 24 femoral plaques) and 28 controls (left internal thoracic artery (LITA)) from Tampere Vascular Study. Dysregulation of individual genes was compared to healthy controls and between plaques from different arterial beds and Ingenuity pathway analysis was conducted on genes with a fold change (FC) > ±1.5 and false discovery rate (FDR) < 0.05. 787 genes were significantly differentially expressed in atherosclerotic plaques. The most up-regulated genes were osteopontin and multiple MMPs, and the most down-regulated were cell death-inducing DFFA-like effector C and A (CIDEC, CIDEA) and apolipoprotein D (FC > 20). 156 pathways were differentially expressed in atherosclerotic plaques, mostly inflammation-related, especially related with leukocyte trafficking and signaling. In artery specific plaque analysis 50.4% of canonical pathways and 41.2% GO terms differentially expressed were in common for all three arterial beds. Our results confirm the inflammatory nature of advanced atherosclerosis and show novel pathway differences between different arterial beds. PMID:28128285

  9. Green tea component epigallocatechin-3-gallate decreases expression of osteopontin via a decrease in mRNA half-life in cell lines of metastatic hepatocellular carcinoma

    PubMed Central

    Zapf, Matthew A. C.; Kothari, Anai N.; Weber, Cynthia E.; Arffa, Matthew L.; Wai, Phillip Y.; Driver, Joseph; Gupta, Gopal N.; Kuo, Paul C.; Mi, Zhiyong

    2015-01-01

    Introduction Osteopontin (OPN) mediates metastasis and invasion of hepatocellular carcinoma (HCC). Epigallocatechin-3-gallate (EGCG), found in green tea, suppresses HCC tumor growth in vitro. We sought to investigate the role of EGCG in modulating OPN in cell lines of metastatic HCC. Methods Experimental HCC cell lines included HepG2 and MHCC-97H HCC cells, which express high levels of OPN, and the Hep3B cells, which express lesser levels of OPN. Cells were treated with EGCG (0.02–20 μg/mL) before measurement of OPN with enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. Scratch assay measured cell migration. Binding of the OPN promoter to RNA pol II was evaluated by the use of Chromatin-IP assay after EGCG treatment. Transcriptional regulation of OPN was investigated with luciferase reporter plasmids containing various deletion fragments of the human OPN promoter. Measurement of the half-life of OPN mRNA was conducted using actinomycin D. Results Treatment of MHCC-97H and HepG2 cells with 2 μg/mL and 20 μg/mL EGCG caused a ~6-fold and ~90-fold decrease in secreted protein levels of OPN (All P < .001). OPN mRNA was decreased with EGCG concentrations of 0.2–20 μg/ml (All P < .001). The 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (ie, MTT) assay revealed that differences in OPN expression were not due to viability of the HCC cell lines. Promoter assay and chromatin immunoprecipitation analysis revealed no effect of EGCG on the transcriptional regulation of OPN. Posttranscriptionally, EGCG decreased the half-life of OPN mRNA from 16.8 hours (95% confidence interval 9.0–125.1) to 2.5 hours (95% confidence interval 2.1–3.2) (P < .001). Migration was decreased in EGCG treated cells at 24 hours (8.0 ± 2.4% vs 21.2 ± 10.8%, P < .01) and at 48 hours (13.2 ± 3.6% vs 53.5 ± 19.8%, P < .001). Conclusion We provide evidence that EGCG decreases OPN mRNA and secreted OPN protein levels by decreasing the half

  10. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway.

    PubMed

    Kumar, S; Patil, H S; Sharma, P; Kumar, D; Dasari, S; Puranik, V G; Thulasiram, H V; Kundu, G C

    2012-09-01

    Breast cancer is one of the most common cancers among women in India and around the world. Despite recent advancement in the treatment of breast cancer, the results of chemotherapy to date remain unsatisfactory, prompting a need to identify natural agents that could target cancer efficiently with least side effects. Andrographolide (Andro) is one such molecule which has been shown to possess inhibitory effect on cancer cell growth. In this study, Andro, a natural diterpenoid lactone isolated from Andrographis paniculata has been shown to inhibit breast cancer cell proliferation, migration and arrest cell cycle at G2/M phase and induces apoptosis through caspase independent pathway. Our experimental evidences suggest that Andro attenuates endothelial cell motility and tumor-endothelial cell interaction. Moreover, Andro suppresses breast tumor growth in orthotopic NOD/SCID mice model. The anti-tumor activity of Andro in both in vitro and in vivo model was correlated with down regulation of PI3 kinase/Akt activation and inhibition of pro-angiogenic molecules such as OPN and VEGF expressions. Collectively, these results demonstrate that Andro may act as an effective anti-tumor and anti-angiogenic agent for the treatment of breast cancer.

  11. Osteopontin Deficiency Alters Biliary Homeostasis and Protects against Gallstone Formation

    PubMed Central

    Lin, Jing; Shao, Wei-qing; Chen, Zong-you; Zhu, Wen-wei; Lu, Lu; Cai, Duan; Qin, Lun-xiu; Jia, Hu-liang; Lu, Ming; Chen, Jin-hong

    2016-01-01

    The precipitation of excess biliary cholesterol as solid crystals is a prerequisite for cholesterol gallstone formation, which occurs due to disturbed biliary homeostasis. Biliary homeostasis is regulated by an elaborate network of genes in hepatocytes. If unmanaged, the cholesterol crystals will aggregate, fuse and form gallstones. We have previously observed that the levels of osteopontin (OPN) in bile and gallbladder were reduced in gallstone patients. However, the role and mechanism for hepatic OPN in cholesterol gallstone formation is undetermined. In this study, we found that the expression of hepatic OPN was increased in gallstone patients compared with gallstone-free counterparts. Then, we observed that OPN-deficient mice were less vulnerable to cholesterol gallstone formation than wild type mice. Further mechanistic studies revealed that this protective effect was associated with alterations of bile composition and was caused by the increased hepatic CYP7A1 expression and the reduced expression of hepatic SHP, ATP8B1, SR-B1 and SREBP-2. Finally, the correlations between the expression of hepatic OPN and the expression of these hepatic genes were validated in gallstone patients. Taken together, our findings reveal that hepatic OPN contributes to cholesterol gallstone formation by regulating biliary metabolism and might be developed as a therapeutic target for gallstone treatments. PMID:27484115

  12. Time course of gene expression in rat experimental autoimmune myocarditis.

    PubMed

    Hanawa, Haruo; Abe, Satoru; Hayashi, Manabu; Yoshida, Tsuyoshi; Yoshida, Kaori; Shiono, Takaaki; Fuse, Koichi; Ito, Masahiro; Tachikawa, Hitoshi; Kashimura, Takeshi; Okura, Yuji; Kato, Kiminori; Kodama, Makoto; Maruyama, Seitaro; Yamamoto, Tadashi; Aizawa, Yoshifusa

    2002-12-01

    Genetic responses that characterize experimental autoimmune myocarditis (EAM) have not yet been determined. To investigate gene expression in the myocardium of EAM, absolute copy numbers of 44 mRNA species [calcium-handling proteins, contractile proteins, natriuretic peptides (NPs), cytokines, chemokines, growth factors, renin-angiotensin-aldosterone (RAA) system, endothelins (ETs) and extracellular matrix] in synthesized cDNA from a fixed quantity of total heart RNA were assessed using real-time reverse-transcriptase PCR at days 0, 14, 21 and 28 after immunization. alpha-Cardiac myosin showed a 26.3-fold decrease and beta-cardiac myosin a 3.75-fold increase at day 14. Atrial NP and brain NP increased 47.7- and 6.35-fold at days 21 and 14 respectively. Angiotensin II type 1 receptor, angiotensin-converting enzyme and ET1 increased 22.3-fold at day 21, 6.30-fold at day 21 and 16.8-fold at day 14 respectively. Aldosterone receptor decreased 2.15-fold at day 14, but aldosterone synthetase was detected only at days 14 and 21. Interleukin (IL)-2, IL-10, interferon-gamma and monocyte chemo-attractant protein-1 increased 9.08-fold at day 14, 398-fold at day 21, 43.1-fold at day 14 and 142-fold at day 14 respectively. Collagen type 3, collagen type 1 and fibronectin increased 34.6-, 1.74- and 44.4-fold respectively at day 21. Interestingly, osteopontin showed a 4540-fold increase and it was the highest mRNA of all at day 14. An isoform of cardiac myosin and NP are dramatically changed in EAM. RAA system and ET expressions are changed differently during the EAM time course. Cytokine, chemokine and extracellular matrix greatly increase and, in particular, large numbers of osteopontin mRNA are expressed in early EAM.

  13. The immunohistochemical expression profile of osteopontin in normal human tissues using two site-specific antibodies reveals a wide distribution of positive cells and extensive expression in the central and peripheral nervous systems.

    PubMed

    Kunii, Yasuto; Niwa, Shin-ichi; Hagiwara, Yoshiaki; Maeda, Masahiro; Seitoh, Tsutomu; Suzuki, Toshimitsu

    2009-09-01

    To elucidate the cellular distribution of osteopontin (OPN) in normal human tissues, we undertook immunohistochemistry using two site-specific OPN antibodies. The 10A16 monoclonal antibody was raised against the amino acid sequence just downstream of the thrombin cleavage site, while the O-17 polyclonal antibody was raised against the N-terminal peptide. Each antibody has been confirmed previously to react with both whole OPN and its relevant fragments. The expression pattern for these two antibodies was similar in distribution. In addition, we also identified expression in Ebner's gland, type II pneumocytes, Kupffer cells, cells of the endocrine organs, anterior lens capsule and ciliary body, synovial type A cells, mesothelia, adipocytes, and mast cells. Neurons and glia in the central nervous system and spinal cord, cranial and peripheral nerve sheaths, ganglion cells in the sympathetic ganglion, intestinal plexuses, retina, and choroid plexus also regularly exhibited OPN positivity. Testicular germ cells, pancreatic exocrine cells, and follicular dendritic cells reacted with 10A16 only, whereas lutein cells and taste bud cells exhibited O-17 reactivity alone. These minor differences were hypothesized to reflect the state of OPN in the cells; that is, whether OPN was in its whole molecule or fragmented form. In conclusion, we demonstrate that OPN is widely distributed in normal human cells, particularly those comprising the central and peripheral nervous systems.

  14. Osteopontin Is Upregulated in Human and Murine Acute Schistosomiasis Mansoni

    PubMed Central

    Pereira, Thiago Almeida; Syn, Wing-Kin; Amâncio, Frederico Figueiredo; Cunha, Pedro Henrique Diniz; Caporali, Julia Fonseca Morais; Trindade, Guilherme Vaz de Melo; Santos, Elisângela Trindade; Souza, Márcia Maria; Andrade, Zilton Araújo; Witek, Rafal P; Secor, William Evan; Pereira, Fausto Edmundo Lima; Lambertucci, José Roberto; Diehl, Anna Mae

    2016-01-01

    Background Symptomatic acute schistosomiasis mansoni is a systemic hypersensitivity reaction against the migrating schistosomula and mature eggs after a primary infection. The mechanisms involved in the pathogenesis of acute schistosomiasis are not fully elucidated. Osteopontin has been implicated in granulomatous reactions and in acute hepatic injury. Our aims were to evaluate if osteopontin plays a role in acute Schistosoma mansoni infection in both human and experimentally infected mice and if circulating OPN levels could be a novel biomarker of this infection. Methodology/Principal Findings Serum/plasma osteopontin levels were measured by ELISA in patients with acute (n = 28), hepatointestinal (n = 26), hepatosplenic (n = 39) schistosomiasis and in uninfected controls (n = 21). Liver osteopontin was assessed by immunohistochemistry in needle biopsies of 5 patients. Sera and hepatic osteopontin were quantified in the murine model of schistosomiasis mansoni during acute (7 and 8 weeks post infection, n = 10) and chronic (30 weeks post infection, n = 8) phase. Circulating osteopontin levels are increased in patients with acute schistosomiasis (p = 0.0001). The highest levels of OPN were observed during the peak of clinical symptoms (7–11 weeks post infection), returning to baseline level once the granulomas were modulated (>12 weeks post infection). The plasma levels in acute schistosomiasis were even higher than in hepatosplenic patients. The murine model mirrored the human disease. Macrophages were the major source of OPN in human and murine acute schistosomiasis, while the ductular reaction maintains OPN production in hepatosplenic disease. Soluble egg antigens from S. mansoni induced OPN expression in primary human kupffer cells. Conclusions/Significance S. mansoni egg antigens induce the production of OPN by macrophages in the necrotic-exudative granulomas characteristic of acute schistosomiasis mansoni. Circulating OPN levels are upregulated in human and

  15. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    SciTech Connect

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  16. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  17. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  18. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  19. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  20. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage.

    PubMed

    Barfield, Whitney L; Uaesoontrachoon, Kitipong; Wu, Chung-Sheih; Lin, Stephen; Chen, Yue; Wang, Paul C; Kanaan, Yasmine; Bond, Vernon; Hoffman, Eric P

    2014-08-01

    A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients.

  1. Gene expression in human macrophages infected with dengue virus serotype-2.

    PubMed

    Moreno-Altamirano, M M B; Romano, M; Legorreta-Herrera, M; Sánchez-García, F J; Colston, M J

    2004-12-01

    Infection by any of the four serotypes of dengue viruses (DEN-1, -2, -3 and -4) may result in either a relatively benign fever, called dengue fever (DF), a fatal disease, such as dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS). Several lines of evidence suggest that soluble immune response mediators may be involved in the severity of dengue infections. For instance, elevated seric levels of IL-8 are a common feature in DHF patients. Because other chemokines, cytokines, adhesion molecules, chemokine and cytokine receptors, as well as cytokine-related molecules may also be involved in dengue virus pathogenesis, we aimed at analysing the gene expression of such molecules in the course of an in vitro DEN-2 infection of human peripheral blood monocyte-derived macrophages, a cell type regarded as a primary target for DEN. Nylon membrane gene arrays containing 375 different human cytokine-related genes were used as a first step to search for differentially expressed genes upon infection. Transcripts for IL-8, IL-1beta, osteopontin, GRO-alpha, -beta and -gamma, I-309, and some other molecules showed to be upregulated upon infection, whereas others such as MIC-1, CD27L and CD30L, were downregulated. Four genes were selected for reverse transcriptase-polymerase chain reaction based gene-expression analysis as a way to partially confirm microarray results. This approach pointed out 25 macrophage-expressed cytokine-related genes that could be relevant in DEN-2 pathogenesis.

  2. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  3. Tuning noise in gene expression.

    PubMed

    Tyagi, Sanjay

    2015-05-05

    The relative contribution of promoter architecture and the associated chromatin environment in regulating gene expression noise has remained elusive. In their recent work, Arkin, Schaffer and colleagues (Dey et al, 2015) show that mean expression and noise for a given promoter at different genomic loci are uncorrelated and influenced by the local chromatin environment.

  4. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  5. Differential gene expression in glaucoma.

    PubMed

    Jakobs, Tatjana C

    2014-07-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.

  6. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  7. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  8. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  9. Significance of osteopontin in the sensitivity of malignant pleural mesothelioma to pemetrexed.

    PubMed

    Takeuchi, Susumu; Seike, Masahiro; Noro, Rintaro; Soeno, Chie; Sugano, Teppei; Zou, Fenfei; Uesaka, Haruka; Nishijima, Nobuhiko; Matsumoto, Masaru; Minegishi, Yuji; Kubota, Kaoru; Gemma, Akihiko

    2014-06-01

    Pemetrexed (PEM) is currently recommended as one of the standard anticancer drugs for malignant pleural mesothelioma (MPM). However, the mechanism of the sensitivity of MPM to PEM remains unclear. We analyzed the antitumor effects of PEM in six MPM cell lines by MTS assay. To identify genes associated with drug sensitivity, we conducted gene expression profiling on the same set of cell lines using GeneChips and pathway analysis. Three cell lines were sensitive to PEM. A total fo 18 transcripts and 14 genes identified by GeneChips were significantly correlated with sensitivity to PEM. Pathway analysis revealed that osteopontin (SPP1/OPN) was an important target in PEM sensitivity. Overexpression of SPP1/OPN was observed in the sensitive cells by quantitative PCR and western blot analysis. Introduction of SPP1/OPN by lentiviral vector significantly enhanced the invasion activities of MPM cells. PEM treatment with SPP1/OPN knockdown inhibited the PEM-induced cell growth-inhibitory effect in PEM-sensitive cells. Expression of SPP1/OPN and AKT phosphorylation significantly decreased after PEM treatment of the PEM-sensitive cells. High immunohistochemical expression of SPP1/OPN was observed in two of three MPM patients who had a partial response to PEM-based chemotherapy. PEM has antitumor effects in MPM cells dependent on SPP1/OPN overexpression resulting in AKT activation. Our results suggest that SPP1 may be used as a single predictive biomarker of the effectiveness of PEM treatment in MPM.

  10. Regulation of ABO gene expression.

    PubMed

    Kominato, Yoshihiko; Hata, Yukiko; Matsui, Kazuhiro; Takizawa, Hisao

    2005-07-01

    The ABO blood group system is important in blood transfusions and in identifying individuals during criminal investigations. Two carbohydrate antigens, the A and B antigens, and their antibodies constitute this system. Although biochemical and molecular genetic studies have demonstrated the molecular basis of the histo-blood group ABO system, some aspects remain to be elucidated. To explain the molecular basis of how the ABO genes are controlled in cell type-specific expression, during normal cell differentiation, and in cancer cells with invasive and metastatic potential that lack A/B antigens, it is essential to understand the regulatory mechanism of ABO gene transcription. We review the transcriptional regulation of the ABO gene, including positive and negative elements in the upstream region of the gene, and draw some inferences that help to explain the phenomena described above.

  11. Increased osteopontin and liver stiffness measurement by transient elastography in biliary atresia

    PubMed Central

    Honsawek, Sittisak; Chayanupatkul, Maneerat; Chongsrisawat, Voranush; Vejchapipat, Paisarn; Poovorawan, Yong

    2010-01-01

    AIM: To analyze plasma osteopontin levels and liver stiffness using transient elastography in postoperative biliary atresia (BA) children compared with healthy controls. METHODS: Thirty children with postoperative BA and 10 normal controls were enrolled. The patients were categorized into two groups according to their jaundice status. Plasma levels of osteopontin were determined using commercially available enzyme-linked immunosorbent assay. Liver stiffness was measured by using transient elastography (Fibroscan). Ten validated Fibroscan measurements were performed in each patient and control with the result expressed in kilopascals (kPa). RESULTS: Plasma osteopontin was significantly elevated in BA children compared with that of healthy controls (47.0 ± 56.4 ng/mL vs 15.1 ± 15.0 ng/mL, P = 0.01). The liver stiffness measurement was markedly elevated in the patients with BA compared with that of controls (26.9 ± 24.6 kPa vs 3.9 ± 0.7 kPa, P = 0.001). Subgroup analysis showed that the BA patients with jaundice had more pronounced plasma osteopontin levels than those without jaundice (87.1 ± 61.6 ng/mL vs 11.9 ± 6.1 ng/mL, P = 0.001). Furthermore, the mean liver stiffness was significantly greater in the jaundiced BA patients compared with non-jaundiced patients (47.7 ± 21.8 kPa vs 8.7 ± 3.0 kPa, P = 0.001). Additionally, plasma osteopontin was positively related to serum total bilirubin (r = 0.64, P < 0.001). There was also a correlation between plasma osteopontin and liver stiffness values (r = 0.60, P < 0.001). CONCLUSION: High plasma osteopontin positively correlated with degree of hepatic fibrosis and could be used as a biochemical parameter reflecting disease severity in postoperative BA children. PMID:21086566

  12. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  13. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  14. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  15. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  16. Does FACS perturb gene expression?

    PubMed

    Richardson, Graham M; Lannigan, Joanne; Macara, Ian G

    2015-02-01

    Fluorescence activated cell sorting is the technique most commonly used to separate primary mammary epithelial sub-populations. Many studies incorporate this technique before analyzing gene expression within specific cellular lineages. However, to our knowledge, no one has examined the effects of fluorescence activated cell sorting (FACS) separation on short-term transcriptional profiles. In this study, we isolated a heterogeneous mixture of cells from the mouse mammary gland. To determine the effects of the isolation and separation process on gene expression, we harvested RNA from the cells before enzymatic digestion, following enzymatic digestion, and following a mock FACS sort where the entire cohort of cells was retained. A strict protocol was followed to minimize disruption to the cells, and to ensure that no subpopulations were enriched or lost. Microarray analysis demonstrated that FACS causes minimal disruptions to gene expression patterns, but prior steps in the mammary cell isolation process are followed by upregulation of 18 miRNA's and rapid decreases in their predicted target transcripts. © 2015 International Society for Advancement of Cytometry.

  17. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.

  18. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  19. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques.

    PubMed Central

    Shanahan, C M; Cary, N R; Metcalfe, J C; Weissberg, P L

    1994-01-01

    Calcification is common in atheromatous plaques and may contribute to plaque rupture and subsequent thrombosis. However, little is known about the mechanisms which regulate the calcification process. Using in situ hybridization and immunohistochemistry we show that two bone-associated proteins, osteopontin (OP) and matrix Gla protein (MGP), are highly expressed in human atheromatous plaques. High levels of OP mRNA and protein were found in association with necrotic lipid cores and areas of calcification. The predominant cell type in these areas was the macrophage-derived foam cell, although some smooth muscle cells could also be identified. MGP was expressed uniformly by smooth muscle cells in the normal media and at high levels in parts of the atheromatous intima. Highest levels of this matrix-associated protein were found in lipid-rich areas of the plaque. The pattern of expression of these two genes contrasted markedly with that of calponin and SM22 alpha, genes expressed predominantly by differentiated smooth muscle cells and whose expression was generally confined to the media of the vessel. The postulated function of OP and MGP as regulators of calcification in bone and the high levels and colocalization of both in atheromatous plaques suggest they have an important role in plaque pathogenesis and stability. Images PMID:8200973

  20. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    PubMed

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  1. The combined treatment of praziquantel with osteopontin immunoneutralization reduces liver damage in Schistosoma japonicum-infected mice.

    PubMed

    Chen, Bo-Lin; Zhang, Gui-Ying; Wang, Shi-Ping; Li, Qian; Xu, Mei-Hua; Shen, Yue-Ming; Yan, Lu; Gu, Huan; Li, Jia; Huang, Y L; Mu, Yi-Bing

    2012-04-01

    The aim of this study was to evaluate the therapeutic effects of osteopontin neutralization treatment on schistosome-induced liver injury in BALB/C mice. We randomly divided 100 BALB/C mice into groups A, B, C, D and group E. Mice in all groups except group A were abdominally infected with schistosomal cercariae to induce a schistosomal hepatopathological model. Mice in group C, D and group E were respectively administered with praziquantel, praziquantel plus colchicine and praziquantel plus neutralizing osteopontin antibody. We extracted mouse liver tissues at 3 and 9 weeks after the 'stool-eggs-positive' day, observed liver histopathological changes by haematoxylin-eosin and Masson trichrome staining and detected the expression of osteopontin, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β1) by immunohistochemistry, RT-PCR and Western blot. We found that praziquantel plus neutralizing osteopontin antibody treatment significantly decreased the granuloma dimension, the percentage of collagen and the expression of osteopontin, α-SMA and TGF-β1 compared to praziquantel plus colchicine treatment in both the acute and chronic stage of schistosomal liver damage (P<0·05). So we believe that the combined regimen of osteopontin immunoneutralization and anti-helminthic treatment can reduce the granulomatous response and liver fibrosis during the schistosomal hepatopathologic course.

  2. Pulmonary Gene Expression Profiling of Inhaled Ricin

    DTIC Science & Technology

    2007-11-02

    in which 34 genes had statistically significant changes in gene expression. Transcripts identified by the assay included those that facilitate...gene expression. Transcripts identified by the assay included those that facilitate tissue healing (early growth response gene (egr)-1), regulate...impingement to determine aerosol concentration. Ricin concentrations from impinger samples were measured by protein assay (Pierce, MicroBCA, Rockford

  3. Does inbreeding affect gene expression in birds?

    PubMed

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular.

  4. [Neuronal plasticity and gene expression].

    PubMed

    Sokolova, O O; Shtark, M B; Lisachev, P D

    2010-01-01

    Neuronal plasticity--a fundamental feature of brain--provides adequate interactions with dynamic environment. One of the most deeply investigated forms of the neuronal plasticity is a long-term potentiation (LTP)--a phenomenon underlying learning and memory. Signal paths activated during LTP converge into the nuclear of the neuron, giving rise to launch of the molecular-genetic programs, which mediate structural and functional remodeling of synapses. In the review data concerning involvement of multilevel gene expression into plastic change under neuronal activation are summarized.

  5. Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration.

    PubMed

    Wright, Megan C; Mi, Ruifa; Connor, Emmalynn; Reed, Nicole; Vyas, Alka; Alspalter, Manula; Coppola, Giovanni; Geschwind, Daniel H; Brushart, Thomas M; Höke, Ahmet

    2014-01-29

    Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively. Sciatic nerve transection induced upregulation of OPN and CLU and expression of both returned to baseline levels with ensuing regeneration. In vitro analysis using exogenously applied OPN induced outgrowth of motor but not sensory neurons. CLU, however, induced outgrowth of sensory neurons, but not motor neurons. To assess the functional importance of OPN and CLU, peripheral nerve regeneration was examined in OPN and CLU(-/-) mice. When compared with OPN(+/+) mice, motor neuron regeneration was reduced in OPN(-/-) mice. Impaired regeneration through OPN(-/-) peripheral nerves grafted into OPN(+/+) mice indicated that loss of OPN in SCs was responsible for reduced motor regeneration. Sensory neuron regeneration was impaired in CLU(-/-) mice following sciatic nerve crush and impaired regeneration nerve fibers through CLU(-/-) nerve grafts transplanted into CLU(+/+) mice indicated that reduced sensory regeneration is likely due to SC-derived CLU. Together, these studies suggest unique roles for SC-derived OPN and CLU in regeneration of peripheral motor and sensory axons.

  6. Mechanoregulation of gene expression in fibroblasts

    PubMed Central

    Wang, James H.-C.; Thampatty, Bhavani P.; Lin, Jeen-Shang; Im, Hee-Jeong

    2010-01-01

    Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested. PMID:17331678

  7. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes

    NASA Technical Reports Server (NTRS)

    Shalhoub, V.; Conlon, D.; Tassinari, M.; Quinn, C.; Partridge, N.; Stein, G. S.; Lian, J. B.

    1992-01-01

    To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10(-7) M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGF beta was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assays to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the

  8. Differential Gene Expression in Human Cerebrovascular Malformations

    PubMed Central

    Shenkar, Robert; Elliott, J. Paul; Diener, Katrina; Gault, Judith; Hu, Ling-Jia; Cohrs, Randall J.; Phang, Tzulip; Hunter, Lawrence; Breeze, Robert E.; Awad, Issam A.

    2009-01-01

    OBJECTIVE We sought to identify genes with differential expression in cerebral cavernous malformations (CCMs), arteriovenous malformations (AVMs), and control superficial temporal arteries (STAs) and to confirm differential expression of genes previously implicated in the pathobiology of these lesions. METHODS Total ribonucleic acid was isolated from four CCM, four AVM, and three STA surgical specimens and used to quantify lesion-specific messenger ribonucleic acid expression levels on human gene arrays. Data were analyzed with the use of two separate methodologies: gene discovery and confirmation analysis. RESULTS The gene discovery method identified 42 genes that were significantly up-regulated and 36 genes that were significantly down-regulated in CCMs as compared with AVMs and STAs (P = 0.006). Similarly, 48 genes were significantly up-regulated and 59 genes were significantly down-regulated in AVMs as compared with CCMs and STAs (P = 0.006). The confirmation analysis showed significant differential expression (P < 0.05) in 11 of 15 genes (angiogenesis factors, receptors, and structural proteins) that previously had been reported to be expressed differentially in CCMs and AVMs in immunohistochemical analysis. CONCLUSION We identify numerous genes that are differentially expressed in CCMs and AVMs and correlate expression with the immunohistochemistry of genes implicated in cerebrovascular malformations. In future efforts, we will aim to confirm candidate genes specifically related to the pathobiology of cerebrovascular malformations and determine their biological systems and mechanistic relevance. PMID:12535382

  9. Norovirus gene expression and replication.

    PubMed

    Thorne, Lucy G; Goodfellow, Ian G

    2014-02-01

    Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

  10. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  11. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  14. Estimation and Testing of Gene Expression Heterosis

    PubMed Central

    Liu, Peng; Nettleton, Dan

    2014-01-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online. PMID:25435758

  15. Estimation and Testing of Gene Expression Heterosis.

    PubMed

    Ji, Tieming; Liu, Peng; Nettleton, Dan

    2014-09-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online.

  16. Osteopontin deficiency reduces kidney damage from hypercholesterolemia in Apolipoprotein E-deficient mice

    PubMed Central

    Pei, Zouwei; Okura, Takafumi; Nagao, Tomoaki; Enomoto, Daijiro; Kukida, Masayoshi; Tanino, Akiko; Miyoshi, Ken-ichi; Kurata, Mie; Higaki, Jitsuo

    2016-01-01

    Hypercholesterolemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Osteopontin (OPN) has been implicated in the pathology of several renal conditions. This study was to evaluate the effects of OPN on hypercholesterolemia induced renal dysfunction. Eight-week-old male mice were divided into 4 groups: apolipoprotein E knockout (ApoE−/−) and ApoE/OPN knockout (ApoE−/−/OPN−/−) mice fed a normal diet (ND) or high cholesterol diet (HD). After 4 weeks, Periodic acid-Schiff (PAS) and oil red O staining revealed excessive lipid deposition in the glomeruli of ApoE−/−HD mice, however, significantly suppressed in ApoE−/−/OPN−/−HD mice. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression was lower in the glomeruli of ApoE−/−/OPN−/−HD mice than ApoE−/−HD mice. In vitro study, primary mesangial cells were incubated with recombinant mouse OPN (rmOPN). RmOPN induced LOX-1 mRNA and protein expression in primary mesangial cells. Pre-treatment with an ERK inhibitor suppressed the LOX-1 gene expression induced by rmOPN. These results indicate that OPN contributes to kidney damage in hypercholesterolemia and suggest that inhibition of OPN may provide a potential therapeutic target for the prevention of hypercholesterolemia. PMID:27353458

  17. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  18. Changes in Morphology, Gene Expression and Protein Content in Chondrocytes Cultured on a Random Positioning Machine

    PubMed Central

    Aleshcheva, Ganna; Sahana, Jayashree; Ma, Xiao; Hauslage, Jens; Hemmersbach, Ruth; Egli, Marcel; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates. PMID:24244418

  19. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine.

    PubMed

    Aleshcheva, Ganna; Sahana, Jayashree; Ma, Xiao; Hauslage, Jens; Hemmersbach, Ruth; Egli, Marcel; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  20. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  1. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  2. CBX7 and HMGA1b proteins act in opposite way on the regulation of the SPP1 gene expression

    PubMed Central

    Sepe, Romina; Formisano, Umberto; Federico, Antonella; Forzati, Floriana; Bastos, André Uchimura; D'Angelo, Daniela; Cacciola, Nunzio Antonio; Fusco, Alfredo; Pallante, Pierlorenzo

    2015-01-01

    Several recent studies have reported the Polycomb Repressive Complex 1 member CBX7 as a tumor-suppressor gene whose expression progressively decreases in different human carcinomas in relation with tumor grade, malignant stage and poor prognosis. We have previously demonstrated that CBX7 is able to inhibit the expression of the SPP1 gene, encoding the chemokine osteopontin that is over-expressed in cancer and has a critical role in cancer progression. Here, we have analyzed the mechanism by which CBX7 regulates the SPP1 gene expression. We show that the SPP1 transcriptional regulation mechanism involves the CBX7-interacting protein HMGA1b, that acts as a positive regulator of the SPP1 gene. In fact, we demonstrate that, in contrast with the transcriptional activity of CBX7, HMGA1b is able to increase the SPP1 expression by inducing the activity of its promoter. Moreover, we show that CBX7 interferes with HMGA1b on the SPP1 promoter and counteracts the positive transcriptional activity of HMGA1b on the SPP1 expression. Furthermore, since we found that also the NF-κB complex resulted involved in the modulation of the SPP1 expression in thyroid cells, we suppose that CBX7/HMGA1b/NF-κB could take part in the same transcriptional mechanism that finally leads to the regulation of the SPP1 gene expression. Taken together, our data show the important role played by CBX7 in the negative regulation of the SPP1 gene expression, thus contributing to prevent the acquisition of a malignant phenotype. PMID:25595895

  3. Spatial localization of the JAG1/Notch1/osteopontin cascade modulates extrahepatic metastasis in hepatocellular carcinoma.

    PubMed

    Xue, Tong-Chun; Zou, Jing-Huai; Chen, Rong-Xin; Cui, Jie-Feng; Tang, Zhao-You; Ye, Sheng-Long

    2014-11-01

    The model of Notch-driven carcinogenesis and development of hepatocellular carcinoma remains controversial and is based on observations of developmental stage- and dose-dependent Notch activation. In this study, the relevance of the spatial distribution of Notch cascade members to the promotion of hepatocellular carcinoma metastasis was evaluated. The spatial expression patterns of the members of the Jagged1 (JAG1)/Notch1 cascade in HCC were evaluated in a tissue microarray of 112 tumors and 46 peri-tumors. Regulation of JAG1/Notch1 on osteopontin (OPN) was evaluated by RNA interference. Tumor cells with JAG1 expressed on the membrane (JAG1(Mem)) were more likely to undergo extrahepatic metastasis [p<0.001; hazard ratio (HR), 0.166; 95% CI, 0.068-0.402], and JAG1(Mem) was a strong independent prognostic factor for metastasis (HR, 0.467; 95% CI, 0.271-0.806; p=0.006). JAG1(Mem) also showed a strong positive correlation with Notch1(Mem). In addition, tumors with JAG1(Mem) expression had more poorly encapsulated membranes (p=0.014). Furthermore, Notch1(Mem) expression correlated with HCC metastasis and was the strongest predictive factor for metastasis. However, in peri-tumoral tissues, most JAG1 (45/46) and Notch1 (41/46) was localized to the cytoplasm. The expression of OPN, one of the main targets of JAG1/Notch1 signaling and a crucial metastasis-related gene in HCC, correlated significantly with JAG1(Mem) expression. Knockdown of JAG1 expression or Notch1 expression induced the downregulation of OPN in HCC cells. Taken together, protein localization is a critical factor affecting the activity of the Notch cascade in the development of hepatocellular carcinoma. Furthermore, our results suggest that the JAG1/Notch1/OPN cascade represents a potential therapeutic target for hepatocellular carcinoma metastasis.

  4. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison.

  5. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  6. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers

    PubMed Central

    Mauri, Giorgio; Jachetti, Elena; Comuzzi, Barbara; Dugo, Matteo; Arioli, Ivano; Miotti, Silvia; Sangaletti, Sabina; Di Carlo, Emma; Tripodo, Claudio; Colombo, Mario P.

    2016-01-01

    Osteopontin (OPN) is a secreted glycoprotein, that belongs to the non-structural extracellular matrix (ECM), and its over expression in human prostate cancer has been associated with disease progression, androgen independence and metastatic ability. Nevertheless, the pathophysiology of OPN in prostate tumorigenesis has never been studied. We crossed TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice with OPN deficient (OPN−/−) mice and followed tumor onset and progression in these double mutants. Ultrasound examination detected the early onset of a rapidly growing, homogeneous and spherical tumor in about 60% of OPN−/− TRAMP mice. Such neoplasms seldom occurred in parental TRAMP mice otherwise prone to adenocarcinomas and were characterized for being androgen receptor negative, highly proliferative and endowed with neuroendocrine (NE) features. Gene expression profiling showed up-regulation of genes involved in tumor progression, cell cycle and neuronal differentiation in OPN-deficient versus wild type TRAMP tumors. Down-regulated genes included key genes of TGFa pathway, including SMAD3 and Filamin, which were confirmed at the protein level. Furthermore, NE genes and particularly those characterizing early prostatic lesions of OPN-deficient mice were found to correlate with those of human prostate NE tumours. These data underscore a novel role of OPN in the early stages of prostate cancer growth, protecting against the development of aggressive NE tumors. PMID:26700622

  7. Osteopontin: a rapid and sensitive response to dioxin exposure in the osteoblastic cell line UMR-106.

    PubMed

    Wejheden, Carolina; Brunnberg, Sara; Hanberg, Annika; Lind, P Monica

    2006-03-03

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an endocrine disrupting environmental pollutant that, among other effects, affects bone tissue. TCDD modulates the transcription of various genes, e.g., CYP1A1, and the present study is a part of a project aiming at developing an in vitro model system for identifying biomarkers specific for dioxin-induced effects in osteoblasts. Osteopontin (OPN) is an adhesion protein, suggested to be important in bone remodeling and our results indicate that TCDD down-regulates the transcription of OPN in the osteoblastic cell line, UMR-106. The present study shows that UMR-106 expresses the AhR and that the expression of CYP1A1 is induced after exposure to TCDD, while down-regulation of OPN is an even more rapid response and a sensitive biomarker to TCDD exposure in this osteoblastic cell line. In conclusion, this osteoblastic cell line may be used as an in vitro model-system for studying dioxin-induced effects on osteoblasts.

  8. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.

    PubMed

    Allo, Bedilu A; Lin, Shigang; Mequanint, Kibret; Rizkalla, Amin S

    2013-08-14

    Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (ε-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment.

  9. Gene expression in the etiology of schizophrenia.

    PubMed

    Bray, Nicholas J

    2008-05-01

    Gene expression represents a fundamental interface between genes and environment in the development and ongoing plasticity of the human brain. Individual differences in gene expression are likely to underpin much of human diversity, including psychiatric illness. In the past decade, the development of microarray and proteomic technology has enabled global description of gene expression in schizophrenia. However, it is difficult on the basis of gene expression assays alone to distinguish between those changes that constitute primary etiology and those that reflect secondary pathology, compensatory mechanisms, or confounding influences. In this respect, tests of genetic association with schizophrenia will be instructive because changes in gene expression that result from gene variants that are associated with the disorder are likely to be of primary etiological significance. However, regulatory polymorphism is extremely difficult to recognize on the basis of sequence interrogation alone. Functional assays at the messenger RNA and/or protein level will be essential in elucidating the molecular mechanisms underlying genetic association with schizophrenia and are likely to become increasingly important in the identification of regulatory variants with which to test for association with the disorder and related traits. Once established, etiologically relevant changes in gene expression can be recapitulated in model systems in order to elucidate the molecular and physiological pathways that may ultimately give rise to the condition.

  10. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells.

    PubMed

    Arbon, Kate S; Christensen, Cody M; Harvey, Wendy A; Heggland, Sara J

    2012-02-01

    Recent reports of cadmium in electronic waste and jewelry have increased public awareness regarding this toxic metal. Human exposure to cadmium is associated with the development of osteoporosis. We previously reported cadmium induces apoptosis in human tumor-derived Saos-2 osteoblasts. In this study, we examine the extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC) pathways in cadmium-induced apoptosis and altered osteoblast gene expression. Saos-2 osteoblasts were cultured in the presence or absence of 10μM CdCl(2) for 2-72h. We detected significant ERK activation in response to CdCl(2) and pretreatment with the ERK inhibitor PD98059 attenuated cadmium-induced apoptosis. However, PKCα activation was not observed after exposure to CdCl(2) and pretreatment with the PKC inhibitor, Calphostin C, was unable to rescue cells from cadmium-induced apoptosis. Gene expression studies were conducted using qPCR. Cells exposed to CdCl(2) exhibited a significant decrease in the bone-forming genes osteopontin (OPN) and alkaline phosphatase (ALP) mRNA. In contrast, SOST, whose protein product inhibits bone formation, significantly increased in response to CdCl(2). Pretreatment with PD98059 had a recovery effect on cadmium-induced changes in gene expression. This research demonstrates cadmium can directly inhibit osteoblasts via ERK signaling pathway and identifies SOST as a target for cadmium-induced osteotoxicity.

  11. Noise minimisation in gene expression switches.

    PubMed

    Monteoliva, Diana; McCarthy, Christina B; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators.

  12. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  13. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    SciTech Connect

    Ivanov, Sergey V.; Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I.

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  14. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  15. Gene Expression Patterns in Human Liver Cancers

    PubMed Central

    Chen, Xin; Cheung, Siu Tim; So, Samuel; Fan, Sheung Tat; Barry, Christopher; Higgins, John; Lai, Kin-Man; Ji, Jiafu; Dudoit, Sandrine; Ng, Irene O.L.; van de Rijn, Matt; Botstein, David; Brown, Patrick O.

    2002-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression. PMID:12058060

  16. Exogenous polyamines promote osteogenic differentiation by reciprocally regulating osteogenic and adipogenic gene expression.

    PubMed

    Lee, Mon-Juan; Chen, Yuhsin; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chiang, Lan-Hsin; Chen, Tzu-Yu; Wang, Gwo-Jaw

    2013-12-01

    Polyamines are naturally occurring organic polycations that are ubiquitous in all organisms, and are essential for cell proliferation and differentiation. Although polyamines are involved in various cellular processes, their roles in stem cell differentiation are relatively unexplored. In this study, we found that exogenous polyamines, putrescine, spermidine, and spermine, promoted osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) without inducing cell death or apoptosis. Alkaline phosphatase (ALP) activity and the mRNA level of osteogenic genes, including Runx2, ALP, osteopontin, and osteocalcin, were up-regulated by exogenous polyamines. When hBMSCs were cultured at high cell density favoring adipocyte formation, exogenous polyamines resulted in down-regulation of adipogenic genes such as PPARγ, aP2, and adipsin. Extracellular matrix mineralization, a marker for osteoblast maturation, was enhanced in the presence of exogenous polyamines, while lipid accumulation, an indication of adipogenic differentiation, was attenuated. Exogenous polyamines increased the mRNA expression of polyamine-modulated factor 1 (PMF-1) and its downstream effector, spermidine/spermine N(1)-acetyltransferase (SSAT), while that of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, was suppressed. These results lead to possible connections between polyamine metabolism and osteogenic differentiation pathways. To summarize, this study provides evidence for the involvement of polyamines in osteogenic differentiation of hBMSCs, and is the first to demonstrate that osteogenic and adipogenic differentiation are reciprocally regulated by exogenous polyamines.

  17. Digital gene expression signatures for maize development.

    PubMed

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  18. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  19. Unmasking ultradian rhythms in gene expression

    PubMed Central

    van der Veen, Daan R.; Gerkema, Menno P.

    2017-01-01

    Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non–spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro. Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.—Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression. PMID:27871062

  20. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  1. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  2. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  3. Mining Gene Expression Data of Multiple Sclerosis

    PubMed Central

    Zhu, Zhenli; Huang, Zhengliang; Li, Ke

    2014-01-01

    Objectives Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example. Materials and methods Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined. Results An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score. Conclusions The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases. PMID:24932510

  4. Respiratory Syncytial Virus (RSV) Infection in Elderly Mice Results in Altered Antiviral Gene Expression and Enhanced Pathology

    PubMed Central

    Wong, Terianne M.; Boyapalle, Sandhya; Sampayo, Viviana; Nguyen, Huy D.; Bedi, Raminder; Kamath, Siddharth G.; Moore, Martin L.; Mohapatra, Subhra; Mohapatra, Shyam S.

    2014-01-01

    Elderly persons are more susceptible to RSV-induced pneumonia than young people, but the molecular mechanism underlying this susceptibility is not well understood. In this study, we used an aged mouse model of RSV-induced pneumonia to examine how aging alters the lung pathology, modulates antiviral gene expressions, and the production of inflammatory cytokines in response to RSV infection. Young (2–3 months) and aged (19–21 months) mice were intranasally infected with mucogenic or non-mucogenic RSV strains, lung histology was examined, and gene expression was analyzed. Upon infection with mucogenic strains of RSV, leukocyte infiltration in the airways was elevated and prolonged in aged mice compared to young mice. Minitab factorial analysis identified several antiviral genes that are influenced by age, infection, and a combination of both factors. The expression of five antiviral genes, including pro-inflammatory cytokines IL-1β and osteopontin (OPN), was altered by both age and infection, while age was associated with the expression of 15 antiviral genes. Both kinetics and magnitude of antiviral gene expression were diminished as a result of older age. In addition to delays in cytokine signaling and pattern recognition receptor induction, we found TLR7/8 signaling to be impaired in alveolar macrophages in aged mice. In vivo, induction of IL-1β and OPN were delayed but prolonged in aged mice upon RSV infection compared to young. In conclusion, this study demonstrates inherent differences in response to RSV infection in young vs. aged mice, accompanied by delayed antiviral gene induction and cytokine signaling. PMID:24558422

  5. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  6. Imputing gene expression to maximize platform compatibility.

    PubMed

    Zhou, Weizhuang; Han, Lichy; Altman, Russ B

    2017-02-15

    Microarray measurements of gene expression constitute a large fraction of publicly shared biological data, and are available in the Gene Expression Omnibus (GEO). Many studies use GEO data to shape hypotheses and improve statistical power. Within GEO, the Affymetrix HG-U133A and HG-U133 Plus 2.0 are the two most commonly used microarray platforms for human samples; the HG-U133 Plus 2.0 platform contains 54 220 probes and the HG-U133A array contains a proper subset (21 722 probes). When different platforms are involved, the subset of common genes is most easily compared. This approach results in the exclusion of substantial measured data and can limit downstream analysis. To predict the expression values for the genes unique to the HG-U133 Plus 2.0 platform, we constructed a series of gene expression inference models based on genes common to both platforms. Our model predicts gene expression values that are within the variability observed in controlled replicate studies and are highly correlated with measured data. Using six previously published studies, we also demonstrate the improved performance of the enlarged feature space generated by our model in downstream analysis.

  7. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  8. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  9. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  10. Identification of osteopontin-dependent signaling pathways in a mouse model of human breast cancer

    PubMed Central

    Mi, Zhiyong; Guo, Hongtao; Kuo, Paul C

    2009-01-01

    Background Osteopontin (OPN) is a secreted phosphoprotein which functions as a cell attachment protein and cytokine that signals through two cell adhesion molecules, αvβ3-integrin and CD44, to regulate cancer growth and metastasis. However, the signaling pathways associated with OPN have not been extensively characterized. In an in vivo xenograft model of MDA-MB-231 human breast cancer, we have previously demonstrated that ablation of circulating OPN with an RNA aptamer blocks interaction with its cell surface receptors to significantly inhibit adhesion, migration and invasion in vitro and local progression and distant metastases. Findings In this study, we performed microarray analysis to compare the transcriptomes of primary tumor in the presence and absence of aptamer ablation of OPN. The results were corroborated with RT-PCR and Western blot analysis. Our results demonstrate that ablation of OPN cell surface receptor binding is associated with significant alteration in gene and protein expression critical in apoptosis, vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), interleukin-10 (IL-10), granulocyte-macrophage colony stimulating factor (GM-CSF) and proliferation signaling pathways. Many of these proteins have not been previously associated with OPN. Conclusion We conclude that secreted OPN regulates multiple signaling pathways critical for local tumor progression. PMID:19570203

  11. Resource Sharing Controls Gene Expression Bursting.

    PubMed

    Caveney, Patrick M; Norred, S Elizabeth; Chin, Charles W; Boreyko, Jonathan B; Razooky, Brandon S; Retterer, Scott T; Collier, C Patrick; Simpson, Michael L

    2017-02-17

    Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.

  12. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  13. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.

  14. Chemically regulated gene expression in plants.

    PubMed

    Padidam, Malla

    2003-04-01

    Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.

  15. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION

    PubMed Central

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2009-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, while Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels while Per1 and Bmal1 expression changed in conjunction with ß-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. PMID:16261617

  16. Alterations in Osteopontin Modify Muscle Size in Females in Both Humans and Mice

    PubMed Central

    Hoffman, Eric P.; Gordish-Dressman, Heather; McLane, Virginia D.; Devaney, Joseph M.; Thompson, Paul D.; Visich, Paul; Gordon, Paul M.; Pescatello, Linda S.; Zoeller, Robert F.; Moyna, Niall M.; Angelopoulos, Theodore J.; Pegoraro, Elena; Cox, Gregory A.; Clarkson, Priscilla M.

    2013-01-01

    PURPOSE An osteopontin (OPN; SPP1) gene promoter polymorphism modifies disease severity in Duchenne muscular dystrophy, and we hypothesized that it might also modify muscle phenotypes in healthy volunteers. METHODS Gene association studies were carried out for OPN (rs28357094) in the FAMuSS cohort (n=752; age 23.7±5.7 yrs). Phenotypes studied included muscle size (MRI), strength, and response to supervised resistance training. We also studied 147 young adults that had carried out a bout of eccentric elbow exercise (age 24.0 ± 5.2 yrs). Phenotypes analyzed included strength, soreness, and serum muscle enzymes. RESULTS In the FAMuSS cohort, the G allele was associated with 17% increase in baseline upper arm muscle volume only in women (F=26.32; p=5.32 × 10−7), explaining 5% of population variance. In the eccentric damage cohort, weak associations of the G allele were seen in women with both baseline myoglobin, and elevated CK. Sexually dimorphic effects of OPN on muscle were also seen in OPN null mice. Five of seven muscle groups examined showed smaller size in OPN null female mice, whereas two were smaller in males. Query of OPN gene transcription after experimental muscle damage in mice showed rapid induction within 12 hrs (100-fold increase from baseline), followed by sustained high level expression through 16 days of regeneration before falling to back to baseline. CONCLUSION OPN is a sexually dimorphic modifier of muscle size in normal humans and mice, and responds to muscle damage. The OPN gene is known to be estrogen responsive, and this may explain the female-specific genotype effects in adult volunteers. PMID:23274598

  17. Paternally expressed genes predominate in the placenta.

    PubMed

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  18. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  19. Increased blood-circulating interferon-γ, interleukin-17, and osteopontin levels in bovine paratuberculosis.

    PubMed

    Dudemaine, P L; Fecteau, G; Lessard, M; Labrecque, O; Roy, J P; Bissonnette, N

    2014-01-01

    Paratuberculosis-infected cattle initially develop an effective cell-mediated immune response that declines as the disease progresses. Blood is one of best sources for characterizing the inflammatory status of infected cows and for studying mediators related to chronic diseases. The aim of this study was to evaluate the cow-level association between blood cytokine concentration, the influence of serum on immune cell proliferation, and dairy cows naturally infected with Mycobacterium avium ssp. paratuberculosis (MAP). Positive animals (n=41) from 19 herds were selected on the basis of 2 positive fecal culture results and divided into 2 groups: single-positive, or serum ELISA-negative cows (n=32), and double-positive, or cows that gave positive results for both mycobacterial culture and serum ELISA (n=9). Negative animals (n=39) were selected from paratuberculosis-negative herds in which at least 80% of the animals had been diagnosed as negative by fecal culture and ELISA and that did not produce positive results during the 2-yr study. Analysis of plasma levels of the cytokines IL-4, IL-10, IL-17, IFN-γ, and osteopontin was performed, revealing distinct patterns. The ELISA-positive cows with MAP shedding had similar plasma concentrations of IL-4 and IL-10 but elevated levels of IFN-γ, IL-17, and osteopontin, which is indicative of inflammatory disease in these subclinical positive cows. In vitro MAP infection of bovine macrophages showed increased gene expression of tumor necrosis factor-α, IL-1β, IL-6, IL-23, and transforming growth factor-β as early as 6h postinfection for all of the cytokines involved in the establishment of a T-helper type-17 immune response. To determine the systemic influence of serum on immune cell functions, lymphoproliferation assays were also performed in presence of JD serum. The serum from shedding cows showed 15% less proliferation. These results indicate that infected cows have a lower systemic capacity to maintain a protective

  20. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.

  1. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6

    PubMed Central

    Chen, Guang-Liang; Luo, Yubin; Eriksson, Daniel; Meng, Xianyi; Qian, Cheng; Bäuerle, Tobias; Chen, Xiao-Xiang; Schett, Georg; Bozec, Aline

    2016-01-01

    The impact of metabolic stress induced by obesity on the bone marrow melanoma niche is largely unknown. Here we employed diet induced obese mice model, where mice received high-fat (HFD) or normal diet (ND) for 6 weeks before challenge with B16F10 melanoma cells. Tumor size, bone loss and osteoclasts numbers were assessed histologically in the tibial bones. For defining the molecular pathway, osteopontin knock-out mice, interleukin 6 neutralizing antibody or Janus kinase 2 inhibition were carried out in the same model. Mechanistic studies such as adipocyte-melanoma co-cultures for defining adipocyte induced changes of tumor cell proliferation and expression profiles were also performed. As results, HFD enhanced melanoma burden in bone by increasing tumor area and osteoclast numbers. This process was associated with higher numbers of bone marrow adipocytes expressing IL-6 in direct vicinity to tumor cells. Inhibition of IL-6 or of downstream JAK2 blocked HFD-induced tumor progression. Furthermore, the phenotypic changes of melanoma cells triggered macrophage and osteoclast accumulation accompanied by increased osteopontin expression. Osteopontin triggered osteoclastogenesis and also exerted a positive feedback loop to tumor cells, which was abrogated in its absence. Metabolic stress by HFD promotes melanoma growth in the bone marrow by an increase in bone marrow adipocytes and IL-6-JAK2-osteopontin mediated activation of tumor cells and osteoclast differentiation. PMID:27049717

  2. Expression of myriapod pair rule gene orthologs

    PubMed Central

    2011-01-01

    Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor. PMID:21352542

  3. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  4. Rubisco gene expression in C4 plants.

    PubMed

    Patel, Minesh; Berry, James O

    2008-01-01

    In leaves of most C(4) plants, ribulose 1,5 bisphosphate carboxylase (Rubisco) accumulates only in bundle sheath (bs) cells that surround the vascular centres, and not in mesophyll (mp) cells. It has been shown previously that in the C(4) dicots amaranth and Flaveria bidentis, post-transcriptional control of mRNA translation and stability mediate the C(4) expression patterns of genes encoding the large and small Rubisco subunits (chloroplast rbcL and nuclear RbcS, respectively). Translational control appears to regulate bs cell-specific Rubisco gene expression during early dicot leaf development, while control of mRNA stability appears to mediate bs-specific accumulation of RbcS and rbcL transcripts in mature leaves. Post-transcriptional control is also involved in the regulation of Rubisco gene expression by light, and in response to photosynthetic activity. Transgenic and transient expression studies in F. bidentis provide direct evidence for post-transcriptional control of bs cell-specific RbcS expression, which is mediated by the 5' and 3' untranslated regions (UTRs) of the mRNA. Comparisons of Rubisco gene expression in these dicots and in the monocot maize indicates possible commonalities in the regulation of RbcS and rbcL genes in these divergent C(4) species. Now that the role of post-transcriptional regulation in C(4) gene expression has been established, it is likely that future studies of mRNA-protein interactions will address long-standing questions about the establishment and maintenance of cell type-specificity in these plants. Some of these regulatory mechanisms may have ancestral origins in C(3) species, through modification of pre-existing factors, or by the acquisition of novel C(4) processes.

  5. Osteopontin Deficiency Increases Bone Fragility but Preserves Bone Mass

    PubMed Central

    Thurner, Philipp J.; Chen, Carol G.; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W.; Ritchie, Robert O.; Alliston, Tamara

    2010-01-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin-deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  6. Osteopontin deficiency increases bone fragility but preserves bone mass.

    PubMed

    Thurner, Philipp J; Chen, Carol G; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W; Ritchie, Robert O; Alliston, Tamara

    2010-06-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  7. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  8. Porous titanium and Ti-35Nb alloy: effects on gene expression of osteoblastic cells derived from human alveolar bone.

    PubMed

    do Prado, Renata Falchete; Rabêlo, Sylvia Bicalho; de Andrade, Dennia Perez; Nascimento, Rodrigo Dias; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; Cairo, Carlos Alberto Alves; de Vasconcellos, Luana Marotta Reis

    2015-11-01

    Tests on titanium alloys that possess low elastic modulus, corrosion resistance and minimal potential toxicity are ongoing. This study aimed to evaluate the behavior of human osteoblastic cells cultured on dense and porous Titanium (Ti) samples comparing to dense and porous Ti-35 Niobium (Ti-35Nb) samples, using gene expression analysis. Scanning electronic microscopy confirmed surface porosity and pore interconnectivity and X-ray diffraction showed titanium beta-phase stabilization in Ti-35Nb alloy. There were no differences in expression of transforming growth factor-β, integrin-β1, alkaline phosphatase, osteopontin, macrophage colony stimulating factor, prostaglandin E synthase, and apolipoprotein E regarding the type of alloy, porosity and experimental period. The experimental period was a significant factor for the markers: bone sialoprotein II and interleukin 6, with expression increasing over time. Porosity diminished Runt-related transcription factor-2 (Runx-2) expression. Cells adhering to the Ti-35Nb alloy showed statistically similar expression to those adhering to commercially pure Ti grade II, for all the markers tested. In conclusion, the molecular mechanisms of interaction between human osteoblasts and the Ti-35Nb alloy follow the principal routes of osseointegration of commercially pure Ti grade II. Porosity impaired the route of transcription factor Runx-2.

  9. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  10. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  11. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  12. Gene expression profile in pelvic organ prolapse†

    PubMed Central

    Brizzolara, S.S.; Killeen, J.; Urschitz, J.

    2009-01-01

    It was hypothesized that the processes contributing to pelvic organ prolapse (POP) may be identified by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. In order to test this, we performed a frequency-matched case–control study of women undergoing hysterectomy for POP and controls. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32 878 genes. Significance Analysis of Microarrays (Stanford University, CA, USA) identified differentially expressed genes used for ontoanalysis. Quantitative PCR (qPCR) confirmed results. Light microscopy confirmed the tissue type and assessed inflammatory infiltration. The analysis of 34 arrays revealed 249 differentially expressed genes with fold changes (FC) larger than 1.5 and false discovery rates ≤5.2%. Immunity and defense was the most significant biological process differentially expressed in POP. qPCR confirmed the elevated steady-state mRNA levels for four genes: interleukin-6 (FC 9.8), thrombospondin 1 (FC 3.5) and prostaglandin-endoperoxide synthase 2 (FC 2.4) and activating transcription factor 3 (FC 2.6). Light microscopy showed all the samples were composed of fibromuscular connective tissue with no inflammatory infiltrates. In conclusion, genes enriched for ‘immunity and defense’ contribute to POP independent of inflammatory infiltrates. PMID:19056808

  13. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  14. Facilitated diffusion buffers noise in gene expression.

    PubMed

    Schoech, Armin P; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  15. Facilitated diffusion buffers noise in gene expression

    NASA Astrophysics Data System (ADS)

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  16. Objective and subjective probability in gene expression.

    PubMed

    Velasco, Joel D

    2012-09-01

    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective distinction is a false dichotomy and is an unhelpful distinction in this case. Instead, the probabilities in our models of gene expression exhibit standard features of both objectivity and subjectivity.

  17. Genomic signatures of germline gene expression.

    PubMed

    McVicker, Graham; Green, Phil

    2010-11-01

    Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density, crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A → G versus T → C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence for a strand bias in allele frequency data, implying that the substitution asymmetry reflects a mutation rather than a fixation bias. The density of transposable elements is positively correlated with germline expression, suggesting that such elements preferentially insert into regions that are actively transcribed. For each of the features examined, our analyses favor a nonselective explanation for the observed trends and point to the role of germline gene expression in shaping the mammalian genome.

  18. [Imprinting genes and it's expression in Arabidopsis].

    PubMed

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  19. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  20. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  1. The TRANSFAC system on gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  2. Single-nucleotide polymorphism in the promoter region of the osteopontin gene at nucleotide -443 as a marker predicting the efficacy of pegylated interferon/ribavirin-therapy in Egyptians patients with chronic hepatitis C.

    PubMed

    Shaker, Olfat Gamil; Sadik, Nermin A H; El-Dessouki, Abeer

    2012-10-01

    Osteopontin (OPN) is an extracellular matrix glycophosphoprotein produced by several types of cells including the immune system. The present study examined the possibility that single-nucleotide polymorphisms (SNP) in the promoter region of the OPN at nt -443 is a marker predicting the therapeutic efficacy of pegylated interferon (peg-IFN-α2b)-ribavirin combination therapy in Egyptian patients with chronic hepatitis C. Blood was collected from 95 patients with chronic hepatitis C who had received peg-IFN-α2b-ribavirin combination therapy and 100 age and sex matched controls. SNP in OPN at nucleotide (nt) -443 and its serum protein level were analyzed. Sustained virological response (SVR) was higher in patients with T/T at nt -443 than in those with C/C or C/T. A univariate logistic regression analysis showed that fibrosis grade, serum OPN protein level and T/T homozygotes of SNP at -443 were significant predictors for response. Receiver operating characteristics (ROC) analysis revealed the diagnostic and prognostic efficacy of serum OPN. It can be concluded that SNP in the promoter region of OPN at nt -443 and serum OPN protein level are predictors of response to the efficacy of peg-IFN-α2b-ribavirin therapy in Egyptian patients with chronic hepatitis C.

  3. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  4. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  5. Localization of runx2, osterix, and osteopontin in tooth root formation in rat molars.

    PubMed

    Hirata, Azumi; Sugahara, Toshio; Nakamura, Hiroaki

    2009-04-01

    Cementogenesis starts with the differentiation of cementoblasts. Mature cementoblasts secrete cementum matrix. Cementum components are similar to bone; moreover, cementoblasts possess many characteristics similar to those of osteoblasts. Runx2 and osterix, the transcriptional factors for osteoblast differentiation, participate in tooth formation. However, the characteristics of Runx2 and osterix during the differentiation process of cementoblasts remain unclear. In this study, we examined the immunolocalization patterns of Runx2, osterix, and osteopontin during rat molar tooth formation. Periodontal ligament cells and osteoblasts located on the alveolar bone surface showed immunoreactivity for Runx2. Colocalization of Runx2 and osterix was detected in cementoblasts, which penetrated the ruptured Hertwig's epithelial root sheath and attached to root dentin. Moreover, osteopontin was observed in Runx2-positive cementoblasts facing the root surface. However, the cells adjacent to cementoblasts showed only Runx2 reactivity. Neither Runx2 nor osterix was seen in cementocytes. These results suggest that both Runx2 and osterix are important for differentiation into cementoblasts. Additionally, osterix may be indispensable for transcription of osteopontin expression.

  6. Organization and expression of hair follicle genes.

    PubMed

    Rogers, G E; Powell, B C

    1993-07-01

    Several families of proteins are expressed in the growth of hair and an estimated 50-100 proteins constitute the final hair fiber. The cumbersome nomenclature for naming these different proteins has led to a proposal to modify that which is currently used for epidermal keratins. Investigations of the organization of hair genes indicate that the members of each family are clustered in the genome and their expression could be under some general control. Interestingly, the protein called trichohyalin, markedly distinct from the hair proteins, is produced in the inner root sheath cells and the gene for it has been found to be located at the same human chromosome locus as the genes for profilaggrin, involucrin, and loricrin. A mainstream objective is to identify controls responsible for the production in the hair cortex of keratin intermediate filaments (IFs) and two large groups of keratin-associated proteins (KAPs) rich in the amino acids cysteine or glycine/tyrosine. A specific family of cysteine-rich proteins is expressed in the hair cuticle. Comparisons of promoter regions of IF genes and KAP genes, including a recently characterized gene for a glycine/tyrosine-rich protein, have revealed putative hair-specific motifs in addition to known elements that regulate gene expression. In the sheep, the patterns of expression in hair differentiation are particularly interesting insofar as there are distinct segments of para- and orthocortical type cells that have significantly different pathways of expression. The testing of candidate hair-specific regulatory sequences by mouse transgenesis has produced several interesting hair phenotypes. Transgenic sheep over-expressing keratin genes but showing no hair growth change have been obtained and compared with the equivalent transgenic hair-loss mice. Studies of the effects of amino acid supply on the rate of hair growth have demonstrated that with cysteine supplementation of sheep a perturbation occurs in which there is a

  7. Regulation of Calreticulin Gene Expression by Calcium

    PubMed Central

    Waser, Mathilde; Mesaeli, Nasrin; Spencer, Charlotte; Michalak, Marek

    1997-01-01

    We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (−115 to −260 and −685 to −1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro

  8. Effect of osteopontin on the initial adhesion of dental bacteria.

    PubMed

    Schlafer, Sebastian; Meyer, Rikke L; Sutherland, Duncan S; Städler, Brigitte

    2012-12-28

    Bacterial biofilms are involved in numerous infections of the human body, including dental caries. While conventional therapy of biofilm diseases aims at eradication and mechanical removal of the biofilms, recent therapeutic approaches target the mechanisms of biofilm formation and bacterial adhesion in particular. The effect of bovine milk osteopontin, a highly phosphorylated whey protein, on adhesion of Streptococcus mitis, Streptococcus sanguinis, and Actinomyces naeslundii, three prominent colonizers in dental biofilms, to saliva-coated surfaces was investigated. While adhesion of A. naeslundii was not affected by osteopontin, a strong, dose-dependent reduction in the number of adhering S. mitis was shown. No difference in bacterial adhesion was observed for caseinoglycomacropeptide, another phosphorylated milk protein. Osteopontin did not affect bacterial viability, but changed bacterial surface hydrophobicity, and may be suggested to prevent the adhesins of S. mitis from interacting with their salivary receptors. The antiadhesive effect of osteopontin may be useful for caries prevention.

  9. The frustrated gene: origins of eukaryotic gene expression

    PubMed Central

    Madhani, Hiten D.

    2014-01-01

    Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids. PMID:24209615

  10. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis.

  11. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  12. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  13. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  14. Analysis of baseline gene expression levels from ...

    EPA Pesticide Factsheets

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  15. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  16. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  17. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  18. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  19. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  20. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  1. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  2. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  3. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  4. Osteopontin Facilitates Ultraviolet B-induced Squamous Cell Carcinoma Development

    PubMed Central

    Chang, Pi-Ling; Hsieh, Yu-Hua; Wang, Chao-Cheng; Juliana, M. Margaret; Tsuruta, Yuko; Timares, Laura; Elmets, Craig; Ho, Kang-Jey

    2014-01-01

    Background Osteopontin (OPN) is a matricellular glycoprotein that is markedly expressed in cutaneous squamous cell carcinomas (cSCCs) and in actinic keratoses implicating its role in photocarcinogenesis. Objective To determine whether OPN facilitates the development of cSCC and its function. Methods cSCCs development was compared between wild-type (WT) and OPN-null mice subjected to UVB irradiation for 43 weeks. UVB-induced OPN expression was determined by Western blot, immunoprecipitation, ELISA, and semi-quantitative RT-PCR. Epidermal layer and TUNEL analyses assessed if OPN mediates UVB-induced epidermal hyperplasia or suppresses UVB-induced apoptosis of basal keratinocytes, respectively. In vitro experiments determined whether OPN enhances cell survival of UVB-induced apoptosis and its potential mechanisms. Immunohistochemical analyses of epidermis assessed the expression of CD44 and focal adhesion kinase (FAK), molecules that mediate OPN survival function. Results Compared to female WT mice, OPN-null mice did not develop cSCCs. UVB irradiation stimulated OPN protein expression in the dorsal skin by 11 h and remains high at 24 to 48h.OPN did not mediate UVB-induced epidermal hyperplasia; instead, it protected basal keratinocytes from undergoing apoptosis upon UVB exposure. Likewise, the addition of OPN suppressed UVB-induced OPN-null cSCC cell apoptosis, the activation of caspase-9 activity, and increased phosphorylation of FAK at Y397. Furthermore, the expression of CD44 and FAK in WT mice epidermis was greater than that of OPN-null mice prior to and during early acute UVB exposure. Conclusion These data support the hypothesis that chronic UVB-induced OPN expression protects the survival of initiated basal keratinocytes and, consequently, facilitates cSCC develop. PMID:24888687

  5. [Structure and expression of thyroglobulin gene].

    PubMed

    Vassart, G; Brocas, H; Christophe, D; de Martynoff, G; Leriche, A; Mercken, L; Pohl, V; Van Heuverswyn, B

    1982-01-01

    Thyroglobulin is composed of two 300000 dalton polypeptide chains, translated from an 8000 base mRNA. Preparation of a full length cDNA and its cloning in E. coli have lead to the demonstration that the polypeptides of thyroglobulin protomers were identical. Used as molecular probes, the cloned cDNA allowed the isolation of a fragment of thyroglobulin gene. Electron microscopic studies have demonstrated that this gene contains more than 90% intronic material separating small size exons (less than 200 bp). Sequencing of bovine thyroglobulin structural gene is in progress. Preliminary results show evidence for the existence of repetitive segments. Availability of cloned DNA complementary to bovine and human thyroglobulin mRNA allows the study of genetic defects of thyroglobulin gene expression in the human and in various animal models.

  6. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  7. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  8. Differential var gene expression in children with malaria and antidromic effects on host gene expression.

    PubMed

    Kalmbach, Yvonne; Rottmann, Matthias; Kombila, Maryvonne; Kremsner, Peter G; Beck, Hans-Peter; Kun, Jürgen F J

    2010-07-15

    Among 62 children with mild malaria, cerebral malaria, or severe malarial anemia, we analyzed the transcription of different var gene types. There was no difference in parasitemia level or body temperature between groups. However, a significantly different expression pattern was observed in children with cerebral malaria, compared with that in patients in the other 2 groups: children with cerebral malaria had lower expression of the upsA subtype but higher expression of the upsB and upsC subtypes. Furthermore, expression of human genes responsive to tumor necrosis factor and hypoxia correlated with distinct ups types.

  9. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    PubMed Central

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  10. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress

  11. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  12. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  13. Transient gene expression in electroporated Solanum protoplasts.

    PubMed

    Jones, H; Ooms, G; Jones, M G

    1989-11-01

    Electroporation was used to evaluate parameters important in transient gene expression in potato protoplasts. The protoplasts were from leaves of wild potato Solanum brevidens, and from leaves, tubers and suspension cells of cultivated Solanum tuberosum cv. Désirée. Reporter enzyme activity, chloramphenicol acetyl transferase (CAT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, depended on the field strength and the pulse duration used for electroporation. Using field pulses of 85 ms duration, the optimum field strengths for maximum CAT activity were: S. brevidens mesophyll protoplasts--250 V/cm; Désirée mesophyll protoplasts--225 V/cm; Désirée suspension culture protoplasts--225 V/cm; and Désirée tuber protoplasts--150 V/cm. The optimum field strengths correlated inversely with the size of the protoplasts electroporated; this is consistent with biophysical theory. In time courses, maximum CAT activity (in Désirée mesophyll protoplasts) occurred 36-48 h after electroporation. Examination at optimised conditions of a chimaeric gene consisting of a class II patatin promoter linked to the beta-glucuronidase (gus) gene, showed expression (at DNA concentrations between 0-10 pmol/ml) comparable to the CaMV 35S promoter in both tuber and mesophyll protoplasts. At higher DNA concentrations (20-30 pmol/ml) the patatin promoter directed 4-5 times higher levels of gus expression. Implications and potential contributions towards studying gene expression, in particular of homologous genes in potato, are discussed.

  14. Toward stable gene expression in CHO cells

    PubMed Central

    Mariati; Koh, Esther YC; Yeo, Jessna HM; Ho, Steven CL; Yang, Yuansheng

    2014-01-01

    Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific. PMID:25482237

  15. Engineering Genes for Predictable Protein Expression

    PubMed Central

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2013-01-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering. PMID:22425659

  16. Engineering genes for predictable protein expression.

    PubMed

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  17. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology.

    PubMed

    Aragon, Andrea C; Kopf, Phillip G; Campen, Matthew J; Huwe, Janice K; Walker, Mary K

    2008-02-01

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure would disrupt cardiac ECM expression and be associated with changes in cardiac morphology in adulthood. In one study, time-pregnant C57BL/6 mice were dosed with corn oil or 1.5, 3.0, or 6.0 microg TCDD/kg on gestation day (GD) 14.5 and sacrificed on GD 17.5, when changes in fetal cardiac mRNA expression were analyzed using quantitative PCR. TCDD induced mRNA expression of genes associated with ECM remodeling (matrix metalloproteinase 9 and 13, preproendothelin-1 [preproET-1]), cardiac hypertrophy (atrial natriuretic peptide, beta-myosin heavy chain, osteopontin), and aryl hydrocarbon receptor (AHR) activation (cytochrome P4501A1, AHR repressor). Further, all TCDD-induced changes required the AHR since gene expression was not altered in AHR knockout fetuses. In a second study, time-pregnant mice were treated with corn oil or 6.0 microg TCDD/kg on GD 14.5, and male offspring were assessed for changes in cardiac gene expression and cardiac and renal morphology at 3 months. All TCDD-induced changes in cardiac gene expression observed fetally, except for preproET-1, remained induced in the hearts of adult male offspring. Adult male offspring of TCDD-exposed dams also displayed cardiac hypertrophy, decreased plasma volume, and mild hydronephrosis. These results demonstrate that in utero and lactational TCDD exposures alter cardiac gene expression and cardiac and renal morphology in adulthood, which may increase the susceptibility to cardiovascular dysfunction.

  18. Cancer outlier differential gene expression detection.

    PubMed

    Wu, Baolin

    2007-07-01

    We study statistical methods to detect cancer genes that are over- or down-expressed in some but not all samples in a disease group. This has proven useful in cancer studies where oncogenes are activated only in a small subset of samples. We propose the outlier robust t-statistic (ORT), which is intuitively motivated from the t-statistic, the most commonly used differential gene expression detection method. Using real and simulation studies, we compare the ORT to the recently proposed cancer outlier profile analysis (Tomlins and others, 2005) and the outlier sum statistic of Tibshirani and Hastie (2006). The proposed method often has more detection power and smaller false discovery rates. Supplementary information can be found at http://www.biostat.umn.edu/~baolin/research/ort.html.

  19. Programming gene expression with combinatorial promoters

    PubMed Central

    Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B

    2007-01-01

    Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278

  20. Combinatorial engineering for heterologous gene expression.

    PubMed

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype.

  1. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.

  2. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    SciTech Connect

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H.

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  3. Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

    PubMed

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A

    2009-02-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.

  4. Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth

    PubMed Central

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L.; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A.

    2008-01-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression. PMID:19155301

  5. Identifying driver genes in cancer by triangulating gene expression, gene location, and survival data.

    PubMed

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates - or integrates - three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics.

  6. Gene expression during normal and malignant differentiation

    SciTech Connect

    Andersson, L.C.; Gahmberg, C.G.; Ekblom, P.

    1985-01-01

    This book contains 18 selections. Some of the titles are: Exploring Carcinogenesis with Retroviral and Cellular Oncogenes; Retroviruses, Oncogenes and Evolution; HTLV and Human Neoplasi; Modes of Activation of cMyc Oncogene in B and T Lymphoid Tumors; The Structure and Function of the Epidermal Growth Factor Receptor: Its Relationship to the Protein Product of the V-ERB-B Oncogene; and Expression of Human Retrovirus Genes in Normal and Neoplastic Epithelial Cells.

  7. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  8. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  9. Expression of foreign genes in filamentous cyanobacteria

    SciTech Connect

    Kuritz, T.; Wolk, C.P. )

    1993-06-01

    Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganisms, such as cyanobacteria, whose metabolism is dependent on the presence of chloride in the medium. Transcription of fcbAB under the control of a variety of promoters was monitored by placing luxAB (encoding luciferase) downstream from fcbAB, and by measuring light emission from luciferase. They believe that the system that they have described has value as a means to screen for factors influencing transcription of foreign genes in cyanobacteria.

  10. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles

    PubMed Central

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A.; Markham, Alexander F.; Watson, Christopher M.; Bonthron, David T.; Carr, Ian M.

    2015-01-01

    Motivation: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. Contact: umaan@leeds.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25861967

  11. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  12. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  13. Gene expression and IG-DMR hypomethylation of maternally expressed gene 3 in developing corticospinal neurons.

    PubMed

    Qu, Chunsheng; Jiang, Tian; Li, Yong; Wang, Xiongwei; Cao, Huateng; Xu, Hongping; Qu, Jia; Chen, Jie-Guang

    2013-01-01

    The mammalian cerebral cortex plays a central role in higher cognitive functions and in the complex task of motor control. Maternally expressed gene 3 (Meg3) appears to play a role in cortical development and neurodegeneration, but the expression and regulation of Meg3 in the cortex is not clear. In this study, we examined the expression of transcript variants of Meg3 in the developing mouse cerebral cortex. By in situ hybridization, we found that a novel transcript variant of Meg3 with 8 small exons was expressed in the developing cortex, whereas the long isoforms of Meg3 (~11 kb) were enriched in corticospinal neurons (CSNs) in layer V of the cortex. No transcript variants of Meg3 were found in the neural progenitors at E12.5, when the intergenic differential methylation region (IG-DMR) near Meg3 was highly methylated. IG-DMR became demethylated at E15.5 and remained hypomethylated in early CSNs isolated from Fezf2-EGFP transgenic mice. The expression of Meg3 transcript variant 1 was inversely correlated with the IG-DMR methylation level during development. Moreover, expression of paternally expressed gene Peg11 was limited to the upper layers, consistent with the idea that the maternally expressed gene may be preferentially transcribed in the lower layers of the cortex. The spatiotemporal expression pattern of Meg3 suggests that it may participate in the early development of CSNs and contribute to cortical malfunctions related to aberrant imprinting in Meg3.

  14. Effects of microgravity on urinary osteopontin

    NASA Technical Reports Server (NTRS)

    Hoyer, J. R.; Pietrzyk, R. A.; Liu, H.; Whitson, P. A.

    1999-01-01

    Increased risk of renal stone formation during space flight has been linked primarily to increased calcium excretion from bone demineralization induced by space flight. Other factors contributing to increased risk include increased urinary calcium oxalate supersaturation, while urinary citrate, magnesium and volume are all decreased. The aim of this study was to increase the predictive value of stone risk profiles for crew members during space flight by evaluating the excretion of urinary protein inhibitors of calcium crystallization so that more comprehensive stone risk profiles could relate mineral saturation to the concentrations of inhibitor proteins. Levels of urinary osteopontin (uropontin) are reported in a series of 14 astronauts studied before, during, and after space flights. During space flight, a compensatory increase in uropontin excretion was not observed. However, the uropontin excretion of a majority of astronauts was increased during the period after space flight and was maximal at 2 wk after landing. The downward shift in the molecular size of uropontin observed in samples obtained during space flight was shown to result from storage at ambient temperature during flight, rather than an effect of microgravity on uropontin synthesis.

  15. Role of Osteopontin in Liver Diseases

    PubMed Central

    Wen, Yankai; Jeong, Seogsong; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Osteopontin (OPN), a multifunctional protein, is involved in numerous pathological conditions including inflammation, immunity, angiogenesis, fibrogenesis and carcinogenesis in various tissues. Extensive studies have elucidated the critical role of OPN in cell signaling such as regulation of cell proliferation, migration, inflammation, fibrosis and tumor progression. In the liver, OPN interacts with integrins, CD44, vimentin and MyD88 signaling, thereby induces infiltration, migration, invasion and metastasis of cells. OPN is highlighted as a chemoattractant for macrophages and neutrophils during injury in inflammatory liver diseases. OPN activates hepatic stellate cells (HSCs) to exert an enhancer in fibrogenesis. The role of OPN in hepatocellular carcinoma (HCC) has also generated significant interests, especially with regards to its role as a diagnostic and prognostic factor. Interestingly, OPN acts an opposing role in liver repair under different pathological conditions. This review summarizes the current understanding of OPN in liver diseases. Further understanding of the pathophysiological role of OPN in cellular interactions and molecular mechanisms associated with hepatic inflammation, fibrosis and cancer may contribute to the development of novel strategies for clinical diagnosis, monitoring and therapy of liver diseases. PMID:27570486

  16. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  17. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  18. Gene expression and cAMP.

    PubMed Central

    Nagamine, Y; Reich, E

    1985-01-01

    By comparing the 5'-flanking region of the porcine gene for the urokinase form of plasminogen activator with those of other cAMP-regulated genes, we identify a 29-nucleotide sequence that is tentatively proposed as the cAMP-regulatory unit. Homologous sequences are present (i) in the cAMP-regulated rat tyrosine aminotransferase, prolactin, and phosphoenolpyruvate carboxykinase genes and (ii) 5' to the transcription initiation sites of cAMP-regulated Escherichia coli genes. From this we conclude that the expression of cAMP-responsive genes in higher eukaryotes may be controlled, as in E. coli, by proteins that form complexes with cAMP and then show sequence-specific DNA-binding properties. The complex formed by cAMP and the regulatory subunit of the type II mammalian protein kinase might be one candidate for this function. Based on several homologies we suggest that this subunit may have retained both the DNA-binding specificity and transcription-regulating properties in addition to the nucleotide-binding domains of the bacterial cAMP-binding protein. If this were so, dissociation of protein kinase by cAMP would activate two processes: (i) protein phosphorylation by the catalytic subunit and (ii) transcription regulation by the regulatory subunit. PMID:2991882

  19. Transcriptional regulation of osteopontin production in rat osteoblast- like cells by parathyroid hormone

    PubMed Central

    1989-01-01

    Osteopontin (OP) or bone sialoprotein is a recently characterized extracellular matrix protein which is abundant in bone and is produced by osteoblasts. Parathyroid hormone (PTH) is a potent calcitropic hormone which regulates osteoblastic function including the synthesis of extracellular matrix proteins. This study examines the effect of human PTH (hPTH-[1-34]) on the expression of this novel protein in rat osteoblast-like cells. hPTH(1-34) significantly decreased the amount of OP in culture media of the rat osteoblastic osteosarcoma cell line, ROS 17/2.8, detected by Western immunoblot analysis. hPTH(1-34) also suppressed the steady-state level of OP mRNA two- to threefold with an ED50 of approximately 3 X 10(-10) M. This inhibition was detectable at 24 h, reached its nadir at 48 h, and lasted at least up to 96 h. The hPTH(1-34) effects were mimicked by isobutylmethylxanthine, cholera toxin, 8-bromo-cAMP, forskolin, and isoproterenol. hPTH(1-34) suppressed by two- to threefold the rate of OP gene transcription, estimated by nuclear run-on assays. The suppression of OP mRNA levels by hPTH(1-34) was also seen when basal levels were increased by transforming growth factor type beta, or 1,25-dihydroxyvitamin D3, or were decreased by dexamethasone. A similar decrease in the steady-state level of OP mRNA by hPTH(1-34) was also observed in primary cultures of osteoblast-enriched cells from fetal rat calvaria. These findings indicate that hPTH(1-34) suppresses the production of the novel extracellular matrix protein, OP, in osteoblasts at least in part through transcriptional control. PMID:2465299

  20. Aurora-A signaling is activated in advanced stage of squamous cell carcinoma of head and neck cancer and requires osteopontin to stimulate invasive behavior

    PubMed Central

    Su, Li-Jen; Chuang, Hui-Ching; Shiu, Li-Yen; Huang, Chao-Cheng; Fang, Fu-Min; Yu, Chun-Chieh; Su, Huei-Ting; Chen, Chang-Han

    2014-01-01

    The clinical significances, cellular effects, and molecular mechanisms by which Aurora-A mediate its invasive effects in HNSCC are still unclear. Here, we found that Aurora-A expression is significantly higher in tumor tissues on 14-microarray of HNSCC in Oncomine-databases. The activity of Aurora-A was not only found in HNSCC specimens, but also significantly correlated with advanced-T-classification, positive-N-classification, TNM-stage and the poor 5-year survival rate. HNSCC-microarray profile showed that osteopontin and Aurora-A exhibited positive correlation. Stimulation of HNC cells with osteopontin results in an increase in Aurora-A expression where localized at the centrosome. Functionally, Aurora-A had the abilities to stimulate cell motility in HNC cells through increase ERK1/2 activity under osteopontin stimulation. Conversely, depletion of Aurora-A expression by siRNAs suppressed ERK1/2 activity as well as inhibition of cell invasiveness. Treatment with anti-CD44 antibodies in HNC cells not only caused a decrease of mRNA/protein of Aurora-A and ERK1/2 activity upon osteopontin stimulation, but also affected the abilities of Aurora-A-elicited cell motility. Finally, immunohistochemical/Western-blotting analysis of human aggressive HNSCC specimens showed a significant positively correlation between osteopontin-Aurora-A and ERK1/2. These findings suggest that Aurora-A is not only an important prognostic factor but also a new therapeutic target in the osteopontin/CD44/ERK pathway for HNSCC treatment. PMID:24810160

  1. Differential expression of the ras gene family in mice.

    PubMed Central

    Leon, J; Guerrero, I; Pellicer, A

    1987-01-01

    We compared the expression of the ras gene family (H-ras, K-ras, and N-ras) in adult mouse tissues and during development. We found substantial variations in expression among different organs and in the amounts of the different transcripts originating from each gene, especially for the N-ras gene. The expression patterns were consistent with the reported preferential tissue activation of ras genes and suggested different cellular functions for each of the ras genes. Images PMID:3600635

  2. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression.

    PubMed

    Mueller, Daniel W; Bosserhoff, Anja-Katrin

    2011-09-01

    Resulting from a screening for microRNAs differentially regulated in melanocytes and melanoma cells, we found expression of miR-196a to be significantly down-regulated in malignant melanoma cell lines and tissue samples. As it was stated before that miR-196a might negatively regulate expression of the transcription factor HOX-C8, we analyzed HOX-C8 levels in NHEMs and melanoma cells and found a strong up-regulation of HOX-C8 expression in malignant melanoma cell lines and tissue samples compared with melanocytes. Several HOX-C8 target genes are known to be involved in processes such as oncogenesis, cell adhesion, proliferation and apoptosis. We, therefore, aimed to further investigate a potential "miR-196a → HOX-C8 → HOX-C8 target gene" relationship. Stable transfection with an miR-196a expression plasmid led to strong down-regulation of HOX-C8 expression in melanoma cells. Luciferase assays using reporter plasmids containing different fragments of the HOX-C8 3'UTR confirmed direct interactions of miR-196a with the HOX-C8 mRNA. Focusing on target genes of HOX-C8, which might play an important role in melanomagenesis, we identified three genes (cadherin-11, calponin-1 and osteopontin) that are up- or down-regulated, respectively, by altered HOX-C8 expression in miR-196a expressing cell clones and are thus indirectly regulated by this microRNA. As those target genes are closely related to important cellular mechanisms such as cell adhesion, cytoskeleton remodeling, tumor formation and invasive behavior of tumor cells, altered miR-196a expression exerts strong effects contributing to tumor cell transformation and formation and progression of malignant melanoma. This fact is underlined by a strongly reduced invasive behavior of melanoma cells re-expressing miR-196a in vitro.

  3. Studying the complex expression dependences between sets of coexpressed genes.

    PubMed

    Huerta, Mario; Casanova, Oriol; Barchino, Roberto; Flores, Jose; Querol, Enrique; Cedano, Juan

    2014-01-01

    Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  4. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  5. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  6. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  7. Novel recombinant papillomavirus genomes expressing selectable genes

    PubMed Central

    Van Doorslaer, Koenraad; Porter, Samuel; McKinney, Caleb; Stepp, Wesley H.; McBride, Alison A.

    2016-01-01

    Papillomaviruses infect and replicate in keratinocytes, but viral proteins are initially expressed at low levels and there is no effective and quantitative method to determine the efficiency of infection on a cell-to-cell basis. Here we describe human papillomavirus (HPV) genomes that express marker proteins (antibiotic resistance genes and Green Fluorescent Protein), and can be used to elucidate early stages in HPV infection of primary keratinocytes. To generate these recombinant genomes, the late region of the oncogenic HPV18 genome was replaced by CpG free marker genes. Insertion of these exogenous genes did not affect early replication, and had only minimal effects on early viral transcription. When introduced into primary keratinocytes, the recombinant marker genomes gave rise to drug-resistant keratinocyte colonies and cell lines, which maintained the extrachromosomal recombinant genome long-term. Furthermore, the HPV18 “marker” genomes could be packaged into viral particles (quasivirions) and used to infect primary human keratinocytes in culture. This resulted in the outgrowth of drug-resistant keratinocyte colonies containing replicating HPV18 genomes. In summary, we describe HPV18 marker genomes that can be used to quantitatively investigate many aspects of the viral life cycle. PMID:27892937

  8. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  9. Association between the Hypomethylation of Osteopontin and Integrin β3 Promoters and Vascular Smooth Muscle Cell Phenotype Switching in Great Saphenous Varicose Veins

    PubMed Central

    Jiang, Han; Lun, Yu; Wu, Xiaoyu; Xia, Qian; Zhang, Xiaoyu; Xin, Shijie; Zhang, Jian

    2014-01-01

    Lower extremity varicose veins are a common condition in vascular surgery and proliferation of vascular smooth muscle cells (VSMCs) in the intima is a significant pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully understood. Osteopontin (OPN) could promote the migration and adhesion of VSMCs through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3 is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity remains unclear. In the current study, we found that the methylation levels in the promoter regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced and the protein expression of OPN and integrin β3 are increased, compared with normal veins. Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN and integrin β3 genes may increase the expression of these genes in varicosity, which is closely related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN and integrin β3 genes may be a key factor in the pathogenesis of varicosity. PMID:25329616

  10. Association between the hypomethylation of osteopontin and integrin β3 promoters and vascular smooth muscle cell phenotype switching in great saphenous varicose veins.

    PubMed

    Jiang, Han; Lun, Yu; Wu, Xiaoyu; Xia, Qian; Zhang, Xiaoyu; Xin, Shijie; Zhang, Jian

    2014-10-17

    Lower extremity varicose veins are a common condition in vascular surgery and proliferation of vascular smooth muscle cells (VSMCs) in the intima is a significant pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully understood. Osteopontin (OPN) could promote the migration and adhesion of VSMCs through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3 is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity remains unclear. In the current study, we found that the methylation levels in the promoter regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced and the protein expression of OPN and integrin β3 are increased, compared with normal veins. Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN and integrin β3 genes may increase the expression of these genes in varicosity, which is closely related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN and integrin β3 genes may be a key factor in the pathogenesis of varicosity.

  11. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  12. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  13. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  14. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  15. Hyperbaric oxygen treatment induces antioxidant gene expression.

    PubMed

    Godman, Cassandra A; Joshi, Rashmi; Giardina, Charles; Perdrizet, George; Hightower, Lawrence E

    2010-06-01

    Although the underlying molecular causes of aging are not entirely clear, hormetic agents like exercise, heat, and calorie restriction may generate a mild pro-oxidant stress that induces cell protective responses to promote healthy aging. As an individual ages, many cellular and physiological processes decline, including wound healing and reparative angiogenesis. This is particularly critical in patients with chronic non-healing wounds who tend to be older. We are interested in the potential beneficial effects of hyperbaric oxygen as a mild hormetic stress on human microvascular endothelial cells. We analyzed global gene expression changes in human endothelial cells following a hyperbaric exposure comparable to a clinical treatment. Our analysis revealed an upregulation of antioxidant, cytoprotective, and immediate early genes. This increase coincided with an increased resistance to a lethal oxidative stress. Our data indicate that hyperbaric oxygen can induce protection against oxidative insults in endothelial cells and may provide an easily administered hormetic treatment to help promote healthy aging.

  16. Expressing exogenous genes in newts by transgenesis.

    PubMed

    Casco-Robles, Martin Miguel; Yamada, Shouta; Miura, Tomoya; Nakamura, Kenta; Haynes, Tracy; Maki, Nobuyasu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A; Chiba, Chikafumi

    2011-05-01

    The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.

  17. Gene expression signatures in lymphoid tumours.

    PubMed

    Kees, Ursula R

    2004-04-01

    Lymphoid tumours comprise the acute and chronic leukaemias, the broad spectrum of lymphomas, including Hodgkin's disease, and multiple myeloma. The subdivision of the acute leukaemias according to the proliferating type of white blood cells has had a major impact on the care of these patients. More recently, specific chromosomal translocations have been used to identify patients who may benefit from more intensive therapies. The novel high-throughput genomic technologies, such as microarrays, provide new avenues for the molecular diagnosis of the haematological malignancies. Rapid advances in genome sequencing and gene expression profiling provide unprecedented opportunities to identify specific genes involved in complex biological processes, including tumorigenesis. The features of microarray technology and the variety of experimental approaches to elucidate lymphoid malignancies are discussed. Microarray technology has the potential to lead to more accurate prognostic assessment for patients and is expected to ultimately allow the clinician to select therapies optimally suited to each patient.

  18. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms.

  19. Osteopontin CD44 Interaction: A Novel Mechanism for the Selective Homing of Breast Tumor Cells into Bone

    DTIC Science & Technology

    2001-06-01

    Introduction cancer pharmacology, and im- structure - function analysis of munology he served on the fac- extracellular matrix molecules What are the traits...isolated a hexa peptide from osteopontin that is chemotactic to tumor cells. Antibodies raised against this peptide neutralize the chemotactic response of ...circulating breast tumor cells expressing specific CD44v splice variants. We have isolated a peptide analogue of the chemotactic domain (PepL) that

  20. Gene expression-targeted isoflavone therapy.

    PubMed

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  1. Maternal diet programs embryonic kidney gene expression.

    PubMed

    Welham, Simon J M; Riley, Paul R; Wade, Angie; Hubank, Mike; Woolf, Adrian S

    2005-06-16

    Human epidemiological data associating birth weight with adult disease suggest that organogenesis is "programmed" by maternal diet. In rats, protein restriction in pregnancy produces offspring with fewer renal glomeruli and higher systemic blood pressures than controls. We tested the hypothesis that maternal diet alters gene expression in the metanephros, the precursor of the definitive mammalian kidney. We demonstrated that maternal low-protein diet initiated when pregnancy starts and maintained to embryonic day 13, when the metanephros consists of mesenchyme surrounding a once-branched ureteric bud, is sufficient to significantly reduce glomerular numbers in offspring by about 20%. As assessed by representational difference analyses and real-time quantitative polymerase chain reactions, low-protein diet modulated gene expression in embryonic day 13 metanephroi. In particular, levels of prox-1, the ortholog of Drosophila transcription factor prospero, and cofilin-1, a regulator of the actin cytoskeleton, were reduced. During normal metanephrogenesis, prox-1 protein was first detected in mesenchymal cells around the ureteric tree and thereafter in nascent nephron epithelia, whereas cofilin-1 immunolocalized to bud derivatives and condensing mesenchyme. Previously, we reported that low-protein diets increased mesenchymal apoptosis cells when metanephrogenesis began and thereafter reduced numbers of precursor cells. Collectively, these studies prove that the maternal diet programs the embryonic kidney, altering cell turnover and gene expression at a time when nephrons and glomeruli have yet to form. The human implication is that the maternal diet ingested between conception and 5- 6-wk gestation contributes to the variation in glomerular numbers that are known to occur between healthy and hypertensive populations.

  2. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  3. Altered gene expression correlates with DNA structure.

    PubMed

    Kohwi, Y; Kohwi-Shigematsu, T

    1991-12-01

    We examined the participation of triplex DNA structure in gene regulation using a poly(dG)-poly(dC) sequence as a model. We show that a poly(dG)-poly(dC) sequence, which can adopt an intramolecular dG.dG.dC triplex under superhelical strain, strongly augments gene expression when placed 5' to a promoter. The activity of this sequence exhibits a striking length dependency: dG tracts of 27-30 bp augment the expression of a reporter gene to a level comparable to that observed with the polyoma enhancer in mouse LTK- cells, whereas tracts of 35 bp and longer have virtually no effect. A supercoiled plasmid containing a dG tract of 30 bp competes in vivo for a trans-acting factor as revealed by reduction in the reporter gene transcription driven by the (dG)29/promoter of the test plasmid, while dGs of 35 bp and longer in the competition plasmid failed to compete. In purified supercoiled plasmid DNA at a superhelical density of -0.05, dG tracts of 32 bp and longer form a triplex, whereas those of 30 bp and shorter remain double-stranded under a PBS solution. These results suggest that a localized superhelical strain can exist, at least transiently, in mouse LTK- cells, and before being relaxed by topoisomerases this rapidly induces dG tracts of 35 bp and longer to adopt a triplex preventing the factor from binding. Thus, these data suggest that a poly(dG)-poly(dC) sequence can function as a negative regulator by adopting an intramolecular triple helix structure in vivo.

  4. Dynamics of single-cell gene expression

    PubMed Central

    Longo, Diane; Hasty, Jeff

    2006-01-01

    Cellular behavior has traditionally been investigated by utilizing bulk-scale methods that measure average values for a population of cells. Such population-wide studies mask the behavior of individual cells and are often insufficient for characterizing biological processes in which cellular heterogeneity plays a key role. A unifying theme of many recent studies has been a focus on the development and utilization of single-cell experimental techniques that are capable of probing key biological phenomena in individual living cells. Recently, novel information about gene expression dynamics has been obtained from single-cell experiments that draw upon the unique capabilities of fluorescent reporter proteins. PMID:17130866

  5. Solid state nanopores for gene expression profiling

    NASA Astrophysics Data System (ADS)

    Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Valbusa, U.; Scaruffi, P.; Stigliani, S.; Tonini, G. P.

    2009-07-01

    Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing "engineered solid state nanopores". The nanopores were fabricated on a suspended Si 3N 4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

  6. Clinical diagnostic gene expression thyroid testing.

    PubMed

    Steward, David L; Kloos, Richard T

    2014-08-01

    Thyroid fine-needle aspiration biopsies are cytologically indeterminate in 15% to 30% of cases. When cytologically indeterminate thyroid nodules undergo diagnostic surgery, approximately three-quarters prove to be histologically benign. A negative predictive value of more than or equal to 94% for the Afirma Gene Expression Classifier (GEC) is achieved for indeterminate nodules. Most Afirma GEC benign nodules can be clinically observed, as suggested by the National Comprehensive Cancer Network Thyroid Carcinoma Guideline. More than half of the benign nodules with indeterminate cytology (Bethesda categories III/IV) can be identified as GEC benign and removed from the surgical pool to prevent unnecessary diagnostic surgery.

  7. Role of Osteopontin in Psoriasis: An Immunohistochemical Study

    PubMed Central

    Abdel-Mawla, M Yousry; El-Kasheshy, Kamal Ahmed; Ghonemy, Soheir; Al Balat, Walid; Elsayed, Amira Ahmed

    2016-01-01

    Background: Osteopontin (OPN) has been postulated to have a role in several T-helper (Th) 1 and Th 17-mediated diseases including psoriasis (PS), through multiple mechanisms sharing in the onset and worsening of PS, OPN shares in induction of keratinocyte proliferation through inhibiting keratinocyte apoptosis, OPN acts as a proinflammatory agent that participates in the upregulation of Th cell lineages, among which are the Th 1 and Th 17 cells. Aims and Objectives: The aim of this study was to explore the possible role of OPN in the pathogenesis of PS. Materials and Methods: This case–control study was carried out on 18 patients of chronic plaque PS (mean age 37.61 ± 14.48) and a control group of 18 apparently healthy volunteers (mean age 41.11 ± 11.02 years). Severity of PS was assessed using the PS area and severity index score. Two skin biopsies were taken from psoriatic patients. The first was taken from the lesional skin and the other from a counter apparently healthy site. Results: Our results showed statistically significant differences in the expression of OPN, between lesional and nonlesional skin as well as between nonlesional skin and control group (P ≤ 0.001). In addition, there was a significant difference in the expression of OPN, between control and lesional group. Conclusions: OPN involvement in PS enlarges the list of cytokines able to stimulate the inflammatory response in this disease, anti-OPN antibodies, may eventually become a useful therapeutic approach in PS. PMID:27293251

  8. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.

  9. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  10. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  11. An extensive network of coupling among gene expression machines.

    PubMed

    Maniatis, Tom; Reed, Robin

    2002-04-04

    Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.

  12. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2006-11-01

    specific expression of toxin genes for ovarian cancer gene therapy PRINCIPAL INVESTIGATOR: David T. Curiel, M.D., Ph.D. Gene Siegal...A double selection approach to achieve specific expression of toxin genes for ovarian cancer gene therapy 5b. GRANT NUMBER W81XWH-05-1-0035...cancer. This system should result in highly efficient and specific expression of toxin encoding genes in tumor cells, enabling these cells to be

  13. Differential gene expression in anatomical compartments of the human eye

    PubMed Central

    Diehn, Jennifer J; Diehn, Maximilian; Marmor, Michael F; Brown, Patrick O

    2005-01-01

    Background The human eye is composed of multiple compartments, diverse in form, function, and embryologic origin, that work in concert to provide us with our sense of sight. We set out to systematically characterize the global gene expression patterns that specify the distinctive characteristics of the various eye compartments. Results We used DNA microarrays representing approximately 30,000 human genes to analyze gene expression in the cornea, lens, iris, ciliary body, retina, and optic nerve. The distinctive patterns of expression in each compartment could be interpreted in relation to the physiology and cellular composition of each tissue. Notably, the sets of genes selectively expressed in the retina and in the lens were particularly large and diverse. Genes with roles in immune defense, particularly complement components, were expressed at especially high levels in the anterior segment tissues. We also found consistent differences between the gene expression patterns of the macula and peripheral retina, paralleling the differences in cell layer densities between these regions. Based on the hypothesis that genes responsible for diseases that affect a particular eye compartment are likely to be selectively expressed in that compartment, we compared our gene expression signatures with genetic mapping studies to identify candidate genes for diseases affecting the cornea, lens, and retina. Conclusion Through genome-scale gene expression profiling, we were able to discover distinct gene expression 'signatures' for each eye compartment and identified candidate disease genes that can serve as a reference database for investigating the physiology and pathophysiology of the eye. PMID:16168081

  14. Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis.

    PubMed

    Chen, Meili; Xiao, Jingfa; Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer.

  15. Gut microbiota, host gene expression, and aging.

    PubMed

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health.

  16. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  17. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  18. Expressing genes do not forget their LINEs: transposable elements and gene expression.

    PubMed

    Kines, Kristine J; Belancio, Victoria P

    2012-01-01

    Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.

  19. [Mechanism on differential gene expression and heterosis formation].

    PubMed

    Xu, Chen-Lu; Sun, Xiao-Mei; Zhang, Shou-Gong

    2013-06-01

    Despite the rediscovery of heterosis about a century ago and the suggestion of various genetic models to explain this phenomenon, little consensus has yet been reached about the genetic basis of heterosis. Following the genome organization variation and gene effects, an understanding of gene differential expression in hybrids and its parents provides a new opportunity to speculate on mechanisms that might lead to heterosis. Investigation on allele-specific gene expression in hybrid and gene differential expression between hybrids and its parents might contribute to improve our understanding of the molecular basis of heterosis and eventually guide breeding practices. In this review, we discussed the recent researches on allelic-specific expression in hybrid which was frequently observed in recent studies and analyzed its regulatory mechanism. All possible modes of gene action, including additivity, high- and low-parent dominance, underdominance, and over-dominance, were observed when investigating gene differential expression between hybrids and its parents. Data from transcriptomic studies screened several heterosis-associated genes and highlighted the importance of certain key biochemical pathways that may prove to be quintessential for the manifestation of heterosis. So far, no uniform global expression pat-terns were observed in these gene expression studies. Most heterosis-associated gene expression analyses have not revealed a predominant functional category to which differentially expressed genes belong. However, these gene expression profiling studies represent a first step towards the definition of the complex gene expression networks that might be relevant in the context of heterosis. New technique on gene expression profile and advancements in bioinformatics will facilitate our understanding of the genetic basis of heterosis at the gene-expression level.

  20. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  1. Homologous versus heterologous gene expression in the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Oppermann, H; Hitzeman, R A

    1984-01-01

    DNA sequences normally flanking the highly expressed yeast 3-phosphoglycerate kinase (PGK) gene have been placed adjacent to heterologous mammalian genes on high copy number plasmid vectors and used for expression experiments in yeast. For many genes thus far expressed with this system, expression has been 15-50 times lower than the expression of the natural homologous PGK gene on the same plasmid. We have extensively investigated this dramatic difference and have found that in most cases it is directly proportional to the steady-state levels of mRNAs. We demonstrate this phenomenon and suggest possible causes for this effect on mRNA levels. Images PMID:6096814

  2. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  3. Gene Expression patterns in cryogenically stored Arabidopsis thaliana shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genes expressed in response to cryostress in plant shoot tips are not known. In this project we compared the gene expression patterns in untreated, cryoprotectant-treated, and recovering shoot tips using differential display methods. This project identified two genes that appeared to be differ...

  4. Harnessing osteopontin and other natural inhibitors to mitigate ectopic calcification of bioprosthetic heart valve material

    NASA Astrophysics Data System (ADS)

    Ohri, Rachit

    Dystrophic calcification has been the long-standing major cause of bioprosthetic heart valve failure, and has been well studied in terms of the underlying causative mechanisms. Such understanding has yielded several anti-calcification strategies involving biomaterial modification at the preparation stage: chemical alteration, extraction of calcifiable components, or material modification with small-molecule anti-calcific agents. However, newer therapeutic opportunities are offered by the growing illustration of the pathology as a dynamic, actively regulated process involving several gene products, such as osteopontin (OPN), matrix-gla protein (MGP) and glycosaminoglycans (GAGs). Osteopontin, a multi-functional matricellular glycosylated phosphoprotein has emerged as a prime candidate for the role of an in vivo inhibitor of ectopic calcification with two putative mechanisms: crystal poisoning and mineral-dissolution. The full therapeutic realization of its potential necessitates a better understanding of the mechanisms of anti-calcification by osteopontin, as well as appropriate in vivo models in which to evaluate its efficacy, potency and molecular mechanisms. In this work, we pursued the development and characterization of a reliable in vivo model with the OPN-null mouse to simulate the calcification of bioprosthetic valve material, namely glutaraldehyde-fixed bovine pericardium (GFBP) tissue. Subsequently, we used the calcification model to evaluate hypotheses based on the anti-calcific potential of osteopontin. Several modes of administering exogenous OPN to the implant site in OPN-null mice were explored, including soluble injected OPN, OPN covalently immobilized on the biomaterial, and OPN adsorbed onto the biomaterial. An investigation of the structure-function aspects of the anti-calcific ability of OPN was also pursued in the in vivo model. The OPN-null mouse was also used as an in vivo test-bed to evaluate the anti-calcific potential of other biomolecules

  5. Gene expression profiling in male genital lichen sclerosus

    PubMed Central

    Edmonds, Emma; Barton, Geraint; Buisson, Sandrine; Francis, Nick; Gotch, Frances; Game, Laurence; Haddad, Munther; Dinneen, Michael; Bunker, Chris

    2011-01-01

    Male genital lichen sclerosus (MGLSc) has a bimodal distribution in boys and men. It is associated with squamous cell carcinoma (SCC). The pathogenesis of MGLSc is unknown. HPV and autoimmune mechanisms have been mooted. Anti extracellular matrix protein (ECM)1 antibodies have been identified in women with GLSc. The gene expression pattern of LSc is unknown. Using DNA microarrays we studied differences in gene expression in healthy and diseased prepuces obtained at circumcision in adult males with MGLSc (n = 4), paediatric LSc (n = 2) and normal healthy paediatric foreskin (n = 4). In adult samples 51 genes with significantly increased expression and 87 genes with significantly reduced expression were identified; paediatric samples revealed 190 genes with significantly increased expression and 148 genes with significantly reduced expression. Concordance of expression profiles between adult and paediatric samples indicates the same disease process. Functional analysis revealed increased expression in the adult and child MGSLc samples in the immune response/cellular defence gene ontology (GO) category and reduced expression in other categories including genes related to squamous cancer. No specific HPV, autoimmune or squamous carcinogenesis-associated gene expression patterns were found. ECM1 and CABLES1 expression were significantly reduced in paediatric and adult samples respectively. PMID:21718371

  6. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA.

    PubMed

    Cho, Won-Young; Hong, Seong-Ho; Singh, Bijay; Islam, Mohammad Ariful; Lee, Somin; Lee, Ah Young; Gankhuyag, Nomundelger; Kim, Ji-Eun; Yu, Kyeong-Nam; Kim, Kwang-Ho; Park, Young-Chan; Cho, Chong-Su; Cho, Myung-Haing

    2015-08-01

    Small interfering RNA (siRNA)-mediated gene silencing represents a promising strategy for treating diseases such as cancer; however, specific gene silencing requires an effective delivery system to overcome the instability and low transfection efficiency of siRNAs. To address this issue, a polysorbitol-based transporter (PSOT) was prepared by low molecular weight branched polyethylenimine (bPEI) crosslinked with sorbitol diacrylate (SDA). Osteopontin (OPN) gene, which is highly associated with non-small cell lung cancer (NSCLC) was targeted by siRNA therapy using siRNA targeting OPN (siOPN). Characterization study confirmed that PSOT formed compact complexes with siOPN and protected siOPN against degradation by RNase. PSOT/siOPN complexes demonstrated low cytotoxicity and enhanced transfection efficiency in vitro, suggesting that this carrier may be suitable for gene silencing. In the A549 and H460 lung cancer cell lines, PSOT/siOPN complexes demonstrated significant silencing efficiency at both RNA and protein levels. To study in vivo tumor growth suppression, two lung cancer cell-xenograft mouse models were prepared and PSOT/siOPN complexes were delivered into the mice through intravenous injection. The siOPN-treated groups demonstrated significantly reduced OPN expression at both the RNA and protein levels as well as suppression of tumor volume and weight. Taken together, siOPN delivery using PSOT may present an effective and novel therapeutic system for lung cancer treatment.

  7. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    PubMed Central

    Mutti, Jasdeep S.; Bhullar, Ramanjot K.; Gill, Kulvinder S.

    2017-01-01

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions. PMID:28193629

  8. Evaluating Fumonisin Gene Expression in Fusarium verticillioides.

    PubMed

    Scala, Valeria; Visentin, Ivan; Cardinale, Francesca

    2017-01-01

    Transcript levels of key genes in a biosynthetic pathway are often taken as a proxy for metabolite production. This is the case of FUM1, encoding the first dedicated enzyme in the metabolic pathway leading to the production of the mycotoxins Fumonisins by fungal species belonging to the genus Fusarium. FUM1 expression can be quantified by different methods; here, we detail a protocol based on quantitative reverse transcriptase polymerase chain reaction (RT-qPCR), by which relative or absolute transcript abundance can be estimated in Fusaria grown in vitro or in planta. As very seldom commercial kits for RNA extraction and cDNA synthesis are optimized for fungal samples, we developed a protocol tailored for these organisms, which stands alone but can be also easily integrated with specific reagents and kits commercially available.

  9. Monoallelic expression of the human FOXP2 speech gene

    PubMed Central

    Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew

    2015-01-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  10. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  11. Phenotypic plasticity and divergence in gene expression.

    PubMed

    Healy, Timothy M; Schulte, Patricia M

    2015-07-01

    The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. ; Pfennig et al. ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci ). In this issue of Molecular Ecology, Dayan et al. () provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig. A) and F. grandis are minnows that inhabit estuarine marshes (Fig. B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. () address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity?

  12. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  13. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.

  14. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  15. Noise in gene expression: origins, consequences, and control.

    PubMed

    Raser, Jonathan M; O'Shea, Erin K

    2005-09-23

    Genetically identical cells and organisms exhibit remarkable diversity even when they have identical histories of environmental exposure. Noise, or variation, in the process of gene expression may contribute to this phenotypic variability. Recent studies suggest that this noise has multiple sources, including the stochastic or inherently random nature of the biochemical reactions of gene expression. In this review, we summarize noise terminology and comment on recent investigations into the sources, consequences, and control of noise in gene expression.

  16. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  17. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  18. cell type–specific gene expression differences in complex tissues

    PubMed Central

    Shen-Orr, Shai S; Tibshirani, Robert; Khatri, Purvesh; Bodian, Dale L; Staedtler, Frank; Perry, Nicholas M; Hastie, Trevor; Sarwal, Minnie M; Davis, Mark M; Butte, Atul J

    2013-01-01

    We describe cell type–specific significance analysis of microarrays (cssam) for analyzing differential gene expression for each cell type in a biological sample from microarray data and relative cell-type frequencies. first, we validated cssam with predesigned mixtures and then applied it to whole-blood gene expression datasets from stable post-transplant kidney transplant recipients and those experiencing acute transplant rejection, which revealed hundreds of differentially expressed genes that were otherwise undetectable. PMID:20208531

  19. Osteopontin and allergic disease: pathophysiology and implications for diagnostics and therapy.

    PubMed

    Frenzel, Denis F; Weiss, Johannes M

    2011-01-01

    Osteopontin (OPN) is a phosphoglycoprotein that is expressed by various immune cells in a secreted and intracellular form. It has cytokine, chemotactic and cell signaling functions enhancing Th1 and Th17 immunity and protects against apoptosis. Recent studies found OPN to be modulatory in cell-mediated and immediate-type allergic diseases. In allergic asthma, OPN enhances sensitization but downmodulates Th2-driven IL-4-dominated inflammation. The finding that OPN expression is augmented during specific immunotherapy supports a Th2 suppressive effect of OPN. In Th1-driven delayed-type allergy, such as allergic contact dermatitis, OPN supports dendritic cell migration and IL-12 expression and is secreted by T effector cells and keratinocytes, augmenting Th1-mediated allergy and supporting disease chronification. There are numerous missing links as to how OPN variants modulate allergic inflammation through different OPN receptors. OPN research in allergy is an interesting, rapidly expanding field that has high potential for translational research.

  20. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  1. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  2. Sex-specific gene expression in the BXD mouse liver.

    PubMed

    Gatti, Daniel M; Zhao, Ni; Chesler, Elissa J; Bradford, Blair U; Shabalin, Andrey A; Yordanova, Roumyana; Lu, Lu; Rusyn, Ivan

    2010-08-01

    Differences in clinical phenotypes between the sexes are well documented and have their roots in differential gene expression. While sex has a major effect on gene expression, transcription is also influenced by complex interactions between individual genetic variation and environmental stimuli. In this study, we sought to understand how genetic variation affects sex-related differences in liver gene expression by performing genetic mapping of genomewide liver mRNA expression data in a genetically defined population of naive male and female mice from C57BL/6J, DBA/2J, B6D2F1, and 37 C57BL/6J x DBA/2J (BXD) recombinant inbred strains. As expected, we found that many genes important to xenobiotic metabolism and other important pathways exhibit sexually dimorphic expression. We also performed gene expression quantitative trait locus mapping in this panel and report that the most significant loci that appear to regulate a larger number of genes than expected by chance are largely sex independent. Importantly, we found that the degree of correlation within gene expression networks differs substantially between the sexes. Finally, we compare our results to a recently released human liver gene expression data set and report on important similarities in sexually dimorphic liver gene expression between mouse and human. This study enhances our understanding of sex differences at the genome level and between species, as well as increasing our knowledge of the molecular underpinnings of sex differences in responses to xenobiotics.

  3. Analysis of HOX gene expression patterns in human breast cancer.

    PubMed

    Hur, Ho; Lee, Ji-Yeon; Yun, Hyo Jung; Park, Byeong Woo; Kim, Myoung Hee

    2014-01-01

    HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression.

  4. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  5. Transposable element influences on gene expression in plants.

    PubMed

    Hirsch, Cory D; Springer, Nathan M

    2017-01-01

    Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  6. Tensor decomposition for multi-tissue gene expression experiments

    PubMed Central

    Hore, Victoria; Viñuela, Ana; Buil, Alfonso; Knight, Julian; McCarthy, Mark I; Small, Kerrin; Marchini, Jonathan

    2016-01-01

    Genome wide association studies of gene expression traits and other cellular phenotypes have been successful in revealing links between genetic variation and biological processes. The majority of discoveries have uncovered cis eQTL effects via mass univariate testing of SNPs against gene expression in single tissues. We present a Bayesian method for multi-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks, which can then be tested for association against genetic variation genome-wide. We apply our method to a dataset of 845 individuals from the TwinsUK cohort with gene expression measured via RNA sequencing in adipose, LCLs and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of multi-omic, environmental and phenotypic datasets. PMID:27479908

  7. Optimization of transient gene expression system in Gerbera jemosonii petals.

    PubMed

    Hussein, Gihan M; Abu El-Heba, Ghada A; Abdou, Sara M; Abdallah, Naglaa A

    2013-01-01

    Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.

  8. Robust PCA based method for discovering differentially expressed genes.

    PubMed

    Liu, Jin-Xing; Wang, Yu-Tian; Zheng, Chun-Hou; Sha, Wen; Mi, Jian-Xun; Xu, Yong

    2013-01-01

    How to identify a set of genes that are relevant to a key biological process is an important issue in current molecular biology. In this paper, we propose a novel method to discover differentially expressed genes based on robust principal component analysis (RPCA). In our method, we treat the differentially and non-differentially expressed genes as perturbation signals S and low-rank matrix A, respectively. Perturbation signals S can be recovered from the gene expression data by using RPCA. To discover the differentially expressed genes associated with special biological progresses or functions, the scheme is given as follows. Firstly, the matrix D of expression data is decomposed into two adding matrices A and S by using RPCA. Secondly, the differentially expressed genes are identified based on matrix S. Finally, the differentially expressed genes are evaluated by the tools based on Gene Ontology. A larger number of experiments on hypothetical and real gene expression data are also provided and the experimental results show that our method is efficient and effective.

  9. Gene expression profile analyses of mice livers injured by Leigongteng

    PubMed Central

    Chen, Yong; Zhang, Xiao-Ming; Han, Feng-Mei; Du, Peng; Xia, Qi-Song

    2007-01-01

    AIM: To analyze the gene expression profiles of mice livers injured by Leigongteng and explore the relationship between the differentially expressed genes and liver damage. METHODS: The experimental mice were randomly divided into a control group and a liver-injured group in which the mice were administrated 33 μγ of triptolide/kg per day for 30 d. Liver mRNAs were extracted from animals in both groups and were reverse-transcribed to cDNA with dUTP labeled by different fluorescence (Cy3, Cy5) as hybridization probes. The mixed probes were hybridized with oligonucleotide microarray chips. The fluorescent signal results were acquired by scanner and analyzed with software. RESULTS: Among the 35852 target genes, 29 genes were found to be significantly differentially expressed, with 20 genes up-regulated and 9 genes down-regulated. The reliability of the differentially expressed genes was validated by RT-PCR experiments of 5 randomly selected differentially expressed genes. CONCLUSION: Based on the biological functions of the differentially expressed genes, it is obvious that the occurrence and development of liver damage induced by Leigongteng in mice are highly associated with immune response, metabolism, apoptosis and the cell skeleton of liver cells. This might be important for elucidating the regulatory network of gene expression associated with liver damage and it may also be important for discovering the pathogenic mechanisms of liver damage induced by Leigongteng. PMID:17659714

  10. Aromatase gene expression in the stallion.

    PubMed

    Lemazurier, E; Sourdaine, P; Nativelle, C; Plainfossé, B; Séralini, G

    2001-06-10

    Adult stallion secretes very high estrogen levels in its testicular vein and semen, and the responsible enzyme cytochrome P450 aromatase (P450 arom) is known to be present mainly in Leydig cells. We studied in further details the distribution of equine aromatase in various adult tissues including the brain (hypothalamic area), liver, kidney, small intestine, muscle, bulbourethral gland and testes. The aromatase mRNA was essentially detected by RT-PCR in testis (169+/-14 amol of aromatase mRNA per microg of total RNA) and was barely detectable in brain, or below 0.1 amol/microg RNA in other tissues. This range of expression was confirmed by ELISA (50+/-7 pg/microg total protein) in the testis, and by immunoblot, evidencing a 53 kDA specific protein band in testis and brain only. The corresponding aromatase activity was well detected, by 3H(2)O release from 1beta, 2beta(3)H-androstenedione, in testis and brain (200+/-23 and 25+/-6 pmol/min per mg, respectively) and below 3 pmol product formed/min per mg in other tissues. This study indicates that the testis, among the tissues analyzed, is the major source of aromatase in the adult stallion, and that the aromatase gene expression is specifically enhanced at this level, and is responsible for the high estrogen synthesis observed. Moreover, the study of aromatase in one colt testis has shown lower levels of transcripts, protein and enzyme activity, evidencing that aromatase is regulated during the development and may serve as a useful marker of testicular function. As the second organ where aromatase mRNA and activity are both well detected is brain, this study also underlines the possible role of neurosteroids in stallion on behaviour, brain function or central endocrine control.

  11. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated.

  12. Role of osteopontin in hepatic neutrophil infiltration during alcoholic steatohepatitis

    SciTech Connect

    Apte, Udayan M.; Banerjee, Atrayee; McRee, Rachel; Wellberg, Elizabeth; Ramaiah, Shashi K. . E-mail: sramaiah@cvm.tamu.edu

    2005-08-22

    Alcoholic liver disease (ALD) is a major complication of heavy alcohol (EtOH) drinking and is characterized by three progressive stages of pathology: steatosis, steatohepatitis, and fibrosis/cirrhosis. Alcoholic steatosis (AS) is the initial stage of ALD and consists of fat accumulation in the liver accompanied by minimal liver injury. AS is known to render the hepatocytes increasingly sensitive to toxicants such as bacterial endotoxin (LPS). Alcoholic steatohepatitis (ASH), the second and rate-limiting step in the progression of ALD, is characterized by hepatic fat accumulation, neutrophil infiltration, and neutrophil-mediated parenchymal injury. However, the pathogenesis of ASH is poorly defined. It has been theorized that the pathogenesis of ASH involves interaction of increased circulating levels of LPS with hepatocytes being rendered highly sensitive to LPS due to heavy EtOH consumption. We hypothesize that osteopontin (OPN), a matricellular protein (MCP), plays an important role in the hepatic neutrophil recruitment due to its enhanced expression during the early phase of ALD (AS and ASH). To study the role of OPN in the pathogenesis of ASH, we induced AS in male Sprague-Dawley rats by feeding EtOH-containing Lieber-DeCarli liquid diet for 6 weeks. AS rats experienced extensive fat accumulation and minimal liver injury. Moderate induction in OPN was observed in AS group. ASH was induced by feeding male Sprague-Dawley rats EtOH-containing Lieber-DeCarli liquid diet for 6 weeks followed by LPS injection. The ASH rats had substantial neutrophil infiltration, coagulative oncotic necrosis, and developed higher liver injury. Significant increases in the hepatic and circulating levels of OPN was observed in the ASH rats. Higher levels of the active, thrombin-cleaved form of OPN in the liver in ASH group correlated remarkably with hepatic neutrophil infiltration. Finally, correlative studies between OPN and hepatic neutrophil infiltration was corroborated in a simple

  13. Population and sex differences in Drosophila melanogaster brain gene expression

    PubMed Central

    2012-01-01

    Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues. PMID:23170910

  14. Social Regulation of Gene Expression in Threespine Sticklebacks

    PubMed Central

    Greenwood, Anna K.; Peichel, Catherine L.

    2015-01-01

    Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions. PMID:26367311

  15. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    PubMed Central

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  16. Induction of Osteopontin by Dengue Virus-3 Infection in THP-1 Cells: Inhibition of the Synthesis by Brefelamide and Its Derivative

    PubMed Central

    Pascapurnama, Dyshelly N.; Labayo, Hannah K. M.; Dapat, Isolde; Nagarajegowda, Divya D.; Zhao, Jingge; Zhang, Jing; Yamada, Osamu; Kikuchi, Haruhisa; Egawa, Shinichi; Oshima, Yoshiteru; Chagan-Yasutan, Haorile; Hattori, Toshio

    2017-01-01

    Osteopontin (OPN) is a multifunctional matricellular protein produced by a broad range of cells including osteoclasts, macrophages, T cells, endothelial cells, and vascular smooth muscle cells. OPN modulates various physiological and pathological events such as inflammation, wound healing, and bone formation and remodeling. Dengue virus (DENV) infection causes an increase in plasma OPN levels, which is correlated with the severity of symptoms and coagulation abnormalities. DENV infection also induces OPN gene expression in human macrophages. This study investigated the inhibitory effects of brefelamide and its methyl ether derivative on DENV-3 by measuring changes in OPN levels in human THP-1 and 293T cell lines infected at different multiplicities of infection and post-infection time points. OPN mRNA expression and viral RNA were detected by reverse transcriptase quantitative real-time PCR, whereas protein level was determined by enzyme-linked immunosorbent assay. We found that viral copy number was higher in 293T than in THP-1 cells. However, THP-1 constitutively expressed higher levels of OPN mRNA and protein, which were enhanced by DENV-3 infection. Brefelamide and its derivative suppressed OPN production in DENV-3 infected THP-1 cells; the effective doses of these compounds had no effect on uninfected cells, indicating low cytotoxicity. These results suggest that brefelamide and its methyl ether derivative have therapeutic effects in preventing inflammation, coagulopathy, and fibrinolysis caused by OPN upregulation induced by DENV-3 infection.

  17. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    PubMed

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.

  18. Gene expression within a dynamic nuclear landscape

    PubMed Central

    Shav-Tal, Yaron; Darzacq, Xavier; Singer, Robert H

    2006-01-01

    Molecular imaging in living cells or organisms now allows us to observe macromolecular assemblies with a time resolution sufficient to address cause-and-effect relationships on specific molecules. These emerging technologies have gained much interest from the scientific community since they have been able to reveal novel concepts in cell biology, thereby changing our vision of the cell. One main paradigm is that cells stochastically vary, thus implying that population analysis may be misleading. In fact, cells should be analyzed within time-resolved single-cell experiments rather than being compared to other cells within a population. Technological imaging developments as well as the stochastic events present in gene expression have been reviewed. Here, we discuss how the structural organization of the nucleus is revealed using noninvasive single-cell approaches, which ultimately lead to the resolution required for the analysis of highly controlled molecular processes taking place within live cells. We also describe the efforts being made towards physiological approaches within the context of living organisms. PMID:16900099

  19. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  20. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  1. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  2. Gene expression profiling of mouse embryos with microarrays

    PubMed Central

    Sharov, Alexei A.; Piao, Yulan; Ko, Minoru S. H.

    2011-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing similarities or differences among two or multiple cell types; (5) to find regulatory pathways and/or networks affected by gene manipulations, such as overexpression or repression of gene expression; (6) to find downstream target genes of transcription factors; (7) to find downstream target genes of cell signaling; (8) to examine the effects of environmental manipulation of cells on gene expression patterns; and (9) to find the effects of genetic manipulation in embryos and adults. Here we describe strategies for executing these experiments and monitoring changes of cell state with gene expression microarrays in application to mouse embryology. Both statistical assessment and interpretation of data are discussed. We also present a protocol for performing microarray analysis on a small amount of embryonic materials. PMID:20699157

  3. Stably Expressed Genes Involved in Basic Cellular Functions

    PubMed Central

    Wang, Kejian; Fuscoe, James C.

    2017-01-01

    Stably Expressed Genes (SEGs) whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age) in both sexes of F344 rats (n = 4/group; 320 samples). Expression changes (calculated as the maximum expression / minimum expression for each gene) of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination), RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics) or exogenous agents (e.g., drugs, environmental factors) may cause serious adverse effects. PMID:28125669

  4. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  5. An Exercise to Estimate Differential Gene Expression in Human Cells

    ERIC Educational Resources Information Center

    Chaudhry, M. Ahmad

    2006-01-01

    The expression of genes in cells of various tissue types varies considerably and is correlated with the function of a particular organ. The pattern of gene expression changes in diseased tissues, in response to therapy or infection and exposure to environmental mutagens, chemicals, ultraviolet light, and ionizing radiation. To better understand…

  6. Bioinformatic Analysis of Gene Expression for Melanoma Treatment

    PubMed Central

    Kawakami, Akinori; Fisher, David E.

    2016-01-01

    Bioinformatic analysis of genome-wide gene expression allows us to characterize cells, including melanomas. Gene expression profiles have been generated in various stages of melanomas and analyzed by researchers in unique ways. Lauss et al. compared their melanoma subtypes with those of The Cancer Genome Atlas Network and found consistency between the two studies. PMID:27884291

  7. MEPD: medaka expression pattern database, genes and more

    PubMed Central

    Alonso-Barba, Juan I.; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L.

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  8. Digital Gene Expression Tag Profiling Analysis of the Gene Expression Patterns Regulating the Early Stage of Mouse Spermatogenesis

    PubMed Central

    Meng, Lijun; Liu, Meiling; Zhao, Lina; Hu, Fen; Ding, Cunbao; Wang, Yang; He, Baoling; Pan, Yuxin; Fang, Wei; Chen, Jing; Hu, Songnian; Jia, Mengchun

    2013-01-01

    Detailed characterization of the gene expression patterns in spermatogonia and primary spermatocytes is critical to understand the processes which occur prior to meiosis during normal spermatogenesis. The genome-wide expression profiles of mouse type B spermatogonia and primary spermatocytes were investigated using the Solexa/Illumina digital gene expression (DGE) system, a tag based high-throughput transcriptome sequencing method, and the developmental processes which occur during early spermatogenesis were systematically analyzed. Gene expression patterns vary significantly between mouse type B spermatogonia and primary spermatocytes. The functional analysis revealed that genes related to junction assembly, regulation of the actin cytoskeleton and pluripotency were most significantly differently expressed. Pathway analysis indicated that the Wnt non-canonical signaling pathway played a central role and interacted with the actin filament organization pathway during the development of spermatogonia. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of early spermatogenesis. PMID:23554914

  9. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  10. The effect of negative autoregulation on eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  11. Features of Gene Expression of Bacillus pumilus Metalloendopeptidase.

    PubMed

    Rudakova, N L; Sabirova, A R; Balaban, N P; Tikhonova, A O; Sharipova, M R

    2016-08-01

    Features of gene expression of the secreted Bacillus pumilus metalloendopeptidase belonging to the adamalysin/reprolysin family were investigated. In the regulatory region of the gene, we identified hypothetical binding sites for transcription factors CcpA and TnrA. We found that the expression of the metalloendopeptidase gene is controlled by mechanisms of carbon and nitrogen catabolite repression. In experiments involving nitrogen metabolism regulatory protein mutant strains, we found that the control of the metalloendopeptidase gene expression involves proteins of ammonium transport GlnK and AmtB interacting with the TnrA-regulator.

  12. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  13. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression

    PubMed Central

    Sato, Sho; Ohara, Shinya; Tsutsui, Ken-Ichiro; Iijima, Toshio

    2015-01-01

    The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications. PMID:26023771

  14. Key aspects of analyzing microarray gene-expression data.

    PubMed

    Chen, James J

    2007-05-01

    One major challenge with the use of microarray technology is the analysis of massive amounts of gene-expression data for various applications. This review addresses the key aspects of the microarray gene-expression data analysis for the two most common objectives: class comparison and class prediction. Class comparison mainly aims to select which genes are differentially expressed across experimental conditions. Gene selection is separated into two steps: gene ranking and assigning a significance level. Class prediction uses expression profiling analysis to develop a prediction model for patient selection, diagnostic prediction or prognostic classification. Development of a prediction model involves two components: model building and performance assessment. It also describes two additional data analysis methods: gene-class testing and multiple ordering criteria.

  15. A predictive approach to identify genes differentially expressed

    NASA Astrophysics Data System (ADS)

    Saraiva, Erlandson F.; Louzada, Francisco; Milan, Luís A.; Meira, Silvana; Cobre, Juliana

    2012-10-01

    The main objective of gene expression data analysis is to identify genes that present significant changes in expression levels between a treatment and a control biological condition. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating credibility intervals from predictive densities which are constructed using sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained indicate that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a publicly available data set on Escherichia coli bacteria.

  16. Identification of Development and Pathogenicity Related Gene in Botrytis cinerea via Digital Gene Expression Profile

    PubMed Central

    Zhao, Bin; Si, He Long; Sun, Zhi Ying; Xu, Zheng; Chen, Zhan; Zhang, Jin lin; Xing, Ji Hong; Dong, Jin Gao

    2015-01-01

    Background: Botrytis cinerea, a haploid Euascomycete fungus that infects numerous crops, has been used as a model system for studying molecular phytopathology. Botrytis cinerea adopts various modes of infection, which are mediated by a number of pathogenicity and virulence-related genes. Many of these genes have not been reported previously. Objectives: This study aimed to investigate development and pathogenicity-related genes between a novel nonpathogenic mutant and the Wild Type (WT) in B. cinerea. Materials and Methods: Digital Gene Expression (DGE) tag profiling can reveal novel genes that may be involved in development and pathogenicity of plant pathogen. A large volume of B. cinerea tag-seq was generated to identify differential expressed genes by the Illumina DGE tag profiling technology. Results: A total of 4,182,944 and 4,182,021 clean tags were obtained from the WT and a nonpathogenic mutant stain (BCt89), respectively, and 10,410 differentially expressed genes were identified. In addition, 84 genes were expressed in the WT only while 34 genes were expressed in the mutant only. A total of 664 differentially expressed genes were involved in 91 Kyoto Encyclopedia of Genes and Genome pathways, including signaling and metabolic pathways. Conclusions: Expression levels of 1,426 genes were significantly up-regulated in the mutant compared to WT. Furthermore, 301 genes were down-regulated with False Discovery Rates (FDR) of < 0.001 and absolute value of log2 Ratio of ≥ 1. PMID:26034553

  17. Fundamental principles of energy consumption for gene expression

    NASA Astrophysics Data System (ADS)

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  18. Osteopontin Ribozymes in Prostate Cancer Cells: Application to Bony Metastases

    DTIC Science & Technology

    1999-10-01

    data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such...by Mr. Jan Brunn (University of Texas-Houston, Dental Branch), in typical outstanding fashion. OPN 1 and OPN2 were provided by Mr. Jeff Safran ...Physiol. (Endocrinol. Metab.) 36: E599-E605, 1997. 21. Safran , J.B., Butler, W.T., and Farach-Carson, M.C. Modulation of osteopontin post- translational

  19. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    ERIC Educational Resources Information Center

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  20. Sources of stochasticity in constitutive and autoregulated gene expression

    NASA Astrophysics Data System (ADS)

    Marathe, Rahul; Gomez, David; Klumpp, Stefan

    2012-11-01

    Gene expression is inherently noisy as many steps in the read-out of the genetic information are stochastic. To disentangle the effect of different sources of stochasticity in such systems, we consider various models that describe some processes as stochastic and others as deterministic. We review earlier results for unregulated (constitutive) gene expression and present new results for a gene controlled by negative autoregulation with cell growth modeled by linear volume growth.

  1. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  2. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes

    PubMed Central

    Kahles, Florian; Findeisen, Hannes M.; Bruemmer, Dennis

    2014-01-01

    Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity. PMID:24944898

  3. Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis.

    PubMed

    Dianzani, Chiara; Bellavista, Elena; Liepe, Juliane; Verderio, Claudia; Martucci, Morena; Santoro, Aurelia; Chiocchetti, Annalisa; Luca Gigliotti, Casimiro; Boggio, Elena; Ferrara, Benedetta; Riganti, Loredana; Keller, Christin; Janek, Katharina; Niewienda, Agathe; Fenoglio, Chiara; Sorosina, Melissa; Cantello, Roberto; Kloetzel, Peter M; Stumpf, Michael P H; Paul, Friedemann; Ruprecht, Klemens; Galimberti, Daniela; Martinelli Boneschi, Filippo; Comi, Cristoforo; Dianzani, Umberto; Mishto, Michele

    2017-03-09

    Osteopontin is a pleiotropic cytokine that is involved in several diseases including multiple sclerosis. Secreted osteopontin is cleaved by few known proteases, modulating its pro-inflammatory activities. Here we show by in vitro experiments that secreted osteopontin can be processed by extracellular proteasomes, thereby producing fragments with novel chemotactic activity. Furthermore, osteopontin reduces the release of proteasomes in the extracellular space. The latter phenomenon seems to occur in vivo in multiple sclerosis, where it reflects the remission/relapse alternation. The extracellular proteasome-mediated inflammatory pathway may represent a general mechanism to control inflammation in inflammatory diseases.

  4. Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis

    PubMed Central

    Dianzani, Chiara; Bellavista, Elena; Liepe, Juliane; Verderio, Claudia; Martucci, Morena; Santoro, Aurelia; Chiocchetti, Annalisa; Luca Gigliotti, Casimiro; Boggio, Elena; Ferrara, Benedetta; Riganti, Loredana; Keller, Christin; Janek, Katharina; Niewienda, Agathe; Fenoglio, Chiara; Sorosina, Melissa; Cantello, Roberto; Kloetzel, Peter M.; Stumpf, Michael P. H.; Paul, Friedemann; Ruprecht, Klemens; Galimberti, Daniela; Martinelli Boneschi, Filippo; Comi, Cristoforo; Dianzani, Umberto; Mishto, Michele

    2017-01-01

    Osteopontin is a pleiotropic cytokine that is involved in several diseases including multiple sclerosis. Secreted osteopontin is cleaved by few known proteases, modulating its pro-inflammatory activities. Here we show by in vitro experiments that secreted osteopontin can be processed by extracellular proteasomes, thereby producing fragments with novel chemotactic activity. Furthermore, osteopontin reduces the release of proteasomes in the extracellular space. The latter phenomenon seems to occur in vivo in multiple sclerosis, where it reflects the remission/relapse alternation. The extracellular proteasome-mediated inflammatory pathway may represent a general mechanism to control inflammation in inflammatory diseases. PMID:28276434

  5. Gene Expression Profiling in the Type 1 Diabetes Rat Diaphragm

    PubMed Central

    van Lunteren, Erik; Moyer, Michelle

    2009-01-01

    Background Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression. Methodology/Principal Findings Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least ±2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change −2.0 to −8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change −2.2 to −3.7) and organogenesis (P = 0.032, n = 7, fold change −2.1 to −3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested. Conclusions/Significance These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in

  6. Temporal Changes in Gene Expression Profile during Mature Adipocyte Dedifferentiation

    PubMed Central

    Côté, Julie Anne; Guénard, Frédéric; Lessard, Julie; Lapointe, Marc; Biron, Simon

    2017-01-01

    Objective. To characterize changes in gene expression profile during human mature adipocyte dedifferentiation in ceiling culture. Methods. Subcutaneous (SC) and omental (OM) adipose tissue samples were obtained from 4 participants paired for age and BMI. Isolated adipocytes were dedifferentiated in ceiling culture. Gene expression analysis at days 0, 4, 7, and 12 of the cultures was performed using Affymetrix Human Gene 2.0 STvi arrays. Hierarchical clustering according to similarity of expression changes was used to identify overrepresented functions. Results. Four clusters gathered genes with similar expression between day 4 to day 7 but decreasing expression from day 7 to day 12. Most of these genes coded for proteins involved in adipocyte functions (LIPE, PLIN1, DGAT2, PNPLA2, ADIPOQ, CEBPA, LPL, FABP4, SCD, INSR, and LEP). Expression of several genes coding for proteins implicated in cellular proliferation and growth or cell cycle increased significantly from day 7 to day 12 (WNT5A, KITLG, and FGF5). Genes coding for extracellular matrix proteins were differentially expressed between days 0, 4, 7, and 12 (COL1A1, COL1A2, and COL6A3, MMP1, and TGFB1). Conclusion. Dedifferentiation is associated with downregulation of transcripts encoding proteins involved in mature adipocyte functions and upregulation of genes involved in matrix remodeling, cellular development, and cell cycle.

  7. Regulation of mitochondrial gene expression, the epigenetic enigma.

    PubMed

    Mposhi, Archibold; Van der Wijst, Monique Gp; Faber, Klaas Nico; Rots, Marianne G

    2017-03-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether mitochondrial DNA (mtDNA) undergoes similar epigenetic changes to regulate mitochondrial gene expression. Recently, it has been shown that mtDNA is differentially methylated in various diseases such as diabetes and colorectal cancer. Interestingly, this differential methylation was often associated with altered mitochondrial gene expression. However, the direct role of mtDNA methylation on gene expression remains elusive. Alternatively, the activity of the mitochondrial transcription factor A (TFAM), a protein involved in mtDNA packaging, might also influence gene expression. This review discusses the role of mtDNA methylation and potential epigenetic-like modifications of TFAM with respect to mtDNA transcription and replication. We suggest three mechanisms: (1) methylation within the non-coding D-loop, (2) methylation at gene start sites (GSS) and (3) post-translational modifications (PTMs) of TFAM. Unraveling mitochondrial gene expression regulation could open new therapeutic avenues for mitochondrial diseases.

  8. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies

    PubMed Central

    Chapman, Joanne R.; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies. PMID:26555275

  9. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    PubMed

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  10. Clustering Algorithms: Their Application to Gene Expression Data

    PubMed Central

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867

  11. Modulation and Expression of Tumor Suppressor Genes by Environmental Agents.

    DTIC Science & Technology

    1996-12-01

    MAMA produced other tumors in medaka (e.g. liver) and Rb expression is altered in many human tumors , the capability of examining the pathology of all...AD GRANT NUMBER DAMDI7-93-J-3011 TITLE: Modulation and Expression of Tumor Suppressor Genes by Environmental Agents PRINCIPAL INVESTIGATOR: Gary K...SUBTITLE 5. FUNDING NUMBERS Modulation and Expression of Tumor Suppressor Genes by Environmental Agents DAMDl7-93- J-3011 6. AUTHOR(S) Gary K

  12. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  13. An atlas of gene expression and gene co-regulation in the human retina

    PubMed Central

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-01-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  14. Validation of housekeeping genes for studying differential gene expression in the bovine myometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena K; Kotwica, Jan

    2013-12-01

    The aim of this study was to determine the steady-state expression of 13 selected housekeeping genes in the myometrium of cyclic and pregnant cows. Cells taken from bovine myometrium on days 1-5, 6-10, 11-16 and 17-20 of the oestrous cycle and in weeks 3-5, 6-8 and 9-12 of pregnancy were used. Reverse transcribed RNA was amplified in real-time PCR using designed primers. Reaction efficiency was determined with the Linreg programme. The geNorm and NormFinder programmes were used to select the best housekeeping genes. They calculate the expression stability factor for each used housekeeping gene with the smallest value for most stably expressed genes. According to geNorm, the most stable housekeeping genes in the myometrium were C2orf29, TPB and TUBB2B, while the least stably expressed genes were 18S RNA, HPRT1 and GAPDH. NormFinder identified the best genes in the myometrium as C2orf29, MRPL12 and TBP, while the worst genes were 18S RNA, B2M and SF3A1. Differences in stability factors between the two programmes may also indicate that the physiological status of the female, e.g. pregnancy, affects the stability of expression of housekeeping genes. The different expression stability of housekeeping genes did not affect progesterone receptor expression but it could be important if small differences in gene expression were measured between studies.

  15. BPH gene expression profile associated to prostate gland volume.

    PubMed

    Descazeaud, Aurelien; Rubin, Mark A; Hofer, Matthias; Setlur, Sunita; Nikolaief, Nathalie; Vacherot, Francis; Soyeux, Pascale; Kheuang, Laurence; Abbou, Claude C; Allory, Yves; de la Taille, Alexandre

    2008-12-01

    The aim of the current study was to analyze gene expression profiles in benign prostatic hyperplasia and to compare them with phenotypic properties. Thirty-seven specimens of benign prostatic hyperplasia were obtained from symptomatic patients undergoing surgery. RNA was extracted and hybridized to Affymetrix Chips containing 54,000 gene expression probes. Gene expression profiles were analyzed using cluster, TreeView, and significance analysis of microarrays softwares. In an initial unsupervised analysis, our 37 samples clustered hierarchically in 2 groups of 18 and 19 samples, respectively. Five clinical parameters were statistically different between the 2 groups: in group 1 compared with group 2, patients had larger prostate glands, had higher prostate specific antigen levels, were more likely to be treated by alpha blockers, to be operated by prostatectomy, and to have major irritative symptoms. The sole independent parameter associated with this dichotome clustering, however, was the prostate gland volume. Therefore, the role of prostate volume was explored in a supervised analysis. Gene expression of prostate glands <60 mL and >60 mL were compared using significance analysis of microarrays and 227 genes were found differentially expressed between the 2 groups (>2 change and false discovery rate of <5%). Several specific pathways including growth factors genes, cell cycle genes, apoptose genes, inflammation genes, and androgen regulated genes, displayed major differences between small and large prostate glands.

  16. Gene expression profile analysis of type 2 diabetic mouse liver.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases.

  17. An internal regulatory element controls troponin I gene expression

    SciTech Connect

    Yutzey, K.E.; Kline, R.L.; Konieczmy, S.F. . Dept. of Biological Sciences)

    1989-04-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, the authors have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.

  18. Cell Cycle Programs of Gene Expression Control Morphogenetic Protein Localization

    PubMed Central

    Lord, Matthew; Yang, Melody C.; Mischke, Michelle; Chant, John

    2000-01-01

    Genomic studies in yeast have revealed that one eighth of genes are cell cycle regulated in their expression. Almost without exception, the significance of cell cycle periodic gene expression has not been tested. Given that many such genes are critical to cellular morphogenesis, we wanted to examine the importance of periodic gene expression to this process. The expression profiles of two genes required for the axial pattern of cell division, BUD3 and BUD10/AXL2/SRO4, are strongly cell cycle regulated. BUD3 is expressed close to the onset of mitosis. BUD10 is expressed in late G1. Through promotor-swap experiments, the expression profile of each gene was altered and the consequences examined. We found that an S/G2 pulse of BUD3 expression controls the timing of Bud3p localization, but that this timing is not critical to Bud3p function. In contrast, a G1 pulse of BUD10 expression plays a direct role in Bud10p localization and function. Bud10p, a membrane protein, relies on the polarized secretory machinery specific to G1 to be delivered to its proper location. Such a secretion-based targeting mechanism for membrane proteins provides cells with flexibility in remodeling their architecture or evolving new forms. PMID:11134078

  19. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  20. Green Fluorescent Protein as a Marker for Gene Expression

    NASA Astrophysics Data System (ADS)

    Chalfie, Martin; Tu, Yuan; Euskirchen, Ghia; Ward, William W.; Prasher, Douglas C.

    1994-02-01

    A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.

  1. Gene expression profile analysis of ventilator-associated pneumonia

    PubMed Central

    XU, XIAOLI; YUAN, BO; LIANG, QUAN; HUANG, HUIMIN; YIN, XIANGYI; SHENG, XIAOYUE; NIE, NIUYAN; FANG, HONGMEI

    2015-01-01

    Based on the gene expression profile of patients with ventilator-associated pneumonia (VAP) and patients not affected by the disease, the present study aimed to enhance the current understanding of VAP development using bioinformatics methods. The expression profile GSE30385 was downloaded from the Gene Expression Omnibus database. The Linear Models for Microarray Data package in R language was used to screen and identify differentially expressed genes (DEGs), which were grouped as up- and down-regulated genes. The up- and downregulated genes were functionally enriched using the Database for Annotation, Visualization and Integrated Discovery system and then annotated according to TRANSFAC, Tumor Suppressor Gene and Tumor Associated Gene databases. Subsequently, the protein-protein interaction (PPI) network was constructed, followed by module analysis using CFinder software. A total of 69 DEGs, including 33 up- and 36 downregulated genes were screened out in patients with VAP. Upregulated genes were mainly enriched in functions and pathways associated with the immune response (including the genes ELANE and LTF) and the mitogen-activated protein kinase (MAPK) signaling pathway (including MAPK14). The PPI network comprised 64 PPI pairs and 44 nodes. The top two modules were enriched in different pathways, including the MAPK signaling pathway. Genes including ELANE, LTF and MAPK14 may have important roles in the development of VAP via altering the immune response and the MAPK signaling pathway. PMID:26459786

  2. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  3. IDENTIFICATION OF BIOLOGICALLY RELEVANT GENES USING A DATABASE OF RAT LIVER AND KIDNEY BASELINE GENE EXPRESSION

    EPA Science Inventory

    Microarray data from independent labs and studies can be compared to potentially identify toxicologically and biologically relevant genes. The Baseline Animal Database working group of HESI was formed to assess baseline gene expression from microarray data derived from control or...

  4. Meta-analysis of gene expression data identifies causal genes for prostate cancer.

    PubMed

    Wang, Xiang-Yang; Hao, Jian-Wei; Zhou, Rui-Jin; Zhang, Xiang-Sheng; Yan, Tian-Zhong; Ding, De-Gang; Shan, Lei

    2013-01-01

    Prostate cancer is a leading cause of death in male populations across the globe. With the advent of gene expression arrays, many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biologic mechanisms of prostate cancer, we conducted a meta-analysis of two studies on prostate cancer. Eight key genes were identified to be differentially expressed with progression. After gene co-expression analysis based on data from the GEO database, we obtained a co- expressed gene list which included 725 genes. Gene Ontology analysis revealed that these genes are involved in actin filament-based processes, locomotion and cell morphogenesis. Further analysis of the gene list should provide important clues for developing new prognostic markers and therapeutic targets.

  5. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm.

    PubMed

    Dong, Li-Yang; Zhou, Wei-Zhong; Ni, Jun-Wei; Xiang, Wei; Hu, Wen-Hao; Yu, Chang; Li, Hai-Yan

    2017-02-01

    The objective of this study was to identify the optimal gene and gene set for hepatocellular carcinoma (HCC) utilizing differential expression and differential co-expression (DEDC) algorithm. The DEDC algorithm consisted of four parts: calculating differential expression (DE) by absolute t-value in t-statistics; computing differential co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different partitions to determine the optimal gene set with highest mean minimum functional information (FI) gain (Δ*G). The optimal thresholds divided genes into four partitions, high DE and high DC (HDE-HDC), high DE and low DC (HDE-LDC), low DE and high DC (LDE‑HDC), and low DE and low DC (LDE-LDC). In addition, the optimal gene was validated by conducting reverse transcription-polymerase chain reaction (RT-PCR) assay. The optimal threshold for DC and DE were 1.032 and 1.911, respectively. Using the optimal gene, the genes were divided into four partitions including: HDE-HDC (2,053 genes), HED-LDC (2,822 genes), LDE-HDC (2,622 genes), and LDE-LDC (6,169 genes). The optimal gene was microtubule‑associated protein RP/EB family member 1 (MAPRE1), and RT-PCR assay validated the significant difference between the HCC and normal state. The optimal gene set was nucleoside metabolic process (GO\\GO:0009116) with Δ*G = 18.681 and 24 HDE-HDC partitions in total. In conclusion, we successfully investigated the optimal gene, MAPRE1, and gene set, nucleoside metabolic process, which may be potential biomarkers for targeted therapy and provide significant insight for revealing the pathological mechanism underlying HCC.

  6. Regulation of gene expression by Goodwin's loop with many genes

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  7. Indirect genomic effects on survival from gene expression data

    PubMed Central

    Ferkingstad, Egil; Frigessi, Arnoldo; Lyng, Heidi

    2008-01-01

    In cancer, genes may have indirect effects on patient survival, mediated through interactions with other genes. Methods to study the indirect effects that contribute significantly to survival are not available. We propose a novel methodology to detect and quantify indirect effects from gene expression data. We discover indirect effects through several target genes of transcription factors in cancer microarray data, pointing to genetic interactions that play a significant role in tumor progression. PMID:18358079

  8. Osteopontin is a multi-faceted pro-tumorigenic driver for central nervous system lymphoma

    PubMed Central

    Doeppler, Heike; Marlow, Laura A.; Kim, Betty Y.S.; Radisky, Derek C.; Storz, Peter; Copland, John A.; Tun, Han W.

    2016-01-01

    Osteopontin (OPN) is the most upregulated gene in primary central nervous system lymphoma (PCNSL) compared to non-CNS diffuse large B cell lymphoma (DLBCL). We show here that OPN is a key mediator of intracerebral tumor growth, invasion, and dissemination in CNS lymphoma, and that these effects depend upon activation of NF-κB. We further show that activation of NF-κB by OPN occurs through a unique mechanism in which intracellular OPN (iOPN) causes transcriptional downregulation of the NF-κB inhibitors, A20/TNFAIP3 and ABIN1/TNIP1, and secretory OPN (sOPN) promotes receptor-mediated activation of NF-κB. We also identify NF-κB-mediated induction of matrix metalloproteinase-8 (MMP-8) as a specific feature of OPN-mediated tissue invasion. These results implicate OPN as a candidate for development of targeted therapy for patients with PCNSL. PMID:27050077

  9. Identifying nonspecific SAGE tags by context of gene expression.

    PubMed

    Ge, Xijin; Wang, San Ming

    2008-01-01

    Many serial analysis of gene expression (SAGE) tags can be matched to multiple genes, leading to difficulty in SAGE data interpretation and analysis. As only a subset of genes in the human genome are transcribed in a certain type of tissue/cell, we used microarray expression data from different tissue types to define contexts of gene expression and to annotate SAGE tags collected from the same or similar tissue sources. To predict the original transcript contributing a nonspecific SAGE tag collected from a particular tissue, we ranked the corresponding genes by their expression levels determined by microarray. We developed a tissue-specific SAGE tag annotation database based on microarray data collected from 73 normal human tissues and 18 cancer tissues and cell lines. The database can be queried online at: http://www.basic.northwestern.edu/SAGE/. The accuracy of this database was confirmed by experimental data.

  10. Expression of ets family genes in hematopoietic-cells.

    PubMed

    Romanospica, V; Suzuki, H; Georgiou, P; Chen, S; Ascione, R; Papas, T; Bhat, N

    1994-03-01

    We have examined the expression of the ets family of transcription factors in different types of hematopoietic cells. Our results demonstrate that several members of the ets gene family are expressed differentially in hematopoietic cells. During phorbol ester induced differentiation of HL60 cells, ETS2, PEA3, as well as GABPalpha and GABPbeta mRNAs are coordinately induced. During the activation of T-cells, ETS2 proteins are induced; however, the expression of the ETS1 and ERGB gene products are reduced. These results demonstrate that the regulation of ets family of genes is complex and depends on cell type. This observation leads to the conclusion that the regulation of ets target genes, will be dependent, in part, upon the type of ets genes expressed in each particular cell type.

  11. A hammerhead ribozyme inhibits ADE1 gene expression in yeast.

    PubMed

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1995-03-21

    To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.

  12. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  13. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  14. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  15. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  16. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  17. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    PubMed Central

    Yao, Zizhen; Jaeger, Jochen C; Ruzzo, Walter L; Morale, Cecile Z; Emond, Mary; Francke, Uta; Milewicz, Dianna M; Schwartz, Stephen M; Mulvihill, Eileen R

    2007-01-01

    Background Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value < 3 × 10-6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status). An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater. PMID:17850668

  18. Nonlinear model-based method for clustering periodically expressed genes.

    PubMed

    Tian, Li-Ping; Liu, Li-Zhi; Zhang, Qian-Wei; Wu, Fang-Xiang

    2011-01-01

    Clustering periodically expressed genes from their time-course expression data could help understand the molecular mechanism of those biological processes. In this paper, we propose a nonlinear model-based clustering method for periodically expressed gene profiles. As periodically expressed genes are associated with periodic biological processes, the proposed method naturally assumes that a periodically expressed gene dataset is generated by a number of periodical processes. Each periodical process is modelled by a linear combination of trigonometric sine and cosine functions in time plus a Gaussian noise term. A two stage method is proposed to estimate the model parameter, and a relocation-iteration algorithm is employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. One synthetic dataset and two biological datasets were employed to evaluate the performance of the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g., k-means) for periodically expressed gene data, and thus it is an effective cluster analysis method for periodically expressed gene data.

  19. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses.

    PubMed

    Guo, Jinlong; Ling, Hui; Wu, Qibin; Xu, Liping; Que, Youxiong

    2014-11-13

    Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses.

  20. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  1. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  2. Identifying a gene expression signature of cluster headache in blood

    PubMed Central

    Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859

  3. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  4. Characterising Cytokine Gene Expression Signatures in Patients with Severe Sepsis

    PubMed Central

    Grealy, Robert; White, Mary; Stordeur, Patrick; Kelleher, Dermot; Doherty, Derek G.; McManus, Ross; Ryan, Thomas

    2013-01-01

    Introduction. Severe sepsis in humans may be related to an underlying profound immune suppressive state. We investigated the link between gene expression of immune regulatory cytokines and the range of illness severity in patients with infection and severe sepsis. Methods. A prospective observational study included 54 ICU patients with severe sepsis, 53 patients with infection without organ failure, and 20 healthy controls. Gene expression in peripheral blood mononuclear cells (PBMC) was measured using real-time polymerase chain reaction. Results. Infection differed from health by decreased expression of the IL2, and IL23 and greater expression of IL10 and IL27. Severe sepsis differed from infection by having decreased IL7, IL23, IFNγ, and TNFα gene expression. An algorithm utilising mRNA copy number for TNFα, IFNγ, IL7, IL10, and IL23 accurately distinguished sepsis from severe sepsis with a receiver operator characteristic value of 0.88. Gene expression was similar with gram-positive and gram-negative infection and was similar following medical and surgical severe sepsis. Severity of organ failure was associated with serum IL6 protein levels but not with any index of cytokine gene expression in PBMCs. Conclusions. Immune regulatory cytokine gene expression in PBMC provides a robust method of modelling patients' response to infection. PMID:23935244

  5. Patterns of soybean proline-rich protein gene expression.

    PubMed Central

    Wyatt, R E; Nagao, R T; Key, J L

    1992-01-01

    The expression patterns of three members of a gene family that encodes proline-rich proteins in soybean (SbPRPs) were examined using in situ hybridization experiments. In most instances, the expression of SbPRP genes was intense in a limited number of cell types of a particular organ. SbPRP1 RNA was localized in several cell types of soybean hypocotyls, including cells within the phloem and xylem. SbPRP1 expression increased within epidermal cells in the elongating and mature regions of the hypocotyl; expression was detected also in lignified cells surrounding the hilum of mature seeds. SbPRP2 RNA was present in cortical cells and in the vascular tissue of the hypocotyl, especially cells of the phloem. This gene was expressed also in the inner integuments of the mature seed coat. SbPRP3 RNA was localized specifically to the endodermoid layer of cells surrounding the stele in the elongating region of the hypocotyl, as well as in the epidermal cells of leaves and cotyledons. These data show that members of this gene family exhibit cell-specific expression. The members of the SbPRP gene family are expressed in different types of cells and in some cell types that also express the glycine-rich protein or hydroxyproline-rich glycoprotein classes of genes. PMID:1525563

  6. Digital gene expression for non-model organisms

    PubMed Central

    Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.

    2011-01-01

    Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123

  7. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation.

    PubMed

    Liu, Chenlin; Wu, Guangting; Huang, Xiaohang; Liu, Shenghao; Cong, Bailin

    2012-05-01

    Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L.

  8. Gene expression profiles associated with aging and mortality in humans

    PubMed Central

    Kerber, Richard A; O’Brien, Elizabeth; Cawthon, Richard M

    2009-01-01

    We investigated the hypothesis that gene expression profiles in cultured cell lines from adults, aged 57–97 years, contain information about the biological age and potential longevity of the donors. We studied 104 unrelated grandparents from 31 Utah CEU (Centre d’Etude du Polymorphisme Humain – Utah) families, for whom lymphoblastoid cell lines were established in the 1980s. Combining publicly available gene expression data from these cell lines, and survival data from the Utah Population Database, we tested the relationship between expression of 2151 always-expressed genes, age, and survival of the donors. Approximately 16% of 2151 expression levels were associated with donor age: 10% decreased in expression with age, and 6% increased with age. Cell division cycle 42 (CDC42) and CORO1A exhibited strong associations both with age at draw and survival after draw (multiple comparisons-adjusted Monte Carlo P-value < 0.05). In general, gene expressions that increased with age were associated with increased mortality. Gene expressions that decreased with age were generally associated with reduced mortality. A multivariate estimate of biological age modeled from expression data was dominated by CDC42 expression, and was a significant predictor of survival after blood draw. A multivariate model of survival as a function of gene expression was dominated by CORO1A expression. This model accounted for approximately 23% of the variation in survival among the CEU grandparents. Some expression levels were negligibly associated with age in this cross-sectional dataset, but strongly associated with inter-individual differences in survival. These observations may lead to new insights regarding the genetic contribution to exceptional longevity. PMID:19245677

  9. Gene expression profiles associated with aging and mortality in humans.

    PubMed

    Kerber, Richard A; O'Brien, Elizabeth; Cawthon, Richard M

    2009-06-01

    We investigated the hypothesis that gene expression profiles in cultured cell lines from adults, aged 57-97 years, contain information about the biological age and potential longevity of the donors. We studied 104 unrelated grandparents from 31 Utah CEU (Centre d'Etude du Polymorphisme Humain - Utah) families, for whom lymphoblastoid cell lines were established in the 1980s. Combining publicly available gene expression data from these cell lines, and survival data from the Utah Population Database, we tested the relationship between expression of 2151 always-expressed genes, age, and survival of the donors. Approximately 16% of 2151 expression levels were associated with donor age: 10% decreased in expression with age, and 6% increased with age. Cell division cycle 42 (CDC42) and CORO1A exhibited strong associations both with age at draw and survival after draw (multiple comparisons-adjusted Monte Carlo P-value < 0.05). In general, gene expressions that increased with age were associated with increased mortality. Gene expressions that decreased with age were generally associated with reduced mortality. A multivariate estimate of biological age modeled from expression data was dominated by CDC42 expression, and was a significant predictor of survival after blood draw. A multivariate model of survival as a function of gene expression was dominated by CORO1A expression. This model accounted for approximately 23% of the variation in survival among the CEU grandparents. Some expression levels were negligibly associated with age in this cross-sectional dataset, but strongly associated with inter-individual differences in survival. These observations may lead to new insights regarding the genetic contribution to exceptional longevity.

  10. Differential network analysis from cross-platform gene expression data

    PubMed Central

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  11. Gene Expression Profiling of Breast Cancer Brain Metastasis

    PubMed Central

    Lee, Ji Yun; Park, Kyunghee; Lee, Eunjin; Ahn, TaeJin; Jung, Hae Hyun; Lim, Sung Hee; Hong, Mineui; Do, In-Gu; Cho, Eun Yoon; Kim, Duk-Hwan; Kim, Ji-Yeon; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2016-01-01

    The biology of breast cancer brain metastasis (BCBM) is poorly understood. We aimed to explore genes that are implicated in the process of brain metastasis of primary breast cancer (BC). NanoString nCounter Analysis covering 252 target genes was used for comparison of gene expression levels between 20 primary BCs that relapsed to brain and 41 BCBM samples. PAM50-based intrinsic subtypes such as HER2-enriched and basal-like were clearly over-represented in BCBM. A panel of 22 genes was found to be significantly differentially expressed between primary BC and BCBM. Five of these genes, CXCL12, MMP2, MMP11, VCAM1, and MME, which have previously been associated with tumor progression, angiogenesis, and metastasis, clearly discriminated between primary BC and BCBM. Notably, the five genes were significantly upregulated in primary BC compared to BCBM. Conversely, SOX2 and OLIG2 genes were upregulated in BCBM. These genes may participate in metastatic colonization but not in primary tumor development. Among patient-matched paired samples (n = 17), a PAM50 molecular subtype conversion was observed in eight cases (47.1%), with a trend toward unfavorable subtypes in patients with the distinct gene expression. Our findings, although not conclusive, reveal differentially expressed genes that might mediate the brain metastasis process. PMID:27340107

  12. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  13. Development and application of a rat ovarian gene expression database.

    PubMed

    Jo, Misung; Gieske, Mary C; Payne, Charles E; Wheeler-Price, Sarah E; Gieske, Joseph B; Ignatius, Ignatius V; Curry, Thomas E; Ko, Chemyong

    2004-11-01

    The pituitary gonadotropins play a key role in follicular development and ovulation through the induction of specific genes. To identify these genes, we have constructed a genome-wide rat ovarian gene expression database (rOGED). The database was constructed from total RNA isolated from intact ovaries, granulosa cells, or residual ovarian tissues collected from immature pregnant mare serum gonadotropin (PMSG)/human chorionic gonadotropin-treated rats at 0 h (no PMSG), 12 h, and 48 h post PMSG, as well as 6 and 12 h post human chorionic gonadotropin. The total RNA was used for DNA microarray analysis using Affymetrix Rat Expression Arrays 230A and 230B (Affymetrix, Santa Clara, CA). The microarray data were compiled and used for display of individual gene expression profiles through specially developed software. The final rOGED provides immediate analysis of temporal gene expression profiles for over 28,000 genes in intact ovaries, granulosa cells, and residual ovarian tissue during follicular growth and the preovulatory period. The accuracy of the rOGED was validated against the gene profiles for over 20 known genes. The utility of the rOGED was demonstrated by identifying six genes that have not been described in the rat periovulatory ovary. The mRNA expression patterns and cellular localization for each of these six genes (estrogen sulfotransferase, synaptosomal-associated protein 25 kDa, runt-related transcription factor, calgranulin B, alpha1-macroglobulin, and MAPK phosphotase-3) were confirmed by Northern blot analyses and in situ hybridization, respectively. The current findings demonstrate that the rOGED can be used as an instant reference for ovarian gene expression profiles, as well as a reliable resource for identifying important yet, to date, unknown ovarian genes.

  14. Comparative analysis of hepatocellular carcinoma and cirrhosis gene expression profiles.

    PubMed

    Jiang, Mingming; Zeng, Qingfang; Dai, Suiping; Liang, Huixia; Dai, Fengying; Xie, Xueling; Lu, Kunlin; Gao, Chunfang

    2017-01-01

    Gene expression data of hepatocellular carcinoma (HCC) was compared with that of cirrhosis (C) to identify critical genes in HCC. A total of five gene expression data sets were downloaded from Gene Expression Omnibus. HCC and healthy samples were combined as dataset HCC, whereas cirrhosis samples were included in dataset C. A network was constructed for dataset HCC with the package R for performing Weighted Gene Co‑expression Network Analysis. Modules were identified by cluster analysis with the packages flashClust and dynamicTreeCut. Hub genes were screened out by calculating connectivity. Functional annotations were assigned to the hub genes using the Database for Annotation, Visualization and Integration Discovery, and functional annotation networks were visualized with Cytoscape. Following the exclusion of outlier samples, 394 HCC samples and 47 healthy samples were included in dataset HCC and 233 cirrhosis samples were included in dataset C. A total of 6 modules were identified in the weighted gene co‑expression network of dataset HCC (blue, brown, turquoise, green, red and yellow). Modules blue, brown and turquoise had high preservation whereas module yellow exhibited the lowest preservation. These modules were associated with transcription, mitosis, cation transportation, cation homeostasis, secretion and regulation of cyclase activity. Various hub genes of module yellow were cytokines, including chemokine (C‑C motif) ligand 22 and interleukin‑19, which may be important in the development of HCC. Gene expression profiles of HCC were compared with those of cirrhosis and numerous critical genes were identified, which may contribute to the progression of HCC. Further studies on these genes may improve the understanding of HCC pathogenesis.

  15. Discovering causes and cures for cancer from gene expression analysis.

    PubMed

    Weeraratna, Ashani T

    2005-11-01

    Tumorigenesis is governed by a series of complex genetic and epigenetic changes. Both mechanisms can result in either the silencing or aberrant expression of messages in a cell. Gene expression profiling techniques such as the serial analysis of gene expression (SAGE) or microarray analysis can provide global overviews of these changes, as well identify key genes and pathways involved in this process. This review outlines the current roles of these techniques in cancer research, and how they may contribute to finding not only mechanisms of this disease, but potential targets for therapy.

  16. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  17. Control of alphavirus-based gene expression using engineered riboswitches.

    PubMed

    Bell, Christie L; Yu, Dong; Smolke, Christina D; Geall, Andrew J; Beard, Clayton W; Mason, Peter W

    2015-09-01

    Alphavirus-based replicons are a promising nucleic acid vaccine platform characterized by robust gene expression and immune responses. To further explore their use in vaccination, replicons were engineered to allow conditional control over their gene expression. Riboswitches, comprising a ribozyme actuator and RNA aptamer sensor, were engineered into the replicon 3' UTR. Binding of ligand to aptamer modulates ribozyme activity and, therefore, gene expression. Expression from DNA-launched and VRP-packaged replicons containing riboswitches was successfully regulated, achieving a 47-fold change in expression and modulation of the resulting type I interferon response. Moreover, we developed a novel control architecture where riboswitches were integrated into the 3' and 5' UTR of the subgenomic RNA region of the TC-83 virus, leading to an 1160-fold regulation of viral replication. Our studies demonstrate that the use of riboswitches for control of RNA replicon expression and viral replication holds promise for development of novel and safer vaccination strategies.

  18. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  19. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  20. The Role of Nuclear Bodies in Gene Expression and Disease

    PubMed Central

    Morimoto, Marie; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. PMID:24040563

  1. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    PubMed Central

    2011-01-01

    Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR) reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H) oxidoreductase; AJ457980.1), ACT2 (actin 2; TC234027), and rrn26 (a putative homologue to RNA 26S gene; AL827977.1). In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1) and TaWIN1 (14-3-3 like protein, AB042193) were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire) grown under three treatments (organic, conventional and no nitrogen) and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production. PMID:21951810

  2. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro.

    PubMed Central

    Liaw, L; Skinner, M P; Raines, E W; Ross, R; Cheresh, D A; Schwartz, S M; Giachelli, C M

    1995-01-01

    Osteopontin is an arginine-glycine-aspartate containing acidic glycoprotein postulated to mediate adhesion, migration, and biomineralization in diverse tissues. The mechanisms explaining this multifunctionality are not well understood, although it is known that one osteopontin receptor is the alpha v beta 3 integrin. In this work, we studied human smooth muscle cells varying in alpha v beta 3 levels to identify additional osteopontin receptors. We report that, in addition to alpha v beta 3, both alpha v beta 5 and alpha v beta 1 are osteopontin receptors. Moreover, the presence or absence of alpha v beta 3 on the cell surface altered the adhesive and migratory responses of smooth muscle cells to osteopontin. Adhesion of alpha v beta 3-deficient cell populations to osteopontin was only half that of cells containing alpha v beta 3, and migration toward an osteopontin gradient in the Boyden chamber was dependent on cell surface alpha v beta 3. Although alpha v beta 3-deficient smooth muscle cells were unable to migrate to osteopontin, they did migrate significantly in response to vitronectin and fibronectin. These findings represent the first description of alpha v beta 5 and alpha v beta 1 as osteopontin receptors and suggest that, while adhesion to osteopontin is supported by integrins containing beta 1, beta 3, and beta 5, migration in response to osteopontin appears to depend on alpha v beta 3. Thus, interaction with distinct receptors is one mechanism by which osteopontin may initiate multiple functions. Images PMID:7532190

  3. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    PubMed

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, dN/dS ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  4. Gene expression changes during retinal development and rod specification

    PubMed Central

    Carrigan, Matthew; Hokamp, Karsten; Farrar, G. Jane

    2015-01-01

    Purpose Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3–5 (P3–5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. Methods Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). Results Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these

  5. PLEXdb: gene expression resources for plants and plant pathogens

    PubMed Central

    Dash, Sudhansu; Van Hemert, John; Hong, Lu; Wise, Roger P.; Dickerson, Julie A.

    2012-01-01

    PLEXdb (http://www.plexdb.org), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facilitate the interpretation of structure, function and regulation of genes in economically important plants. A list of Gene Atlas experiments highlights data sets that give responses across different developmental stages, conditions and tissues. Tools at PLEXdb allow users to perform complex analyses quickly and easily. The Model Genome Interrogator (MGI) tool supports mapping gene lists onto corresponding genes from model plant organisms, including rice and Arabidopsis. MGI predicts homologies, displays gene structures and supporting information for annotated genes and full-length cDNAs. The gene list-processing wizard guides users through PLEXdb functions for creating, analyzing, annotating and managing gene lists. Users can upload their own lists or create them from the output of PLEXdb tools, and then apply diverse higher level analyses, such as ANOVA and clustering. PLEXdb also provides methods for users to track how gene expression changes across many different experiments using the Gene OscilloScope. This tool can identify interesting expression patterns, such as up-regulation under diverse conditions or checking any gene’s suitability as a steady-state control. PMID:22084198

  6. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids.

    PubMed Central

    Wang, Jianlin; Tian, Lu; Madlung, Andreas; Lee, Hyeon-Se; Chen, Meng; Lee, Jinsuk J; Watson, Brian; Kagochi, Trevor; Comai, Luca; Chen, Z Jeffrey

    2004-01-01

    Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution. PMID:15342533

  7. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression.

    PubMed

    Torrente, Aurora; Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain.

  8. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  9. Improved detection of differentially expressed genes through incorporation of gene locations.

    PubMed

    Xiao, Guanghua; Reilly, Cavan; Khodursky, Arkady B

    2009-09-01

    In determining differential expression in cDNA microarray experiments, the expression level of an individual gene is usually assumed to be independent of the expression levels of other genes, but many recent studies have shown that a gene's expression level tends to be similar to that of its neighbors on a chromosome, and differentially expressed (DE) genes are likely to form clusters of similar transcriptional activity along the chromosome. When modeled as a one-dimensional spatial series, the expression level of genes on the same chromosome frequently exhibit significant spatial correlation, reflecting spatial patterns in transcription. By modeling these spatial correlations, we can obtain improved estimates of transcript levels. Here, we demonstrate the existence of spatial correlations in transcriptional activity in the Escherichia coli (E. coli) chromosome across more than 50 experimental conditions. Based on this finding, we propose a hierarchical Bayesian model that borrows information from neighboring genes to improve the estimation of the expression level of a given gene and hence the detection of DE genes. Furthermore, we extend the model to account for the circular structure of E. coli chromosome and the intergenetic distance between gene neighbors. The simulation studies and analysis of real data examples in E. coli and yeast Saccharomyces cerevisiae show that the proposed method outperforms the commonly used significant analysis of microarray (SAM) t-statistic in detecting DE genes.

  10. All-optical regulation of gene expression in targeted cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; He, Hao; Li, Shiyang; Liu, Dayong; Lan, Bei; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-06-01

    Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced ``Ca2+-comb'' (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.

  11. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  12. Global Gene Expression Analysis for the Assessment of Nanobiomaterials.

    PubMed

    Hanagata, Nobutaka

    2015-01-01

    Using global gene expression analysis, the effects of biomaterials and nanomaterials can be analyzed at the genetic level. Even though information obtained from global gene expression analysis can be useful for the evaluation and design of biomaterials and nanomaterials, its use for these purposes is not widespread. This is due to the difficulties involved in data analysis. Because the expression data of about 20,000 genes can be obtained at once with global gene expression analysis, the data must be analyzed using bioinformatics. A method of bioinformatic analysis called gene ontology can estimate the kinds of changes on cell functions caused by genes whose expression level is changed by biomaterials and nanomaterials. Also, by applying a statistical analysis technique called hierarchical clustering to global gene expression data between a variety of biomaterials, the effects of the properties of materials on cell functions can be estimated. In this chapter, these theories of analysis and examples of applications to nanomaterials and biomaterials are described. Furthermore, global microRNA analysis, a method that has gained attention in recent years, and its application to nanomaterials are introduced.

  13. Sleep and wakefulness modulate gene expression in Drosophila.

    PubMed

    Cirelli, Chiara; LaVaute, Timothy M; Tononi, Giulio

    2005-09-01

    In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.

  14. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  15. EXCAVATOR: a computer program for efficiently mining gene expression data.

    PubMed

    Xu, Dong; Olman, Victor; Wang, Li; Xu, Ying

    2003-10-01

    Massive amounts of gene expression data are generated using microarrays for functional studies of genes and gene expression data clustering is a useful tool for studying the functional relationship among genes in a biological process. We have developed a computer package EXCAVATOR for clustering gene expression profiles based on our new framework for representing gene expression data as a minimum spanning tree. EXCAVATOR uses a number of rigorous and efficient clustering algorithms. This program has a number of unique features, including capabilities for: (i) data- constrained clustering; (ii) identification of genes with similar expression profiles to pre-specified seed genes; (iii) cluster identification from a noisy background; (iv) computational comparison between different clustering results of the same data set. EXCAVATOR can be run from a Unix/Linux/DOS shell, from a Java interface or from a Web server. The clustering results can be visualized as colored figures and 2-dimensional plots. Moreover, EXCAVATOR provides a wide range of options for data formats, distance measures, objective functions, clustering algorithms, methods to choose number of clusters, etc. The effectiveness of EXCAVATOR has been demonstrated on several experimental data sets. Its performance compares favorably against the popular K-means clustering method in terms of clustering quality and computing time.

  16. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    PubMed

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  17. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Robbins, Charles J.; Sang, Qing-Xiang Amy

    2015-01-01

    Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis. PMID:26683658

  18. Imprinted gene expression in fetal growth and development.

    PubMed

    Lambertini, L; Marsit, C J; Sharma, P; Maccani, M; Ma, Y; Hu, J; Chen, J

    2012-06-01

    Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development.

  19. Identification of Differentially Expressed Genes Between Osteoblasts and Osteocytes

    PubMed Central

    Paic, Frane; Igwe, John C.; Ravi, Nori; Kronenberg, Mark S.; Franceschetti, Tiziana; Harrington, Patrick; Kuo, Lynn; Shin, Don-Guk; Rowe, David W.; Harris, Stephen E.; Kalajzic, Ivo

    2009-01-01

    Osteocytes represent the most abundant cellular component of mammalian bones with important functions in bone mass maintenance and remodeling. To elucidate the differential gene expression between osteoblasts and osteocytes we completed a comprehensive analysis of their gene profiles. Selective identification of these two mature populations was achieved by utilization of visual markers of bone lineage cells. We have utilized dual GFP reporter mice in which osteocytes are expressing GFP (topaz) directed by the DMP1 promoter, while osteoblasts are identified by expression of GFP (cyan) driven by 2.3kb of the Col1a1 promoter. Histological analysis of 7-day-old neonatal calvaria confirmed the expression pattern of DMP1GFP in osteocytes and Col2.3 in osteoblasts and osteocytes. To isolate distinct populations of cells we utilized fluorescent activated cell sorting (FACS). Cells suspensions were subjected to RNA extraction, in vitro transcription and labeling of cDNA and gene expression was analyzed using the Illumina WG-6v1 BeadChip. Following normalization of raw data from four biological replicates, 3444 genes were called present in all three sorted cell populations: GFP negative, Col2.3cyan+ (osteoblasts), and DMP1topaz+(preosteocytes and osteocytes). We present the genes that showed in excess of a 2-fold change for gene expression between DMP1topaz+ and Col2.3cyan+ cells. The selected genes were classified and grouped according to their associated gene ontology terms. Genes clustered to osteogenesis and skeletal development such as Bmp4, Bmp8a, Dmp1, Enpp1, Phex and Ank were highly expressed in DMP1topaz+cells. Most of the genes encoding extracellular matrix components and secreted proteins had lower expression in DMP1topaz+ cells, while most of the genes encoding plasma membrane proteins were increased. Interestingly a large number of genes associated with muscle development and function and with neuronal phenotype were increased in DMP1topaz+ cells, indicating

  20. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  1. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression

    PubMed Central

    Agapov, Eugene V.; Frolov, Ilya; Lindenbach, Brett D.; Prágai, Béla M.; Schlesinger, Sondra; Rice, Charles M.

    1998-01-01

    Infection of vertebrate cells with alphaviruses normally leads to prodigious expression of virus-encoded genes and a dramatic inhibition of host protein synthesis. Recombinant Sindbis viruses and replicons have been useful as vectors for high level foreign gene expression, but the cytopathic effects of viral replication have limited their use to transient studies. We recently selected Sindbis replicons capable of persistent, noncytopathic growth in BHK cells and describe here a new generation of Sindbis vectors useful for long-term foreign gene expression based on such replicons. Foreign genes of interest as well as the dominant selectable marker puromycin N-acteyltransferase, which confers resistance to the drug puromycin, were expressed as subgenomic transcripts of noncytopathic replicons or defective-interfering genomes complemented in trans by a replicon. Based on these strategies, we developed vectors that can be initiated via either RNA or DNA transfection and analyzed them for their level and stability of foreign gene expression. Noncytopathic Sindbis vectors express reasonably high levels of protein in nearly every cell. These vectors should prove to be flexible tools for the rapid expression of heterologous genes under conditions in which cellular metabolism is not perturbed, and we illustrate their utility with a number of foreign proteins. PMID:9789028

  2. Extreme changes to gene expression associated with homoploid hybrid speciation.

    PubMed

    Hegarty, Matthew J; Barker, Gary L; Brennan, Adrian C; Edwards, Keith J; Abbott, Richard J; Hiscock, Simon J

    2009-03-01

    Hybridization is an important cause of abrupt speciation. Hybrid speciation without a change in ploidy (homoploid hybrid speciation) is well-established in plants but has also been reported in animals and fungi. A notable example of recent homoploid hybrid speciation is Senecio squalidus (Oxford ragwort), which originated in the UK in the 18th Century following introduction of hybrid material from a hybrid zone between S. chrysanthemifolius and S. aethnensis on Mount Etna, Sicily. To investigate genetic divergence between these taxa, we used complementary DNA microarrays to compare patterns of floral gene expression. These analyses revealed major differences in gene expression between the parent species and wild and resynthesized S. squalidus. Comparisons of gene expression between S. aethnensis, S. chrysanthemifolius and natural S. squalidus identified genes potentially involved in local environmental adaptation. The analysis also revealed non-additive patterns of gene expression in the hybrid relative to its progenitors. These expression changes were more dramatic and widespread in resynthesized hybrids than in natural S. squalidus, suggesting that a unique expression pattern may have been fixed during the allopatric divergence of British S. squalidus. We speculate that hybridization-induced gene-expression change may provide an immediate source of novel phenotypic variation upon which selection can act to facilitate homoploid hybrid speciation in plants.

  3. Sex-Biased Gene Expression and Sexual Conflict throughout Development

    PubMed Central

    Ingleby, Fiona C.; Flis, Ilona; Morrow, Edward H.

    2015-01-01

    Sex-biased gene expression is likely to account for most sexually dimorphic traits because males and females share much of their genome. When fitness optima differ between sexes for a shared trait, sexual dimorphism can allow each sex to express their optimum trait phenotype, and in this way, the evolution of sex-biased gene expression is one mechanism that could help to resolve intralocus sexual conflict. Genome-wide patterns of sex-biased gene expression have been identified in a number of studies, which we review here. However, very little is known about how sex-biased gene expression relates to sex-specific fitness and about how sex-biased gene expression and conflict vary throughout development or across different genotypes, populations, and environments. We discuss the importance of these neglected areas of research and use data from a small-scale experiment on sex-specific expression of genes throughout development to highlight potentially interesting avenues for future research. PMID:25376837

  4. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum.

    PubMed

    Rekawiecki, Robert; Rutkowska, Joanna; Kotwica, Jan

    2012-12-01

    The selection of proper housekeeping genes for studies requiring genes expression normalization is an important step in the appropriate interpretation of results. The expression of housekeeping genes is regulated by many factors including age, gender, type of tissue or disease. The aim of the study was to identify optimal housekeeping genes in the corpus luteum obtained from cyclic or pregnant cows. The mRNA expression of thirteen housekeeping genes: C2orf29, SUZ12, TBP, TUBB2B, ZNF131, HPRT1, 18s RNA, GAPDH, SF3A1, SDHA, MRPL12, B2M and ACTB was measured by Real-time PCR. Range of cycle threshold (C(t)) values of the tested genes varied between 12 and 30 cycles, and 18s RNA had the highest coefficient of variation, whereas C2orf29 had the smallest coefficient. GeNorm software demonstrated C2orf29 and TBP as the most stable and 18s RNA and B2M as the most unstable housekeeping genes. Using the proposed cut-off value (0.15), no more than two of the best GeNorm housekeeping genes are proposed to be used in studies requiring gene expression normalization. NormFinder software demonstrated C2orf29 and SUZ12 as the best and 18s RNA and B2M as the worst housekeeping genes. The study indicates that selection of housekeeping genes may essentially affect the quality of the gene expression results.

  5. Structure and expression of ubiquitin genes of Drosophila melanogaster.

    PubMed Central

    Lee, H S; Simon, J A; Lis, J T

    1988-01-01

    We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock. Images PMID:2463465

  6. Quantifying the Effect of DNA Packaging on Gene Expression Level

    NASA Astrophysics Data System (ADS)

    Kim, Harold

    2010-10-01

    Gene expression, the process by which the genetic code comes alive in the form of proteins, is one of the most important biological processes in living cells, and begins when transcription factors bind to specific DNA sequences in the promoter region upstream of a gene. The relationship between gene expression output and transcription factor input which is termed the gene regulation function is specific to each promoter, and predicting this gene regulation function from the locations of transcription factor binding sites is one of the challenges in biology. In eukaryotic organisms (for example, animals, plants, fungi etc), DNA is highly compacted into nucleosomes, 147-bp segments of DNA tightly wrapped around histone protein core, and therefore, the accessibility of transcription factor binding sites depends on their locations with respect to nucleosomes - sites inside nucleosomes are less accessible than those outside nucleosomes. To understand how transcription factor binding sites contribute to gene expression in a quantitative manner, we obtain gene regulation functions of promoters with various configurations of transcription factor binding sites by using fluorescent protein reporters to measure transcription factor input and gene expression output in single yeast cells. In this talk, I will show that the affinity of a transcription factor binding site inside and outside the nucleosome controls different aspects of the gene regulation function, and explain this finding based on a mass-action kinetic model that includes competition between nucleosomes and transcription factors.

  7. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  8. Splice variants and seasonal expression of buffalo HSF genes.

    PubMed

    Lal, Shardul Vikram; Brahma, Biswajit; Gohain, Moloya; Mohanta, Debashish; De, Bidan Chandra; Chopra, Meenu; Dass, Gulshan; Vats, Ashutosh; Upadhyay, Ramesh C; Datta, T K; De, Sachinandan

    2015-05-01

    In eukaryotes, the heat shock factors (HSFs) are recognized as the master regulator of the heat shock response. In this respect, the genes encoding the heat shock factors seem to be important for adaptation to thermal stress in organisms. Despite this, only few mammalian HSFs has been characterized. In this study, four major heat shock factor genes viz. HSF-1, 2, 4, and 5 were studied. The main objective of the present study was to characterize the cDNA encoding using conserved gene specific primers and to investigate the expression status of these buffalo HSF genes. Our RT-PCR analysis uncovered two distinct variants of buffalo HSF-1 and HSF-2 gene transcripts. In addition, we identified a variant of the HSF5 transcript in buffalo lacking a DNA-binding domain. In silico analysis of deduced amino acid sequences for buffalo HSF genes showed domain architecture similar to other mammalian species. Changes in the gene expression profile were noted by quantitative real-time PCR (qRT-PCR) analysis. We detected the transcript of buffalo HSF genes in different tissues. We also evaluated the seasonal changes in the expression of HSF genes. Interestingly, the transcript level of HSF-1 gene was found upregulated in months of high and low ambient temperatures. In contrast, the expression of the HSF-4 and 5 genes was found to be downregulated in months of high ambient temperature. This suggests that the intricate balance of different HSFs is adjusted to minimize the effect of seasonal changes in environmental conditions. These findings advance our understanding of the complex, context-dependent regulation of HSF gene expression under normal and stressful conditions.

  9. Identification of Haemophilus ducreyi genes expressed during human infection.

    PubMed

    Bauer, Margaret E; Fortney, Kate R; Harrison, Alistair; Janowicz, Diane M; Munson, Robert S; Spinola, Stanley M

    2008-04-01

    To identify Haemophilus ducreyi transcripts that are expressed during human infection, we used selective capture of transcribed sequences (SCOTS) with RNA isolated from pustules obtained from three volunteers infected with H. ducreyi, and with RNA isolated from broth-grown bacteria used to infect volunteers. With SCOTS, competitive hybridization of tissue-derived and broth-derived sequences identifies genes that may be preferentially expressed in vivo. Among the three tissue specimens, we identified 531 genes expressed in vivo. Southern blot analysis of 60 genes from each tissue showed that 87 % of the identified genes hybridized better with cDNA derived from tissue specimens than with cDNA derived from broth-grown bacteria. RT-PCR on nine additional pustules confirmed in vivo expression of 10 of 11 selected genes in other volunteers. Of the 531 genes, 139 were identified in at least two volunteers. These 139 genes fell into several functional categories, including biosynthesis and metabolism, regulation, and cellular processes, such as transcription, translation, cell division, DNA replication and repair, and transport. Detection of genes involved in anaerobic and aerobic respiration indicated that H. ducreyi likely encounters both microenvironments within the pustule. Other genes detected suggest an increase in DNA damage and stress in vivo. Genes involved in virulence in other bacterial pathogens and 32 genes encoding hypothetical proteins were identified, and may represent novel virulence factors. We identified three genes, lspA1, lspA2 and tadA, known to be required for virulence in humans. This is the first study to broadly define transcripts expressed by H. ducreyi in humans.

  10. Risk analysis of colorectal cancer incidence by gene expression analysis

    PubMed Central

    Shangkuan, Wei-Chuan; Lin, Hung-Che; Chang, Yu-Tien; Jian, Chen-En; Fan, Hueng-Chuen; Chen, Kang-Hua; Liu, Ya-Fang; Hsu, Huan-Ming; Chou, Hsiu-Ling; Yao, Chung-Tay

    2017-01-01

    Background Colorectal cancer (CRC) is one of the leading cancers worldwide. Several studies have performed microarray data analyses for cancer classification and prognostic analyses. Microarray assays also enable the identification of gene signatures for molecular characterization and treatment prediction. Objective Microarray gene expression data from the online Gene Expression Omnibus (GEO) database were used to to distinguish colorectal cancer from normal colon tissue samples. Methods We collected microarray data from the GEO database to establish colorectal cancer microarray gene expression datasets for a combined analysis. Using the Prediction Analysis for Microarrays (PAM) method and the GSEA MSigDB resource, we analyzed the 14,698 genes that were identified through an examination of their expression values between normal and tumor tissues. Results Ten genes (ABCG2, AQP8, SPIB, CA7, CLDN8, SCNN1B, SLC30A10, CD177, PADI2, and TGFBI) were found to be good indicators of the candidate genes that correlate with CRC. From these selected genes, an average of six significant genes were obtained using the PAM method, with an accuracy rate of 95%. The results demonstrate the potential of utilizing a model with the PAM method for data mining. After a detailed review of the published reports, the results confirmed that the screened candidate genes are good indicators for cancer risk analysis using the PAM method. Conclusions Six genes were selected with 95% accuracy to effectively classify normal and colorectal cancer tissues. We hope that these results will provide the basis for new research projects in clinical practice that aim to rapidly assess colorectal cancer risk using microarray gene expression analysis. PMID:28229027

  11. Pervasive Effects of Aging on Gene Expression in Wild Wolves.

    PubMed

    Charruau, Pauline; Johnston, Rachel A; Stahler, Daniel R; Lea, Amanda; Snyder-Mackler, Noah; Smith, Douglas W; vonHoldt, Bridgett M; Cole, Steven W; Tung, Jenny; Wayne, Robert K

    2016-08-01

    Gene expression levels change as an individual ages and responds to environmental conditions. With the exception of humans, such patterns have principally been studied under controlled conditions, overlooking the array of developmental and environmental influences that organisms encounter under conditions in which natural selection operates. We used high-throughput RNA sequencing (RNA-Seq) of whole blood to assess the relative impacts of social status, age, disease, and sex on gene expression levels in a natural population of gray wolves (Canis lupus). Our findings suggest that age is broadly associated with gene expression levels, whereas other examined factors have minimal effects on gene expression patterns. Further, our results reveal evolutionarily conserved signatures of senescence, such as immunosenescence and metabolic aging, between wolves and humans despite major differences in life history and environment. The effects of aging on gene expression levels in wolves exhibit conservation with humans, but the more rapid expression differences observed in aging wolves is evolutionarily appropriate given the species' high level of extrinsic mortality due to intraspecific aggression. Some expression changes that occur with age can facilitate physical age-related changes that may enhance fitness in older wolves. However, the expression of these ancestral patterns of aging in descendant modern dogs living in highly modified domestic environments may be maladaptive and cause disease. This work provides evolutionary insight into aging patterns observed in domestic dogs and demonstrates the applicability of studying natural populations to investigate the mechanisms of aging.

  12. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  13. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics

    PubMed Central

    2014-01-01

    Background De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from ex